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ABSTRACT: Correlators of Wilson-line operators are fundamental ingredients for the study
of the infrared properties of non-abelian gauge theories. In perturbation theory, they are
known to exponentiate, and their logarithm can be organised in terms of collections of
Feynman diagrams called webs. We study the classification of webs to high perturbative
orders, proposing a set of tools to generate them recursively: in particular, we introduce
the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with
connected gluon correlators, instead of individual Feynman diagrams. As an application,
we enumerate all Cwebs entering the soft anomalous dimension matrix for multi-parton
scattering amplitudes at four loops, and we compute the mizing matrices for all Cwebs
connecting four or five Wilson lines at that loop order, verifying that they obey sum rules
that were derived or conjectured in the literature. Our results provide the colour building
blocks for the calculation of the soft anomalous dimension matrix at four-loop order.
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1 Introduction

Studies of the structure of infrared (IR) singularities that appear in scattering amplitudes
in gauge field theories have a long and rich history, and have led to remarkable all-order
insights into the organisation of the perturbative expansion [1-16]. In the computation
of loop corrections to scattering amplitudes, IR singularities arise when a virtual particle
flowing in a loop becomes soft or collinear to one of the external particles. Upon construct-
ing, from amplitudes, a well-defined physical observable, these singularities are cancelled
by the contribution of real emission diagrams, which must be integrated over the phase
space for undetected real radiation. The singularities, however, often leave their imprints
on the perturbative expansion, in the form of potentially large logarithms of kinematic
variables, which may need to be resummed in order to obtain precise predictions. Such

I are made possible by the universal nature of infrared radiation, which re-

resummations
sults in factorised expressions for scattering amplitudes, where soft and collinear effects are
organised by universal functions, depending only on the quantum numbers of the external
particles involved in the scattering, but not on the specific nature of the hard process being
considered [14, 17, 18]. These soft and collinear functions, in turn, can be expressed as

matrix elements of field operators and Wilson lines, which are the object of the present

IFor an introduction to the relevant techniques, see, for example, [17].



study. We note that such matrix elements play a ubiquitous role, not only for the factori-
sation of scattering amplitudes, but also in many effective theories based on QCD [19-21];
furthermore, we emphasise that a detailed knowledge of infrared singularities is also impor-
tant for collider phenomenology at finite orders: indeed, the cancellation of singularities
between squared matrix elements with different numbers of external particles is difficult
to implement at high orders for complicated collider observables, which must be evalu-
ated numerically. In practice, the cancellation must be performed analytically, and the
construction of general and efficient subtraction procedures beyond next-to-leading order
(NLO) is an ongoing effort (see, for example, [22-31]).

The methods developed in this paper concern the evaluation of Wilson-line correlators
of the general form

S (i) = (O T v, () 10) (1.1)

k=1

where @,(v) is a Wilson-line operator evaluated on a (smooth) space-time contour =,
defined by

@, () = Pexp [ig L dm~AT(m)} , (1.2)

where Al(x) = AL(z) T? is a non-abelian gauge field, with T% the generators of the
representation r of the gauge group. The smooth contours «, can be closed (in which case
the correlator is gauge-invariant), or open: in this case, the correlator is a colour tensor
with open colour indices in representations 7 attached to the ends of each Wilson line.
While most of our considerations will apply in general to any correlator of the form (1.1),
we will be especially interested in the soft colour operator associated with multi-particle
scattering amplitudes in gauge theories, which encodes all their soft singularities. This soft
operator is of the form of eq. (1.1), with the contours ~; given by semi-infinite straight
lines extending from the origin along directions (i, corresponding to the four-velocities of
the particles participating in the scattering. In this case we write more explicitly

52 (8- 8.00(1),) = O T] 3, (2, 0)10), 5(00,0) = Pessp o[ ans-a0s)|.
k=1

(1.3)
where ay = ¢2/(4r), for simplicity we did not display the representations to which the
Wilson lines belong, and we introduced the dimensional regularisation parameter e, setting
the space-time dimension to d = 4 — 2e.

Soft operators of the form (1.3) are highly singular, being affected by ultraviolet, soft,
and, in case 2 = 0, collinear divergences: as a consequence, special care is required to
evaluate them [32-35]. In the massless case, this can be done by introducing auxiliary regu-
lators: for collinear divergences, one may set 32 # 0, for soft divergences one may for exam-
ple introduce a smooth exponential long-distance cutoff on gluon interactions, as discussed
in refs. [34, 35], while retaining dimensional regularisation for ultraviolet singularities. The
bare correlator can then be evaluated and renormalised, yielding the desired answer.



Wilson-line correlators of the form of eq. (1.1) have the following basic properties.

e After renormalisation, n-line correlators obey renormalisation group equations which
lead, in dimensional regularisation, to exact exponentiation in terms of a soft anoma-
lous dimension matrix I',,. For straight-line correlators, of the form of eq. (1.3), one
may write

S, <ﬁl - By, as(u2), 6) = Pexp

_;/OHQ(?;I‘n(ﬁi'ﬁjaas()\z)ﬁ)] : (1.4)

It is important to note that, in the massless case, the soft anomalous dimension
I',, is affected by collinear singularities, which must be properly organised in terms
of appropriate jet functions [14]; collinear-finite contributions can be computed in
the massless case by considering Wilson lines slightly tilted off the light cone, and
taking the light-cone limit in the intermediate stages of the calculation [36]. The soft
anomalous dimension matrix I',, is a central quantity for the study of perturbative
non-abelian gauge theories, and has been the focus of much theoretical work. It
was computed at one loop in [37] (see also [38]); at two loops in the massless case
in [39, 40], and in the massive case in [41-45]; finally, at three loops in the massless
case in [36, 46].

e General Wilson-line correlators of the form of eq. (1.1) obey a non-trivial form of
diagrammatic exponentiation, so that one can write

Sa (1) = exp | Wa (3) | (1.5)

where the logarithm of the correlator, W, (;), can be directly computed in terms of a
subset of the Feynman diagrams contributing to S, (;). For non-abelian gauge theo-
ries, this was first pointed out in refs. [47—49], for the case of two straight, semi-infinite
Wilson lines. For general configurations, it was proven in refs. [50, 51]. Feynman di-
agrams contributing to W, (7;) are collectively called webs. For an abelian theory,
webs are connected diagrams; for a non-abelian theory, if only two Wilson lines are
present, webs are two-eikonal irreducible diagrams, i.e. diagrams that do not become
disconnected upon cutting only the two Wilson lines; for general, multi-line correla-
tors, webs are sets of diagrams that differ among themselves by the ordering of their
gluon attachments to the Wilson lines. The properties of webs will be further dis-
cussed in section 2, and a useful generalisation of the concept of web will be proposed
in section 3. Clearly, by means of webs, one can directly compute the soft anomalous
dimension matrix I',.

e For the case when the contours -y; are semi-infinite, or infinite straight lines, all loop
corrections to the bare correlator, in the absence of auxiliary IR regulators, vanish
in dimensional regularisation, since they are given by scale-less integrals. Bare corre-
lators are then exactly given by the unit matrix in the tensor product of the colour
representations of the n Wilson lines. The renormalised correlator is therefore a ‘pure



counterterm’: in order to compute it, one must first construct an IR-regulated ver-
sion of the bare correlator, whose loop corrections will not vanish, but will in general
be regulator-dependent; one proceeds then to renormalise the regulated correlator,
extracting the relevant UV counterterms; the set of these counterterms constitutes
the renormalized version of the original correlator. It is important to note that,
for general multi-line correlators, multiplicative renormalisability and exponentiation
combine non-trivially, due to the non abelian nature of webs, and the calculation
of renormalised correlators includes commutators of counterterms and bare webs, as
required [52].

e When the countours ~; are light-like, straight, semi-infinite Wilson lines, scale invari-
ance imposes strong constraints on the functional dependence of the soft anomalous
dimension matrix I';,. Up to two loops, I';, can only involve dipole correlations be-
tween Wilson lines [15, 16, 53, 54]; beyond two loops, only quadrupole correlations
can arise, which must depend on scale-invariant conformal cross ratios of the form
pijt = (Bi - BiBr - B1)/(Bi - BrBj - Bi): the first such correlations arise at three loops,
with at least four Wilson lines, and were computed in ref. [36]; further correlations
may arise only in association with higher-order Casimir operators, which may start
contributing only at four loops, as discussed in section 5.3.

In this paper, we study the properties of the logarithms of Wilson-line correlators, W, (i),
with emphasis on their colour structures, extending earlier studies to higher orders in
perturbation theory. After reviewing existing results on diagrammatic exponentiation in
section 2, in section 3 we propose a natural extension of the concept of web, which we
believe will prove useful for classification purposes and high-order studies. Subsequently,
in section 4, we discuss how our definition leads to a simple recursive method to generate
webs at (p+1) loops from those arising at p loops, and we discuss how this recursion can be
implemented in a code based on the ‘replica trick’ used in ref. [51]. In section 5, we apply
our method to construct the web mixing matrices at four loops for all webs connecting
four or five Wilson lines, verifying that these matrices satisfy the expected properties,
including conjectures that were proposed at lower orders; furthermore, we briefly discuss
the colour structures that arise at four loops, verifying the compatibility of our results
with the discussion in refs. [55, 56]. We conclude, in section 6, with an outlook on possible
future developments, while an appendix lists in detail the web mixing matrices for all the
webs discussed in the main text.

2 Diagrammatic exponentiation for multiple Wilson-line correlators

Diagrammatic exponentiation in the eikonal approximation was first observed in QED [6],
where W, (;) is given by the sum of all connected photon subdiagrams (obtained by remov-
ing the Wilson lines form the original diagrams): two examples are shown in figure 1. For
a non-abelian theory, the presence of non-commuting colour factors associated with gluon
attachments to the Wilson lines invalidates the simple QED exponentiation: it remains
nonetheless true that the logarithms of Wilson-line correlators have a direct diagrammatic
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Figure 1. Two low-order examples of webs with two Wilson lines in an abelian gauge theory.
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Figure 2. The first two diagrams contribute to Ws, while the third diagram, which becomes
disconnected by cutting the two Wilson lines, does not.

interpretation. For the case of two Wilson lines [47-49], W, is constructed from the set
of diagrams which remain connected after cutting the two Wilson lines: these two-eikonal-
irreducible diagrams are called webs (see figure 2 for examples). It is important to note
that, even in the simple case of two Wilson lines in a colour-singlet configuration, webs
appear in Wy with modified colour factors: more precisely, the only colour factors ap-
pearing in W, are those that correspond to connected gluon subdiagrams, such as the
first one portrayed in figure 2. This provides an interesting generalisation of the abelian
exponentiation, and points to further extensions to the multi-Wilson-line case.

The problem of constructing the colour operator W, (y;) for the general case of n Wilson
lines was solved in the remarkable series of papers [50-52, 57-61], while an interesting alter-
native approach was developed in refs. [62, 63]. Here we briefly summarise the main results,
with special attention to the colour structures, which will be the main focus of our paper.

Let D be a Feynman diagram contributing to the correlator S,,. Each such diagram
can be written as the product of a kinematic factor (D), depending on the four velocities
Bi (or more generally on the contours «; in the case of non-straight Wilson lines) and a
colour factor C(D). In full generality, the logarithm of the correlator, W,, can be written
as linear combination of the same diagrams, with modified colour factors. We write

Wi(yi) =Y _K(D)C(D), (2.1)
D

where C(D) is referred to as Ezponentiated Color Factor (ECF) for diagram D. The cru-
cial point in eq. (2.1) is of course that a large number of diagrams have vanishing ECF's,
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Figure 3. A simple two-loop, three-line web involving two Feynman diagrams. Note that Wilson
lines are oriented, and labelled by integers in green; multiple gluon attachments to a given line
(whose permutations generate the web) are labelled by capital letters in blue.

and therefore do not contribute to the logarithm of the correlator: for example, for n = 2,
one can show that all two-eikonal reducible diagrams have C'(D) = 0. In general, ECFs are
linear combinations of the ordinary color factors of sets of diagrams that differ only by the
order of their gluon attachments to the Wilson lines. This naturally leads to the general def-
inition of a web not as a single diagram, but as a set of diagrams that can be obtained from
any representative element by permuting the gluon attachments to the Wilson lines: a sim-
ple example of a two-loop, three-line web involving two diagrams is presented in figure 3.
As a consequence of these considerations, the sum in eq. (2.1) is naturally organised as
a sum over webs, and for each diagram belonging to a given web w the ECF is expressed as

C(D)= > Ry(D,D")C(D'), (2.2)

D'ew

where the sum extends to the diagrams belonging to web w, and R,,(D, D’) is called web
mizing matriz. Combining eq. (2.1) and eq. (2.2) one can express the Wilson-line correla-
tor as

Sp=exp | > K(D)R(D,D")C(D')| , (2.3)
D.,D’

where the sum extends to all diagrams appearing in the correlator, order by order in pertur-
bation theory, and the matrix R is block-diagonal, with blocks corresponding to individual
webs. In turn, each web w can be written as

w= Y K(D)CD)= Y K(D)Ry(D,D)C(D). (2.4)
Dew D,D’'cw
In this language, W,, = > wy,, where the sum extends to all webs arising in the presence

of n Wilson lines, order by order in perturbation theory.

Clearly, web mixing matrices are crucial quantities for the purpose of computing
Wilson-line correlators, and therefore the soft anomalous dimension matrix. Their proper-
ties were extensively studied in refs. [50-52, 57-60], and can be summarised as follows:

e Web mixing matrices are idempotent, i.e. Vw, R2 = R,, as a consequence of which
their eigenvalues can only be either 1 or 0.



e Operating on the vector of color factors for the diagrams of web w, the web mixing
matrix R, acts as a projection operator, selecting a subset of the possible colour
factors, in number equal to its rank.

e To all orders in perturbation theory, it can be shown [59] that the set of colour factors
surviving the projection is the set of colour factors of connected gluon diagrams: this
is the general form of the non-abelian exponentiation theorem.

e Acting on the vector of kinematic factors for the diagrams of web w, in the presence
of an infrared regulator, the web mixing matrix R, projects onto kinematic factors
that do not contain ultraviolet sub-divergences. This is crucial, in order to be able
to isolate UV counterterms with no dependence on the infrared regulator.

e The elements of web mixing matrices obey the row sum rule )", R, (D,D’) = 0,
implying that at least one of the eigenvalues of R,, must vanish.

In addition to these properties, which were proved in refs. [52, 57, 59], in the case of semi-
infinite Wilson lines radiating out of a common origin, the matrix elements of web mixing
matrices are also conjectured to obey a column sum rule which can be stated as follows.
Given a diagram D, consider the set {D!} of subdiagrams that remain connected after
the Wilson lines are removed; we say that a connected subdiagram D! can be shrunk to
the common origin of the Wilson lines if all the vertices connecting the subdiagram to the
Wilson lines can be moved to the origin without encountering vertices associated with other
subdiagrams. For a given diagram D, we define the column weight of diagram D, s(D), as
the number of different ways in which the connected subdiagrams D! can be sequentially
shrunk, so that all gluon attachments to Wilson lines in D are moved to the common origin.
This means, in practice, that if all gluon attachments are entangled, so that no subdiagram
can be shrunk without shrinking the whole diagram, then s(D) = 0. On the other hand,
if, for example, a single subdiagram D! can be shrunk without affecting the others, this
provides a non-trivial sequence for the shrinking of the whole diagram, so that s(D) = 1:
this is the situation for the two diagrams portrayed in figure 3. With this definition, it is
conjectured that [52].

e The elements of web mixing matrices obey the column sum rule Y, s(D)Ry, (D, D’)=0.

In what follows, row and column sum rules will be illustrated in a number of examples, and
the conjectured column sum rule will be verified to hold for all four-loop webs connecting
four or five Wilson lines.

We conclude this section by noting that the characterisation of web mixing matrices
as projectors can be made explicit by introducing, for each web, a diagonalising matrix Y,
such that

YuR,Y, b =diag (A1, .., A\py) = Ly @ 0py 1y (2.5)

where p,, is the number of diagrams for web w, and thus the dimension of the matrix
Ry, while r, < p,, is the rank of R,. Without loss of generality, we have ordered the



eigenvalues of R, labelled by A;, so that null eigenvalues appear in the last positions.
With these conventions, eq. (2.4) can be rewritten in matrix notation as

w= (K"Y,") YuRuY, ! (Y,C)

= Ew: (KTY, ), (Yu0),, , (2.6)
h=1

where /C is the vector of kinematic factors and C' is the vector of colour factors for web
w. It is clear that only r,, ECFs will contribute to web w: the non-abelian exponentiation
theorem tells us that they will be colour factors which, by the Feynman rules, would be
associated to connected gluon subdiagrams.

3 From gluon webs to correlator webs

As discussed in section 2, webs for multi-parton scattering amplitudes are defined as sets
of diagrams connecting gluons to Wilson lines, containing diagrams which are related to
one another by permutations of gluon attachments to the Wilson lines. In this section, we
present a definition for a closely related structure, where fixed-order Feynman diagrams are
replaced by ‘skeleton’ diagrams, which are built out of connected gluon correlators, instead
of gluon propagators and vertices. The basic reason to introduce these structures is that
they strongly simplify the counting and organisation of contributions to the logarithm
of Wilson-line correlators, especially at high orders, where radiative corrections to gluon
subdiagrams become important and proliferate; furthermore, as we will see, using connected
correlators does not affect the definition and structure of web mixing matrices, which are
derived exclusively from the ordering of gluon attachments to the Wilson lines, and are not
affected by gluon interactions away from the Wilson lines.

With this in mind, we define a correlator web, or Cweb as a set of skeleton diagrams,
built out of connected gluon correlators attached to Wilson lines, and closed under permu-
tations of the gluon attachments to each Wilson line.

Clearly, the main difference between webs and Cwebs is the fact that Cwebs are not
fixed-order quantities, but admit their own perturbative expansion in powers of g. In
a manner similar to webs, it is not easy to find a non-ambiguous notation to uniquely
identify Cwebs: indeed, to some extent, they reflect the full complexity of the perturbative
expansion. Below, we will use the notation W, (k1,...,k,) for a Cweb involving n Wilson
lines,?> with k; gluon attachments to the i-th Wilson line. It is clear that beyond the
lowest orders several different n-line Cwebs will share the same number of attachments
to the Wilson lines: one can then refine the notation, using WéCQ""’C” )(kl, ooy ky) for a
Cweb with the prescribed attachments, constructed out of ¢, m-point connected gluon
correlators: one should keep in mind, however, that, at sufficiently high-orders, also this
notation becomes ambiguous. We note also that there is an obvious degeneracy in the
counting of Cwebs, since Cwebs that differ only by a permutation of their Wilson lines

2Recall that in section 2 we used lower-case w for ordinary webs, while we reserve upper-case W
for Cwebs.
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Figure 4. The only two Cwebs whose perturbative expansion starts at O(g?).

are structurally identical, and it is trivial to include them in the calculation of the full
correlator, simply by summing over Wilson-line labels. As a consequence, for classification
purposes, we will break this degeneracy by picking a specific Wilson-line ordering, choosing
k1 <ks <...<kp.

Taking into account the fact that the perturbative expansion for an m-point connected

m—2)

gluon correlator starts at O(g , we can write the perturbative expansion for a Cweb,

with a prescribed correlator content and number of attachments, as

WAL (ky, k) = g oim Bt Do) NS plesce) gy g¥ o (30)
j=0

which defines the perturbative coefficients of the Cweb, W, ;. Based on eq. (3.1), it is
natural to classify Cwebs based on the perturbative order where they receive their lowest-
order contribution, which is given by the power of g in the prefactor of eq. (3.1); one may
then easily design a recursive procedure to construct all Cwebs order by order. We begin
by noticing that only two Cwebs have lowest-order contributions at order ¢g2: a self-energy
insertion with a two-point connected gluon correlator attached to a single Wilson line,

which we denote by Wl(l) (2), and the configuration with a two-gluon correlator joining two

Wilson lines, which we denote by W2(1)(1, 1). They are depicted in figure 4.

In the massless case (with Wilson lines on the light cone), the self-energy Cweb vanishes
identically, since, by the eikonal Feynman rules, it is proportional to the square of the
Wilson-line four-velocity vector, 32, so one is left with a single non-vanishing O(g?) Cweb.
Starting from this initial condition, one may systematically construct Cwebs starting at
higher perturbative orders: keeping in mind that one must imagine having an unlimited

supply of yet-uncoupled Wilson lines, one may proceed by performing the following moves.

e Add a two-gluon connected correlator connecting any two Wilson lines (including
Wilson lines that had no attachments at lower orders).

e Connect an existing m-point correlator to any Wilson line (again, including Wilson
lines with no attachments at lower orders), turning it into an (m+1)-point correlator.

e Connect an existing m-point correlator to an existing n-point correlator, resulting in
an (n + m)-point correlator.
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Figure 5. Representative skeleton diagrams for the four non-vanishing Cwebs in a massless theory
whose perturbative expansion starts at O(g*). Cwebs (a) and (c) comprise a single skeleton diagram,
while Cwebs (b) and (d) comprise two skeleton diagrams, obtained by permuting the labelled
attachments.

Executing all moves is clearly redundant, since the same Cweb is generated more than
once through different sequences of moves: upon performing all moves, one must therefore
remove multiply-counted Cwebs. This procedure can be considerably streamlined by taking
into account known properties of webs, which naturally generalise to Cwebs. Specifically,

e webs (and thus Cwebs) that are given by the product of two or more disconnected
lower-order webs (so that there are subsets of Wilson lines not joined by any gluons)

do not contribute to the logarithm of the correlator, W,;

e as mentioned above, in a massless theory all self-energy webs (Cwebs), where all
gluon lines attach to the same Wilson line, vanish as a consequence of the eikonal
Feynman rules. Thus, any Cweb containing a connected gluon correlator attaching
to a single Wilson line will vanish.

It turns out that both these rules can be applied to trim the recursive procedure: more
precisely, moves that lead to a disconnected Cweb, or (in the massless theory) to a self-
energy Cweb can be immediately discarded. This is less than obvious, since a disconnected
Cweb can become connected at the next recursive step, and similarly a self-energy Cweb
can become connected to other Wilson lines upon adding more gluons. It is however
easy to convince oneself that all non-vanishing Cwebs that are reached by the recursion
through intermediate stages involving either self-energy or disconnected Cwebs, are also
reached through sequences of steps involving only non-vanishing Cwebs. The recursion can
therefore be stopped whenever a vanishing contribution of these two kinds is reached.
Using these recursion criteria, it is easy to enumerate inequivalent Cwebs at low or-
ders. In the massless theory, we find four inequivalent Cwebs starting at O(g*), which
we label WQ(O’l)(l,2), 2(2)(2,2), Wéo’l)(l,l,l) and WéQ)(1,1,2): they are displayed in
figure 5 (up to permutations of the Wilson lines). Similarly, at O(g%) we find fourteen new
Cwebs, depicted in figures 6, 7 and 8. Out of these, four Cwebs connect two Wilson lines,
and their labels are WQ(O’O’I)(LS), W2(0’0’1)(2,2), W2(1’1)(2,3) and W2(3)(3,3); six Cwebs
connect three Wilson lines: Wéo’o’l)(l, 1,2), W:,El’l)(l, 1,3), Wé}fl)(l,Z,Z), ngll’ll)(l,Z,Q),

Wég)(l, 2,3) and W3(3) (2,2,2). Notice that here we find the first occurrence of two Cwebs

~10 -
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Figure 7. Representative skeleton diagrams for the six non-vanishing Cwebs in a massless theory
connecting three Wilson lines, and whose perturbative expansion starts at O(g%). Their respective
numbers of skeleton diagrams are {1, 3,2,4,6,8}.

with the same correlator content and attachments: they are distinguished by different at-
tachments of the three-gluon correlator to the Wilson lines, and we tag them by different
roman numeral indices. Finally, still at O(g®) we find four Cwebs connecting four Wilson
lines: W%V (1,1,1,1), w,1,1,2), w¥(1,1,2,2) and WP(1,1,1,3). At O(g%),
we find a total of 60 new Cwebs: 8 connecting two lines, 22 connecting three lines, 21
connecting 4 lines and 9 connecting five lines. Four-loop Cwebs connecting four and five
lines will be discussed in more detail in section 5, and are listed in the appendix.

We conclude this section by discussing briefly the symmetry properties of Cwebs and
the counting of skeleton diagrams entering each Cweb. First, we note that Cwebs are built
out of connected gluon correlators, each of which is constrained by Bose symmetry and
gauge invariance. In simple cases, this poses strong limitations on the colour structures
entering the Cweb: for example, colour conservation forces the gluon two-point function to
be diagonal in colour, and thus proportional to the unit matrix in the adjoint representation

- 11 -



(a) w0V ,1,1,1)  (b) W (1,2,1,1)  (c) WP(1,2,1,2) (d) w¥(1,3,1,1)

Figure 8. Representative skeleton diagrams for the four non-vanishing Cwebs in a massless theory
connecting four Wilson lines, and whose perturbative expansion starts at O(g®). Their respective
numbers of skeleton diagrams are {1,2,4,6}.

of the gauge group; thus, to any order, a two-point function joining Wilson lines ¢ and j will
always generate the dipole structure T;-T; = T{ T, ,. Similarly the three-point (off-shell)
correlator is conjectured to be proportional to the structure constants fu;. to all orders in
perturbation theory, a conjecture which has been verified to high orders (see for example
refs. [64, 65]), and which implies the complete antisymmetry of the corresponding kinematic
factor. For correlators with n > 3 gluons, several colour structures are possible (including
building blocks for higher-order Casimir operators) and decoding the constraints imposed
by colour conservation and Bose symmetry becomes more intricate: these constraints are
however crucial for the construction of the full soft anomalous dimension matrix (see for
example [36, 46]), and they are efficiently summarised to all orders in the language of Cwebs.

Concerning the counting of skeleton diagrams contributing to a given Cweb, which
gives the dimension of the corresponding web mixing matrix, we note that if a connected
correlator is attached to a given Wilson line with p gluons, the permutations of those gluons
should not be taken into account in the enumeration of contributing diagrams, since Bose
symmetry is embedded in the structure of the correlator and all p gluons are equivalent.
The dimension of the web mixing matrix should therefore be computed not by counting
permutations of gluons on each Wilson line, but rather by counting shuffles of the subsets
of gluons emerging from each correlator. Thus, for example, if a Wilson line has a total of
five attachments, three of them emerging from one correlator, and the remaining two from
another one, that line will contribute to the dimension of the web mixing matrix a factor of
10 (the number of possible shuffles of two sets of three and two cards), rather than a factor
of 120 (the number of permutations of five cards). We note also that, in the language of
Cwebs, the bulk of the growth of the number of diagrams at high orders in perturbation
theory is hidden in the internal structure of the contributing gluon correlators: thus, for
example, in our language, the four Feynman diagrams contributing to W4(0’0’1)(1, 1,1,1) at
O(g°%) are understood as four contributions to that same Cweb at that order, rather than

W(O,O,O,l)

four distinct webs; similarly W (1,1,1,1,1) receives contributions from 25 Feynman

diagrams at O(g®).

We now move on to the discussion of the calculation of web mixing matrices with the
method of replicas [51], before discussing the four-loop case in greater detail.
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4 A replica-trick algorithm to generate Cweb mixing matrices

As in other combinatorial problems involving exponentiation, such as the construction of
effective actions, Wilson-line correlators can be studied efficiently by means of algorithms
constructed with the replica method [66]. Here we will briefly discuss the application of
the replica method to infrared exponentiation, following refs. [51, 67], and then outline our
algorithm for the construction of web mixing matrices.

In order to introduce the replica method, consider the path integral expression for the
Wilson-line correlator in eq. (1.1)

S0 = [ DAz U T[ @ () = exp Wt (4.1)
k=1

where S is the classical action.®> In order to compute W, (¥;), we may imagine build-
ing a replicated theory, replacing the single gluon field Aj, with N, identical copies AZ’i
(1t =1,...,N,), which do not interact with each other. Under this replacement, one has
S (AZ) — ZZN:’” 1S (AZZ>, if, furthermore, we replace each Wilson line in eq. (4.1) by the
product of N, Wilson lines, each belonging to one replica of the theory, one readily realises
that the replicated correlator is given by

Ny
=exp [N Wal()| = 1+ N Wa(y) +O(N3) . (42)

S5 (1) = |Sa ()
As a consequence, in order to compute W, (v;) order by order in perturbation theory,
one may compute the replicated correlator, and then extract from the result the term of
order N,.

Importantly, while gluon fields belonging to different replicas do not interact, they
all belong to the same gauge group: therefore, the colour matrices associated with their
attachments to the Wilson lines do not commute, and their ordering is relevant. On the
other hand, in a Cweb, each connected gluon correlator can be assigned a unique replica
number, since there are no interaction vertices connecting different replicas. It is clear then
that the contributions of different skeleton diagrams to the replicated correlator in eq. (4.2)
will be simply related to those of the same diagrams in the unreplicated theory, by means of
combinatorial factors, counting the multiplicities associated with the presence of different
replicas. The computation of W, (v;) in terms of the skeleton diagrams contributing to
Sn(7i) is thus reduced to the computation of these combinatorial factors. The necessary
steps, listed below, were identified in refs. [51, 67], and can be naturally adapted to the
language of Cwebs.

e Given a Cweb, assign a replica number i (1 < i < N,) to each connected gluon
correlator present in the web. Note that if only one connected correlator is present,
only one replica can contribute to any diagram. It is then easy to show that all

3In the presence of matter fields, we can imagine having integrated them out and included their effect in
S, since they do not play a role in the following argument: only gluons couple to Wilson lines, and matter
fields appear only in loops.
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diagrams of the Cweb contribute to W, (7;) with unit weight: in other words, there
is no mixing matrix.

e Define a replica ordering operator R which acts by ordering the color generators on
each Wilson line according to their replica numbers. Note that the Wilson lines
are naturally oriented, so this operation is unambiguous. If we denote by T,(f) the
group generator associated with the emission of a gluon in replica ¢ from the k-th

)

the generators, exchanging their replica numbers ¢ and j, if ¢ > j, while leaving them

Wilson line, the replica-ordering operator acts on a product T,@Tg by relabelling

unchanged if 7 < j.

e In order to compute the colour factor of a skeleton diagram in the replicated theory,
it is now sufficient to note that any non-trivial action by the replica ordering operator
R effectively replaces the selected skeleton diagram with another one drawn from the
same Cweb. The colour factor in the replicated theory is thus a linear combination of
the colour factors of all skeleton diagrams in the Cweb, with multiplicities given by
the number of possible replica orderings of the gluon attachments on every Wilson
line.

e Algorithmically, for a Cweb W) (ky,. .. ky,), built out of m = S2?_, ¢, con-
nected correlators, one needs to determine two relevant numbers: the number of
possible hierarchies between the m replica numbers of the correlators, h(m), and, for
every fixed hierarchy h, the multiplicity with which that hierarchy can occur in the
presence of N, replicas My, (h). The determination of h(m) is made non-trivial by the
fact that the case of equal replica numbers must be treated separately: the sequence
h(m) is however well known [68], and given by the so-called Fubini numbers.* In the
first instances, for m = {1,2,3,4,5,6} one finds h(m) = {1, 3,13, 75,541, 4683}. The
multiplicity of a given hierarchy, on the other hand, is easily seen to be given by

N,.!
(NT — nT(h))! ne(h)!’

My, (h) = (4.3)

where n,(h) is the number of distinct replicas present for hierarchy h. To give a
concrete example, for m = 5, labelling the replica numbers of the 5 correlators with
ir, (k =1,...,5), and picking the hierarchy i; = iy < i3 = i4 < i5, we have n,.(h) = 3,
and thus My, (h) = N;.(N, — 1)(N; —2)/6.

e Finally, the exponentiated color factors for a skeleton diagram D is given by

CNPH(D) =" My, (h) R[C(D)|h] | (4.4)
h

4The Fubini numbers admit a generating function, and they can be defined by

m

1 = T
2 —exp(z) ! Z f(m) ml

m=1
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where R[C(D) ‘h] is the color factor of the skeleton diagram obtained from D through
the action of the replica-ordering operator R for the case of hierarchy h. The Cweb
mixing matrix is built out of the coefficients My, (h), which are polynomials in N,
picking terms that are linear in /V,: many examples will be described in section 5 and
in the appendix. Note that in the presence of m-point correlators, with m > 4, each
such correlator can contribute different ‘internal’ colour factors, for example different
permutations of products of structure constants. Since, however, the information on
the mixing matrix is encoded in the coefficients My, (h), the different colour factors
arising from the internal structure of the correlators can be treated one by one,
without affecting the mixing of the diagrams.

e We note that, given a Cweb W,,(lcz""’cz’)(kl, ..., ky), the dimension dy of its mixing
matrix Ry can be expressed as follows. Let sy (k) be the number of shuffles that can
be performed with the attachments to the k-th Wilson line, given the arrangement
of connected correlators for the Cweb under consideration. One would naively con-
clude that the dimension of Ry is the product of the factors sy (k) over all Wilson
lines. This however fails to take into account an important degeneracy, which already
appears in the simple two-line Cweb W2(2) (2,2) at two loops: counting shuffles sep-
arately on each line yields dy = 4, which is wrong, because the two shuffles on the
second Wilson line can be obtained from the shuffles on the first line by exchanging
the two gluons, which is manifestly a symmetry of the Cweb. In order to take into
account this degeneracy, one must divide by the number of available permutations of
subsets of m-point correlators that have the property of being attached to the same
sets of m Wilson lines.

In order to compute Cweb mixing matrices at four loops, extending the results refs. [51, 52,
59], we have developed an in-house Mathematica code which we describe very briefly below.

e The first step is to generate all the Cwebs that appear at four loops (O(g®)), in
particular those involving four and five Wilson lines. To do so, we note that at
four loops (O(g®)), all possible Cwebs can be obtained by combining the connected
correlators shown in figure 9, and attaching them to 2 < n < 5 Wilson lines. One
may begin by attaching four two-point correlators in all possible ways to the Wilson
lines. Next one proceeds to Cwebs generated by attaching two two-point correlators
and one three-point correlator, in all possible ways, and similary with the other types,
obtained by using the other building blocks in figure 9. We note that the five-point
correlator at this order can only give a trivial Cweb, since it contains only a single
skeleton diagram.

e The code assigns a distinct replica variable to each of the correlators present in a
given Cweb: for example, four two-gluon correlators will be assigned replica indices
1,7,k and [. Then the correlators are sequentially attached to the Wilson lines in
lexicographic order, beginning with the one with index i, attached between Wilson
line 1 and 2, proceeding to the one with index j, attached in all possible ways, so
as to generate a set of ‘partial skeleton diagrams’. This procedure continues till all
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correlators are exhausted. Clearly, this procedure will generate several Cwebs that
are identical (as far as color is concerned), since they are related to each other by a
mere renaming of the Wilson lines: duplicates are discarded. At this stage, we have
only one diagram per Cweb.

e The code then takes one of the above diagrams and generates all the other diagrams
of the corresponding Cweb by permuting (or more precisely shuffling) the gluon
attachments on each of the Wilson lines.

e The next step is to generate all the multiplicities associated to the possible hierachies,
corresponding to the entries of the table 1 of ref. [51]. A subroutine creates all possible
different hierarchies h for each diagram; the code then proceeds to obtain all other
colums of the table, and finally leads to the exponentiated colour factors C (D), from
which we obtain the mixing matrix R. Finally, R is diagonalised and the diagonalising
matrix Y is recorded.

e The code automatically discards self-energy Cwebs, where a connected correlator is
attached only to a single Wilson line, but, in principle, keeps disconnected Cwebs, so
that the vanishing of the corresponding R matrix works as a test.

We note that the run time of the code increases steeply with the increase in the number
of connected correlators, which causes a rapid increase in the number of available replica
hierarchies. The code has been checked by reproducing all lower-order results available in
the literature, and by verifying the two known properties of mixing matrices: their idempo-
tence, and the row sum rule, which hold true for all the R matrices that we have computed.
Furthermore, one can verify that all different Cwebs at O(g®) have been constructed, by
applying the recursive construction described in section 3. Finally, as shown explicitly in
section 5 and in the appendix, all R matrices we have computed satisfy the conjectured
column sum rule discussed in section 2.

5 A selection of four-loop Cwebs

In this section we present in some detail the calculation of two four-loop Cwebs, involving
respectively four and five Wilson lines. This will allow us to introduce some notation which
will be useful to simplify the full listing of results for similar webs, which is presented in the
appendix. For each Cweb, we will present the mixing matrix R, the diagonalising matrix
Y, and the exponentiated colour factors.

5.1 A four-loop, four-line Cweb

As an example, we have selected the Cweb WLSI’O’I) (1,1,2,2), which comprises four skeleton
diagrams depicted in figure 10. We note that in this case the Cweb label includes a roman
numeral, to distinguish it from a second Cweb with identical correlator and attachment
content, Wi}f? 71)(1, 1,2,2), where however the four-gluon correlator has two attachments
to the same Wilson line. That Cweb, discussed in the appendix, involves only two skeleton

diagrams, and therefore has a 2 x 2 mixing matrix. In this case, it is evident by looking
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Figure 9. Combinations of connected correlators that can form Cwebs at four loops.

at any one of the diagrams that there are four shuffles to be considered, so that the
mixing matrix will have dimension four. In order to write down an explicit expression
for the matrices R and Y, it is necessary to introduce an ordering among the diagrams:
in this case, the ordering is displayed in figure 10, but in general it can be identified by
labelling the gluon attachments to be shuffled, and giving the sequence of the shuffles to be
considered. As an example, in figure 10, we have labelled the attachments on Wilson line
3 by A and B, and those on Wilson line 4 by C' and D: the shuffles associated with the
four skeleton diagrams can be labelled by giving the sequences of the attachments, in the
orderings defined by the orientation of the Wilson lines. In this case C; = {{ BA},{CD}},
Cy = {{BA},{DC}}, C3 = {{AB},{CD}}, and C4 = {{AB},{DC}}. Having chosen
the ordering of diagrams, it is straightforward to apply the algorithm and obtain the
exponentiated colour factors.
We find that the mixing matrix R and the diagonalising matrix Y are given by

3 00 -1 -1001
1 1
-110-1 101
R— 2 0 2 | Y = 010 , (5.1)
-101 -3 -1100
-100 % 1 001

The expected properties of the mixing matrix are easily verified: R is idempotent, i.e.
R? = R, the matrix elements in each row sum to zero, and furthermore the column sum
rule is obeyed. Indeed, in this case the vector built out of the indices s(D) for the four
diagrams in figure 10 is given by S = {s(Cy),s(Cz2),s(Cs),s(C4)} = {1,0,0,1}: in the
first and last diagrams one can move the gluon attachments of one of the two correlators to
the origin without affecting the other correlator, which is not possible for the second and
the third diagram. One then readily verifies that the column vector S - R is a null vector.
Finally, we observe (upon diagonalisation by means of the matrix Y) that the mixing
matrix has rank r = 3: as a consequence, there are three independent exponentiated
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Figure 10. The four skeleton diagrams of the Cweb W4(,11’0’1)(1, 1,2,2).

colour factors, which can be chosen as the combinations (Y C),, where i = {1,2,3}. In
order to display explicit expressions for the colour factors, we have to make a choice for the
internal colour structure of the four-point correlator, which appears here at tree level, and
thus is built out of three possible products of pairs of structure constants. As an example,
we display here the colour factors arising from the combination f#192% f4394%  where the
gluons emerging from the four point correlator and attaching to line ¢ have colour index
a;, with i = 1,2, 3,4. The other two possible colour factors for this Cweb can be obtained
by simple permutations. In the case we examine, the emerging colour combinations are

(YC)1 = i f0 £ fM Dy THTSTET] — o0 £ foe Ty T Ty TS,
(Y C)y = —i fb9 fedd feci ¢ T T TS (5.2)
(YC)g = i f 40 f T4 TR TS TS T

We observe that these exponentiated color factors correspond to fully connected Feyn-

man diagrams, so that the non-abelian exponentiation theorem of ref. [59] is, as expected,
satisfied.

5.2 A four-loop, five-line Cweb

As an explicit example of a four-loop, five-line Cweb, we select the one labelled by
Wé?fl)(l, 1,1,2,2), one of two Cwebs with this particular set of attachments and corre-
lators. A sample skeleton diagram contributing this Cweb is shown in figure 11: it is
immediate to note that there are four possible shuffles of the labels, so that the mixing
matrix will have dimension four.
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Figure 11. A sample skeleton diagram contributing to 1/1/5(721’1)(17 1,1,2,2).

The four skeleton diagrams comprising the Cweb can be labelled with the shuffles of
the gluon attachments to the Wilson lines: we choose the sequence C; = {{ DA}, {EB}},
Cy = {{DA},{BE}}, C3 = {{AD},{EB}}, and Cy = {{AD},{BE}}, where, as usual,
the letters are ordered along the oriented Wilson lines following the arrows: with this
choice, figure 11 portrays diagram C;. By inspection, one realizes that for diagram C; it
is possible to shrink to the origins of the Wilson lines, independently of each other, both
the two-gluon correlator joining lines 3 and 5, and the other two-gluon correlator, joining
lines 2 and 4, without affecting the three-gluon correlator. The value of the parameter s
for this diagram is therefore s(Cy) = 2. By a similar reasoning, one concludes that the
other three diagrams have s(C;) = 1, for ¢ = 2,3, while s(C4) = 2. The calculation of the
mixing matrix leads to

1 1 1 1
IS 1 -1-11
S . ~10 01
R— 33 3 73| Y = . (5.3)
FR o
6 6 6 6 2100

One observes that both the row and the column sum rules are satisfied. Furthermore,
diagonalising the mixing matrix, one finds that it has rank r = 1, so that there is only one
exponentiated colour factor. It is

(YC)y = —ifobe fadh fre9TP T TSTITS . (5.4)

In the appendix, we will similarly treat all the other four-loop Cwebs connecting four and
five Wilson lines.

5.3 A note on colour structures at four loops

Four-loop colour structures are especially interesting for the study of gauge-theory scatter-
ing amplitudes, since at this order for the first time the soft anomalous dimension matrix
can receive contributions from quartic Casimir operators of the gauge algebra. The rele-
vance of higher-order Casimir invariants was first noted in this context in [15], but it was in
fact known from the early days of QCD [69]. The presence of quartic Casimir contributions
at four loops in the cusp anomalous dimension is one of only two possible sources for the
violation of the dipole structure of the soft anomalous dimension matrix for massless theo-
ries, which holds up to two loops. Remarkably, the cusp anomalous dimension for QCD was

~19 —



TTCOTCO0Z000TTOO0”

Q
X TTEEO0

&5

Iy 3
TEEOOE0 PHL L oo T LoN
o Q
20005
(,Q?&)’
8
5

=3
P

QO0Q00000000

(= |
a
[+ |

X
X

>
=
=

30000

oTVV0000

[eeTeReTeToToTo N

C

Figure 12. Gluon diagrams representing the structure of the exponentiated colour factors appear-
ing at four loops.

recently computed analytically at four loops [70, 71], following the precise numerical predic-
tions of refs. [72, 73], and the presence of a non-vanishing contribution from quartic Casimir
operators was confirmed. Studying the implications of such contributions for the multiparti-
cle soft anomalous dimension matrix is therefore now an open and very interesting problem,
also in light of the results of refs. [74, 75]. Of course, the ultimate understanding of the role
played by these contributions, and their implications for collinear factorisation, will depend
upon a full calculation of the kinematic factors for the relevant Cwebs: indeed, we note
that collinear factorisation remains compatible with the three-loop expression of the soft
anomalous dimension matrix only thanks to a remarkable connection between matrices with
different number of partons, and after enforcing the constraints of colour conservation [36].

We may, in any case, make a few remarks in this issue, based purely on the analysis
of the colour structure of four-loops Cwebs. First, we observe that all the exponentiated
colour structures that arise in four-loop Cwebs connecting four and five Wilson lines (listed
in the appendix) correspond to the connected gluon diagrams depicted in figure 12, with
the open ends of the gluon lines attaching to generic permutations of Wilson lines. The
gluon-loop structure on the right of figure 12 is of course built out of products of structure
constants fup., however, upon symmetrization, could in principle yield a quartic Casimir
contribution. We note, however, that, for all Cwebs whose perturbative expansion starts at
O(g®), the gluon-loop structure cancels in the exponentiated colour factors (Y'C);, before
their recombination with kinematic factors. It would appear that the only possible source
of quartic Casimir contributions from four- and five-leg Cwebs at four loops is in the one-
loop correction to the O(g%) Cweb Wio’o’l)(l, 1,1,1), depicted in figure 8(a). Indeed, at one
loop, the four-gluon correlator featuring in that Cweb (which must be Bose symmetric),
can develop a symmetric colour structure, yielding a contribution of the form

(0,0,1)

w0 (1,1,1,1) S S VI v v VA (5.5)

)
quartic abed

where K is a kinematic factor, and d Cgl 4 is the completely symmetrized trace of four
generators of the gauge algebra in representation r. We note, however, that the colour
structures directly arising from the diagrams are not all independent, and, upon enforcing
colour conservation, which implies the operator constraint ), T; = 0, they must be reduced
to a basis, following for example the analysis of ref. [59]. Since antisymmetric combination
of generators on the same Wilson line can be eliminated using the gauge algebra, this step
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leads to the appearance of symmetric combination of generators, which can again yield
contributions of quartic Casimir type. These results and considerations are in agreement
with the analysis of refs. [55, 56], with the effective vertex analysis in ref. [59], and with
the generating functional approach of ref. [76], where the role played by symmetric colour
structures in the exponentiated soft function is emphasised.

6 Summary and outlook

The study of the infrared structure of perturbative gauge amplitudes is an active developing
field, with implications for both theoretical studies, concerning the mathematical properties
of gauge theories, and for high-energy phenomenology at colliders. These studies are very
advanced, and we now have a well-developed understanding of infrared factorisation and
exponentiation, with the soft anomalous dimension matrix fully known at three loops for
massless particles [36], the cusp anomalous dimension computed to four loops [70, 71], and
several high-order radiative amplitudes available (see for example [74, 75]). The current
frontier is the calculation of the soft anomalous dimension matrix for multiparticle scatter-
ing at three loops including massive particles, and the exploration of the four-loop domain;
in general, all these studies bring to the fore the relevance, for gauge theory calculations,
of correlators involving Wilson lines, possibly together with gauge and matter fields, which
provide leading-power approximations to scattering amplitudes and cross sections in soft
and collinear limits.

In the present paper, we have developed a set of tools for the analysis of soft anomalous
dimensions at high orders, and we have studied the exponentiated colour structures arising
at the four-loop level in multiparticle amplitudes. We have introduced the concept of a
correlator web, or Cweb, which, we believe, will be useful for the classification and study of
exponentiated correlators at high orders: Cwebs include their own radiative correction, are
easily generated and enumerated, since their number grows only moderately as a function
of the perturbative order, and may help to clarify and implement symmetry properties of
gluon correlators and the consequences of colour conservation.

We have enumerated all Cwebs for a massless theory up to four loops, and we have
computed their mixing matrices and exponentiated colour factors for all cases involving
four and five Wilson lines. We observe that all exponentiated colour factors correspond
to completely connected gluon diagrams, as expected from the non-abelian exponentia-
tion theorem [59]. Furthermore, we note that structures compatible with the presence of
quartic Casimir contributions are present, as expected, but they cancel in Cwebs arising
at O(g®), while they survive in radiative corrections to Cwebs arising at lower orders. Fi-
nally, we verify the properties of mixing matrices that were proved or conjectured in earlier
studies [51, 52, 57-60].

The combinatorial complexity of the calculation of web mixing matrices grows rapidly
with the perturbative order, most notably because of the proliferation of hierarchies that
arise in the application of the replica method, which are counted by the Fubini numbers.
We have developed a code which can handle this complexity at four loops with minimal
computing resources, but we believe that going to yet higher orders is likely to require
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significant optimisation, the development of new tools, or the deployment of considerably
larger computing power. That not withstanding, our results in this paper provide a number
of needed ingredients for the calculation of infrared divergences at four loops, and we believe
that the tools that we have developed will be useful to further our understanding at higher
orders as well.
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A Mixing matrices and exponentiated colour factors

In this appendix we give results for all the webs that appear at 4 loops in the scattering
amplitude, that can connect 4 or 5 Wilson lines. Throughout the list, R, Y and D denote
the mixing matrix, the diagonalizing matrix and the diagonal matrix respectively. D is
represented as D = (1,,0), where r is the rank of the mixing matrix R. We display only one
skeleton diagram per web, and we explicitly give the order of the shuffles that generate the
other diagrams, which is tied to the order the columns of the mixing matrix in the chosen
basis. Finally, we give the expressions for the exponentiated colour factors, which, in
all cases, correspond to fully connected gluon diagrams, as expected. For Cwebs involving
four-point correlators, the colour factors that we present correspond to one of three possible
permutations of structure constants arising from the internal structure of the correlator,
as in section 5.1. We omit from the list the Cwebs that are composed of a single skeleton
diagram, such as Wéo’o’o’l)(l, 1,1,1,1), whose mixing matrix is just a number, R = 1.

A.1 Cwebs connecting four Wilson lines
1. w122

This Cweb has four diagrams, one of which is displayed below. The table gives the chosen
order of the four shuffles of the gluon attachments, and the corresponding S factors.

Z l E Diagrams Sequences S-factors
G | ({BAY{CDyy| 1
| @] G, [ {({BAL(DCY) | 0
N — Cs | {ABL{CD}}| 0
Ci | (ABL.(DCYy | 1

-<
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The R, Y and D matrices are given by

$00-3 -1001
1 1
-110-1 -1010
R=| T, 11| v=| o0 D=(15,0). (A.1)
2 2
—200 % 1001
Finally, the exponentiated colour factors are
(YC)y = i f™ f°9 P TTETTSTY — i f*9 % I T TH T T TS ,
(YC)p = —i f9 {49 feIT{ T T TT
(YO)3 = if™ fo9 " DYTETGTSTY — fo09 fo09 fI pe TYTETY TS (A-2)

w112, 2)

This Cweb has two diagrams, one of which is displayed below. The table gives the chosen

order of the two shuffles of the gluon attachments, and the corresponding S factors.

A

A

-<

B

I

The R, Y and D matrices are given by

o

D=

1
2

N[
D=

)

Diagrams | Sequences | S-factors
Cr {BA}} 1
Co {{AB}} 1
—-11
D =(14,0).
1 1) 3 ( 1 )

Finally, the only exponentiated colour factor is

w11, 3)

(YC)y = —i fe9 fo0 foeh TR T TSTYTY

(A.3)

(A4)

This Cweb has three diagrams, one of which is displayed below. The table gives the cho-
sen order of the three shuffles of the gluon attachments, and the corresponding .S factors.

Diagrams | Sequences | S-factors
Cy {{ABC}) 1
Ca {{BAC}} 0
Cs {{BCA}} 1
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The R, Y and D matrices are given by

1o-1 ~101
R=|-31-3], Y=|-110], D=(120), (A.5)
_%0% 101

Finally, the exponentiated colour factors are
(YO) = —if o0 feITYTETITYTS + if 0 o f T{ T TS TETY,
(YO)o = —if 0 % f*ITI TS THTHTS . (A.6)
4. W% (1,1,2,2)

This Cweb has two diagrams, one of which is displayed below. The table gives the chosen
order of the two shuffles of the gluon attachments, and the corresponding S factors.

3

O y: : Diagrams | Sequences | S-factors
“hé Q§ Cy {{BA}} 1
" E £
&
A B |

The R, Y and D matrices are given by

R:(_ %), Y:<_111>, D= (1,,0). (A7)

Finally, the only exponentiated colour factor is

D=
DN~

N[

(YO = i fobe f49 fI DY T TS TS T (A.8)

5. WP (1,1,1,3)
This is a three-diagram Cweb, represented by

4 Diagrams | Sequences | S-factors
Cr {{ABC}} 1
Co {{ACB}} 0
2 Cs {{CAB}} 1

The R, Y and D matrices are given by

1o-1 -101
R=|-31-1], v=[-110], D=(1,0). (A.9)
_%0% 101
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Finally, the exponentiated colour factors are

(YC)y = ifebe foel pIoIm T{ T TSTY — i fobe fo0 f4/ T T{ T TS TS,

(YC)g = —ifoe focs f2el YT THTSTS .

6. W2V(1,1,1,4)

This is a more complicated Cweb, containing twelve diagrams. We find

(3]

The R, Y and D matrices are given by

Diagrams | Sequences | S-factors
Ch {{EDBA}} 1
Cy {{DEBA}} 1
3 Cs {{EBDA}} 0
Cy {{BEDA}} 0
4
Cs {{DBEA}} 0
Cs {{BDEA}} 0
Cr {{EBAD}} 1
Cs {{BEAD}} 0
Cy {{BAED}} 1
Cho {{DBAE}} 1
C11 {{BDAE}} 0
C12 {{BADE}} 1
2 -10000-10 -1-10 2
-12 0000-10 2 —-10 -1
-1-13000-10 -12 -3 2
-1 2 -36-30 2 -3-12 -3 2
-1-100302 -32 -10 -1
2 -1-30-36 2 -3 2 2 —-3-1
-1-1 00002 0 -12 0 -1
-12 00-30-13 -12 0 -1
-12 0000-10 2 —-10 -1
-1-100002 0 -12 0 -1
2 -1-30002 0 -1-13 -1
2 -10000-10 -1-10 2
1 -1 0 000O0O0-1001
1 -1-1 0001 0-1010
0 -1 0 00010-1100
0 01 -100-11 0000
1 =10 -101 000000
0 -11 -110000000
D=(1 .
10 0 000000001 ]’ (16,0)
0 11 0000O0O0O01O0
11 0 0000O0O0T100O0
0 -1 0 0000O0OT1O000
10 0 010010000
11 0 000100000
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Therefore, there are six exponentiated colour structures, given by

(YC)y = —ife {8 AT TYTETET] — i fob fo! f*OT| T T TETY,

(Y C)y = —i e fo8 fAOT Ty T TG — i fo0 foo f4 T} T T3 T5 TS
— i fee Ut DT T TETg — i f* f29 f1T) Ty T TS T,

(YC)g _ Z'fabCfbemfmdvTcltTil)Tng Z + ifabCfaejfbduTjiTﬁngngTZ

_ ifabcfbemfdahT]ngnTngTi _ ifabCfdahfhenTrlle{TclegTi

— if e fe OO TITETS T |
(YC)a = ifeefrem foh Ty T T T TS
(YC)5 = —i fof*o" fEIT{ TITTE TS,
(YC)g = —ifeefrem fraT{ T{ TSTS TS .

7. Wi (1,1,2,3)

(A.12)

This is a six-diagram Cweb, the first of three with same correlator and attachment

content, for which we find

Diagrams Sequences S-factors
Ch {{EC},{DBA}} 1
Co {{CE},{DBA}} 2
Cs {{EC},{BDA}} 0
Cy {{CE},{BDA}} 0
Cs {{EC},{BAD}} 2
Ce {{CE},{BAD}} 1
0 0 1 -1 00-11
ST NI
e I P PR B R )
—3ll302(2)§—E —2101100
16_6100_6116 1210000
3 73 3 3 2

This yields two colour structures,

(YC)l — —Z.fabcfbdhfde‘jT(fT]ngTgTi + ifabcfdagfdejT‘[{T?T%TgTi ,

(YCO)o = —if™ [ pAIT{TI T TSTS

— 926 —

(A.13)

(A.14)



8. Wi (1,1,2,3)

Another six-diagram Cweb, the second of three with same correlator and attachment

content, for which we find

E © 3 Diagrams Sequences S-factors
R 2
Wy, ! 4 Cy {{EC},{DBA}} 2
33%})‘( Q'Q*Q—QQQ(}_ 02 {{C;’Ej}7 {DBA}} 1
A Q?Q Cs {{EC},{BDA}} 0
Ci | {{CEL(BDAY} | 0
2| F§ § Cs {{EC},{BAD}} 1
AB D 1 Cs {{CE},{BAD}} 2
The R, Y and D matrices are given by
1 1 11
51 _16 0 0 —lg 61 1 -1 00-11
—§ ? (1) 01 gl —13 1 -1-11 00
—% 5 5 —5 —% % -1 0 0001
R=| 3% 2 2 % %] Y= . D =(12,0).
—15 51 0 0 §1 —1§ 1 0 1100
s 0 0 —5 35 2 1 0000

The exponentiated colour factor are

(A.15)

(YC)l _ _,L-fab(:fbdhfcej TclzTilzTgT%Ti + Z-fabCfcej fdanglJTI{TgT%Ti ,
(YC)y = —i fabe fbdh peciparphrd) TS .

9. Wi(1,1,2,3)

(A.16)

Yet another six-diagram Cweb, the third of three with same correlator and attachment

content. We find

I Diagrams | Sequences | S-factors
E@ 1 Cq {EDC}} 1
*Qé,“ Cs {DEC}} 1
| B Cs {{ECD}} 1
Q Cy {{CED}} 1
: G, | (beEy |1
— Co {{cpE}) 1
The R, Y and D matrices are given by
o 11110
_2_3; l6_31 lG_E -1 00001
BR=1 1% "5 1 Y= 1 §g10| P=020. 417
_g_gl 16_31 l6_g 0 —-10 100
A ST SR 1 11000
3 7676 6 6 3
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10.

11.

which leads to the colour factors

(YC)1 = —ifeefest fe9TTYTSTYTY,
(YC)y = —if® fo fU*T¢TITSTETY . (A.18)

wit(1,2,2,2)

This is the first of five Cwebs with the same correlator and attachment content. Its four

diagrams are

; = E@ 1 Diagrams Sequences S-factors
: QO ¢, | {EDL{BOY| 1
EfS 3 Cy {{E£D}.{CB}} 2
© G |{DE{BCYY | 2
: G | {({DE).{CB})} | 1

The R, Y and D matrices are given by

1 1 _1 1
307378 3 I -1-11
-5 § & —& -1 0 01
R=1 9% 0 Sl Y=l 5, DP=@0 (A19
TR i
3 7373 3 3 1 00
There is therefore only one colour structure,
(YC)y = —ifobe pedh pleape T T THTS . (A.20)

Wi (1,2,2,2)

This is the second of five Cwebs with the same correlator and attachment content. It
has eight diagrams, which can be organised as follows.

Diagrams Sequences S-factors
. o O | UDA{FBYL{ECY | 2
3 C. | ((DA).(FBJ.{CE}} | 1
% o Cs | ({DA}{BF}{EC}} | O
Q Ci | ({DA}{BF}{CE}} | 0
F loro Cs {{AD},{FB},{EC}} 0
| Co {{AD}.{FB},{CE}} 0
&% ] Cr {{AD},{BF},{EC}} 1
Cs {{AD},{BF},{CE}} 2
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The R, Y and D matrices are given by

t-to o0 o0 0-%1¢ 1 -10000-11
-3 £ 0 0 0 0 § —% 1 -100-1100
-3+ 410 0 -3 1 1 -1-11000 0
1 1 1 1 1 1
11 _ 11 L1 -1 1

R 611622(1)013113 v 0 000O00O ’
—lgglooil—lﬁ—1661 2 0 000010
61_160()75?_? 1 0001100
—1551000051—lg 1 0110000
F—¢ 0 0 0 0 —% 3 21 000000

D= (13,0). (A.21)

The three colour factors are

(YC)l _ ifabCfcegfdbjT%thTngTi _ ifabCfadhfcegTilzTngTgTi ’

(YC)y = —ifebe fodh feoT TYTTETS |

(YC)g = i f™ fee9 fPITITITITITS — fo0e poth fooo fI T T T T . (A.22)

12, WH(1,2,2,2)

The third of five Cwebs with the same correlator and attachment content, also has eight

diagrams.
Diagrams Sequences S-factors
C {{DA}, {EB}, {GF}} 1
- Co {{DA}, {EB}, {FG}} 1
Cs {{DA}, {BE}, {GF}} 0
Cy {{DA}, {BE}, {FG}} 1
Cs {{AD}, {EB}, {GF}} 1
Ce {{AD}, {EB}, {FG}} 0
Cr {{AD}, {BE}, {GF}} 1
Cs {{AD}, {BE}, {FG}} 1

The R, Y and D matrices are given by

DD~ WD~

[ Ll

D=

Wl

>

I
—~
ot
Ly

WIN D= O
S O O O O+ O

W= |

o=

0).

Ol Lol =

[
D= O
|

Wl Wl wol—

DO
o O = O O O O
|

QO WOl ol

= O WD

o
|
o=
wl—

| | Wl
Wl I
o=

= O = WD

O WO = O

Wl W

o=
Wl
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2 -1-10-1001
1 0 -10-1010
1 -1 00-1100
v 1 -1-11 0 000
-1 0 000001
0 -1000010
1 1 001000
1 1 010000

(A.23)



The four colour structures are

(YC)l — _ifabCfebhfedkT(chlngzTgTi _ ifabCfdagfedkTngTngTi
. Z'fabCfdagfethgliTgTﬁTiTil ,
(YC)g = —ifbefi9 fOP T THTSTITS
(YC)g = —i fe [ " T{ T TSTSTS
(YC)g = —ifee fh fe* T T{ TS TS TS (A.24)

13. WV (1,1,2,3)

The fourth Cweb of this set has twelve diagrams.

Diagrams Sequences S-factors
(& {{CB},{EDA}} 1
Cy {{BC},{EDA}} 0
Cs {{CB},{DEA}} 1
Cy {{BC},{DEA}} 0
. Cs {{CB},{EAD}} 0
Cs {{BC},{FAD}} 1
Cy {{CB},{AED}} 0
Cy {{BC},{AED}} 1
Cy {{CB},{DAE}} 1
Cho {{BC},{DAE}} 0
C11 {{CB},{ADE}} 0
C1a {{BC},{ADE}} 1

The R, Y and D matrices are given by

2 0-100 -10-1-10 0 2
-13 -100 -10-1 2 -3 0 2
-10 200 -102 -1 0 0 -1
2 -3-46 0 -10 2 2 -3 0 —1
-10 -103 -10-1 2 0 =3 2
R:l -10 -100 20-12 0 0 -1 7 (A.25)
6] -10 20-326-4-10 -3 2
-10 200 -102 -1 0 0 -1
-10 -100 20-12 0 0 -1
2 -3-100 20-1-13 0 -1
2 0-10-320-1-10 3 -1
2 0-100 -10-1-10 0 2
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14. W

There are thus six colour structures

1 0 -101-1-100001

1 0 -1000 -100010

1 -1-101 0 -100100

0 0-1010 -101000

0 0 001-1-110000

1 -1-1100 000000 D
-10 0000 000001/’
0 0 1010 000010

0 1 1000 000100

1 0 1000 001000

0 0 -1000 010000

1 0 1001 0000060

(167 O) .

(YC)1 = —if e fro8 fROy T{ T3 TG g — i fe0e foh fr T Ty T5 T T
i f 7 40 fO T TYTE TS
(YC)p = if o0 f T{ TYTITS T .
_Z-fabc]ebdlc fdegT(lzTglzTIQchTi _ ifabcfaehfbdkT‘IiT}fTéTgTi
+afete et T T T TS T
(YC)q = ifeefoct frm TP T TS TS TS,
—ifetefet AT TS TS T,
(YCO)g = —if™e fo foeomy T{ TH TS

(YC)s3

(YC)s

21(1,1,2,3)

The last Cweb of this set has six diagrams.

o=

=
Il
ol Lol

WIS D=

(A.26)
Diagrams Sequences S-factors
Cy {{BC}, {EDA}} 1
Co {{¢B},{EDA}} 0
Cs {{BC},{EAD}} 1
Cy {{¢B},{EAD}} 0
Cs {{BC},{AED}} 1
Co {{¢B},{AED}} 0
0 2 -1-2001
-3 1 0 -2010
0 1 -1-1100
Y = D= (13,0 A.27
= 21 0001 |’ (13,00 (A-27)
0 -1 0 0010
i 2 0 1000
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15.

The three colour structures are

(YC)1 = —ife oo fo T TE T TTS |
(YC)p = —i foef0 foh DI T TITSTY,
(Y C)3 = —ifobefodo fdeh TS TETST] (A.28)

wi(2,2,2,2)

This Cweb, comprising sixteen diagrams, generalises a memebr of an infinite series of
highly symmetrical ‘Multiple Gluon Exchange Webs’, studied in ref. [35]. Explicit cal-
culations confirm the structure of the mixing matrix predicted there. We find

Diagrams Sequences S-factors

i {{BA} {CE}{DF},{GH}} 2

Co {{BA} {CE}{DF}, {HG}} 1

Cs {{BA} {CE}{FD},{GH}} 1

C15 {{BA}7{EO}7{DF}7{GH}} 1

Cy {{AB}, {CE},{DF},{GH}} 1

Crz {{AB},{CE}, {FD},{HG}} 1

Cua {{AB} {EC}{DF}, {HG}} 1

Cis {{AB} {EC} {FD},{GH}} 1

Cie {{AB} {EC} {FD},{HG}} 2

The R, Y and D matrices are given by
2-1-10-1001-10 0 1 0 1 1 =2
-23 1 -21-201-10 2 -1 2 —-1-3 2
-21 3 -2-12 0-110-21 2 -3-12
0 -1-1r2 1 0 0-11 0O0-1-21 1 0
-21-12 3 -20-110 2 -3-21 -1 2
0-11 0-120-110-21 0-11 0
6 -3-96 -96 12-9-30 6 -3 6 —-3-96
1 21 -1-2-1-20 3 -30 2 1 2 1 —-1-=-2
R:E -2-11 2 1 2 0-33 0 -2-1-2-11 2 ) (A'29)

6 -9-36 -3 6 0-3-9126 -9 6 —-9-3 6
01 -1r01-201-102-101-10
2 -11-2-32 01 -10-23 2 -11 -2
011 -2-1001-1001 2 -1-10
2 -1-32 1 -201-10 2 -1-23 1 =2
2 -3-12 -120-110-21-21 3 =2
-21 1 0 1 0 0-1100-10-1-12
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32 2 -12-1-102-1-10-1001
-10 1 010 -1010-10-1010
11 0 01-1001-100-1100
11 1 =100 001-1-110000
-11 1 -11-1-1100 000000
1 0 0000 0000 000001
001 0 000 0000 000010
000 1 000 0000 000100
Y=l _1-2-1 000 0000 001000]|: D=0s50),
20 -1 000 0000 010000
0O -3 3 000 0000 100000
2 170 000 0010 000000
-2-10 000 0100 000000
0 £ 2001 0000 000000
2 0 17010 0000 000000
1 21 100 0000 000000

and the five colour structure are
(YC)1 :ifachfdbkfdch?TliTngTi+ifabgfdbkfdch51;TgT(21T§Ti
=i T T TETS Ty —if 0 £ f*T{ Ty TY TS,

. :ifabgfdbkfdchglyTSTngle7fabgfachfdbkdestliTngle’
ifachfdbkfdchtlleiTngTi.

).<
Q
I

16. Wi9(1,1,2,4)

We now come to one of the largest Cwebs of the set, with twenty-four diagrams.

Diagrams Sequences S-factors
Ch {{ABCD},{EF}} 1
Cs {{ABCD},{FE}} 0
Cs {{BACD},{EF}} 1
Cy {{BACD},{FE}} 0
Cs {{ACBD},{EF}} 1
Cs {{ACBD},{FE}} 0
Cr {{CABD},{EF}} 1
Cs {{CABD},{FE}} 0
Co {{BCAD},{EF}} 1

4 Cho {{BCAD},{FE}} 0
Ci1 {{CBAD},{EF}} 1
Cia {{CBAD},{FE}} 0
Cis {{ACDB},{EF}} 1
Cra {{ACDB},{FE}} 0
Cis {{CADB},{EF}} 1
Cis {{CADB},{FE}} 0
Cir {{CDAB},{EF}} 1
Cis {{CDAB},{FE}} 0
Cho {{BCDA},{EF}} 1
Co {{BCDA} {FE}} 0
Ca {{CBDA} {EF}} 1
Cao {{CBDA} {FE}} 0
Cas {{CDBA},{EF}} 1
Coy {{CDBA},{FE}} 0
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The R, Y and D matrices are given by

-10-10-10 100 0 1 0 0 0 0 O

0 0 O
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D= (10,0).
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As a consequence, there are nine colour structures.

(YC)y = if e fPor O TYTETG TS + i f " P90 f9 T T TS TS T
9 fabe fahk fbgh degT’ngTngf :

(Y C)p = i fo0" f Ty TYTSTETY + i f** f29" f T T, TS TE T
. fabe fahk fbgh fcdngngTng ’

(YC)g = if™e fPo" 9T TYTETETY — fobe fort fo8 Ty TS TS Ty
—afee foen AT T TSI T — if* 24 fm e TY T T TS T
+ fabefauvfbdmfmcuTvi;TSTgTil ,

(YC)q = —ife fom frew Ty TETETETg + fo0e fous fo f e T TS T T
+ifere et e Ty T TS TS T

(YC)5 = —if e frm for DT TS TETY + i f* f4 f T} T TS TS T
— 2 e foue A MUY TSI 4 f* f* f T T TS TS T
e e frm T T TS TS T,

(YC)g = if™e fom P T T T TETY + i f* [0 [ Ty Ty TS TS T
. fabe fauv fbdm fcmuT1fT§T§Tg i fabe fadm fcmuquTliTngTZl
el e frmaT T TS TG T — fo0e foim foon fraT{ TS T

(YC)7 = —ifebe fom fe T T T TETY

(YC)s = if f29" fOT  TYTSTET] — fo0e forh fah feO T TS TS T,

(YC)Q _ _fabefauvfbdmfcmuTll)TSTgTZ + ifabefbdmfcmuquT(ngTngf )
17. Wi(1,1,3,3)
This Cweb comprises eighteen diagrams.
Diagrams Sequences S-factors
Ch {{DCA},{EBG}} 2
Co {{DCA},{BEG}} 1
Cs {{DCA},{EGB}} 1
Cy {{DCA},{GEB}} 0
- Cs {{DCA},{BGE}} 0
S _ [ 06 {{DCA}’ {GBE}} 0
sl 4 Cy {{CDAY, {EBG}} 1
Cg {{CDA},{BEG}} 2
Cy {{CDA},{EGB}} 1
Cio {{CDA},{GEB}} 0
Ci1 {{CDA},{BGE}} 0
Ci2 {{CDA},{GBE}} 0
Cis {{pAC} {EBG}} 1
Cia {{DAC} {BEG}} 1
Cis {{DAC}, {EGB}} 2
Cis | ({DACY{GEB}} | 0
Cir {{DAC}, {BGE}} 0
Cis | ({DACY{GBE}} | 0
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The R, Y and D matrices are given by

(A.33)

)
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There are six colour factors, given by

(YC)y = if ™" foeh fo T TTYTETS,

( )2 — ,l-fahjfdchfbdgT{TngTg i + ,l-fahjfdchfbagle'TngTg i ’
(YC)3 = —ifahi fbdg pdehrplpdmpapmg — jfasi pbdg pdehparphrps by
(Y C)y = i fohi fbag pdehpd IDITETG — i f99° foas poehpiTaTLTYTS
(YO)s = —if* fo" f99 T4 T{ TITHTY,

(YC)g = —ifa9i pbdg pdehparphrp mbpg 4 fd9d pbag pdchrparphrp) b

0,2)

18. Wi (1,1,2,2)

(A.34)

This Cweb, with two three-gluon correlators, has the same correlator and attachment

content as Cweb number 4, presented above, egs. (A.7) and (A.8). It has four diagrams.

Diagrams Sequences S-factors
: Oy {{DA}, {EB}} 1
‘ Co | ({DAV{BE}} | 0
Cs | ({ADV.{EB}} | 0
Ci | ({AD}.{BE}} | 1

The R, Y and D matrices are given by

$00-2 -1001
1 1
-110-1 -101
rR=| 21072y [ THOLO T 40),
-101-1 ~1100
1 1
-100 1 1001

while the colour factors are

(YO = ife ff fh T T T4 TS T

i f o1 fIS T T TS T T
(YO)z = i[9 f*I TYTETSTSTS
(YO)s = if* e fo" D T{ T, TSTS .

19. Wit(1,2,2,3)

4

(A.35)

(A.36)

This is the first of two Cwebs with the same correlator and attachment content. It has
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twelve diagrams.

Diagrams Sequences S-factors
Cs {{BCA},{GF},{DE}} 2
Cn {{BAC} {FG}, {DE}} 0
Chz {{BAC},{FG}, {ED}} 0
The R, Y and D matrices are given by
1 1 1 1 1 1
s 50 0-353 00 5-500
0o 0o 0 06 0O OO 0 0 0 0 O
11 1 _1_11 5 g L _1_11
16 61 31 13 3 3 21 12 13 31
Tl he e ity
_16610051_130 0_166100
r_| 550033 00 ¢ 500
o o -+ 1 1 1 1 11 1 _1 1 [>
6 6 6 6 2 2 6 6 3 3
11 1 11 1. 11 g g 1 _1
6 6 3 3 6 6 2 2 6 6
0o 0 0 00 0 0 0 O OO0 O
1 1 1 1 1 1
PR A B
& 6 655 900 0-55 5 5
11 1 11 15 g L _1_11
2 2 3 3 3 3 6 6 3 3 (A.37)
221 -12-20000-11
-110 02-200-1100
-111 -11-1-110000
20-1 000 00O0O0O0T1
—203% 000 000010
1 1
v — 00 000 O0O0OO 00’ D = (15,0).
000 00O OO1O0O00O0
30-3000 110000
-100 001 00O0O0OO
100 010 000O0O0O
2032 100 000000
010 000 OOOOODO
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The colour factors are

(YO)1 = —if ™ f f9TYTITETYT, + i f f% 7 T TS TS T4 T
_ fabthbijdgfjamTTTngTi ’
(YCO)o = —if ™ f f9TYTITETYT, + i f f49 74 TP T TS T TS,

(A.38)

(YC)3 = —ifebh febi feomy T THTYTY .
20. W{(1,2,2,3)
Our last Cweb connecting four Wilson lines has twenty-four diagrams.
Diagrams Sequences S-factors
Ch {{CBA},{DE},{GF}} 2
Cy {{CBA},{DE},{FG}} 1
Cs {{CBA},{ED},{GF}} 0
Cy {{CBA},{ED},{FG}} 1
Cs {{BCA},{DE},{GF}} 1
Cs {{BCA},{DE},{FG}} 2
Cr {{BCA},{ED},{GF}} 0
Cs {{BCA},{ED},{FG}} 1
& Co {{CAB},{DE},{GF}} 2
" Cio | {{CABY.{DE}{FG}} | 0
* a Cn | {{CAB} {ED}{GF}} | 1
Cha {{CAB},{ED} {FG}} 1
Ci3 {{ACB},{DE} {GF}} 1
: Cu | {{ACB},{DE}{FG}} 0
A B C 1 Cis {{ACB},{ED},{GF}} 2
Cie {{ACB} {ED}, {FG}} 1
Cir {{BAC},{DE} {GF}} 1
Cis {{BAC} {DE}, {FG}} 1
Cig {{BAC} {ED} {GF}} 0
Cao {{BAC} {ED} {FG}} 2
Can {{ABC} {DE}, {GF}} 1
Ca {{ABC} {DE} {FG}} 0
Co3 {{ABC}, {ED} . {GF}} 1
Cay {{ABC}, {ED} {FG}} 2
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The R, Y and D matrices are given by
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1
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1
2

0

24220200404040420204%4

D — — — — — 1113
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00000000%000%000000060
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The eight colour structures are

(YC)y = —i ot from fRIT T Ty T — i for fo 4 T T T3 T TS
+ ifbcmfdbj fmanT?TngTéTi . ifadhfbcmfmanT?TngTgTz ,

(YC)Q — _,ifadhfbcmfmomr]:viu]:d?zrI\ng\g’lrI\fL ,

__ + gbem pdbj pmanmpnmparpdmpd e
(YC)3 =af* ™ f frenTiTTyTy T,
(YO)a = —ifed fror fI T T TYTRTG

).<

— ifer fod pOI T T T T4 T
+ i for fO0I preaPYTITE T TG — i for fo0h T TH T T TS

(YC)5 = —ifor fo frOT{ T TS T TS,
(YCO)g = i f*P f™ fPT{TSTSTTS,
(YC)r = if*™ for I T TR TS TS TS,
(Y CO)s = —ifoth foem pi T Th TS . (A.40)
A.2 Cwebs connecting five Wilson lines
1w (1,1,1,1,2)
A simple two-diagram Cweb,
Diagrams | Sequences | S-factors
Ci [{EA} 1
Co {{AE}} 1
The R, Y and D matrices are given by
i .2 -11
R=|( 2% 2], Y = : D = (14,0), (A.41)
—3 2 11
and the single colour factor is
(YC)y = i fb9 fedg peahprpbpsmde (A.42)
2. W (1,1,1,1,2)
Another simple two-diagram Cweb,
Diagrams | Sequences | S-factors
Cr {DAY} 1
Cy {{AD}} 1
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The R, Y and D matrices are given by

i1 -11
R=( 12 2|, v= ., D=(11,0), (A.43)
~3 2 11

and there is a single colour factor,
(YC)y = —ifoe fiel plahphiTsTsT, . (A.44)

3. W2Y(1,1,1,1,3)

A six-diagram Cweb,

Diagrams | Sequences | S-factors
Ci | ({EDA}} 1
Co | ({DEA}} 1
Cs | {{EAD}} 1
Ci | {{AED}} 1
Cs | {{DAE}} 1
Co | {{ADE}} 1

where the R, Y and D matrices are given by

R L 10101
_%%_%%_%—% 0 -11-110
1 1 1 11 1
L _1 1 _1 1 _1 -1 00001
R: 6 6 3 6 3 6 5 Y_ ) D: 1 70 9
S O L A R O 1 10010 (12,0)
_%_%%—%%—% 0 —10 100
%_%_%_%—%% 1 11000
(A.45)
and there are two colour structures,
(YC)y = i fobe foe9 poeh T T TS TS
(Y O)y = —ifobe faci pimpmpbpsmdme (A.46)

4. w(1,1,1,2,2)

A four-diagram Cweb, one of two with this set of correlators and attachments.

g Diagrams Sequences S-factors
T B G | ({DAV{EBYY | 2
I;\Wm Q / d Co {{DA}, {BE}} 1
L J;WF/ Cs {({AD}, {EB}} 1

N § E S Cy {{AD},{BE}} 2

A D |
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The R, Y and D matrices are given by

1 1 1 1
6 66 o 1 -1-11
-1 1 1 _1 ~1 1
R=| 33 3 3| y— OO b (1.0),  (A4)
FRA 2oy
6 6 6 6 2100

The single colour factor is
(YO)y = —ifobe padh foeaphpd TSTITE . (A.48)

W@, 1,1,2,2)

The second Cweb of the set, also with four diagrams.

Diagrams Sequences S-factors
Ch {{DA},{EC}} 1
Co {{DA},{CE}} 2
Cs {{AD},{EC}} 2
Cy {{AD}, {CE}} 1

bbb L1t
11 1 1 -1 0 01
R = _ig E_i , Y=1, 0o 10l D = (1,,0). (A.49)
S0 S i
3 7373 3 3 1 00
The single colour factor is
(YC)y = —ifobefodh feomp Ty TS T TS . (A.50)
Cwi(,1,1,2,2)
A Cweb with eight diagrams
Diagrams Sequences S-factors
Ch {{BA}, {CE} {DG}} 3
Cs {{BA}, {CE}, {GD}} 4
Cs {{BA}{EC} {DG}} 1
Cy {{BA}, {EC}, {GD}} 2
Cs {{4AB},{CE}, {DG}} 2
Co {{4B},{CE},{GD}} 1
Cr {{AB}, {EC}, {DG}} 4
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The R, Y and D matrices are given by

-100
3 01
110

D=(1,,0).

0
0
0
1000
1
0
0

11 1
112 121 112
L
Z1 711 Z1
TR
mpE A
[N
iZ _li iZ
12 12 12
1-1-11
00 01
00 10
01 00
10 00
00 00
00 00
00 00O

11 _ 1
R
PRy
R
TR
R
12 12 12

While large, this Cweb has only one exponentiated colour factor,

(YO)r = ifoh f fUT{ T TS TS

7. W(1,1,1,2,3)

A Cweb with twelve diagrams,

Diagrams Sequences S-factor
Ch {{CBA},{DE}} 2
Cs {{CBA}.{ED}} 1
Cs {{BCA},{DE}} 1
Cy {{BCA} {ED}} 1
Cs {{CAB},{DE}} 2
Cs {{CAB} {ED}} 1
Cr {{ACB},{DE}} 2
Cs {{ACB} {ED}} 1
Cy {{BAC},{DE}} 1
Cio {{BAC} {ED}} 1
C1y {{ABC},{DE}} 2
Ci2 {{ABC}.{ED}} 1
with R, Y and D matrices given by
2 -2-11-11-11-11 2 =2
-22 1 -11-11-11 -1-2 2
-22 3 -3-11 3 -3-11 -2 2
o 0 -11 1 -1-11 1-10 0
o o0-11 1 -1-11 1 -10 0
R_l 2 -21 -1-33 1 -1-33 2 =2
~121 0 0 1 -1-11 1 -1-11 0 0 ’
2 -2-33 1 -1-33 1-12 -2
-2 2 -11 3 -3-11 3 —-3-2
o 01 -1-11 1 -1-11 0 0
2 -2-11 -11-11 -11 2 =2
-2 2 1 -11 -11 -11 —-1-2 2
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(A.52)

(A.53)
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and two colour factors,

(YC)y = i foch foim ooy Ty Ty YT — i %0 fH0m fem Ty Ty Ty TS,

(YC)p = ifoch fo4m fM Ty TS T TYTS

8. WiV(1,1,1,1,4)

OOOOOOOOD—‘OOI

—_

[=NeleleololBeleleoNalS o

Last, but not least, a Cweb with twenty-four diagrams

D =(1,,0).

Diagrams | Sequences | S-factor
Ch {ABCD} 1
Cy {DCBA} 1
Cs {CDBA} 1
Cy {DBCA} 1
Cs {BDCA} 1
Cs {CBDA} 1
Cr {BCDA} 1
Cs {DCAB} 1
Cy {CDAB} 1
Cho {DACB} 1
Ci1 {ADCB} 1
Ci2 {CADB} 1
Cis {ACDB} 1
Cia {DBAC} 1
Cis {BDAC} 1
Cie {DABC} 1
Cir {ADBC} 1
Cis {BADC} 1
Cho {ABDC} 1
Cao {CBAD} 1
Co1 {BCAD} 1
Ca2 {CABD} 1
Coa3 {ACBD} 1
Coq {BACD} 1
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with R, Y and D matrices given by
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(A.55)
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so that only six independent colour factors are present, given by

(YC)r = et fam fm{ Ty T T TS,
(YC)z = —i foo% fo fFom TP T TETSTY,
(Y CO)3 = —ifh fbda pochpi T4TETSTY
(Y C)y = —i fohd (299 foeh I T TR TG TS

i feck o T TS T TS
(YC)5 = if* " {4 fM T TS TETITY
(Y C)g = i fodh foht peimr Dy TETSTY (A.56)

This completes our listing of all Cwebs with a perturbative expansion starting at O(g®%),
and connecting four and five Wilson lines.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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