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1 Introduction

Conformal field theories (CFTs) are important for several reasons — they serve as salient

guideposts in the space of quantum field theories, describe a variety of critical phenomena,

and help elucidate aspects of quantum gravity via the AdS/CFT correspondence [1–3].

Conformal blocks play a central role in CFTs. They are the basic kinematic building

blocks of local observables, encoding the contribution of primary operators (and all their

descendants) to any given correlation function. Given a d-dimensional CFT (more precisely

the dynamical data in the form of the spectrum of all primary operators and the opera-

tor product expansion (OPE) coefficients between them), the knowledge of d-dimensional

conformal blocks permits the explicit writing of all possible correlators. Conversely, the

conformal bootstrap program [4–6] (see also the recent review [7] and references therein)

provides a non-perturbative approach to reconstructing the full CFTd data by exploiting

conformal symmetry as well as stringent consistency conditions such as the associativity

of the OPE. Here as well, conformal blocks are an essential ingredient needed for setting

up the bootstrap equations involving conformal correlators.
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It is therefore important to understand these basic building blocks in as much detail

as possible. In this paper we will be focusing on multipoint d-dimensional global conformal

blocks associated with the Euclidean conformal group SO(d + 1, 1). While these theory

independent objects are in principle fixed entirely from conformal symmetry, working them

out presents significant computational challenges, so explicit results are available in only

simple cases. For instance, explicit expressions are known for four-point scalar conformal

blocks in general spacetime dimensions [8–13]. A variety of techniques have been devel-

oped for computing four-point conformal blocks involving external and internal exchanged

operators in arbitrary representations of the Lorentz group in closed-form, integral or effi-

cient series expansions; a partial list includes various recursive methods [11, 13–21], shadow

formalism [22], use of differential operators [23–35], Wilson line constructions [36–38], in-

tegrability methods [39–42] and holographic geodesic diagram techniques [43–52]. The

situation is disproportionately dire for higher-point global conformal blocks. Recent work

in the shadow formalism has led to explicit series expansions for n-point scalar conformal

blocks in dimensions one and two in a specific channel called the comb channel, for arbi-

trary n [53]. In higher dimensions, a series expansion was obtained for the scalar five-point

block restricted to the exchange of scalar representations [53] (see also ref. [54]). Geodesic

diagram representations have also been obtained for the same five-point block in general

spacetime dimensions [55], as well as for the d-dimensional six-point scalar conformal block

involving scalar exchanges in a different channel called the OPE channel [56].

While one can recursively reduce any higher-point conformal correlator into a com-

bination of two- and three-point functions via repeated use of the OPE (or equivalently,

reduce to a combination of four-point correlation functions), higher-point correlators and

conformal blocks are important in their own right for a number of reasons. For one,

knowledge of higher-point blocks allows immediately an efficient writing of conformal cor-

relators and repackaging of higher-point AdS diagrams directly in position space. More-

over, higher-point diagrams involve exchange of multi-twist exchanges in their conformal

block decomposition, which can provide a new window into understanding multi-twist ex-

changes appearing in the setting of light-cone bootstrap of four-point functions [57–66].

Additionally, knowledge of higher-point scalar conformal blocks opens up the possibility of

setting up an equivalent but possibly more efficient alternative to the conventional boot-

strap program. In the conventional approach, typically one must study crossing equations

of four-point correlators of all operators in the spectrum including those in non-trivial

representations of the Lorentz group. As a potential alternative, one can instead aim to

solve crossing equations for scalar n-point functions, but for all n [53, 67]. Clearly, n-point

blocks will play a crucial role here.

Motivated by these considerations, in this paper we will compute all higher-point d-

dimensional global conformal blocks in a channel which ref. [53] referred to as the comb

channel, for external and exchanged scalar operators (see figure 1). This will generalize

the series expansion for the d-dimensional five-point block computed in ref. [53] to n-point

blocks for any n. The main techniques we will be employing are the AdS propagator

identities and geodesic diagram techniques of refs. [43, 48, 55, 56]. Our strategy will be to

obtain the holographic geodesic diagram representation of an (n+2)-point block in the comb
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W
∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, x2, . . . , xn−1, xn) ≡
O1

O2 O3 On−2 On−1

OnOδ1 Oδn−3

≡W (n)(xi)

Figure 1. The comb channel n-point global conformal block for external scalar oper-

ators O1(x1), . . . ,On(xn) with conformal dimensions ∆1, . . . ,∆n and insertion coordinates

x1, . . . , xn respectively, and exchanged scalar operators Oδ1 , . . . ,Oδn−3
with conformal dimensions

∆δ1 , . . . ,∆δn−3 , respectively. When there is no scope for confusion, we will often abbreviate it as

W (n)(xi) or simply W (n).

channel with the help of various recently derived AdS propagator identities [56]. Higher-

point geodesic diagrams, like the four-point case [43], are higher-point AdS diagrams where

all bulk integrations are restricted to geodesic integrals, and they are related to higher-point

conformal blocks [55, 56]. For comb channel blocks, these geodesic diagram representations

involve precisely two geodesic integrals. Taking a particular double-OPE limit gets rid of

these geodesic integrals, producing an n(n−3)/2-fold power series expansion of the n-point

conformal block. We also verify our result via a proof by conformal Casimir equations.

This paper is organized as follows. In section 2 we illustrate the main computational

strategy in the simplest non-trivial example. Particularly, in section 2.1 (along with ap-

pendix A) we derive the holographic geodesic diagram representation of the six-point comb

channel block, and in section 2.2 we reproduce the well-known series expansion of the four-

point block by taking a double-OPE limit. A second example is provided in appendix B,

where we briefly discuss the holographic seven-point block and its double-OPE limit which

recovers the series expansion of the five-point block. In section 3, with the help of these

examples, we propose a holographic representation of the general (n+2)-point block, whose

double-OPE limit leads to the power series expansion of the n-point block. Sections 3.2–3.3

are concerned with proving our claim via conformal Casimir equations. We conclude in

section 4 with comments on extending the results to multipoint scalar blocks in arbitrary

channels, brief remarks on the comparison with analogous results in the framework of p-

adic AdS/CFT, and a proposal for an alternate, more rapidly convergent series expansion

for n-point blocks in the comb channel. Further computational details can be found in

appendix C.

We end this section with a presentation of the main technical result of this paper,

which is an explicit power series expansion for the comb channel n-point global conformal

block in d spacetime dimensions for external and exchanged scalar operators (see figure 1):1

W (n)(xi) =

∏n−3
t=0 Γ(1−∆δtδt+1,(t+2))

Γ(1−∆1n,2...(n−1))
∏n−3
i=1 Γ(1−∆δi)

W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∞∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

(n−3∏
i=1

ukii
ki!

) ∏
2≤r<s≤n−1

(−wr;s)j〈r|s〉
j〈r|s〉!


1For convenience, this result is also included with the submission in the supplementary material as a

Mathematica notebook.
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×
(
∆1n,2...(n−1)

)
−

∑
2≤r<s≤n−1 j〈r|s〉

(
n−3∏
t=0

(
1−∆(t+1)δt−1,δt

)
kt

(
1−∆(t+2)δt+1,δt

)
kt

(∆δt − d/2 + 1)kt

×
(
∆(t+2)δt,δt+1

)
kt,t+1+

∑
2≤r<t+2 j〈r|t+2〉

(
∆(t+2)δt+1,δt

)
kt+1,t+

∑
t+2<s≤n−1 j〈t+2|s〉

× 3F2

[{
−kt,−kt+1,∆δtδt+1(t+2),−

d

2

}
;
{

∆(t+2)δt+1,δt − kt,∆(t+2)δt,δt+1
− kt+1

}
; 1

])]
,

(1.1)

where (a)b ≡ Γ(a+ b)/Γ(a) is the Pochhammer symbol and we are using the notation

∆i1...i`,i`+1...ik ≡
1

2

(
∆i1 + · · ·+ ∆i` −∆i`+1

− · · · −∆ik

)
(1.2)

for conformal dimensions ∆i, whereas

ki1...i`,i`+1...in ≡ ki1 + · · ·+ ki` − ki`+1
− · · · − kin (1.3)

for the integral parameters ki, as well as the additional definitions2

k0 ≡ 0 kn−2 ≡ 0 ∆δ0 ≡ ∆1 ∆δn−2 ≡ ∆n , (1.4)

so that there are precisely (n− 3) independent ki parameters to be summed over in (1.1).

The other set of integral parameters is denoted j〈r|s〉, for 2 ≤ r < s ≤ n− 1, where we use

the notation 〈·|·〉 in the subscript to index the
(
n−2

2

)
independent j parameters.3 Combined,

this leads to an n(n− 3)/2-fold sum.

The coordinate dependence of the conformal block (1.1) is factorized into a “leg factor”,

which depends solely on external dimensions and is given by

W∆1,...,∆n
0 (x1, . . . , xn) ≡

(
x2

2n

x2
1nx

2
12

)∆1
2

(
x2

1(n−1)

x2
1nx

2
(n−1)n

)∆n
2 n−1∏

i=2

(
x2

1n

x2
1ix

2
in

)∆i
2

≡W (n)
0 (xi),

(1.5)

where xij = xi − xj , while the rest of the dependence is expressible as an n(n − 3)/2-fold

power series expansion entirely in terms of a set of n(n − 3)/2 independent4 cross-ratios

0 ≤ ui, wr;s ≤ 1 defined as follows,5

ui ≡
x2

1(i+1)x
2
(i+2)n

x2
(i+1)nx

2
1(i+2)

1 ≤ i ≤ n− 3 , wr;s ≡
x2

1nx
2
rs

x2
rnx

2
1s

2 ≤ r < s ≤ n− 1 . (1.6)

2The apparent dependence of the conformal block (1.1) on the undefined dimension ∆δ−1 is spurious,

since ∆δ−1 always appears inside Pochhammer symbols of the form (a)0 for some non-zero a, which evaluate

identically to unity.
3This notation should not be confused with the bra-ket notation of quantum mechanics which will not

play any role in this paper.
4There are n(n−3)/2 independent cross-ratios as long as the spacetime dimension d is sufficiently large,

more precisely d+ 1 ≥ n. In lower number of dimensions, some of the cross-ratios defined in (1.6) become

dependent, such that there are only nd− (d+ 2)(d+ 1)/2 independent cross-ratios.
5The preferred appearance of x1, xn in the choice of cross-ratios, and the related asymmetry between the

external scaling dimensions ∆1,∆n and the remaining ones ∆2, . . . ,∆n−1 in the power series expansion (1.1),

arises naturally in the derivation of the n-point conformal block as a particular double-OPE limit of the

holographic representation of an (n+ 2)-point conformal block, discussed in section 3, which preferentially

identifies x1 and xn.
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The conformal block is uniquely determine based on the following conditions [22]. They

satisfy the multipoint conformal Casimir eigenvalue equations(
L(1) + · · ·+ L(K)

)2
W

∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn)

= C2(∆δK−1
)W

∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn)
(1.7)

for all 2 ≤ K ≤ n − 2, where L(i)
AB are the generators of the Euclidean conformal group

SO(d + 1, 1), realized as differential operators built out of and acting on the coordinate

xi, with the quadratic Casimir operator defined as (L(i))2 ≡ 1
2L

(i)
ABLAB(i) (no sum over

i). The eigenvalues are given by C2(∆) = m2
∆ = ∆(∆ − d) for scalar exchange operators,

which will be the case throughout this paper. Moreover, the blocks satisfy the following

OPE limit

lim
xn→xn−1

W
∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn)

= (x2
(n−1)n)

∆δn−3,(n−1)nW
∆1,∆2,...,∆n−2,∆δn−3

∆δ1
; ...; ∆δn−4

(x1, . . . , xn−1),
(1.8)

or pictorially,

lim
xn→xn−1O1

O2 O3 On−2 On−1

OnOδ1 Oδn−3

=(x2
(n−1)n)

∆δn−3,(n−1)n

O1

O2 O3 On−3 On−2

Oδn−3(xn−1)
Oδ1 Oδn−4

(1.9)

and symmetrically an analogous limit when x2 → x1. Further, the blocks have been

normalized such that for ui � 1 for all 1 ≤ i ≤ n−3, and wr;s ≈ 1 for all 2 ≤ r ≤ s ≤ n−1,

the n-point block has the leading behavior

W∆1,...,∆n

∆δ1
; ...; ∆δn−3

(xi) ≈W (n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)
. (1.10)

The final claim follows trivially from an alternate, rapidly convergent power series expansion

of the conformal blocks presented in section 4.

2 Low-point examples of holographic duals

In this section we provide the simplest non-trivial demonstration of the new techniques.

First we will obtain the holographic dual of the six-point block in the comb channel, from

which we shall recover the well-known purely boundary power series expansion of the four-

point block. A second non-trivial example is provided in appendix B — it focuses on

the holographic dual for the comb channel seven-point block, from which a power series

expansion is obtained for the five-point block. In the next section, we will generalize these

results to obtain the n-point comb channel conformal block.

– 5 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
0

2.1 Holographic dual of the six-point block

Before discussing the six-point block, let us first establish some notation by reviewing recent

results for the five-point block. In ref. [55] a holographic geodesic diagram representation

was worked out for the d-dimensional global scalar five-point conformal block W∆1,...,∆5

∆δ1
;∆δ2

(xi).

Such a block corresponds to external scalar insertions of dimensions ∆1, . . . ,∆5, and rep-

resents the contribution coming from the exchange of scalar representations (and their

conformal families) labelled by dimensions ∆δ1 and ∆δ2 . The precise relation is,

W∆1,...,∆5

∆δ1
; ∆δ2

(xi) =

O1

O2 O3 O4

O5Oδ1 Oδ2

=
4

B(∆δ11,2,∆δ12,1)B(∆δ24,5,∆δ25,4)
W∆1,...,∆5

∆δ1
; ∆δ2

(xi) ,

(2.1)

where B(s, t) = Γ(s)Γ(t)/Γ(s+t) is the Euler Beta function, andW is a linear combination

of five-point geodesic diagrams (see figure 2 for notation and definition),

W∆1,...,∆5

∆δ1
; ∆δ2

(xi) =
∞∑

k1,k2=0

c
∆δ1

,∆δ2
; ∆3

k1, k2

O1

O2

x3

O4

O5

∆3δ1,δ2 + k1,2 ∆3δ2,δ1 + k2,1

∆δ1δ2,3 + k12,

, (2.2)

with the coefficients c
∆δ1

,∆δ2
; ∆3

k1, k2
given by,

c
∆δ1

,∆δ2
; ∆3

k1, k2
≡ (−1)k1+k2

k1!k2!

(1−∆3δ2,δ1)k1
(1−∆3δ1,δ2)k2

(∆δ1 − d/2 + 1)k1
(∆δ2 − d/2 + 1)k2

× (∆3δ1,δ2)k1,2
(∆3δ2,δ1)k2,1

(∆δ1δ2,3)k12,

× 3F2 [{−k1,−k2,∆δ1δ23, − d/2}; {∆3δ2,δ1 − k1,∆3δ1,δ2 − k2}; 1] .

(2.3)

The geodesic bulk diagram in (2.2) is a generalization of the geodesic Witten diagrams first

obtained in the case of the four-point block [43].

The (holographic representation of the) conformal block satisfies the Casimir equa-

tions (1.7) (for n = 5 and K = 2, 3) and has the expected leading behavior in the two OPE

limits. Later in this section we will obtain an alternate geodesic diagram representation

for the five-point block involving a single geodesic integral. Moreover, in appendix B, we

will provide a power series (purely CFT) representation of the five-point block obtained

– 6 –
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O1

O2

x3

x4

O5

O6

∆L1 ∆R1

∆C

∆L2 ∆R2

∆D

(x2
34)−∆D

∫∫
w1∈γ12
w2∈γ56

K̂∆1(x1, w1)K̂∆2(x2, w1)

≡ ×K̂∆5(x5, w2)K̂∆6(x6, w2)K̂∆L1
(x3, w1)

×K̂∆R1
(x3, w2)K̂∆L2

(x4, w1)K̂∆R2
(x4, w2)

× (ξ(w1, w2)/2)∆C

Figure 2. How to read comb-channel geodesic bulk diagrams. Geodesic bulk diagrams (also referred

to as geodesic Witten diagrams) are AdS Feynman diagrams except with all bulk integrations

restricted to boundary-anchored geodesics. Throughout this paper, boundary-anchored geodesics

over which bulk points are to be integrated will be shown as red-dashed lines. In the diagram

above, they represent the geodesics γ12 and γ56 joining x1 to x2 and x5 to x6, respectively. Bulk-

to-boundary propagators K̂∆(x, z) will be shown with solid blue lines, and whenever the conformal

dimension ∆ associated with it is not clear from the figure, it will be mentioned explicitly. For

example, in the six-point geodesic diagram above, the four bulk-to-boundary propagators incident

on bulk points to be integrated over boundary anchored geodesics are associated with the conformal

dimensions ∆i of the operator insertions Oi as marked. The remaining four bulk-to-boundary

propagators emanating from the coordinates x3 and x4 have conformal dimensions as displayed

next to the blue lines. Unless stated otherwise, the operator Oi is understood to be located at

boundary coordinate xi. Solid black lines will refer to purely boundary contractions; for example in

the diagram above the solid black line joining x3 to x4 corresponds to a factor of (x2
34)−∆D . Finally

dotted black lines will stand for factors of chordal distance (ξ(w1, w2)/2)∆ where ξ(w1, w2)−1 =

coshσ(w1, w2) where σ(w1, w2) is the geodesic distance between bulk points w1 and w2. We will

be using the same propagator normalizations as in ref. [55]; see in particular [55, section 2] for the

normalization of the bulk-to-boundary propagator as well as the relation between the bulk-to-bulk

propagator and the chordal distance factor above.

by taking a so-called double-OPE limit of the holographic dual of the seven-point block.

In the rest of this section, we illustrate this procedure for the case of the six-point block

where we recover the four-point block in the double-OPE limit.

We first briefly discuss how to obtain the holographic representation of the six-point

comb channel block. This discussion is schematic and light on technical details; we refer the

reader to appendix A for computational details. The first step involves partially evaluating

a particular AdS diagram involving cubic scalar couplings, in this case the diagram

O1

O2

O3 O4

O5

O6

∆δ1 ∆δ2 ∆δ3

, (2.4)

– 7 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
0

where all internal (green) cubic vertices are to be integrated over all of AdSd+1. In its

direct-channel conformal block decomposition, the term corresponding to the exchange of

three single-trace primaries takes the form

O1

O2

O3 O4

O5

O6

∆δ1 ∆δ2 ∆δ3

⊃ C∆1∆2∆δ1
C∆δ1

∆3∆δ2
C∆δ2

∆4∆δ3
C∆δ3

∆5∆6
O1

O2 O3 O4 O5

O6Oδ1 Oδ2 Oδ3

,

(2.5)

where C∆i∆j∆k
are the OPE coefficients associated with the dual generalized free-field CFT.

This is the six-point conformal block we are after. The trick to extracting the block is to use

the split representation for the central bulk-to-bulk propagator as well as certain powerful

two-propagator [43] and three-propagator identities [56]. These propagator identities are

especially helpful in evaluating AdS diagrams in a way which makes their direct-channel

conformal block decomposition manifest [43, 56]. Performing the remaining the boundary

and spectral integrals arising from the split representation, one manifestly isolates precisely

the term shown above, proportional to the right combination of OPE coefficients. (These

steps are explicitly worked out in appendix A.) The object multiplying this factor of OPE

coefficients produces a candidate for the holographic geodesic diagram representation of

the block. Technically, the method outlined above is a heuristic derivation; the object

obtained must be independently checked to be the claimed conformal block, for example

via conformal Casimir equations. We will comment on certain interesting implications

of this derivation in section 4 in the context of obtaining multipoint conformal blocks in

arbitrary channels.

The procedure outlined above leads to the following geodesic diagram representation,

which we claim to be the six-point conformal block in the comb channel,

W∆1,...,∆6

∆δ1
; ∆δ2

; ∆δ3
(xi) =

O1

O2 O3 O4 O5

O6Oδ1 Oδ2 Oδ3

=
4

B(∆δ11,2,∆δ12,1)B(∆δ35,6,∆δ36,5)
W∆1,...,∆6

∆δ1
; ∆δ2

; ∆δ3
(xi) ,

(2.6)

where the W is a linear combination of six-point geodesic diagrams (see figure 2),

W∆1,...,∆6

∆δ1
; ∆δ2

; ∆δ3
(xi) =

∞∑
k1,k2,k3,j=0

c
∆δ1

,∆δ2
,∆δ3

; ∆3,∆4

k1, k2, k3; j

O1

O2

x3

x4

O5

O6

∆3δ1,δ2 + k1,2 ∆3δ2,δ1 + k2,1 + j

∆δ1δ3,34 + k13, − j

∆4δ2,δ3 + k2,3 + j ∆4δ3,δ2 + k3,2

−j

,

(2.7)
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with the coefficients given by

c
∆δ1

,∆δ2
,∆δ3

; ∆3,∆4

k1, k2, k3; j

≡λ6
(−1)k1+k3+j

k1!k2!k3!j!

(1−∆3δ2,δ1)k1
(1−∆3δ1,δ2)k2

(1−∆4δ3,δ2)k2
(1−∆4δ2,δ3)k3

(∆δ1 − d/2 + 1)k1
(∆δ2 − d/2 + 1)k2

(∆δ3 − d/2 + 1)k3

× (∆3δ1,δ2)k1,2
(∆3δ2,δ1)k2,1+j (∆4δ2,δ3)k2,3+j (∆4δ3,δ2)k3,2

(∆δ1δ3,34)k13,−j

× 3F2 [{−k1,−k2,∆δ1δ23, − d/2}; {∆3δ2,δ1 − k1,∆3δ1,δ2 − k2}; 1]

× 3F2 [{−k2,−k3,∆δ2δ34, − d/2}; {∆4δ3,δ2 − k2,∆4δ2,δ3 − k3}; 1] ,

(2.8)

and

λ6 ≡
Γ(1−∆δ1δ2,3)Γ(1−∆δ2δ3,4)

Γ(1−∆δ1δ3,34)Γ(1−∆δ2)
. (2.9)

It is worth pointing out the close structural similarity of the geodesic bulk diagram as well

as the functional form of the coefficients with the five-point example. In particular, the

five-point geodesic diagram had one “triangle” formed by two blue lines (bulk-to-boundary

propagators) and a single dotted line (factor of chordal distance), and precisely one factor

of the hypergeometric 3F2 function in the coefficient, while the six-point block has two

triangles and two factors of 3F2.6 We will return to this observation in section 4.

To prove the claim above we need to show that the conformal block satisfies the right

differential equations (1.7) (for n = 6, K = 2, 3, 4) with the right boundary conditions,

expressed in terms of the OPE limits (1.8), reproduced below for convenience

W∆1,...,∆6

∆δ1
; ∆δ2

; ∆δ3
(x1, x2, x3, x4, x5, x6)

x2→x1−→ (x2
12)∆δ1,12 W

∆δ1
,∆3,∆4,∆5,∆6

∆δ2
; ∆δ3

(x1, x3, x4, x5, x6)

W∆1,...,∆6

∆δ1
; ∆δ2

; ∆δ3
(x1, x2, x3, x4, x5, x6)

x6→x5−→ (x2
56)∆δ3,56 W

∆1,∆2,∆3,∆4,∆δ3
∆δ1

; ∆δ2
(x1, x2, x3, x4, x5) .

(2.10)

The conformal Casimir check is set up in embedding space and the calculation proceeds

identically to the conformal Casimir checks for the holographic representations of the five-

point block [55] and the six-point block in the OPE channel [56]. Since no new ingredients

are required, we refrain from including the somewhat lengthy albeit straightforward proof

and simply point the reader to refs. [55, 56] for reference.7 In lieu of that, in the next

section we will provide a conformal Casimir proof for the power series expansion of the

six-point block which will be obtained later.

In the remainder of this section, we would like to focus on the OPE limits (2.10) of

the six-point block (2.6)–(2.7). If this is indeed the six-point conformal block as claimed,

6The four-point case has no triangles and no factors of 3F2 in its double power series expansion.
7The Casimir check relies on a particular non-trivial functional identity obeyed by the hypergeometric

function 3F2 which was also previously employed in the five-point case [55],

E(D −B) 3F2

[
A+ 1, B, C

D + 1, E
; 1

]
+B(E − C) 3F2

[
A+ 1, B + 1, C

D + 1, E + 1
; 1

]
−DE 3F2

[
A, B, C

D, E
; 1

]
= 0 .

(2.11)

The only difference is that due to two factors of the hypergeometric function in (2.8), this identity must

now be applied twice, once for each factor.
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taking a single OPE limit should produce an (alternate) holographic representation for the

five-point block involving a single geodesic integral, and taking a further OPE limit should

reproduce the power series expansion of the four-point block purely in terms of boundary

coordinates. We will utilize this strategy in the next section to go from the holographic

representation of the (n + 2)-point conformal block in the comb channel to produce an

explicit power series expansion of the n-point comb channel block. For illustrative purposes,

a seven-point to five-point block example is provided in appendix B.

2.2 OPE limit of the six-point block

Generically, all OPE limits in this paper will involve integrals of the following kind:

lim
x2→x1

∫
w∈γ12

K̂∆1(x1, w)K̂∆2(x2, w)

(
j∏
i=1

K̂∆ai
(xai , w)

)(
k∏
i=1

(
ξ(wbi , w)

2

)∆bi

)

=
B(∆a1...ajb1...bk1,2,∆a1...ajb1...bk2,1)

2

(x2
12)

∆a1...ajb1...bk,12∏j
i=1(x2

1ai
)∆ai

(
k∏
i=1

K̂∆bi
(x1, wbi)

)
,

(2.12)

which is straightforward to derive (assuming convergence of the integral). In this section

we focus on the OPE limit x2 → x1 of the six-point block. Due to the symmetry of the

six-point block, we need only check one of the OPE limits in (2.10); the other one follows

immediately from a simple relabeling. Using (2.12), we have

W∆1,...,∆6

∆δ1
; ∆δ2

; ∆δ3
(xi)

x2→x1−→
∞∑

k1,k2,k3,j=0

(x2
12)∆δ1,12+k1

2B(∆δ11,2 + k1,∆δ12,1 + k1)

B(∆δ11,2,∆δ12,1)B(∆δ35,6,∆δ36,5)
c

∆δ1
,∆δ2

,∆δ3
; ∆3,∆4

k1, k2, k3; j

× x1

x3

x4

O5

O6

∆3δ1,δ2 + k1,2 ∆3δ2,δ1 + k2,1 + j

∆δ1δ3,34 + k13, − j

∆4δ2,δ3 + k2,3 + j ∆4δ3,δ2 + k3,2

−j

.

(2.13)

We are interested in the leading behavior as x2 → x1, so we set the non-negative integral

parameter k1 = 0 above. Comparing with the first line of (2.10), it is sufficient to show

that this holographic representation is indeed the five-point conformal block expected to
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be obtained in this limit, that is

W
∆δ1

,∆3,∆4,∆5,∆6

∆δ2
; ∆δ3

(x1, x3, x4, x5, x6)

!
=

2

B(∆δ35,6,∆δ36,5)

∞∑
k2,k3,j=0

c
∆δ1

,∆δ2
,∆δ3

; ∆3,∆4

0, k2, k3; j

× x1

x3

x4

O5

O6

∆3δ1,δ2 − k2 ∆3δ2,δ1 + k2 + j

∆δ1δ3,34 + k3 − j

∆4δ2,δ3 + k2,3 + j ∆4δ3,δ2 + k3,2

−j

≡ V .

(2.14)

This is easily checked by showing that the r.h.s. above, which we call V , satisfies the

differential equations and boundary conditions of a five-point block. Specifically,(
L(1) + L(3)

)2
V = C2(∆δ2) V(

L(1) + L(3) + L(4)
)2
V = C2(∆δ3) V ,

(2.15)

with V reducing to four-point blocks in the OPE limit,

V
x3→x1−→ (x2

13)∆δ2,δ13 W
∆δ2

,∆4,∆5,∆6

∆δ3
(x1, x4, x5, x6)

V
x6→x5−→ (x2

56)∆δ3,56 W
∆δ1

,∆3,∆4,∆δ3
∆δ2

(x1, x3, x4, x5) .

(2.16)

Just as discussed near the end of section 2.1, the conformal Casimir check (2.15) is once

again straightforward to show using directly the techniques of ref. [55] and the functional

identity (2.11). In the interest of keeping the length of this paper reasonable, we will refrain

from presenting the technical details.

The OPE limits (2.16) are also straightforward to work out. Interestingly, the first

OPE limit in (2.16) leads to the (holographic) geodesic bulk diagram representation of

the four-point block, and the second furnishes a (boundary) power series expansion. We

discuss these limits next.

2.2.1 Recovering the four-point block from the six-point block

Let’s first discuss the limit x3 → x1. In this limit, using (2.12) we find that V is proportional

to (x2
13)∆δ2,δ13+k2 where k2 is summed over non-negative integers. Thus the leading order
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contribution comes from setting k2 = 0, which gives

V
x3→x1−→ 2 (x2

13)∆δ2,δ13

B(∆δ35,6,∆δ36,5)

∞∑
k3,j=0

c
∆δ1

,∆δ2
,∆δ3

; ∆3,∆4

0, 0, k3; j

x1

x4

O5

O6

∆
δ3δ2 ,4 + k3

∆4δ2,δ3 − k3

∆δ34,δ2
+ k3

. (2.17)

The free sum over j is easily performed to give

V
x3→x1−→ 2 (x2

13)∆δ2,δ13

B(∆δ35,6,∆δ36,5)

∞∑
k3=0

(∆δ3δ2,4)k3(∆δ34,δ2)k3

k3!(∆δ3 − d/2 + 1)k3

x1

x4

O5

O6

∆
δ3δ2 ,4 + k3

∆4δ2,δ3 − k3

∆δ34,δ2
+ k3

=
4(x2

13)∆δ2,δ13

B(∆δ35,6,∆δ36,5)B(∆δ3δ2,4,∆δ34,δ2)

×
∞∑
k3=0

(∆δ3)2k3

k3!(∆δ3 − d/2 + 1)k3

O4(x4)

Oδ2(x1) O5(x5)

O6(x6)

∆δ3 + 2k3

= (x2
13)∆δ2,δ13 W

∆δ2
,∆4,∆5,∆6

∆δ3
(x1, x4, x5, x6) ,

(2.18)

where to get to the second equality we used ref. [55, eq. (A.4)] which re-expresses a par-

ticular combination of bulk-to-boundary propagators in the first equality as a geodesic

integral. Performing the k3 sum by using the relation between the chordal distance mea-

sure ξ and the bulk-to-bulk propagator (see e.g. ref. [55, eq. (2.8)] for the precise relation

in our conventions), one immediately recovers the original geodesic diagram representation

of the four-point block [43].

Now let’s consider the other OPE limit in (2.16). As x6 → x5, the leading contribution

is given by

V
x6→x5−→ (x2

56)∆δ3,56

∞∑
k2,j=0

c
∆δ1

,∆δ2
,∆δ3

; ∆3,∆4

0, k2, 0; j
x1

x3

x4

x5

∆3δ1,δ2 − k2 ∆3δ2,δ1 + k2 + j

∆δ1δ3,34 − j

∆4δ2,δ3 + k2 + j ∆4δ3,δ2 − k2

−j

,

(2.19)

– 12 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
0

with the subleading contributions suppressed by higher positive powers of x2
56. Recalling

from figure 2 that lines joining points on the boundary of the Poincaré disk represent factors

of the form (x2
34)j etc., this limit can be written explicitly as

V
x6→x5−→ (x2

56)∆δ3,56

(x2
13)∆δ13,(x2

45)∆4δ3,

(
x2

35

x2
15

)∆δ1,3
(
x2

15

x2
14

)∆4,δ3

u
∆δ2

2

∞∑
k2,j=0

c
∆δ1

,∆δ2
,∆δ3

; ∆3,∆4

0, k2, 0; j uk2vj ,

(2.20)

where the conformal cross-ratios are defined to be

u ≡ x2
13x

2
45

x2
14x

2
35

v ≡ x2
15x

2
34

x2
14x

2
35

. (2.21)

Up to the expected overall factor of (x2
56)∆δ3,56 , (2.20) is of the same form as (1.1) except

for a different set of coordinate labels and conformal dimensions. More precisely,

V
x6→x5−→ (x2

56)∆δ3,56W
∆δ1

,∆3,∆4,∆δ3
∆δ2

(x1, x3, x4, x5) , (2.22)

in the notation described after (1.1). To show that (2.20) is indeed the power series

expansion of the global four-point block as claimed, it helps to bring it to a more familiar

form, by rewriting the series expansion in terms of powers of (1 − v),8

V
x6→x5−→ (x2

56)∆δ3,56 W
∆δ1

,∆3,∆4,∆δ3
0 (x1, x3, x4, x5)

× u
∆δ2

2

∞∑
k2,`=0

uk2(1− v)`

k2!`!

(∆δ2δ1,3)k2(∆δ2δ3,4)k2

(∆δ2 − d/2 + 1)k2

(∆δ23,δ1)k2+`(∆δ24,δ3)k2+`

(∆δ2)2k2+`
,

(2.24)

where the leg-factor W0 was defined in (1.5). Up to the overall factor of (x2
56)∆δ3,56 , this is

precisely the power series expansion of the appropriate global scalar four-point block [12],

thus confirming the second line of (2.16).

To conclude, we emphasize the main results of this section: We obtained and verified

a holographic representation of the six-point block in the comb channel (2.6)–(2.9), and in

the double-OPE limit x2 → x1, xn → xn−1 for n = 6, we recovered the explicit power series

expansion of the four-point block (2.19). In appendix B, we provide another example of

this — the holographic dual of the seven-point block leading to the power series expansion

of the five-point block. In the next section, we will generalize this result to obtain the

power series expansion of the n-point comb channel block from a similar double-OPE limit

of the holographic dual of the (n+ 2)-point comb channel block.

8The standard trick to do that is as follows: We expand

vj = (1 + v − 1)j =

j∑
`=0

(
j

`

)
(−1)`(1− v)` . (2.23)

Then extending the upper limit of the binomial sum above to infinity with impunity and switching the

order of ` and j sums, perform the summation over j in (2.20) to obtain a power series expansion in powers

of (1− v).

– 13 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
0

3 Multipoint block in the comb channel

3.1 Holographic dual of the (n + 2)-point block and its double-OPE limit

The low-point examples of five- and six-point blocks in the previous section, along with

the seven-point example in appendix B allow us to make a guess for the holographic rep-

resentation of any multipoint block in the comb channel. We conjecture the holographic

representation of the (n+ 2)-point comb channel block (n ≥ 3), labelled as follows,

W
∆e1 ,∆e2 ,∆2,...,∆n−1,∆e3 ,∆e4
∆1; ∆δ1

; ...; ∆δn−3
; ∆n

(xi) ≡
Oe1(x1′)

Oe2(x1) O2 O3 On−2 On−1 Oe3(xn)

Oe4(xn′)O1 Oδ1 Oδn−3 On

=
4W∆e1 ,∆e2 ,∆2,...,∆n−1,∆e3 ,∆e4

∆1; ∆δ1
; ...; ∆δn−3

; ∆n
(xi)

B(∆1e1,e2 ,∆1e2,e1)B(∆ne3,e4 ,∆ne4,e3)
, (3.1)

to be given by W, which is the following linear combination of geodesic bulk diagrams (see

figure 2 for the graphical notation and below for more notes),

W∆e1 ,∆e2 ,∆2,...,∆n−1,∆e3 ,∆e4
∆1; ∆δ1

; ...; ∆δn−3
; ∆n

(xi)

=

∞∑
k0,k1,k2,...,kn−3,kn−2,

j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

,∆δ2
, ...,∆δn−3

,∆n; ∆2,∆3, ...,∆n−1

k0, k1, k2, ..., kn−3, kn−2; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×

Oe1(x1′)

Oe2(x1) Oe3(xn)

Oe4(xn′)

w w′
∆1n,2...(n−1) + k0(n−2),

−
∑

2≤r<s≤n−1 j〈r|s〉

×


∏

2≤r<s≤n−1

xr

xs

−j〈r|s〉



×


n−3∏
t=0

xt+2

w w′

∆(t+2)δt,δt+1
+ kt,t+1

+
∑t+1
r=2 j〈r|t+2〉

∆(t+2)δt+1,δt + kt+1,t

+
∑n−1
s=t+3 j〈t+2|s〉


,

(3.2)

where the indices 〈r|s〉 represent the
(
n−2

2

)
values the subscript on j can take. The coeffi-

cients are given by (for n ≥ 3)

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

k0, k1, ..., kn−3, kn−2; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉
≡ λn+2

 ∏
2≤r<s≤n−1

(−1)j〈r|s〉

j〈r|s〉!

(n−2∏
i=0

1

ki!

)

×

(
n−3∏
i=1

(
1−∆(i+1)δi−1,δi

)
ki

(
1−∆(i+2)δi+1,δi

)
ki

(∆δi− d/2+ 1)ki

)
(1−∆2δ1,1)k0

(
1−∆(n−1)δn−3,n

)
kn−2

(∆1−d/2+1)k0
(∆n− d/2+1)kn−2
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× (−1)k0+kn−2
(
∆1n,2...(n−1)

)
k0(n−2),−

∑
2≤r<s≤n−1 j〈r|s〉

×

(
n−3∏
t=0

(
∆(t+2)δt,δt+1

)
kt,t+1+

∑t+1
r=2 j〈r|t+2〉

(
∆(t+2)δt+1,δt

)
kt+1,t+

∑n−1
s=t+3 j〈t+2|s〉

× 3F2

[{
−kt,−kt+1,∆δtδt+1(t+2), −

d

2

}
;
{

∆(t+2)δt+1,δt − kt,∆(t+2)δt,δt+1
− kt+1

}
; 1

])
,

(3.3)

with

λn+2 ≡
∏n−3
t=0 Γ(1−∆δtδt+1,(t+2))

Γ(1−∆1n,2...(n−1))
∏n−3
i=1 Γ(1−∆δi)

, (3.4)

and the additional definitions

∆δ0 ≡ ∆1 ∆δn−2 ≡ ∆n . (3.5)

A few remarks are in order regarding the conjecture for the (n+ 2)-point block above:

• For clarity we have split up a single geodesic bulk diagram in (3.2) into a chain

of constituent factors. The first factor should be familiar to the reader from the

geodesic diagram representation of a four-point block [43] (see also (2.18)). The

second factor, corresponding to
(
n−2

2

)
contractions (in fact, a perfect graph) between

boundary points x2, . . . , xn−1, appears in the holographic dual for all n ≥ 4 (i.e. for

the six-point block and higher). The third factor, which represents a product over

(n− 2) pairs of bulk-to-boundary propagators, is present in the holographic dual for

all n ≥ 3 (i.e. five-point block and higher).

• All these constituent factors are to be merged together and should be understood as

having been drawn on the same Poincaré disk. The bulk points w,w′, which are to be

integrated over the two boundary anchored geodesics have been marked explicitly to

emphasize that the bulk-to-boundary propagators are incident on precisely the same

bulk points; thus there are only two geodesic integrals to be performed.

• It is straightforward to check that this conjecture reduces to the already established

holographic duals for the five-point block (2.1)–(2.3), the six-point block (2.6)–(2.9),

and the seven-point block (B.1)–(B.4).

If this conjecture is true, its double-OPE limit, x1′ → x1, xn′ → xn should lead to the

n-point block (for n ≥ 4) described in figure 1, up to some expected overall scaling factors,

lim
x1′→x1
xn′→xn

W
∆e1 ,∆e2 ,∆2,...,∆n−1,∆e3 ,∆e4
∆1; ∆δ1

; ...; ∆δn−3
; ∆n

(x1′ , x1, . . . , xn, xn′)

= (x2
11′)

∆e1e2,1(x2
nn′)

∆e3e4,nW
∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn) ,

(3.6)
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where, using (2.12),9 the explicit representation can be worked out to be (for n ≥ 4)

W
∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(xi)

=
∞∑

k1,k2,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

,∆δ2
, ...,∆δn−3

,∆n; ∆2,∆3, ...,∆n−1

0,k1, k2, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

× x1 xn
∆1n,2...(n−1)

−
∑

2≤r<s≤n−1 j〈r|s〉

×


∏

2≤r<s≤n−1

xr

xs

−j〈r|s〉



×


n−3∏
t=0

xt+2

x1 xn

∆ (t
+
2)
δ t
,δ
t+

1

+
k t
,t
+
1

+
∑ t+

1

r=
2
j 〈r
|t+

2〉

∆
(t+

2)δ
t+

1 ,δ
t +

k
t+

1,t

+ ∑
n−

1s=
t+

3 j〈t+
2|s〉


, (3.7)

where we now additionally impose the identifications (1.4). Once again the chain of

Poincaré disks above is interpreted as explained for the geodesic diagram representation.

The coefficients themselves simplify to (for n ≥ 4),

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉
= λn+2

 ∏
2≤r<s≤n−1

(−1)j〈r|s〉

j〈r|s〉!

(n−3∏
i=1

1

ki!

)

×
(
∆1n,2...(n−1)

)
−

∑
2≤r<s≤n−1 j〈r|s〉

(
n−3∏
t=0

(
1−∆(t+1)δt−1,δt

)
kt

(
1−∆(t+2)δt+1,δt

)
kt

(∆δt − d/2 + 1)kt

×
(
∆(t+2)δt,δt+1

)
kt,t+1+

∑t+1
r=2 j〈r|t+2〉

(
∆(t+2)δt+1,δt

)
kt+1,t+

∑n−1
s=t+3 j〈t+2|s〉

× 3F2

[{
−kt,−kt+1,∆δtδt+1(t+2), −

d

2

}
;
{

∆(t+2)δt+1,δt − kt,∆(t+2)δt,δt+1
− kt+1

}
; 1

])
,

(3.8)

where λn+2 is given in (3.4) and we employed (1.4) to write the coefficient above com-

pactly.10

9In particular, the integer parameters k0 and kn−2 are set to zero to obtain the leading contribution on

the r.h.s. of (3.6).
10For example, for n = 4 one obtains the simplified coefficients

c
∆1,∆δ1 ,∆4; ∆2,∆3

0,k1, 0; j〈2|3〉
= λ6

(−1)j〈2|3〉

j〈2|3〉!

1

k1!

(∆2δ1,1)k1+j〈2|3〉
(∆3δ1,4)k1+j〈2|3〉

(∆14,23)−j〈2|3〉
(∆δ1 − d/2 + 1)k1

. (3.9)
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The coordinate dependence of the putative conformal block is captured pictorially

in (3.7). Recalling the notation from figure 2, one can easily convert this to conformal

cross-ratios as follows,

W∆1,...,∆n

∆δ1
; ...; ∆δn−3

(xi) =W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∞∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×

(
n−3∏
i=1

ukii

) ∏
2≤r<s≤n−1

w
j〈r|s〉
r;s

 ,

(3.10)

where the “leg factor” W
(n)
0 (xi) is given by (1.5) and the cross-ratios ui, wr;s are defined

in (1.6). This is precisely the power series expansion (1.1).11

While we do not directly prove the conjecture (3.1)–(3.3) for the holographic represen-

tation of the (n+2)-point block as this is not the main focus of this paper, in the remainder

of this section, we will prove via conformal Casimir equations (1.7)–(1.8) that (3.10) is in-

deed the desired power series expansion of the n-point comb channel block.

3.2 OPE limit of the n-point block

Let’s first verify the boundary conditions. Due to the symmetrical nature of the conjectural

conformal block (3.7), we need only check one of the two OPE limits. We choose to work

out the limit xn → xn−1. It is easily gleaned from the diagrammatic representation (3.7)

that the power series expansion is proportional to a factor of (x2
(n−1)n)

kn−3−∆(n−1)n,δn−3 , so

we set kn−3 = 0 to obtain the leading contribution in the OPE limit. It is straightforward

11Alternately, one can write it as

W∆1,...,∆n
∆δ1 ; ...; ∆δn−3

(xi) =W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∞∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1 , ...,∆δn−3

,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×

(
n−3∏
i=1

ukii v
j〈i+1|i+2〉
i

) ∏
2≤r<s≤n−1

s 6=r+1

w
j〈r|s〉
r;s

 , (3.11)

where we disallowed s = r + 1 in the wr;s cross-ratios, and collect them separately into the cross-ratios

vi ≡ wi+1;i+2 =
x2

1nx
2
(i+1)(i+2)

x2
(i+1)nx

2
1(i+2)

1 ≤ i ≤ n− 3 . (3.12)
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to work out the full expansion,

lim
xn→xn−1

W∆1,...,∆n

∆δ1
; ...; ∆δn−3

(xi)

→ (x2
(n−1)n)

∆δn−3,(n−1)n

∞∑
k1,k2,...,kn−4,

j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

,∆δ2
, ...,∆δn−3

,∆n; ∆2,∆3, ...,∆n−1

0,k1, k2, ..., kn−4, 0, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

× x1 xn−1
∆1δn−3,2...(n−2)

−
∑

2≤r<s≤n−2 j〈r|s〉

×


∏

2≤r<s≤n−2

xr

xs

−j〈r|s〉



×


n−4∏
t=0

xt+2

x1 xn−1

∆ (t
+
2)
δ t
,δ
t+

1

+
k t
,t
+
1

+
∑ t+

1

r=
2
j 〈r
|t+

2〉

∆
(t+

2)δ
t+

1 ,δ
t +

k
t+

1,t

+ ∑
n−

2s=
t+

3 j〈t+
2|s〉


, (3.13)

where remember that ∆δ0 = ∆1 and k0 = kn−3 = 0 as well. Comparing with (3.7), we

observe that (3.13) has precisely the right position space dependence of the (n − 1)-point

conformal block obtained in the OPE limit xn → xn−1. Indeed, when kn−3 = 0, it is

straightforward to check that the coefficient in (3.7) can be expressed in terms of the

coefficient associated with the (n−1)-point block times some “extraneous factors” of Euler

Gamma function and Pochhammer symbol, as shown:

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−4, 0, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

= c
∆1,∆δ1

, ...,∆δn−4
,∆δn−3

; ∆2, ...,∆n−2

0,k1, ..., kn−4, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−3|n−2〉

Γ
(
1−∆δn−3n,(n−1)

)
Γ
(
1−∆1δn−3,2...(n−2)

)
Γ
(
1−∆1n,2...(n−1)

)
Γ
(
1−∆δn−3

)
×

(
n−2∏
`=2

(−1)j〈`|n−1〉

j〈`|n−1〉!

)n−4∏
t=0

(
∆(t+2)δt+1,δt + kt+1,t +

n−2∑
s=t+3

j〈t+2|s〉

)
j〈t+2|n−1〉


×
(
∆(n−1)δn−3,n

)∑n−2
r=2 j〈r|n−1〉

(
∆1n,2...(n−1)

)
−

∑
2≤r<s≤n−1 j〈r|s〉(

∆1δn−3,2...(n−2)

)
−

∑
2≤r<s≤n−2 j〈r|s〉

,

(3.14)

where we remember to set δ0 = ∆1 and k0 = kn−3 = 0. Thus, we obtain the correct OPE

limit (1.8)–(1.9), provided the following (n − 3)-dimensional coordinate independent sum

over the indices j〈2|n−1〉, . . . , j〈n−2|n−1〉, which involves the “extraneous factors” in (3.14),
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evaluates to unity:

1
!

=
Γ
(
1−∆δn−3n,(n−1)

)
Γ
(
1−∆1δn−3,2...(n−2)

)
Γ
(
1−∆1n,2...(n−1)

)
Γ
(
1−∆δn−3

)
×

∞∑
j〈2|n−1〉,...,
j〈n−2|n−1〉=0

(
n−2∏
`=2

(−1)j〈`|n−1〉

j〈`|n−1〉!

)

×

n−4∏
t=0

(
∆(t+2)δt+1,δt + kt+1,t +

n−2∑
s=t+3

j〈t+2|s〉

)
j〈t+2|n−1〉


×
(
∆(n−1)δn−3,n

)∑n−2
r=2 j〈r|n−1〉

(
∆1n,2...(n−1)

)
−

∑
2≤r<s≤n−1 j〈r|s〉(

∆1δn−3,2...(n−2)

)
−

∑
2≤r<s≤n−2 j〈r|s〉

.

(3.15)

Indeed, this turns out to be the case, as shown in appendix C.1.

3.3 Conformal Casimir check

Having established the OPE limits for the n-point conjecture, we now turn our attention

to the multipoint Casimir equations (1.7), repeated below:(
L(1) + · · ·+ L(K)

)2
W

∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn)

= C2(∆δK−1
)W

∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn)

(3.16)

for all 2 ≤ K ≤ n − 2, where L(r)
AB are the generators of the Euclidean conformal group

acting on and built out of the coordinate xr, A,B are SO(d + 1, 1) indices, and (L(r))2 =

1/2L(r)
ABL(r)AB. In embedding space Rd+1,1, these generators act linearly as Lorentz group

generators in d+ 2 dimensions,

L(r)
AB = −i

(
Xr
A

∂

∂XrB
−Xr

B

∂

∂XrA

)
, (3.17)

where Xr ∈ Rd+1,1 are embedding space coordinates which upon taking an appropriate

section give the corresponding Poincaré coordinates xr. In the rest of this section, xr will

refer to a boundary coordinate so that Xr will be a null coordinate in embedding space

with Xr ·Xr = 0 (no sum over r). Consequently, in embedding space, x2
rs = −2Xr ·Xs, and

L(r)
AB

1

(−2Xr ·Xs)∆
= −2i∆

Xr
AX

s
B −Xr

BX
s
A

(−2Xr ·Xs)∆+1

L(r)ABL(r)
AB

1

(−2Xr ·Xs)∆
=

2m2
∆

(−2Xr ·Xs)∆
.

(3.18)

While we will not explicitly state it every time, all calculations are worked out in embedding

space because of the convenience of working with linear differential operators (see e.g.

ref. [55] in the context of the five-point block).
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To prove (3.16), first expand the multipoint Casimir operator

(
L(1) + · · ·+ L(K)

)2
=

K∑
i=1

(
L(i)

)2
+

∑
1≤r<s≤K

L(r)
ABL

(s)AB . (3.19)

We will now work out the action of the individual operators in the expansion on the right

hand side above, on the putative conformal block. Summing these contributions up, we

will show that it reproduces the right hand side of (3.16).

First, the following action of the quadratic Casimir on the conjectural conformal

block (3.7) is easily checked:(
L(i)

)2
W

∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn) = m2
∆i
W

∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(x1, . . . , xn) , (3.20)

for all 1 ≤ i ≤ n and for all n. This follows from the explicit conformal dimension

assignment of (3.7) and the following obvious identity

(
L(x)

)2
x

x1

x`

∆
1

∆
`

... = m2∑`
i=1 ∆i

x

x1

x`

∆
1

∆
`

... , (3.21)

where as explained in figure 2, the solid lines joining together boundary points are to be

interpreted as a boundary contractions of the form (x2
ij)
−∆. The action of the cross-term

in (3.19) on the putative conformal block (3.7) involves terms of the form

I ≡ L(r)
ABL

(s)AB



xr

xs

∆〈r|s〉


n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉




, (3.22)

with 1 ≤ r < s ≤ K fixed, and 1 ≤ a1 < a2 < . . . < an−2 ≤ n with a1, a2, . . . , an−2 /∈ {r, s}.
Like in the previous subsections, the pictorial representation above is split into a product

of Poincaré disks for clarity, but should be understood as merged into a single diagram. We

are using the symbols 〈a|b〉 as indices labelling conformal dimensions with ∆〈a|b〉 = ∆〈b|a〉.

Based on convenience, we will sometimes index ai using the subscripts i = 1, . . . , n − 2,

and at other times directly as ai = 1, . . . , n with the restriction that ai 6= r, s.

The derivatives acting in (3.22) distribute according to the chain rule to give four

terms. We club the two cross-terms together to write I as

I = I1 + I2 + I3 , (3.23)
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where we have defined

I1 ≡


n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉


L(r)
ABL

(s)AB

xr

xs

∆〈r|s〉

I2 ≡

xr

xs

∆〈r|s〉 L(r)
ABL

(s)AB


n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉



I3 ≡


L(r)
AB

xr

xs

∆〈r|s〉


(
L(s)AB − L(r)AB

)

n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉


. (3.24)

I3 repackages the two cross-terms in (3.22) thanks to the obvious identity

L(s)
AB

xr

xs

∆〈r|s〉 = −L(r)
AB

xr

xs

∆〈r|s〉 . (3.25)

In fact, using this it is straightforward to evaluate I1, since

L(r)
ABL

(s)AB

xr

xs

∆〈r|s〉 = −2m2
∆〈r|s〉

xr

xs

∆〈r|s〉 . (3.26)
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To evaluate I2 and I3, we use the identity

L(s)
AB


n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉


(3.27)

=

(
n−2∑
`=1

−i∆〈a`|s〉
(
2Xs

AX
a`
B − 2Xs

BX
a`
A

)
(−2Xs ·Xa`)

)

n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉


,

which is easily checked. Here we have made explicit reference to the embedding space

coordinates in the prefactor.12 Then, it follows

I2 = −2

 n−2∑
u,v=1

∆〈au|s〉∆〈av |r〉 ((−2Xs ·Xr)(−2Xau ·Xav)−((−2Xs ·Xav)(−2Xr ·Xau))

(−2Xs ·Xau)(−2Xr ·Xav)



×



xr

xs

∆〈r|s〉


n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉




I3 = −2∆〈r|s〉

n−2∑
`=1

(∆〈a`|s〉 + ∆〈a`|r〉)

×



xr

xs

∆〈r|s〉


n−2∏
i=1

xai

xr

xs

∆ 〈
a i
|r
〉

∆
〈a
i |s〉




. (3.28)

12At the end of the calculation, we will re-express all expressions in terms of d-dimensional boundary

coordinates, using the simple identification (−2Xi ·Xj) = x2
ij .
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Now rewrite the putative n-point conformal block (3.7) as

W
∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(xi) =
∞∑

k1,k2,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

,∆δ2
, ...,∆δn−3

,∆n; ∆2, ...,∆n−1

0,k1, k2, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×


∏

1≤u<v≤n

xu

xv

∆〈u|v〉


, (3.29)

where the conformal dimensions ∆〈u|v〉, which depend on k1, . . . , kn−3, and various j〈·|·〉 can

be read-off of (3.7). Then, using the computations above, we can evaluate

L(r)
ABL

(s)ABW
∆1,∆2,...,∆n−1,∆n

∆δ1
; ...; ∆δn−3

(xi)

= − 2
∞∑

k1,k2,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

,∆δ2
, ...,∆δn−3

,∆n; ∆2, ...,∆n−1

0,k1, k2, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×

(
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈a`|s〉 + ∆〈a`|r〉)

+

n−2∑
u,v=1

∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

)

×


∏

1≤u<v≤n

xu

xv

∆〈u|v〉


, (3.30)

where as before 1 ≤ r < s ≤ K for a fixed K satisfying 2 ≤ K ≤ n− 2, and 1 ≤ a1 < a2 <

. . . < an−3 < an−2 ≤ n with a1, a2, . . . , an−2 /∈ {r, s}.
Combining all the computations (see also footnote 12), the left hand side of (3.16)

evaluates to

l.h.s. =

∞∑
k1,k2,...,kn−3,

j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉


∏

1≤u<v≤n

xu

xv

∆〈u|v〉


×

 K∑
i=1

m2
∆i
− 2

∑
1≤r<s≤K

(
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈a`|s〉 + ∆〈a`|r〉)

+
n−2∑
u,v=1

∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

 , (3.31)
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where we used
∑n

u=1
u 6=v

∆〈u|v〉 = ∆v for all 1 ≤ v ≤ n, which can be easily checked by

reading ∆〈u|v〉 off of (3.7). Conveniently, a particular partial sum above vanishes,13 leaving

us with

l.h.s. =
∞∑

k1,k2,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉


∏

1≤u<v≤n

xu

xv

∆〈u|v〉


×

[
K∑
i=1

m2
∆i
− 2

∑
1≤r<s≤K

(
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈a`|s〉 + ∆〈a`|r〉)

−
n−2∑
`=1

∆〈a`|s〉∆〈a`|r〉 +

n∑
au,av=K+1
au 6=av

∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

)]
. (3.33)

The position space dependence above can be re-expressed in terms of the cross-ratios

defined in (1.6) by employing the form (3.10) of the n-point block and observing that

x2
srx

2
auav

x2
saux

2
rav

=



us−1us . . . uau−2
wr;swau;av

ws;auwr;av
K + 1 ≤ au < av ≤ n− 1

us−1us . . . uav−2
wr;swav ;au

ws;auwr;av
K + 1 ≤ av < au ≤ n− 1

us−1us . . . uau−2
wr;s
ws;au

K + 1 ≤ au ≤ n− 1, av = n

us−1us . . . uav−2
wr;s
wr;av

K + 1 ≤ av ≤ n− 1, au = n

x2
savx

2
rau

x2
saux

2
rav

=
ws;avwr;au
ws;auwr;av

,

(3.34)

for 1 ≤ r < s ≤ K, and a fixed K satisfying 2 ≤ K ≤ n− 2. Substituting this back in the

left hand side, we get

l.h.s. =W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

) ∞∑
k1,...,kn−3,

j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×

{
K∑
i=1

m2
∆i
− 2

∑
1≤r<s≤K

[
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈r|a`〉+∆〈s|a`〉)−
n−2∑
`=1

∆〈r|a`〉∆〈s|a`〉

13More precisely, the following partial sum vanishes,

∑
1≤r<s≤K

K∑
au,av=1

au,av /∈{r,s},au 6=av

∆〈au|s〉∆〈av|r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

= 0 , (3.32)

which is proven in appendix C.2.
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+
∑

K+1≤au<av≤n−1

∆〈r|av〉∆〈s|au〉

(
us−1us . . . uau−2

wr;swau;av

ws;auwr;av
− ws;avwr;au
ws;auwr;av

)
+

∑
K+1≤av<au≤n−1

∆〈r|av〉∆〈s|au〉

(
us−1us . . . uav−2

wr;swav ;au

ws;auwr;av
− ws;avwr;au
ws;auwr;av

)

+
n−1∑

au=K+1

∆〈r|n〉∆〈s|au〉

(
us−1us . . . uau−2

wr;s
ws;au

− wr;au
ws;au

)

+

n−1∑
av=K+1

∆〈r|av〉∆〈s|n〉

(
us−1us . . . uav−2

wr;s
wr;av

− ws;av
wr;av

)]}

×

(
n−3∏
i=1

ukii

) ∏
2≤r<s≤n−1

w
j〈r|s〉
r;s

 . (3.35)

This must be shown to equal the right hand side of (3.16), which can be written as

r.h.s. =m2
∆δK−1

W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∞∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

!c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

×

(
n−3∏
i=1

ukii

) ∏
2≤r<s≤n−1

w
j〈r|s〉
r;s

 ,

(3.36)

after substituting C2(∆δK−1
) = m2

∆δK−1
.

By integer shifting appropriate integral parameters ki, j〈·|·〉, we can make the position

space dependence of the combination (l.h.s. − r.h.s.) identical across individual terms. For

instance, if a term contains an extra factor of ui, then shift ki → ki − 1. Similarly, if a

term has an extra factor of wr;s, shift j〈r|s〉 → j〈r|s〉 − 1. Subsequently, after some further

simplifications (see appendix C.3 for calculational details), we end up with

l.h.s. − r.h.s. =W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∞∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

(
4 kK−1(δK−1 + kK−1 − d/2) c(·)

− 4
∑

1≤r<s≤K
K+1≤au<av≤n

c̃r,s;au,av(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|au〉+1,j〈r|av〉+1)

)

×

(
n−3∏
i=1

ukii

) ∏
2≤r<s≤n−1

w
j〈r|s〉
r;s

 , (3.37)
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where we have defined the scaled (tilded) coefficient

c̃r,s;au,av0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉
≡ c

∆1,∆δ1
, ...,∆δn−3

,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉
∆〈r|av〉∆〈s|au〉 ,

(3.38)

and for brevity, we are using the short-hands c(·), c̃
r,s;au,av
(ki±1,j〈r|s〉±1,...) to stand for

c(·) ≡ c
∆1,∆δ1

, ...,∆δn−3
,∆n; ∆2, ...,∆n−1

0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

c̃r,s;au,av(ki±1,j〈r|s〉±1,...) ≡ c̃
r,s;au,av
0,k1, ..., kn−3, 0; j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

∣∣∣
ki→ki±1,j〈r|s〉→j〈r|s〉±1,...

,
(3.39)

that is, coefficients with (un)shifted integral parameters.

Thus to show that the conformal Casimir equations are satisfied, we need to show (3.37)

vanishes identically. Since it must vanish irrespective of the choice of boundary coordinates,

each individual term in the sum must vanish. That is, we need to show

4 kK−1(δK−1 + kK−1 − d/2) c(·)

− 4
∑

1≤r<s≤K
K+1≤au<av≤n

c̃r,s;au,av(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|au〉+1,j〈r|av〉+1)

!
= 0 , (3.40)

for all 2 ≤ K ≤ n − 2, and for all k1, . . . , kn−3, j〈2|3〉, j〈2|4〉, . . . , j〈n−2|n−1〉 ∈ Z≥0.14 We

proved this analytically for all n ≤ 7 (and all admissible values of K). The calculations

are straightforward, though lengthy and are provided in the supplementary material as a

Mathematica notebook with the submission. The key tool useful for proving (3.40) is an

(n − 4)-fold application of the hypergeometric identity (2.11), once for each factor of 3F2

in the original expansion coefficient (3.8). For higher n, the analytics become particularly

lengthy and unwieldy, but we cannot rule out a simple proof may exist. Nevertheless, it

is straightforward to check (3.40) numerically for arbitrary values of n and K to arbitrary

numerical precision; such a check is also included in the same Mathematica notebook. Thus

while (3.40) remains to be established fully analytically for n ≥ 8, in our view the highly

non-trivial numerical checks provide convincing supporting evidence.

4 Discussion

In this paper, we used the holographic principle, particularly its theory-independent kine-

matic aspects, to obtain for the first time explicit expressions for a class of multipoint

conformal blocks. We started by establishing the holographic geodesic diagram representa-

tions of d-dimensional comb channel six-point ((2.6)–(2.9)) and seven-point ((B.1)–(B.4))

scalar conformal blocks involving scalar exchanges. From them we recovered power series

expansions for respectively the four- and five-point blocks via a double-OPE limit. The

explicit low-point examples, along with the holographic dual of the five-point block [55],

14Due to the symmetry of the conjectural conformal block, we need only show (3.40) for 2 ≤ K ≤ bn/2c
where b·c is the floor function; the rest follow after a simple relabelling.
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allowed a generalization to the holographic dual of the (n + 2)-point block for arbitrary

n ((3.1)–(3.4)). Like the low-point examples, it was expressible in terms of a linear com-

bination of (n + 2)-point geodesic diagrams involving two bulk geodesic integrals. Its

double-OPE limit then led us to a power series expansion for a scalar n-point block in (3.7)

(given also in (1.1)–(1.4)), which is the main technical result of this paper and proven in

sections 3.2–3.3. Obtaining the holographic representations of low-point but non-trivial

comb channel blocks served a crucial purpose in this paper. The low-point examples were

simple enough that we needed only existing technology [56] to obtain them, but non-trivial

enough for us to recognize the pattern and guess the form of the holographic dual of an

arbitrary-point block.

There are various avenues for further investigation. In this paper, we restricted our-

selves to studying n-point comb channel scalar conformal blocks involving solely scalar ex-

changes. To be able to set up an alternative n-point conformal bootstrap involving scalar

n-point functions for all n, one must also have in hand higher-point scalar blocks involving

exchange of other non-trivial representations of the Lorentz group. It should be possible to

generate n-point comb channel blocks involving both external and internal spin exchanges

by, for example, operating on the blocks obtained in this paper via weight-shifting oper-

ators [27]. It should also be possible to generate higher-point spinning geodesic diagram

representations using the AdS differential operators [34, 35]. Various recursive techniques,

when supplemented with the results of this paper, may also turn out to be fruitful.

For setting up the n-point conformal bootstrap, one also needs n-point blocks in chan-

nels other than the comb channel. The number of topologically distinct channels, not

related via conformal transformation or simple relabeling, grows quickly with n. Thus it

is likely inefficient to compute multipoint conformal blocks one specific channel at a time.

On the other hand, it is conceivable there exist some version of “Feynman-like” rules for

writing out conformal blocks, akin to Feynman rules for Mellin amplitudes [68–70], which

can be worked out once and for all. We hope the explicit expressions for the n-point comb

channel block we obtained in this paper will help elucidate these Feynman-like rules.

For instance, consider the diagrammatic representation of the comb channel conformal

block in figure 1. It has two internal cubic vertices where exactly two external legs and one

internal leg are incident, and (n− 4) internal cubic vertices at which exactly one external

leg and two internal legs are incident. In this paper we saw that both the holographic

representation as well as power series expansion of the n-point comb channel block have

precisely (n − 4) factors of the hypergeometric 3F2 function in the explicit expansion.15

This is not a coincidence, and is in fact reminiscent of Feynman rules for scalar Mellin

amplitudes. Our work suggests a holographic origin for this. Given a conformal block, as

argued previously [55, 56], a general strategy for extracting its explicit holographic dual

15One might be tempted to assert from (1.1) that there are in fact (n− 2) factors of the hypergeometric

function, but the precise count is (n − 4) since k0 and kn−2 vanish by definition (1.4). This is a simple

generalization of the previously known cases for scalar blocks with scalar exchanges — the four-point block

doesn’t have any 3F2 functions in its double power series expansion [12], while the power series expansion

for the d-dimensional five-point block obtained in ref. [53] (as well as its holographic representation [55])

carries precisely one factor of the hypergeometric 3F2 function.
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(and consequently a power series expansion via a double-OPE limit as discussed in this

paper) is to start with a canonical tree-level AdS diagram.16 The AdS diagram should

have solely cubic couplings and its direct-channel conformal block decomposition should

include the given block. Performing the bulk integrals in the diagram carefully using various

two- and three-propagator AdS identities helps extract an explicit representation for the

block [43, 55, 56]. Indeed for comb channel blocks, the (n−4) factors of 3F2 arise due to the

presence of (n− 4) cubic bulk integrals involving exactly one bulk-to-boundary propagator

and two bulk-to-bulk propagators. This integral was fully worked out in ref. [56] and it

involves precisely the right factor of the hypergeometric function 3F2 with precisely the

right arguments.17 In fact, this general argument should extend to any arbitrary-point

scalar conformal block with scalar exchanges in an arbitrary channel. All the necessary

three-propagator integrals appearing in such a derivation were worked out in ref. [56]. This

should make it tractable to work out the putative Feynman rules for all scalar blocks.

It is interesting to compare our results with the parallel, albeit considerably simpler

story in the framework of p-adic AdS/CFT, where the conformal group is PGL(2,Qpd) [71,

72].18 Due to the lack of descendant operators in p-adic CFTs [74], the conformal blocks

are simply scaling blocks. Nevertheless, analogous to the real conformal blocks, the p-

adic blocks admit holographic duals, written as geodesic bulk diagrams on the Bruhat-Tits

tree [48, 55, 56]. In fact, all results presented in this paper also admit a p-adic counterpart

— various recent accounts of comparison and translation between objects in the usual (real)

and p-adic holographic settings can be found in refs. [48, 55, 56, 71, 72, 75–92]. Essentially,

to recover the p-adic result, one can truncate all power series expansions featured in this

paper to their respective first terms, since the infinite multi-fold series expansions in real

CFTs sum up descendant contributions which do not exist in p-adic CFTs.19 Conversely, it

is practical to work out holographic duals of blocks in the simpler p-adic setting first. This

is because the conformal dimension dependence of propagators appearing in the associated

p-adic geodesic diagrams is identical to that for geodesic diagrams in real CFTs (more

precisely, the “primary contribution” is identical). So the simpler p-adic technology can

be used to figure out in advance the expected primary contribution to conformal blocks in

a real CFT; the full block, which sums up also the descendant contributions, can then in

principle be determined from conformal invariance.

Finally, a potential practical concern about the power series expansion (1.1) could

be that it is not rapidly convergent for operator insertions in the “OPE regime” of the

comb channel, i.e. for cross-ratios ui � 1 and wr;s ≈ 1 defined in (1.6) (for all allowed

values of the subscripts). However, one can remedy this slow convergence by a simple

transformation which re-expresses the series expansion in powers of wr;s as an expansion

16The canonical choice for the AdS diagram for extracting the six-point comb channel block was provided

in (2.4).
17The remaining two bulk integrals involving integration over a product of precisely two bulk-to-boundary

propagators and one bulk-to-bulk propagator contribute simply factors of Gamma functions or Pochhammer

symbols [56].
18Here Qpd is the unique unramified degree d field extension of the p-adic numbers Qp (see e.g. the

book [73]).
19For example, the holographic dual of the comb channel p-adic block is given by (3.1)–(3.2) except with

all integral parameters being summed over set to zero.
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in powers of (1 − wr;s). This is straightforward to work out, though increasingly tedious

as n grows. More precisely, to transform (1.1) to a more efficient and rapidly convergent

power series expansion for any fixed n, the following identity is useful (see e.g. footnote 8):

∞∑
j=0

(−w)j

j!
(a1)b1+j(a2)b2+j(a3)b3−j

=

∞∑
j=0

(−1)b3wj

j!

(a1)b1+j(a2)b2+j

(1− a3)−b3+j

=
(−1)b1+b2Γ(1− a3)Γ (1− (a1 + a2 + a3))

Γ (1− (a1 + a3 + b1 + b3)) Γ (1− (a2 + a3 + b2 + b3))

×
∞∑
j=0

(1− w)j

j!

(a1)b1+j(a2)b2+j

(a1 + a2 + a3)b1+b2+b3+j

(4.1)

for integers b1, b2, b3 and the parameter space where the power series in w and (1 − w)

are simultaneously convergent; we analytically continue to extend the result outside this

convergent regime.

For the four-, five-, six-, and seven-point blocks, we can explicitly check that a repeated

application of this identity leads to the following alternate representation (for n = 4, 5, 6, 7)

Wn = W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∞∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉=0

[(
n−3∏
i=1

ukii
ki!

)( ∏
2≤r<s≤n−1

(1− wr;s)j〈r|s〉
j〈r|s〉!

)

×

(
n−3∏
t=0

(
1−∆(t+1)δt−1,δt

)
kt

(
1−∆(t+2)δt+1,δt

)
kt

(∆δt − d/2 + 1)kt (∆δt)2kt+
∑

2≤r<t+2≤s≤n−1 j〈r|s〉

×
(
∆(t+2)δt,δt+1

)
kt,t+1+

∑
2≤r<t+2 j〈r|t+2〉

(
∆(t+2)δt+1,δt

)
kt+1,t+

∑
t+2<s≤n−1 j〈t+2|s〉

×
(
∆δtδt+1,(t+2)

)
kt(t+1),+

∑
2≤r<t+2<s≤n−1 j〈r|s〉

× 3F2

[{
−kt,−kt+1,∆δtδt+1(t+2),−

d

2

}
;
{

∆(t+2)δt+1,δt − kt,∆(t+2)δt,δt+1
−kt+1

}
; 1

])]
.

(4.2)

Recently, a similar power series expansion was obtained for the same five-point block in

general spacetime dimensions [53]. There, a different set of conformal cross-ratios were

used. We expect it to be possible to establish analytically the equality between the result

of ref. [53] and (4.2) for n = 5, but we have not found any simple transformations which

achieve this. However, we have verified numerically that the power series expansion (4.2)

matches the one in ref. [53] to desired numerical precision in the mutual regime of con-

vergence of the two series expansions, as expected. While we have not worked out the

alternate representation for general n, we conjecture this to also hold for all n ≥ 8.
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A Obtaining the six-point holographic dual

In this appendix we present the main computational steps for “deriving” the holographic

dual of the six-point conformal block described schematically in section 2.1 below equa-

tion (2.5); see also refs. [55, 56] where the same systematic procedure is explained and

several examples worked out in detail. Strictly speaking this is not a true derivation, but a

heuristic method to obtain a reasonable candidate for the holographic dual of the conformal

block, which can then be checked against the conformal Casimir equations [55].

As described near (2.5), the following bulk diagram

A ≡

O1

O2

O3 O4

O5

O6

∆δ1

∆δ2

∆δ3 (A.1)

admits a conformal block decomposition in the direct channel such that the term with pure

single-trace exchanges is precisely the conformal block we are after, up to a product of four

OPE coefficients. In this section we describe how to extract this term. We first recast A

into a form involving two geodesic integrals with a double-application of a two-propagator

identity which replaces a product of two bulk-to-boundary propagators with a geodesic

integral [43], K̂∆1K̂∆2 ∝
∑

M

∫
γ K̂∆1K̂∆2Ĝ∆1+∆2+2M where Ĝ∆, K̂∆ are respectively the

unnormalized bulk-to-bulk and bulk-to-boundary propagators (see figure 2 for more details

on propagators).20 Using this, we get

A = 4
∞∑

ML,MR=0

a∆1;∆2

ML
a∆5;∆6

MR

O1

O2

O3 O4

O5

O6

∆δ1

∆δ2

∆δ3

∆L ∆R

, (A.2)

20Ref. [56, section 3.1] gives a succinct one-page review of all two-propagator identities we will employ in

this section.
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where

∆L ≡ ∆1 + ∆2 + 2ML ∆R ≡ ∆5 + ∆6 + 2MR , (A.3)

and

a∆1;∆2

M ≡ 1

B(∆1 +M,∆2 +M)

(−1)M

M !

(∆1)M (∆2)M

(∆1 + ∆2 +M − d
2)M

, (A.4)

where B(s, t) is the usual Euler Beta function. The diagrammatic notation in (A.2) is

explained in figure 2. (Note that we did not differentiate between propagators using the

color-codes of figure 2 — it should be obvious which ones are bulk-to-bulk propagators

and which ones are bulk-to-boundary propagators in (A.2).) We can now easily evaluate

all “two-point” bulk integrals over a product of two bulk-to-bulk propagators. For this we

utilize a two-propagator identity which replaces bulk integrals with a linear combination of

unintegrated bulk-to-bulk propagators [43] (see also ref. [56, section 3.1]),
∫

AdS Ĝ∆aĜ∆b
∝

(Ĝ∆a − Ĝ∆b
), which leads to

A = 4
∞∑

ML,MR=0

a∆1;∆2

ML
a∆5;∆6

MR

(m2
∆L
−m2

∆δ1
)(−N∆L

)(m2
∆δ3
−m2

∆R
)N∆R

O1

O2

O3 O4

O5

O6

∆δ1

∆δ2

∆δ3

+ (3 more terms) , (A.5)

where N∆ ≡ −π−d/2Γ(∆)
(2∆−d)Γ(∆−d/2) . The four terms in (A.5) (three of which have been suppressed)

originate from replacing the two
∫

AdS ĜĜ bulk integrals over a product of bulk-to-bulk

propagators with a linear combination of bulk-to-bulk propagators ∝ (Ĝ − Ĝ) of scalar

fields of appropriate masses. The three suppressed terms correspond to the exchange of

double-trace operators in the dual CFT picture and thus play no role in our calculation

since we are interested in extracting the conformal block corresponding to the exchange of

single-trace operators [55, 56]. From here on, we will drop these terms.

The ML,MR sums in the first term of (A.5) can be evaluated analytically [56, eq.

(4.12)] to give

A ⊃ 4
C∆1∆2∆δ1

C∆5∆6∆δ3

B(∆δ11,2,∆δ12,1)B(∆δ35,6,∆δ36,5)

O1

O2

O3 O4

O5

O6

∆δ1

∆δ2

∆δ3 , (A.6)

where we are using the symbol ⊃ to remind the reader we have dropped the three terms

in (A.5).
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Next, we employ the split representation [93] on the bulk-to-bulk propagator labelled

with the conformal dimension ∆δ2 ,

Ĝ∆δ2
(z1, z2) =

∫
y∈∂AdS

∫ i∞

−i∞

dν

2πi
ρ∆δ2

(ν)K̂ d
2

+ν(y, z1)K̂ d
2
−ν(y, z2) (A.7)

where

ρ∆ ≡
−π−d

N∆

1

m2
∆ −m2

d
2

+ν

Γ(d2 + ν)Γ(d2 − ν)

4Γ(ν)Γ(−ν)
, (A.8)

with an appropriate choice of the contour of integration [93]. Thus pictorially, we may

write (A.6) as

A ⊃ 4
C∆1∆2∆δ1

C∆5∆6∆δ3

B(∆δ11,2,∆δ12,1)B(∆δ35,6,∆δ36,5)

×
∫ i∞

−i∞

dν

2πi
ρ∆δ2

(ν)

∫
y∈∂AdS

O1

O2

O3 O4

O5

O6

y

∆δ1 ∆δ3

d
2

+ ν d
2
− ν

.

(A.9)

At this point we recognize the remaining two full AdS integrals as three-propagator

integrals of the type
∫

AdS K̂K̂Ĝ which can be evaluated explicitly [56, section 3.2.1]. Upon

evaluation, such three-propagator integrals can be expressed as products over unintegrated

propagators. Like in the case of the
∫

AdS ĜĜ identity, the precise form is given as a linear

combination of two terms, so that the double-integral in (A.9) leads to four terms. However

once again, we are only interested in one of these four terms, the one which comes with the

right OPE coefficients as overall factors [55]. We will justify this choice shortly. Focusing

on the right term (i.e. dropping the other three), we obtain

A ⊃ 4
C∆1∆2∆δ1

C∆5∆6∆δ3

B(∆δ11,2,∆δ12,1)B(∆δ35,6,∆δ36,5)

∫ i∞

−i∞

dν

2πi
ρ∆δ2

(ν) C∆δ1
∆3( d

2
+ν)C∆δ3

∆4( d
2
−ν)

×
∞∑

k1,k3=0

c
∆3;∆δ1

; d
2

+ν

k1
c

∆4;∆δ3
; d
2
−ν

k3

∫
y∈∂AdS

O1

O2

x3 x4

O5

O6

y

h1 h2

h3 h4

h̃3 h̃4

(A.10)
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where

c∆1;∆a;∆2

k ≡ 1

k!

(∆a1,2)k(∆a2,1)k

(∆a − d
2 + 1)k

, (A.11)

and we have defined the dimensions

h1 ≡
∆δ1 + d

2 + ν −∆3

2
+ k1 h2 ≡

∆δ3 + d
2 − ν −∆4

2
+ k3

h3 ≡
∆3 + d

2 + ν −∆δ1

2
− k1 h4 ≡

∆4 + d
2 − ν −∆δ3

2
− k3

h̃3 ≡
∆δ1 + ∆3 − d

2 − ν
2

+ k1 h̃4 ≡
∆δ3 + ∆4 − d

2 + ν

2
+ k3.

(A.12)

We would now like to justify why we chose to focus on this term. Note that the ν-dependent

integrand in (A.10) has simple poles at ν = ±(d2 − ∆δ2). The residue at either of these

leads immediately to an overall factor of OPE coefficients exactly as prescribed in (2.5).

Thus for the direct-channel conformal block, we need only focus on the term in (A.10),

and in fact only on the residue at either of the two poles ν = ±(d2 −∆δ2). The choice of

the correct pole is dictated by the position-dependent expression obtained after doing the

y-boundary integral in (A.10), to which we now turn.

The boundary integral in (A.10) is a variant of the usual four-point conformal integral,

which in embedding space takes the form

J ≡
∫
Y 2=0

dY
1

(−2X3 · Y )h3

1

(−2X4 · Y )h4

1

(−2W1 · Y )h1

1

(−2W2 · Y )h2
(A.13)

with h1 +h2 +h3 +h4 = d, where the embedding space coordinates Y,X3, X4 ∈ Rd+1,1 are

restricted to the null cone Y · Y = Y 2 = X2
3 = X2

4 = 0 whereas W1,W2 ∈ Rd+1,1 lie on

the hyperboloid W 2
1 = W 2

2 = −1. This integral can be worked out by applying Schwinger

parametrization and subsequently turning it into a Mellin-Barnes integral. Since these

techniques are not new,21 in the interest of keeping the appendix to a reasonable length,

we refrain from presenting all the standard intermediate steps and refer the reader to

the references in footnote 21. These computations lead to the following combination of

Mellin-Barnes integrals

J =
πd/2∏4
i=1 Γ(hi)

∫ ε+i∞

ε−i∞
ε<0

dsdt

(2πi)2

Γ(−s)Γ(−t)
(−2W1 ·X4)−s(−2W2 ·X4)−t

Γ(h4 + s+ t)

(−2X3 ·X4)h4+s+t

×

[ ∞∑
m1,m2=0

(−1)m1+m2

m1!m2!

Γ(−s+ h23,14 −m1 +m2)Γ(−t+ h13,24 +m1 −m2)

(−2W2 ·X3)−s+h23,14−m1+m2(−2W1 ·X3)−t+h13,24+m1−m2

× Γ(s+ t+ h124,3 +m1 +m2)

(−2W1 ·W2)s+t+h124,3+m1+m2

21For example, the same techniques are detailed in ref. [56, appendix B.1] for three-point variants of the

four-point integral (A.13) (obtained by, for example, setting one of h1, h2, h3 or h4 to zero while maintaining

the sum to be d). A related four-point conformal integral (for X3, X4,W1,W2 in (A.13) all on the null cone)

has also been previously worked out using the same methods [53, appendix B.1].
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+

( ∞∑
m1,m2=0

(−1)m1+m2

m1!m2!

Γ(−s− t+ h3,4 +m2)Γ(s− h23,14 −m1 −m2)

(−2W1 ·X3)−s−t+h3,4+m1(−2W2 ·X3)−m1

× Γ(t+ h2 +m1 + 2m2)

(−2W1 ·W2)t+h2+m1+2m2
+ (1↔ 2)

)]
, (A.14)

where we are using the shorthand (1.2) for hij,k and the term (1↔ 2) means the same as the

previous one except with the subscript switch (1 ↔ 2) for all variables (Wi, hi,mi) in the

summand. The origin of the three terms in (A.14), each of which contains a doubly-infinite

sum, is a two-fold Mellin-Barnes integral precisely of the form worked out in ref. [56,

eq. (B.40)] which makes an appearance in an intermediate step. For present purposes,

we are only interested in the first term, since that is the one which will correspond to the

exchange of single-trace operators in the intermediate channels of the conformal block. This

determination is made by comparing the exponents of the position-dependent factors in

the integrand with the expected dependence obtained from the analogous p-adic conformal

block [56]. Thus we drop the second and third terms in (A.14).

Looking forward, the main remaining task is to evaluate the s, t, ν contour integrals

in (A.14) and (A.10) and obtain a candidate holographic representation for the conformal

block. In practice, it suffices to obtain an expression which is proportional to the holo-

graphic representation up to some overall constants, which can then be fixed by a boundary

condition such as an OPE limit. To do this, we first close the s-plane contour to the left

and pick up appropriate poles, followed by closing the t-plane contour to the right. We

need only focus on the residues at the following poles: {s = −t − h4 − m3, t = m4} for

all m3,m4 ∈ Z≥0, as this choice suffices for the present purposes. Finally, we evaluate the

residue in the ν-plane at ν = d/2 −∆δ2 , which leads to a candidate conformal block, up

to some possible proportionality constant to be determined. Carrying out these steps, we

end up with

A ⊃ 4
C∆1∆2∆δ1

C∆5∆6∆δ3
C∆δ1

∆3∆δ2
C∆δ3

∆4∆δ2

B(∆δ11,2,∆δ12,1)B(∆δ35,6,∆δ36,5)

×
∞∑

m1,m2,m3,m4,
k1,k3=0

(−1)m1+m2+m3+m4

k1!k3!m1!m2!m3!m4!

(−1)m1−m2−m4

4

×
B(∆δ2 ,∆δ1δ3,34)

B(∆δ1δ2,3,∆δ3δ2,4)

(∆3δ2,δ1)−k1−m1,234(∆4δ2,δ3)−k3+m34,(∆δ1δ3,34)k13,+m12,3

(∆δ1 − d/2 + 1)k1(∆δ2 − d/2 + 1)−m1,24(∆δ3 − d/2 + 1)k3

×
(∆4δ3,δ2)k3(∆3δ2δ1, − d

2)k1

(∆4δ2,δ3)−k3(∆3,δ2δ1 + d
2)−k1

O1

O2

x3

x4

O5

O6

∆3δ1,δ2 + k1 +m1,24 ∆3δ2,δ1 − k1 −m1,234

∆δ1δ3,34 +k13,+m12,3

∆4δ2,δ3 − k3 +m34, ∆4δ3,δ2 + k3 −m4

−m3

, (A.15)
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where we are using the shorthand (1.3) for mab,c, kab,c and are now fully implementing the

diagrammatic notation described in figure 2 (including the color-coding).

It turns out, two of the six infinite sums above can be re-expressed in closed-form. To

see this, we first need to do the following series of change of variables: m4 → m4 − m2,

followed by m1 → m1 − k1 and m2 → m2 − k3. The lower limits of the new variables

can be shifted back to 0 with impunity. This leaves us with two coordinate-independent

hypergeometric sums over k1 and k3, which readily lead to the appearance of two mi-

dependent factors of the generalized hypergeometric function 3F2.22 At this point, com-

parison with (2.5)–(2.6) leads to a candidate holographic representation for the block. In

fact it can be checked that it satisfies all appropriate conformal Casimir equations. To prove

this is indeed a conformal block, one also needs to make sure the OPE limits are satisfied.

Indeed it turns out to be the case, up to some overall position-independent normalization.

The easiest way to fix the overall normalization is by requiring that the object have the

right double-OPE limit to the well-known power-series expansion for the four-point block.

See section 2.2. This leads to the introduction of an overall factor of

4B(∆δ1δ2,3,∆δ3δ2,4)B(1−∆δ1δ2,3, 1−∆δ3δ2,4)

B(∆δ2 ,∆δ1δ3,34)B(1−∆δ2 , 1−∆δ1δ3,34)
=

4B(∆δ1δ2,3,∆δ3δ2,4)

B(∆δ2 ,∆δ1δ3,34)
λ6 (A.16)

on the r.h.s. of (A.15), where λ6 is defined in (2.9). The object thus obtained is the

holographic dual of the six-point conformal block, and is given in (2.7)-eqrefc6Def.

B Five- and seven-point examples

In this appendix we briefly discuss the holographic representation of the seven-point comb

channel block and its double-OPE limit, which leads to a power series expansion for the

five-point block. The holographic representations (2.2) and (2.7) for the five- and six-point

cases inform the following conjecture for the seven-point block (which is consistent with

the general conjecture (3.1)–(3.4)):

W∆1,...,∆7

∆δ1
; ∆δ2

; ∆δ3
; ∆δ4

(xi) =

O1

O2 O3 O4 O5 O6

O7Oδ1 Oδ2 Oδ3 Oδ4

=
4

B(∆δ11,2,∆δ12,1)B(∆δ46,7,∆δ47,6)
W∆1,...,∆7

∆δ1
; ∆δ2

; ∆δ3
; ∆δ4

(xi) ,

(B.1)

22In fact at this point one can use a functional identity for the hypergeometric function [94] to recast the

summand into a form very familiar from the case of the five-point conformal block [55].
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where the linear combination of seven-point geodesic bulk diagrams W is given by

W∆1,...,∆7

∆δ1
; ∆δ2

; ∆δ3
; ∆δ4

(xi) =

∞∑
k1,k2,k3,k4,
j1,j2,j3=0

c
∆δ1

,∆δ2
,∆δ3

,∆δ4
; ∆3,∆4,∆5

k1, k2, k3, k4; j1, j2, j3

×

O1

O2

x3

x4

x5

O6

O7

∆3δ1,δ2 + k1,2
∆

3δ
2 ,δ

1

+k
2,1 +

j
13,

∆δ1δ4,345 + k14, − j123,

∆4δ2,δ3 + k2,3 + j1 ∆4δ3,δ2 + k3,2 + j2

∆5δ4,δ3 + k4,3

∆5δ
3
,δ4

+k
3,

4
+
j23
,

−j1 −j2

−j3

,

(B.2)

with the coefficients

c
∆δ1

,∆δ2
,∆δ3

,∆δ4
; ∆3,∆4,∆5

k1, k2, k3, k4; j1, j2, j3

≡λ7
(−1)k1+k4+j1+j2+j3

k1!k2!k3!k4!j1!j2!j3!

(1−∆3δ2,δ1)k1
(1−∆3δ1,δ2)k2

(∆δ1 − d/2 + 1)k1

×
(1−∆4δ3,δ2)k2

(1−∆4δ2,δ3)k3
(1−∆5δ4,δ3)k3

(1−∆5δ3,δ4)k4

(∆δ2 − d/2 + 1)k2
(∆δ3 − d/2 + 1)k3

(∆δ4 − d/2 + 1)k4

× (∆3δ1,δ2)k1,2
(∆3δ2,δ1)k2,1+j13,

(∆4δ2,δ3)k2,3+j1
(∆4δ3,δ2)k3,2+j2

× (∆5δ3,δ4)k3,4+j23,
(∆5δ4,δ3)k4,3

(∆δ1δ4,345)k14,−j123,

× 3F2 [{−k1,−k2,∆δ1δ23, − d/2}; {∆3δ2,δ1 − k1,∆3δ1,δ2 − k2}; 1]

× 3F2 [{−k2,−k3,∆δ2δ34, − d/2}; {∆4δ3,δ2 − k2,∆4δ2,δ3 − k3}; 1]

× 3F2 [{−k3,−k4,∆δ3δ45, − d/2}; {∆5δ4,δ3 − k3,∆5δ3,δ4 − k4}; 1] ,

(B.3)

where

λ7 ≡
Γ(1−∆δ1δ2,3)Γ(1−∆δ2δ3,4)Γ(1−∆δ3δ4,5)

Γ(1−∆δ1δ4,345)Γ(1−∆δ2)Γ(1−∆δ3)
. (B.4)

Here we are using the subscript convention (1.3) for both k and j integral parameters. In

drawing the geodesic diagram above, we have eschewed the color-coding scheme prescribed

in figure 2 to help guide the eye. It should be clear from the diagram which lines represent

a bulk-to-boundary propagator, and which lines represent purely boundary contractions

of the form (x2
ij)
−∆. The factor of chordal distance continues to be shown as a dotted

black line.
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To prove this conjecture, we must show that (B.1) satisfies the conformal Casimir

equations (1.7) for n = 7 and K = 2, 3, 4, 5. Due to the symmetry of the object, we need

only check the cases K = 2, 3; the remaining two cases follow trivially after relabelling.

Further, we must show the OPE limit (1.8). As remarked in section 2.1, the conformal

Casimir check is in fact straightforward though lengthy to work out, but the procedure

is identical to the ones described in refs. [55, 56] in the context of five- and six-point

blocks. No new ingredients are needed, except for a triple-application of the hypergeometric

identity (2.11), once for each factor of the 3F2 function in (B.3). Similarly, the object

obtained in the OPE limit can be shown to be an alternate holographic representation of

the six-point block involving a single geodesic integral, via a similar proof by Casimir. So to

keep the paper to a reasonable length, we will refrain from providing the somewhat lengthy

details here. In lieu of this, we provide a conformal Casimir check of the series expansion

of the seven-point block in section 3. The OPE limits of the six-point block obtained above

themselves lead to two different representations of the five-point block — one corresponding

to a holographic representation involving a single geodesic integral similar to (2.14), with

the other more interesting limit producing a power series expansion for the five-point block

as discussed next.

B.1 Double-OPE limit and the five-point block

Consider the following double-OPE limit of the seven-point block,

W∆1,...,∆7

∆δ1
; ∆δ2

; ∆δ3
; ∆δ4

(x1, . . . , x7)

x2→x1
x7→x6−→ (x2

12)∆δ1,12(x2
67)∆δ4,67

∞∑
k2,k3,

j1,j2,j3=0

c
∆δ1

,∆δ2
,∆δ3

,∆δ4
; ∆3,∆4,∆5

0, k2, k3, 0; j1, j2, j3

× x1

x3

x4

x5

x6

∆3δ1,δ2 − k2

∆
3δ

2 ,δ
1

+k
2 +

j13,

∆δ1δ4,345 − j123,

∆4δ2,δ3 + k2,3 + j1 ∆4δ3,δ2 + k3,2 + j2

∆5δ4,δ3 − k3∆5δ3
,δ4

+k
3

+
j23,

−j1 −j2

−j3

≡ (x2
12)∆δ1,12(x2

67)∆δ4,67 Ṽ .

(B.5)

The claim is that Ṽ is a (power series expansion of the) five-point block. Explicitly, we

may write it as

Ṽ = W
∆δ1

,∆3,∆4,∆5,∆δ4
0 (x1, x3, x4, x5, x6)

× u
∆δ2

2
1 u

∆δ3
2

2

∞∑
k2,k3,

j1,j2,j3=0

c
∆δ1

,∆δ2
,∆δ3

,∆δ4
; ∆3,∆4,∆5

0, k2, k3, 0; j1, j2, j3
uk2

1 u
k3
2 v

j1
1 v

j2
2 w

j3 , (B.6)
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where the leg factor W
∆δ1

,∆3,∆4,∆5,∆δ4
0 (x1, x3, x4, x5, x6) was defined in (1.5),23 and we have

defined the cross-ratios

u1 ≡
x2

13x
2
46

x2
14x

2
36

v1 ≡
x2

16x
2
34

x2
14x

2
36

u2 ≡
x2

14x
2
56

x2
15x

2
46

v2 ≡
x2

16x
2
45

x2
15x

2
46

w ≡ x2
16x

2
35

x2
15x

2
36

. (B.7)

Writing out the coefficients explicitly, we get

c
∆δ1

,∆δ2
,∆δ3

,∆δ4
; ∆3,∆4,∆5

0, k2, k3, 0; j1, j2, j3

=λ7
(−1)k2+k3+j1+j2+j3

k2!k3!j1!j2!j3!

(1−∆4δ3,δ2)k2
(1−∆4δ2,δ3)k3

(∆δ2 − d/2 + 1)k2
(∆δ3 − d/2 + 1)k3

× (∆3δ2,δ1)k2+j13,
(∆4δ2,δ3)k2,3+j1

(∆4δ3,δ2)k3,2+j2

× (∆5δ3,δ4)k3+j23,
(∆δ1δ4,345)−j123,

× 3F2 [{−k2,−k3,∆δ2δ34, − d/2}; {∆4δ3,δ2 − k2,∆4δ2,δ3 − k3}; 1] ,

(B.8)

where λ7 was given in (B.4). It can be checked that this is just a rewriting of (1.1) for

n = 5 in different variables. The proof that this is indeed a five-point block is given in

section 3.

C Further technical details

C.1 Proof of (3.15)

In this section we will prove (3.15). Consider first the j〈2|n−1〉 sum on the right hand side.

We can use the following identity to evaluate this sum:

∞∑
k=0

(−1)k

k!
(a)k(b)`1+k(c)−`2−k =

(−1)`2Γ(1− c)Γ(b+ `1)Γ(−a− b− c− `1 + `2 + 1)

Γ(b)Γ(−a− c+ `2 + 1)Γ(−b− c− `1 + `2 + 1)
,

(C.1)

which holds for integers `1, `2, and we assume convergence of the sum. Performing the sum

using the identity above, the right hand side of (3.15) becomes

r.h.s. =
Γ
(
1−∆δn−3n,(n−1)

)
Γ
(
1−∆δ1δn−3,3...(n−2)

)
Γ
(
1−∆δ1n,3...(n−1)

)
Γ
(
1−∆δn−3

) ∞∑
j〈3|n−1〉,...,
j〈n−2|n−1〉=0

(
n−2∏
`=3

(−1)j〈`|n−1〉

j〈`|n−1〉!

)

×

n−4∏
t=1

(
∆(t+2)δt+1,δt + kt+1,t +

n−2∑
s=t+3

j〈t+2|s〉

)
j〈t+2|n−1〉


×
(
∆(n−1)δn−3,n

)∑n−2
r=3 j〈r|n−1〉

(
∆δ1n,3...(n−1) + k1

)
−

∑
3≤r<s≤n−1 j〈r|s〉(

∆δ1δn−3,3...(n−2) + k1

)
−

∑
3≤r<s≤n−2 j〈r|s〉

, (C.2)

23An alternate way to write the leg factor is as follows:

W
∆δ1 ,∆3,∆4,∆5,∆δ4
0 (x1, x3, x4, x5, x6) =

1

(x2
13)∆δ13,(x2

46)
∆4
2 (x2

56)∆δ45,

(
x2

16

x2
36

)∆3,δ1
(
x2

16

x2
14

)∆4
2
(
x2

15

x2
16

)∆δ4,5

.

– 38 –



J
H
E
P
0
5
(
2
0
2
0
)
1
2
0

where δ0 = ∆1, k0 = 0 and kn−3 = 0 as before. Notice that (C.2) is of precisely the same

form as the original sum on the right hand side of (3.15), except with one fewer sum. Thus

one can iteratively apply (C.1) to systematically reduce r.h.s. further and further. For

instance, performing the j〈3|n−1〉 sum next yields

r.h.s. =
Γ
(
1−∆δn−3n,(n−1)

)
Γ
(
1−∆δ2δn−3,4...(n−2)

)
Γ
(
1−∆δ2n,4...(n−1)

)
Γ
(
1−∆δn−3

) ∞∑
j〈4|n−1〉,...,
j〈n−2|n−1〉=0

(
n−2∏
`=4

(−1)j〈`|n−1〉

j〈`|n−1〉!

)

×

n−4∏
t=2

(
∆(t+2)δt+1,δt + kt+1,t +

n−2∑
s=t+3

j〈t+2|s〉

)
j〈t+2|n−1〉

 (C.3)

×
(
∆(n−1)δn−3,n

)∑n−2
r=4 j〈r|n−1〉

(
∆δ2n,4...(n−1) + k2

)
−

∑
4≤r<s≤n−1 j〈r|s〉(

∆δ2δn−3,4...(n−2) + k2

)
−

∑
4≤r<s≤n−2 j〈r|s〉

,

where the pattern should be clear by now. Reducing r.h.s. iteratively by performing the

j〈4|n−1〉, j〈5|n−1〉, . . . sums in this order, it is straightforward to check that r.h.s. reduces to

unity.

C.2 Proof of (3.32)

Define,

J ≡
∑

1≤r<s≤K

K∑
au,av=1

au,av /∈{r,s},au 6=av

∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

. (C.4)

We will show that J = 0, which proves (3.32). First expand J as

J =
∑

1≤r<s≤K

 ∑
1≤au<av≤K
au,av /∈{r,s}

+
∑

1≤av<au≤K
au,av /∈{r,s}

∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

=

 ∑
1≤r<s≤K

+
∑

1≤s<r≤K

 ∑
1≤au<av≤K
au,av /∈{r,s}

∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

= (J1 + J2 + J3 + J4 + J5 + J6) + (J7 + J8 + J9 + J10 + J11 + J12) ,

(C.5)

where we have broken the four-fold sums into the following constituent pieces:

J1 ≡
∑

1≤au<av<r<s≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J2 ≡
∑

1≤au<r<av<s≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J3 ≡
∑

1≤au<r<s<av≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav
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J4 ≡
∑

1≤r<au<av<s≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J5 ≡
∑

1≤r<au<s<av≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J6 ≡
∑

1≤r<s<au<av≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

, (C.6)

and

J7 ≡
∑

1≤au<av<s<r≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J8 ≡
∑

1≤au<s<av<r≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J9 ≡
∑

1≤au<s<r<av≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J10 ≡
∑

1≤s<au<av<r≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J11 ≡
∑

1≤s<au<r<av≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

J12 ≡
∑

1≤s<r<au<av≤K
∆〈au|s〉∆〈av |r〉

(
x2
rsx

2
auav − x

2
savx

2
rau

)
x2
saux

2
rav

. (C.7)

Now, observe that switching the dummy variables r ↔ av in J2 turns it manifestly into

−J1. Likewise, doing the dummy variable replacement s ↔ au in J6 turns it precisely to

−J5, and the switches r ↔ au, s ↔ av turn J4 into J3. Similarly, switching s ↔ au turns

J10 manifestly into −J8, and J11 into −J9. Finally, switching s ↔ au, r ↔ av turns J12

into J7. Thus, we conclude J = 2J3 + 2J7. However, making the dummy variable switch

r ↔ av turns J7 into −J3. Thus, J vanishes identically.

C.3 Proof of (3.37)

In this subsection we will show the details of the calculation leading from (3.35)–(3.36)

to (3.37). After integer shifting the integral parameters to get all terms in (3.35) to have

uniform position dependence as explained below (3.36), we re-express (3.35) as

l.h.s. =W
(n)
0 (xi)

(
n−3∏
i=1

u
∆δi

2
i

)

×
∑

k1,...,kn−3,
j〈2|3〉, j〈2|4〉, ..., j〈n−2|n−1〉

(
n−3∏
i=1

ukii

)( ∏
2≤r<s≤n−1

w
j〈r|s〉
r;s

)[
c(·)

K∑
i=1

m2
∆i
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− 2 c(·)
∑

1≤r<s≤K

(
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈r|a`〉 + ∆〈s|a`〉)−
n−2∑
`=1

∆〈r|a`〉∆〈s|a`〉

)
− 2

∑
1≤r<s≤K

K+1≤au<av≤n−1

(
c̃r,s;au,av(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|au〉+1,j〈r|av〉+1)

− c̃r,s;au,av(j〈s|av〉−1,j〈r|au〉−1,j〈s|au〉+1,j〈r|av〉+1)

)
− 2

∑
1≤r<s≤K

K+1≤av<au≤n−1

(
c̃r,s;au,av(ks−1−1,ks−1,...,kav−2−1,j〈r|s〉−1,j〈av |au〉−1,j〈s|au〉+1,j〈r|av〉+1)

− c̃r,s;au,av(j〈s|av〉−1,j〈r|au〉−1,j〈s|au〉+1,j〈r|av〉+1)

)
− 2

∑
1≤r<s≤K

K+1≤au≤n−1

(
c̃r,s;au,n(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈s|au〉+1) − c̃

r,s;au,n
(j〈r|au〉−1,j〈s|au〉+1)

)

− 2
∑

1≤r<s≤K
K+1≤av≤n−1

(
c̃r,s;n,av(ks−1−1,ks−1,...,kav−2−1,j〈r|s〉−1,j〈r|av〉+1) − c̃

r,s;n,av
(j〈s|av〉−1,j〈r|av〉+1)

)]
,

(C.8)

where we are utilizing the notation (3.38)–(3.39).

Thus for the above expression to equal (3.36) for all choices of boundary insertion

points, each individual term in the sum must equal the conformal Casimir eigenvalue,

times the coefficient (3.8). That is, the proof of (3.37) boils down to demonstrating the

following non-trivial identity involving the coefficients,

c(·)

[
K∑
i=1

m2
∆i
− 2

∑
1≤r<s≤K

(
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈r|a`〉 + ∆〈s|a`〉)

−
n−2∑
`=1

∆〈r|a`〉∆〈s|a`〉

)
−m2

∆δK−1

]
− 2

∑
1≤r<s≤K

K+1≤au<av≤n−1

(
c̃r,s;au,av(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|au〉+1,j〈r|av〉+1)

− c̃r,s;au,av(j〈s|av〉−1,j〈r|au〉−1,j〈s|au〉+1,j〈r|av〉+1)

+ c̃r,s;av ,au(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|av〉+1,j〈r|au〉+1)

− c̃r,s;av ,au(j〈s|au〉−1,j〈r|av〉−1,j〈s|av〉+1,j〈r|au〉+1)

)
− 2

∑
1≤r<s≤K

K+1≤au≤n−1

(
c̃r,s;au,n(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈s|au〉+1) − c̃

r,s;au,n
(j〈r|au〉−1,j〈s|au〉+1)

+ c̃r,s;n,au(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈r|au〉+1)

− c̃r,s;n,au(j〈s|au〉−1,j〈r|au〉+1)

)
!

= 0 , (C.9)

for 2 ≤ K ≤ n− 2, n ≥ 4 and all parameters ki, j〈·|·〉.
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We can use various symmetry properties of the scaled coefficients c̃ to simplify (C.9).

It is straightforward to check that for 1 ≤ r < s ≤ K and K + 1 ≤ au < av ≤ n− 1,

c̃r,s;au,av(j〈s|av〉−1,j〈r|au〉−1,j〈s|au〉+1,j〈r|av〉+1)

= c̃r,s;av ,au(·)

c̃r,s;av ,au(j〈s|au〉−1,j〈r|av〉−1,j〈s|av〉+1,j〈r|au〉+1)

= c̃r,s;au,av(·)

c̃r,s;au,av(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|au〉+1,j〈r|av〉+1)

= c̃r,s;av ,au(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|av〉+1,j〈r|au〉+1) ,

(C.10)

and for 1 ≤ r < s ≤ K and K + 1 ≤ au ≤ n− 1,

c̃r,s;au,n(j〈r|au〉−1,j〈s|au〉+1) = c̃s,r;au,n(·)

c̃r,s;n,au(j〈s|au〉−1,j〈r|au〉+1) = c̃r,s;au,n(·)

c̃r,s;au,n(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈s|au〉+1) = c̃r,s;n,au(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈r|au〉+1) .

(C.11)

These identities are justified at the end of this section. Using these and the definition (3.38),

we can simplify (C.9) to

c(·)

 K∑
i=1

m2
∆i
−m2

∆δK−1
− 2

∑
1≤r<s≤K

(
m2

∆〈r|s〉
+ ∆〈r|s〉

n−2∑
`=1

(∆〈r|a`〉 + ∆〈s|a`〉)

−
n−2∑
`=1

∆〈r|a`〉∆〈s|a`〉 −
∑

K+1≤au<av≤n

(
∆〈r|au〉∆〈s|av〉 + ∆〈r|av〉∆〈s|au〉

))]

− 4
∑

1≤r<s≤K
K+1≤au<av≤n

c̃r,s;au,av(ks−1−1,ks−1,...,kau−2−1,j〈r|s〉−1,j〈au|av〉−1,j〈s|au〉+1,j〈r|av〉+1)

!
= 0 .

(C.12)

Now, using the explicit expressions for the dimensions, one can further simplify (C.12)

to (3.40). This is straightforward to work out for any given value of n and K (see the

supplementary material for calculational details).

To close this section, let’s return to the as yet unproven symmetry transforma-

tions (C.10)–(C.11). Consider for example, the first identity in (C.11). To prove it, it

is useful to take a closer look at the coefficients (3.8) and the dimensions ∆〈i|j〉 which can

be visually read off of (3.7). Consider the left hand side first, where we need to study

the effect of shifting the integral parameters j〈r|au〉 → j〈r|au〉 − 1, j〈s|au〉 → j〈s|au〉 + 1 in the

scaled coefficient c̃r,s;au,n(·) , for fixed r, s, au satisfying 1 ≤ r < s ≤ K and K+1 ≤ au ≤ n−1.

First assume r ≥ 2 — we will come back to the case r = 1 at the end:

• The factor of
(
∆1n,2...(n−1)

)
−

∑
2≤`1<`2≤n−1 j〈`1|`2〉

in the coefficient (3.8) remains un-

changed since the sum over all j-parameters is invariant under this shift.
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• Under the given shift, among other effects discussed below, the coefficient (3.8) picks

up an overall factor of

j〈r|au〉!

(j〈r|au〉 − 1)!

j〈s|au〉!

(j〈s|au〉 + 1)!
=

j〈r|au〉

j〈s|au〉 + 1
=
−∆〈r|au〉

j〈s|au〉 + 1
,

where we used ∆〈r|au〉 = −j〈r|au〉 for r ≥ 2. Moreover note that the scaled co-

efficient (3.38) comes with additional factors of dimensions ∆〈r|n〉∆〈s|au〉. We will

address the first factor shortly, but the other one can be read off of (3.7) to be,

∆〈s|au〉

∣∣∣j〈r|au〉→j〈r|au〉−1
j〈s|au〉→j〈s|au〉+1

= −j〈s|au〉 − 1 ,

where we have appropriately shifted it as required by the left hand side be-

ing evaluated. This will cancel the factor in the denominator of the previous

displayed equation.

• Looking at the structure of the coefficient (3.8), the integer shifts may potentially

affect certain factors for the choice of the dummy parameter t + 2 = au in (3.8).

However, once again the ±1 shifts cancel among each other leaving the following

factor invariant(
∆auδau−2,δau−1

)
kau−2,au−1+

∑au−1
`=2 j〈`|au〉

∣∣∣j〈r|au〉→j〈r|au〉−1
j〈s|au〉→j〈s|au〉+1

=
(
∆auδau−2,δau−1

)
kau−2,au−1+

∑au−1
`=2 j〈`|au〉

. (C.13)

On the other hand, when t+2 = r or s, upon integer shifting as prescribed, one picks

up extra overall terms. For t+ 2 = r, the following factor, which has been rewritten

more suggestively, transforms as,

Γ(∆〈r|n〉)

Γ(∆rδr−1,δr−2)

∣∣∣∣∣j〈r|au〉→j〈r|au〉−1
j〈s|au〉→j〈s|au〉+1

=
Γ(∆rδr−1,δr−2 + kr−1,r−2 +

∑n−1
`=r+1 j〈r|`〉 − 1)

Γ(∆rδr−1,δr−2)

=
Γ(∆〈r|n〉 − 1)

Γ(∆rδr−1,δr−2)
=

1

∆〈r|n〉 − 1

Γ(∆〈r|n〉)

Γ(∆rδr−1,δr−2)
.

(C.14)

Now recall the extra factor of ∆〈r|n〉 mentioned above, which comes packaged in the

scaled coefficient. Under the given shift,

∆〈r|n〉

∣∣∣j〈r|au〉→j〈r|au〉−1
j〈s|au〉→j〈s|au〉+1

= ∆〈r|n〉 − 1 ,

which precisely cancels the factor in the denominator of (C.14). Likewise for t+2 = s,

the following factor changes as follows:

Γ(∆〈s|n〉)

Γ(∆sδs−1,δs−2)

∣∣∣∣∣j〈r|au〉→j〈r|au〉−1
j〈s|au〉→j〈s|au〉+1

=
Γ(∆sδs−1,δs−2 + ks−1,s−2 +

∑n−1
`=s+1 j〈s|`〉 + 1)

Γ(∆sδs−1,δs−2)

=
Γ(∆〈s|n〉 + 1)

Γ(∆sδs−1,δs−2)
= ∆〈s|n〉

Γ(∆〈s|n〉)

Γ(∆sδs−1,δs−2)
.

(C.15)
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Putting everything together, upon evaluting the left hand side of the first identity

of (C.11), we have recovered the original unshifted coefficient (3.8) times an overall factor

of ∆〈r|au〉∆〈s|n〉. This is precisely the right hand side of the first identity of (C.11).

Returning to the case of r = 1, the integer parameter j〈1|`〉 is undefined, thus one of

the shifts becomes vacuous. Consequently, in contrast with the analysis above for r ≥ 2,

the factor of
(
∆1n,2...(n−1)

)
−

∑
2≤r<s≤n−1 j〈r|s〉

in the coefficient (3.8) is no longer invariant,

but transforms as

(
∆1n,2...(n−1)

)
−

∑
2≤`1<`2≤n−1 j〈`1|`2〉

∣∣∣
j〈s|au〉→j〈s|au〉+1

=

(
∆1n,2...(n−1)

)
−

∑
2≤`1<`2≤n−1 j〈`1|`2〉

∆〈1|n〉 − 1
.

(C.16)

The denominator above is cancelled by the factor of

∆〈1|n〉

∣∣∣
j〈s|au〉→j〈s|au〉+1

= ∆〈1|n〉 − 1 ,

which comes prepackaged with the scaled coefficient on the left hand side of the identity.

The argument for the cancellation of the factor of ∆〈s|au〉 = −j〈s|au〉 − 1 is unaffected

(the overall minus sign gets cancelled due to the factor of (−1)j〈s|au〉 in (3.8)), and so is

the argument for the appearance of an overall factor of ∆〈s|n〉 since these do not depend

on the integer shift rendered vacuous when r = 1. Finally, the following factor in the

coefficient (3.8) for t+ 2 = au, which previously was invariant, instead transforms as(
∆auδau−2,δau−1

)
kau−2,au−1+

∑au−1
`=2 j〈`|au〉

∣∣∣
j〈s|au〉→j〈s|au〉+1

=
(
∆auδau−2,δau−1

)
kau−2,au−1+

∑au−1
`=2 j〈`|au〉

∆〈1|au〉 . (C.17)

Combining all these observations, once again, the left hand side evaluates to the unshifted

coefficient (3.8) times a factor of ∆〈1|au〉∆〈s|n〉, which is precisely the expected right hand

side for r = 1.

The other identities in (C.10)–(C.11) can be proven via very similar analyses. In

particular, the proofs for the third identity in both (C.10) and (C.11) also go through

without further difficulty, since the ki integer-shifts are uniform across both the left and

right hand sides.
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