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1 Introduction

Recently we have seen remarkable progress in the computation of the correlation func-

tions of N = 4 super Yang-Mills theory (SYM) in the hope of establishing the AdS/CFT

correspondence [1]. There are two complementary approaches to this problem.

The first approach is based on the integrability of N = 4 SYM in the planar limit. The

planar three-point functions of single-trace operators are regarded as a pair of hexagons

glued together, where each hexagon form-factor is severely constrained by the centrally-

extended su(2|2) symmetry [2]. The n-point functions of BPS operators can be studied by

hexagonization. The gluing of four hexagons give us the planar four-point functions [3–5],

and the gluing of 2n − 4 + 4g hexagons should give the g-th non-planar corrections [6–8].

Furthermore, certain four-point functions in the large charge limit decompose into a pair

of octagons [9, 10], which can be resummed [11, 12].

The integrability approach tells us how single-trace correlation functions depend on

the ’t Hooft coupling λ = Nc g
2
YM. However, only the non-extremal correlation functions

have been studied, because the non-extremality is related to the so-called bridge length

(the number of Wick contractions between a pair of operators), which suppresses the com-

plicated wrapping corrections to the asymptotic formula [13–17].

The second approach is based on the finite-group theory. In this approach, one obtains

the results valid for any values of Nc , though most results are limited to tree-level or a few

orders of small λ expansion. In the finite-group approach, extremal correlation functions

are often studied, because they are roughly equal to the two-point functions at tree level.

Quite recently the author studied the n-point functions of multi-trace scalar operators

at tree-level ofN = 4 SYM with U(Nc) gauge group, based on the finite group methods [18].

Those results are written in terms of permutations, meaning that they are valid to any

orders of 1/Nc expansions, but not at any values of Nc because the finite-Nc constraints

are not taken into consideration. The primary purpose of this paper is to generalize the

permutation-based results to finite Nc , by taking a Fourier transform of symmetric groups.

Two types of operator bases of N = 4 SYM are well-known, which carry a set of

Young diagrams as the operator label, diagonalize tree-level two-point functions at finite

Nc , generalizing the pioneering work of [19]. The covariant basis (also called BHR basis)

introduced in [20, 21] respects the global (or flavor) symmetry of the operator. As such, one

can construct O(Nf ) singlets for general Nf [22]. The restricted Schur basis was introduced

in a series of papers [23–25] and related to multi-matrix models in [26, 27].1 The restricted

Schur basis respects the permutation symmetry of the operator, and suitable for explicit

calculation. In other words, one has to specify a state inside the irreducible representation

of the global (or flavor) symmetry, like the highest weight state. Here is a brief comparison

of the two representation bases [28]:

Operator basis Symmetry respected Analogy

Covariant Global symmetry Spherical coordinates

Restricted Schur Permutation of constituents Cartesian coordinates

1Note that the restricted Schur basis can compute the observables of a multi-matrix model, which are

not the function of the multi-matrix eigenvalues only.
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In this paper, we consider general non-extremal three-point functions of the scalar op-

erators in the restricted Schur basis. There are several important ideas in this computation.

The first idea is the Schur-Weyl duality between U(Nc) and SL, which converts powers of

Nc into the irreducible characters of the symmetric group SL . The second idea is the quiver

calculus initiated by [29]. This is a set of diagrammatic rules which enormously simplify

the manipulation of representation-theoretical objects. The third idea is the generalized

Racah-Wigner tensor. Since the three-point function is non-extremal, we need to compute

a non-trivial overlap between the states under different subgroup decompositions of SL .

The invariant products we encounter are more general than Wigner’s 6j symbols.2

Let us summarize the main results. Our notation is explained in appendix A. We are

particularly interested in two types of the non-extremal three-point functions (or equiv-

alently non-extremal OPE coefficients). The first type is the super-protected three-point

functions [32] in the restricted Schur basis, given by (3.70)

Fourier transform of
〈

trL1

(
α1 Z

⊗L1
)

trL2

(
α2 Z̃

L2
)

trL3

(
α3 Z

L3
)〉

=

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

∑

Q1`L2

∑

Q2`L3

∑

Q3`L1

(
3∏

i=1

dQi

)
G123 . (1.1)

The second type is the three-point functions of the scalar operators made of three pairs of

complex scalars in N = 4 SYM, given by (3.90)

Fourier transform of
〈

trL1

(
α1X

⊗(`31−h2)
Y
⊗h3 Z⊗(`12−h3+h2)

)
×

trL2

(
α2X

⊗h1 Y ⊗(`23−h1+h3) Z
⊗(`12−h3)

)
trL3

(
α3X

⊗(`31−h2+h1) Y
⊗(`23−h1)

Z
⊗h2
)〉

=

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

(dq1 dq2 dr1 dr3 ds2 ds3) δ
ν1− ν2+

δ
ν2− ν3+

δ
ν3− ν1+ G′123 . (1.2)

The objects G123 and G′123 are related to the invariant products of the generalized Racah-

Wigner tensors.

Mathematically, the branching coefficient of R = ⊕
r,s

(r ⊗ s) is the building block of

the restricted Schur character and the generalized Racah-Wigner tensor. In the literature,

the orthonormal basis of r ⊗ s is called the split basis [33], and the branching coefficients

are called fractional parentage coefficients [34], subduction coefficients [35, 36] or the split-

standard transformation coefficients [33, 37, 38]. In general, explicit computation of the

branching coefficients is a hard problem. See [39–41] for the recent results on the branching

coefficients, and on the construction of the restricted Schur basis [42].

Likewise, it is difficult to compute G123 ,G′123 explicitly. We conjecture that they can

be written by the Littlewood-Richardson coefficients, based on the fact that they satisfy

certain sum rules.

2The 6j symbol is also called Racah’s W coefficient or recoupling coefficient. The 6j symbols of sym-

metrical groups are called 6f symbols in [30], and they are related to the 6j symbols of unitary groups by

the through the duality factor [31].
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From (1.1) and (1.2), it is straightforward to show the large Nc background indepen-

dence in N = 4 SYM [43]. The background independence is a conjectured correspondence

between the operators with O(N0
c ) canonical dimensions and those with O(N2

c ) canonical

dimensions, where the latter is constructed from the former by “attaching” a large number

of background boxes. By AdS/CFT, this conjecture implies that the stringy excitations in

AdS5 × S5 and those in the (concentric circle configuration of) LLM geometry [44].

On the gauge theory side, the large Nc background independence has been checked

for the case of two-point functions and extremal n-point functions. On the gravity side,

some string spectrum of in the SL(2) sector has been studied in [45]. We find that the non-

extremal OPE coefficients in the LLM background are essentially given by the rescaling

of Nc in (1.1), (1.2). Our results provide strong support that the large Nc background

independence can be found also in the string interactions.

2 Two-point functions in the representation basis

We review the construction of the restricted Schur basis, and introduce the diagrammatic

computation methods called quiver calculus.

2.1 Set-up

We consider N = 4 SYM of U(Nc) gauge group at tree-level. This theory has three complex

scalars (X,Y, Z), which satisfy the U(Nc) Wick rule,

Xb
a(x)X

d
c(0) = Y b

a (x)Y
d
c(0) = Zba(x)Z

d
c(0) = |x|−2 δda δ

b
c . (2.1)

With α ∈ Sl+m+n , we define a multi-trace operator in the permutation basis

O(l,m,n)
α = trm+n

(
αX⊗l Y ⊗m Z⊗n

)

≡
Nc∑

i1,i2,...,il+m+n=1

Xi1
iα(1)

. . . X il
iα(l)

Y
im+1

iα(l+1)
. . . Y

il+m
iα(l+m)

Z
il+m+1

iα(l+m+1)
. . . Z

il+m+n

iα(l+m+n)
.

(2.2)

The usual single-trace operators can be expressed in the permutation basis as

tr (X l Y m Zn) → trL(αX⊗l Y ⊗m Z⊗n), (αi ∈ Zl+m+n). (2.3)

The correspondence between a multi-trace operator and α ∈ SL is not one-to-one, because

α is defined modulo conjugation,

O(l,m,n)
α = O(l,m,n)

γαγ−1 , γ ∈ Sl ⊗ Sm ⊗ Sn (2.4)

which we call the flavor symmetry (or global symmetry). For example,

tr (XXZZ) = trL=4((1234)X⊗2Z⊗2) = trL=4((2143)X⊗2Z⊗2) = . . .

tr (XZXZ) = trL=4((1324)X⊗2Z⊗2) = trL=4((3142)X⊗2Z⊗2) = . . .
(2.5)

where . . . represents the other permutations generated by the flavor symmetry (2.4).
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We define the complex conjugate operator by

O(l,m,n)
α = trm+n

(
αX

⊗l
Y
⊗m

Z
⊗n)

(2.6)

The two-point function between O(l,m,n)
α1 and O(l,m,n)

α2
at tree-level is given by

〈O(l,m,n)
α1

(x)O(l,m,n)
α2

(0)〉 = |x|−2(l+m+n)
∑

γ∈Sl⊗Sm⊗Sn
NC(α1γα2γ−1)
c (2.7)

where C(ω) counts the number of cycles in ω ∈ Sl+m+n . We write 〈O1O2〉 ≡ 〈O1(1)O2(0)〉.

2.2 Diagonalizing the tree-level two-point

Following [29], we show how to “derive” the representation basis of operators starting from

the two-point functions on the permutation basis (2.7). The resulting tree-level two-point

functions are diagonal at any Nc . The readers familiar with the restricted Schur basis can

skip this subsection. The basic formulae are summarized in appendix A.3.

First, we rewrite the equation (2.7) by using (A.41) as

〈O(l,m,n)
α1

O(l,m,n)
α2

〉 =
∑

γ∈Sl⊗Sm⊗Sn

∑

R`(l+m+n)

DimNc(R)χR(α1γα2γ
−1)

=
∑

R`(l+m+n)

DimNc(R)
∑

γ∈Sl⊗Sm⊗Sn
α1

γ−1

γ

α2

(2.8)

where we used the quiver calculus notation of appendix B in the second line. We introduce

γ = γ1 ◦ γ2 ◦ γ3 ∈ Sl ⊗ Sm⊗ Sn and the branching coefficients for Sl+m+n ↓ (Sl ⊗ Sm⊗ Sn)

to make use of the identity (A.24) for ` = 3. The equation (2.8) becomes

〈O(l,m,n)
α1

O(l,m,n)
α2

〉 =
∑

R`(l+m+n)

DimNc(R)
∑

γ1∈Sl
γ2∈Sm
γ3∈Sn

∑

r1,r2,r3,ν−
s1,s2,s3,ν+

α1

ν+

ν−

γ−1
1

γ−1
2

γ−1
3

γ1

γ2

γ3

ν+

ν−

α2

(2.9)
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We apply the grand orthogonality (B.4) to the matrix elements of γ1 , γ2 and γ3 to obtain

〈O(l,m,n)
α1

O(l,m,n)
α2

〉 =
∑

R`(l+m+n)

DimNc(R)
∑

r1,r2,r3,ν−,ν+

l!m!n!

dr1dr2dr3
α1

ν+

ν−

α2

ν+

ν−

=
∑

R,r1,r2,r3,ν−,ν+

DimNc(R)
l!m!n!

dr1dr2dr3
χR,(r1,r2,r3),(ν+,ν−)(α1)χR,(r1,r2,r3),(ν−,ν+)(α2)

where χR,(r1,r2,r3),(ν+,ν−)(α) is the restricted characters defined through branching coeffi-

cients,

χR,(r1,r2,r3),ν+,ν−(σ) ≡
∑

I,J

∑

i,j

B
R→(r1,r2,r3)ν+
I→(i,j,k) (BT )

R→(r1,r2,r3)ν−
J→(i,j,k) DR

IJ(σ). (2.10)

The restricted characters satisfy the orthogonality relations (A.52). It is straightfor-

ward to find a linear combination of operators which diagonalizes the two-point function;

OS,(s1,s2,s3),µ+,µ−(x) =
1

l!m!n!

∑

α∈Sl+m+n

χS,(s1,s2,s3),µ+,µ−(α)O(l,m,n)
α (x)

OT,(t1,t2,t3),η+,η−(y) =
1

l!m!n!

∑

α∈Sl+m+n

χT,(t1,t2,t3),η+,η−(α)O(l,m,n)
α (y).

(2.11)

It follows that

〈
OS,(s1,s2,s3),µ+,µ− OT,(t1,t2,t3),η+,η−

〉
=

(
1

l!m!n!

)2 ∑

R,r1,r2,r3,ν−,ν+

DimNc
(R)

l!m!n!

dr1dr2dr3
×

∑

α1 ,α2∈Sl+m+n

χS,(s1,s2,s3),µ+,µ−(α1)χT,(t1,t2,t3),η+,η−(α2)χR,(r1,r2,r3),(ν+,ν−)(α1)χR,(r1,r2,r3),(ν−,ν+)(α2)

= DimNc
(S)

(l +m+ n)!2

l!m!n!

ds1ds2ds3
d2S

δST δs1t1δs2t2δs3t3δµ+η−δµ−η+

= WtNc
(S)

hookS
hooks1hooks2hooks3

δST δs1t1δs2t2δs3t3δµ+η−δµ−η+ (2.12)

where we used (A.5).

Recall that O(l,m,n)
α in (2.2) becomes half-BPS when l = m = 0, and the restricted

character (2.10) reduces to the usual irreducible characters of Sn . The two-point func-

tion (2.12) becomes 〈
OS OT

〉
= WtNc(S) δST (2.13)

which gives the same normalization of half-BPS operators as in [19].

– 6 –
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3 Three-point functions in the representation basis

In [18], tree-level formulae of the n-point functions of general scalar operators in the per-

mutation basis have been derived. We consider three-point functions of scalar operators in

the restricted Schur basis below. The three-point functions of N = 4 SYM are related to

the OPE coefficients by

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2

(3.1)

thanks to the conformal symmetry. By abuse of notation, we write (3.1) as

〈O1O2O3〉 = C123 . (3.2)

3.1 Set-up

Let us recall the tree-level permutation formula for three-point functions in [18]. That

formula has been derived based on the following idea. Consider a non-extremal three-point

function of the operators labeled by αi ∈ SLi for i = 1, 2, 3. We expect that the tree-

level Wick contractions give the quantity like N
C(α1α2α3)
c . However, we cannot define the

multiplication of elements in SL1 and SL2 if L1 6= L2 . This problem can be solved by

extending αi to α̂i ∈ SL for some L , which makes the quantity N
C(α̂1α̂2α̂3)
c well-defined.

Let us explain how this idea works. First, we extend the operator Oi by adding identity

fields,

Ôi ≡ Oαi × tr (1)Li ≡
L∏

p=1

(ΦÂ
(i)
p )

ap
aα̂i(p)

, α̂i = αi ◦ 1Li ∈ SLi × SLi ⊂ SL (3.3)

where

L =
L1 + L2 + L3

2
, Li = L− Li , ΦÂ

(i)
p ∈ (X,X, Y, Y , Z, Z,1). (3.4)

The permutation α̂i acts as the identity at the position p at which ΦÂ
(i)
p = 1. The (edge-

type) permutation formula reads

C123 =
1∏3

i=1 Li!

1

L!

∑

{Ui}∈S⊗3
L




L∏

p=1

hǍ
(1)
p Ǎ

(2)
p Ǎ

(3)
p


NC(α̌1 α̌2 α̌3)

c (3.5)

where Ǎ
(i)
p ≡ Â(i)

Ui(p)
, α̌i ≡ U−1

i α̂i Ui and

hABC = hAB δC1 +hBC δA1 +hCA δB1 , hAB =

{
gAB ≡ 〈ΦA(1)ΦB(0)〉 (both ΦA,ΦB 6= 1)

0 (otherwise).

(3.6)

We call hABC a triple Wick contraction.
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We will consider two types of three-point functions. The first type is the three-point

functions of half-BPS multi-trace operators,

C◦◦◦ =
〈

trL1

(
α1 Z

⊗L1
)

trL2

(
α2 Z̃

⊗L2
)

trL3

(
α3 Z

⊗L3
)〉
, Z̃ = (Z + Z + Y − Y ). (3.7)

The field Z̃ belongs to the one-parameter family of operators used in [2, 32],

Zi(a) = (Z + ai (Y − Y ) + a2
i Z)(xi), xi = (0, ai, 0, 0). (3.8)

The second type is general three-point functions of the scalar multi-trace operator (2.2),

CXY Z~h
=
〈

trL1

(
α1X

⊗(`31−h2)
Y
⊗h3 Z⊗(`12−h3+h2)

)
× (3.9)

trL2

(
α2X

⊗h1Y ⊗(`23−h1+h3)Z
⊗(`12−h3)

)
trL3

(
α3X

⊗(`31−h2+h1)Y
⊗(`23−h1)

Z
⊗h2
)〉

where `ij is the number of tree-level Wick contractions between Oi and Oj (called the

bridge length), given by

`12 =
L1 + L2 − L3

2
, `23 =

L2 + L3 − L1

2
, `31 =

L3 + L1 − L2

2
(3.10)

and hi is an integer inside the range

0 ≤ h1 ≤ `23 , 0 ≤ h2 ≤ `31 , 0 ≤ h3 ≤ `12 . (3.11)

3.2 Partial Fourier transform

We construct the three-point functions in the restricted Schur basis by taking the Fourier

transform of C◦◦◦ in (3.7) and CXY Z~h
(3.9). Recall that the usual Fourier transform of

the delta function is a constant. In the Fourier transform over a finite group, the Fourier

transform of the identity permutation should be a sum over all representations. In other

words, if we write

Ri ` Li ↔ FT of αi ∈ SLi , ti ` Li ↔ FT of 1Li ∈ SLi (3.12)

then we should sum ti over all possible partitions of Li . In fact, ti is an unphysical param-

eter, and we can perform a calculation without using ti . Thus we call the procedure (3.12)

a partial Fourier transform.

In order to treat C◦◦◦ and CXY Z~h
simultaneously, we extend the multi-trace opera-

tor (2.2) as in (3.3),

O(li,mi,ni,Li)
α̂i

[X,Y, Z,1] = trLi

(
αiX

⊗li Y ⊗mi Z⊗ni
)
× tr (1)Li

li +mi + ni = Li , Li + Li = L , α̂i = αi ◦ 1Li ∈ SL
(3.13)

and define the partial Fourier transform by

ÔRi (Li)[X,Y, Z,1] =
1

li!mi!ni!

∑

αi∈SLi

χRi(αi)O(li,mi,ni,Li)
α̂i

[X,Y, Z,1]

Ri = {Ri, (qi, ri, si), νi−, νi+} , (Ri`Li, qi` li, ri`mi, si`ni) .
(3.14)

– 8 –
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The partial Fourier transform can be rewritten as a linear combination of the complete

Fourier transform. To see this, we recall (A.34) and

χRi⊗ti(αi ◦ 1Li) = χRi(αi) dti ,
∑

ti`Li

d2
ti = Li (3.15)

giving us a dummy representation ti to be summed over the partitions of Li . It follows that

ÔRi (Li)[X,Y, Z,1] =
1

li!mi!ni!Li!

∑

ti `Li

∑

α̂i∈SLi×1Li

dti χ
Ri⊗ti(α̂i)O(li,mi,ni,Li)

α̂i
[X,Y, Z,1].

(3.16)

As for C◦◦◦ , we introduce the Fourier transform of the half-BPS operators as

Õ1 = ÔR1(L1)
1 [Z,1], Õ2 = ÔR2(L2)

2 [Z̃,1], Õ3 = ÔR3(L3)
3 [Z,1], Ri = Ri ` Li (3.17)

and define

C̃◦◦◦ =
〈
ÔR1(L1)

1 [Z,1] ÔR2(L2)
2 [Z̃,1] ÔR3(L3)

3 [Z,1]
〉
. (3.18)

As for CXY Z~h
, we take the Fourier transform of the operators in (3.9) as

Õ1 = ÔR1(L1)
1 [X,Y , Z,1] (l1,m1, n1) = (`31 − h2, h3, `12 − h3 + h2)

Õ2 = ÔR2(L2)
2 [X,Y, Z,1] (l2,m2, n2) = (h1, `23 − h1 + h3, `12 − h3)

Õ3 = ÔR3(L3)
3 [X,Y , Z,1] (l3,m3, n3) = (`31 − h2 + h1, `23 − h1, h2) (3.19)

and define

C̃XY Z~h
=
〈
ÔR1(L1)

1 [X,Y , Z,1] ÔR2(L2)
2 [X,Y, Z,1] ÔR3(L3)

3 [X,Y , Z,1]
〉
. (3.20)

We collectively denote the three-point functions of the operators in the representation

basis by

C̃123 ≡
〈
Õ1 Õ2 Õ3

〉
. (3.21)

From (3.5) we get

C̃123 =
1∏3

i=1 li!mi!ni! (Li!)2

1

L!

∑

{Ui}∈S⊗3
L




L∏

p=1

h
Â

(1)
U1(p)

Â
(2)
U2(p)

Â
(3)
U3(p)


 ∑

{ti`Li}

(
3∏

i=1

dti

)
×

∑

{α̂i∈SLi×1Li}

(
3∏

i=1

χRi⊗ti(α̂i)

)
N
C(U−1

1 α̂1 U1U
−1
2 α̂2 U2U

−1
3 α̂3 U3)

c . (3.22)

Consider the second line of (3.22). We use the identity (A.41) and (A.9) to obtain

∑

{α̂i∈SLi×1Li}

(
3∏

i=1

χRi⊗ti(α̂i)

)
N
C(U−1

1 α̂1 U1U
−1
2 α̂2 U2U

−1
3 α̂3 U3)

c (3.23)

=
∑

{α̂i∈SLi×1Li}

∑

R̂`L
DimNc(R̂)

(
3∏

i=1

χRi⊗ti(α̂i)DR̂
ÎiĴi

(α̂i)

)

×DR̂
Ĵ1Î2

(U1U
−1
2 )DR̂

Ĵ2Î3
(U2U

−1
3 )DR̂

Ĵ3Î1
(U3U

−1
1 ).
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We simplify the sum over {α̂i} in the last line. The character is given by (3.15). We

decompose the matrix elements DR̂
ÎiĴi

(α̂i) according to the restriction

SL ↓ (SLi ⊗ SLi), R̂ =
⊕

R′i `Li

⊕

Ti `Li

g(R′i,t
′
i;R̂)⊕

µi=1

(R′i ⊗ Ti)µi . (3.24)

When C̃123 = C̃◦◦◦ , we have Ri = Ri . From (3.24) we get
∑

α̂i

χRi⊗ti(α̂i)DR̂
ÎiĴi

(α̂i)

=
∑

αi∈SLi

∑

R′i `Li

∑

Ti `Li

g(R′i,Ti;R̂)∑

µi=1

χRi(αi) dti B
R̂→(R′i,Ti),µi
Îi→(Ii,ci)

(BT )
R̂→(R′i,Ti),µi
Ĵi→(Ji,ci)

D
R′i
IiJi

(αi)

=
∑

R′i,Ti,µi

{ ∑

αi∈SLi

χRi(αi)D
R′i
IiJi

(αi)
}
dti B

R̂→(R′i,Ti),µi
Îi→(Ii,ci)

(BT )
R̂→(R′i,Ti),µi
Ĵi→(Ji,ci)

=
∑

Ti,µi

Li! dti
dRi

B
R̂→(Ri,Ti),µi

Îi→(Ii,ci)
(BT )

R̂→(Ri,Ti),µi

Ĵi→(Ii,ci)

=
∑

Ti `Li

g(Ri,Ti ;R̂)∑

µi=1

Li! dti
dRi

P
R̂→(Ri,Ti),µi,µi

ÎiĴi
(3.25)

where we used (3.15), (A.20), (A.30) and (A.47). When C̃123 = C̃XY Z~h
, by using the

definition of the restricted character (A.25) we find
∑

α̂i∈SLi×1Li

χRi⊗ti(α̂i)DR̂
ÎiĴi

(α̂i)

=
∑

R′i,Ti,µi

{ ∑

αi∈SLi

DRi
I′J ′(αi)D

R′i
IiJi

(αi)
}
dti

×BRi→(qi,ri,si)νi−
I′→(j′,k′,l′) (BT )

Ri→(qi,ri,si)νi+
J ′→(j′,k′,l′) B

R̂→(R′i,Ti),µi
Îi→(Ii,ci)

(BT )
R̂→(R′i,Ti),µi
Ĵi→(Ji,ci)

=
∑

Ti,µi

Li! dti
dRi

B
R̂→(Ri,Ti),µi

Îi→(Ii,ci)
B
Ri→(qi,ri,si)νi−
Ii→(j′,k′,l′) (BT )

R̂→(Ri,Ti),µi

Ĵi→(Ji,ci)
(BT )

Ri→(qi,ri,si)νi+
Ji→(j′,k′,l′)

≡
∑

Ti,µi

Li! dti
dRi

P
R̂→RT i−,i+
Î Ĵ

(3.26)

where we introduced the double projector

P
R̂→RT i−,i+
Î Ĵ

=
∑

j,k,l,c

BR̂→RT i−
Î−→(j,k,l,c)

(BT )
R̂→RT i+

Ĵ−→(j,k,l,c)
(3.27)

BR̂→RT i∓
Î−→(j,k,l,c)

≡
dRi∑

I=1

B
R̂→(Ri,Ti),µi

Î→(I,c)
B
Ri→(qi,ri,si),νi∓
I→(j,k,l) . (3.28)

{
R̂→ RT i∓

}
=
{
R̂→ (Ri, Ti), µi → (qi, ri, si, Ti), (µi, νi∓)

}
(3.29)
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which come from the double restriction SL ↓ (SLi ⊗ SLi) ↓ (Sli ⊗ Smi ⊗ Sni ⊗ SLi). Here

we should keep in mind that the restriction to the subgroup of SL is different for each

i = 1, 2, 3. We will revisit this issue in section 3.4.

Now the equation (3.23) is simplified as

∑

{α̂i∈SLi×1Li}

(
3∏

i=1

χRi⊗ti(α̂i)

)
N
C(U−1

1 α̂1 U1U
−1
2 α̂2 U2U

−1
3 α̂3 U3)

c

=
∑

{Ti,µi}

(
3∏

i=1

PR̂→ sub
ÎiĴi

)
DR̂
Ĵ1Î2

(U1U
−1
2 )DR̂

Ĵ2Î3
(U2U

−1
3 )DR̂

Ĵ3Î1
(U3U

−1
1 ) (3.30)

where the projector PR̂→sub
ÎiĴi

is given by

PR̂→ sub
ÎiĴi

≡





P
R̂→(Ri,Ti)µi,µi

ÎiĴi
= B

R̂→(Ri,Ti),µi

Îi→(Ii,ci)
(BT )

R̂→(Ri,Ti),µi

Ĵi→(Ii,ci)

(
for C̃◦◦◦

)

P
R̂→RT i−,i+
ÎiĴi

= BR̂→RT i−
Î−→(j,k,l,c)

(BT )
R̂→RT i+

Ĵ−→(j,k,l,c)

(
for C̃XY Z~h

)
.

(3.31)

The three-point function (3.22) becomes

C̃123 =

(
3∏

i=1

Li!

li!mi!ni!Li!

)
1

L!

∑

{Ui}∈S⊗3
L




L∏

p=1

h
Â

(1)
U1(p)

Â
(2)
U2(p)

Â
(3)
U3(p)


∑

R̂`L

DimNc(R̂)

dR1dR2dR3

×

∑

{Ti,µi}

(
3∏

i=1

PR̂→ sub
ÎiĴi

)
DR̂
Ĵ1Î2

(U1U
−1
2 )DR̂

Ĵ2Î3
(U2U

−1
3 )DR̂

Ĵ3Î1
(U3U

−1
1 ) (3.32)

where (3.15) is used to sum over ti .

3.3 Sum over Wick contractions

We simplify the sum over the Wick contractions, denoted by {Ui} ∈ S⊗3
L in (3.32).

3.3.1 Symmetry of the permutation formula

To begin with, let us review the symmetry in the permutation formula (3.5) for a fixed {Ui},

C123({Ui}) =
1

L1!L2!L3!L!




L∏

p=1

h
Â

(1)
U1(p)

Â
(2)
U2(p)

Â
(3)
U3(p)


NC(U−1

1 α̂1 U1U
−1
2 α̂2 U2U

−1
3 α̂3 U3)

c .

(3.33)

Since C̃123 is a linear combination of C123 , the equation (3.32) should inherit the same

symmetry.

First, C123({Ui}) is invariant under the simultaneous transformation

(U1 , U2 , U3) 7→ (U1V0 , U2V0 , U3V0) , ∀V0 ∈ SL (3.34)
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which corresponds to the relabeling p 7→ V0(p) in (3.33). Second, C123({Ui}) is invariant

under the permutation of identity fields

(U1 , U2 , U3) 7→ (V1U1, V2U2, V3U3)

(V1 , V2 , V3) ∈
(
1L1 ⊗ SL1

,1L2 ⊗ SL2
,1L3 ⊗ SL3

)
⊂ S⊗3

L

(3.35)

which follows from the definition α̂i = αi ◦ 1Li . Third, C123({Ui}) is invariant under the

flavor symmetry (2.4),

(U1 , U2 , U3) 7→ (W1U1, W2U2, W3U3) ,

(W1 ,W2 ,W3) ∈
(
Sl1 ⊗ Sm1 ⊗ Sn1 ⊗ 1L1

, Sl2 ⊗ Sm2 ⊗ Sn2 ⊗ 1L2
, Sl3 ⊗ Sm3 ⊗ Sn3 ⊗ 1L3

)

(3.36)

The redundancy (3.34) and (3.35) are unphysical, which should be canceled by the nu-

merical factors L! and
∏
i Li! in (3.33). The last operation (3.36) is the symmetry of the

external operators, and interchanges different Wick contractions.

3.3.2 Fixing redundancy

Let us rewrite the flavor factor
∏
p h

ABC in (3.33) as

H
[
Â

(i)
Ui(p)

]
≡

L∏

p=1

h
Â

(1)
U1(p)

Â
(2)
U2(p)

Â
(3)
U3(p) (3.37)

where
[
Â

(i)
Ui(p)

]
is the 3× L Wick-contraction matrix,3

[
Â

(i)
Ui(p)

]
=




Â
(1)
U1(1) Â

(1)
U1(2) . . . Â

(1)
U1(L)

Â
(2)
U2(1) Â

(2)
U2(2) . . . Â

(2)
U2(L)

Â
(3)
U3(1) Â

(3)
U3(2) . . . Â

(3)
U3(L)


 . (3.38)

Note that the position of each column is unimportant for computing the flavor factor (3.37),

[
Â

(i)
Ui(p)

]
'
[
Â

(i)
Ui(σ(p))

]
, ∀σ ∈ SL . (3.39)

We fix the redundancy of V0 in (3.34) as follows. Let us choose the position of the

identity fields for each operator as

ΦÂ
(1)
p = 1p , (p = 1, 2, . . . , L1)

ΦÂ
(2)
p = 1p , (p = L1 + 1, L1 + 2, . . . , L1 + L2)

ΦÂ
(3)
p = 1p , (p = L1 + L2 + 1, L1 + L2 + 2, . . . , L).

(3.40)

3Each element of this matrix represents the flavor data. Note that this notation is slightly different

from [18], where the Wick-contraction matrix is defined by the color data.
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Here the subscript of 1 is a dummy index, which will disappear after the identifica-

tion (3.39). The Wick-contraction matrix becomes

[
Â

(i)
Ui(p)

]
=




11 . . . 1L1
Â

(1)

U1(L1+1)
. . . Â

(1)
U1(L3) Â

(1)
U1(L3+1) . . . Â

(1)
U1(L)

Â
(2)
U2(1) . . . Â

(2)

U2(L1)
1L1+1 . . . 1L3 Â

(2)
U2(L3+1) . . . Â

(2)
U2(L)

Â
(3)
U3(1) . . . Â

(3)

U3(L1)
Â

(3)

U3(L1+1)
. . . Â

(3)
U3(L3) 1L3+1 . . . 1L


 . (3.41)

The residual redundancy of V0 is now V ′0 ∈ SL1
⊗ SL2

⊗ SL3
.

After the partial gauge fixing (3.40), {Ui} permute the non-identity fields only,

U1 ∈ SL1 ⊗ 1L1
, U2 ∈ SL2 ⊗ 1L2

, U3 ∈ SL3 ⊗ 1L3
. (3.42)

There is still residual redundancy generated by a combination of V ′0 and Vi in (3.35),

Ṽ : {Ui} 7→ {U ′i}, Â
(i)
U ′i(p)

=





1p (if Â
(i)
Ui(p)

= 1p)

Â
(i)

Ṽ −1UiṼ (p)
(if Â

(i)
Ui(p)

6= 1p)
(3.43)

for any Ṽ ∈ SL1
⊗ SL2

⊗ SL3
. This map does not permute identity fields, but permutes

the non-identity fields sitting in the same column.

3.3.3 Counting inequivalent Wick contractions

We pick up one set of partially gauge-fixed permutations {U•i } such that
∏L
p=1h

Â
(1)

U•1 (p)
Â

(2)

U•2 (p)
Â

(3)

U•3 (p) 6= 0. We generate other {Ui} by applying the flavor symmetry,

U•i →WiU
•
i in (3.36).

This procedure generates all non-vanishing Wick pairings. To show this, consider

two sets of permutations {U•i } and {U◦i }, both of which are subject to the partial gauge

fixing (3.42) and giving the non-vanishing flavor factor (3.37). Define

U•i ≡W •◦i U◦i , W •◦i ∈ SLi ⊗ 1Li . (3.44)

Since any permutation consists of a product of transpositions, we may assume

(W •◦1 ,W •◦2 ,W •◦3 ) = ((ab),1,1) ∈ SL1⊗SL2⊗SL3 without loss of generality. Let us represent

the Wick contractions of {U•i } by

〈tr (ΦÂ
(1)
a ΦÂ

(1)
b . . . ) tr (ΦÂ

(2)
c ΦÂ

(2)
d . . . ) tr (ΦÂ

(3)
e ΦÂ

(3)
f . . . )〉

= 〈ΦA
(1)
a ΦA

(2)
c ΦA

(3)
e 〉〈ΦA

(1)
b ΦA

(2)
d ΦA

(3)
f 〉 · · · 6= 0. (3.45)

Then, the Wick contractions of {U◦i } are written as

〈tr (ΦÂ
(1)
a ΦÂ

(1)
b . . . ) tr (ΦÂ

(2)
c ΦÂ

(2)
d . . . ) tr (ΦÂ

(3)
e ΦÂ

(3)
f . . . )〉

= 〈ΦA
(1)
b ΦA

(2)
c ΦA

(3)
e 〉〈ΦA

(1)
a ΦA

(2)
d ΦA

(3)
f 〉 · · · 6= 0. (3.46)
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Since both (3.45) and (3.46) are non-zero, and since Φ = (X,Y, Z) have orthogonal inner

products, we should have ΦA
(1)
a = ΦA

(1)
b . This implies that W •◦i ∈ Sli ⊗ Smi ⊗ Sni ⊗ 1Li ,

which is part of the flavor symmetry (3.36).

The range of {Ui} in (3.42) now becomes

U1 ∈ Sl1 ⊗ Sm1 ⊗ Sn1 ⊗ 1L1
≡ S1

U2 ∈ Sl2 ⊗ Sm2 ⊗ Sn2 ⊗ 1L2
≡ S2

U3 ∈ Sl3 ⊗ Sm3 ⊗ Sn3 ⊗ 1L3
≡ S3

(3.47)

The sum over (S1,S2,S3) counts each inequivalent Wick pairing more than once. The

multiplicity comes from the residual redundancy (3.43),
∣∣∣SL1

⊗ SL2
⊗ SL3

∣∣∣ = L1!L2!L3! . (3.48)

The number of inequivalent Wick contractions is given by

|Wick| ≡
∣∣∣∣∣
S1 ⊗ S2 ⊗ S3

SL1
⊗ SL2

⊗ SL3

∣∣∣∣∣ =

3∏

i=1

li!mi!ni!

Li
(3.49)

3.3.4 The OPE coefficients simplified

We collected all non-vanishing Wick contractions by restricting the sum {Ui} over the

ranges (3.47). The OPE coefficient (3.32) becomes

C̃123 =

(
3∏

i=1

Li!

li!mi!ni!Li!

) ∑

R̂`L

DimNc(R̂)

dR1dR2dR3

× (3.50)

∑

{Ti,µi}

(
3∏

i=1

PR̂→ sub
ÎiĴi

) ∑

U1∈S1

∑

U2∈S2

∑

U3∈S3
DR̂
Ĵ1Î2

(U1U
−1
2 )DR̂

Ĵ2Î3
(U2U

−1
3 )DR̂

Ĵ3Î1
(U3U

−1
1 ).

Recall that the projector is equal to the product of branching coefficients, P = B BT
as in (3.31). We can simplify the second line by using the identity of branching coeffi-

cients (A.21)
∑

Ĵ

DR̂
ÎĴ

(u ◦ v ◦ w)B
R̂→(q,r,s)ν

Ĵ→(j,k,l)
=
∑

a,b,c

Dq
aj(u)Dr

bk(v)Ds
cl(w)B

R̂→(q,r,s)ν

Î→(a,b,c)
. (3.51)

If we bring Uk = uk ⊗ vk ⊗ wk and U−1
k = u−1

k ⊗ v−1
k ⊗ w−1

k across the double branching

coefficients B or BT , they annihilate each other; see (3.54).

Let us define a triple-projector product

IR̂→ sub
123 ≡PR̂→ sub

Î1Î2
P̃R̂→ sub
Î2Î3

˜̃PR̂→ sub
Î3Î1

(3.52)

where we used the symbols P̃ and ˜̃P to keep in mind that the branching coefficients come

from different restrictions of SL . Then

C̃123 =

(
3∏

i=1

Li!

li!mi!ni!

)
|Wick|

∑

R̂`L

DimNc(R̂)

dR1dR2dR3

∑

{Ti,µi}
IR̂→ sub

123

=

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

∑

{Ti,µi}
IR̂→ sub

123

(3.53)

where we used (3.49).
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In the notation of the quiver calculus in appendix B, we can express the above calcu-

lation as

C̃123 ∼
∑

R̂`L

DimNc(R̂)

dR1dR2dR3

∑

{Ui∈Si}

U−1
1 U3

U2U
−1
3U1U

−1
2

ν1+ ν3−

ν3+

ν2−ν2+

ν1−

∼
∑

R̂`L

DimNc(R̂)

dR1dR2dR3

|Wick| ν1− ν3+

ν3−

ν2+ ν2−

ν1+

(3.54)

From this diagram, we see that IR̂→ sub
123 in (3.52) is also a triple product of the transfor-

mation matrices (A.16).

3.4 Sum over the triple-projector products

We compute the OPE coefficients by evaluating a sum over the triple-projector products,
∑

{Ti,µi}
IR̂→ sub

123 =
∑

T1 `L1

∑

T2 `L2

∑

T3 `L3

∑

µ1,µ2,µ3

PR̂→ sub
Î1Î2

P̃R̂→ sub
Î2Î3

˜̃PR̂→ sub
Î3Î1

(3.55)

where the projector is given by (3.31). The main idea is to decompose each projector

further into a sum of sub-projectors, so that we can make use of the orthogonality of the

sub-projectors on the fully-split space, VFS .

Below we discuss the two cases C̃◦◦◦ in (3.18) and C̃XY Z~h
in (3.20) separately.

3.4.1 Case of C̃◦◦◦

Recall that C̃◦◦◦ is a linear combination of C◦◦◦ given in (3.7). The Wick-contraction

matrix of C◦◦◦ after a partial gauge-fixing (3.41) is given by

[
Â

(i)
Ui(p)

]
=




11 . . . 1L1
ZU1(L1+1) . . . ZU1(L3) ZU1(L3+1) . . . ZU1(L)

Z̃U2(1) . . . Z̃U2(L1) 1L1+1 . . . 1L3 Z̃U2(L3+1) . . . Z̃U2(L)

ZU3(1) . . . ZU3(L1) ZU3(L1+1) . . . ZU3(L3) 1L3+1 . . . 1L


 (3.56)
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which shows that Si = SLi ⊗SLi in place of (3.47). We represent (3.56) as in the following

figure,

Ô1

Ô2

Ô3

Z

Z̃ Z̃

Z

1

1

1

U1U
−1
2

U2U
−1
3

U3U
−1
1

1, 2, . . . . . . , L

(3.57)

Let us choose the fully-split space as

VFS = VL1
⊗ VL2

⊗ VL3
(3.58)

which induces the restriction SL ↓ SFS , where

SFS = SL1
⊗ SL2

⊗ SL3
. (3.59)

On the space VFS , the states decompose as
∣∣∣∣
R̂

Î

〉
=

∣∣∣∣
Ri Ti
Ii ci

µi

〉
(BT )

R̂→(Ri,Ti),µi

Î→(Ii,ci)
=

∣∣∣∣
Qi Q

′
i Ti

bi b
′
i ci

µi ρi

〉
(BT )

R̂→(Ri,Ti),µi

Î→(Ii,ci)
(BT )

Ri→(Qi,Q
′
i),ρi

Ii→(bi,b′i)

(3.60)

where we used (A.13). We introduce the fully-split branching coefficients by

B
R̂→(Ri,Ti),µi→(Qi,Q

′
i,Ti),(µi,ρi)

Î−→(bi,b′i,ci)
=

dRi∑

Ii=1

B
R̂→(Ri,Ti),µi

Î→(Ii,ci)
B
Ri→(Qi,Q

′
i),ρi

Ii→(bi,b′i)
(3.61)

and the corresponding sub-projector by

P
R̂→(Ri,Ti),µi→(Qi,Q

′
i,Ti),(µi,ρi)

Î Ĵ

=
∑

b,b′,c

B
R̂→(Ri,Ti),µi→(Qi,Q

′
i,Ti),(µi,ρi)

Î−→(b,b′,c)
(BT )

R̂→(Ri,Ti),µi→(Qi,Q
′
i,Ti),(µi,ρi)

Ĵ−→(b,b′,c)
(3.62)

We rewrite the original projectors in (3.31) as a sum over sub-projectors on VFS as

P
R̂→(R1,T1),µ1,ρ1

Î Ĵ
=

∑

Q1,Q′1,ρ1

P
R̂→(R1,T1),µ1→(Q1,Q′1,T1),(µ1,ρ1)

Î Ĵ

P̃
R̂→(R2,T2),µ2,ρ2

Î Ĵ
=

∑

Q2,Q′2,ρ2

P̃
R̂→(R2,T2),µ2→(Q2,Q′2,T2),(µ2,ρ2)

Î Ĵ

˜̃P
R̂→(R3,T3),µ3,ρ3

Î Ĵ
=

∑

Q3,Q′3,ρ3

˜̃P
R̂→(R3,T3),µ3→(Q3,Q′3,T3),(µ3,ρ3)

Î Ĵ
.

(3.63)
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By construction, all sub-projectors follow from the same restriction

SL ↓ SFS , R̂ =
⊕

Q,Q′,T

g(Q,Q′,T ;R̂)⊕

η=1

(Q⊗Q′ ⊗ T )η (3.64)

and all sub-representations should be synchronized when evaluating IR̂→ sub
123 in (3.55). The

states can also be decomposed as
∣∣∣∣
R̂

Î

〉
=

∣∣∣∣
QQ′ T
b b′ c

η

〉
(BT )

R̂→(Q,Q′,T ),η

Î→(b,b′,c)
(3.65)

in addition to (3.60). The consistency of the two decompositions suggests that the multi-

plicity labels can be rewritten as

ξi ≡ {µi , ρi}, 1 ≤ ξi ≤ g(Qi, Q
′
i;Ri) g(Ri, Ti; R̂). (3.66)

In (3.63), the representations Ti come from the Fourier transform of identity fields

1, and Qi, Q
′
i come from the non-identity fields, Z, Z̃, Z . Since the OPE coefficient C◦◦◦

has the Wick-contraction structure given in (3.57), we should identify the representations

{Qi , Q′i , Ti} with those acting on the constituent of VFS as

T1 = Q′2 = Q3 ∈ Hom(VL1
)

Q1 = T2 = Q′3 ∈ Hom(VL2
)

Q′1 = Q2 = T3 ∈ Hom(VL3
).

(3.67)

We can show (3.67) from another argument. The triple-projector product is equal to the

product of generalized Racah-Wigner tensors in appendix C,

trR̂

(
P
R̂→···→(Q1,Q′1,T1),ξ1

Î Ĵ
P̃
R̂→···→(Q2,Q′2,T2),ξ2

Î Ĵ

˜̃P
R̂→···→(Q3,Q′3,T3),ξ3

Î Ĵ

)
= tr (UR̂ŨR̂

˜̃UR̂) (3.68)

which we conjecture as (C.20),

∑

ξ1,ξ2,ξ3

tr (UR̂ŨR̂
˜̃UR̂) = δT1Q

′
2 δQ

′
2Q3 δQ1T2 δT2Q

′
3 δQ

′
1Q2 δQ2T3

(
3∏

i=1

dQi

)
G123 (3.69)

G123 =
g(Q1, Q2;R1) g(R1, Q3; R̂) g(Q2, Q3;R2) g(R2, Q1; R̂) g(Q3, Q1;R3) g(R3, Q2; R̂)

g(Q1, Q2, Q3; R̂)2
.

The three-point function (3.53) becomes

C̃◦◦◦ =

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

∑

Q1`L2

∑

Q2`L3

∑

Q3`L1

(
3∏

i=1

dQi

)
G123 . (3.70)

Here, the Littlewood-Richardson coefficients in G123 put constraints on the sum over {Qi}.
In other words, we should find all {Qi} = {Q?i } such that

R1 = Q?1 ⊗Q?2 , R2 = Q?2 ⊗Q?3 , R3 = Q?3 ⊗Q?1 , R̂ = Q?1 ⊗Q?2 ⊗Q?3 (3.71)
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The conditions (3.71) can be summarized as

Õ1

Õ2

Õ3

R1

R2

R3

Q?
3

Q?
1

Q?
2

R̂

(3.72)

Extremal case. As a check, consider the situation L1 +L2 = L3 = L. From (3.72), this

corresponds to

Q2 = ∅, R1 = Q1 , R2 = Q3 , R̂ = R3 . (3.73)

We get

G123 =
g(R1, Q3; R̂) g(R2, Q1; R̂) g(Q3, Q1;R3)

g(Q1, Q3; R̂)2
= g(R1, R2;R3) (3.74)

and therefore

C̃◦◦◦ = L3!
DimNc(R3)

dR3

g(R1, R2;R3). (3.75)

This result agrees with the literature [19] including the normalization of the two-point

function given in (2.13).

3.4.2 Case of C̃XY Z~h

Our discussion is quite parallel to section 3.4.1. Recall that C̃XY Z~h
is a linear combination

of CXY Z~h
given in (3.9). We represent the Wick-contraction matrix by

Ô1

Ô2

Ô3

X
`31−h2

X
h1

X`31−h2+h1

Y
h3

Y `23−h1+h3

Y
`23−h1

Z`12−h3+h2

Z
`12−h3

Z
h2

1 1

1 1

1 1

U1U
−1
2

U2U
−1
3

U3U
−1
1

1, 2, . . . . . . , L

(3.76)

where hi are constrained by (3.11),

0 ≤ h1 ≤ `23 = L1 , 0 ≤ h2 ≤ `31 = L2 , 0 ≤ h3 ≤ `12 = L3 . (3.77)
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We choose the fully-split space as

VFS = V`31−h2 ⊗ Vh1 ⊗ Vh3 ⊗ V`23−h1 ⊗ V`12−h3 ⊗ Vh2 (3.78)

and decompose the original projectors (3.31). From (3.76), one finds that the new branch

coefficients are needed for

S`12−h3+h2 ↓ (S`12−h3 ⊗ Sh2) and S`23 ↓ (Sh1 ⊗ S`23−h1) for O1

S`23−h1+h3 ↓ (S`23−h1 ⊗ Sh3) and S`31 ↓ (S`31−h2 ⊗ Sh2) for O2

S`31−h2+h1 ↓ (S`31−h2 ⊗ Sh1) and S`12 ↓ (Sh3 ⊗ S`12−h3) for O3 .

(3.79)

For example, we rewrite the states for O1 on the space VFS as

∣∣∣∣
R̂

Î

〉
=

∣∣∣∣
R1 T1

I1 c1
µ1

〉
(BT )

R̂→(R1,T1),µ1

Î→(I1,c1)

=

∣∣∣∣
q1 r1 s1 T1

j1 k1 l1 c1
µ1 ν1∓

〉
(BT )

R̂→(R1,T1),µ1

Î→(I1,c1)
(BT )

R1→(q1,r1,s1),ν1∓
I1→(j1,k1,l1)

=

∣∣∣∣
q1 r1 s

′
1 s
′′
1 t
′
1 t
′′
1

j1 k1 l
′
1 l
′′
1 c
′
1 c
′′
1
µ1 ν1∓ ρ1 ζ1

〉
×

(BT )
R̂→(R1,T1),µ1

Î→(I1,c1)
(BT )

R1→(q1,r1,s1),ν1∓
I1→(j1,k1,l1) (BT )

s1→(s′1,s
′′
1 ),ρ1

I1→(l′1,l
′′
1 )

(BT )
T1→(t′1,t

′′
1 ),ζ1

c1→(c′1,c
′′
1 )

(3.80)

and introduce the fully-split branching coefficients by

B
R̂→···→(q1,r1,s′1,s

′′
1 ,t
′
1,t
′′
1 ),µ1,ν1∓,ρ1,ζ1

Î−→(j1,k1,l′1,l
′′
1 ,c
′
1,c
′′
1 )

= B
R̂→(R1,T1),µ1

Î→(I1,c1)
B
R1→(q1,r1,s1),ν1∓
I1→(j1,k1,l1) B

s1→(s′1,s
′′
1 ),ρ1

I1→(l′1,l
′′
1 )

B
T1→(t′1,t

′′
1 ),ζ1

c1→(c′1,c
′′
1 )

. (3.81)

The original projector (3.31) becomes a sum over the sub-projectors P = BBT ,

P
R̂→RT 1−,1+
Î1Ĵ1

=
∑

s′1,s
′′
1 ,t
′
1,t
′′
1 ,ρ1,ζ1

P
R̂→···→(q1,r1,s′1,s

′′
1 ,t
′
1,t
′′
1 ),µ1,ν1∓,ρ1,ζ1

Î Ĵ
(3.82)

and similarly

P̃
R̂→RT 2−,2+
Î2Ĵ2

=
∑

r′2,r
′′
2 ,t
′
2,t
′′
2 ,ρ2,ζ2

P
R̂→···→(q2,r′2,r

′′
2 ,s2,t

′
2,t
′′
2 ),µ2,ν2∓,ρ2,ζ2

Î Ĵ

˜̃P
R̂→RT 3−,3+
Î3Ĵ3

=
∑

q′3,q
′′
3 ,t
′
3,t
′′
3 ,ρ3,ζ3

P
R̂→···→(q′3,q

′′
3 ,r3,s3,t

′
3,t
′′
3 ),µ3,ν3∓,ρ3,ζ3

Î Ĵ
.

(3.83)

When summing over {t′i, t′′i } we can forget the constraint t′i ⊗ t′′i ' Ti , because the OPE

coefficient (3.50) contains sums over {Ti}.
All sub-projectors come from the irreducible decompositions of R̂ under the restriction

SL ↓ SFS ,

R̂ =
⊕

q′,q′′,r′,r′′,s′,s′′

g(q′,q′′,r′,r′′,s′,s′′;R̂)⊕

η=1

(q′ ⊗ q′′ ⊗ r′ ⊗ r′′ ⊗ s′ ⊗ s′′)η (3.84)
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Since the OPE coefficient CXY Z~h
has the Wick contraction structure of (3.76), we should

identify the representations as

q1 = t′2 = q′3 ∈ Hom(V`31−h2), t′1 = q2 = q′′3 ∈ Hom(Vh1)

r1 = r′2 = t′3 ∈ Hom(Vh3), t′′1 = r′′2 = r3 ∈ Hom(V`23−h1) (3.85)

s′1 = s2 = t′′3 ∈ Hom(V`12−h3), s′′1 = t′′2 = s3 ∈ Hom(Vh2)

and replace the multiplicity labels by

ξi∓ = {µi, νi∓, ρi, ξi} . (3.86)

Again, the trace over the product of sub-projectors is given by the generalized Racah-

Wigner tensors (C.28),

trR̂

(
P
R̂→···→(q1,r1,s

′
1,s
′′
1 ,t
′
1,t
′′
1 ),ξ1−,ξ1+

Î1Î2
P
R̂→···→(q2,r

′
2,r
′′
2 ,s2,t

′
2,t
′′
2 ),ξ2−,ξ2+

Î2Î3
P
R̂→···→(q′3,q

′′
3 ,r3,s3,t

′
3,t
′′
3 ),ξ3−,ξ3+

Î3Î1

)

= tr (WR̂W̃R̂
˜̃WR̂). (3.87)

From the identity of the projectors (A.46), this becomes

tr (WR̂ W̃R̂
˜̃WR̂) =

(
D123 dq1 dq2 dr1 dr3 ds2 ds3

)
δξ1− ξ2+ δξ2− ξ3+ δξ3− ξ1+

D123 = δq1t
′
2 δq1q

′
3 δt

′
1q2 δq2q

′′
3 δr1r

′
2 δr1t

′
3 δt

′′
1 r3 δ

′′
2 r3 δs

′
1s2 δs2t

′′
3 δs

′′
1 s3 δt

′′
2 s3 .

(3.88)

We need to sum over the representations and multiplicity labels. We conjecture that the

result is given by (C.39),

∑

ξ∓,ξ′∓,ξ
′′
∓

tr (WR̂ W̃R̂
˜̃WR̂) =

(
D123 dq1 dq2 dr1 dr3 ds2 ds3

)
δ
ν1− ν2+

δ
ν2− ν3+

δ
ν3− ν1+ G123

G′123 =

∣∣MR1,s1,ν1−

∣∣ ∣∣MR1,s1,ν1+

∣∣ ∣∣MR2,r2,ν2−

∣∣ ∣∣MR2,r2,ν2+

∣∣ ∣∣MR3,q3,ν3−

∣∣ ∣∣MR3,q3,ν3+

∣∣
|Mtot|3

(3.89)

where MR,r,ν is the slice of the total multiplicity space constrained by (R, r, ν).

The three-point function (3.53) becomes

C̃XY Z~h
=

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

(dq1 dq2 dr1 dr3 ds2 ds3) δ
ν1− ν2+

δ
ν2− ν3+

δ
ν3− ν1+ G′123 .

(3.90)

Here {qi, ri, si} must be consistent with Ri in (3.14). This condition is implicitly included

in the definition of δ in (C.37). In other words, the OPE coefficients are non-zero only if

(q1, q2, r1, r3, s2, s3) satisfy

q1 ⊗ q2 = q3, r1 ⊗ r3 = r2, s2 ⊗ s3 = s1, q1 ⊗ q2 ⊗ r1 ⊗ r3 ⊗ s2 ⊗ s3 = R̂ (3.91)

(R1)ν1∓=q1 ⊗ r1 ⊗(s2 ⊗ s3) , (R2)ν2∓=q2 ⊗ (r1 ⊗ r3)⊗ s2, (R3)ν3∓=(q1 ⊗ q2)⊗ r3 ⊗ s3
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which can be represented by

Õ1

Õ2

Õ3

q1

q2

q3

r1

r2

r3

s1

s2

s3

q2 r3

q1 s3

r1 s2

R̂

(3.92)

We find some difference from the case of C̃◦◦◦ in (3.70). First, we do not have a

sum over (q?1, q
?
2, r

?
1, r

?
3, s

?
2, s

?
3). This is because C̃XY Z~h

has the same structure of the Wick

contractions as the extremal correlators for each flavor X,Y, Z.4 Thus, the first line of (3.91)

is trivial. Second, there is no sum over {νi∓}, because {νi∓} are part of the operator data

Ri = {Ri, (qi, ri, si), νi−, νi+}. We should pick up the right combination of multiplicities

consistent with Ri .

Extremal case. Consider the situation where the operators consist of Z or Z only. This

means
0 = h1 = `31 − h2 = h3 , `23 = 0, VFS = V`12 ⊗ V`31

qi = ri = ∅, Ri = si , R̂ = R1 .
(3.93)

In particular, we do not need to specify νi∓ .

The quantity G′123 becomes

G′123 =
|MR1 |2 |MR2 |2 |MR3 |2

|Mtot|3
= g(R2, R3;R1) (3.94)

where we used

|MR1 | = 1, |MR2 | = |MR3 | = |Mtot| = g(R2, R3;R1). (3.95)

The three-point function (3.90) becomes

C̃XY Z~h
= L1!

DimNc(R1)

dR1

g(R2, R3;R1) (3.96)

which agrees with (3.75) after relabeling.

In appendix C.3 we consider the restricted Littlewood-Richardson coefficients, which

are related to the extremal three-point functions of different type.

4 Background independence at large Nc

We study the tree-level three-point functions in the representation basis, and check the

background independence conjectured in [43]. Our proof is based on the conjectured rela-

tions for the generalized Racah-Wigner tensor in appendix C.

4Recall that 〈ZZ〉 = 0 whereas any of 〈Z, Z̃〉, 〈Z̃Z〉, 〈ZZ〉 are non-zero.
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4.1 The LLM operators

Let us review the argument on the large-Nc background independence [43]. They mapped

the N = 4 SYM operators with the O(N0
c ) canonical dimensions to those with the O(N2

c )

canonical dimensions by attaching a large number of background boxes. We call the latter

LLM operators, because they correspond to stringy excitations on the LLM geometry.

Recall that the LLM geometries are the half-BPS solutions of IIB supergravity. This

implies that the addition of O(N2
c ) boxes should consist of a single holomorphic scalar

like ∼ ZN2
c .

For simplicity, we consider the operator mixing in the su(2) sector, at one-loop in λ at

any Nc . We expand the dilatation eigenstates in terms of the restricted Schur basis as

D1O∆ = ∆1O∆ , O∆ =
∑

R,r,s,ν∓

cR,(r,s),ν−,ν+ OR,(r,s),ν−,ν+ . (4.1)

We denote the action of the one-loop dilatation on the restricted Schur basis by

D1OR,(r,s),ν−,ν+ =
∑

T,t,u,µ−,µ+

N
R,(r,s),ν−,ν+
T,(t,u),µ−,µ+

OT,(t,u),µ−,µ+ (4.2)

and define the LLM operator by

O∆ → OLLM
∆ =

∑

R,(r,s),ν∓

cR,(r,s),ν−,ν+ O+R,(+r,s),ν−,ν+ . (4.3)

The operation r → (+++r) can be exemplified as

r = → (+++r) = (4.4)

Here there are O(1) white boxes, and O(N2
c ) gray boxes in total. Each edge of the gray

block has the length of O(Nc). The general form of the background Young diagram B is

shown in figure 1.

We specify a corner of the background Young diagram B, and consider a set of all

Young diagrams attached to that corner. This set of states has many interesting properties.

First, from the Littlewood-Richardson rule, we find

g(r, s;R) ' g(+++r, s;+++R), (Nc � 1). (4.5)

This allows us to use the same multiplicity labels ν∓ before and after the +++ operation. Note

that the tensor product (+++r) ⊗ s contains representations in which boxes are attached to

multiple corners of B. However, the overlap between such states and (+++r) is suppressed

by 1/Nc . Second, the hook length of (+++r) factorizes as [43]

hook+++r

hookr hookB
' (ηB)|r| (Nc � 1) (4.6)
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N1

N2

N3

N4

N5

M1M2M3M4

1

1′

2

2′

3

3′

4

4′

5

B =

Figure 1. The general background Young diagram B having a staircase shape, which corresponds

to the LLM geometry of concentric shapes by AdS/CFT. All Mi andNi areO(Nc), and
∑
iNi = Nc .

The gray and black boxes represent localized string excitations. To define the operation +++ we should

choose one gray box.

where ηB is the factor which depends only on B,

ηB ≡
C∏

k=1

L(k,C)

L(k, C)−Nk

D∏

l=C+1

L(C + 1, l)

L(C + 1, l)−Ml
, L(a, b) =

b∑

k=a

(Mk +Nk) (4.7)

assuming that the small diagram r is put at the C-th corner of B in figure 1. It follows that

(|B|+ |r|)!
|B|! ' |B||r| , d+++r

dr dB
' 1

|r|!

( |B|
ηB

)|r|
(Nc � 1). (4.8)

Since position of the C-th corner is (i, j) = (1 +
∑D

l=C+1Ml, 1 +
∑C

k=1Nk), from (A.5)

we get

DimNc(+++R)

DimNc(B)
' DimN ′c(R), N ′c = Nc +

D∑

l=C+1

Ml −
C∑

k=1

Nk . (4.9)
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In [43] they found that the operator mixing coefficients satisfy the identity

N
+R,(+r,s),ν−,ν+
+T,(+t,u),µ−,µ+

' NR,(r,s),ν−,ν+
T,(t,u),µ−,µ+

(Nc � 1) (4.10)

showing that

D1OLLM
∆ ' ∆1OLLM

∆ (Nc � 1). (4.11)

4.2 Tree-level OPE coefficients

We revisit two types of OPE coefficients in section 3. We will show that the OPE coefficients

of non-extremal three-point functions in N = 4 SYM are essentially same as those of the

LLM operators, after redefinition of Nc .

4.2.1 Adding a background tableau to C̃◦◦◦

Recall that C̃◦◦◦ is given by (3.70),

C̃◦◦◦ =
〈
ÔR1(L1)

1 [Z,1] ÔR2(L2)
2 [Z̃,1] ÔR3(L3)

3 [Z,1]
〉

=

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

∑

Q1`L2

∑

Q2`L3

∑

Q3`L1

(
3∏

i=1

dQi

)
G123 .

(4.12)

We obtain the OPE coefficients of the LLM operators by the substitution Q1 → (+++Q1),

while leaving Q2 , Q3 as before. From (3.71) it follows that

(+++R1) = (+++Q1)⊗Q2 , R2 = Q2 ⊗Q3 , (+++R3) = Q3 ⊗ (+++Q1)

(+++R̂) = (+++Q1)⊗Q2 ⊗Q3

(4.13)

and thus

C̃LLM
◦◦◦ ≡

〈
Ô+++R1(L1)

1 [Z,1] ÔR2(L2)
2 [Z̃,1] Ô+++R3(L3)

3 [Z,1]
〉

(4.14)

=
(+++L1)!L2!(+++L3)!

L1!(+++L2)!L3!

∑

(+R̂)`(+L)

DimNc(+++R̂)

d+++R1dR2d+++R3

∑

(+++Q1)`(+++L2)

∑

Q2 `L3

∑

Q3 `L1

(d+++Q1dQ2dQ3) GLLM
123 .

By using the identities in section 4.1, we find

C̃LLM
◦◦◦ ' (ηB)L WtNc(B)

L1!L2!L3!

L1!L2!L3!

∑

R̂`L

DimN ′c(R̂)

dR1dR2dR3

∑

Q1`L2

∑

Q2`L3

∑

Q3`L1

(dQ1dQ2dQ3) G123 .

(4.15)

If we remove the B -dependent prefactor (ηB)L WtNc(B), the OPE coefficient C̃LLM
◦◦◦ agrees

with C̃◦◦◦ up to the redefinition of Nc → N ′c in (4.9).
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4.2.2 Adding a background tableau to C̃XY Z~h

Recall that C̃XY Z~h
is given by (3.90),

C̃XY Z~h
=
〈
ÔR1(L1)

1 [X,Y , Z,1] ÔR2(L2)
2 [X,Y, Z,1] ÔR3(L3)

3 [X,Y, Z,1]
〉

=

(
3∏

i=1

Li!

Li!

)∑

R̂`L

DimNc(R̂)

dR1dR2dR3

(dq1 dq2 dr1 dr3 ds2 ds3) δ
ν1− ν2+

δ
ν2− ν3+

δ
ν3− ν1+ G′123

(4.16)

where Ri is defined in (3.14) as

Ri = {Ri, (qi, ri, si), νi−, νi+} , (Ri ` Li) . (4.17)

We obtain the OPE coefficients in the LLM background by the substitution

(s1 , s2 , s3)→ (+++s1 ,+++s2, s3) , while qi, ri are the same as before. From (3.91) we find

q1 ⊗ q2 = q3, r1 ⊗ r3 = r2, (+++s2)⊗ s3 = (+++s1), q1 ⊗ q2 ⊗ r1 ⊗ r3 ⊗ (+++s2)⊗ s3 = R̂

(+++R1)ν1∓ = q1 ⊗ r1 ⊗
(

(+++s2)⊗ s3

)

(+++R2)ν2∓ = q2 ⊗
(
r1 ⊗ r3

)
⊗ (+++s2)

(R3)ν3∓ =
(
q1 ⊗ q2

)
⊗ r3 ⊗ s3 .

(4.18)

It follows that

(C̃XY Z~h
)LLM =

(
(+++L1)!(+++L2)!L3!

L1!L2!(+++L3)!

)∑

R̂`L

DimNc(+++R̂)

d+++R1d+++R2dR3

(dq1 dq2 dr1 dr3 d+++s2 ds3) ×

δ
ν1− ν2+

δ
ν2− ν3+

δ
ν3− ν1+ G ′ LLM

123 . (4.19)

At large Nc, we can simplify this results following our discussion in section 4.1 as

(C̃XY Z~h
)LLM =

L3!

(L3 − |r1|)!

(
ηB

|B|

)|r1|
ηLB WtNc(B) × (4.20)

L1!L2!L3!

L1!L2!L3!

∑

R̂`L

DimN ′c(R̂)

dR1dR2dR3

(dq1 dq2 dr1 dr3 ds2 ds3) δ
ν1− ν2+

δ
ν2− ν3+

δ
ν3− ν1+G′123 .

The first line is a numerical prefactor, and the second line agrees with (C̃XY Z~h
) by the

redefinition of Nc → N ′c in (4.9).

5 Conclusion and outlook

In this paper, we have studied general non-extremal three-point functions of scalar multi-

trace operators at tree level valid for any values of Nc in gauge theory including N = 4

SYM, by using the representation theory of symmetric groups.
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We made full use of various new mathematical techniques. The quiver calculus of [29]

gives a collection of diagrammatic method which simplifies various objects in the repre-

sentation theory. The generalized Racah-Wigner tensor is introduced as an extension of

the 6j symbols. We conjectured formulae about the invariant products of the generalized

Racah-Wigner tensors, written in terms of the Littlewood-Richardson coefficients.

With these formulae, we provide strong evidence on the large Nc background indepen-

dence, a correspondence between small (O(N0
c )) and huge (O(N2

c )) operators of N = 4

SYM. The background independence has been checked for two-point functions as well as ex-

tremal three-point functions. Our argument demonstrates that it extends to non-extremal

three-point functions. These results will clarify the properties of stringy excitations on the

LLM backgrounds, particularly how they differ from the usual strings on AdS5 × S5.

Let us comment on some important future directions.

The first direction is to find a connection with the integrability results of the planar

N = 4 SYM. Clearly, the operators in the representation basis are not the eigenstates of

the dilatation operator of N = 4 SYM. One should think of the representation basis as

a tool for the finite Nc computation. The two-point functions of single-trace operators in

the su(2) sector have been computed in this way [27, 46], generalizing the old results of

the complex matrix model [47, 48]. A particularly interesting question is to determine the

so-called octagon frame, namely the tree-level part of the “simplest” four-point functions

of N = 4 SYM in the large charge limit [11]. The finite group methods developed in this

paper can be used for the exact finite -Nc computation, because it is a generalization of the

character expansion methods familiar in the matrix models [49–51].

The second direction is to refine our computation. The conjectured formula for the

invariant products of generalized Racah-Wigner tensor should be proven. The computation

of the n-point functions in the representation basis is also important. It is interesting to

ask whether one can bootstrap four-point functions out of two- and three-point data.

The third direction is to investigate a possible relation between quiver calculus and

knot theory. The 6j symbol of the unitary group has been extensively studied in the

context of knot theory and integrable systems [52]. Since the 6j symbols of symmetrical

groups are related to those of unitary groups, the quiver calculus could give a new insight

into the study of knot polynomials. For example, some non-trivial conjectures about the 6j

symbols have been made [53–55], though most of them discuss the multiplicity-free cases

only. Since the new invariants G123 and G′123 discussed in this paper are closely related

to the multiplicity structure, studying similar quantity in the case of unitary groups is a

fascinating problem.

Finally, we hope to find a clear understanding of the AdS/CFT correspondence of

the operators with huge anomalous dimensions, including giant gravitons [56, 57] and the

fluctuation in the LLM geometry [43, 58, 59]. Some correlation functions have been studied

such as three giants [60–62], two giants and one single-trace [63–70].
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A Survey of finite-group representation theory

We explain our notation and formulae used in the main text, while providing a brief survey

of the representation theory of finite groups. Our notation is similar to the one used in [22].

For more details on finite groups, see textbooks like [71, 72].

A.1 Basic notation

The symmetric group permuting L elements is denoted by SL . We denote the conjugacy

class of SL by

Cα =
1

|SL|
∑

γ∈SL
γαγ−1, (A.1)

The δ-function over SL (or C[SL]) is defined by

δ(β) =

{
1 (β = 1 ∈ SL)

0 (otherwise).
(A.2)

A permutation cycle is denoted by (12 . . . L) ∈ ZL . Any element of SL consists of per-

mutation cycles. The number of length-k cycles in σ ∈ SL is denoted by Cyck(σ). The

number of cycles in σ is

C(σ) =
∑

k

Cyck(σ) (A.3)

so that C(id) = C((1)(2) . . . (L)) = L.

A partition of L, or equivalently a Young diagram with L boxes, is denoted by R ` L.

Define

dR =
L!

hookR
, hookR =

∏

(i,j)∈R

(
hook length at (i, j)

)
(A.4)

DimN (R) =
dR
L!

WtN (R) , WtN (R) =
∏

(i,j)∈R
(N + i− j) (A.5)

where dR is the dimension of R as the representation of SL , and DimN (R) is the dimension

of R as the representation of U(N).5 For example, hookR and WtN (R) of the Young tableau

5WtN (R) is also denoted by fR in the literature, e.g. [23].
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R = are given by

5 4 2 1
2 1

⇒ hook = 5× 4× 2× 2× 1× 1

N N + 1 N + 2 N + 3

N − 1 N

⇒ WtN
( )

= (N − 1)N2 (N + 1) (N + 2) (N + 3) .

(A.6)

We assume that all representations are real and orthogonal.6 Denote the I-th compo-

nent of the irreducible representation R of SL by
∣∣∣RI
〉

, with I = 1, 2, . . . , dR . Introduce

the dual basis by 〈
R
I

∣∣∣S
J

〉
= δRS δIJ . (A.7)

Let DR
IJ(σ) be the representation matrix of σ ∈ Sm+n of the representation R ` L,

DR
IJ(σ) =

〈
R
I

∣∣∣σ
∣∣∣R
J

〉
= DR

JI(σ
−1). (A.8)

The character of the representation R for the group element σ is denoted by7

χR(σ) =

dR∑

I=1

DR
II(σ). (A.9)

By restricting σ ∈ SL = Sm+n to Sm ⊗ Sn , we obtain the irreducible decomposition8

R =
⊕

r`m
s`n

g(r, s;R) (r ⊗ s) =
⊕

r`m
s`n

g(r,s;R)⊕

ν=1

(r ⊗ s)ν (A.10)

where g(r, s;R) is the Littlewood-Richardson coefficient. It counts the number of r ⊗ s
appearing in the irreducible decomposition of R. The subscript ν is called the multiplicity

label. With an appropriate change of basis,9 we can transform the representation matrix

into a block-diagonal form,

DR
IJ(σ) = B




Dr(1)⊗s(1)
i1j1

(σ)

Dr(2)⊗s(2)
i2j2

(σ)

Dr(3)⊗s(3)
i3j3

(σ)
. . .



BT (σ ∈ Sm ⊗ Sn)

(A.11)

6The orthogonal form of the Young-Yamanouchi basis satisfies these conditions.
7Often we sum over the repeated indices of matrices. The symbol

∑
is written explicitly in appendix A.

8The restriction to a subgroup is also called subduction in the literature.
9This appropriate basis is called the split basis.
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such that it matches (A.10). By definition of the irreducible decomposition, there are no

off-block-diagonal elements including the multiplicity labels. For general σ ∈ Sm+n , the

matrix (A.11) has off-block-diagonal elements.10

Let
∣∣∣ r,si,j ν

〉
be an orthonormal basis of r ⊗ s at the ν-th multiplicity, satisfying

〈
r1 s1

i1 j1
ν1

∣∣∣ r2 s2

i2 j2
ν2

〉
= δr1r2 δs1s2 δν1ν2 δi1i2 δj1j2 (A.12)

for νk = 1, 2, . . . , g(rk, sk;R). The rotation matrix is called the branching coefficients,

defined by

B
R→(r,s),ν
I→(i,j) =

〈
R
I

∣∣∣ r s
i j

ν

〉
, (BT )

R→(r,s),ν
I→(i,j) =

〈
r s
i j

ν
∣∣∣R
I

〉
. (A.13)

A.2 Branching coefficients

We find from (A.11) that the branching coefficients satisfy the completeness relations

∑

r,s,ν

∑

i,j

B
R→(r,s),ν
I→(i,j) (BT )

R→(r,s),ν
J→(i,j) = δI,J (A.14)

∑

I

(BT )
R→(r1,r2),ν
I→(i1,i2) B

R→(s1,s2),µ
I→(j1,j2) = δr1,s1 δr2,s2 δνµ δi1,j1 δi2,j2 . (A.15)

In (A.15), we assume that two product representations r1 ⊗ r2 and s1 ⊗ s2 descend from

the same restriction Sm+n ↓ (Sm ⊗ Sn). If they descend from different restrictions, then

the two branching coefficients B and B̃ are unrelated, and we obtain another orthogonal

matrix ∑

I

(BT )
R→(r1,r2),ν
I→(i1,i2) B̃

R→(s1,s2),µ
I→(j1,j2) =

〈
r1 r2

i1 i2
ν
∣∣∣ s1 s2

j1 j2
µ

〉
. (A.16)

For example, given two irreducible decompositions

S6 ↓ (S4 ⊗ S2), = ⊗ ⊕ ⊗ ⊕ ⊗
S6 ↓ (S3 ⊗ S3), = ⊗ ⊕ ⊗ ⊕ ⊗ (A.17)

any pairs r1⊗r2 and s1⊗s2 from different restrictions can have non-vanishing overlap, e.g.

〈
⊗

i1, i2

∣∣∣ ⊗
j1, j2

〉
6= 0. (A.18)

Sometimes we take the coordinates explicitly in order to distinguish Sm+n ↓ (Sm⊗Sn) and

Sm+n ↓ (Sn ⊗ Sm). For example, the following two restrictions

Sm+n ↓ (Sm ⊗ Sn) ∼ Permute ({1, 2, . . . ,m})× Permute ({m+ 1, . . .m+ n})
Sm+n ↓ (Sn ⊗ Sm) ∼ Permute ({1, 2, . . . , n})× Permute ({n+ 1, . . . n+m})

(A.19)

define different branching coefficients, B
R→(r1,r2),ν
I→(i1,i2) and B̃

R→(s1,s2),µ
I→(j1,j2) .

10The restricted Schur basis should have off-block-diagonal elements with respect to the multiplicity

labels, which can be checked by counting the dimensions [46].
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From (A.11), we obtain the following identities for the matrix elements of γ = γ1 ◦γ2 ∈
Sm ⊗ Sn

DR
IJ(γ1 ◦ γ2) =

∑

r1,r2,ν

∑

i,j,k,l

Dr1
ik (γ1)Dr2

jl (γ2)B
R→(r1,r2)ν
I→(i,j) (BT )

R→(r1,r2)ν
J→(k,l) (A.20)

By multiplying B
R→(r1,r2)ν
J→(k′,l′) to (A.20) and summing over J , we find

∑

J

DR
IJ(γ1 ◦ γ2)B

R→(r1,r2)ν
J→(k,l) =

∑

i,j

Dr1
ik (γ1)Dr2

jl (γ2)B
R→(r1,r2)ν
I→(i,j) . (A.21)

Again, by multiplying (BT )
R→(r1,r2)µ
I→(i′,j′) to (A.21) and summing over J , we find

∑

I,J

DR
IJ(γ1 ◦ γ2) (BT )

R→(r1,r2)µ
I→(i,j) B

R→(r1,r2)ν
J→(k,l) = δµν Dr1

ik (γ1)Dr2
jl (γ2). (A.22)

In the r.h.s. , the matrix elements of γ1 ◦ γ2 in the split basis are independent of the

multiplicity labels µ, ν. This can be understood also from the construction of the Young-

Yamanouchi basis.

The branching coefficients (A.13) for general restriction SL ↓ (Sm1 ⊗ Sm2 ⊗ · · · ⊗ Sm`)
are given by

B
R→(r1 ,r2 ,... ,r`),ν
I→(i1 ,i2 ,... ,i`)

=

〈
R
I

∣∣∣ r1 r2 . . . r`
i1 i2 . . . i`

ν

〉
, (BT )

R→(r1 ,r2 ,... ,r`),ν
I→(i1 ,i2 ,... ,i`)

=

〈
r1 r2 . . . r`
i1 i2 . . . i`

ν
∣∣∣R
I

〉

(A.23)

for ν = 1, 2, . . . , g(r1 , r2 , . . . , r`;R). The generalized split basis can be defined by the

branching coefficients as in (A.11). The formula (A.20) is generalized as

DR
IJ(γ1 ◦ γ2 ◦ · · · ◦ γ`) (A.24)

=
∑

r1,r2,ν

∑

i,j,k,l

Dr1
i1k1

(γ1)Dr2
i2k2

(γ2) . . . Dr`
i`k`

(γ`)B
R→(r1 ,r2 ,... ,r`),ν
I→(i1 ,i2 ,... ,i`)

(BT )
R→(r1 ,r2 ,... ,r`),ν
J→(k1 ,k2 ,... ,k`)

.

for γ = γ1 ◦ γ2 ◦ · · · ◦ γ` ∈ (Sm1 ⊗ Sm2 ⊗ · · · ⊗ Sm`).

A.3 Restricted Schur basis

Consider the restriction SM ↓ (Sm1 ⊗ Sm2 ⊗ Sm3) with M = m1 + m2 + m3 , which

corresponds to the multi-trace operators with three complex scalars in (2.2).

Define the restricted Schur characters by using the branching coefficients [29],

χR,(r1,r2,r3),ν+,ν−(σ) ≡
∑

I,J

∑

i,j,k

B
R→(r1,r2,r3)ν+
I→(i,j,k) (BT )

R→(r1,r2,r3),ν−
J→(i,j,k) DR

IJ(σ), (σ∈SM ). (A.25)

Define the operator in the restricted Schur basis by

OR,(r1,r2,r3),ν+,ν− [X,Y, Z]=
1

m1!m2!m3!

∑

α∈SM
χR,(r1,r2,r3),ν+,ν−(α) trM

(
αX⊗m1Y ⊗m2Z⊗m3

)
.

(A.26)
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The inverse transformation from the restricted Schur basis to the permutation basis is

trM
(
αX⊗m1 Y ⊗m2 Z⊗m3

)

=
m1!m2!m3!

M !

∑

R,r1,r2,r3,µ+,µ−

dR
dr1dr2dr3

χR,(r1,r2,r3),µ+,µ−(α)OR,(r1,r2,r3),µ+,µ− (A.27)

which can be checked by the row orthogonality of the restricted characters (A.52),

1

M !

∑

σ∈SM
χR,(r1,r2,r3),ν+,ν−(σ)χS,(s1,s2,s3),µ+,µ−(σ)=

dr1dr2dr3
dR

δRSδr1s1δr2s2δr3s3δν+µ+δν−µ− .

(A.28)

As discussed in section 2.2, the tree-level two-point function is
〈
OR,(r1,r2,r3)(ν+,ν−)[X,Y, Z](x)OS,(s1,s2,s3)(µ+,µ−)[X,Y , Z](0)

〉

=
WtN (R)

|x|2M
hookR

hookr1hookr2hookr3
δRS δr1s1 δr2s2 δr3s3 δν+µ+ δν−µ− . (A.29)

A.4 Formulae

The formulae for the irreducible characters and the restricted characters will be summarized

below. For simplicity, we mostly consider the restriction Sm+n ↓ (Sm⊗Sn). Generalization

to SM ↓ (⊗kSmk) is straightforward.

Character orthogonality. Let R,S be the irreducible representations of SL . The rep-

resentation matrices satisfy the grand orthogonality relation

∑

σ∈SL
DR
ij(σ)DS

kl(σ
−1) =

L!

dR
δilδjk . (A.30)

By taking the trace, we obtain the row (or first) orthogonality relation of irreducible char-

acters,
∑

σ∈SL
χR(σ)χS(σ−1) = L! δRS . (A.31)

The irreducible characters also satisfy the column (or second) orthogonality relation,

∑

R`L
χR(σ)χR(τ) =

∑

γ∈SL
δ(σγτγ−1) =

{
|Cσ| (Cσ = Cτ )

0 (otherwise)
(A.32)

where |Cσ| is the number of elements in a given conjugacy class (A.1). This relation follows

from the fact that any class function can be expanded by irreducible characters

f(σ) = f(γσγ−1), (∀γ ∈ SL) ⇔ f(σ) =
∑

R`L
f̃R χ

R(σ). (A.33)

As a corollary, the δ-function can be written as

δ(β) =
1

L!

∑

R`L
dR χ

R(β). (A.34)
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Multiplicity label. There are several ways to understand Littlewood-Richardson coef-

ficients.

The first way is by restriction Sm+n ↓ (Sm ⊗ Sn) as in (A.10)

R =
⊕

r`m
s`n

g(r, s;R) (r ⊗ s) . (A.35)

The second way is by induction,

r ⊗ s =
⊕

R

g(r, s;R)R (A.36)

Frobenius reciprocity guarantees the consistency between (A.36) and (A.35). Finally, the

Littlewood-Richardson coefficient can be computed by

g(r, s;R) =
1

|Sm ⊗ Sn|
∑

α∈Sm

∑

β∈Sn
χr(α)χs(β)χR(α ◦ β) (A.37)

where α ◦ β ∈ Sm ⊗ Sn ⊂ Sm+n .

The generalized Littlewood-Richardson coefficient for ⊗lk=1Smk is given by

g(r1, r2, . . . , rl;R) =
1

| ⊗lk=1 Smk |
∑

{σk∈Smk}

(
l∏

k=1

χrk(σk)

)
χR(σ1 ◦ σ2 ◦ · · · ◦ σl). (A.38)

They satisfy a recursion relation

∑

R`M
g(r1, r2, . . . , rl;R) g(R, rl+1;S) = g(r1, r2, . . . , rl+1;S),

(
M =

l∑

k=1

mk

)
(A.39)

which can be shown from (A.32). The equation (A.39) implies an important identity for

multiple branching coefficients

B
S→(r1,r2,...,rl+1),η
I→(a1,a2,...,al+1) =

∑

R

dR∑

A=1

B
S→(R,rl+1),µ
I→(A,al+1) B

R→(r1,r2,...,rl),ρ
A→(a1,a2,...,al)

(A.40)

η=1, 2, . . . , g(r1, r2, . . . , rl+1;S), µ=1, 2, . . . , g(R, rl+1;S), ρ=1, 2, . . . , g(r1, r2, . . . , rl;R).

Schur-Weyl duality. The quantity NC(σ) is a class function. We obtain its irreducible

decomposition (A.33) by using the Schur-Weyl duality [19] as

NC(σ) =
∑

R`L
DimN (R)χR(σ). (A.41)

Note that DimN (R) = 0 if the height of the Young diagram R is larger than N , as can be

seen from (A.5). By applying the grand orthogonality relation (A.30), we find
∑

σ∈SL
DS
IJ(σ)NC(σ) = δIJ DimN (S) hookS = δIJ WtN (S). (A.42)

By multiplying the branching coefficients as in (A.44), we obtain another formula [23]
∑

σ∈Sm+n

χR,(r,s),ν+,ν−(σ)NC(σ) = δν+ν− drdsWtN (R). (A.43)
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Restricted projector. We define the restricted projector

PR,(r1,r2),ν+,ν− =
dR

(m+ n)!

∑

σ∈Sm+n

χR,(r1,r2),ν+,ν−(σ)σ ∈ C[Sm+n] (A.44)

so that [46]

χR,(r1,r2),ν+,ν−(σ) = χR
(
PR,(r1,r2),ν+,ν−σ

)
(A.45)

PR,(r1,r2),ν+,ν− PS,(s1,s2),µ+,µ− = δRS δr1s1 δr2s2 δν−µ+ PR,(r1,r2),ν+,µ− . (A.46)

By comparing (A.45) and (A.25), one finds

P
R,(r1,r2),ν+,ν−
IJ ≡ DR

IJ

(
PR,(r1,r2),ν+,ν−

)
=
∑

i,j

B
R→(r1,r2)ν+
I→(i,j) (BT )

R→(r1,r2),ν−
J→(i,j) . (A.47)

It follows that

χR
(
PR,(r1,r2),ν+,ν−

)
=
∑

I

∑

i,j

B
R→(r1,r2)ν+
I→(i,j) (BT )

R→(r1,r2),ν−
I→(i,j) = δν+ν− dr1 dr2 . (A.48)

The restricted projector is useful for fixing the normalization. These formulae as well as

the following identities can be proven by using the quiver calculus in appendix B.

Restricted character orthogonality. The restricted characters (A.25) satisfy the iden-

tities

χR,(r,s),ν+,ν−(σ) = χR,(r,s),ν−,ν+(σ−1) (A.49)

χR,(r,s),ν+,ν−(γσγ−1) = χR,(r,s),ν+,ν−(σ) (∀γ ∈ Sm ⊗ Sn) (A.50)

χR,(r,s),ν+,ν−(σ1 ◦ σ2) = δν+ν− χr(σ1)χs(σ2) (∀σ1 ◦ σ2 ∈ Sm ⊗ Sn) (A.51)

where the last relation is consistent with (A.22). The row and column orthogonality rela-

tions (A.32) are generalized as

1

(m+ n)!

∑

σ∈Sm+n

χR,(r1,r2),ν+,ν−(σ)χS,(s1,s2),µ+,µ−(σ) =
dr1dr2
dR

δRSδr1s1δr2s2δν+µ+δν−µ−

(A.52)

∑

R,r1,r2,ν+,ν−

dR
dr1dr2

χR,(r1,r2),ν+,ν−(σ)χR,(r1,r2),ν+,ν−(τ) =
(m+ n)!

m!n!

∑

γ∈Sm⊗Sn
δ(γσγ−1τ−1).

(A.53)

One can generalize the grand orthogonality relation (A.30) with the branching coeffi-

cients in two ways. First, let R and S be the irreducible representations of Sm+n . A sum

over Sm+n gives

1

(m+ n)!

∑

σ∈Sm+n

DR
IJ(σ)B†R→(r1,r2)ν+

I→(i,j) B
R→(r1,r2)ν−
J→(k,l) DS

MN (σ)B†S→(s1,s2)µ+
M→(m,n) B

S→(s1,s2)µ−
N→(p,q)

=
δRS

dR
δν+µ+ δν−µ− δr1,s1 δr2,s2 δi,m δj,n δk,p δl,q (A.54)
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which reduces to (A.52) by taking the trace over r1⊗ r2 = s1⊗ s2. Second, let (r1, r2) and

(s1, s2) be the irreducible representations of Sm ⊗ Sn . A sum over Sm ⊗ Sn gives

1

m!n!

∑

σ∈Sm⊗Sn
DR
IJ(σ)B†R→(r1,r2)ν+

I→(i,j) B
R→(r1,r2)ν−
J→(k,l) DS

MN (σ)B†S→(s1,s2)µ+
M→(m,n) B

S→(s1,s2)µ−
N→(p,q)

=
δr1s1δr2s2

dr1dr2
δν+ν− δµ+µ− δi,m δj,n δk,p δl,q (A.55)

where we used (A.22)

B Quiver calculus

Let us introduce a graphical notation of various representation-theoretical objects follow-

ing [29]. We denote the indices of R ` L = (m+ n) by a double line, and those of r1 ` m
or r2 ` n by a single line. We use different lines to distinguish two set of representations

{R, (r1, r2)} and {S, (s1, s2)}.
The matrix representation of a permutation group element is represented by

σDR
IJ(σ) =

I

J

= σ

J

I

= σ−1

I

J

(B.1)

by using (A.8). Note that the matrix transposition is represented as flipping all the arrow

directions. The composition of permutations is

σ τDR
IJ(στ) =

dR∑

K=1

DR
IK(σ)D

R
KJ(τ) =

I

J

=

σ

τ

I

J

(B.2)

The grand orthogonality relation (A.30) is

1

L!

∑

σ∈SL
= σ

I

J

σ−1

K

L

=
δRS

dR

I

J

K

L

=
δRS

dR
δIL δJK (B.3)

or equivalently

σ
1

L!

∑

σ∈SL

I

J

σ

K

L

σ=
1

L!

∑

σ∈SL

I

J

σ−1

K

L

=
δRS

dR
=

δRS

dR

I

J

K

L

=
δRS

dR
δIK δJL . (B.4)
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The branching coefficients (A.13) are represented as

B
R→(r1,r2)ν
I→(i,j) = ν

I

i j

(BT )
R→(r1,r2)ν
I→(i,j) = ν

i j

I

(B.5)

We use double lines for the indices of Sm+n , wavy lines for Sm and straight lines for Sn .

The completeness relations of the branching coefficients (A.14), (A.15) are

∑

r1,r2,ν

ν

ν

I

J

=

I

J

ν

µ

i j

k l

= δνµ δr1s1 δr2s2

i j

k l

(B.6)

where we assumed that r1 ⊗ r2 and s1 ⊗ s2 follow from the same restriction of R. If

the two product representations descend from different restrictions, we get the orthogonal

matrix (A.16)

ν

µ

i j

k l

=
ν

µ

i j

k l

(B.7)

The relation (A.21) is expressed as

ν

I

γ1 γ2

i j

=
ν

γ1 ◦ γ2

i j

I

(B.8)
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The identity for multiple branching coefficients (A.40) is

I

η

al al+1. . .a2a1

=
∑

S

I

µ

ρ

al al+1. . .a2a1

S (B.9)

The character and the restricted characters are

σχR(σ) = χR(σ−1) = σχR(r1,r2)(ν+,ν−)(σ) =

ν+

ν−

σ−1=

ν+

ν−

(B.10)

We can show the row orthogonality of the restricted character as

σ
1

L!

∑

σ∈SL

ν+

ν−

σ−1

µ+

µ−

=
δRS

dR

ν+

ν−

µ+

µ−

=
dr1dr2
dR

δRS δν+µ+ δν−µ− δr1s1 δr2s2 .

(B.11)

To show the column orthogonality, we insert the resolution of identity on the irreducible

representation R by (A.30),

δil δjk =
dR
L!

∑

γ∈SL
DR
ij(γ)DR

kl(γ
−1), (i, j, k, l = 1, 2, . . . , dR). (B.12)

We obtain

σ
∑

R`L
τ =

∑

R`L

dR
L!

∑

γ∈SL

σ

γ

γ−1

τ−1 =
∑

γ∈SL
δ(σγτ−1γ−1) (B.13)
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where we used (A.34). Note that

∑

γ∈SL
δ(σγτ−1γ−1) =

∑

ω∈SL
δ(σωτω−1), (ωτ = γ ∈ SL). (B.14)

Similarly, we can derive the column orthogonality for the restricted characters (A.53). By

using

δil δjk =
dr1
m!

∑

γ∈Sm
Dr1
ij (γ1)Dr1

kl (γ
−1
1 ), (i, j, k, l = 1, 2, . . . , dr1)

δmq δnp =
dr2
n!

∑

γ∈Sn
Dr2
mn(γ2)Dr2

pq(γ
−1
2 ), (i, j, k, l = 1, 2, . . . , dr2)

(B.15)

we find

σ
∑

R,r1,r2,ν+,ν−

dR
dr1dr2

ν+

ν−

τ

ν+

ν−

=
∑

R,r1,r2,ν+,ν−

dR
m!n!

∑

γ1∈Sm
γ2∈Sn

σ

ν+

ν−

γ1 γ2

γ−1
1 γ−1

2

ν+

ν−

τ−1

=
∑

R,r1,r2,ν+,ν−

dR
m!n!

∑

γ∈Sm⊗Sn
σ

γ

γ−1

ν+

ν−

ν+

ν−

τ−1

=
∑

R`L

dR
m!n!

σ

γ

γ−1

τ−1

=
(m+ n)!

m!n!

∑

γ∈Sm⊗Sn
δ(σγ−1τ−1γ).

(B.16)

In the last line, we cannot use (B.14), because γ ∈ Sm ⊗ Sn ( Sm+n.
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We can show the restricted grand orthogonality (A.54) by

σ
1

L!

∑

σ∈SL

ν+

ν−

i j

k l

σ

µ+

µ−

m n

p q

=
δRS

dR

ν+

ν−

i j

k l

µ+

µ−

m n

p q

=
δRS

dR
δν+µ+ δν−µ− δr1,s1 δr2,s2 δi,m δj,n δk,p δl,q .

(B.17)

Restricted projector. The restricted projector (A.44) can be represented as

PR,(r1,r2),ν+,ν− =
dR

(m+ n)!

∑

σ∈Sm+n

σ · σ

ν+

ν−

(B.18)

which is an element of C[Sm+n] and not a number. Its matrix elements are given by the

branching coefficients (A.47), which can be shown by

P
R,(r1,r2),ν+,ν−
IJ =

dR
(m+ n)!

∑

σ∈Sm+n

σ

I

J

σ

ν+

ν−

=
dR

(m+ n)!

∑

σ∈Sm+n

σ

I

J

σ−1

ν+

ν−

=

ν+

ν−

I

J

(B.19)
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The identity (A.46) follows from the calculation

dRdS
(m+ n)!2

∑

σ,τ∈Sm+n

σ τ · σ

ν+

ν−

τ

µ+

µ−

=
dRdS

(m+ n)!2

∑

σ,ρ∈Sm+n

ρ · σ

ν+

ν−

σ−1

ρ

µ+

µ−

=
δRS dR

(m+ n)!

∑

ρ∈Sm+n

ρ ·

ν+

ν−

ρ

µ+

µ−

= δRS δr1s1 δr2s2 δν−µ+
dR

(m+ n)!

∑

σ∈Sm+n

ρ · ρ

ν+

µ−

(B.20)

C Generalized Racah-Wigner tensor

The associativity of triple tensor-product representations gives rise to the 6j symbols,

which is also called Wigner’s 6j invariants [73], Racah W -coefficients [74] or recoupling

coefficients [75],
{
j1 j2 j1+2

j3 J j2+3

}
: Hom

(
(j1 ⊗ j2)⊗ j3, J

)
→ Hom

(
j1 ⊗ (j2 ⊗ j3), J

)
. (C.1)

The problem of computing 6j symbol is called the Racah-Wigner calculus.

We construct a slightly general object from the branching coefficients. The generalized

6j symbol is covariant under the action of symmetric groups, and contains four multiplicity

labels.
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C.1 Case of C̃◦◦◦

Consider two ways of the double restriction

SL ↓ (SL1+L2⊗SL3) ↓ (SL1⊗SL2⊗SL3) , SL ↓ (SL1⊗SL2+L3) ↓ (SL1⊗SL2⊗SL3) (C.2)

with L = L1 +L2 +L3 , which corresponds to the calculation of C̃◦◦◦ in section 3.4.1. They

induce the irreducible decompositions

R̂ =
⊕

R12,q3

g(R12, q3; R̂)R12 ⊗ q3 =
⊕

q1,q2,q3

g(q1, q2;R12)g(R12, q3; R̂) q1 ⊗ q2 ⊗ q3

R̂ =
⊕

R23,q′1

g(R23, q
′
1; R̂) q′1 ⊗R23 =

⊕

q′1,q
′
2,q
′
3

g(q′2, q
′
3;R23)g(R23, q

′
1; R̂) q′1 ⊗ q′2 ⊗ q′3 .

(C.3)

The corresponding branching coefficients are
∣∣∣∣
R̂

Î

〉
=

∣∣∣∣
R12 q3

I c
µ

〉
(BT )

R̂→(R12,q3),µ

Î→(I,c)
=

∣∣∣∣
q1 q2 q3

a b c
µ ρ

〉
(BT )

R̂→(R12,q3),µ

Î→(I,c)
(BT )

R12→(q1,q2),ρ
I→(a,b)

=

∣∣∣∣
q′1 R23

a′ I ′
µ′
〉

(B̃T )
R̂→(q′1,R23),µ′

Î→(a′,I′)
=

∣∣∣∣
q′1 q

′
2 q
′
3

a′ b′ c′
µ′ ρ′

〉
(B̃T )

R̂→(q′1,R23),µ′

Î→(a′,I′)
(B̃T )

R23→(q′2,q
′
3),ρ′

I′→(b′,c′) .

(C.4)

The multiplicity labels (µ, ρ) and (µ′, ρ′) run over the spaces

ξ ≡ (µ, ρ) ∈M12 , |M12| = g(q1, q2;R12) g(R12, q3; R̂)

ξ′ ≡ (µ′, ρ′) ∈M23 , |M23| = g(q2, q3;R23) g(R23, q1; R̂)
(C.5)

which are subsets of the total multiplicity space induced by the irreducible decomposition

R̂ =
⊕

q1,q2,q3

⊕

η ∈M1,2,3

(q1 ⊗ q2 ⊗ q3)η ,

∣∣∣∣
R̂

Î

〉
=

∑

q1,q2,q3,η

∣∣∣∣
q1 q2 q3

a b c
η

〉
(BT )

R̂→(q1,q2,q3),η

Î→(a,b,c)

η ∈Mtot , |Mtot| = g(q1, q2, q3; R̂).

(C.6)

From the identity (A.40), we obtain the following relation between the branching coeffi-

cients in (C.4) and (C.6),
〈
q̃1 q̃2 q̃3

ã b̃ c̃
η̃
∣∣∣ q1 q2 q3

a b c
µ ρ

〉
=
∑

R̃12

〈
q̃1 q̃2 q̃3

ã b̃ c̃
µ̃ ρ̃
∣∣∣ q1 q2 q3

a b c
µ ρ

〉

= δq̃1q1 δq̃2q2 δq̃3q3 δµ̃µ δρ̃ρ δãa δb̃b δc̃c

(C.7)

where the r.h.s. depends on R12 through the multiplicity space of (µ, ρ) in (C.5).

We define the orthogonal matrix (A.16) between the two states by

UR̂

(
q1 q2 q3 R12 µ ρ

q′1 q
′
2 q
′
3 R23 µ

′ ρ′

)

abc,a′b′c′

≡
〈
q1 q2 q3

a b c
µ ρ
∣∣∣ q
′
1 q
′
2 q
′
3

a′ b′ c′
µ′ ρ′

〉
(C.8)

=

dR̂∑

Î=1

dR12∑

I=1

dR23∑

I′=1

(BT )
R̂→(R12,q3),µ

Î→(I,c)
(BT )

R12→(q1,q2),ρ
I→(a,b) B̃

R̂→(q′1,R23),µ′

Î→(a′,I′)
B̃
R23→(q′2,q

′
3),ρ′

I′→(b′,c′) (C.9)
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and call it the generalized Racah-Wigner tensor. Our notation is slightly redundant be-

cause the generalized Racah-Wigner tensor is proportional to
∏3
i=1 δ

qiq
′
i , which follows

from (C.8). The usual 6j symbol for a symmetric group is given by

tr (UR̂) ≡
∑

a,b,c

UR̂

(
q1 q2 q3 R12 µ ρ

q1 q2 q3 R23 µ
′ ρ′

)

abc,abc

. (C.10)

The generalized Racah-Wigner tensor can be depicted as

UR̂

(
q1 q2 q3 R12 µ ρ

q′1 q
′
2 q
′
3 R23 µ

′ ρ′

)

abc,a′b′c′

=

a′

b′

c′
ρ′

µ′ µ

ρ

a

b

c

(C.11)

We want to compute the products of generalized Racah-Wigner tensors

tr (UR̂ ŨR̂) ≡
∑

µ,ρ,µ′,ρ′
UR̂

(
q1 q2 q3 R12 µ ρ

q′1 q
′
2 q
′
3 R23 µ

′ ρ′

)

abc,a′b′c′

UR̂

(
q′1 q

′
2 q
′
3 R23 µ

′ ρ′

q1 q2 q3 R12 µ ρ

)

a′b′c′,abc

tr (UR̂ ŨR̂
˜̃UR̂) ≡

∑

µ,ρ,µ′,ρ′,µ′′,ρ′′
UR̂

(
q1 q2 q3 R12 µ ρ

q′1 q
′
2 q
′
3 R23 µ

′ ρ′

)

abc,a′b′c′

× (C.12)

UR̂

(
q′1 q′2 q′3 R23 µ′ ρ′

q′′1 q′′2 q′′3 R23 µ
′′ ρ′′

)

a′b′c′,a′′b′′c′′

UR̂

(
q′′1 q′′2 q′′3 R23 µ

′′ ρ′′

q1 q2 q3 R12 µ ρ

)

a′′b′′c′′,abc

which are rewriting of the product of projectors (3.55),

tr (UR̂ ŨR̂) = trR̂

(
PR̂→···→(q1,q2,q3),µρ,µρ P̃R̂→···→(q′1,q

′
2,q
′
3),µ

′ρ′,µ′ρ′
)

tr (UR̂ ŨR̂
˜̃UR̂) = trR̂

(
PR̂→···→(q1,q2,q3),µρ,µρ P̃R̂→···→(q′1,q

′
2,q
′
3),µ

′ρ′,µ′ρ′ ˜̃PR̂→···→(q′′1 ,q
′′
2 ,q
′′
3 ),µ′′ρ′′,µ′′ρ′′

)
.

(C.13)

By using ξ, ξ′, ξ′′ in (C.5), we depict these products as

tr (UR̂ ŨR̂) =

ξ ξ

ξ′ ξ′

tr (UR̂ ŨR̂
˜̃UR̂) = ξ ξ′′

ξ′′

ξ′ ξ′

ξ

(C.14)
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By grouping pairs of nodes with the same color, we obtain the projector representa-

tion (C.13). From the identity of the projectors (A.46), we get

tr (UR̂ ŨR̂) =

(
3∏

i=1

δqiq
′
i dqi

)
δξ1 ξ2 δξ2 ξ1

tr (UR̂ ŨR̂
˜̃UR̂) =

(
3∏

i=1

δqiq
′
i δqiq

′′
i dqi

)
δξ1 ξ2 δξ2 ξ3 δξ3 ξ1

(C.15)

where we do not sum over the repeated indices (ξi’s).

The product tr (UR̂ ŨR̂) satisfies the following sum rules,

∑

R23

∑

ξ1,ξ2

tr (UR̂ ŨR̂) =

(
3∏

i=1

δqiq
′
i dqi

)
g(q1, q2;R12) g(R12, q3; R̂)

∑

R12

∑

ξ1,ξ2

tr (UR̂ ŨR̂) =

(
3∏

i=1

δqiq
′
i dqi

)
g(q2, q3;R23) g(R23, q1; R̂).

(C.16)

We can derive these sum rules by using the identities (A.40), (A.15) and (C.7), as

∑

R23

∑

µ,ρ,µ′,ρ′

ρ

µ µ′

ρ′ ρ′

µ′ µ

ρ

=
∑

µ,ρ,η′

ρ

µ η′ η′ µ

ρ

= δq
′
1q1 δq

′
2q2 δq

′
3q3 dq1dq2dq3 g(R12, q3; R̂) g(q1, q2;R12) .

(C.17)

A solution to the equations (C.16) is

∑

ξ1,ξ2

tr (UR̂ŨR̂)
?
=

(
3∏

i=1

δqiq
′
i dqi

)
g(q1, q2;R12) g(R12, q3; R̂) g(q2, q3;R23) g(R23, q1; R̂)

g(q1, q2, q3; R̂)
.

(C.18)
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We conjecture that both sides are equal, and continue the discussion below. Similarly, we

find

∑

R31

∑

ξ1,ξ2,ξ3

tr (UR̂ŨR̂
˜̃UR̂) =

(
3∏

i=1

δq
′′
i qi δq

′′
i q
′
i

) ∑

µ,ρ,µ′,ρ′
UR̂

(
q1 q2 q3 R12 µ ρ

q′1 q
′
2 q
′
3 R23 µ

′ ρ′

)

abc,a′b′c′

×

UR̂

(
q′1 q

′
2 q
′
3 R23 µ

′ ρ′

q1 q2 q3 R12 µ ρ

)

a′b′c′,abc

∑

R23

∑

ξ1,ξ2,ξ3

tr (UR̂ŨR̂
˜̃UR̂) =

(
3∏

i=1

δq
′
iqi δq

′
iq
′′
i

) ∑

µ,ρ,µ′′,ρ′′
UR̂

(
q1 q2 q3 R12 µ ρ

q′′1 q′′2 q′′3 R31 µ
′′ ρ′′

)

abc,a′′b′′c′′

×

UR̂

(
q′′1 q′′2 q′′3 R31 µ

′′ ρ′′

q1 q2 q3 R12 µ ρ

)

a′′b′′c′′,abc

∑

R12

∑

ξ1,ξ2,ξ3

tr (UR̂ŨR̂
˜̃UR̂) =

(
3∏

i=1

δq
′′
i qi δq

′′
i q
′
i

) ∑

µ′,ρ′,µ′′,ρ′′
UR̂

(
q′′1 q′′2 q′′3 R31 µ

′′ ρ′′

q′1 q′2 q′3 R23 µ′ ρ′

)

a′′b′′c′′,a′b′c′

×

UR̂

(
q′1 q′2 q′3 R23 µ′ ρ′

q′′1 q′′2 q′′3 R31 µ
′′ ρ′′

)

a′b′c′,a′′b′′c′′

. (C.19)

A solution to these equations is

∑

ξ1,ξ2,ξ3

tr (UR̂ŨR̂
˜̃UR̂) =

(
3∏

i=1

δqiq
′
i δq

′
iq
′′
i dqi

)
×

g(q1, q2;R12) g(R12, q3; R̂) g(q2, q3;R23) g(R23, q1; R̂) g(q3, q1;R31) g(R31, q2; R̂)

g(q1, q2, q3; R̂)2
. (C.20)

In view of (C.15), our conjecture is summarized as

∑

ξ1∈M12

∑

ξ2∈M23

δξ1 ξ2 δξ2 ξ1 =
|M12| |M23|
|Mtot|

∑

ξ1∈M12

∑

ξ2∈M23

∑

ξ3∈M31

δξ1 ξ2 δξ2 ξ3 δξ3 ξ1 =
|M12| |M23| |M31|

|Mtot|2
.

(C.21)

C.2 Case of C̃XY Z~h

Consider another set of restrictions

SL ↓
((

(SL5 ⊗ SL6)⊗ SL1 ⊗ SL3

)
⊗ (SL2 ⊗ SL4)

)

SL ↓
((

(SL3 ⊗ SL4)⊗ SL2 ⊗ SL5

)
⊗ (SL1 ⊗ SL6)

)

SL ↓
((

(SL1 ⊗ SL2)⊗ SL4 ⊗ SL6

)
⊗ (SL3 ⊗ SL5)

)
(C.22)
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with L =
∑6

i=1 Li , which correspond to the case of C̃XY Z~h
in section 3.4.2. They induce

the irreducible decomposition

R̂ =
⊕

Q,R,T

⊕

{qi}

{
g(q5, q6;Q)g(Q, q1, q3;R)g(q2, q4;T )g(R, T ; R̂)

6⊗

i=1

qi

}

R̂ =
⊕

Q′,R′,T ′

⊕

{q′i}

{
g(q′3, q

′
4;Q′)g(Q′, q′2, q

′
5;R′)g(q′1, q

′
6;T ′)g(R′, T ′; R̂)

6⊗

i=1

q′i
}

R̂ =
⊕

Q′′,R′′,T ′′

⊕

{q′′i }

{
g(q′′1 , q

′′
2 ;Q′′)g(Q′′, q′′4 , q

′′
6 ;R′′)g(q′′3 , q

′′
5 ;T ′′)g(R′′, T ′′; R̂)

6⊗

i=1

q′′i
}
.

(C.23)

We fix the representations (R,Q), (R′, Q′), (R′′, Q′′) and the multiplicity labels ν, ν ′, ν ′′

according to the external operators. The space of multiplicities run over the spaces

ξ ∈MR,Q,ν , ξ′ ∈MR′,Q′,ν′ , ξ′′ ∈MR′′,Q′′,ν′′ (C.24)

where
|MR,Q,ν | = g(q5, q6;Q)g(q2, q4;T )g(R, T ; R̂)

∣∣MR′,Q′,ν′
∣∣ = g(q′3, q

′
4;Q′)g(q′1, q

′
6;T ′)g(R′, T ′; R̂)

∣∣MR′′,Q′′,ν′′
∣∣ = g(q′′1 , q

′′
2 ;Q′′)g(q′′3 , q

′′
5 ;T ′′)g(R′′, T ′′; R̂)

(C.25)

They are subsets of the total multiplicity space

|Mtot| ≡ g(q1, q2, q3, q4, q5, q6; R̂), (C.26)

|Mtot| =
∑

R,Q

g(Q,q1,q3;R)∑

ν=1

|MR,Q,ν | =
∑

R′,Q′

g(Q′,q′2,q
′
5;R′)∑

ν′=1

∣∣MR′,Q′,ν′
∣∣

=
∑

R′′,Q′′

g(Q′′,q′′4 ,q
′′
6 ;R′′)∑

ν′=1

∣∣MR′′,Q′′,ν′′
∣∣ .

Since the restricted Schur characters have two multiplicity labels (A.25), we introduce

ξ± ∈MR±,Q±,ν± , ξ′± ∈MR′±,Q
′
±,ν
′
±
, ξ′′± ∈MR′′±,Q

′′
±,ν
′′
±

(C.27)

where the ± signs are correlated.11

Let us define the generalized Racah-Wigner tensor by

WR̂

(
q1 q2 . . . q6 R− ξ−
q′1 q

′
2 . . . q

′
6 R

′
+ ξ′+

)

ab...f,a′b′...f ′

≡
〈
q1 q2 . . . q6

a b . . . f
ξ−
∣∣∣ q
′
1 q
′
2 . . . q

′
6

a′ b′ . . . f ′
ξ′+

〉
(C.28)

which is again proportional to
∏6
i=1 δ

qiq
′
i . The r.h.s. depends in R− , R′+ through the

multiplicity space ξ ∈MR−,Q−,ν− , ξ
′
+ ∈MR′+,Q

′
+,ν
′
+

, as we discussed in (C.7). We want to

11Note that (R−, R
′
−, R

′′
−) = (R+, R

′
+, R

′′
+) in the main text. We removed these constraints for conve-

nience.
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compute their products

tr (WR̂ W̃R̂) ≡
∑

ξ∓,ξ′∓

WR̂

(
q1 q2 . . . q6 R− ξ−
q′1 q

′
2 . . . q

′
6 R

′
+ ξ′+

)

ab...f,a′b′...f ′

×

WR̂

(
q′1 q

′
2 . . . q

′
6 R

′
− ξ′−

q1 q2 . . . q6 R+ ξ+

)

a′b′...f ′,ab...f

(C.29)

tr (WR̂ W̃R̂
˜̃WR̂) ≡

∑

ξ∓,ξ′∓,ξ
′′
∓

WR̂

(
q1 q2 . . . q6 R− ξ−
q′1 q

′
2 . . . q

′
6 R

′
+ ξ′+

)

ab...f,a′b′...f ′

× (C.30)

WR̂

(
q′1 q′2 . . . q

′
6 R

′
− ξ′−

q′′1 q′′2 . . . q′′6 R′′+ ξ′′+

)

a′b′...f ′,a′′b′′...f ′′

WR̂

(
q′′1 q′′2 . . . q′′6 R′′− ξ′′−
q1 q2 . . . q6 R+ ξ+

)

a′′b′′...f ′′,ab...f

.

They are identical to the product of projectors (3.55),

tr (WR̂ W̃R̂)=trR̂

(
P
R̂→···→(q1,q2,...,q6),ξ−,ξ+

Î1Î2
P
R̂→···→(q′1,q

′
2,...,q

′
6),ξ
′
−,ξ
′
+

Î2Î1

)
(C.31)

tr (WR̂W̃R̂
˜̃WR̂)=trR̂

(
P
R̂→···→(q1,q2,...,q6),ξ−,ξ+

Î1Î2
P
R̂→···→(q′1,q

′
2,...,q

′
6),ξ
′
−,ξ
′
+

Î2Î3
P
R̂→···→(q′′1 ,q

′′
2 ,...,q

′′
6 ),ξ′′−,ξ

′′
+

Î3Î1

)
.

These products are depicted as

tr (WR̂ W̃R̂) =

ξ− ξ+

ξ′+ ξ′−

tr (WR̂ W̃R̂
˜̃WR̂) = ξ− ξ′′+

ξ′′−

ξ′+ ξ′−

ξ+

(C.32)

As a corollary of the identity of the projectors (A.46), we find that

tr (WR̂ W̃R̂) =

(
6∏

i=1

δqiq
′
i dqi

)
δξ− ξ

′
+δξ

′
− ξ+

tr (WR̂ W̃R̂
˜̃WR̂) =

(
6∏

i=1

δqiq
′
i δqiq

′′
i dqi

)
δξ− ξ

′
+ δξ

′
− ξ
′′
+ δξ

′′
− ξ+ .

(C.33)

By summing {ξ∓, ξ′∓, ξ′′∓} over the ranges {MR∓,Q∓,ν∓ ,MR′∓,Q
′
∓,ν
′
∓
,MR′′∓,Q

′′
∓,ν
′′
∓
}, we dis-

cover the overlap

∑

ξ−∈MR−,Q−,ν−

∑

ξ′+∈MR′+,Q
′
+,ν
′
+

δξ− ξ
′
+ =

∣∣∣MR−,Q−,ν− ∩MR′+,Q
′
+,ν
′
+

∣∣∣ . (C.34)
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The overlap satisfies the sum rules
∑

R−,Q−,ν−

∑

R′+,Q
′
+,ν
′
+

∣∣∣MR−,Q−,ν− ∩MR′+,Q
′
+,ν
′
+

∣∣∣ = |Mtot|

∑

R−,Q−,ν−

∣∣∣MR−,Q−,ν− ∩MR′+,Q
′
+,ν
′
+

∣∣∣ =
∣∣∣MR′+,Q

′
+,ν
′
+

∣∣∣

∑

R′+,Q
′
+,ν
′
+

∣∣∣MR−,Q−,ν− ∩MR′+,Q
′
+,ν
′
+

∣∣∣ =
∣∣MR−,Q−,ν−

∣∣ .

(C.35)

As a solution to the sum rules, we conjecture that

∣∣∣MR−,Q−,ν− ∩MR′+,Q
′
+,ν
′
+

∣∣∣ = δ
ν− ν′+

∣∣MR−,Q−,ν−
∣∣
∣∣∣MR′+,Q

′
+,ν
′
+

∣∣∣
|Mtot|

(C.36)

where δ
νν′

should be understood as the intersection inside Mtot

δ
ν+ ν′− =





1
(
MR−,Q−,ν− ∩MR′+,Q

′
+,ν
′
+
6= ∅
)

0 (otherwise) .
(C.37)

It follows that

∑

ξ∓,ξ′∓

tr (WR̂ W̃R̂) =

(
6∏

i=1

δqiq
′
i dqi

)
δ
ν− ν′+ δ

ν′− ν+ × (C.38)

∣∣MR−,Q−,ν−
∣∣ ∣∣MR+,Q+,ν+

∣∣
∣∣∣MR′−,Q

′
−,ν
′
−

∣∣∣
∣∣∣MR′+,Q

′
+,ν
′
+

∣∣∣
|Mtot|2

∑

ξ∓,ξ′∓,ξ
′′
∓

tr (WR̂ W̃R̂
˜̃WR̂) =

(
6∏

i=1

δqiq
′
i δqiq

′′
i dqi

)
δ
ν− ν′+ δ

ν′− ν
′′
+ δ

ν′′− ν+ × (C.39)

∣∣MR−,Q−,ν−
∣∣ ∣∣MR+,Q+,ν+

∣∣
∣∣∣MR′−,Q

′
−,ν
′
−

∣∣∣
∣∣∣MR′+,Q

′
+,ν
′
+

∣∣∣
∣∣∣MR′′−,Q

′′
−,ν
′′
−

∣∣∣
∣∣∣MR′′+,Q

′′
+,ν
′′
+

∣∣∣
|Mtot|3

.

C.3 Restricted Littlewood-Richardson coefficients

Let us compute the restricted Littlewood-Richardson coefficients in [27] in our method.

We will find the perfect agreement. However, they considered multiplicity-free cases only.

Thus, this agreement does not provide non-trivial checks of our conjectured formula.

We define the restricted Littlewood-Richardson coefficients by

F
{3}
{1}{2} =

1

L1!L2!

∑

σ1∈SL1

∑

σ2∈SL2

χR1(σ1)χR2(σ2)χR3(σ1 ◦ σ2)

Li = mi + ni , Ri = {Ri, (ri, si), (νi− , νi+)} .
(C.40)

The definition used in [27] is

f
{3}
{1}{2} =

1

m1!n1!m2!n2!

m3!n3!

L3!

dR3

dr3 ds3

∑

σ1∈SL1

∑

σ2∈SL2

χR1(σ1)χR2(σ2)χR3(σ1 ◦σ2). (C.41)
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The two definitions are related by

F
{3}
{1}{2} =

m1!n1!m2!n2!

m3!n3!

L3!

L1!L2!

dr3 ds3
dR3

f
{3}
{1}{2} . (C.42)

The restricted Littlewood-Richardson coefficients F
{3}
{1}{2} can be computed as follows.

First, consider the restriction SL3 ↓ (SL1 ⊗ SL2), which gives

R3 =
⊕

T1,T2

g(T1, T2;R3) (T1 ⊗ T2) . (C.43)

The restricted character in (C.40) becomes

χR3(σ1 ◦ σ2) =
∑

T1,T2

g(T1,T2;R3)∑

µ=1

DT1
h1h′1

(σ1)DT2
h2h′2

(σ2) B̃
R3→(T1,T2)µ
I→(h1h2) (B̃T )

R3→(T1,T2)µ
I′→(h′1h

′
2)

×

B
R3→(r3,s3),ν3−
I→(i,j) (BT )

R3→(r3,s3),ν3+
I′→(i,j) . (C.44)

In the quiver notation, we can depict this equation as

χR3(r3,s3),(ν3−,ν3+)(σ1 ◦ σ2) = σ1 ◦ σ2

ν3−

ν3+

=
∑

T1,T2,µ

σ1 σ2

µ

µ

ν3−

ν3+

(C.45)

By summing over σ1 and σ2 in (C.40), we get δT1,R1 δT2,R2 and another sets of branching

coefficients in place of σ1 , σ2 in (C.45), giving us

ν3− µ

ν1−

ν2−

ν1+

ν2+

µ ν3+ = tr (P P̃). (C.46)

The restricted Littlewood-Richardson coefficient (C.40) becomes

F
{3}
{1}{2}=

1

dR1dR2

∑

µ

tr
(
PR3→(r3,s3),(ν3−ν3+)P̃R3→(R1,R2),µ→(r1,s1,r2,s2),(µ,(ν1+,ν2+),(ν1−,ν2−))

)
.

(C.47)
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To evaluate the projectors, we introduce the permutations on the fully-split space

SFS = Sm1 ⊗ Sm2 ⊗ Sn1 ⊗ Sn2 (C.48)

and consider sub-projectors. The total multiplicity space for the restriction SL3 ↓ SFS is

|Mtot| = g(r1, r2, s1, s2;R3). (C.49)

The multiplicity space for the first projector PR3→(r3,s3),(ν3−ν3+) is

∣∣Mr3,s3,ν3∓

∣∣ = g(r1, r2; r3)g(s1, s2; s3),

∑

r3,s3

g(r3,s3;R3)∑

ν3−=1

∣∣Mr3,s3,ν3−

∣∣ =
∑

r3,s3

g(r3,s3;R3)∑

ν3+=1

∣∣Mr3,s3,ν3+

∣∣ = |Mtot| .
(C.50)

The multiplicity space for the second projector P̃R3→···→(r1,s1,r2,s2),(µ,ν1∓,ν2∓) is

∣∣MR1,R2,ν1∓,ν2∓

∣∣ = g(R1, R2;R3)

∑

R1,R2

g(r1,s1;R1)∑

ν1−=1

g(r2,s2;R2)∑

ν2−=1

∣∣MR1,R2,ν1−,ν2−

∣∣ =
∑

R1,R2

g(r1,s1;R1)∑

ν1+=1

g(r2,s2;R2)∑

ν2+=1

∣∣MR1,R2,ν1+,ν2+

∣∣

= |Mtot| .
(C.51)

From the identity of the projector (A.46), we obtain

tr (P P̃) = δ
ν3+ (ν1+,ν2+)

δ
(ν1−,ν2−) ν3−

dr1dr2ds1ds2 GLR (C.52)

where we grouped (ν1∓, ν2∓) so that they can be compared with ν3∓. Just like before, we

conjecture that

GLR =

∣∣Mr3,s3,ν3−

∣∣ ∣∣Mr3,s3,ν3+

∣∣ ∣∣MR1,R2,ν1−,ν2−

∣∣ ∣∣MR1,R2,ν1+,ν2+

∣∣
|Mtot|2

=

(
g(R1, R2;R3)g(r1, r2; r3)g(s1, s2; s3)

g(r1, r2, s1, s2;R3)

)2

.

(C.53)

In summary, we get

F
{3}
{1}{2}= δ

ν3+ (ν1+,ν2+)
δ

(ν1−,ν2−) ν3− dr1dr2ds1ds2
dR1dR2

(
g(R1, R2;R3) g(r1, r2; r3) g(s1, s2; s3)

g(r1, r2, s1, s2;R3)

)2

.

(C.54)

Three cases have been considered in [27]. The first case is the antisymmetric represen-

tations,

(Ri, ri, si) =
(
[1mi+ni ], [1mi ], [1ni ]

)
(C.55)

and the second case is the symmetric representations,

(Ri, ri, si) = ([mi + ni], [mi], [ni]) . (C.56)
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In both cases, all representations are one-dimensional and multiplicity-free. Therefore

F
{3}
{1}{2} = 1, which means

f
{3}
{1}{2} =

m3!n3!L1!L2!

m1!n1!m2!n2!L3!
. (C.57)

The last case is r2 = s1 = ∅, implying that

R1 = r1 = r3 , R2 = s2 = s3 , F
{3}
{1}{2} = 1 (C.58)

and hence

f
{3}
{1}{2} = δR1,r3 δR2,s3 L1!L2!

L3!

dR3

dr3 ds3
. (C.59)

All the results agree with [27].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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