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1 Introduction

For a long time the static QCD potential VQCD(r) has been studied extensively, in order

to understand the nature of the strong interaction between a heavy quark and antiquark

pair. In the past decades computation of VQCD(r) in perturbative QCD has been advanced

significantly [1–11, 13–20]. In association with many theoretical developments, VQCD(r) has

become an indispensable theoretical tool to describe not only the properties of the heavy

quarkonium states but also for precision determinations of the fundamental parameters of

QCD such as the heavy quark masses mc, mb, mt [21–30] and the strong coupling constant

αs [31–34].

Before around 1998, the prediction of VQCD(r) in perturbative QCD was not successful

and was plagued by the so-called renormalon problem. As it turned out, convergence of the

perturbative series was fairly poor, such that a meaningful prediction could not be obtained

in the distance regions relevant to the charmonium and bottomonium states. This is caused
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by the growth of αs in the infrared (IR) region and is characterized by the singularities in

the Borel transform of the perturbative series (the singularities are called renormalons) [35].

Then it was discovered that the leading renormalon of order ΛQCD in VQCD(r) is canceled

against that of the quark pole mass mpole in the combination of the total energy of the

static quark pair 2mpole + VQCD(r), which led to a dramatic improvement of convergence

of the perturbative series [36–38].

Up to now, although there exists no rigorous proof on existence of renormalons in

QCD observables, there exist standard arguments based on the operator product expan-

sion (OPE) and renormalization group (RG) equations which show that their existence is

consistent and plausible theoretically [35]. This is reinforced by a number of evidences in

actual computation of perturbative series of QCD observables, thanks to recent technolog-

ical developments in multiloop calculations. There also exist examinations of the nature

of renormalons using many approximate estimates of higher-order terms of perturbative

series at various levels of rigor. See, for instance, ref. [39].

In many analyses of renormalons in the static QCD potential, analyses of perturba-

tive computation in momentum space play important roles [35]. For VQCD(r), it is often

assumed that there are no renormalons in its Fourier transform ṼQCD(q) (the potential in

momentum space) or that renormalons in ṼQCD(q) are negligible at the current level of ac-

curacy. In fact, in refs. [37] and [38], absence of the order ΛQCD/q
3 renormalon in ṼQCD(q)

(corresponding to the u = 1/2 renormalon) is shown at the one-loop and two-loop levels,

respectively.1 Also, the u = 3/2 renormalon cancellation within the multipole expansion

was shown [12] based on the assumption of absence of the corresponding renormalon in

ṼQCD(q). Nevertheless, it can be the case that renormalons arise from a deep level of

loop integrals in the computation of ṼQCD(q) and that they are simply not detected in the

currently known several terms of the perturbative series.

A direct motivation of our study comes from necessity for a justification for the as-

sumption used in a recent determination of αs from VQCD(r) [33, 34]. There, the first

two renormalons of order ΛQCD and Λ3
QCDr

2 are subtracted from the leading-order Wil-

son coefficient of VQCD(r), in order to extend validity range of the OPE of VQCD(r) to

larger r, and it is assumed that the corresponding renormalons are negligible in the Fourier

transform of the Wilson coefficient [' ṼQCD(q)]. This problem is also linked with how

we renormalize the IR divergences in the potential which arise from three loops and be-

yond [2, 3, 11, 13, 14, 18, 19].

In this paper we analyze the order ΛQCD and Λ3
QCDr

2 renormalons in VQCD(r), on the

basis of the standard argument by the OPE and RG equations. The discussion is to a large

extent based on general features of QCD, independent of ad hoc approximations such as the

large-β0 approximation. We refine our understanding by looking into the detailed structure

of the OPE within the potential-NRQCD (pNRQCD) effective field theory (EFT) [40]. In

particular we elucidate the accurate structure of the u = 3/2 renormalon. Subsequently

we discuss the size of the renormalon uncertainties for u = 1/2 and 3/2 in ṼQCD(q) with

1In ref. [38], IR divergences which arise from three loops and beyond are neglected without a proper

reasoning, and it is not clear whether its claim is valid beyond two loop order.
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a method which does not rely on diagrammatic analysis, providing a different perspective

from, e.g., refs. [12, 38]. We also believe that an argument such as the one we provide in

section 3 is necessary to clarify treatment of the IR part of ṼQCD(q). In the latter part of this

paper, we test our understanding by performing numerical analyses of the normalization

constants of the renormalons in the perturbative series of VQCD(r) and ṼQCD(q). We treat

two kinds of perturbative series: one is the fixed-order perturbative series currently known

and the other includes higher-order terms estimated by RG. We estimate the normalization

constants of the renormalons from these two perturbative series by using Lee’s method [41]

and also by an analytic formula which we derive (for the latter series). The former includes

updates of the analyses by Pineda [42].

The paper is organized as follows. In section 2 we briefly review the standard argument

on renormalons for a general QCD observable. In section 3 we scrutinize the structure of

renormalons in the static QCD potential. Sections 4–8 present numerical analyses on the

normalization constants of the renormalons. In section 4 we study theO(ΛQCD) renormalon

of VQCD(r) from fixed-order perturbative series, followed by a study of its cancellation with

that of the pole mass in section 5. We compare these results with that obtained by an

integral formula in section 6. We study the O(Λ3
QCDr

2) renormalon of VQCD(r) in section 7.

Finally we test the corresponding renormalons in ṼQCD(q) in section 8. Conclusions are

given in section 9. In appendix A we explain theoretical aspects of IR cancellation at O(r0)

of the multipole expansion. In appendix B we present details of the derivation of a formula

for the normalization of renormalons in VQCD(r).

2 Structure of renormalons

Let us first review briefly the structure of renormalons in QCD observables [35].

Consider a general RG-invariant dimensionless observable X(Q) with a typical energy

scale Q. Its perturbative expansion is given by

XPT(Q) =

∞∑
n=0

dn(Q/µ)αs(µ)n+1 . (2.1)

µ denotes the renormalization scale in the MS scheme. It satisfies the RG equation

µ2 d

dµ2
XPT(Q) =

[
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs

]
XPT(Q) = 0 (2.2)

with the beta function given by

µ2dαs
dµ2

= β(αs) = −
∞∑
i=0

bi α
i+2
s . (2.3)

The first two coefficients of the beta function are given explicitly by

b0 =
1

4π

(
11− 2

3
nf

)
, b1 =

1

(4π)2

(
102− 38

3
nf

)
. (2.4)
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It is conjectured that for many observables the coefficients of the perturbative series

grow factorially, dn ∼ n!, for large n. To quantify uncertainties induced by this property,

the Borel transform of XPT, defined by

BX(t) =
∞∑
n=0

dn
n!
tn , (2.5)

is studied. Renormalons of XPT refer to the singularities of BX(t) located on the real axis

in the complex t-plane. We assume the form of the Borel transform in the vicinity of each

renormalon singularity at t = u/b0 as

BX(t) =

(
µ2

Q2

)u
Nu(

1− b0t/u
)1+νu

∞∑
k=0

ck(µ/Q)

(
1− b0t

u

)k
+ (regular part) , (2.6)

c0 = 1 , (2.7)

with parameters Nu, νu and ck’s. This form is consistent with the RG equation. Formally

we can reconstruct XPT from its Borel transform BX(t) by the inverse Borel transform

given by the integral

XPT“ = ”

∫ ∞
0

dtBX(t)e−t/αs(µ) . (2.8)

However, if there are singularities (renormalons) on the positive real axis, the integral is ill

defined. We can regularize the integral by deforming the integral contour to the upper or

lower half plane:

XPT
± =

∫ ∞×exp(±iε)

0
dtBX(t)e−t/αs(µ) . (2.9)

We can define the ambiguity induced by the renormalon from the discontinuity of the

corresponding singularity, and the singularity at t = u/b0 with u > 0 of eq. (2.6) gives

ImXPT
± [u] = ± π

b0

Nu

Γ(1 + νu)
u1+νu

(
Λ2

MS

Q2

)u
(b0αs(Q))−νu+ub1/b20

∞∑
k=0

c̃kαs(Q)k ,

c̃0 = 1 , (2.10)

where we have used

Λ2
MS

= µ2 exp

[
−
{

1

b0αs
+
b1
b20

log(b0αs) +

∫ αs

0
dx

(
1

β(x)
+

1

b0x2
− b1
b20x

)}]
. (2.11)

The parameters u, νu, ck and c̃k in eq. (2.6) or eq. (2.10) can usually be determined from

the OPE. In the context of the OPE in 1/Q, XPT is identified with the Wilson coefficient

of the leading identity operator. Let us denote by Ou the lowest dimension (dimension 2u)

renormalized operator responsible for cancellation of the leading renormalon in XPT. For

simplicity we discuss the case where only one operator is involved. The OPE reads

X(Q) = CX1 (Q) + CXOu(Q/µ, αs(µ))
〈0 |Ou(µ) | 0 〉

Q2u
+ · · · , (2.12)

CX1 (Q) = XPT(Q) , CXOu(Q/µ, αs(µ)) =
∞∑
n=0

fn(Q/µ)αs(µ)n . (2.13)
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We assume that the leading ambiguity induced by the renormalon of CX1 as given in

eq. (2.10) is canceled by the second term of the OPE. Then, the Q-dependence of the renor-

malon uncertainty of CX1 should coincide with that of the second term in the OPE, which

can be detected as follows. Suppose that the Wilson coefficient satisfies the RG equation,[
µ2 d

dµ2
− γ(αs)

]
CXOu = 0 ; γ(αs) =

∞∑
i=0

γi α
i+1
s . (2.14)

This RG equation specifies the Q-dependence of CXOu(Q/µ, αs(µ)) as

CXOu(Q/µ, αs(µ)) = exp

[
−
∫ αs(Q)

αs(µ)
dx

γ(x)

β(x)

]
CXOu(1, αs(Q))

= const.× [αs(Q)]γ0/b0 [1 +O(αs(Q))]CXOu(1, αs(Q)) , (2.15)

where const. denotes a Q-independent (but µ-dependent) constant. Now the Q-dependence

of the second term of the OPE (2.12) is made explicit.

Requiring the same Q-dependence for the renormalon uncertainty of XPT, using

eq. (2.12) with eq. (2.15), we obtain for eq. (2.6) or (2.10)

νu =
b1
b20
u− γ0

b0
. (2.16)

The factor
∑∞

k=0 c̃kαs(Q)k in eq. (2.10) should be proportional to [1+O(αs(Q))]

CXOu(1,αs(Q)) in eq. (2.15). Therefore, ck’s and c̃k’s can be determined one by one from

smaller k in terms of bn’s, γn’s and fn’s from smaller n. The overall normalization Nu

cannot be determined from this argument. We note that, in the case that CXOuOu is inde-

pendent of Q, γ0 = 0 and c̃k = 0 for k ≥ 1.

3 Renormalons in the static QCD potential

In this section we investigate theoretical aspects of renormalons of the static QCD potential,

focusing on the u = 1/2 and 3/2 renormalons, on the basis of the above general under-

standing. Part of the argument given in this section has already been discussed in [11].

(See also [43].) We refine the discussion and present new observations. In particular, main

part of the discussion on the u = 3/2 renormalon is new.

3.1 Basics of static QCD potential

The static QCD potential is defined from an expectation value of the Wilson loop as

VQCD(r) = − lim
T→∞

1

iT
log
〈0 |Tr P exp

[
ig
∮
C dx

µAµ(x)
]
| 0 〉

〈0 |Tr1 | 0 〉
, (3.1)

where C is a rectangular loop of spatial extent r and time extent T . P stands for the

path-ordered product along the contour C. It is conjectured that renormalon singularities

are located in the Borel transform of the perturbative series of VQCD(r) at t = 1
2b0
, 3

2b0
,

etc. (i.e., u = 1
2 ,

3
2 , etc.).
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In calculation of the static QCD potential, we have two different scales. One is the

soft scale 1/r, which is the inverse of the distance between a static QQ̄ pair. The other is

the ultrasoft (US) scale, which is set by the energy difference of the color singlet and octet

states of the static QQ̄ pair,

∆V (r) = VO(r)− VS(r) , (3.2)

where

VS(r) = −CF
αs
r

+O(α2
s), (3.3)

VO(r) =
(CA

2
− CF

)αs
r

+O(α2
s), (3.4)

∆V (r) =
CA
2

αs
r

+O(α2
s) . (3.5)

The pNRQCD EFT describes dynamics in which the QQ̄ system emits or absorbs US

gluons whose energies are comparable to or smaller than the energy differences of different

QQ̄ states [12]. Accordingly, the factorization scale µf (= cut off scale of pNRQCD) is

chosen to satisfy ∆V � µf � 1/r.

The OPE of the static QCD potential VQCD(r) in r can be performed within the

pNRQCD EFT in the static limit based on the scale hierarchy 1/r � ∆V :2

VQCD(r) = VS(r) + δEUS(r) + . . . . (3.6)

The leading term VS(r) denotes the singlet potential, which is the Wilson coefficient of

the bilinear singlet field operator S†S in the context of pNRQCD. In eq. (3.6), VS(r) is

multiplied by 〈S |S†S |S 〉 = 〈0 |1 | 0 〉 = 1. The second term is the O(r2) term in the

multipole expansion, given by

δEUS(r) = −i VA(r)2

6

∫ ∞
0
dt e−i t∆V (r)〈 g ~r· ~Ea(t,~0)ϕadj(t, 0)ab g ~r · ~Eb(0,~0) 〉 , (3.7)

where ~E = −∂t ~A − ~∂A0 − ig[A0, ~A] represents the color electric field; the color string for

the adjoint representation is given by ϕadj(t, t
′) = T exp

[
ig
∫ t
t′ dτ A

c
0(τ, ~X)T cadj

]
. δEUS is

generated by insertions of the operators g Oa†~r · ~EaS and g S†~r · ~EaOa, and VA(r) denotes

the Wilson coefficient of these operators. Note that eqs. (3.6) and (3.7) are exact to all

orders in αs.

VS(r) coincides with the naive expansion of VQCD(r) in αs:

VS(r) = VQCD(r)
∣∣∣
exp. in αs

. (3.8)

To see this, we adopt the energy integral representation of δEUS(r),

δEUS(r) = − VA(r)2

6
rirj

∫ ∞
−∞

dk

2π

1

k + ∆V (r)
〈 gEai ϕabadj gE

b
j 〉(k) , (3.9)

2This is equivalent to 1
2
CAαs(1/r)� 1, which holds at sufficiently small r.
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which can be obtained with Fourier transform of the correlation function,

〈 gEai ϕabadj gE
b
j 〉(k) ≡

∫ ∞
−∞

dt eikt 〈 gEai (t,~0)ϕadj(t, 0)ab gEbj(0,~0) 〉 . (3.10)

Then, if we naively expand δEUS in αs before loop integrations, the US scale ∆V = O(αs)

disappears from the propagator denominator in eq. (3.9), and the integrals become scaleless

and vanish. (The same applies to beyond O(r2) terms.) We can rephrase this in the

computation of VQCD(r) in expansion in αs, by applying expansion-by-regions technique

to loop integrals [44]. We can separate contributions from the UV scale 1/r and the US

scale (� 1/r), where the latter contributions vanish to all orders in αs since they are given

by scaleless integrals.

We investigate theoretical aspects of renormalons at u = 1/2 (section 3.2) and u = 3/2

(section 3.3) based on the above general understanding, and in particular determine some of

the parameters in eq. (2.6) assuming this expansion form around the singularities. Before

this, let us comment on the IR divergences present in the perturbative result of VS(r).

The naive perturbative expansion of VQCD(r) includes IR divergences at and beyond order

α4
s [2, 3, 11, 13, 14, 18, 19], hence so does VS(r). The IR divergences of VS(r) have

their counterparts in the OPE at order r2 or beyond in the multipole expansion. Indeed,

δEUS contains UV divergences if we compute it in double expansion in αs and logαs
consistently with the philosophy of pNRQCD, that is, keeping ∆V [& k: gluon momentum

in eq. (3.9)] in the propagator denominator. At O(r2), the UV divergences of δEUS and

IR divergences of VS(r) cancel in VQCD(r), reflecting the µf -independence of VQCD(r).

In the subsequent argument, we implicitly assume a certain regularization prescription

for making these divergences finite to discuss renormalons in the perturbative series whose

each expansion coefficient is finite. We will propose explicit regularization (renormalization)

schemes and also discuss their relevance to the renormalon structure (section 3.5) after the

renormalon structure is clarified.

3.2 u = 1/2 renormalon

Let us clarify the current understanding on the u = 1/2 renormalon. The leading IR

renormalon of VS(r) is located at u = 1/2, and the induced ambiguity is known to be

independent of r and proportional to ΛMS. In fact, the r-independent constant part of

VQCD(r) in eq. (3.1) is not well defined. This is inherent in the self-energy type contributions

Σ to each static color charge. These contributions vanish in perturbative computation in

dimensional regularization, since they are given by scaleless integrals. Hence, they are

not included in the computation of VS(r), which consists of the potential-energy type

contributions (represented by diagrams with cross talks between the two static charges).

See figure 1. The IR contributions to the self-energies 2Σ cancel against the IR contributions

to VS(r). This is represented in pNRQCD by the absence of O(r0) interactions of the singlet

field and US gluon field and is a consequence of the fact that in the IR limit gauge field

couples to the total charge (= 0 for |S 〉); further explanation is given in appendix A. On

the other hand, Σ is UV divergent, and in dimensional regularization simply Σ is set equal

– 7 –
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Figure 1. Schematic representations of diagrams contributing to Σ and VS(r).

to zero. Thus, more precisely, VS(r) should be written as 2Σ + VS(r) in eq. (3.6), but Σ is

omitted in accordance with the usual convention.

A standard way to confirm cancellation of the r-independent IR contributions to VS(r)

with the self-energy type contributions is to show cancellation of the u = 1/2 renormalons

in the combination 2mpole + VS(r) [36–38]. By construction of pNRQCD as a low energy

EFT, IR contributions to Σ and mpole are common. Both Σ and mpole are RG invariant,

hence ambiguities induced by the leading renormalons both correspond to u = 1/2 and

proportional to ΛMS. This reasoning determines the parameters for the dimensionless

potential rVS(r) in eq. (2.10) and consequently in eq. (2.6) as

ν1/2 =
b1
2b20

(3.11)

and

c̃k = 0 for k ≥ 1 . (3.12)

3.3 u = 3/2 renormalon

To clarify the structure of the u = 3/2 renormalon, the r-dependence of the u = 3/2

renormalon uncertainty should be revealed (as done in section 2). To this end, we focus

on δEUS(r) [for instance, the expression of eq. (3.9)], which cancels the corresponding

renormalon uncertainty of VS(r). At this stage, we note that computation of VS(r) does

not include the US scale, and thus the u = 3/2 renormalon uncertainty is independent

of ∆V . (Supplementary discussion on this point is given in section 3.5.) This reasoning

and the expression, for instance, of eq. (3.9) tell us that the r-dependence of the u = 3/2

renormalon uncertainty is given solely by ∼ r2V 2
A(r). Now we investigate the r-dependence

of VA(r). Since VA(r) can be renormalized multiplicatively, the RG equation of the form

[µ2d/(dµ2) − γ(αs)]VA(r) = 0 follows,3 where γ(αs) = γ0αs + γ1α
2
s + . . . . From this RG

equation, the fixed order result of VA(r) takes the form

VA(r;µ) = e0 + (e1 + e0γ0 log(µ2r2))αs(µ) +O(α2
s) . (3.13)

From the explicit NLO result VA(r) = 1 + O(α2
s) [15], we see that γ0 = 0. Thus, we

determine the parameter ν3/2 for the dimensionless potential in the Borel transform in

3Here we are concerned with the logarithms associated with the UV divergences of VA(r) in the full

theory (or with respect to the soft scale). This RG equation with respect to µ is different from the RG

equations with respect to µf considered in refs. [15, 16, 47], which are associated with the IR divergences

with respect to the soft scale. See discussion in section 3.5.

– 8 –
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eq. (6) as [cf. eq. (16)]

ν3/2 =
3b1
2b20

. (3.14)

We also clarify that the u = 3/2 renormalon uncertainty is given by eq. (2.10) with

(b0αs(1/r))
−νu+ub1/b20 = 1.4 The parameters c̃k can be parametrized by ei’s, γi’s, and

bi’s. With the NLO result of VA, c̃1 is explicitly obtained as

c̃1 = −γ1/b0 . (3.15)

Thus, a correction factor to the r-dependence of the renormalon uncertainty r2 is given by

1 +O(αs(1/r)) with the above c̃1 term. (The explicit result of γ1 is not known currently.)

3.4 Renormalon in momentum-space potential

We now discuss the renormalon uncertainty in the momentum-space potential. For conve-

nience we define the dimensionless potential as v(r) = rVS(r). Suppose that we have the

ambiguity in the position-space potential due to the renormalon at t = u/b0 as

Im v± [u] = ±NuA (u)
(
r2Λ2

MS

)u
, (3.16)

with

A(u) =
π

b0

1

Γ(1 + ub1/b20)
u

1+u
b1
b20 . (3.17)

For u = 1/2, eq. (3.16) is exact, whereas the correction factor 1 + O(αs(1/r)) arises for

u = 3/2. The momentum-space potential is obtained by the Fourier transform of VS(r):

ṼS(q) = −4πCF
α̃V (q)

q2
=

∫
d3~r e−i~q·~r VS(r) . (3.18)

Here and hereafter, we denote ṼS(q) instead of ṼQCD(q) to make explicit that we consider

the Fourier transform of the leading Wilson coefficient VS(r), although in naive perturbative

expansion VS(r) and VQCD(r) coincide; see eq. (3.8).

From the Fourier transform of v±, we can obtain the renormalon uncertainty in the

V -scheme coupling constant in momentum space:

Im α̃V (q)±[u] = ∓Nu

CF
A(u)

(
ΛMS

q

)2u

Γ(2u+ 1) cos(πu) , (3.19)

where we have used analytical continuation of the result for (−1 <)u < 0. The above

formula shows that, if we assume eq. (3.16), renormalons of ṼS(q) vanish at positive half-

integer u’s, since cos(πu) = 0 and A(u) is finite. In particular, the normalization of the

renormalon at u = 1/2 vanishes,

Im α̃V (q)±[u = 1/2] = 0 . (3.20)

4We implicitly assume that the u = 3/2 renormalon uncertainty is RG invariant as we assume eq. (2.10),

although RG invariance of VS(r) may be violated by the IR divergences (or IR logarithms). This assumption

is justified when we adopt explicit schemes to remove the IR divergences from VS(r) such that the redefined

VS is RG invariant; see section 3.5.
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For u = 3/2, while the normalization is not exactly zero, it is suppressed by αs(q)
2.

To see this, one should note first eq. (3.14) in eq. (2.10), secondly that c̃k’s are independent

of 1/r and also αs(1/r) = αs(q) + b0 log(r2q2)αs(q)
2 + · · · . Explicitly, the leading behavior

of the u = 3/2 renormalon uncertainty of αV (q) is given by5

Im α̃V (q)±[u = 3/2] = ∓
N3/2

CF
A(u = 3/2)

(
ΛMS

q

)3

αs(q)
2 6πb0c̃1[1 +O(αs(q))] , (3.21)

where N3/2 and c̃1 represent the parameters of the position-space potential.

Thus, eqs. (3.19)–(3.21) provide a formal framework to analyze renormalons in the

momentum-space potential, without recourse to diagrammatic analyses (or resummation

of certain diagrams) used in the previous analyses [11, 37, 38].

3.5 Renormalization scheme

So far, we did not specify how to renormalize VS(r) and δEUS(r), which contain the IR

divergences and UV divergences, respectively, Here, we define two schemes to remove

the divergences.

Scheme (A). At each order of the perturbative expansion of VS(r) in αs, we first set

µ = 1/r and then drop all the poles in ε originating from the IR divergences. (µ denotes the

renormalization scale in full QCD. The scale in the argument of the logarithms originating

from the IR divergences is also taken as µ, even though it is sometimes distinguished in the

literature.) We also redefine δEUS such that the sum VS(r) + δEUS is unchanged, which is

evaluated in double expansion in αs and logαs. The renormalized VS and δEUS are both

independent of µ by definition.6

In fact, this regularization is compatible with the property used in section 3.3 that

VS(r) is RG invariant (see footnote 4), but it may be incompatible with the one that

the r-dependence of the u = 3/2 renormalon uncertainty is given by ∼ r2V 2
A(r). This is

because the latter reasoning [and thus the results such as eq. (3.14)] relies on eq. (3.9) and

additional contribution was not considered. However, we assume that the structure of IR

renormalons in VS(r) at O(r2) is unchanged by this prescription. This is indeed the case

in the large-β0 approximation of δEUS, in which the IR divergences and IR renormalons

are clearly separated; the former is given as a convergent series in αs expansion, while the

latter is given as a factorially diverging series. This is shown by computing δEUS in the

large-β0 approximation [46]:

δEUS(r)
∣∣∣
large-β0

=
CFαs

4π
8r2 ∆V (r)3

∞∑
n=0

(b0αs)
n

[
n!Gn+1 +

1

εn+1

(−1)n

n+ 1
g(ε)

]
+O(ε, r3) (3.22)

5The uncertainty (3.21) is obtained in a parallel form to eq. (2.10) in the sense that the part given by

the series expansion in αs is specified with bi’s and γi’s. Thus, the result sounds plausible.
6VS(r) and δEUS(r) at different µ are obtained by rewriting αs(1/r) by αs(µ).
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where

G(u) ≡
∞∑
j=0

Gju
j =

[
µf e

5/6

2 ∆V (r)

]2u
2 Γ(2− u) Γ(2u− 3)

Γ(u− 1)
, (3.23)

g(ε) =
Γ(4− 2ε)

36 Γ(1 + ε) Γ(2− ε)2 Γ(1− ε)
. (3.24)

The UV divergences and UV renormalons of δEUS(r) are canceled, respectively, by the

IR divergences and IR renormalons of VS(r). In addition, the US logarithms at LL [15]

and NLL [16, 47], associated with the IR divergences in VS(r), are known to be given by

convergent series in αs expansion, computed explicitly using the RG equation of pNRQCD.

Thus, to the best of our knowledge, the above assumption seems to be valid. As a result,

we consider that the scheme (A) is suitable for studying the renormalon of VS(r), where

the renormalon structure revealed in section 3.3–3.4 based on the OPE is not expected to

be modified.

We note the existence of the UV renormalons at u = 3/2, 1/2, −1/2, −3/2, · · · of

δEUS in eq. (3.23). It is confirmed that the leading UV renormalon at u = 3/2 cancels the

knownO(r2) IR renormalon of VS(r) in the large-β0 approximation [46, 48]. The subleading

renormalon at u = 1/2 is also expected to be canceled against VS(r),7 (although it cannot

be confirmed within the large-β0 approximation) since the IR structure of VS(r) should

match the UV structure of δEUS. The residues of the subleading renormalons at smaller

u are proportional to higher powers of ∆V (r)/µf . This leads to less powers8 of r, which

contradicts to the naive expectation that the renormalons of VS(r) beyond u = 3/2 are

suppressed by higher powers of r in accordance with the multipole expansion. This feature

originates from the fact that if we expand the integrand of eq. (3.9) in ∆V , higher power

singular IR behaviors ∼ (∆V (r)/k)n appear. [Note that 〈Eai ϕabadjE
b
j 〉(k) is independent of

∆V .] The IR structure of VS(r) includes the same power behaviors, since the IR structure

of δEUS is common to that of VS(r) once the integrand is expanded in αs. The higher

power singular IR behaviors generate the above more singular IR renormalons as well as

higher power IR divergences.9

The above observation in particular means that VS(r) has a renormalon at u = 1/2

corresponding to the above UV renormalon of δEUS. The u = 1/2 renormalon uncertainty

is given by O(ΛMSr
2∆V (r)2), as seen from eqs. (3.22) and (3.23). It is similar to the

form which is derived by the RG equations of the US scale µf on the assumption that

7The poles on the negative axis are not problematic since they are Borel summable.
8Since ∆V (r) ∼ (r| log r|)−1, the form of the renormalons are not integer powers of r.
9Up to date, these more singular IR renormalons have not been investigated seriously. One reason

would be that they are generated only at higher loops, since they arise with higher powers of ∆V . In this

connection, we note that the UV renormalons at u < 3/2 in δEUS|large-β0 do not have their IR renormalon

counterparts in VS |large-β0 because the order counting is different between these quantities. The former are

suppressed by higher powers of ∆V ∼ O(αs) compared to the latter. We need to go beyond the large-β0
approximation to detect these IR renormalons in VS(r).
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O(r0) terms (up to anomalous dimensions) are contained in VS(r) [16]. In particular,

a µf -independent term ∼ ΛMSr
2∆V (r)2, which is of the same form as the renormalon

uncertainty, can be added to eq. (25) in ref. [16] without spoiling the solution to the RG

equations (or we can say that this term is included in the µf -independent but possibly

r-dependent constant Λ in this equation). This renormalon is different from the familiar

renormalon at u = 1/2, which induces an r-independent uncertainty. (See footnote 8.)

We note that this unfamiliar renormalon at u = 1/2 can be an obstacle in estimating the

normalization constants of the familiar renormalons at u = 1/2 and 3/2. This possibility

is taken into account later in numerical analyses, while we also present naive analysis by

simply neglecting this peculiar renormalon.

We make comments on the ∆V -dependence of VS(r). As already mentioned, perturba-

tive computations of VS(r) do not include ∆V as an external scale. However, ∆V appears

(only) in an implicit way in a form αs × (soft scale). Hence, the above renormalon uncer-

tainty of O(ΛMSr
2∆V 2) in δEUS corresponds to the renormalon uncertainty in VS(r) of

O(ΛMSαs(1/r)
2), where ∆V is expanded in αs.

One might then wonder if such implicit ∆V -dependence ruins the argument in sec-

tion 3.3 that the u = 3/2 renormalon uncertainty of VS(r) is independent of ∆V . In fact

this argument is correct for the u = 3/2 renormalon; the u = 3/2 renormalon of VS(r) is

canceled against the leading UV contribution of δEUS, where ∆V in eq. (3.9) is not relevant.

Scheme (B). We subtract IR divergences from VS(r) by adding δEUS evaluated in double

expansion in αs and logαs (Scheme B1). In this scheme, we do not distinguish VS(r)

and δEUS, and we exclusively treat the sum of them, which is regarded as a redefined

VS(r). In this way we can subtract the IR divergences. Furthermore, after canceling the

IR divergences, we can replace the argument of US logarithms as log(r∆V ) → log(rµf )

(Scheme B2). Since both VQCD(r) and ∆V (r) are µ independent, the renormalized VS(r)’s

are also µ independent up to O(r2) (although V
(B2)
S (r) is µf dependent).

Finally we point out that it is not straightforward to cancel simultaneously both the IR

divergences and IR renormalon at u = 3/2 of VS in the sum VS+δEUS. We can observe this

in the large-β0 approximation. The renormalon uncertainty of δEUS coincides with minus

that of VS(r) when ∆V in δEUS is not expanded in αs. If ∆V is perturbatively expanded

instead, the power of αs shifts by three in the perturbative series due to ∆V = O(αs), as

seen from eq. (3.22), and the renormalon cancellation breaks down.10 Hence, it would be

optimal not to expand ∆V in αs for the renormalon cancellation. On the other hand, this

prescription is not preferable to cancel the IR divergences. The IR divergences are cancelled

when ∆V is expanded in αs as the IR and UV divergences in VS and δEUS, respectively,

appear at O(α4
s). The proposed two schemes above can remove the IR divergences from

10The normalization of the renormalon is changed by the expansion, which ruins the renormalon cancel-

lation.
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VS(r), but cannot remove the IR renormalons of VS(r). It remains a future task to develop

a method for subtracting the IR renormalons completely.11

3.6 Renormalon subtraction by contour deformation

One motivation of the above investigation is to give a justification to the method used

to subtract the u = 1/2 and 3/2 renormalons from VQCD(r) in a recent determination of

αs(MZ) [33, 34]. There, it is assumed that the corresponding renormalons contained in

ṼS(q) can be neglected. (The IR divergences are canceled in momentum space.) Then,

using the one parameter integral form with respect to the momentum q and deforming

the integral contour in the complex q-plane, the renormalons at u = 1/2 and 3/2 which

stem from the original q integral are subtracted. See refs. [33, 34, 53] for the details.

As we have seen above, the normalization of the u = 1/2 renormalon in the momentum-

space potential is exactly zero, while the u = 3/2 renormalon is suppressed by αs(q)
2.

While the r2Λ3
MS

renormalon that is generated purely by the q integral is subtracted, the

suppressed renormalon in α̃V (q) can still contribute to the position-space potential. That

is, if α̃V (q) exhibits renormalon divergence, its uncertainty will give an uncertainty to

the renormalon-subtracted VS(r) constructed by the contour deformation method. It is

expected to generate a renormalon of order r2Λ3
MS
αs(1/r) in the renormalon-subtracted

VS(r), corresponding to the correction proportional to c̃1 of section 3.3.

4 Numerical study of u = 1/2 renormalon

In the rest of this paper we perform numerical analyses on the normalizations Nu of renor-

malons to check the above observations and to see the current status of our knowledge on

the perturbative series for VS(r) and ṼS(q). We treat two perturbative series: one is the

fixed order perturbative series, and the second one includes higher-order terms estimated

by RG, which is used extensively in refs. [52, 53].

In the case that the renormalon singularity of the Borel transform is given by eq. (2.6),

we can estimate the normalization constant Nu from the fixed-order result of the pertur-

bative series. This was first proposed in ref. [41], whose method is as follows. We consider

the function

N(t) =

(
1− b0t

u

)1+νu

BX(t;µ = Q) . (4.1)

11Suppose that we can remove completely the u = 1/2 and 3/2 IR renormalons from VS defined in the

scheme B in some way. The remaining renormalons are proportional to (r2 Λ4
QCD/∆V ) × (ΛQCD/∆V )n

(n ≥ 0) or that with ∆V replaced by µf . They are obtained by expanding the correlator of eq. (3.7) in t.

In particular the leading IR renormalon (n = 0) is given in terms of the local gluon condensate [12, 49–51],

−i VA(r)2

6

r2

12∆V (r)
〈0 | g2Gµνa(0)Gaµν(0) | 0 〉 ,

or ∆V replaced by µf . Thus, the leading renormalon in V
(B1,B2)
S (r) is located at u = 2 and suppressed by

ΛQCD/∆V or ΛQCD/µf compared to the original u = 3/2 renormalon in VS(r).
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Figure 2. Scale dependence of the normalization constant N1/2.

(In the following analyses, νu of eqs. (3.11) and (3.14) are used.) We can obtain the

normalization constant by expanding this function in t and then substituting t = u/b0:

Nu =

∞∑
i=0

Nit
i|t=u/b0 , (4.2)

as long as the corresponding renormalon is the closest one to the origin.12 This method is

fairly general and can be used with only known terms of the perturbative series.

Using this method, ref. [42] studied N1/2 from the fixed-order result. We present an

updated result, which includes a more recent NNNLO result [18–20]

N1/2 = −1.3333 at LO

= −0.76139 at NLO

= −1.10661 at NNLO

= −1.21655 at NNNLO . (4.3)

The IR divergence at NNNLO is subtracted in the scheme (A). [If we adopt the scheme

(B2), the NNNLO result is given by N1/2 = −1.07764− 0.0541542 log(2rµf ).]

We also examine the scale dependence of the estimated normalization constant. We

use the perturbative coefficients with the renormalization scale µ = s/r to estimate the

normalization constant.13 The results are shown in figure 2. The scale dependence de-

creases as we include higher-order terms. These results indicate that the series (4.2) shows

convergence for the u = 1/2 renormalon and N1/2(s = 1) ' −1.1.

12Note that the regular part of BX at t = u/b0 would generate, e.g., the series expansion of (1−b0t/u)1+νu

in t which is convergent at t = u/b0 (even though it is divergent at |t| > u/b0).
13When the scale µ = s/r is used in constructing the Borel transform, the normalization constant Nu(s)

of the renormalon at u behaves as Nu(s) = Nu(s = 1)su as seen from eq. (2.6). The s-dependence of the

estimated result for s−uNu(s) is expected to reduce as we include higher-order terms. We always consider

Nu(s = 1) unless stated otherwise explicitly.
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The number of terms LL NLL NNLL NNNLL

1 −1.33333 −1.33333 −1.33333 −1.33333

2 −0.769621 −0.761390 −0.761390 −0.761390

3 −0.770430 −0.553531 −1.10661 −1.10661

4 −0.893478 −0.764315 −0.893382 −1.21655

5 −0.834305 −0.777275 −0.973020 −1.03927

10 −0.848814 −0.758382 −1.00381 −1.11924

15 −0.848826 −0.759417 −1.00658 −1.11968

20 −0.848826 −0.759892 −1.00779 −1.11995

25 −0.848826 −0.760151 −1.00844 −1.12010

Table 1. Estimates of normalization constant N1/2 from truncated perturbative series of the

RG-improved series.

In the second method we treat the RG-improved series, where the higher-order terms

in perturbative series are estimated by RG. Explicitly we can use [52, 53]

v(r) = −2CF
π

∫ ∞
0

dq

q
sin(qr)[α̃V (q)]NkLL , (4.4)

where the NkLL terms of the perturbative series [coefficients of αs(µ)n+k+1 logn(µr) for

arbitrary n] can be determined using the (k + 1)-loop beta function and the fixed-order

result up to k-loops.

We now estimate N1/2 from the RG-improved series obtained from eq. (4.4) using

eq. (4.2). Since we have an all-order perturbative series (at each order of improvement), we

can obtain NLL, · · · , NN3LL with arbitrary precision in principle. The results from finite

number of terms read

N1/2 = −0.8488 at LL (using 30 terms)

= −0.7603 at NLL (using 30 terms)

= −1.009 at NNLL (using 30 terms)

= −1.120 at NNNLL (using 30 terms) . (4.5)

We use the scheme (A) to subtract the IR divergence in the NNNLL analysis.14 From

table 1, which shows the convergence speed, we infer that 20–50 perturbative coefficients

are needed in order to obtain the normalization constants with one-percent accuracy.

5 Renormalon cancellation in total energy

It is interesting to examine renormalon cancellation in the total energy (namely, V (r) +

2mpole) from the estimated N1/2 [42]. The leading renormalon in the Borel transform of

14We perform Fourier transform of the finite result VS(r) obtained in the scheme (A) to obtain regularized

α̃V (q) in momentum space. This is not equivalent to the regularization where we set µ = q in the NNNLO

result of α̃V (q) and subtract the 1/ε term.
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mpole/mMS is given by

Bmpole/mMS
(µ = mMS) ' NM

(1− 2b0t)
1+

b1
2b20

. (5.1)

NM can be investigated from the fixed-order perturbative series [54, 55] in a parallel man-

ner. The results of NM are given by15 (µ = mMS)

NM = 0.424413 at LO

= 0.562265 at NLO

= 0.574979 at NNLO

= 0.513427± 0.001025 at NNNLO . (5.2)

The last result has an error due to the numerical error of the O(α4
s) coefficient. Now let

us examine the renormalon cancellation, 2NM +N1/2 = 0.

2NM +N1/2

(2NM −N1/2)/2
= −0.444 at LO

= 0.385 at NLO

= 0.038 at NNLO

= −0.088± 0.002 at NNNLO (5.3)

It is possible that treatment of IR divergences affects the cancellation. Let us examine

this. So far, we subtracted the IR divergence in the scheme (A), but now we make the

three-loop coefficient finite in the scheme (B2). Then, the IR divergence is replaced by the

logarithmic term like log(µfr). In figure 3, we investigate renormalon cancellation while

varying µf in this logarithm in a reasonable range. This figure shows that the treatment

of IR divergences can be non-negligible to the precise cancellation. We note that the

numerical error on the four-loop result of the mass relation hardly affects this result.

6 Normalization by analytic formula in RG-improved series

For the RG-improved series, we derive a formula for the normalization constants of renor-

malons given as a one-dimensional integral. The Borel integral of the QCD potential for

the RG-improved series can be written as

v± = −2CF
π

∫
C∓

dq

q
sin(qr)[α̃V (q)]NkLL , (6.1)

15Note that the perturbative series needs to be expressed in terms of the coupling of the theory with

nl light quarks only, while originally the pole mass is expressed by the coupling in the theory with nl
light quarks plus one heavy quark. This is needed to ensure the renormalon cancellation, since NM and

N1/2 are proportional to ΛMS and the same ΛMS should be used for both quantities. (In principle one can

pursue the calculation in the different couplings if the difference in the definitions of ΛMS is properly taken

into account.)
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Figure 3. Renormalon cancellation as a function of µf in the logarithm.

Figure 4. Contours C± and C. q∗ is the singular point of α̃V (q) on the positive real q axis.

where the contours C∓ are displayed in figure 4. The details of the derivation are given

in appendix B. Since the integrand satisfies {f(x)}∗ = f(x∗), the imaginary part can be

calculated by a contour integral

Im v± = ∓2CF
π

1

2i

∫
C

dq

q
sin(qr)α̃V (q) , (6.2)

where the contour C is displayed in figure 4. By expanding sin(qr) in qr, the normalization

of the renormalon at u = 1/2 is found as

Im v±[u = 1
2 ] = ∓2CF

π

1

2i
r

∫
C
dq α̃V (q)

= ∓2CF
π

ΛMSr
1

2i

∫
C
dx α̃V (x) . (6.3)

In the last line, we changed the integration variable to x = q/ΛMS. (Note that α̃V (q) is a

function of q/ΛMS.) Then, from eqs. (2.10) and (6.3), we obtain

N1/2 = −2CF
π

b0
π

Γ(1 + ub1/b
2
0)u
−1−u b1

b20 Iu|u=1/2 , (6.4)

with

I1/2 =
1

2i

∫
C
dx α̃V (x) . (6.5)
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We present numerical values of N1/2 via numerical evaluation of I1/2:

N1/2 = −0.848826 at LL

= −0.760846 at NLL

= −1.01017 at NNLL

= −1.12049 at NNNLL . (6.6)

They agree well with the estimates from the finite number of terms (4.5). The scheme (A)

is adopted at NNNLL in accordance with section 4.

It is possible to calculate the normalization constants of other renormalons in a parallel

manner. The normalization constant of a general renormalon at u is expressed as

Nu = −2CF
π

b0
π

Γ(1 + ub1/b
2
0)u
−1−u b1

b20 Iu (6.7)

with

Iu =
1

2i

∫
C
dx

(−1)(2u−1)/2

(2u)!
x2u−1α̃V (x) . (6.8)

This expression stems from the Taylor expansion of sin(qr).

In this method, the r-dependence of a renormalon uncertainty due to any half-integer

renormalon at u is given exactly by r2u+1. In particular for u = 3/2, the correction factor

of [1+O(αs(1/r))] is not detected (as long as we work at NkLL with finite k). It is because

this method relies on the assumption that αV (q) does not possess renormalon uncertainties.

For the u = 3/2 renormalon, which is the second IR renormalon, the numerical values

of N3/2 are given by

N3/2 = 0.0471570 at LL

= 0.0260142 at NLL

= 0.0793089 at NNLL

= 0.143286 at NNNLL , (6.9)

based on eqs. (6.7) and (6.8). We again adopt the scheme (A).

7 Numerical analysis of u = 3/2 renormalon

We now estimate N3/2 from the fixed-order result. We annihilate the leading renormalon

at u = 1/2, whose uncertainty is an r-independent constant, by considering the QCD force.

Then we use the same method as in the u = 1/2 renormalon.

We first examine the relation between the normalization constants of the potential and

force. The potential v = rV has the u = 3/2 renormalon uncertainty as eq. (2.10) with

eqs. (3.14) and (3.15), which gives the uncertainty to the dimensionless force f = r2dV/dr as

Im f± = ± π
b0

2N3/2

Γ
(
1 + ub1/b20

)u1+u
b1
b20

(
r2Λ2

MS

)3/2
[1 +O (αs(1/r))] |u=3/2 . (7.1)

Thus, the normalization constant of the dimensionless force NF
3/2 is related asN3/2 = 1

2N
F
3/2.
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Figure 5. Scale dependence of the normalization constant N3/2.

To obtain N3/2, we first consider the fixed-order perturbative series of the potential

without setting µ = 1/r. The derivative with respect to r gives the fixed-order result of

the force. Finally we set µ = 1/r to estimate NF
3/2 and translate it to N3/2.

We present the results:

N3/2 = 0.666667 at LO

= −0.857914 at NLO

= 1.15844 at NNLO

= 1.02659 at NNNLO . (7.2)

We adopt the scheme (A) to obtain the NNNLO result. [In the scheme (B2), we obtain

N3/2 = −0.848623 + 0.731082 log(2µfr) at NNNLO.] Although the estimate of the normal-

ization constant may look already convergent, this seems to be a numerical accident. We

examine the scale dependence of the estimated normalization constant in a parallel manner

to the u = 1/2 renormalon. The result is shown in figure 5. We find that large dependence

on the renormalization scale remains in this estimate.

Let us perform a parallel estimate from the finite order result of the RG-improved

series. In this case, since we know N3/2 as given by eq. (6.9), it would be useful to grasp

how many terms are needed for a reasonable estimate. Table 2 shows the result. At

NNNLL, we adopt the scheme (A). One sees that typically 20 terms are needed for a

good estimate.

We examine scale dependence of the estimate of N3/2 using finite number of terms

in the RG-improved series. Since we know the exact answer in this case, we can directly

check whether mild scale dependence indicates reliability of the estimate. In figure 6, we

examine this at NNLL. We see that at higher order the scale dependence of N3/2 decreases

and it approaches the correct value. (At further higher order, for instance from 30 terms,

we obtain N3/2 = 0.0079136 and 0.079172 for s = 1/2 and 2, respectively.)

In section 3.5, we pointed out that VS(r) can have the unfamiliar renormalon at u = 1/2

associated with the IR divergences. Since the corresponding renormalon uncertainty for
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The number of terms LL NLL NNLL NNNLL

1 0.666667 0.666667 0.666667 0.666667

2 −0.845569 −0.857914 −0.857914 −0.857914

3 0.00364088 −1.33043 1.15844 1.15844

4 1.66115 3.05043 −3.33613 1.02659

5 −2.39650 0.00590101 3.26898 −7.65424

10 −0.525249 1.23022 −1.32332 −5.59838

15 0.0300462 −0.00224226 0.1238239 0.294562

20 0.0471086 0.0254835 0.0802829 0.151007

25 0.0471576 0.0260084 0.0791596 0.143535

30 0.0471570 0.0260113 0.0792097 0.143424

Table 2. Estimates of the normalization constant N3/2 from truncated perturbative series of the

RG-improved series.

Figure 6. Scale dependence of N3/2 determined from finite number of terms at NNLL. Black line

shows the exact answer obtained from the analytic formula. In the right panel, the range 2 ≤ s ≤ 6

is magnified.

the static QCD potential is not an r-independent constant in contrast to the familiar

renormalon at u = 1/2, this renormalon cannot be eliminated in the QCD force. Taking

into account this possibility, we present another estimate for the u = 3/2 renormalon,

whose method is not plagued by the two renormalons at u = 1/2. We carry out this by

using a mapping from the t-plane to a new z-plane, where the u = 3/2 renormalon becomes

closer to the origin than the u = 1/2 renormalon. Namely we change the relative distances

of the two IR renormalons from the origin.16

A possible mapping is given by

b0t(z) =
1

2
(z + eiπ/6)6 +

1

2
. (7.3)

The basic idea to obtain this mapping is as follows. In the first step, we consider v =

2(b0t) − 1, which maps b0t = 0, 1/2, 3/2 into v = −1, 0, 2, respectively. In the second

step, w = v1/6 is considered, which makes the distance between v = −1 (u = 0) and v = 2

16One may compare with ref. [41], in which for the Adler function the closer UV renormalon at u = −1

is made farther than the IR renormalon at u = 2 by a mapping.
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(u = 3/2) shorter than that between v = −1(u = 0) and v = 0(u = 1/2). The final step

is given by z = v − eiπ/6 to locate the original origin u = 0 at z = 0. Corresponding to

these transformations, we consider eq. (7.3). Indeed, the closest zero of 1− b0t(z)/u among

positive half-integers u is given by u = 3/2.

However, it turned out that with the above mapping convergence is too slow for prac-

tical analysis. (e.g., In RG-improved series at LL, we need 250 terms to obtain the nor-

malization constant with about 10 % accuracy.) Instead of eq. (7.3), we use

b0t (z) = 2− 1

2

[
9− 7

(
eiπ/6 − z

)6
]1/2

. (7.4)

This mapping is obtained with a similar idea to the above, but the main difference is that we

first consider square of the difference from b0t = 2, i.e. (2−b0t)2. The mapping (7.4) consists

of the following steps: b0t(v) = 2−v1/2, v(w) = −7
4w+ 9

4 , w(y) = y6, y(z) = −z+eiπ/6. We

note that the singularities of 1/(1− 2b0t(z)/3) and 1/(1− 2b0t(z)/5) with respect to z are

not common, and the u = 5/2 renormalon does not affect the estimate of the normalization

constant at u = 3/2. With this mapping t(z), we consider a function

N(z) =

(
1− 2

3
b0t(z)

)1+ 3
2
b1
b20 Bv(t(z);µ = 1/r) . (7.5)

By expanding this function in z and then substituting z = −(8/7)1/6 +eiπ/6, we can obtain

the normalization constant of the u = 3/2 renormalon.

Using this mapping, we estimate the normalization constant of the u = 3/2 renormalon

from the fixed-order perturbative series as

N3/2 = −1.33333 at LO

= −1.52383 at NLO

= 4.75182 at NNLO

= 9.01375 at NNNLO . (7.6)

We adopt the scheme (A) at NNNLO. [In the scheme (B2), we obtain N3/2 = 7.2395 +

0.69179 log(2µfr).] In this method, imaginary parts appear in fixed-order results, but we

omit them in the above estimate since we know that the true normalization is real. The

size of the imaginary parts can be used for an error estimate of the results.

We also estimate N3/2 of the RG-improved series using this mapping. Table 3 shows

the result. One can confirm that the estimated values converge to the results in eq. (6.9).

We start to obtain reasonable results with about 60 terms.

8 u = 1/2 and 3/2 renormalons in ṼS(q)

Let us investigate the renormalon uncertainty of α̃V (q). We estimate the normalization

constants of the renormalons of α̃V (q) at u = 1/2 and 3/2 assuming that they are the
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The number of terms LL NLL NNLL NNNLL

1 −1.33333 −1.33333 −1.33333 −1.33333

2 −1.52878 −1.52383 −1.52383 −1.52383

3 1.20631 0.96708 4.75182 4.75182

4 4.86579 6.76949 4.88592 9.01375

5 6.13184 6.39316 −9.64487 8.39204

10 −1.32119 30.9456 −220.002 277.649

20 −12.5409 20.1377 75.0878 −347.457

30 4.04035 −14.7808 66.2768 −32.0964

40 −1.07937 0.943337 −5.54367 −70.4336

50 0.0725315 0.0420682 0.0878506 2.16533

60 0.047093 0.0258843 0.078969 0.167635

100 0.0471979 0.0262156 0.0801885 0.143394

150 0.0471763 0.0260685 0.0794704 0.143429

200 0.0471475 0.0259836 0.0792261 0.143089

Table 3. Estimates of the normalization constant N3/2 with using mapping (7.4) from truncated

perturbative series of the RG-improved series.

leading renormalon individually. More explicitly we assume

Bα̃V (q) (t) '
Nα̃V ,u(

1− b0
u t
)1+u

b1
b20

. (8.1)

The theoretical discussion in section 3.4 shows that the normalization constants Nα̃V ,u

defined in this way should be zero both for u = 1/2 and u = 3/2, because the u = 1/2

renormalon is completely absent in α̃V (q), and for u = 3/2 the expansion of the Borel

transform around the singularity takes a form ∼ (1 − b0t/u)−1−ub1/b20+2 rather than ∼
(1− ub0t/u)−1−ub1/b20 corresponding to the αs(q)

2 suppression.17

The estimates from the fixed-order results read

Nα̃V ,u=1/2 = 1 at LO

= −0.00617284 at NLO

= 0.141682 at NNLO

= −0.0318992 at NNNLO (8.2)

and

Nα̃V ,u=3/2 = 1 at LO

= −0.0185185 at NLO

= 2.246032 at NNLO

= 2.27727 at NNNLO . (8.3)

17As a result of the suppression of the renormalon, we may regard that ν3/2 for the momentum-space

potential is shifted by −2.
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Figure 7. Estimates of the normalization constants of the renormalons at u = 1/2 (left) and 3/2

(right) for the momentum-space potential. Green points are obtained from the RG-improved series,

while the orange points correspond to the large-β0 approximation. The first four points of the

RG-improved series coincide with the exact fixed-order results, shown by blue points. In the right

panel the i = 4 point (−7.30) lies out of the plot range.

We subtract the IR divergence at NNNLO in the scheme (A). If we instead use the scheme

(B2), the NNNLO results are modified as

Nα̃V ,u=1/2 = −0.136078 + 0.0406157 log(2rµf ) at NNNLO , (8.4)

and

Nα̃V ,u=3/2 = −0.535547 + 1.09662 log(2rµf ) at NNNLO . (8.5)

By taking rµf = 0.2 as an example, we obtain Nα̃V ,u=1/2 = −0.1723293 and Nα̃V ,u=3/2 =

−1.54037 at NNNLO.

In figure 7 we show the estimates of Nα̃V ,u=1/2 and Nα̃V ,u=3/2 from the RG-improved

series, in addition to the ones from the fixed order results. In these figures, we subtract

the IR divergence in the scheme (A) at NNNLO. (Note that in the RG-improved series the

terms beyond N3LO are zero for ṼS(q) since we set µ = q.) We also plot their estimates

using the large-β0 approximation for the higher-order terms (they are non-zero even beyond

N3LO). In both cases we know that the normalization constants are zero. We see in the

figures that the estimates approach zero as we include more terms. Since the normalization

constants are expected to be zero (even if we do not use any approximation), this figure

shows overall consistency.

Thus, in both cases the observed results are consistent with the expectation that the

renormalon at u = 1/2 is absent and the u = 3/2 renormalon is suppressed. For u = 1/2, we

may already observe smallness of the renormalon contribution from the known perturbative

series. For u = 3/2, however, the number of terms are much too few to make any statement

on the size of the renormalon. By using the formula (3.19) and the fact that r-dependence

of VA = 1 + O(α2
s) is suppressed, we can make a stronger prediction on the smallness of

the renormalon. We confirm validity of this formula using the higher-order estimates by

RG-improvement (trivial) or by the large-β0 approximation.
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9 Conclusions

We have investigated the u = 1/2 and u = 3/2 renormalons in the static QCD potential in

position space and momentum space. In particular we have presented detailed examinations

of the u = 3/2 renormalon for the first time. In terms of pNRQCD EFT, we have studied

the renormalon of the Wilson coefficient VS(r) (and in connection with this the second

term of the multipole expansion, δEUS, as well).

We have determined the structure of the u = 3/2 renormalon based on the OPE (or

multipole expansion) and the RG equations. Although there are non-trivial features spe-

cific to the QCD potential (originating from the fact that the multi-scales are involved),

we find that the renormalon uncertainty can be parameterized (besides the overall normal-

ization) similarly to the general case as reviewed in section 2. The relevant parameters

are the Wilson coefficient of the O(~r) interaction VA, in particular its anomalous dimen-

sion (associated with the logs from the soft scale), and also the coefficients of the beta

function. We have also clarified how the renormalon uncertainties of the position-space

potential propagate to the momentum-space potential. The u = 1/2 renormalon is com-

pletely absent in the momentum-space potential, and the u = 3/2 renormalon uncertainty

is suppressed by αs(q)
2 in momentum space compared to that in position space. While

the renormalon uncertainty of the momentum-space potential has been believed to be

small, our result provides a quantitative insight on this issue. We have given a system-

atic and precise analysis of the old problem, including renormalization prescription and

treatment of the IR divergences (US logarithms) based on the multipole expansion in the

pNRQCD EFT.

There are some difficulties caused by the IR divergences, however. First, it is not

obvious whether the renormalization of VS(r) to remove the IR divergences affects the

renormalon structure detected from the OPE argument. We have proposed a way to remove

the IR divergences which is likely to keep the renormalon structure unchanged based on

our current knowledge. Secondly, we have pointed out that it is difficult to eliminate the

IR divergences and IR renormalon at u = 3/2 of VS(r) simultaneously in the multipole

expansion, i.e., VS(r) + δEUS. In particular, the perturbative result for the sum given by

the double expansion in αs and log(αs) is free from the IR divergences but not from the IR

renormalon. A systematic method which can subtract the IR renormalon as well needs to

be developed for obtaining an accurate prediction. The contour deformation method used

in refs. [33, 34] has an advantage in this respect (see below).

We performed numerical analyses and checked our understanding as well as the current

status of our knowledge on the perturbative series of VS(r) and ṼS(q). With the available

first four terms of the perturbative series, we find that already the normalization constants

of the u = 1/2 renormalons can be estimated with moderate accuracies (consistent with the

analyses [42]). On the other hand, the normalization constants of the u = 3/2 renormalons

are still not reachable. According to the analysis for the RG-improved series (neglecting

beyond NNNLL terms), it is suggested that we need 15–20 terms of the series expansion

to obtain reliable estimates of the normalization constant. In the same RG method, we

obtained an analytic formula for the normalization constants for half-integer renormalons
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[eq. (6.8)], which is confirmed to be valid by comparison with the estimate using Lee’s

method, which utilizes finite number of terms of perturbative series.

We noted the existence of a peculiar renormalon at u = 1/2, which is related to

IR divergences of the static QCD potential in naive perturbation theory and induces an

uncertainty of O(ΛMSr
2∆V 2(r)). This can be an obstacle in estimating the normalization

constants of the familiar renormalons at u = 1/2 and u = 3/2. To investigate the familiar

u = 1/2 renormalon (which induces an r-independent uncertainty), it is better to study

perturbative expansion of the pole mass in terms of the MS mass, which is free from IR

divergence. To study the normalization of the u = 3/2 renormalon, we proposed a method

using a non-trivial mapping, which is not disturbed by the renormalons at u = 1/2.

As an application, the present work clarifies the status of the method (contour defor-

mation method) used in a recent determination of αs(MZ) from VQCD(r) after subtracting

the u = 1/2 and 3/2 renormalons [33, 34]. (The IR divergence is canceled as well.) There,

it is assumed that the corresponding renormalons contained in ṼS(q) can be neglected. As

we have seen in section 3.4, the normalization of the u = 1/2 renormalon in the momen-

tum space potential is exactly zero. For the u = 3/2 renormalon, it turned out that the

dominant (or leading) uncertainty ∼ r2Λ3
MS

, which comes from the IR region of the Fourier

transform of the momentum space potential, is subtracted since this method removes the

IR region. On the other hand, the subleading part ∼ r2Λ3
MS
αs(1/r), which comes from

the uncertainty of the momemtum-space potential, is generally expected to remain. This

shows how the u = 3/2 renormalon is suppressed theoretically, and the current status is

that with the first four terms of the perturbative series the u = 3/2 renormalon in ṼS(q) is

far from detectable, based on the detailed numerical analysis. Thus, we obtain the follow-

ing overview: (1) As demonstrated in refs. [33, 34], the contour deformation prescription

is indeed useful to raise accuracy of the prediction for VQCD(r) in the low energy region.18

We have clarified how the assumption used in this prescription can be justified. (2) At the

same time, we still do not have a sufficient sensitivity to make quantitative estimate of the

normalization of the u = 3/2 renormalon in VS(r), and this is consistent with the analysis

in refs. [33, 34], where the normalization of the r2 term (A2) in the OPE has an order

100% error due to the uncertainty from unknown higher-order perturbative corrections.19

Therefore, the method is reasonable for steadily improving accuracy of VQCD(r), by sepa-

rating and subtracting the renormalons from VS(r) using the currently known terms of the

perturbative series.

In this paper we used the RG equations of the soft scale 1/r (combined with OPE).

We believe that they determine the major structure of the renormalons at u = 1/2 and

u = 3/2 in the potentials. It may also be useful to use the RG equations of the US scale

µf in order to study further the detailed structure of the renormalons. This was already

indicated in the examination of the unfamiliar renormalon at u = 1/2 in section 3.5. We

leave it to future investigation.

18This feature originates not only from subtracting renormalons but also from removing an unphysical

singularity from the prediction.
19See footnote 21 in [34].
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Figure 8. To take into account the couplings of a gluon to the total static currents, both self-

energy and potential-energy diagram contributions need to be included, and a cancellation takes

place between them in the IR limit of the gluon momentum |~q| → 0.

To study renormalons beyond u = 3/2, there still remain works to be done. In particu-

lar, it has not been clarified yet which renormalons are specified from the OPE of pNRQCD

EFT beyond u = 3/2.
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A IR cancellation at O(r0)

The cancellation of IR contributions between the self-energy 2Σ and the potential energy

VS(r) is a general property of gauge theory, which can be seen as follows. A static current

has only the time component,

jµa,i(x) = ±Taδµ0δ3(~x∓ ~r/2), (i = Q, Q̄) (A.1)

since a static color charge has no spatial motion. Here, ±~r/2 denote the positions of

the static charges Q and Q̄. (We fix the c.m. coordinate to the origin ~0.) Hence, an

IR gluon, which couples to the static currents via minimal coupling Aaµ(~q, t) jµa,i(−~q, t) =

Aa0(~q, t) j0
a,i(−~q), couples to the total charge of the system in the IR limit |~q| → 0:

Qtot
a =

∑
i=Q,Q̄

j0
a,i(~q = ~0). (A.2)

Therefore, an IR gluon decouples from a static color-singlet system. Diagrammatically,

however, an IR gluon can detect the total charge of the system only when both self-

energy diagrams and potential-energy diagrams are taken into account, as can be seen

from figure 8. This means that a cancellation takes place between these two types of

diagrams, since the IR gluon couples to individual diagrams but decouples from the sum

of them.

On the other hand, in analogy with classical electrodynamics, gauge field couples to

the total charge of the system in the lowest order [O(r0)] of the multipole expansion:∫
d3~xAaµ(~x, t) Jµa (~x, t) = Aa0(~0, t)

∫
d3~x J0

a (~x, t) +O(r1) , Jµa =
∑
i=Q,Q̄

jµa,i , (A.3)

– 26 –



J
H
E
P
0
5
(
2
0
2
0
)
1
1
6

which follows from eq. (A.1). Accordingly, in the pNRQCD Lagrangian (in the static

limit), there is no coupling of the singlet field S and the gauge field at the lowest order

of the multipole expansion [40]. Hence, the IR cancellation between the self-energy and

potential-energy diagrams is explicit at O(r0) in the multipole expansion (OPE) of the

total energy of a static QQ̄ pair.20

Intuitively, IR gluons with wavelengths of order Λ−1
QCD(� r) cannot resolve the color

charge of each particle, hence they only see the total charge of the system. More accurately,

coupling of IR gluons to the system can be expressed by an expansion in ~r (multipole

expansion) for small r, in which the zeroth multipole (=total charge) of the color-singlet

QQ̄ pair is zero.

The modern approach (after around 1998) to use the MS mass for the computation of

Etot(r) = 2mpole + VS(r) for a heavy quarkonium system can be viewed as follows. The

total energy of the system is computed as the sum of (i) the MS masses of Q and Q̄, (ii)

contributions to the self-energies of Q and Q̄ which are not included in the MS masses, and

(iii) the potential energy between Q and Q̄. Contributions of IR gluons with wavelengths

larger than r automatically cancel between (ii) and (iii) in this computation [56]. In this

way we can eliminate a large part of the IR contributions from the computation of Etot(r).

B Derivation of eq. (6.1)

We show some details of the derivation of eq. (6.1). The regularized dimensionless potential

is given by

v+ =

∫ exp(+iε)×∞

0
dt e−t/αs Bv(t)

= −2CF
π

∫ exp(+iε)×∞

0
dt e−t/αs

∫ ∞
0

dq

q
sin(qr)Bα̃V (q)(t)

= −2CF
π

i

∫ ∞
0

ds e−is/αs
∫ ∞

0

dq

q
sin(qr)Bα̃V (q)(is) . (B.1)

The integral contour of t is rotated to the positive imaginary axis (t = is). v− can be

obtained by setting ε→ −ε and s→ −s (or, by taking the complex conjugate).

The Borel transform of α̃V (q) can be expressed in the integral form as21

Bα̃V (q)(is) =

∫ +∞−iε

−∞−iε

dp

2πi
eips α̃V (q)

∣∣∣∣
αs→1/p

. (B.2)

We approximate α̃V (q) by [α̃V (q)]NkLL. According to our current knowledge of the RG

equation at NkLL, αs(q) diverges at q = q∗ if the running starts from µ > q∗ with the initial

20The O(r0) part of VS(r), which is relevant to the leading O(ΛQCD) renormalon, is free of IR divergences.

It is consistent with the fact that the pole mass is known to be IR finite at each order of the perturbative

expansion [45]. As discussed in sections 3.3 and 3.5, IR divergences of VS(r) cancel against the O(r2) part

and beyond in the OPE of VQCD(r). The IR divergences [or more physically US logarithms of VQCD(r)] are

generated by color dipole and higher multipoles of the static QQ̄ system.
21Expanding α̃V (q) in αs = 1/p, the integral at each order of the expansion can be evaluated easily by

the residue theorem. Note that the integral contour of p is closed in the upper-half plane for s > 0.
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condition αs(µ) = 1/p > 0. In this case there is a singularity on the real axis of p, due to

the singularity of αs(q). At LL (k = 0), the singularity is located at p = b0 log(µ2/q2). At

NkLL, the singularity of p is on the real axis for given values of q(> q∗), µ and k, where

the relation is given by q = q∗(µ, αs(µ) = 1/p; k). We are concerned with the case that q

is in the vicinity of q∗, where αs(q) ∼ (q − q∗)−1/(k+1). The singularity of p can be shifted

infinitesimally into the upper-half plane (hence, without crossing the contour of p integral)

by a shift q → q − iε in the vicinity of q∗.

After changing the order of the integration, we can integrate over p and s, which

transforms α̃V (q) to α̃V (q). Then we are left with the q integration with the integral

contour deformed into the lower-half plane in the vicinity of q∗. The above iε-prescription

for q specifies how to avoid the singularity of [α̃V (q)]NkLL at q = q∗ compatibly with the

deformation of the integral contour of t.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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