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1 Introduction

The conformal bootstrap program [1–3] has made remarkable progress to provide strong

constraints on the conformal field theories (CFTs) in higher dimensions D > 2 [4]. The con-

straints are obtained from general consistency conditions of the theories, including crossing

symmetry of four-point correlator and unitarity while no information on the Lagrangian is

needed. Further developments show that the critical 3D Ising model can be numerically

solved using conformal bootstrap with reasonable assumptions [5–7].1 It is tempting to ask

how the conformal bootstrap can improve our understanding on more complex CFTs.

4D superconformal field theories (SCFTs) with N = 2 supersymmetry provide a fas-

cinating laboratory to study the dynamics of quantum field theories. There are abundant

N = 2 SCFTs that can be constructed from different ways. In the conventional Lagrangian

approach, these theories can be built from gauge theories with proper matter representa-

tions which lead to vanishing beta function of all the gauge couplings. A large set of SCFTs

can be obtained from the class S constructions [9, 10]. They correspond to a web of dual-

ities, most of which do not admit Lagrangian description. Hopefully these SCFTs with or

without Lagrangian description could be classified in a more fundamental frame, such as

conformal bootstrap.

The program to study general 4D N = 2 SCFTs using conformal bootstrap has been

initiated in [14], in which the four-point correlators of the moment map and chiral op-

erators have been studied. These correlators have been explored further in [15] and [16]

with emphasis on the simplest Argyres-Douglas fixed point. The stress-tensor four-point

correlator2 is expected to be quite important to carve out the space of N = 2 SCFTs. The

stress-tensor operator is universal in any local CFT so it is a natural candidate to bootstrap.

The 3D stress-tensor four-point correlator without supersymmetry has been bootstrapped

in [11]. Remarkably the conformal collider bound on the conformal anomaly coefficients

a/c [12] automatically appears without extra assumptions besides the general consistency

conditions.3 The supersymmetric stress-tensor correlator has been bootstrapped in [17, 18]

for 4D N = 4 SCFT and in [19] for 6D (2, 0) SCFTs. The results are more restrictive due

to the extra constraints from supersymmetry. Nevertheless, for 4D N = 2 theories, the

superconformal partial wave expansion, or the superconformal blocks of the stress-tensor

four-point correlator was not unknown before. The three-point function of the stress-tensor,

or the selection rule of the J ×J OPE has been studied in [20, 21]. In this work, we com-

pute the superconformal partial wave expansion of the stress-tensor four-point correlator.

Conformal partial wave (or conformal block differing by kinematic factors) describes

the contributions on the four-point correlator from exchange of a primary operator and its

conformal descendants. The unitarity and crossing symmetry of four-point correlator, as

consistent conditions employed in conformal bootstrap, are imposed based on the confor-

1A comprehensive review on these developments is provided in [8].
2In 4D N = 2 SCFTs, the stress-tensor stays in the supercurrent multiplet J in which the supercon-

formal primary J is a scalar. In this work, the stress-tensor four-point correlator means the four-point

correlator of the superconformal primary operator.
3The conformal collider bound also appears in the 3D conserved current bootstrap [13].
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mal partial wave expansions of the four-point correlator. The conformal blocks for external

scalars in general spacetime dimensions have been obtained in [24–26] as series expansion

of the two conformal invariant cross ratios. The expressions are further simplified into

compact forms based on Hypergeometric functions in even dimensions. The superconfor-

mal block consists of finite many conformal blocks and its explicit form depends on the

specific superconformal algebra and the representations, which in general is an involved

technical problem. The major challenge is to fix the coefficients for each conformal block

appearing in the decomposition of superconformal block. For the theories with N = 1

supersymmetry, the superconformal block can be obtained from straightforward approach,

i.e., decomposing the exchange supermultiplet into several conformal primary families and

fixing the coefficients from two and three-point functions [34–36]. However, this approach

turns into extremely cumbersome and out of control for theories with extended supersym-

metry. For external operators which are superconformal primaries in 1
2 -BPS multiplet, the

superconformal blocks can be solved from the superconformal ward identities [23, 27, 28].

This method has been used to compute the superconformal blocks of shortened operators

in SCFTs with extended supersymmetry [14, 18, 29–33]. The superconformal Casimir ap-

proach can also be used to compute the superconformal blocks of shortened operators as

solutions of the superconformal Casimir eigen-equation [38, 39, 42]. While for more general

operators, the superconformal blocks involve complex structures and above methods are

not quite helpful. Specifically, the 4D N = 2 stress-tensor multiplet has no shortening at

the first level. The shortening appears at level 2 while it does not lead to the BPS-like

condition for the four-point function.

We will employ the superembedding formalism to compute the superconformal partial

waves of the 4D N = 2 stress-tensor four-point correlator. The superembedding formalism

for 4D N = 1 superconformal blocks has been developed in [39, 40] and it has been applied

to obtain the superconformal blocks for general external scalars [41]. The superembedding

formalism is the supersymmetric generalization of the embedding formalism in which the

conformal transformations are realized linearly and the conformal correlation functions can

be simplified drastically [43–57]. To construct superconformal correlation functions, the

fundamental elements are the superconformal invariants and tensor structures. The 4D

N = 1 superconformal invariants and tensor structures have been constructed in superspace

decades ago [64–66], and they can be nicely rewritten as functions of variables in the

superembedding space [58–62]. These functions have compact form and can be used to

simplify the computations of the 4D N = 1 superconformal blocks significantly [39–41].

We will generalize the superembedding formalism to describe the 4D N = 2 stress-

tensor multiplet correlation function. Previous studies on the 4D N = 2 superconformal

correlators are restricted in the superspace [20, 66–68]. In [66] the author constructsl two

independent nilpotent superconformal invariants that can be built from three points, which

appear in the three-point correlator 〈JJO〉 with a general long multiplet O [20]. Moreover,

due to the extended supersymmetry, the three-point correlator 〈JJO〉 contains new tensor

structures which are completely different from these known for N = 1 theories [20]. Dif-

ferent from the 4D N = 1 analogs, it is less clear to construct 4D N = 2 superconformal

invariants and tensor structures in superembedding space, which are the main obstacles to

– 2 –
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study the N = 2 stress-tensor four-point correlator using superembedding formalism. In

this work, we will illustrate the method to construct the N = 2 nilpotent superconformal

invariants and tensor structures in N = 2 superembedding space. The constructions follow

a systematical correspondence between the functions of variables in superembedding space

and superspace. By writing the N = 2 superconformal invariants and tensor structures in

superembedding space, we obtain a compact form of the three point correlation function

〈JJO〉, which is consistent with the results in superspace [20]. Then we will further use

our results on three-point functions to compute the superconformal blocks up to overall

normalization factors. This is accomplished through supershadow integration of product of

two three-point functions, similar to the method employed for 4D N = 1 superconformal

blocks [39, 40].

This paper is organized as follows. In the next section, we briefly review the represen-

tations of 4D N = 2 superconformal algebra that are relevant to the stress-tensor OPE,

and also the selection rules for the J ×J OPE. In section 3 we introduce the superembed-

ding space with N = 2 supersymmetry and construct the two independent superconformal

invariants and tensor structures. We show their relations with the results obtained from

4D N = 2 superspace analysis. In section 4 we solve the three-point functions 〈JJO〉 in su-

perembedding space. The four-point correlator and its superconformal partial wave expan-

sion are studied in section 5. Our main results are presented in (5.24), (5.41), (5.58), (5.64)

and (5.67). In section 6 we decompose the N = 2 superconformal blocks for long multiplets

into N = 1 superconformal blocks, which provide nontrivial consistency checks for our re-

sults. Conclusion and discuss are made in section 7. More details on the superconformal

invariants and tensor structures in superembedding space and the conformal integrations

will be presented in the appendices.

2 N = 2 superconformal algebra representations and selection rules

2.1 Representations of N = 2 superconformal algebra

The N = 2 superconformal algebra su(2, 2|2) is the supersymmetric extension of the con-

formal algebra so(4, 2). Its maximum bosonic subalgebra contains conformal algebra and

the R-symmetry algebra SU(2)R × U(1)r, with generators {Rji , r}. In addition, there are

eight Poincaré supercharges {Qiα, Q̄iα̇} and eight conformal supercharges {Siα, S̄iα̇}, where

α = ±, α̇ = ±̇ are the Lorentz indices and i ∈ {1, 2} are the SU(2)R indices.

Representations of su(2, 2|2) can be constructed from highest weight states, or super-

conformal primaries which are annihilated by the conformal supercharges S. The repre-

sentations are characterized by the quantum numbers (∆, j1, j2, R, r) of superconformal

primaries, where ∆ is the conformal dimension, j1, j2 are the Lorentz indices and R, r are

the SU(2)R × U(1)r Dynkin labels. For general representations they may also have extra

quantum numbers corresponding to the flavor symmetries which commute with su(2, 2|2).

While in this work, we focus on the stress-tensor multiplet and operators in the J ×J OPE.

These operators are invariant under the flavor symmetries. The superconformal primary

and its super-descendants form a supermultiplet. It can be shown from the superconformal

algebra that a supermultiplet consists of finite many conformal primaries. In consequence,

– 3 –
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Shortening Quantum Number Relations Multiplet

� ∆ > 2 + 2ji + 2R− (−1)ir, i = 1, 2 A∆
R,r(j1,j2)

B1 ∆ = 2R+ r j1 = 0 BR,r(0,j2)

B2 ∆ = 2R− r j2 = 0 B̄R,r(j1,0)

B1 ∩ B2 ∆ = r R = 0 Er(0,j2)

B1 ∩ B2 ∆ = −r R = 0 Ēr(j1,0)

B1 ∩ B2 ∆ = 2R ji = r = 0 B̂R
C1 ∆ = 2 + 2j1 + 2R+ r CR,r(j1,j2)

C2 ∆ = 2 + 2j2 + 2R− r C̄R,r(j1,j2)

C1 ∩ C2 ∆ = 2 + 2j1 + r R = 0 C0,r(j1,j2)

C1 ∩ C2 ∆ = 2 + 2j2 − r R = 0 C̄0,r(j1,j2)

C1 ∩ C2 ∆ = 2 + 2R+ j1 + j2 r = j2 − j1 ĈR(j1,j2)

B1 ∩ C2 ∆ = 1 + j2 + 2R r = j2 + 1 DR(0,j2)

B2 ∩ C1 ∆ = 1 + j1 + 2R −r = j1 + 1 D̄R(j1,0)

B1 ∩ B2 ∩ C2 ∆ = r = 1 + j2 R = 0 D0(0,j2)

C1 ∩ B1 ∩ B2 ∆ = −r = 1 + j1 R = 0 D̄0(j1,0)

Table 1. Classification of the unitary irreducible representations of the N = 2 superconformal

algebra.

the superconformal block which captures the contributions on four-point correlator from

exchange of a superconformal family can be decomposed into finite many conformal blocks.

Unitarity provides constraints on the quantum numbers of the representations. For

a general representation, denoted as A∆
R,r(j1,j2) following the notation of [69],4 there is a

unitary bound on the conformal dimension

∆ > 2 + 2ji + 2R− (−1)ir, ji 6= 0 , (2.1)

∆ = 2ji + 2R− (−1)ir or ∆ > 2 + 2ji + 2R− (−1)ir, ji = 0 . (2.2)

If the conformal dimension saturates the unitary bounds, the superconformal primary can

be annihilated by certain combinations of the Poincaré supercharges. In another words,

part of the superconformal descendants become null and the multiplet shortens. The

shortening conditions are classified in [69, 74]. The results are summarized in table 1 (see

also ([14, 20])). There are two types of shortening conditions corresponding to saturating

different unitary bounds given above, namely the B type and C type:

Bi : QiαO = 0, (2.3)

Bi : Q̄iα̇O = 0, (2.4)

Ci :

{
εαβQiαOβ = 0, j1 6= 0,

εαβQiαQiβO = 0, j1 = 0,
(2.5)

Ci :

{
εα̇β̇Q̄iα̇Oβ̇ = 0, j2 6= 0,

εα̇β̇Q̄iα̇Q̄iβ̇O = 0, j2 = 0.
(2.6)

4See [70–72] for early studies on extended superconformal symmetry and their representations.
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In [69] the representations satisfying type B (C) conditions are called short (semi-short)

multiplets, as the semi-short superconformal primaries are annihilated by half number of

supercharges comparing with the short multiplets. In table 1, there are three special classes

of shortened multiplets (Er, B̂R, Ĉ0(j1,j2)) which satisfy the maximum number of short or

semi-shorten conditions. The multiplets Er (B̂R) obey two B type conditions with the same

(opposite) chirality. They are also called 1
2 -BPS multiplets since they are annihilated by

half of the Poincaré supercharges. In N = 2 theories, the multiplets Er correspond to

the Coulomb branch physics while the multiplets B̂R have connections with Higgs branch

physics. The four-point correlators of the chiral (anti-chiral) superconformal primaries Er
and the moment map B̂1 have been studied using conformal bootstrap in [14, 15], which

lead to strong constraints on the CFT data in Coulomb and Higgs branches.

The multiplet Ĉ0(j1,j2) is a special class (R = 0) of the shortened multiplet ĈR(j1,j2), and

it obeys an enhanced semi-short conditions C1 ∩C2 ∩ C̄1 ∩ C̄2. Its conformal dimension ∆ =

2 + j1 + j2 saturates unitary bound for general conformal operators and actually it satisfies

a generalized conservation equation. The conserved higher spin operators (j1 + j2 > 0)

are not allowed in an interacting CFT [76, 77]. However, the conserved multiplet Ĉ0(0,0)

contains a conserved spin two currents so it is expected to be the stress-tensor multiplet.

Any local N = 2 SCFT that cannot be factorized as a product of two local theories

contains a unique Ĉ0(0,0) multiplet. Its superconformal primary is a scalar invariant under

R-symmetry transformations. Moreover, the multiplet includes spin one superconformal

descendants which give the conserved currents for R-symmetry SU(2)R ×U(1)r.

2.2 J × J selection rules from N = 2 superspace analysis

The N = 2 stress-tensor multiplet correlators have been studied in [20, 67]. In these work

the three-point functions are obtained in terms of the superconformal covariant variables

in superspace developed in [65, 66]. Here we briefly review the analysis in superspace. The

results will be reproduced in superembedding space later.

Following the notation in [20, 67], the stress-tensor multiplet is denoted as a super-

field J
J (x, θ, θ̄) = J(x) + J ij µ(θiσ

µθ̄j) + Tµν(θiσ
µθ̄i)(θjσ

ν θ̄j) + . . . , (2.7)

which satisfies the reality condition J = J̄ and the conservation equations

DαiDj
αJ = 0 , D̄i

α̇D̄
jα̇J = 0 , (2.8)

where Dαi and D̄iα̇ are covariant derivatives. The superconformal primary of stress-

tensor multiplet J has scaling dimension ∆J = 2 and is invariant under the R-symmetry

SU(2)R × U(1)r, which is crucial for us to study its correlators in superembedding space.

The N = 2 superconformal two and three-point correlators are constructed based on the

superconformal covariant coordinates in superspace zI = (x̃α̇α, θi, θ̄
i). With two points

(z1, z2) one can construct variables which transform as a product of two tensors at zi under

superconformal transformation:

x̃α̇α1̄2 = x̃α̇α1− − x̃α̇α2+ − 4i θα2 iθ̄
α̇i
1 = (x̃12)α̇α− , (2.9)

zI12 = zI1 − zI2 , (2.10)

– 5 –
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where we have employed the convention x = xµ(σµ)αα̇ = xαα̇, x̃ = xµ(σ̃µ)α̇α = x̃α̇α and

the chiral combinations x̃α̇α± = x̃α̇α ∓ 2iθαi θ̄
α̇ i.

With three points (z1, z2, z3) in superspace, one can construct the superconformal

covariant coordinates Z1 = (X1,Θ1, Θ̄1):

X1 = x̃−1
12̄

x̃2̄3x̃−1
31̄
, X̄1 = X†1 = −x̃−1

13̄
x̃3̄2x̃−1

21̄
, (2.11)

Θ̃i
1 = i

(
x̃−1

2̄1
θ̄i12 − x̃−1

3̄1
θ̄i13

)
, ˜̄Θ1 i = i

(
θ12 ix̃

−1
1̄2
− θ13 ix̃

−1
1̄3

)
, (2.12)

where x̃−1 = − x
x2 following the convention x2 ≡ xµxµ = −1

2tr(x̃ x). Z1 transforms as a

“tangent” vector at z1. It also satisfies the “chiral” condition

X̄1αα̇ = X1αα̇ − 4i Θi
1αΘ̄1 α̇ i . (2.13)

Moreover, we have following relations

X2
1 =

x2
2̄3

x2
2̄1
x2

1̄3

, X̄2
1 =

x2
3̄2

x2
3̄1
x2

1̄2

. (2.14)

Variables Z2 and Z3 can be constructed similarly by cyclically permuting (z1, z2, z3) and

it is easy to show
X2

1

X̄2
1

=
X2

2

X̄2
2

=
X2

3

X̄2
3

≡ u. (2.15)

The variable u is a superconformal invariant which appears both in N = 1 and N = 2

theories [65, 66]. Another variable that is also invariant under continuous superconformal

transformation can be obtained by contracting Lorentz indices between X and X̄,5 [66]

X1 · X̄1√
X2

1 X̄2
1

= − tr(x2̄1x̃2̄3x1̄3x̃1̄2x3̄2x̃3̄1)

2
√
x2

2̄1
x2

2̄3
x2

1̄3
x2

1̄2
x2

3̄2
x2

3̄1

≡ −w′, (2.16)

which also admits a cyclical permutation symmetry as in (2.15). In N = 1 superspace,

there is only one independent superconformal invariant u that can be obtained from three

points, while w′ is actually corresponding to u through an identity of N = 1 Grassmann

variables. In N = 2 superspace, u and w′ are independent with each other from which

two nilpotent superconformal invariants can be constructed. Both of the two nilpotent

invariants are necessary to construct general N = 2 superconformal correlators. In the

next section, we will show that the two superconformal invariants can be nicely constructed

in superembedding space.

In N = 2 superspace, the three-point correlator 〈J JO〉 with general multiplet O reads

〈J (z1)J (z2)O(z3)〉 =
1

(x1̄3)2(x3̄1)2(x2̄3)2(x3̄2)2
H(Z3) . (2.17)

The Lorentz indices in H(Z3) and the scaling conditions are fixed by superconformal sym-

metry. The three-point function in (2.17) is further restricted by the conservation equation

of J
∂2

∂Θi
3α∂Θα j

3

H(Z3) = 0 ,
∂2

∂Θ̄α̇
3 i∂Θ̄3 α̇j

H(Z3) = 0 . (2.18)

5Combining with u + u−1, w′ is also invariant under superinversion [66].
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The Grassmann coordinates Θ3, Θ̄3 are antisymmetric, so for two Grassmann coordinates

with the same chirality, either the Lorentz SU(2) indices or the R-symmetry SU(2)R indices

get contracted. Now the conservation equations (2.18) suggest that only the second choice

is possible for the correlators 〈J JO〉. Moreover, the three-point correlator is invariant

under the exchange of z1 and z2, which requires the r.h.s. in (2.17) invariant under the

reflection (X3,Θ3, Θ̄3)↔ (−X̄3,−Θ3,−Θ̄3).

The three-point function 〈J JJ 〉 is of special importance for the stress-tensor boot-

strap. It has been studied in [67] and the corresponding function H(Z3) in (2.17) reads

H(X3,Θ3, Θ̄3) = λ
(1)
J

(
1

X2
3

+
1

X̄2
3

)
+ λ

(2)
J

Θαβ
3 X3αα̇X3ββ̇Θ̄α̇β̇

3

(X2
3)3

, (2.19)

in which the Grassmann variables with symmetric Lorentz indices are defined by

Θαβ
3 = Θαi

3 Θβj
3 εij = Θ

(αβ)
3 , Θ̄α̇β̇

3 = Θ̄α̇
3iΘ

β̇
3jε

ij = Θ̄
(α̇β̇)
3 , (2.20)

and they are invariant under R-symmetry SU(2)R. The OPE coefficients λ
(i)
J depend on

the conformal anomaly coefficients:

λ
(1)
J =

3

64π6
(4a− 3c), λ

(2)
J =

1

8π6
(4a− 5c). (2.21)

The second term in (2.19) is nilpotent and invariant under the reflection transformation

due to the following identity

ΘαβXαα̇Xββ̇Θ̄α̇β̇

(X2)3
=

ΘαβX̄αα̇X̄ββ̇Θ̄α̇β̇

(X̄2)3
. (2.22)

For the scalar multiplet with ∆ > 2, the second term will be modified according to the

scaling condition and does not satisfy the reflection symmetry. Therefore there is only

one independent OPE coefficient for the scalar multiplets except the supercurrent J . For

non-supersymmetric theories the conformal anomaly coefficient a appears in the correlation

function of stress-tensor and conserved currents, accompanied by complicated tensor struc-

tures [63]. While in N = 2 theories, these tensor structures are packaged in a unique nilpo-

tent tensor structure because of the supersymmetry. Coefficients of these tensor structures,

or the conformal anomaly coefficients are subject to the constraints from causality [12, 86].

A comprehensive study on the three-point functions 〈J JO〉 with general O have

been provided in [20], which gives all the multiplets O that can appear in the J × J
OPE. The three-point functions 〈J JO〉 have been fixed up to certain free parameters

that are corresponding to the dynamics of the theories. Specifically, it leads to following

selection rules:

Ĉ0(0,0) × Ĉ0(0,0) ∼I + Ĉ0( `
2
, `
2

) + Ĉ1( `
2
, `
2

) + C 1
2
, 3
2

( `
2
, `+1

2
) + C0,3( `

2
, `+2

2
) + C0,0( `+2

2
, `
2

)

+ C0,0( `+4
2
, `
2

) +A∆
0,0( `

2
, `
2

)
+A∆

0,0( `+2
2
, `
2

)
+A∆

0,0( `+4
2
, `
2

)
+ c.c. .

(2.23)
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The selection rules determine the multiplets that contribute to the superconformal par-

tial wave expansions of the four-point correlator 〈JJJJ〉. The multiplets Ĉ0( `
2
, `
2

) contain

conserved higher spin currents for ` ≥ 1 so they will not appear in interacting theories

except for ` = 0. To obtain the general formula for the superconformal partial waves,

the most challenge parts are that of the long multiplets A∆
0,0( `

2
, `
2

)
and A∆

0,0( `+2
2
, `
2

)
, which

involve rather complex structures. The multiplets Ĉ1( `
2
, `
2

) arise from the long multiplet

A∆
0,0( `

2
, `
2

)
when ∆ saturates the unitary bound. For the A∆

0,0( `+4
2
, `
2

)
and extra C multiplets,

their superconformal blocks contain only one conformal block with undetermined overall

coefficient.

3 N = 2 superconformal invariants and tensor structures in superem-

bedding space

In this section, we develop the 4D N = 2 superembedding formalism and show the vari-

ables and functions in superspace discussed before can be simply constructed based on

the variables in superembedding space. We aim to solve the three-point function (2.17) in

superembedding space, in which the superconformal invariants can be simply constructed

by the scalar products of variables with correct homogeneity. The local operators can

be uplifted to superembedding space with manifest superconformal transformations, and

the superconformal correlators have compact forms. The superembedding formalism, how-

ever, is not a complete approach for superconformal theories with extended symmetry that

it cannot describe multiplets carrying nonabelian R-symmetry charges [39]. Luckily the

stress-tensor multiplet in N = 2 theories and the most relevant multiplets in the OPE (2.23)

are invariant under SU(2)R. In this work, we follow the notation and conventions in [39, 40].

In superembedding formalism, the fundamental elements are the (dual) supertwistors

ZA(Z̄A) ∈ C4|N :

ZA =

ZαZα̇
Zi

 Z̄A =
(
Z̄α Z̄α̇ Z̄i

)
, (3.1)

which contain four bosonic components and N fermionic components. The (dual) super-

twistors ZA (Z̄A) transform as (anti) fundamental of superconformal group SU(2, 2|N ).

Superspace is equivalent to the space spanned by a pair of supertwistors ZaA, a ∈ {1, 2}
and a pair of dual supertwistors Z̄ ȧA, ȧ ∈ {1, 2} with constraint

Z̄ ȧAZaA = 0, a, ȧ ∈ {1, 2}. (3.2)

Besides, there is a gauge redundancy on the two-planes in supertwistor space which corre-

sponds to a change of basis

ZaA ∼ ZbAMa
b , M ∈ GL(2,C), (3.3)

and similarly for the two-planes spanned by the dual supertwistors. By gauge fixing the

redundancy group GL(2,C) × GL(2,C), the space spanned by the (dual) supertwistors
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reduces to the “Poincaré section”

ZaA =

 δα
a

ix̃α̇a+

2θai

 , Z̄ ȧA =
(
−ix̃ȧα− δȧα̇ 2θ̄ȧ i

)
. (3.4)

The constraint (3.2) now gives exactly the chiral condition and the (dual) supertwistor ZA
(Z̄A) is equivalent to the chiral (anti-chiral) coordinates in superspace. Here the “Poincaré

section” gauge fixing breaks the covariance of supertwistor and goes back to the classical

superspace, so it will not be applied until the final steps in the computations. Instead,

the GL(2,C)×GL(2,C) is partially fixed in another way that keeps the covariance of the

formalism, the bi-supertwistors:

XAB ≡ ZaAZbBεab, X̄AB ≡ Z̄ ȧAZ̄ ḃBεȧḃ. (3.5)

Apparently the bi-supertwistors are invariant under the SL(2,C)× SL(2,C), which fix the

gauge redundancies (3.3) up to rescaling. The bi-supertwistor satisfies the null condition

X̄ABXBC = 0, (3.6)

and graded antisymmetry

XAB = −(−1)pApBXBA, (3.7)

where pA = 1 for fermion components while vanishes for bosonic components. We denote

the supertraces of products of X and X̄ as6

〈1̄2 . . . īj〉 ≡ X̄AB1 X2BC . . . X̄MN
i XjlNA(−1)

∑
pX , (3.8)

where the indices X are those contracted from bottom to top. More properties of the

bi-supertwistors are given in [39]. The superembedding space refers to the space described

by (X , X̄ ). However, sometimes it is quite helpful to go back to the supertwistor, as will

be shown later.

By constructions, the scalar products of supertwistors are invariant under SU(2, 2|N )

transformations up to an overall scaling. Therefore the superconformal invariants can be

simply obtained by taking care about the scaling weights of each variables. However, when

there are several superembedding coordinates contracted consecutively, which is a product

of several matrixes in superembedding space, the results turn out to be quite obscure. In the

next part, we develop a systematical approach to expand the products of bi-supertwistors

in terms of the superconformal covariant variables in superspace.

3.1 Correspondence between supertraces in superembedding space and su-

perspace

Superconformal invariants in superembedding space can be obtained from supertraces of

products of X s and X̄ s.7 However, when there are several X s and X̄ s involved in the

6Following the notation in [39, 40], hereinafter the bi-supertwistors Xi and X̄j are denoted by i and j̄

for simplicity.
7Another approach is to contract the superembedding space indices with auxiliary fields. This will be

employed later to construct the tensor structures.

– 9 –



J
H
E
P
0
5
(
2
0
2
0
)
1
0
1

supertrace, the results are quite obscure to be understood in terms of superspace variables

even taking the “Poincaré section” gauge fixing.8 In this section we provide a method

that translates the supertraces of bi-supertwistors into superconformal covariant variables

in superspace. Interestingly, the problem has a rather simple and clear solution based on

supertwistor formalism.

We show that the invariants in superembedding space can be expanded in terms of

superconformal covariant variables in superspace through following identity:

〈̄i j k̄ . . . s̄ t〉 = tr(x̃̄ij xk̄j . . . x̃s̄t x̄it). (3.9)

The l.h.s. in (3.9) gives the supertrace of bi-supertwistors, while the r.h.s. is the trace

in superspace. Superconformal variables xīj and x̃īj are defined in (2.9).

The n-point supertrace in (3.9) is hard to evaluate directly. To prove this identity, we

go back to the supertwistors. The trick is that instead of contracting the indices (a, b),

(ȧ, ḃ) to obtain (dual) bi-supertwistors, the problem is drastically simplified by contracting

the SU(2, 2|N ) indices! Specifically we use the identity

Z̄ ȧAk ZalA = −i x̃ȧak̄ l , (3.10)

which is obtained by taking the “Poincaré section” (3.4) of the supertwistors. With k = l,

we are back to the chiral condition x̃α̇α
k̄ k

= x̃α̇αk− − x̃α̇αk+ − 4i θαk iθ̄
α̇i
k = 0, as expected.

Now let us consider the supertrace with two bi-supertwistors. From the identity (3.10),

the supertrace turns into

(̄i j)AD = −i Z̄ ȧAi εȧḃ x̃ḃbīj εbc Z
c
j D, (3.11)

which can be simply proved by rewriting coordinates (ī, j) in terms of the supertwistors and

recombining them through contractions of the SU(2, 2|N ) indices (3.10). The supertrace

of (3.11) gives the two-point invariant product9

〈̄i j〉 = −2x2
īj . (3.12)

It is straightforward to generalize this formula to products with more bi-supertwistors. For

instance, the three-point product reads

(̄i j k̄)AD = (−i)2 Z̄ ȧAi εȧḃ x̃ḃbīj xjk̄ bċ Z̄
ċD
k . (3.13)

Given k = i, the formula (3.13) becomes

(̄i j ī)AD = −x2
īj ī

AD, (3.14)

which agrees with the result in [39].

The formulas (3.11), (3.13) suggest that the n point products in superembedding space

are essentially the contractions of superconformal covariant variables xīj . The identity (3.9)

follows this conclusion and is a trivial generalization of the form (3.12).

8With two points the results can be obtained from two matrices product. With three points, the problem

can be partially simplified by taking a special frame with z1 → 0, z2 →∞ [59, 78]
9Note the convention used here differs from that used in embedding space (5.11) by a rescaling factor

X → 1
2
X . This factor has no effect on the definition of the superconformal invariants.
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3.2 Superconformal invariants in superembedding space

Superconformal invariants are constructed from the supertraces of products with n points

in superembedding space. The superconformal invariant u (2.15) consists of 2-traces from

three points (1, 2, 0). A nilpotent superconformal invariant is obtained from u by getting

rid of its constant part [40, 59]

z =
〈1̄2 〉〈2̄0〉〈0̄1〉 − 〈2̄1〉〈1̄0〉〈0̄2〉
〈1̄2〉〈2̄0〉〈0̄1〉+ 〈2̄1〉〈1̄0〉〈0̄2〉

. (3.15)

Note that z is antisymmetric under exchange 1↔ 2, z3 = 0 for N = 1 theories and z5 = 0

for N = 2 theories. Besides, we can also construct the superconformal invariants with

supertraces involving more points. It can be shown that the next supertrace with new in-

dependent structure is 〈1̄20̄12̄0〉. All other contractions from the three points either vanish

or degenerate to the 2-traces. With this new 6-traces we can build another superconformal

invariant

w′ =
4 〈1̄2 0̄12̄ 0〉

(〈1̄2〉〈2̄1〉〈1̄0〉〈0̄1〉〈0̄2〉〈2̄0〉)
1
2

, (3.16)

which is invariant under the exchange 1 ↔ 2. Using the identity (3.9) it is clear that

above formula gives the same result as in (2.16). In a non-supersymmetric theory with

θi = θ̄i = 0, we have w′ = −1. Then the new nilpotent superconformal invariant can be

obtained after removing this constant part

w = w′ + 1. (3.17)

As discussed previously, in N = 1 theories, the superconformal invariants w is proportional

to z2 so it does not give a new independent superconformal invariant. This is expected

since we know there is only one independent superconformal invariant can be constructed

from three points in N = 1 superconformal theories. While for N = 2 theories, there

are two independent superconformal invariants from three points [66]. In superembedding

space they are given by z and w. In [66] it also shows that there are only two independent

superconformal invariants from three points for any superconformal theories N ≥ 2. Al-

though in principle one can write down the irreducible supertraces of products with more

points (n > 6) in superembedding space. They are just polynomials of invariants z/w

instead of independent variables.

3.3 Superconformal tensor structures in superembedding space

Like in embedding space, the auxiliary twistors SA, S̄A are introduced to absorb the

spacetime indices of fields in superembedding space. The fields in superembedding space

are subject to gauge redundancies. It is convenient to choose the gauge in which the

auxiliary twistors are transverse and null

X̄ S = S̄X = S̄S = 0. (3.18)

The tensor structures of three-point functions are written in terms of the auxiliary twistors.
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From two points (1, 2) one can construct two tensor structures [39, 40]

S ≡ S̄12̄S
〈12̄〉

, S∗ = S|1↔2 ≡
S̄21̄S
〈21̄〉

, (3.19)

and

S± =
1

2
(S ± S∗). (3.20)

The symmetric structure S+ is nilpotent and vanishes when θi = 0. In N = 1 superem-

bedding space, S2
+ = 0, so the tensor structures terminate at order S+; while in N = 2

superembedding space, S3
+ = 0 and we have tensor structures up to order S2

+:

S`− ∼
1

2

(
S` + (−1)`S`∗

)
, (3.21)

S+ S
`−1
− =

1

2`

(
S` − (−1)`S`∗

)
, (3.22)

S2
+ S

`−2
− =

1

4(`− 1)

(
S` + S`−1S∗ + (−1)`SS`−1

∗ + (−1)`S`∗

)
. (3.23)

In (3.21) it is not an exact identity. Actually the tensor structure S2
+ S

`−2
− has the same

“parity” as S`− and it also appears in the expansion of r.h.s. of (3.21). In the following part

we denote the r.h.s. of (3.21) by the tensor structure S`−, indicating the parity (−1)` under

1↔ 2 exchange. The term proportional to S2
+ S

`−2
− is assumed implicitly.

Similar to the superconformal invariant, new tensor structures can be constructed with

more points in superembedding space. For instance, we have the following tensor structures

from three points (1, 2, 0)

H ≡ S 1̄20̄12̄S
〈12̄〉〈21̄〉

, H̄ ≡ S̄21̄02̄1S̄
〈12̄〉〈21̄〉

, (3.24)

which contain only chiral or anti-chiral auxiliary supertwistors. Apparently above tensor

structures vanish when θi = 0 so it only appears in supersymmetric theories. Different

from the superconformal invariant w, the tensor structures H, H̄ are odd under exchange

1 ↔ 2 as they contain odd number of bi-supertwistors. They are necessary ingredients

to compute the three-point correlators of multiplets with mixed symmetry in the OPE

selection rules (2.23), such as ( `+2
2 , `2) and ( `+4

2 , `2).

Following the correspondence in (3.9), we can rewrite the tensor structures built in

superembedding space in terms of the superconformal covariant variables in superspace

Z0 = (X,Θ, Θ̄).10

To reproduce the tensor structures from the invariants in superembedding space, we

remove the auxiliary supertwistors through the action
(
X̄
−→
∂S̄
)α̇

or
(←−
∂SX

)
α
. Then we ob-

tain products of pure bi-supertwistors, which can be expanded in terms of the superspace

variables Z3 according to the rule in (3.13). Take the tensor structure S for example:

S ≡ S̄12̄S
〈12̄〉

→ 1

〈12̄〉
(0̄12̄0)α̇α ∝

1

x2
12̄

Z̄ ȧα̇0 (εx̃0̄1 x12̄x̃2̄0ε)ȧa Z
a
0α

∝ X̄α̇
α

X̄2
, (3.25)

10Henceforth we will omit the subindex 0 in the superspace variables for simplicity.
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where we have used the formula (2.14) and the Poincaré section of supertwistors

Za0α = δaα, Z̄ ȧ0 α̇ = δȧα̇. (3.26)

By exchanging 1 ↔ 2, the l.h.s. of (3.25) gives tensor structure S∗ and superconformal

variables in the r.h.s. become chiral.

The tensor structures H can be expanded in superspace as follows

H ≡ S 1̄20̄12̄S
〈12̄〉〈21̄〉

→ 1

〈12̄〉〈21̄〉
(01̄20̄12̄0)(αβ) ∝

X(αα̇X̄α̇
β)

(X2X̄2)
1
2

∝
Θi

(αXβ) α̇Θ̄α̇
i

(X2X̄2)
1
2

, (3.27)

where the two chiral indices (α, β) are symmetrized. Besides, we have applied the chiral

condition (2.13) and also the fact that (X · X)(αβ) vanishes after symmetrizing the two

indices. The tensor structure H̄ can be expanded similarly with two anti-chiral indices

symmetrized.

4 Three-point functions in superembedding space

In this section, we compute the three-point function 〈J JO〉 in superembedding space. Here

the multiplets O are restricted to be invariant under the R-symmetry SU(2)R. According

to the OPE selection rules (2.23), this includes the long multiplets A∆
0,0( `

2
, `
2

)
, A∆

0,0( `+2
2
, `
2

)
and

A∆
0,0( `+4

2
, `
2

)
, as well as several C type short multiplets. However, the C type short multiplets

are either disappear in interacting theories or only contain unique conformal block, except

Ĉ0( `
2
, `
2

), whose solutions also closely relate to these of long multiplets. We focus on the

correlators involving in long multiplets.

In [20], the three-point functions have been solved based on the procedure that, firstly

write down the most general ansatz that are consistent with superconformal symmetry and

also the conservation equations (2.18), then applying the reflection symmetry (z1 ↔ z2)

to fix the coefficients of each term appears in the ansatz. While in superembedding space,

these constraints are fulfilled in a more straightforward way.

The procedure to compute the three-point function 〈J JO〉 in superembedding space

includes two steps:

• Write the most general ansatz consistent with the homogeneity and reflection sym-

metry.

• Solve the coefficients by imposing the conservation equations (2.18).

In N = 2 superembedding space, a general superfield Φ with quantum numbers

(∆, j1, j2, R = 0, r) satisfies the homogeneity

Φ(λX , λ̄X ) = λ−q−j1 λ̄−q̄−j2Φ(X , X̄ ), (4.1)

where q and q̄ are the superconformal weights given by

q ≡ 1

2

(
∆ +

3

2
r

)
, q̄ ≡ 1

2

(
∆− 3

2
r

)
. (4.2)
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The correlators in superembedding space are consisted of superconformal invariants and

subject to the homogeneity of the constituent fields. The superconformal invariants and

tensor structures are constructed following the rules we discussed before, which can be

decomposed into odd or even parts under the reflection transformation (z1 ↔ z2). The

reflection symmetry is realized directly when writing down the general ansatz. Then we will

apply the correspondences between the variables in superembedding space and superspace

to impose the constraints from conservation equations (2.18). From this procedure the

coefficients in the ansatz can be fixed accordingly.

The fundamental elements to build three-point functions in superembedding space are

the superconformal invariants zn with n ∈ {1, 2, 3, 4}, w and the tensor structures S`−,

S+ S
`−1
− , S2

+ S
`−2
− , H, H̄. For the invariant w, due to the algebra of supercharges, it has

several constraints

2wz = z3, 2wz2 = z4, 4w2 = 5z4, w3 = 0. (4.3)

There are more restrictions involving the invariants and tensor structures, which signifi-

cantly reduce the possible terms in the general ansatz.

4.1 A∆
0,0( `

2
, `
2
)

The general ansatz on the correlators are different for odd/even spin multiplets due to the

constraint from reflection symmetry. We start for the multiplets with odd spin.

For odd `, the most general three-point functions consistent with superconformal sym-

metry and also the reflection symmetry are11

〈J (1, 1̄)J (2, 2̄)O(0, 0̄)〉 =
S`−(λ1z + λ3z

3) + S+ S
`−1
− (λ0 + λ2z

2)

(〈1̄2〉〈2̄1〉)1− 1
4

(∆+`)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)
1
4

(∆+`)
. (4.4)

There are extra combinations of invariants and tensor structures consistent with the super-

conformal symmetry and reflection symmetry, such as S2
+ S

`−2
− z, however, they actually do

not give new independent terms. In particular, the superconformal invariant w does not

appear in (4.4). The remaining restrictions on the general ansatz are from the conservation

equations (2.18), which requires that when expanded in terms of variables Z0, there are no

terms contain the variables Θα i
0 Θj

0α or Θ̄0 α̇iΘ̄
α̇
0 j . The coefficients λi are fixed to

~λO = λO

(
1, − ∆ + `

2 (∆− 2)
,

(∆ + `)(2`2 − 2`− 8 + 6∆ + `∆−∆2)

8 (∆− 2)
,

−(∆ + `)(5`2 − 8 + 16∆ + 2`∆− 3∆2)

48 (∆− 2)

)
. (4.5)

The solutions are reminiscent of the results from N = 1 theories [35, 40], where the three-

point function with one independent superconformal invariant is fixed up to an overall

constant by conservation equations. Expanding the three-point function (4.4) with above

11In principle, one may also consider to introduce the tensor structures H or H̄ in the three-point

functions (4.4) and (4.6). However, for the symmetric multiplets, H and H̄ always appear in pairs, in this

case, they will not give new independent tensor structures.
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coefficients in terms of superconformal variables in superspace, we obtain the results con-

sistent with these presented in [20]. Here we have rescaled the coefficients by multiplying

an overall factor (4 + `−∆) comparing with the expressions in [20]. Otherwise the coeffi-

cients admit a pole at ∆ = 4 + ` above the unitary bound, which is of course unphysical.

In (4.5) there is another pole at ∆ = 2, nevertheless, it is below the unitary bounds of any

multiplets with odd spin.

For even `, we have the most general ansatz from superconformal symmetry and re-

flection symmetry

〈J (1, 1̄)J (2, 2̄)O(0, 0̄)〉 =
S`−(λ0 + λ2z

2 + λ3w + λ4z
4) + S+ S

`−1
− λ1z + S2

+ S
`−2
− λ5

(〈1̄2〉〈2̄1〉)1− 1
4

(∆+`)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)
1
4

(∆+`)
.

(4.6)

Here we have two independent nilpotent superconformal invariants in the three-point func-

tion. Because of the extra invariant w, coefficients in the three-point function cannot

be fixed up to an overall constant from conservation equations. Instead, there are two

independent solutions

~λ
(1)
O = λ

(1)
O

(
1,

(∆ + `)(2−∆)

2
,

(∆ + `)2

8
, 0,

(∆ + `)(64− 3`3 + (∆− 4)2∆− `2(5∆− 8)− `(∆2 − 48))

384
,

(2 + `−∆)(2− `−∆)

2

)
, (4.7)

and

~λ
(2)
O = λ

(2)
O

(
0,

(∆ + `)(6 + `− 3∆)

2
,

(∆ + `)(`+ 3∆)

8
, −(∆ + `)(4 + `−∆)

4
, (4.8)

(∆ + `)(3(4 + 3∆)− `(1− 2∆ + 2`(3 + `+ ∆)))

96
,

3(∆− 2)2 − 2`− `2

2

)
.

The solutions given in (4.8) vanish in non-supersymmetric theories. They are from the

nilpotent structures with superconformal invariant w and correspond to the solutions c
(1)
JJO

in [20]. The solutions given in (4.7) do not contain the term with w. Expanding the two

solutions in terms of the variables in superspace, we can reproduce the results in [20].12

Here we have rescaled the solutions by factors (4 + ` − ∆) for (4.8) and ` for (4.7) to

remove the unphysical poles. In [67] the three-point correlator 〈J JJ 〉 has been studied

in superspace, which admits two independent solutions with coefficients corresponding to

the a and c central charges. The two independent coefficients λ(i) will appear in the

superconformal blocks as well, and it is expected that through conformal bootstrap, more

constraints on these coefficients will be uncovered.

Scalar multiplet A∆
0,0(0,0). The three-point function 〈J JO〉 with a scalar multiplet

A∆
0,0(0,0) is more subtle. For a general scalar multiplet with ∆ > 2, as shown from the

12The solutions in (4.7) are actually the linear superpositions of the two solutions in [20] in order to

remove the w dependence.
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analysis in superspace, the superconformal nilpotent structure (2.22) can not appear in the

three-point function and we have only one independent OPE coefficient. This can also be

seen from the two solutions (4.8) and (4.8) in superembedding space. Taking ` = 0 we

expect they give the solutions for the three-point function with scalar multiplet, in which

λ1 = λ5 = 0 by definition. However, in both solutions, by taking ` = 0 the two coefficients

do not vanish unless we have ∆ = 2 as well. In another words, the solutions (4.7) and (4.8)

do not work for multiplets with (∆ > 2, ` = 0). Instead the unique solution is given by

their linear superposition
~λO = ~λ

(1)
O + ~λ

(2)
O , (4.9)

with a constraint on the two OPE coefficients

λ
(1)
O = −3λ

(2)
O ≡ λO. (4.10)

Now the coefficients in the three-point function with general scalar multiplet are

~λO = λO

(
1, 0, 0,

1

12
∆(4−∆),

1

384
(∆− 6)(∆− 4)∆(∆ + 2), 0

)
, (4.11)

in which the two redundant tensor structures vanish λ1 = λ5 = 0.

When ∆ = 2 the multiplet A∆
0,0(0,0) hits the unitary bound and splits in several short

multiplets

A∆=2
0,0(0,0) = Ĉ0(0,0) +D1(0,0) + D̄1(0,0) + B̂2, (4.12)

while only the semi-short multiplet Ĉ0(0,0) can appear in the J × J OPE and the corre-

sponding three-point function is given in (2.19) in superspace. In superembedding space

this three-point function is given by (4.6), and the coefficients are given in (4.8) and (4.7)

with (∆ = 2, ` = 0):

~λ
(1)
O =

3

32π6
(4a− 3c)

(
1, 0,

1

2
, 0,

3

8
, 0

)
,

~λ
(2)
O =

−1

32π6
(4a− 5c)

(
0, 0,

3

2
, −1,

5

8
, 0

)
. (4.13)

4.2 A∆
0,0( `+2

2
, `
2
)

In superembedding space, there are ` + 2 auxiliary supertwistors S and ` auxiliary dual

supertwistors S̄ to absorb the indices of the mixed symmetry operator A∆
0,0( `+2

2
, `
2

)
. To

construct the three-point function from these auxiliary (dual) supertwistors, we need to

use the tensor structure H that only includes two Ss, which has been defined in (3.24).

For even `, the most general ansatz for the correlator reads

〈J (1, 1̄)J (2, 2̄)O(0, 0̄)〉 = H
S`−(λ1z + λ3z

3) + S+ S
`−1
− λ2

(〈1̄2〉〈2̄1〉)1− 1
4

(∆+`+2)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)
1
4

(∆+`+2)
. (4.14)

From the conservation equations (2.18) the coefficients are fixed to

~λ = λO

(
1, − 2(∆− 2)

∆ + `+ 2
, 0

)
. (4.15)
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Remarkably, above results, both the tensor structures (except H) and the coefficients are

almost the same (up to a shift ` → ` + 2) as the solutions of the three-point correlator

〈J JO〉 in N = 1 theories [40], where the multiplet J is the conserved current and O is

a general multiplet with odd spin. Here the tensor structure H relates to the Grassmann

superconformal variables and the constraints from conservation equations on the rest part of

the three-point function performs as the N = 1 theories. Nevertheless, the superconformal

blocks for the multiplets A∆
0,0( `+2

2
, `
2

)
are still different from those in the N = 1 theories, for

the reasons will be explained in the next section.

For odd `, the most general ansatz for the correlator reads

〈J (1, 1̄)J (2, 2̄)O(0, 0̄)〉 = H
S`−(λ0 + λ2z

2) + S+ S
`−1
− λ1z

(〈1̄2〉〈2̄1〉)1− 1
4

(∆+`+2)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)
1
4

(∆+`+2)
. (4.16)

We have solutions of the coefficients

~λ = λO

(
1, 0,

1

8
(6 + `−∆)(2 + `+ ∆)

)
. (4.17)

Again, the solutions (4.17) are similar to the coefficients in N = 1 correlators 〈J JO〉,
where O is a multiplet with even spin `+ 2.

4.3 A∆
0,0( `+4

2
, `
2
)

For this operator, we have four more auxiliary supertwistors and there are two tensor

structures H in the three-point function. Therefore up to quadratic order of Grassmann

variables Θi
α or Θ̄α̇

i , there is only one possible tensor structure in the three-point function

〈J (1, 1̄)J (2, 2̄)O(0, 0̄)〉 =
λOH

2 S`− + · · ·
(〈1̄2〉〈2̄1〉)1− 1

4
(∆+`+4)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)

1
4

(∆+`+4)
. (4.18)

The reflection symmetry enforces any correlators with odd ` vanishing. There are extra

terms depending on superconformal invariants z,w to cancel higher order terms of Θi
α, Θ̄α̇

i ,

however, they are irrelevant to the superconformal block analysis, as will be shown later.

5 Superconformal partial waves

In this section, we compute the superconformal partial waves WO of the four-point corre-

lator 〈J(1, 1̄)J(2, 2̄)J(3, 3̄)J(4, 4̄)〉, in which the external operator J is the superconformal

primary of the stress-tensor multiplet J (x, θ, θ̄)

J(x) = J (x, θ, θ̄)
∣∣
θi=θ̄i=0

. (5.1)

This is equivalent to set the fermionic components of external bi-supertwistors i, ī to zero.

Following the method developed in [39, 40], we will use the supershadow formalism to

compute the superconformal partial wave WO. The idea is to construct a non-local projec-

tor operator |O| based on a multiplet O and its shadow Õ, which projects the four-point

correlator 〈JJJJ〉 onto its specific part corresponding to the exchange of the multiplet O.
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Given a general multiplet O with superconformal weights (q, q̄) and spin (j1, j2), its

supershadow operator is defined through

Õ(1, 1̄,S, S̄) ≡
∫
D[2, 2̄]

O†(2, 2̄, 2S̄, 2̄S)

〈12̄〉2−N−q+j1〈1̄2〉2−N−q̄+j2
, (5.2)

where D[2, 2̄] gives the superconformal measure in superembedding space and O† with

spin (j2, j1) is the Lorentz conjugate of O. The supershadow operator Õ is from non-local

linear transformation of multiplet O†, so it is expected that Õ shares the same Lorentz

indices of O†. One the other hand, according to the definition (5.2), its homogeneity in

superembedding variables is

Õ(λX , λ̄X̄ , aS, āS̄) = λ−(2−N−q+j1)λ̄−(2−N−q̄+j2)a2j1 ā2j2Õ(X , X̄ ,S, S̄), (5.3)

which performs as a superconformal multiplet with superconformal weights (2−N − q, 2−
N − q̄) and spin (j1, j2) instead of spin (j2, j1)! The superconformal correlators with

supershadow operators are determined by the homogeneity (5.3) with quantum numbers

(j1, j2, 2−N − q, 2−N − q̄).
A conformal projector can be constructed from a pair of operator O and its shadow

|O| = 1

(2j1)!2(2j2)!2

∫
D[0, 0̄] |O(0, 0̄,S, S̄)〉

(←−
∂S0
−→
∂T

)2j1 (←−
∂S̄ 0̄
−→
∂T̄

)2j2
〈Õ(0, 0̄, T , T̄ )|

∣∣∣∣
M

,

(5.4)

which projects the four-point correlator to the superconformal partial wave corresponding

to the multiplet O

WO ∝ 〈JJ |O(0, 0̄)| J J 〉 ∼
∫
D[0, 0̄] 〈J JO〉

←→
D j1,j2〈ÕJ J 〉, (5.5)

where ←→
D j1,j2 ≡

1

(2j1)!2(2j2)!2
(∂S0∂T )2j1(∂S̄ 0̄∂T̄ )2j2 . (5.6)

Above superintegrand contains two three-point functions for the exchanged operator and

its supershadow. In our case, we have obtained the three-point functions 〈J JO〉 for long

multiplets with general spins. The correlators with supershadow operators are given by the

same formulas with proper quantum numbers. Since we focus on the lowest components

of the external operators, the external Grassmann variables are set to zero. The tensor

structures appearing in the three-point functions, as well as the integrand will be simplified.

The superconformal integral has been analyzed in [39] for general N . The original integrals

seem to be involved technical problems, nevertheless, it is shown that a superconformal

integral can be decomposed into the conformal integrals, whose general solutions have been

provided in [49].

To compute the supershadow three-point correlator 〈Õ(0, 0̄, T , T̄ )J (3, 3̄)J (4, 4̄)〉, we

will use the tensor structures T, T̄ and superconformal invariants z̃, w̃ constructed from

coordinates (0, 3, 4) and their duals. Their definitions are analogously to those from points

(1, 2, 0):

{T, T̄ , z̃, w̃} = {S, S̄, z,w}|{1,2,S,S̄}→{3,4,T ,T̄ }. (5.7)
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After setting the external Grassmann variables to be zero, the superconformal invariants

(z,w, z̃, w̃), as well as the nilpotent tensor structures (S+, T+) are actually proportional to

the Grassmann variables (θ0i, θ̄
i
0) of the superspace coordinate z0.

As we have shown before, the three-point functions have different tensor structures for

odd and even spins. So the superconformal blocks are computed separately for odd and even

spins. While for the multiplets A∆
0,0( `+4

2
, `
2

)
, only those with even ` have non-zero three-point

function and the superconformal blocks are actually equivalent to non-supersymmetric case.

5.1 A∆
0,0( `

2
, `
2
)

with odd `

The superconformal partial waves are obtained by inserting the projector |O| in the four-

point correlator

WO ∝ 〈J (1, 1̄)J (2, 2̄) |O(0, 0̄)| J (3, 3̄)J (4, 4̄)〉

∝
∫
D[0, 0̄] 〈J (1, 1̄)J (2, 2̄)O(0, 0̄,S, S̄)〉

←→
D `〈Õ(0, 0̄, T , T̄ )J (3, 3̄)J (4, 4̄)〉. (5.8)

The three-point functions of multiplets A∆
0,0( `

2
, `
2

)
with odd spin are given in (4.4). By

replacing the scaling dimension ∆ → −∆ in (4.4) we obtain the three-point functions of

the supershadow operators with OPE coefficients λ̃i. Applying the results to (5.8) we get

WO ∝
1

(〈12̄〉〈21̄〉)1− 1
4

(`+∆)(〈34̄〉〈43̄〉)1− 1
4

(`−∆)

×
∫
D[0, 0̄]

N full
`

(〈10̄〉〈20̄〉〈01̄〉〈02̄〉)
1
4

(`+∆)(〈30̄〉〈40̄〉〈03̄〉〈04̄〉)
1
4

(`−∆)
, (5.9)

where

N full
` = S`−

←→
D T `−(λ1λ̃1zz̃ + λ1λ̃3zz̃3 + λ3λ̃1z

3z̃)

+S`−
←→
D T+ T

`−1
− (λ1λ̃0z + λ1λ̃2zz̃2 + λ3λ̃0z

3)

+S+ S
`−1
−
←→
D T `−(λ0λ̃1z̃ + λ2λ̃1z

2z̃ + λ0λ̃3z̃
3)

+S+ S
`−1
−
←→
D T+ T

`−1
− (λ0λ̃0 + λ0λ̃2z̃

2 + λ2λ̃0z
2). (5.10)

Here we have ignored the higher order terms that are vanishing when setting the external

Grassmann variables to zero. Note that in (5.10) the cubic and quartic terms of nilpotent

variables (z, z̃,w, w̃, S+, T+) are new for N = 2 theories. The OPE coefficients λi are given

in (4.5). The coefficients λ̃i are from the three-point functions with supershadow operator

Õ, and they are given by the same form in (4.5) with a replacement ∆→ −∆.

After setting the external Grassmann variables to zero, the external bi-supertwistors

X , X̄ degenerate to the bi-twistors, which are 4×4 antisymmetric matrices Xαβ , X̄αβ with

twistor indices α, β ∈ {1, 2, 3, 4}. The bi-twistors Xαβ are equivalent to vectors Xm of the

conformal group SO(4, 2) ' SU(2, 2):

Xαβ =
1

2
XmΓmαβ , Xαβ =

1

2
XmΓ̃mαβ . (5.11)
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The supertraces of external superembedding variables turn into traces of bi-twistors

〈̄ij〉 → −Xi ·Xj =
1

2
Xij . (5.12)

The fermionic components of superembedding coordinates (X0, X̄0) are still important for

our analysis since it is the full-fledged multiplet O contributing on the superconformal

partial wave.

For the superconformal integration (5.9), it is convenient to integrate over the fermionic

components of (0, 0̄) at first, after which we obtain an integration in the embedding space

and the superconformal partial wave becomes

WO|θext=0 ∝
1

X
2− 1

2
(`+∆)

12 X
2− 1

2
(`−∆)

34

∫
D4X0 ∂

4
0̄

N full
`

D`

∣∣∣∣
0̄=0

, (5.13)

and D` denotes the products of supertraces containing superembedding coordinates 0 or 0̄

D` ≡ (X10̄X01X20̄X02)
1
4

(`+∆)(X30̄X03X40̄X04)
1
4

(`−∆). (5.14)

Note in (5.13) we have partial derivatives ∂0̄ to the order four, which appear from the

integration over fermionic components of the (dual) supertwistors (ZaI , Z̄
ȧI), with I ∈ {1, 2}

in N = 2 superembedding space.

The factor N full
` in (5.9) contains the elementary tensor structure from four points

N` ≡ (S̄12̄S)`
←→
D `(T̄ 34̄T )` =

1

(`!)2
(∂S0∂T )`(S 2̄10̄34̄T )`, (5.15)

and their coordinate exchanges, in terms of which the four-point tensor structures can be

expanded as

S`−
←→
D`T `− =

N`
4〈12̄〉`〈34̄〉`

+ (−1)`(1↔ 2) + (−1)`(3↔ 4), (5.16)

S`−
←→
D`T+T

`−1
− =

N`
4`〈12̄〉`〈34̄〉`

+ (−1)`(1↔ 2)− (−1)`(3↔ 4), (5.17)

S+S
`−1
−
←→
D`T `− =

N`
4`〈12̄〉`〈34̄〉`

− (−1)`(1↔ 2) + (−1)`(3↔ 4), (5.18)

S+S
`−1
−
←→
D`T+T

`−1
− =

N`
4`〈12̄〉`〈34̄〉`

− (−1)`(1↔ 2)− (−1)`(3↔ 4). (5.19)

So far the formulas on the tensor structures remain the same as for the N = 1 theories.

New tensor structures for N = 2 theories will appear in N full
` for multiplet with even spin.

By fixing all the fermionic variables to zero the tensor structure N` becomes

N`|θext=0 ≡ N` = (−1)`s
`
2
0C

(1)
` (t0), (5.20)

where C
(λ)
` (y) is the Gegenbauer polynomial and

t0 ≡ −
X13X20X40

2
√
X10X20X30X40X12X34

− (1↔ 2)− (3↔ 4) , (5.21)

s0 ≡
1

212
X10X20X30X40X12X34. (5.22)
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N` has parity (−1)` under the coordinate exchange 1↔ 2 or 3↔ 4. More complex tensor

structures will appear after taking partial derivatives ∂4
0̄

in (5.13). Most of them cannot

be directly reduced to the Gegenbauer polynomials and their conformal integrations are

in general unknown. We will resort to their recursion relations that correspond to the

specific forms of the tensor structures. There is an interesting correspondence between the

algebra of the tensor structures in embedding space and the properties of Hypergeometric

functions, in terms of which the 4D conformal blocks are expressed analytically.

Details on the partial derivatives and the conformal integrations of the tensor structures

are provided in the appendices. After some calculations, we obtain the final results

WO|θext=0 ∝
1

X2
12X

2
34

λOλÕ

×
(

1

(∆ + `)(∆ + `+ 2)
g∆+1,`+1 +

(`+ 2)2(∆− `− 2)

`2(∆− `)(∆ + `)2
g∆+1,`−1

+
(∆− 1)2(∆− `− 2)

16(∆− `)(∆ + 1)2(∆ + `+ 1)(∆ + `+ 3)
g∆+3,`+1 (5.23)

+
(`+ 2)2(∆− 1)2(∆− `− 2)2

16`2(∆− `+ 1)(∆− `− 1)(∆ + 1)2(∆ + `)(∆ + `+ 2)
g∆+3,`−1

)
,

in which the functions g∆,` ≡ g0,0
∆,`(u, v) are the classical conformal blocks for identical

external operators. The coefficient λÕ for the supershadow operator is proportional to λO.

This can be seen by inserting the supershadow transformation of O (5.2) in the three-point

correlator 〈J J Õ〉 ∝ λÕ, and the exact ratio can be obtained, in principle, by completing

the superconformal integration (5.2) for the three-point function 〈J JO〉. Nevertheless, in

numerical bootstrap we only care about the positivity condition, the overall coefficient, as

long as it is positive, is not important for the analysis. For analytical bootstrap, the overall

constant involves the crossing equation and it can be fixed from the singularities and its

expansion in terms of superconformal blocks.

After removing the kinematic factors and the supershadow OPE coefficient, we obtain

the N = 2 superconformal blocks13

GN=2|JJ ;JJ
∆,`,odd ∝ λ2

O

(
1

(∆ + `)(∆ + `+ 2)
g∆+1,`+1 +

(`+ 2)2(∆− `− 2)

`2(∆− `)(∆ + `)2
g∆+1,`−1

+
(∆− 1)2(∆− `− 2)

16(∆− `)(∆ + 1)2(∆ + `+ 1)(∆ + `+ 3)
g∆+3,`+1 (5.24)

+
(`+ 2)2(∆− 1)2(∆− `− 2)2

16`2(∆− `+ 1)(∆− `− 1)(∆ + 1)2(∆ + `)(∆ + `+ 2)
g∆+3,`−1

)
.

It would be interesting to compare above N = 2 superconformal blocks with those of N = 1

13In this work, the superconformal blocks are determined up to an overall normalization factor. This

factor is generically irrelevant for numerical conformal bootstrap, as it does not affect the positivity condition

applied on the superconformal blocks. See [73] for the normalization of 4D non-supersymmetric conformal

blocks. We also keep the OPE coefficients in the expressions of superconformal blocks, to track possible

mixing of different OPE coefficients (see e.g. 5.41).
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conserved currents, which have been obtained in [35, 67]:

GN=1|JJ ;JJ
∆,`,odd = λ2

O

(
1

(∆ + `)(∆ + `+ 1)
g∆+1,`+1 +

(`+ 2)2(∆− `− 2)

`2(∆− `− 1)(∆ + `)2
g∆+1,`−1

)
(5.25)

for odd spin and

GN=1|JJ ;JJ
∆,`,even = λ2

O

(
g∆,` +

(∆− 2)2(∆− `− 2)(∆ + `)

16∆2(∆ + `+ 1)(∆− `− 1)
g∆+2,`

)
(5.26)

for even spin. One can see that in (5.24), the coefficients of conformal blocks g∆+1,`+1 and

g∆+1,`−1 are similar to the N = 1 superconformal blocks with odd spin (5.25) while the

ratio between the coefficients of g∆+1,`+1 and g∆+3,`+1 is close to the N = 1 superconformal

blocks with even spin (5.26). Slightly differences appear in certain factors but these are

expected, since with more supercharges, the decomposition of the N = 2 superconformal

multiplet to conformal multiplets will be different from the pure N = 1 multiplets. The

N = 2 superconformal blocks in (5.24) are obtained through complicated computations.

The final results are quite compact and organized in an interesting way. It would be very

interesting to see if this property can be explained at algebraic level, and the complex

computations presented here may not be essential for the superconformal blocks.

5.2 A∆
0,0( `

2
, `
2
)

with even `

The superconformal blocks for even spin multiplets are more involved since the corre-

sponding three-point functions have two independent solutions and contain more tensor

structures. By inserting the conformal projector we have the superconformal partial wave

of the even spin multiplet A∆
0,0( `

2
, `
2

)
:

WO ∝
∫
D[0, 0̄] 〈J (1, 1̄)J (2, 2̄)O(0, 0̄,S, S̄)〉

←→
D 〈Õ(0, 0̄, T , T̄ )J (3, 3̄)J (4, 4̄)〉

=

∫
D[0, 0̄]

S`−(λ0 + λ2z
2 + λ3w + λ4z

4) + S+ S
`−1
− λ1z + S2

+ S
`−2
− λ5

(〈1̄2〉〈2̄1〉)1− 1
4

(`+∆)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)
1
4

(`+∆)

←→
D `

×
T `−(λ̃0 + λ̃2z̃

2 + λ̃3w̃ + λ̃4z̃
4) + T+ T

`−1
− λ̃1z̃ + T 2

+ T
`−2
− λ̃5

(〈3̄4〉〈4̄3〉)1− 1
4

(`−∆)(〈0̄3〉〈3̄0〉〈0̄4〉〈4̄0〉)
1
4

(`−∆)
,

(5.27)

where we have applied the three-point functions (4.6) for the multiplet A∆
0,0( `

2
, `
2

)
and its

supershadow Ã−∆

0,0( `
2
, `
2

)
. The OPE coefficients λi and λ̃i are the linear combinations of the

two solutions in (4.8) and (4.7)

λi = ~λ
(1)
O + ~λ

(2)
O , λ̃i = ~λ

(1)

Õ + ~λ
(2)

Õ . (5.28)

As for the odd spin case, the supershadow OPE coefficients λ̃i are proportional to the OPE

coefficients λi. However, both the OPE coefficients λi and their supershadows include two
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independent overall coefficients (λ
(1)
O , λ

(2)
O ) or (λ

(1)

Õ , λ
(2)

Õ ) and the transformation from λi to

supershadow coefficients λ̃i is described by a 2× 2 matrix λ
(1)

Õ

λ
(2)

Õ

 =
(
M(∆, `)ij

)
2×2
·

 λ
(1)
O

λ
(2)
O

 . (5.29)

The transformation matrix M(∆, `) can be determined by faithfully computating the su-

perconformal integration of the supershadow three-point function. Alternatively, as shown

in [40, 41], it can also be fixed up to an overall constant from unitarity

M(∆, `)ij ∝

(
(∆ + `)

(
(3−∆)∆2 + ((∆− 1)∆ + 2)`+ 4

)
4∆(`+ 2)(`+ 3)

2∆(`−∆)(∆ + `) (`−∆)
(
(∆ + 3)∆2 +

(
∆2 + ∆ + 2

)
`+ 4

)
)
.

(5.30)

One can show that above supershadow transformation matrix satisfies the constraint

M(−∆, `) · M(∆, `) ∝ (∆− `− 2)(∆− 2) I2×2, (5.31)

which is expected since it gives the original coefficients by applying the supershadow trans-

formation twice. Derivation of the supershadow transformation matrix is provided in ap-

pendix D. In (5.31) we have explicitly shown the factor (∆− `− 2)(∆− 2), which suggests

the supershadow transformation becomes pathological at the unitary bound ∆ = `+ 2. In

particular, for the stress-tensor multiplet with ∆ = 2, the factor gives second order zeros.

We will discuss the origin of this factor and its effect later.

Setting the fermionic components of external coordinates to zero, and integrating out

the Grassmann variables in X0 and X̄0, we obtain a form with conformal integration in

embedding space, like (5.13). The difference is the tensor structures N full
` . Now it has a

more complex form

N full
` = S`−

←→
D T `−(λ0λ̃0 + λ2λ̃0z

2 + λ0λ̃2z̃
2 + λ0λ̃3w̃ + λ3λ̃0w + λ4λ̃0z

4 + λ0λ̃4z̃
4

+ λ2λ̃3z
2w̃ + λ3λ̃2wz̃2 + λ2λ̃2z

2z̃2 + λ3λ̃3ww̃)

+S`−
←→
D T+ T

`−1
− (λ0λ̃1z̃ + λ2λ̃1z

2z̃ + λ3λ̃1wz̃)

+S+ S
`−1
−
←→
D T `−(λ1λ̃0z + λ1λ̃2zz̃2 + λ1λ̃3zw̃)

+S+ S
`−1
−
←→
D T+ T

`−1
− λ1λ̃1zz̃

+S`−
←→
D T 2

+ T
`−2
− (λ0 + λ2z

2 + λ3w)λ̃5

+S2
+ S

`−2
−
←→
D T `−(λ̃0 + λ̃2z̃

2 + λ̃3w̃)λ5

+S2
+ S

`−2
−
←→
D T+ T

`−1
− λ̃1z̃ + S+ S

`−1
−
←→
D T 2

+ T
`−2
− λ1z

+S2
+ S

`−2
−
←→
D T 2

+ T
`−2
− λ5λ̃5. (5.32)
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The last five terms in (5.32) contain new tensor structures. The expansions of these tensor

structures involve more elementary four-point tensor structures besides N`:

M` ≡ (S̄12̄S)`−1S̄21̄S
←→
D (T̄ 34̄T )` =

1

(`!)2
(∂S0∂T )`(S 2̄10̄34̄T )`−1S 1̄20̄34̄T , (5.33)

L` ≡ (S̄12̄S)`
←→
D (T̄ 34̄T )`−1T̄ 43̄T =

1

(`!)2
(∂S0∂T )`(S 2̄10̄34̄T )`−1S 2̄10̄43̄T , (5.34)

K` ≡ (S̄12̄S)`−1S̄21̄S
←→
D (T̄ 34̄T )`−1T̄ 43̄T

=
1

`(`!)2
(∂S0∂T )`((S 2̄10̄34̄T )`−1S 1̄20̄43̄T

+(`− 1)(S 2̄10̄34̄T )`−2S 1̄20̄34̄T S 2̄10̄43̄T ). (5.35)

Note that after setting all the fermionic variables, including those from X0 and X̄0 to zero,

above tensor structures go back to N` up to a minus sign. However, when taking the partial

derivatives ∂4
0̄
, these tensor structures perform differently in a subtle way.

The new tensor structures in (5.32) can be expanded in terms of the elementary tensor

structures (N`,M`,L`,K`):

S`−
←→
D T 2

+ T
`−2
− =

N` + L`
8(`− 1)〈12̄〉`〈34̄〉`

+ (−1)`(1↔ 2) + (−1)`(3↔ 4), (5.36)

S2
+ S

`−2
−
←→
D T `− =

N` +M`

8(`− 1)〈12̄〉`〈34̄〉`
+ (−1)`(1↔ 2) + (−1)`(3↔ 4), (5.37)

S+ S
`−1
−
←→
D T 2

+ T
`−2
− =

N` + L`
8`(`− 1)〈12̄〉`〈34̄〉`

− (−1)`(1↔ 2) + (−1)`(3↔ 4), (5.38)

S2
+ S

`−2
−
←→
D T+ T

`−1
− =

N` +M`

8`(`− 1)〈12̄〉`〈34̄〉`
+ (−1)`(1↔ 2)− (−1)`(3↔ 4), (5.39)

S2
+ S

`−2
−
←→
D T 2

+ T
`−2
− =

N` +M` + L` +K`
16(`− 1)2〈12̄〉`〈34̄〉`

+ (−1)`(1↔ 2) + (−1)`(3↔ 4). (5.40)

Above tensor structures vanish in embedding space, which are expected for the nilpotent

variables. Their contributions on the superconformal partial wave turn into nontrivial

after taking partial derivatives ∂0̄. More details on these computations are provided in the

appendices.

The next steps are the standard computations on the embedding space algebra and

the conformal integrations. The supershadow coefficients λ
(i)

Õ are rewritten in terms of the

OPE coefficients λ
(i)
O using the supershadow transformation M∆,`. The final results of the

superconformal blocks are

GN=2|JJ ;JJ
∆,`,even = a0g∆,` + a1g∆+2,`+2 + a2g∆+2,` + a3g∆+2,`−2 + a4g∆+4,`, (5.41)

where

a0 =
(
λ

(1)
O

)2
, (5.42)

a1 =

(
(`+ ∆)λ

(1)
O + 2(1 + `+ ∆)λ

(2)
O

)2

16(1 + `+ ∆)(3 + `+ ∆)
, (5.43)
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a3 =

(
(4(1−∆) + `(3 + `)(2 + `−∆))λ

(1)
O + 2(2 + `)(3 + `)(1 + `−∆)λ

(2)
O
)2

16(`− 1)2`2(∆− `+ 1)(∆− `− 1)
, (5.44)

a4 =

(
(`+ ∆)(4 + (3−∆)∆2 + `(2 + (∆− 1)∆))λ

(1)
O + 4(2 + `)(3 + `)∆λ

(2)
O
)2

256(∆− `+ 1)(∆− `− 1)(∆ + 1)2(∆ + 2)2(∆ + `+ 1)(∆ + `+ 3)
, (5.45)

and

a2 =
1

4`2(∆ + 1)2(`−∆)(∆ + `+ 2)

×
(

(λ
(1)
O )2(∆ + `)

(
4(∆ + 2) + ∆2(`+ 4)

(
`2 − 2

)
+ ∆3(−(`(`+ 2) + 4))

+∆`(7`+ 12) + `(3`(`+ 2) + 4)) + 2λ
(1)
O λ

(2)
O (`+ 3)(∆ + `) (5.46)

×
(
−4(∆− 1)(∆ + 1)(∆ + 2) + ∆(∆ + 5)`2 +

(
∆
(
−∆2 + ∆ + 14

)
+ 4
)
`
)

+4(λ
(2)
O )2(`+ 3)2

(
− (∆− 1)∆(∆ + 1)(∆ + 2)

+
(
∆2 + ∆ + 1

)
`2 + 2

(
∆2 + ∆ + 1

)
`
))
.

Above coefficients ai are guaranteed to be non-negative for i ∈ {0, 1, 3, 4}. This agrees

with the unitarity, which requires that any independent conformal blocks appearing in the

superconformal partial wave WO should be positive. In contrast, the coefficient a2 seems

to be disorganized and it is not clear that the whole expression is always positive. This

problem can be clarified by decomposing the N = 2 multiplet into N = 1 multiplets,

from which we can see that actually the coefficient a2 contains several contributions from

different N = 1 multiplets. Most of these contributions are restricted by the N = 1

supersymmetry and the unitarity is satisfied term by term. More details on the N = 1

decomposition will be given in section 6.

The specific expressions of the coefficients ai shown above rely on the definitions of the

OPE coefficients ~λ
(i)
O , given by (4.7) and (4.8) in our case. While one can always obtain

different solutions from their linear superpositions, and the expressions of the coefficients

ai will be modified accordingly.

For a general scalar long multiplet A∆
0,0(0,0) with ∆ > 2, there is only one independent

OPE coefficient and the superconformal blocks are given by (5.41) with an extra constraint

on the OPE coefficients (4.9). If the scaling dimension saturates the unitary bound ∆ = 2,

the multiplet degenerates to the stress-tensor multiplet and there are again two independent

OPE coefficients. The superconformal block GN=2|JJ ;JJ
J corresponding to the exchange of

stress-tensor multiplet Ĉ0(0,0) involves both a and c anomaly coefficients. The expres-

sion (5.41) is for general long multiplet. One may consider to obtain the superconformal

block GN=2|JJ ;JJ
J by analytically continuing (5.41) to ∆ = 2, ` = 0 and also using the OPE

coefficients given in (4.13). However, the results obtained in this way should be treated

carefully since the supershadow transformation for ∆ = 2, ` = 0 is pathological with second

order zeros (5.31). There are unphysical terms arising from the analytical continuation.14

It is not clear if there are unphysical terms in the analytical continuation ∆ → `+2 of (5.41)

for ` > 0. It would be interesting to see how they correspond to the superconformal blocks

of semi-short multiplets Ĉ1( `
2
, `
2

). We leave this problem for future study.

14I would like to thank Madalena Lemos for the discussion on this problem.
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5.3 A∆
0,0( `+2

2
, `
2
)

with odd `

The superconformal partial waves from exchange of the multiplets A∆
0,0( `+2

2
, `
2

)
with odd

` read

WO =

∫
D[0, 0̄]

H S`−(λ1 + λ2z
2)

(〈1̄2〉〈2̄1〉)1− 1
4

(2+`+∆)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)
1
4

(2+`+∆)

←→
D

H̃ T `−(λ̃1 + λ̃2z̃
2)

(〈3̄4〉〈4̄3〉)1− 1
4

(2+`−∆)(〈0̄3〉〈3̄0〉〈0̄4〉〈4̄0〉)
1
4

(2+`−∆)
, (5.47)

where we have used the three-point functions 〈J JO〉 (4.16) for the operator A∆
0,0( `+2

2
, `
2

)

and its supershadow Ã−∆

0,0( `
2
, `+2

2
)
. The tensor structure H̃ is given by

H̃ ≡ H|{1,2,S}→{3,4,T } =
T 3̄40̄34̄T
〈34̄〉〈43̄〉

. (5.48)

Note that for the supershadow operator Ã−∆

0,0( `
2
, `+2

2
)
, its homogeneity in superembedding

space performs like the operators with superconformal weight q = q̄ = −∆
2 and spin

( `+2
2 , `2). The partial derivative on the auxiliary supertwistors now becomes

←→
D ≡ 1

`!2(`+ 2)!2
(∂S0∂T )`+2(∂S̄ 0̄∂T̄ )`. (5.49)

Integrating out the fermionic components in (5.47) we obtain an expression with con-

formal integration in embedding space

WO|θext=0 ∝
1

X
2− 1

2
(2+`+∆)

12 X
2− 1

2
(2+`−∆)

34

∫
D4X0 ∂

4
0̄

N full

D`+2

∣∣∣∣
0̄=0

, (5.50)

where the factor D`+2 is given in (5.6) with shifted subindex ` → ` + 2. Moreover, the

tensor structure N full turns into

N full
` = HS`−

←→
D H̃T `−(λ1λ̃1 + λ1λ̃2z̃

2 + λ2λ̃1z
2), (5.51)

in which

HS`−
←→
D H̃T `− =

1

(`+ 2)!2
(∂S0∂T )`+2HH̃

(
(S 2̄10̄34̄T )`

4〈12̄〉`〈34̄〉`
+ (−1)`(1↔ 2) + (−1)`(3↔ 4)

)
.

(5.52)

The OPE coefficients λi are given in (4.17). The supershadow OPE coefficients λ̃i also

follow the solutions (4.17) with ∆→ −∆.

The partial derivatives ∂4
0̄

are simplified for the mixed symmetry multiplets. The tensor

structures H and H̃ in N full are nilpotent, they vanish in embedding space unless acted by

derivative ∂0̄. Therefore the conformal integrand in (5.50) only includes two parts:

∂4
0̄

N full

D`+2

∣∣∣∣
0̄=0

∝
(
∂2

0̄HH̃
)(

∂2
0̄

N`
D`+2

)∣∣∣∣
0̄=0

+ 2
(
∂A0̄ ∂

B
0̄ HH̃

)(
∂0̄A∂0̄B

N`
D`+2

)∣∣∣∣
0̄=0

. (5.53)
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The first term reproduces the results of N = 1 conserved currents with spin `+ 1. Specif-

ically, we have

∂A0̄ H ∂0̄AH̃
∣∣∣
0̄=0

=
1

4
S12Γ̃m12S × T34Γ̃m34T = − 1

43
X12X34S1Γm2S × T Γ̃m34T

=
2

43
X12X34(S1TS234T − S2TS134T )

→ −`(`+ 1)

32
X12X34S21034T, (5.54)

where the auxiliary twistors S, T are the non-supersymmetric parts of the auxiliary super-

twistors S, T . From the first line to second line, we have applied the contraction of the 6D

gamma matrices

Γ̃mABΓmCD = 2(δACδ
B
D − δADδBC ). (5.55)

In the last step, we have employed the fact that the tensor structure SiT always leads to

a factor X0i regardless of extra tensor structures. The whole superconformal partial waves

remains different from those of N = 1 conserved currents due to the second term that is

new for N = 2 theories.

For the second term in (5.53), there is another constraint

∂A0̄ H ∂0̄AN`

∣∣
0̄=0
∝ S12Γ̃m12S × S21Γ̃m34T

∝ εABCD(S12)A(S21)B(S21)C(T43)D = 0, (5.56)

and similarly ∂A
0̄
H̃ ∂0̄AN` = 0. The non-vanishing contractions lead to a new tensor

structure

(
∂A0̄ ∂

B
0̄ HH̃

) (
∂0̄A∂0̄B

1

D`+2

)∣∣∣∣
0̄=0

→ (X10̄T234T +X20̄T134T −X10̄T243T −X20̄T143T )

× (X30̄S214S +X40̄S213S −X30̄S124S −X40̄S123S) . (5.57)

Note it is different from the tensor structure SPT × SRT appears in the superconformal

integration of symmetric long multiplet. Here we denote it as SRS × TPT . Its recursion

relation is provided in appendix B and its conformal integration is given in appendix C.

After the conformal integrations in embedding space, we obtain the superconfor-

mal blocks

GN=2|JJ ;JJ
∆,`+2|`,odd ∝ λ

2
O

(
g∆+1,`+1 +

(∆− 2)(∆− 1)(∆− `− 2)(∆ + `+ 2)

16(∆ + 1)(∆ + 2)(∆− `− 1)(∆ + `+ 3)
g∆+3,`+1

)
.

(5.58)

One can see that above superconformal blocks are similar to the N = 1 conserved current

superconformal blocks with exchanged even spin operator (∆ + 1, `+ 1) (5.26).
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5.4 A∆
0,0( `+2

2
, `
2
)

with even `

With even `, the superconformal partial waves corresponding to the multiplets A∆
0,0( `+2

2
, `
2

)

become

WO =

∫
D[0, 0̄]

H
(
S`−λ1z + S+ S

`−1
− λ2

)
(〈1̄2〉〈2̄1〉)1− 1

4
(2+`+∆)(〈0̄1〉〈1̄0〉〈0̄2〉〈2̄0〉)

1
4

(2+`+∆)

←→
D

×
H̃
(
T `−λ̃1z̃ + T+ T

`−1
− λ̃2

)
(〈3̄4〉〈4̄3〉)1− 1

4
(2+`−∆)(〈0̄3〉〈3̄0〉〈0̄4〉〈4̄0〉)

1
4

(2+`−∆)
. (5.59)

The OPE coefficients λi and their supershadow λ̃i have been solved in (4.15). By integrating

out the fermionic variables we obtain the same expression for the superconformal partial

waves as in (5.50). While the tensor structures N full now turn into

N full
` = HS`−

←→
D H̃T `−λ1λ̃1zz̃ +HS`−

←→
D H̃T+ T

`−1
− λ1λ̃2z

+HS+ S
`−1
−
←→
D H̃T `−λ2λ̃1z̃ +HS+ S

`−1
−
←→
D H̃T+ T

`−1
− λ2λ̃2. (5.60)

The new tensor structures in above formula can be expanded as follows

HS`−
←→
D`H̃T+ T

`−1
− =

1

(`+ 2)!2
(∂S0∂T )`+2

×HH̃
(

(S 2̄10̄34̄T )`

4`〈12̄〉`〈34̄〉`
+ (−1)`(1↔ 2)− (−1)`(3↔ 4)

)
,

HS+ S
`−1
−
←→
D`H̃T `− =

1

(`+ 2)!2
(∂S0∂T )`+2 (5.61)

×HH̃
(

(S 2̄10̄34̄T )`

4`〈12̄〉`〈34̄〉`
− (−1)`(1↔ 2) + (−1)`(3↔ 4)

)
,

HS+ S
`−1
−
←→
D`H̃T+ T

`−1
− =

1

(`+ 2)!2
(∂S0∂T )`+2

×HH̃
(

(S 2̄10̄34̄T )`

4`2〈12̄〉`〈34̄〉`
− (−1)`(1↔ 2)− (−1)`(3↔ 4)

)
.

Similar to the superconformal partial waves with odd `, the conformal integrand can

be separated into two parts, one of which reproduces the results of N = 1 conserved current

with spin `+ 2 and another one is new for N = 2 theories. In particular we have following

new tensor structures

∂A0̄ H ∂0̄Az̃
∣∣
0̄=0

= − X12

X30X40
S21034S, (5.62)

∂A0̄ H̃ ∂0̄Az
∣∣∣
0̄=0

=
X34

X10X20
T21034T. (5.63)

The recursion relations of these tensor structures and their conformal integrations are

presented in appendix B and appendix C, respectively.
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After some algebra in embedding space and conformal integrations, we obtain the

superconformal blocks

GN=2|JJ ;JJ
∆,`+2|`,even ∝ λ2

O

(
1

(∆ + `+ 2)(∆ + `+ 3)
g∆+2,`+2

+
(`+ 3)(`+ 4)(∆− `− 2)

`(`+ 1)(∆− `− 1)(∆ + `+ 2)2
g∆+2,`

)
, (5.64)

which are reminiscent to the N = 1 superconformal blocks for conserved currents with

exchanged odd spin operator (∆ + 1, `+ 1).

5.5 A∆
0,0( `+4

2
, `
2
)

We have shown before that for the three-point correlator with the multiplet A∆
0,0( `+4

2
, `
2

)
, only

these with even ` can have non-zero three-point functions with two stress-tensor multiplet.

Moreover, from the three-point functions we have following superconformal partial waves

WO|θext=0 ∝
1

X
2− 1

2
(4+`+∆)

12 X
2− 1

2
(4+`−∆)

34

∫
D4X0 ∂

4
0̄

(
H2H̃2 N`

D`+4

)∣∣∣∣
0̄=0

, (5.65)

where we have ignored the higher order nilpotent terms which have no contribution on

the superconformal partial waves. Since both H and H̃ are nilpotent, the four partial

derivatives have to act on these nilpotent tensor structures. Moreover, the contraction

between two ∂0̄H’s vanish

∂A0̄ H ∂0̄AH
∣∣
0̄=0

= − 1

43
X12X34S1Γm2S × SΓ̃m12S = 0. (5.66)

Therefore the contraction in (5.54) is the only way to obtain non-zero contributions from

nilpotent tensor structures. The superconformal partial waves now become

WO|θext=0 ∝
∫
D4X0

N`+2

(X10X20)
1
2

(4+`+∆)(X30X40)
1
2

(4+`−∆)

∝ g0,0
∆+2,`+2(u, v), (5.67)

where we have used the results of conformal integration in embedding space presented

in [49]. Actually from the representations of su(2, 2|2) algebra one can show that contri-

butions of the multiplet A∆
0,0( `+4

2
, `
2

)
on the four-point correlator are from the component

with quantum numbers (∆ + 2, ` + 2, R = 0, r = 0). Here we provided another simple

explanation on this fact.

5.6 Comments on the semi-short multiplet Ĉ1( `
2
, `
2
)

The only remaining multiplet in the J × J OPE (2.23) with nontrivial superconformal

partial wave is the semi-short multiplet Ĉ1( `
2
, `
2

). It arises from the splitting of long multiplet

A∆
0,0( `

2
, `
2

)
when ∆ hits the unitary bound

A2+`

0,0( `
2
, `
2

)
= Ĉ0( `

2
, `
2

) + Ĉ 1
2

( `−1
2
, `
2

) + Ĉ 1
2

( `
2
, `−1

2
) + Ĉ1( `−1

2
, `−1

2
) . (5.68)
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For ` = 0 the splitting goes back to the form (4.12). For spinning multiplet ` > 0, there

are two semi-short multiplets Ĉ0( `
2
, `
2

) and Ĉ1( `
2
, `
2

) satisfying the J × J selection rules.

However, the semi-short multiplet Ĉ0( `
2
, `
2

) contains conserved higher spin operator and

should be absent in interactive theories [76, 77]. The multiplets Ĉ1( `
2
, `
2

) contain the “Schur

operators” [75] and play important roles in the 4d/2d correspondence. Their contributions

on the stress-tensor four-point correlator can be described by the 2d chiral algebra [22].

Unfortunately, this multiplet carries non-zero charge of the R-symmetry SU(2)R. It is not

clear how to uplift it to superembedding space and estimate its superconformal block. The

superconformal block of Ĉ1( `
2
, `
2

) can be computed indirectly. In the limitation ∆ → 2 + `,

the superconformal block of A∆
0,0( `

2
, `
2

)
can be separated into two parts for Ĉ0( `

2
, `
2

) and

Ĉ1( `−1
2
, `−1

2
). The multiplet Ĉ0( `

2
, `
2

) can be uplifted to superembedding space and the three-

point function 〈J J Ĉ0( `
2
, `
2

)〉 follows (4.6) by applying its semi-short conditions of on the

three-point function. Then its superconformal partial wave can be obtained accordingly.

Actually as shown in appendix D, the shortening condition has already appeared in

the superconformal partial waves with the supershadow OPE coefficients, that only the

coefficients of conformal blocks g∆,` and g∆+2,`+2 of the semi-short multiplet Ĉ0( `
2
, `
2

) are

non-vanishing. Without extra constraints we cannot solve the supershadow OPE coef-

ficients just from these two terms directly, but they are expected to be relevant to the

analytical continuation of the supershadow transformation of general long multiplet. The

superconformal partial waves of the semi-short multiplets Ĉ1( `
2
, `
2

), as well as their roles in

the 4d/2d correspondence will be studied in a future work [81].

6 Decomposition of N = 2 blocks into N = 1 blocks

The N = 2 superconformal blocks can be expanded in terms of N = 1 superconformal

blocks following from the decomposition of the N = 2 multiplets into N = 1 multiplets.

This relation has been employed in [34, 35, 40] for consistency check on the N = 1 super-

conformal blocks, which agree with the N = 1 decomposition of the superconformal blocks

of N = 2 global symmetry conserved current obtained in [27]. In this work, we show that

the N = 1 decomposition can also provide consistency checks on the N = 2 superconformal

blocks we obtained in the previous section.

For a general N = 2 long multiplet A∆
0,0( `

2
, `
2

)
, itsN = 1 decomposition has been studied

in [20]:

A∆
0,0( `

2
, `
2

)
→A∆

r′=0( `
2
, `
2

)
+A∆+1

r′=0( `−1
2
, `−1

2
)

+A∆+1

r′=0( `+1
2
, `+1

2
)

+A∆+2

r′=0( `
2
, `
2

)
+A∆+1

r′=0( `−1
2
, `+1

2
)

+A∆+1

r′=0( `+1
2
, `−1

2
)

+ · · · ,
(6.1)

where the N = 1 mutliplets are denoted as A and the subindex r′ ≡ 2
3(2R + r) is the

U(1)r′ charge of N = 1 multiplets A. There are extra terms with non-zero r′ in the

decomposition, while they have no contribution on the correlator so are omitted in (6.1).

The N = 2 superconformal blocks then can be decomposed into N = 1 accordingly.

Given odd `, the last two terms in (6.1) have no contribution on the four-point corre-

lator 〈JJJJ〉, since the components in the multiplets that could appear in the J × J OPE
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have odd spin. Therefore the N = 1 decomposition reads

GN=2|JJ ;JJ
∆,`,odd = GN=1

∆,`,odd + b1GN=1
∆+1,`−1,even + b2GN=1

∆+1,`+1,even + b3GN=1
∆+2,`,odd, (6.2)

where the N = 1 superconformal blocks GN=1
∆,`,odd/even have been given in (5.25) and (5.26).

Using the expressions of N = 1 superconformal blocks in (6.2), we obtain an expansion of

N = 2 superconformal blocks in terms of conformal blocks

GN=2|JJ ;JJ
∆,`,odd ∝ c1g∆+1,`+1 + c2g∆+1,`−1 + c3g∆+3,`+1 + c4g∆+3,`−1, (6.3)

where the ci are abbreviations of coefficients depend on (bi,∆, `). Remarkably, the coeffi-

cients ci obtained from N = 1 decompositions (6.2) are restricted to satisfy the constraint

c1
(∆− `− 2)

(∆− `− 1)
− c2

`2(∆ + `)

(`+ 2)2(∆ + `+ 1)

− 16(∆ + 1)2

(∆− 1)2

(
c3

(∆ + `+ 3)

(∆ + `+ 2)
− c4

`2(∆− `+ 1)

(`+ 2)2(∆− `)

)
= 0, (6.4)

which provides nontrivial consistency check on our previous results. Adopting the coeffi-

cients ci from the results in (5.24), we find the l.h.s. of (6.4) vanishes.

For the multiplets A∆
0,0( `

2
, `
2

)
with even `, the last two terms in (6.1) A∆+1

r′=0( `−1
2
, `+1

2
)

and A∆+1

r′=0( `+1
2
, `−1

2
)

now contain conformal primary components with quantum number

(∆, `, r′ = 0) and satisfy the selection rules of J × J OPE. So they have non-zero con-

tributions on the correlator which is described by non-supersymmetric conformal blocks.

The N = 1 decomposition of the superconformal blocks becomes

GN=2|JJ ;JJ
∆,`,even = GN=1

∆,`,even + b1GN=1
∆+1,`−1,odd + b2GN=1

∆+1,`+1,odd + b3GN=1
∆+2,`,even + b4g∆+2,`. (6.5)

Different from the odd spin multiplet, above decomposition does not lead to any cancella-

tion, instead, each N = 1 superconformal block in (6.5) contains a term proportional to

the conformal block g∆+2,`. The final results on g∆+2,` actually originate from five differ-

ent parts. This explains the disorganized behavior of a2, the coefficient of g∆+2,` shown

in (5.46).

The N = 1 decomposition (6.5) now provides the constraint on the N = 2 supercon-

formal blocks (5.41) on the specific term g∆+2,`. From the coefficients given below (5.41),

we can obtain the N = 1 coefficients bi, i ∈ {1, 2, 3}, as well as their contributions on the

conformal block g∆+2,`. Then by subtracting these contributions from the overall coeffi-

cient a2 (5.46), we obtain the contributions purely from A∆+1

r′=0( `−1
2
, `+1

2
)

and A∆+1

r′=0( `+1
2
, `−1

2
)
,

which should be positive according to the unitarity. Since the conformal block contains two

independent OPE coefficients λ
(i)
O , i ∈ {1, 2}, it is highly nontrivial that the three terms

(λ
(1)
O λ

(1)
O , λ

(1)
O λ

(2)
O , λ

(2)
O λ

(2)
O ) are organized conspiratorially to be positive. Indeed, from above

results we obtain

b4 =
(`+ 2)(∆− 1)

(
λ

(1)
O (∆ + `) + λ

(2)
O (`+ 3)∆

)2
2`(`+ 1)2∆2(∆ + 1)

, (6.6)

which perfectly agrees with the unitarity condition.15

15The coefficient b4 includes contributions from both A∆+1

r′=0( `−1
2
, `+1

2
)

and A∆+1

r′=0( `+1
2
, `−1

2
)
, so in general

the unitarity condition should be satisfied respectively, i.e., b4 should be a summation of two positive terms.

However, in our case A∆+1

r′=0( `−1
2
, `+1

2
)

and A∆+1

r′=0( `+1
2
, `−1

2
)

are conjugate partners in an N = 2 multiplet, their

contributions are expected to be equal.
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7 Conclusion and discussion

We have computed the superconformal partial waves of the four-point correlator 〈JJJJ〉,
where the external operator J is the lowest component of the 4D N = 2 stress-tensor mul-

tiplet, and the exchanged operator is a singlet of R-symmetry SU(2)R. We compute the

three-point correlators 〈J JO〉 in superembedding space. We find a method to systemati-

cally expand the invariants in superembedding space in terms of superconformal covariant

variables in superspace, from which we are able to construct the N = 2 superconformal

invariants and tensor structures in superembedding space. Our results agree with the

consistency checks by decomposing into the N = 1 superconformal blocks of conserved

currents. It is straightforward to employ the method applied in this work for the super-

conformal partial waves of the other interesting N = 2 four-point correlators, for example

〈JJΦΦ†〉, where Φ is a chiral operator.

Our results provide necessary ingredients for the N = 2 stress-tensor bootstrap. With

the N = 2 superconformal blocks it is straightforward to apply the numerical techniques

developed in [4, 7, 79, 80] to bootstrap the crossing equation of the four-point correlator

〈JJJJ〉. We expect that the N = 2 stress-tensor bootstrap will further promote the 4D

N = 2 superconformal bootstrap project initiated in [14], which aims to provide system-

atical studies on the extremely fruitful N = 2 SCFTs. Specifically, it is quite promising

to bootstrap the simplest rank one Argyres-Douglas theory H0, which saturates the lower

bound on the c central charge of any N = 2 SCFTs. One of the characteristics of this

theory is that the semi-short multilet Ĉ1( 1
2
, 1
2) decouples [20]. From the bootstrap point

of view, this is reminiscent of the phenomena discovered in [5–7] and [82]. The critical

3D Ising model locates at the kink of the bound on the CFT data [5–7], and this kink

corresponds to decoupling of certain spectra. In [82] the correspondence between kink (as

a solution of specific CFT) and decouple of certain spectra has been generalized to various

3D CFTs with global symmetry or supersymmetry. In particularly there is a putative new

3D N = 2 SCFT that corresponds to the decouple of spectrum in its BPS sector, or the

chiral ring relation Φ2 = 0 [37, 38].16 It is tempting to expect this scenario works for 4D

N = 2 theories as well.

The N = 2 stress-tensor bootstrap provides a nice approach to study the conformal

anomaly coefficient a. Due to the N = 2 supersymmetry, the crossing equation is signif-

icantly simplified comparing with those of non-supersymmetric theories that also involve

a-anomaly coefficient [11, 13]. The a-anomaly coefficient satisfies the conformal collider

bound [12]. This bound has been proven analytically in [84, 85]. Remarkably the con-

formal collider bound automatically appears in the numerical conformal bootstrap of the

3D conserved current (Jµ) correlator 〈JJJJ〉 [13] and the stress-tensor (Tµν) correlator

〈TTTT 〉 [11]. It would be very interesting to reproduce the N = 2 supersymmetric version

of the bound from numerical N = 2 stress-tensor bootstrap.

With additional assumption on the operator spectra of CFTs, the conformal collider

bound in 4D can be further restricted to be (a − c)/c 6 ∆−2
gap, where the parameter

∆gap is the dimension of lightest single trace operator with higher spin ` > 3 [86]. This

16This putative SCFT has 4D N = 1 analogy with the same chiral ring relation [36, 79, 83].
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refined constraint on the conformal anomaly coefficients and the sparse spectra has been

derived in [87–89], see [90] for more results on the generalization of the conformal collider

bound. The N = 2 theories provide an ideal laboratory to study this constraint further.

With eight Poincaré supercharges, we can get access to the stress-tensor OPE from the

scalar component in the stress-tensor multiplet. On the other hand, there remains two

independent tensor structures in the stress-tensor three-point function and the refined

constraint is highly non-trivial. In contrast, for N = 4 SCFTs, a = c and the constraint

is satisfied trivially. While for N = 1 SCFTs, the stress-tensor is a component of the

spin 1 supercurrent multiplet, and its OPE is still quite involved [91]. It is expected to

obtain better understanding on the generalized conformal collider bound from the crossing

symmetry and unitarity condition of N = 2 stress-tensor four-point correlator. We leave

these problems for future studies.
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A Superconformal invariants and tensor structures in superembedding

space

In N = 2 superembedding space, we can construct two independent superconformal invari-

ants z and w from three points (0, 1, 2) ∼ (X0,X1,X2):

z ≡ 〈1̄2 〉〈2̄0〉〈0̄1〉 − 〈2̄1〉〈1̄0〉〈0̄2〉
〈1̄2〉〈2̄0〉〈0̄1〉+ 〈2̄1〉〈1̄0〉〈0̄2〉

, (A.1)

w ≡ 4 〈1̄2 0̄12̄ 0〉

(〈1̄2〉〈2̄1〉〈1̄0〉〈0̄1〉〈0̄2〉〈2̄0〉)
1
2

+ 1. (A.2)

In this work we also need the superconformal invariants z̃ and w̃ constructed similarly with

variable replacements 1 → 3, 2 → 4. Both z and w are nilpotent and vanish when setting

external Grassmann variables to zero

z5 = w3 = 0,

z|θext=0 = w|θext=0 = 0.
(A.3)

Therefore they actually have no effect on the superconformal integrations for the super-

conformal partial waves unless acted by the partial derivative ∂0̄. The derivatives on z
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are

∂m0̄ z = (z2 − 1)

(
Xm

1

X10̄

− Xm
2

X20̄

)
, ∂2

0̄z = 2z(z2 − 1)
X12

X10̄X20̄

, (A.4)

∂m0̄ ∂
n
0̄ z = 2(z2 − 1)

(
z

(
Xm

1

X10̄

− Xm
2

X20̄

)(
Xn

1

X10̄

− Xn
2

X20̄

)
+

(
Xm

1 X
n
1

X10̄X10̄

− Xm
2 X

n
2

X20̄X20̄

))
,

which are also anti-symmetric under the coordinate permutation z1 ↔ z2. Using above

results it is straightforward to get the higher order derivatives on z, as well as the derivatives

on z2, z3, z4.

The derivative ∂m
0̄

on w gives

∂m0̄ w =
16 〈1̄2 Γ̄m1 2̄ 0〉

(X10̄X01̄X20̄X02̄X21̄X12̄)
1
2

+ (w − 1)

(
Xm

1

X10̄

+
Xm

2

X20̄

)
, (A.5)

which is symmetric under the coordinate permutation 1 ↔ 2. Higher order derivatives are

given by

∂2
0̄w = −(w − 1)

X12

X10̄X20̄

, (A.6)

∂m0̄ ∂
n
0̄ w = ∂m0̄ w

(
Xn

1

X10̄

+
Xn

2

X20̄

)
+ ∂n0̄ w

(
Xm

1

X10̄

+
Xm

2

X20̄

)
+(w − 1)

(
Xm

1

X10̄

− Xm
2

X20̄

)(
Xn

1

X10̄

− Xn
2

X20̄

)
, (A.7)

∂m0̄ ∂
2
0̄w = −∂m0̄ w

X12

X10̄X20̄

− 2(w − 1)
X12

X10̄X20̄

(
Xm

1

X10̄

+
Xm

2

X20̄

)
, (A.8)

∂2
0̄ ∂

2
0̄w = 9(w − 1)

(
X12

X10̄X20̄

)2

, (A.9)

where we have solved the SO(4, 2) vector 〈1̄2 Γ̄m1 2̄ 0〉 in terms of ∂m
0̄

w from (A.5) for sim-

plicity. Setting w = 0 above formulas give the results with vanishing external Grassmann

variables θext = 0. In particular, we have

∂m0̄ w
∣∣
θext=0

= − X12

X10X20
Xm

0 . (A.10)

This identity can be obtained by evaluating the trace 〈1̄2 Γ̄m1 2̄ 0〉 explicitly, or alternatively,

the readers can simply convince themselves by showing that the two sides of (A.10) are

equal by multiplying vectors Xim.

Replacing 1 → 3 and 2 → 4 in above identities, we obtain the derivatives on z̃ and

w̃. Moreover, in the full tensor structures N full
` , like in (5.10) and (5.32), we also have

mixed terms that are proportional to zz̃, zw̃, ww̃, etc. The corresponding derivatives can

be evaluated accordingly based on above results.

The tensor structure N` in the superconformal integration are

N` ≡ (S̄12̄S)`
←→
D`(T̄ 34̄T )` =

1

(`!)2
(∂S0∂T )`(S 2̄10̄34̄T )`. (A.11)
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By permuting the variables in S̄12̄S or T̄ 34̄T we can also obtain extra tensor structures

appearing in N full
` , such as M`,L` and K`. These tensor structures are constructed based

on the supershadow formalism and the variables X0, X̄0 originate from

←→
D j1,j2 ≡

1

(2j1)!2(2j2)!2
(∂S0∂T )2j1(∂S̄ 0̄∂T̄ )2j2 . (A.12)

When j1 6= j2, it gives the tensor structure for mixed symmetry multiplet A∆
0,0( `+2

2
, `
2

)
or

A∆
0,0( `+4

2
, `
2

)
. The derivative ∂0̄ acting on the tensor structures is equivalent to acting on

←→
D ,

and there is a null condition:

∂2
0̄

←→
D j1,j2 ∝ εαβγδ∂S̄α∂S̄β∂T̄ γ∂T̄ δ = 0. (A.13)

Therefore we have following constraint on the general tensor structures X` ∈
{N`,M`,L`,K`}

∂2
0̄X` = 0. (A.14)

For N = 1 theories, there is at most one derivative ∂m
0̄

applied on the tensor structures, and

the SO(4, 2) index is contracted with another one from the derivative on superconformal

invariants or 1
D`

. While for N = 2 theories, we have terms proportional to ∂m
0̄
∂n

0̄
X`,

which lead to various kinds of tensor structures in embedding space. The problem to

obtain superconformal block now is transferred to the conformal integration of the tensor

structures, which are usually cannot be expanded in terms of Gegenbauer polynomials

directly. For instance, in [41] theN = 1 superconformal blocks corresponding to exchanging

of symmetric multiplets with none-zero U(1)R charges have been computed. One of the

major challenges is to evaluate the conformal integration with the tensor structure

(∂S0∂T )` (S2̄10̄34̄T )`−1 (X30S2̄14̄T +X40S2̄13̄T −X30S1̄24̄T −X40S1̄23̄T ) . (A.15)

The tensor structures are more complex for N = 2 theories.

Take the odd spin long multiplet A∆
0,0( `

2
, `
2

)
for example. The superconformal integrand

contains the following term

λ1λ̃1zz̃
1

D`
S`−
←→
D T `−. (A.16)

Integrating out the fermionic variables we obtain the conformal integration in embed-

ding space:

(
∂2

0̄∂
2
0̄zz̃
) 1

D`
N` + 4

(
∂n0̄ ∂0̄

2zz̃
)(

∂0̄n
1

D`

)
N` + 2

(
∂2

0̄zz̃
)(

∂0̄
2 1

D`

)
N`

+4
(
∂n0̄ ∂

m
0̄ zz̃

)(
∂0̄n∂0̄m

1

D`

)
N` + 4

(
∂n0̄ ∂

2
0̄zz̃
) 1

D`
∂0̄nN`

+8
(
∂n0̄ ∂

m
0̄ zz̃

)
∂0̄m

1

D`
∂0̄nN` + 4

(
∂2

0̄zz̃
)
∂m0̄

1

D`
∂0̄mN` + 4

(
∂m0̄ ∂

n
0̄ zz̃

) 1

D`
∂0̄m∂0̄nN`

+(−1)` (1↔ 2) + (−1)` (3↔ 4) . (A.17)
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After taking the partial derivatives, we set θext = 0, and above formula becomes

2

(
Ω−

((
(∆ + `)2 + 8

) X12

X10̄X20̄

+
(
(∆− `)2 + 8

) X34

X30̄X40̄

)
+(2 + `−∆)(2 + `+ ∆) (ΩAΩB + Ω−Ω+)

)
N`

D`

+
∆ + `+ 2

2

`

D`

X12̄

X10̄X20̄

(ΩBP1− Ω−P3)

−∆− `− 2

2

`

D`

X34̄

X30̄X40̄

(ΩAR1− Ω−R3)

+
1

8

`(`− 1)

D`

X12

X10̄X20̄

X34

X30̄X40̄

(P0R3 + P1R1 + P2R2 + P3R0), (A.18)

where the variables Ω∗, Pi and Ri are given in (B.2)–(B.13). As shown in (A.18), the

conformal integrand contains rather complicated tensor structures. More complex tensor

structures appear in the conformal integrand for even spin. The whole conformal integrand

would take too much length to be presented here. The tensor structures and their recursion

relations will be given in the next appendices.

B Tensor structures and their recursion relations

In this appendix we summarize the tensor structures appear in the conformal integrand

and their recursion relations, from which we can evaluate the conformal integration in

embedding space.

For the simplest tensor structure N`, it satisfies the recursion of Gegenbauer polyno-

mials C
(1)
` (t) with variable

t ≡ 〈2̄10̄34̄0〉
2
√
s

, s ≡ 1

26
〈0̄1〉〈2̄0〉〈0̄3〉〈4̄0〉〈2̄1〉〈4̄3〉. (B.1)

While for extra tensor structures, generally they cannot be expanded in terms of Gegen-

bauer polynomials directly.

The tensor structures, as well as the invariants in embedding space usually are con-

structed based on certain combinations which are (anti-)symmetric under coordinate per-

mutations 1↔ 2 or 3↔ 4, it will be convenient to denote these elementary terms as follows

Ω+ =
X13

X10̄X30̄

+
X23

X20̄X30̄

+
X14

X10̄X40̄

+
X24

X20̄X40̄

, (B.2)

Ω− =
X13

X10̄X30̄

− X23

X20̄X30̄

− X14

X10̄X40̄

+
X24

X20̄X40̄

, (B.3)

ΩA =
X13

X10̄X30̄

− X23

X20̄X30̄

+
X14

X10̄X40̄

− X24

X20̄X40̄

, (B.4)

ΩB =
X13

X10̄X30̄

+
X23

X20̄X30̄

− X14

X10̄X40̄

− X24

X20̄X40̄

, (B.5)

and for the tensor structures

P0 = X10̄S234T +X20̄S134T +X10̄S243T +X20̄S143T, (B.6)

P1 = X10̄S234T +X20̄S134T −X10̄S243T −X20̄S143T, (B.7)
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P2 = X10̄S234T −X20̄S134T +X10̄S243T −X20̄S143T, (B.8)

P3 = X10̄S234T −X20̄S134T −X10̄S243T +X20̄S143T, (B.9)

R0 = X30̄S214T +X40̄S213T +X30̄S124T +X40̄S123T, (B.10)

R1 = X30̄S214T +X40̄S213T −X30̄S124T −X40̄S123T, (B.11)

R2 = X30̄S214T −X40̄S213T +X30̄S124T −X40̄S123T, (B.12)

R3 = X30̄S214T −X40̄S213T −X30̄S124T +X40̄S123T. (B.13)

Note that the invariant Ω− is proportional to the variable t0 ≡ t|θext=0 in embedding space.

The tensor structures P2 and R2 vanish, and P3 = R3 = 8S21034T . P0 and R0 can be

simplified to be SiT which is equivalent to X0i up to a constant. So actually the nontrivial

terms are P1 and R1. Above terms arise from the partial derivative ∂m
0̄

acted on the tensor

structures.

For N = 2 theories, we also have higher order derivatives ∂m
0̄
∂n

0̄
acted on the tensor

structures, which lead to higher order tensor structures like

(X10̄S234T )2 ± (X20̄S134T )2 ± (X10̄S243T )2 ± (X20̄S143T )2, (B.14)

(X30̄S214T )2 ± (X40̄S213T )2 ± (X30̄S124T )2 ± (X40̄S123T )2, (B.15)

X10̄X30̄S234TS214T ±X20̄X40̄S134TS213T

±X10̄X30̄S243TS124T ±X20̄X40̄S143TS123T. (B.16)

Above second order terms can be nicely decomposed in terms of Pi and Ri. For instances,

(X10̄S234T )2 + (X20̄S134T )2 + (X10̄S243T )2 + (X20̄S143T )2

=
1

4
(P02 + P12 + P32 + P32), (B.17)

and

X10̄X30̄S234TS214T +X20̄X40̄S134TS213T

+X10̄X30̄S243TS124T +X20̄X40̄S143TS123T (B.18)

=
1

4
(P0R0 + P1R2 + P2R1 + P3R3).

The formula (B.17) is just the Euler’s four-square identity with four arguments fixed to

unit. Other higher order tensor structures can be expanded similarly.

Actually among the second order tensor structures, only P12, R12, P1×R1 could give

nontrivial results. All the other tensor structures either vanish or degenerate to first order

tensor structures. We use the notation

SPT ≡ P1, SRT ≡ R1, (B.19)

to trace the auxiliary twistors S, T and the letters P/R refer to the combinations of the

coordinates in P1/R1. For example, in this notation we have

∂S0∂TSPT = tr(0P ), SPT
←−
∂ T 0∂SSRT = SP0RT. (B.20)
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Besides, we also adopt the notation

∆x = X10X20X30X40Ωx, x ∈ {+,−, A,B}, (B.21)

in terms of which we have

tr(0P ) =
1

8
∆B, tr(0R) =

1

8
∆A, (B.22)

SR0PT = S21034T (X30X40X12 +X10X20X34 −∆+). (B.23)

Now we are ready to write down the recursion relations corresponding to the higher

order tensor structures. The recursion relations of SPT and SRT are provided in [41].

Recursion relation of SPT 2:

(∂S0∂T )` S21034T `−2SPT 2

= `(`− 1)(`− 2)(`− 3)s0 (∂S0∂T )`−2 S21034T `−4SPT 2

+
1

64
`2(`− 1)2(∆B)2 (∂S0∂T )`−2 S21034T `−2

+
1

512
`2(`− 1)(`− 2)X10X20X34∆A (∂S0∂T )`−2 S21034T `−3SPT

+
1

512
`2(`− 1)(`− 2)X10X20X34∆B (∂S0∂T )`−2 S21034T `−3SRT

+
1

32
`(`− 1)2X10X20X34(X30X40X12 +X10X20X34 −∆+)

× (∂S0∂T )`−2 S21034T `−2. (B.24)

Recursion relation of SRT 2:

(∂S0∂T )` S21034T `−2SRT 2

= `(`− 1)(`− 2)(`− 3)s0 (∂S0∂T )`−2 S21034T `−4SRT 2

+
1

64
`2(`− 1)2(∆A)2 (∂S0∂T )`−2 S21034T `−2

+
1

512
`2(`− 1)(`− 2)X30X40X12∆A (∂S0∂T )`−2 S21034T `−3SPT

+
1

512
`2(`− 1)(`− 2)X30X40X12∆B (∂S0∂T )`−2 S21034T `−3SRT

+
1

32
`(`− 1)2X30X40X12(X30X40X12 +X10X20X34 −∆+)

× (∂S0∂T )`−2 S21034T `−2. (B.25)

Recursion relation of SPT × SRT :

(∂S0∂T )` S21034T `−2SPT × SRT

=
1

64
`(`− 2)X30X40X12 (∂S0∂T )`−1 S21034T `−3SPT 2

+
1

8
`(`− 1)∆A (∂S0∂T )`−1 S21034T `−2SPT

+`(X30X40X12 +X10X20X34 −∆+) (∂S0∂T )`−1 S21034T `−1. (B.26)
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Tensor structures for mixed symmetry multiplets. New tensor structures appear

in the conformal integrands of the mixed symmetric multiplet A∆
0,0( `+2

2
, `
2

)
. They are

TPT ≡ (X10̄T234T +X20̄T134T −X10̄T243T −X20̄T143T ) , (B.27)

SRS ≡ (X30̄S214S +X40̄S213S −X30̄S124S −X40̄S123S) , (B.28)

for odd ` and S21034S, T21034T for even `. They are involved in the following tensor

structures in the conformal integrand

(∂S0∂T )`+2 S21034S × T21034T S21034T `, (B.29)

or

(∂S0∂T )`+2 SRS × TPT S21034T `. (B.30)

Here we provide the recursion relations of these structures. The tensor structure (B.29)

can be decomposed into Gegenbauer polynomials directly

(∂S0∂T )`+2 S21034S T21034TS21034T ` (B.31)

= −`+ 2

64
∆− (∂S0∂T )`+1 S21034T `+1 + 2(`+ 1)(`+ 2)2s0 (∂S0∂T )` S21034T `.

The recursion relation of tensor structure (B.30) is more difficult to solve

(∂S0∂T )`+2 SRS TPTS21034T `

= (`+ 2)2 (∂S0∂T )`+1

(
SR0PT − ∆A

16
SPT

)
S21034T `

+
`(`+ 1)2

128
∆A∆B (∂S0∂T )` S21034T `

+
`(`+ 1)2

512
X30X40X12∆B (∂S0∂T )` (SPT )S21034T `−1

+
`2

128
X10X20X34 (∂S0∂T )`+1 (SRS) (TRT )S21034T `−1

+
`(`− 1)(`+ 1)(`+ 2)

213
s0 (∂S0∂T )` (SRS) (TPT )S21034T `−2, (B.32)

in which the tensor structure (∂S0∂T )`+1 (SRS) (TRT )S21034T `−1 can be solved through

the recursion relation

(∂S0∂T )`+1 (SRS)(TRT )S21034T `−1

=
`+ 1

8
∆A (∂S0∂T )` (SRT )S21034T `−1

−`(`+ 1)2

32
X30X40X12(X30X40X12 +X10X20X34 −∆+) (∂S0∂T )`−1 S21034T `−1

−`− 1

64
X30X40X12 (∂S0∂T )` (SRS)(TPT )S21034T `−2. (B.33)

From above recursion relations, we can obtain the conformal integrations of the tensor

structures corresponding to the mixed symmetry multiplets.
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C Conformal integrations

In this part, we provide the formulas used in this work to evaluate the conformal integra-

tions. The conformal integration related to N`, or Gegenbauer polynomial C
(1)
` (x0) has

been studied in [24, 49]. The results are given by∫
M
D4X0

(−1)`C
(1)
` (t0)

X
∆+r

2
10 X

∆−r
2

20 X
∆̃+r̃

2
30 X

∆̃−r̃
2

40

= ξ∆,∆̃,r̃,`

(
X14

X13

) r̃
2
(
X24

X14

) r
2

X
−∆

2
12 X

− ∆̃
2

34 gr,r̃∆,`(u, v),

(C.1)

in which r ≡ ∆1 −∆2, r̃ ≡ ∆3 −∆4 and

ξ∆,∆̃,r̃,` ≡
π2Γ(∆̃ + `− 1)Γ(∆−r̃+`

2 )Γ(∆+r̃+`
2 )

(2−∆)Γ(∆ + `)Γ( ∆̃−r̃+`
2 )Γ( ∆̃+r̃+`

2 )
. (C.2)

The conformal blocks gr,r̃∆,`(u, v) are

gr,r̃∆,`(u, v) =
ρρ̄

ρ− ρ̄
[k∆+`(ρ)k∆−`−2(ρ̄)− (ρ↔ ρ̄)] ,

kβ(x) = x
β
2 2F1

(
β − r

2
,
β + r̃

2
, β, x

)
, (C.3)

where u, v are the conformal invariants u = ρρ̄, v = (1 − ρ)(1 − ρ̄). We will focus on

the superconformal block of the four-point correlator 〈JJJJ〉, so the r = r̃ = 0 and

gr,r̃∆,`(u, v) ∼ g∆,` in our notation, though conformal blocks with r, r̃ = ±1 also appear in

the intermediate steps.

For the conformal integration with extra invariant factor, like Ωx
N`
D`

, in principle one

can expand the invariant factor and get the results for each part directly from the for-

mula (C.1). However, due to the analytical properties of the conformal blocks, usually the

results can be organized in a compact way. The conformal integration of Ω+/−
N`
D`

have

been provided in [40] with r = r̃ = 0 and in [41] for general r, r̃. In this work, we need to

evaluate the conformal integration with two extra invariant factors, as shown in (A.18).

Note in our case, the factor D` for symmetric long multiplet is defined by

D` ≡ (X10̄X01X20̄X02)
1
4

(`+∆)(X30̄X03X40̄X04)
1
4

(`−∆). (C.4)

The conformal integration with two Ωx are given as follows

D4X0Ω2
+

N`

D`

=
2−6` ξ∆+2,2−∆,2,`

X
∆−`

2
12 X

−∆+`
2

34

(
16((∆− `)(∆ + `)− 2`)

(∆ + `+ 2)(∆− `)
g∆,` +

2(∆− `− 2)(∆ + `)

(∆ + `+ 2)(∆− `)
g∆+2,`

+
((∆− `)(∆ + `)− 2`)(∆− `− 2)(∆ + `)

16(∆ + `+ 3)(∆ + `+ 1)(∆− `+ 1)(∆− `− 1)
g∆+4,` (C.5)

− ∆ + `

(∆ + `+ 3)(∆− `)(∆ + `+ 1)
g∆+2,`+2

− ∆− `− 2

(∆− `− 1)(∆− `+ 1)(∆ + `+ 2)
g∆+2,`−2

)
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D4X0Ω2
−
N`

D`

=
2−6` ξ∆+2,2−∆,2,`

X
∆−`

2
12 X

−∆+`
2

34

(
2(∆− `− 2)(∆ + `)

(∆ + `+ 2)(∆− `)
g∆+2,`

+
(∆ + `)(∆− `− 1)

(∆ + `+ 3)(∆− `)
g∆+2,`+2 +

(∆− `− 2)(∆ + `+ 1)

(∆− `+ 1)(∆ + `+ 2)
g∆+2,`−2

)
(C.6)

D4X0Ω2
A

N`

D`

=
2−6` ξ∆+2,2−∆,2,`

X
∆−`

2
12 X

−∆+`
2

34

(
− ∆(∆− `− 2)(∆ + `)

8(∆ + `+ 3)(∆ + `+ 1)(∆− `+ 1)(∆− `− 1)
g∆+4,`

+
∆ + `

(∆ + `+ 3)(∆− `)
g∆+2,`+2 +

∆− `− 2

(∆− `+ 1)(∆ + `+ 2)
g∆+2,`−2

)
(C.7)

D4X0Ω2
B

N`

D`

=
2−6` ξ∆+2,2−∆,2,`

X
∆−`

2
12 X

−∆+`
2

34

(
32∆

(∆ + `+ 2)(∆− `)
g∆,` (C.8)

− (∆− `− 1)(∆ + `)

(∆ + `+ 3)(∆− `)(∆ + `+ 1)
g∆+2,`+2

− (∆− `− 2)(∆ + `+ 1)

(∆− `− 1)(∆− `+ 1)(∆ + `+ 2)
g∆+2,`−2

)

D4X0(ΩAΩB − Ω+Ω−)
N`

D`

=
2−6` ξ∆+2,2−∆,2,`

X
∆−`

2
12 X

−∆+`
2

34

(
4(∆ + `)

∆ + `+ 2
g∆+1,`+1 + 4

∆− `− 2

∆− `
g∆+1,`−1

+
(∆− `− 2)(∆ + `)2

4(∆− `)(∆ + `+ 1)(∆ + `+ 3)
g∆+3,`+1

+
(∆− `− 2)2(∆ + `)

4(∆− `+ 1)(∆− `− 1)(∆ + `+ 2)
g∆+3,`−1

)
. (C.9)

Denote the tensor structures involving SPT and SRT as:

P` ≡
1

`!2
(∂S0∂T )` (S2̄10̄34̄T )`−1

× (X10S2̄34̄T +X20S1̄34̄T −X10S2̄43̄T −X20S1̄43̄T ) , (C.10)

R` ≡
1

`!2
(∂S0∂T )` (S2̄10̄34̄T )`−1

× (X30S2̄14̄T +X40S2̄13̄T −X30S1̄24̄T −X40S1̄23̄T ) . (C.11)

Above definitions are slightly different from those in [41]. Their conformal integrations have

been evaluated in [41]. In this work we also need to evaluate their conformal integrations
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with factors Ωx:

D4X0
X12

X10X20
ΩA

P`
D`

=
23−6` ξ∆+3,1−∆,0,`−1

X
1
2

(∆−`)
12 X

− 1
2

(∆+`)

34

(
4(∆− `+ 1)

∆`(`−∆)
g∆+2,`

−4(∆ + 1)(`+ 1)

∆`(∆ + `)
g∆+2,`−2 +

∆ + `+ 2

4(∆ + `+ 1)(∆ + `+ 3)
g∆+4,`

)
(C.12)

D4X0
X12

X10X20
ΩB

P`
D`

=
23−6` ξ∆+3,1−∆,0,`−1

X
1
2

(∆−`)
12 X

− 1
2

(∆+`)

34

(
− 1

∆`
g∆+3,`−1 −

16(∆ + 1)(`+ 1)(∆− `+ 1)

∆`(∆ + `)(∆− `)
g∆+1,`−1

+
(∆ + `+ 2)(∆− `+ 1)

(∆− `)(∆ + `+ 1)(∆ + `+ 3)
g∆+3,`+1

)
(C.13)

D4X0
X34

X30X40
ΩA

R`
D`

=
23−6` ξ∆+1,3−∆,0,`−1

X
1
2

(∆−`)
12 X

− 1
2

(∆+`)

34

(
− ∆ + `

(∆ + `+ 1)(∆− `− 2)
g∆+1,`+1 (C.14)

+
1

∆`
g∆+1,`−1 +

(∆− 1)(`+ 1)(∆ + `)(∆− `)
16∆`(∆ + `+ 1)(∆− `− 1)(∆− `+ 1)

g∆+3,`−1

)
D4X0

X34

X30X40
ΩB

R`
D`

=
23−6` ξ∆+1,3−∆,0,`−1

X
1
2

(∆−`)
12 X

− 1
2

(∆+`)

34

(
− 4

∆− `− 2
g∆,` (C.15)

+
∆ + `

4∆`(∆ + `+ 1)
g∆+2,` +

(∆− 1)(`+ 1)(∆− `)
4∆`(∆− `− 1)(∆− `+ 1)

g∆+2,`−2

)
.

The conformal integrations of tensor structures P12 and R12 are

D4X0

(
X12

X10X20

)2 1

D`

`(`− 1)

(`!)2
(∂S0∂T )` (S2̄10̄34̄T )`−2 SPT 2

=
2−6(`−1) ξ∆+2,2−∆,0,`−2

X
1
2

(∆−`)
12 X

− 1
2

(∆+`)

34

(
`(`+ 1)

∆ + `+ 1
g∆+2,`−2

− `(`− 1)∆(∆ + `)(∆ + `+ 2)

16(∆ + 2)(∆ + `+ 1)2(∆ + `+ 3)
g∆+4,`

)
, (C.16)

D4X0

(
X34

X30X40

)2 1

D`

`(`− 1)

(`!)2
(∂S0∂T )` (S2̄10̄34̄T )`−2 SRT 2

=
2−6(`−1) ξ∆,4−∆,0,`−2

X
1
2

(∆−`)
12 X

− 1
2

(∆+`)

34

(
`(`− 1)

∆ + `− 2

(∆− `− 2)(∆ + `− 1)
g∆,`

−`(`+ 1)
(∆− 2)(∆− `)(∆ + `− 2)

16∆ ((`−∆)2 − 1) (∆ + `− 1)
g∆+2,`−2

)
. (C.17)

The conformal integrations of tensor structures with SPT × SRT vanish.
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Above conformal integrations are valid only for spin ` > 1. For ` = 0, the unphysical

conformal blocks g∆,−2 do not vanish automatically and their contributions on the identities

should be replaced by those with non-negative second subindex ` > 0. Nevertheless, the

final superconformal blocks obtained from the recursion relations can be correctly continued

to ` = 0 case.

We have new tensor structures for the mixed symmetry multiplet given in (B.29)

and (B.30). The conformal integration of (B.29) can be obtained directly from the rela-

tion (B.31). The conformal integration of (B.30) can be solved from its recursion rela-

tion (B.32). The result reads

D4X0
1

((`+ 2)!)2

1

D`+2
(∂S0∂T )`+2 (SRS)(TPT )S21034T `

=
2−6(`+1) ξ∆+1,3−∆,0,`+1

X
1
2

(∆−`−2)

12 X
− 1

2
(∆+`+2)

34

(C.18)

× (3 + `)

(2 + `)∆

(
g∆+1,`+1 −

(∆− 1)(∆− `− 2)(∆ + `+ 2)

16(∆ + 1)(∆− `− 1)(∆ + `+ 3)
g∆+3,`+1

)
.

D Supershadow transformation of the OPE coefficients

In this part we show how to solve the supershadow transformation matrix M(∆, `) (5.30)

from the unitarity condition.

By computing the superconformal integration in (5.27) and getting rid of the kinematic

factors, we obtain the superconformal blocks containing supershadow coefficients λ
(i)

Õ

GN=2|JJ ;JJ
∆,`,even = c0g∆,` + c1g∆+2,`+2 + c′2g∆+2,` + c3g∆+2,`−2 + c4g∆+4,`, (D.1)

where

c0 ∝ λ
(1)
O

(
(`−∆)

(
4 + (∆+3)∆2 + `

(
∆2+∆+2

))
λ

(1)

Õ − 4(`+2)(`+3)∆λ
(2)

Õ

)
, (D.2)

c1 ∝
(
λ

(1)
O (∆ + `) + 2λ

(2)
O (∆ + `+ 1)

)(
λ

(1)

Õ (`−∆) + 2λ
(2)

Õ (−∆ + `+ 1)
)
, (D.3)

c3 ∝ (∆− `− 2)

×
(
λ

(1)
O (4(1−∆) + `(`+ 3)(2 + `−∆)) + 2λ

(2)
O (`+ 2)(`+ 3)(1 + `−∆)

)
×
(
λ

(1)

Õ (4(1 + ∆) + `(`+ 3)(∆ + `+ 2)) + 2λ
(2)

Õ (`+ 2)(`+ 3)(∆ + `+ 1)
)
, (D.4)

c4 ∝ (∆− `− 2)

×
(
λ

(1)
O (∆ + `)

(
(2−∆)∆2 + ((∆− 1)∆ + 2)`+ 4

)
+ 4λ

(2)
O ∆(`+ 2)(`+ 3)

)
λ

(1)

Õ ,

(D.5)

where we have ignored the constant factors of the coefficients ci that have no effect on the

unitarity condition. For c′2, as we discussed previously, it includes several contributions

and the independent parts c2from multiplets A∆+1

r′=0( `−1
2
, `+1

2
)

and A∆+1

r′=0( `+1
2
, `−1

2
)

are

c2 ∝ (∆− `− 2)
(
λ

(1)
O (∆ + `) + λ

(2)
O (`+ 3)∆

)(
λ

(1)

Õ (`−∆)− λ(2)

Õ ∆(`+ 3)
)
. (D.6)
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Note that for the coefficients c2, c3 and c4 (also for c′2) there is a factor ∆ − ` − 2, which

suggests the corresponding conformal blocks disappear when the scaling dimension of the

multiplet saturates the unitary bound. This is consistent with the multiplet splitting at

the unitary bound (5.68). The results in (D.1) with non-vanishing coefficients c1 and c2

are expected to give the superconformal block of semi-short multiplet Ĉ0( `
2
, `
2

).

The unitarity condition requires that the coefficients ci in (D.1) are non-negative for

general OPE coefficients λ
(i)
O . Therefore the supershadow coefficients λ

(i)

Õ should be the

linear superpositions of λ
(i)
O so that ci are positive quadratic polynomials of λ

(i)
O .

As a 2 × 2 matrix, the four elements in M(∆, `) can be solved from the unitarity

constraints of (D.2), (D.3) and (D.5)

M(∆, `)ij ∝

(
(∆ + `)

(
(3−∆)∆2 + ((∆− 1)∆ + 2)`+ 4

)
4∆(`+ 2)(`+ 3)

2∆(`−∆)(∆ + `) (`−∆)
(
(∆ + 3)∆2 +

(
∆2 + ∆ + 2

)
`+ 4

)
)
.

(D.7)

While the unitarity conditions from coefficients c2 and c3 provide nontrivial consistency

check on the supershadow transformation matrix (D.7).

For a general scalar multiplet A∆
0,0( `

2
, `
2

)
with ∆ > 2, in the three-point function

〈J JA∆
0,0( `

2
, `
2

)
〉, there is a constraint on the two OPE coefficients

λ
(1)
O = −3λ

(2)
O ≡ λO. (D.8)

We should have the same constraint on the supershadow coefficients λ
(i)

Õ . From the super-

shadow transformation matrix, indeed we have(
λ

(1)

Õ
λ

(2)

Õ

)
=
(
M(∆, `)ij

)
2×2
· λO

(
1

−1
3

)∣∣∣∣∣
`=0

∝ λO

(
1

−1
3

)
. (D.9)

Besides, the supershadow transformation matrix also satisfies the constraint

M(−∆, `) · M(∆, `) ∝ (∆− `− 2)(∆− 2)I2×2. (D.10)

For general long multiplets with ∆ > ` + 2, above identity corresponds to the fact that

by taking the supershadow transformation twice, we obtain the original OPE coefficients.

However the product becomes null at the unitary bound. This is expected since we solved

the supershadow transformation matrix from the unitarity condition of one of the vanishing

coefficients.
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any medium, provided the original author(s) and source are credited.
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