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1 Introduction

The absence of new physics at the Large Hadron Collider (LHC) and in other particle

physics experiments makes it necessary to revisit the paradigms of beyond the Standard

Model (BSM) physics with the purpose of finding if something could have been overlooked

in our strategy to search for new physics. In particular, the LHC has strongly constrained

many conventional BSM scenarios where new particles significantly coupled with the Stan-

dard Model (SM) are predicted around the TeV scale. On the other hand, it is also

interesting to investigate whether LHC has exploited its maximal constraining power for

light new physics which is very weakly coupled to the SM particles. For instance, in the

case in which such small couplings are determined by higher dimensional operators, it is

important to assess the reach of the LHC on the characteristic scale of these couplings

and compare it with the direct searches for new resonances expected at such scale. In this

context, several studies have been performed for the case of light pseudo-scalar (axion-like)

particles, which are the Goldstone bosons associated with the spontaneous breaking of a

global symmetry.

Here we focus on a well motivated scenario for a light scalar degree of freedom, that

is the dilaton. The dilaton is a pseudo-Goldstone boson associated with the spontaneous

breaking of the scale invariance. It can typically arise in BSM scenarios involving strongly

coupled approximately scale invariant UV completions of the SM (such as the composite

Higgs) and their holographic dual warped extra dimensional models, aiming at address-

ing the hierarchy problem or other open issues of the SM. In the case of warped extra
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dimensional models, the corresponding light mode is usually referred to as the radion. In

the following, we generically refer to this new light scalar as a dilaton independently of

its UV completion origin. The conventional new physics signatures of this kind of models

are usually the top-partners or other new states in the strong sector. However, the null

results from the LHC direct searches have pushed the mass scale of these states well above

a TeV [1]. At the same time, in some cases the indirect constraints on these models are

even more stringent ∼ O(10) TeV and they are mainly driven by the electroweak precision

tests (EWPTs) and flavor physics,1 see e.g. [3]. Taking the direct and indirect constraints

at face value, it appears that the new physics scale associated with the strong dynamics

may well be out of the LHC reach. On the other hand, if the scale invariance is primarily

spontaneously broken (and certain conditions are met, see below), the resulting pseudo-

Goldstone boson might be significantly lighter than the other states of the strong sector.

In this perspective, it is interesting to investigate whether a light dilaton can be the first

sign of BSM physics at the LHC, assuming that the other new states associated with the

strong dynamics are beyond reach.

In addition, it is natural to envision the possibility that the dilaton provides a portal

between the SM and a dark sector [4–9]. In this work, we assume a strongly coupled

approximate scale invariant dark sector which contains a relatively light vector boson (dark

photon) of a dark U(1)X gauge symmetry. The other dark sector states are assumed

to be heavier than the dilaton and hence play no significant role in the phenomenology

of the dilaton. We focus on regimes where the dark photon mass is smaller than the

dilaton, such that the dilaton can decay to dark photons. The invisible decay of the

dilaton gives rise to missing energy signatures at the LHC, which can be constrained by

mono-jet searches. Generically, one could investigate if the dark sector includes a viable

dark matter (DM) candidate which constitutes the observed DM relic density [4–8]. In

this paper our focus is on the LHC phenomenology of the light dilaton, and we leave the

detailed DM phenomenology for future works.

It is relevant to comment under which conditions on the UV completion one could

expect the appearance of a light dilaton in the spectrum, possibly parametrically lighter

than the characteristic scale f of the underlying symmetry breaking, where other new par-

ticles are generically present. For a light dilaton, a possible mechanism has been suggested

by Contino-Pomarol-Rattazzi (CPR) [10, 11] and further elaborated in [12–19]. The key

ingredient of this construction is the explicit breaking of the scale-invariance by an al-

most marginal operator, which induces a slow running (small beta function) of the quartic

coupling in the dilaton potential. In [10, 11, 13, 15] an explicit realization in 5D warped

Randall-Sundrum (RS)-like scenario [20] with Goldberger-Wise (GW) stabilization mech-

anism [21] were provided, where the mass of the dilaton can indeed be tuned to be smaller

than the size of the extra dimension.2 These recent developments further motivate the

phenomenological study of a light dilaton at the LHC.

1Note that for instance flavor issues associated with these strongly coupled models could be ameliorated

if the strongly coupled theory is approximately conformal invariant in the UV along the lines of ref. [2].
2The existence of a light dilaton in holographic models at the conformal transition has been also inves-

tigated recently in [22].
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Hence, in this paper we adopt a bottom-up approach and study the phenomenology of

an effective theory of a light dilaton, assuming that all the other BSM particles are out of

the LHC reach. The structure of the low energy effective action is then determined by the

nonlinearly realized scale invariance below the scale f . In particular, the dilaton couplings

to the SM are induced through higher dimensional operators suppressed by the scale f .

However, the values of the Wilson coefficients depend on the specific UV completion and

details of the scale symmetry breaking. In addition, also the mixing of the dilaton with the

Higgs is, in general, a model dependent feature. Hence, in the following for concreteness,

we will focus on a few benchmark models for our quantitative analysis.

We will consider three scenarios for the phenomenological study, without and with the

portal to the dark sector:

(i) Minimal dilaton, where the dilaton mixes with the SM Higgs via mass mixing and

apart from that it couples to the SM via the trace of the energy-momentum tensor.

(ii) Holographic dilaton, where the dilaton and the SM Higgs mix through a kinetic term.

Moreover, in this model we assume the partial composite framework [23] where the

Higgs doublet and right-handed top quark are composite states, while all the other SM

fields are elementary. This a holographic realization of a 5D warped extra dimensional

RS-like model.

(iii) Gauge-philic dilaton, where the dilaton couples only to the field strength tensors

of the gauge bosons due to the running of the gauge couplings, and not to any of

the mass terms. This is an extreme simplification, since one expects that in this

case the SM masses will backreact on the dilaton potential. However we consider

it for phenomenological purposes in order to illustrate the collider reach on such

elusive scenario.

We focus on the mass window of [10–300] GeV for the dilaton, which has not yet been

analyzed thoroughly in previous studies (see however [6, 8, 24–27] for the existing studies).

Indeed, the case of very light dilaton masses below 10 GeV has been recently investigated

in [19], while the high mass region has been investigated in several works [13, 18, 28–43].

Our goal here is to provide broad coverage of the phenomenology of a light dilaton at the

LHC, that could be easily re-interpreted in diverse UV completions. Furthermore, in our

analysis we will identify regions of parameter space where the existence of a light dilaton is

compatible with LHC exclusion limits and where the hierarchy between the dilaton mass

mφ and the scale f of the spontaneous breaking of the scale invariance is still moderate,

i.e. mφ/f ∼ O(1–10%). These represent promising physics cases that dedicated LHC

searches for light new states in the future LHC run will be able to further explore and test.

The paper is organized as follows. In section 2, we outline the low energy effective

theory where only a light dilaton (and possibly a dark photon) are present in addition to

the SM. We assume that all the other new particles associated with the UV theory to be

beyond the LHC reach. In the effective action we consider the most general interactions

allowed by the nonlinearly realized scale symmetry up to dimensions five operators, and we

also include non-trivial dilaton-Higgs mixing. Furthermore, three well motivated scenarios
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are introduced. The detailed collider phenomenological analysis of a light dilaton in the

mass range [10–300] GeV, without and with a dilaton portal to the dark sector, is then

performed in section 3. We conclude our work in section 4. The supplementary material

including the Feynman rules is given in appendix A.

2 Effective theory for a light dilaton

In the following we adopt a bottom-up approach such that the low-energy effective theory

contains only the dilaton as a light degree of freedom in addition to the SM states (later

on we will include also a dark photon). The UV theory is assumed to be strongly coupled

with approximate scale invariance which is broken spontaneously at a scale f . The rest of

new physics associated with such strong dynamics is taken to be at mass scale m∗ = g∗f

and beyond the reach of the LHC, where 1 . g∗ . 4π is a generic strong coupling. In the

phenomenological analysis we will comment on the regions of validity for this assumption

for each benchmark case studied.

In the effective theory the scale invariance is nonlinearly realized such that the dilaton

is embedded in a conformal compensator field defined as χ ≡ feφ0/f , where φ0 is the

dilaton fluctuation and f is the vacuum expectation (VEV) of χ. Note that under the

scale transformation xµ → x′µ = e−λxµ and χ(x)→ χ′(x′) = eλχ(x). The dilaton coupling

with the SM can be deduced by inserting appropriate powers of the compensator field in

the SM Lagrangian to make it scale invariant [12, 13]. In particular, there are dimension

five operators suppressed by the scale f induce the dilaton couplings with the SM fields.

However, while the Lorentz structure of such couplings is given, the precise value of the

Wilson coefficients depends on the UV completion. Hence, in our study we employ the

effective Lagrangian with generic dimension five couplings of the dilaton to the SM as

Lint
eff =

φ0

f

[
bh∂µh0∂

µh0 − 2chm
2
h0h

2
0 − ciψmψiψ̄iψi + 2cwm

2
WW

+
µ W

−µ + czm
2
ZZµZ

µ

+
αem

8π

(
bγFµνF

µν + 2bwW
+
µνW

−µν + bzZµνZ
µν + 2bγzFµνZ

µν
)

+
αs
8π
bgG

a
µνG

aµν

]
, (2.1)

where the constants b’s and c’s are ∼ O(1) model dependent parameters that we will specify

in the following for the benchmark models considered. The coefficients c’s parameterize

the dilaton couplings with the mass terms in the SM and they are equal to unity to respect

the nonlinearly realized scale invariance. Deviation from unity, i.e. c 6= 1, captures possible

explicit scale symmetry breaking effects, including anomalous dimensions for fermions.

In the effective action (2.1) the coefficients b’s parametrize the dilaton interactions

with the field strength of the gauge bosons and are defined as the coefficients of the β-

function, i.e. β(g) = −b g3/(16π2). These coefficients are model dependent and generically

get UV and IR contributions due to the running of the gauge coupling above or below the

scale ∼ 4πf , denoted as bUV and bIR, respectively. The effective couplings in (2.1) are the

difference of the IR and UV contributions to the β-function, i.e. bi ≡ bIRi − bUV
i . We refer
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to [12, 13] for a detailed discussion of these terms. Note that the effective interactions of

the dilaton with the massless gauge bosons receive important one-loop corrections involving

the dilaton coupling with the massive fermions and gauge bosons. For low dilaton mass

these loop effects partially cancel with the contribution of the β-function coefficients b’s,

in agreement with the consistent decoupling of heavy states. Without an exact description

of the UV dynamics the UV contributions to the β-function coefficients bUV are essentially

free parameters. A standard scenario is when the UV contributions are assumed to be

vanishing or negligible (i.e. bUV = 0) and the b constants are given by the running of the IR

(SM) states only. In this case the IR β-function coefficients bIR are the ones of the SM, i.e.

bIR3 = 7, bIR2 = 19/6, and bIR1 = −41/6 for the SU(3)qcd, SU(2)L, and U(1)Y gauge groups,

respectively. Instead, in one of the benchmark studied, we will consider a different set of

coefficients bUV taking inspiration from the partial composite framework with a holographic

realization where the SM fields are embedded in an extra dimensional warped scenario (see

section 2.2.2).

Besides the above interaction Lagrangian linear in the dilaton field, there are higher

order interactions involving more that one dilaton fields and the SM fields. Such terms are

significantly model dependent and we do not discuss them here. However there is another

possible source of interaction which is due to the dilaton mixing with the SM Higgs. Such

a mixing can be generated via dilaton-Higgs kinetic and/or mass mixing. These depend

on the specific embedding of the SM Higgs in the sector responsible for the breaking of

the scale invariance. Without specifying the details of the electroweak symmetry breaking,

we remain here agnostic about the nature of the SM Higgs field. We then consider the

following Lagrangian for the dilaton-Higgs system after the electroweak symmetry breaking

(EWSB), up to term quadratic in the fields,

L(2)
eff =

1

2
∂µh0∂

µh0 +
1

2
∂µφ0∂

µφ0 −
1

2
m2
h0h

2
0 −

1

2
m2
φ0φ

2
0 + bk∂µh0∂

µφ0 + cmm
2
φ0h0φ0, (2.2)

where h0 is the SM-Higgs scalar, mh0 ≡
√

2λ0 v is the bare Higgs mass, and v = 246 GeV

is the SM Higgs VEV, while φ0 denotes the dilaton in the interaction basis. Note that the

mass terms involving the dilaton/Higgs boson represent explicit scale symmetry breaking

operators. The last two terms in eq. (2.2) introduce kinetic and mass mixings between

the dilaton state and the SM Higgs, parameterized by dimensionless constants bk and cm,

respectively. We assume that such coefficients are bk, cm <∼ O(1). Note however that

we parameterize the dilaton-Higgs mass mixing term with the dilaton mass m2
φ0

(times a

dimensionless parameter cm). Given that such a term is a source of explicit breaking of

the scale invariance, one could expect it to be proportional to the dilaton mass. A possible

source of dilaton-Higgs kinetic mixing could be the gauge invariant dimension four operator

|H|2R̂, where R̂ is the Ricci scalar, as we will explain here below.

In our phenomenological study we also include trilinear couplings between the SM-like

Higgs and the dilaton, since they typically induce 2-body decay modes and can affect the

SM-like Higgs properties or the dilaton branching ratios (depending on the mass regime).

We neglect instead higher order corrections, assuming that they will not affect significantly
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the phenomenology. The trilinear dilaton-Higgs interactions can emerge, after the rotation

to the mass eigenstate, from the following three sources:

(a) The dilaton coupling from the effective interaction Lagrangian (2.1),

(b) The trilinear coupling in the Higgs potential, i.e.

L ⊃ −1

2

m2
h0

v
h3

0. (2.3)

(c) Additional dilaton-Higgs trilinear terms may arise if a non-minimal coupling of the

SM Higgs with the Ricci scalar is assumed, i.e.

L ⊃
√
−ĝ ξ |H|2R̂ = −6ξ

v

f

(
1 +

1

2

h0

v

)
h0�φ0 + . . . , (2.4)

where ξ parameterizes the Higgs-gravity non-minimal coupling and ellipses denote

terms suppressed by f2 or more.

Above ĝ is the determinant of the 4D metric ĝµν = ηµνχ
2/f2, where ηµν is the Minkowski

background metric. The 4D Ricci scalar R̂ is constructed out of the metric ĝµν which con-

tains the dilaton field as Weyl transformation. The quadratic operator in (2.4) induces the

kinetic mixing in (2.2) . The trilinear operator can be mapped to additional contributions

to the coefficients of operators already present in the effective interaction Lagrangian (2.1)

by using the lowest order Higgs equation of motion. We neglect the dilaton self-interacting

terms of the form φ3
0 from the dilaton potential, which are expected to be proportional

to mφ0/f , and hence negligible in the mass regime we are interested in. Note that with

these assumptions the Higgs decay mode into a pair of dilatons is absent if the mixing

parameters are vanishing (see appendix A for the explicit formulas).

In table 1, we collect the exact values of the coefficients specifying the effective La-

grangian for the concrete models that we will consider in the following. The details of each

benchmark scenario are described in subsection 2.2. As mentioned, from the effective field

theory perspective the dilaton coupling to the SM fields are determined by the structure

of nonlinearly realized scale invariance. However, since the scale invariance is explicitly

broken by operators in the IR and UV, there are generically modifications to the dilaton

couplings induced in the low energy theory. The same explicit breakings are also respon-

sible to generate the non-zero mass for the dilaton field, therefore at leading order the

corrections to the dilaton couplings are proportional to ∼ m2
φ/f

2. Such corrections would

then be typically small for the dilaton masses we are interested in, i.e. m2
φ/f

2 � 1.

Within this parameterization and assumptions, we can proceed in rotating the system

to the mass eigenstates which will be used for the study of the considered benchmarks.

In particular, the kinetic and mass mixings of the dilaton and SM Higgs in (2.2) can be

removed by the following transformation into the mass eigenstates (φ, h),

(
φ0

h0

)
=

1

Z

(
cθ −sθ

Zsθ − bkcθ Zcθ + bksθ

)(
φ

h

)
, (2.5)
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where Z ≡
√

1− b2k , cθ ≡ cos θ , sθ ≡ sin θ , and the mixing angle θ is defined as,

tan 2θ = −
2
√

1− b2k
(
cmm

2
φ0

+ bkm
2
h0

)
(
1 + 2bkcm

)
m2
φ0
−
(
1− 2b2k

)
m2
h0

. (2.6)

The physical mass-eigenvalues for the states h and φ are,

m2
h/φ =

1

2(1− b2k)

[
m2
h0 +m2

φ0 + 2bkcmm
2
φ0 (2.7)

∓ sgn(mφ0 −mh0)
√(

m2
φ0
−m2

h0

)2
+ 4m2

φ0
(bk + cm)

(
cmm2

φ0
+ bkm2

h0

)]
.

In the following, we fix the SM-like Higgs physical mass mh = 125 GeV, while the dilaton

physical mass is taken in the range mφ ∈ [10–300] GeV. The above mass relations along

with eq. (2.6) can be solved to fix the Higgs and dilaton bare masses m2
h0

and m2
φ0

, re-

spectively. Note that the region of the parameter space which leads to the square of the

bare masses negative, i.e. m2
h0/φ0

< 0, would be referred to as an unphysical region, since

it would lead to unstable vacuum configuration.

In the following we will study the phenomenology of concrete models outlined in the

subsections below. The relevant signatures will involve direct LHC searches for the mass

eigenstate φ (mostly dilaton) and its decay products, as well as indirect constraints arising

from modification of the Higgs coupling induced by the mixing. We will present our

results in the mφ vs f plane to show the current and future coverage of the LHC on these

type of models. As we discussed in the Introduction, realizing a light dilaton (so with

mφ � f) could require some tuning and/or specific conditions on the dilaton potential.

So, in our phenomenological analysis we will display an indicative line mφ/f = 1% to

divide the parameter space in two regions. The region with a smaller ratio of mφ/f should

be considered fine-tuned from the theory perspective. On the other hand, the interesting

question that we aim to answer is how much of the complementary parameter space with

mφ/f > 1% can be covered by LHC at present and in the future searches.

2.1 Dilaton portal to a dark sector

In this subsection, we extend the scenario discussed above by considering the possibility

that the dilaton provides the portal to the dark sector which may include a DM candidate.

We assume that only one state in the dark sector is light and should be included in the

effective theory, whereas the other dark sector states are heavy and do not play any signif-

icant role in the dilaton phenomenology. One of the simplest possibility is that the dark

sector employs an Abelian gauge symmetry U(1)X and the corresponding gauge boson Xµ,

which we refer to as the dark photon, is the only light degree of freedom of the dark sector.

The coupling of the dilaton with the dark gauge bosons are dictated by nonlinearly realized

scale invariance, and the dilaton would act as a portal from the SM to the dark sector.

Note that the dark photon can be stable due to the dark U(1)X charge conjugation

symmetry C under which it transforms as, Xµ
C→ −Xµ (see e.g. [44]), and hence could

provide a viable dark matter candidate [6]. As mentioned above, we are interested in
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possible collider signatures of such scenario and hence we focus on the regime where the

dark photon mass mX . mφ/2, such that the dilaton can decay to dark photons. This can

be probed at the LHC via the mono-jet searches, which we discuss in the next section.

We describe the dynamics of the dark photon in the low energy theory by the following

simplified Lagrangian

Ldark = −1

4
XµνX

µν +
1

2
m2
XXµX

µ +
φ0

f

[
cxm

2
XXµX

µ +
αx

8π
bxXµνX

µν
]
, (2.8)

where the portal couplings (the last two terms) arise by inserting the spurion field χ in

order to nonlinearly realize scale invariance in the dark photon Lagrangian. In particular,

αx is the dark sector fine-structure constant, defined as αx ≡ g2
x/(4π), where gx is the

dark U(1)X gauge coupling, which we assume to be O(1). The coefficient bx captures the

running effects of the dark gauge coupling gx, which we assume to be large O(10), as it can

be for instance realized if the dark sector involves large number of states charged under the

dark U(1)X gauge symmetry. The constant cx measures possible explicit breaking effects

of the scale invariance.

In the following phenomenological study we fix the dark photon mass mX = 1 GeV,

however, our results are fairly independent of the dark photon mass as long as mX . 1 GeV

(see eq. (A.11)). In this perspective one can think that the dark photon mass is a free

parameter (given mX . 1 GeV) which, for instance, can be fixed by requiring that it

reproduces the correct DM relic abundance. We leave a detailed study about possible

mechanisms that could lead to the correct relic abundance of this dark matter candidate

for future studies. Here we focus on the collider signatures of a possible dark sector decay

of the dilaton, with the purpose of providing results which could be interpreted in dilaton

portal DM models.

2.2 BSM benchmark models

For concreteness in the following we consider three different classes of BSM models with a

light dilaton of which we study the phenomenology at the LHC.

2.2.1 Minimal dilaton model

In the first scenario we make the simplifying assumption that there is no kinetic mixing,

i.e. bk = 0. We allow however for a dilaton-Higgs mass mixing which is parameterized by

the coefficient cm in eq. (2.2). In particular we study two cases, cm = 0 (no mixing) and

cm = 0.1. We label this scenario the minimal dilaton model, since it represents the simplest

scenario for the dilaton-Higgs mixing. Indeed, the mixing structure in the scalar sector is

analogous to the singlet scalar extensions of the SM. However, the dilaton possesses direct

couplings with the SM fields encoded in the dimension-five operators suppressed by the

scale f as in eq. (2.1). In particular, it has couplings with the fermions and massive gauge

bosons proportional to their masses, and to the massless gauge bosons proportional to the

coefficients of the β-functions of the gauge couplings. The minimal dilaton model can be

realized as a low energy theory of a strongly coupled nearly scale invariant UV complete

theory, see e.g. [2, 33, 35].
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The mass mixing between the dilaton and Higgs are removed by the rotation ma-

trix which is orthogonal and unitary. The rotation matrix (2.5) with bk = 0 takes the

usual form,

(
φ0

h0

)
=

(
cos θ − sin θ

sin θ cos θ

)(
φ

h

)
, (2.9)

where θ is the mixing angle given as,

tan 2θ =
cm

(
m2
h +m2

φ + sgn(mφ −mh)
√(

m2
φ −m2

h

)2 − 4c2
mm

2
hm

2
φ

)

(
m2
h +m2

φ

)
c2
m − sgn(mφ −mh)

√(
m2
φ −m2

h

)2 − 4c2
mm

2
hm

2
φ

,

≈





2cm

(
m2
φ

m2
h

)
for m2

φ � m2
h

−2cm

(
1 +

m2
h

m2
φ

)
for m2

φ � m2
h

. (2.10)

All the other parameters of the effective interaction Lagrangian (2.1) are collected in table 1.

The remaining model dependent parameters are the β-function coefficients for the gauge

couplings for which we assume that the UV contribution is negligible and the IR contribu-

tion is the one of the SM. Hence the explicit values of bi-coefficients are b3 = 7, b2 = 19/6

and b1 = −41/6. Such a choice of bi-coefficients can be realized, for instance, in strongly

coupled nearly scale invariant composite Higgs models where all the SM fields are com-

posite. Moreover, in this scenario when we include the possibility that the dilaton act as

a portal to the dark sector we will consider the coupling via the mass term but not the

coupling through the RG running, that is cx = 1 and bx = 0 in eq. (2.8).

Finally, the trilinear interactions of the dilaton-Higgs fields in the minimal dilaton

scenario has two sources, the dimension five interactions eqs. (2.1) and the trilinear of the

Higgs (2.3).

2.2.2 Holographic dilaton model

The second scenario we consider is a light dilaton in a holographic model realized in a 5D

warped extra dimensional RS-like scenario [20]. The RS-like scenario involves one extra

dimensions with an S1/Z2 orbifold and two D3-branes located at the fixed point of the

orbifold action, respectively the IR and the UV branes. The five dimensional metric can

be parameterized as:

ds2 = e−2k|y|ηµνdx
µdxν − dy2, (2.11)

where k is the curvature of the 5D geometry, 0 ≤ y ≤ πR is the extra dimensional co-

ordinate, and R is the size (radius) of the fifth dimension. In order to solve the gauge

hierarchy problem, one typically requires kR ∼ O(10) in such RS-like models. The fluctu-

ation corresponding to the inter-brane distance is referred to as the radion, and plays the

role of the dilaton in the holographic 4D effective theory [45]. The interbrane distance is

stabilized through the Goldberger-Wise mechanism which also provides the dilaton/radion
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a mass [21, 46, 47]. The resulting effective action that we consider has been derived in

refs. [48–51].

In the literature, there are many variants of the RS model and the dilaton/radion

dynamics depends on the model details. We assume that a mechanism like CPR [10, 11,

14, 15] is at work such that a light dilaton can be realized. We also follow the partial

composite paradigm such that the Higgs doublet H and the right-handed top quark tR are

composite states, i.e. localized on the IR brane, while the remaining SM fields (including

especially the gauge bosons) are mostly elementary, i.e. localized towards the UV brane

or in the bulk [17, 28, 41, 51, 52]. Finally we further assume a bulk custodial symmetry,

such that the new physics resonances (KK-modes) can be at moderately low scale without

conflicting with the EWPTs, in particular the T-parameter [53].

As already introduced, we also allow in this scenario for a non-minimal dilaton-Higgs

mixing resulting from the Higgs coupling with the brane induced Ricci scalar R̂ at the

IR brane, parametrized as ξ|H|2R̂ in (2.4). In particular, this term includes a kinetic

mixing between the Higgs boson and the dilaton, such that bk = 6ξv/f . We collect all the

parameters of the effective Lagrangian (2.2) and the dilaton interactions (2.1) within this

holographic model in table 1, where a notable non-standard parameters are the gauge boson

couplings due to their presence in the bulk [17, 28, 41]. The parameter cv = 1− 3πkRm2
V

f2(k/MPl)2

(where V = W,Z) deviates from 1 proportional to m2
V /f

2 and the bulk volume factor

πkR. We neglect however other possible explicit breaking corrections proportional to

m2
φ/f

2 which could be of the same order. Furthermore, due to the EWSB on the IR-brane,

there are corrections to the flat bulk profiles for the massive gauge bosons which induce

corrections to their couplings with the dilaton as well.

The complementary new physics signatures in extra-dimensional models are the

searches of the lightest KK states, whose masses are expected to be close to f . In our

analysis, we would like to focus on a regime for f for which these states are beyond the

reach of the LHC, such that the light dilaton is in fact the only expected sign of new

physics. In the RS model we can easily map the scale of the KK modes with the scale f .

First, the dilaton VEV is related to the geometry of the extra dimension as

f =
√

6MPl e
−πkR . (2.12)

Here MPl is the 4D Planck mass, which is related to the 5D fundamental parameters

(M5, k, R) as,

M2
Pl =

M3
5

k

[
1− e−2πkR

]
. (2.13)

It is convenient to define the KK scale MKK which represents the general mass scale of KK

states associated with the bulk fields as,

MKK ≡ 2 k e−πkR, such that f =

√
3

2

MPl

k
MKK. (2.14)

As already mentioned, we take kR ∼ 10 having in mind RS realization which can solve

the electroweak hierarchy problem. Moreover, we take MKK = 4 TeV which makes the KK
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resonances approximately out of the LHC reach.3 The value of the curvature scale k in the

RS model is a free parameter of order MPl. However, its maximum value is assumed to be

k/MPl ' 3. Indeed, above k/MPl ' 3 higher curvature/loop corrections to the 5D action

become relevant [54] and therefore, from the theory perspective, that region of parameter

space is not robust. Hence, for a fixed value of MKK = 4 TeV and requiring k/MPl ≤ 3

we get from eq. (2.14) a lower bound on f , i.e. f & 1.6 TeV, that marks the theoretically

motivated region of our parameter space. We will explicitly display such limit on our final

plots where we show the LHC constraints.

As mentioned in section 2, the couplings of the dilaton to the massless gauge bosons,

which are induced by the running of the gauge couplings, are generically model dependent,

and receive UV and IR contributions. The IR contributions bIRi are due to all the low energy

states, composite as well as elementary, i.e. the full SM degrees of freedom. Instead, all the

elementary fields (localized on the UV brane or in the bulk) as well the CFT operators,

which are essentially unknown, contribute to the bUV
i = bUV

elem + bUV
cft. In the following we

assume the UV contributions from the CFT/strong dynamics are vanishing, i.e. bUV
cft = 0.

Hence, the bUV
i include only contributions due to the SM elementary fields. Note that all

the SM fields except the Higgs doublet H and right-handed top quark tR are localized on

the UV brane or in the bulk. Thus in this case the total β-function coefficients bi = bIRi −bUV
i

are only induced by the composite states, i.e. fields localized on the IR brane:

b3 = −1

3
, b2 = −1

6
, b1 = −19

18
. (2.15)

We will see that the LHC phenomenology of the light dilaton is strongly dependent on

the choice of these values of b-coefficients since they determine the gluon fusion production

cross section.4

Finally, also for this benchmark we consider the possibility of coupling the dilaton to

a dark sector. In order to realize the dark photon scenario as in section 2.1, we employ a

dark U(1)X bulk gauge symmetry such that the zero-mode is Xµ with mass mX , while the

higher KK modes are at scale of order MKK and decoupled. Furthermore, for simplicity

we assume that the dark vector couples to the dilaton mainly through the mass term,

whereas its coupling due to the running of dark U(1)X gauge coupling are negligible. More

precisely we take cx = 1, bx = 0, and mX is treated as a free parameter, but we restrict to

values mX . mφ/2.

2.2.3 Gauge-philic dilaton model

The last benchmark that we consider covers a class of models where the dilaton couples

only to the field strength tensors of the gauge bosons via the running of gauge couplings,

and not to any mass term (including Higgs as well as massive gauge bosons and fermions).

We also assume that there is no dilaton-Higgs mixing, i.e. bk = cm = 0. The interaction

3Note that physical KK resonances are heavier than the KK scale MKK ≡ 2ke−πkR. For instance, the

mass of first KK gluon is mg
1 ' 1.2MKK and the mass of the first KK graviton state is mG

1 ' 1.8MKK.
4Note that the contributions from bulk gauge kinetic terms proportional to the volume factor 1/kR are

not included in the β-function coefficients.
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Lagrangian takes hence the following simple form

Lint
eff =

φ

f

[
αem

8π

(
bγFµνF

µν + 2bwW
+
µνW

−µν + bzZµνZ
µν + 2bγzFµνZ

µν
)

+
αs
8π
bgG

a
µνG

aµν

]
,

(2.16)

where the explicit form of b coefficients are collected in table 1. As already explained, the

b parameters are the coefficients of the β-functions of the SM gauge groups. We consider

that there is no contribution from the UV physics to the gauge β-functions, such that

bUV
i = 0 and bi = bIRi , where bIRi only contains the contributions from the SM. Hence the

value of coefficients of the beta functions are b3 = 7, b2 = 19/6 and b1 = −41/6.

Note that in this extreme case the mass parameters of the SM are sources of explicit

breaking of the scale invariance which do not respect the nonlinearly realized symmetry.

This scenario is considered mainly for phenomenological interest to explore the reach of the

LHC in this extreme regime where the dilaton does not couple to any source of mass terms.5

Also for this benchmark, we consider in addition the possibility that the dilaton is a

portal to a dark sector. In this case, the dilaton also couples to a dark vector due to the

running of dark U(1)X gauge coupling and we assume consistently that its coupling with

the mass term is zero, i.e. we consider the Lagrangian (2.8) with cx = 0 and a representative

value for b̃x ≡ αx
8π bX .

3 Phenomenology of a light dilaton at the LHC

In this section, we study in details the phenomenology of a light dilaton at the LHC in a

mass range [10–300] GeV, for the three models described in the previous section with and

without the presence of the dark sector portal.

In table 1, we collect all the relevant couplings introduced in the effective La-

grangian (2.1) and (2.2) for the three benchmark models. For convenience we define the

following quantities in relation with the mixing matrix (2.5),

gh ≡ cθ + bk
sθ
Z
, gφ ≡ sθ − bk

cθ
Z
, g̃h ≡ −

v

f

sθ
Z
, g̃φ ≡

v

f

cθ
Z
, (3.1)

In this notation, gh and gφ are the components of the interaction-basis SM Higgs field h0

into the physical SM Higgs h and the dilaton φ mass eigenbasis. Conversely, the g̃h and

g̃φ are the components of the dilaton in the interaction base (in eq. (2.1)) to the physical

SM Higgs h and the dilaton φ, respectively, multiplied by an extra v/f suppression factor.

With this notation the Feynman rules of the model result in very compact expressions

which are presented in table 3 in appendix A.

Dilaton production cross-sections: the cross-sections for the dilaton can be directly

obtained by employing existing information about the Higgs production cross section at

5In principle, one can imagine a possibility where the UV theory is close to a conformal point such that

all the interactions proportional to mass terms vanish [48].
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couplings Minimal Dilaton Holographic Dilaton Gauge-philic Dilaton

bk 0 6ξ vf 0

cm cm 0 0

cw 1 1− 3πkRm2
W

f2(k/MPl)2
0

cz 1 1− 3πkRm2
Z

f2(k/MPl)2
0

bw 0 2
αemkR

b2/ sin2 θw

bz 0 2
αemkR

(b2/ tan2 θw + b1 tan2 θw)

bγ (b2 + b1) (b2 + b1) + 2
αemkR

(b2 + b1)

bγz (b2/ tan θw − b1 tan θw) (b2/ tan θw − b1 tan θw) (b2/ tan θw − b1 tan θw)

bg b3 b3 + 2
αskR

b3

ciψ 1 1 0

ch 1 (1− 3ξ) 0

bh 1 (1− 6ξ) 0

cx 1 1 0

bx 0 0 bx

Table 1. The model dependent couplings b’s and c’s of the minimal dilaton, holographic dila-

ton, and gauge-philic dilaton models. Here ξ is the Higgs-curvature mixing parameter and kR is

the volume factor in the holographic model. Whereas, αem and αs are the electromagnetic and

strong coupling constants, respectively, and θw is the Weinberg angle. Above b3, b2, b1 are the

SU(3)c, SU(2)L,U(1)Y gauge coupling β-function coefficients, respectively.

different Higgs masses. Given an initial state i and a final state j, the resonant dilaton

production cross section is given by

σiφ→j ≡ σ(i→ φ) · BR(φ→ j) = σSM(i→ h)
∣∣
mh=mφ

· C2
φi · BR(φ→ j). (3.2)

Above σSM(i→ h) is the production cross-section of the SM Higgs evaluated at the dilaton

mass, BR(φ→ j) is the dilaton branching ratio to j final state, and the effective coupling

Cφi is defined as

C2
φi ≡

σ(i→ φ)

σSM(i→ h)|mh=mφ

. (3.3)

The SM-like Higgs gluon fusion production cross section at different masses can be com-

puted with the public code SusHi [55, 56] (which takes into account NNNLO QCD and

approximate NNLO EW corrections) where we used PDF4LHC15 nnlo mc parton distribu-

tion functions, and the renormalization and factorization scales at µ ' mφ/2. In figure 1

we plot the cross section of the dilaton φ via gluon fusion at the LHC with 13 TeV center of

mass energy normalized w.r.t. C2
φgg. The cross sections for vector boson fusion (VBF) and

single Higgs production (in association with a massive gauge boson) can be read from the

Higgs Cross-section Working Group [57]. We note that, as a consequence of the sizeable

coupling of the dilaton to gluons through the β-function coefficient, the main production
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Dilaton production at the LHC
√
s=13 TeV

Figure 1. Cross section of the dilaton φ via gluon fusion normalized w.r.t. C2φgg at the LHC with

13 TeV center of mass energy. The colored bands show uncertainties associated with the PDFs and

renormalization/factorization scale.

channel for the dilaton is gluon fusion, whereas the others are subleading in the whole pa-

rameter space considered in this work and we neglect them. Hence the relevant coefficient

to describe the dilaton production at the LHC is the effective dilaton coupling for gluon

fusion, which is,

C2
φgg =

∣∣∣∣
2bg g̃φ −

∑
i(gφ + ciψ g̃φ)F1/2(τi)∑
i F1/2(τi)

∣∣∣∣
2

≈
∣∣∣∣

2bg g̃φ
F1/2(τt)

− (gφ + ctψ g̃φ)

∣∣∣∣
2

. (3.4)

The summation i above runs over the quarks flavors in the loops and the form factor

F1/2(τ) is given in appendix A. The last approximation in eq. (3.4) takes into account the

fact that the dominant fermion loop contribution is from the top quark.

Global fit to the Higgs data: given that we have kinetic and mass mixing between

the Higgs and the dilaton, the Higgs couplings to the other SM fields get modified. This

implies stringent constraints on dilaton models since the SM-Higgs properties (production

and decay modes) have been precisely measured at the LHC run-2. In the following we

perform global χ2 fit to the Higgs signal strengths µij in the different channels

µij ≡
σ(i→ h) · BR(h→ j)

σSM(i→ h) · BRSM(h→ j)
= C2

hi

BR(h→ j)

BRSM(h→ j)
, (3.5)

which are defined as the production times the decay rates for each initial state i and final

state j, relative to those of the SM. The Higgs effective couplings to the i = gg, V V, etc.

states are encoded in the coefficients C2
hi. The global χ2 fit is performed with the code

Lilith-2 [58, 59] (see refs. [58, 59] for details on Lilith-2 and the experimental data

used). The fit to Higgs data will provide a further important indirect constraint in our

phenomenological analysis.

Details on implementation of collider bounds: in the following we present the cur-

rent LHC constraints on the different light dilaton scenarios, based on the LHC resonance
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Experiment Decay channels Mass range [GeV] Luminosity[fb−1] Reference

LEP C2φZZ 1–115 [2.46, 0.61] [60, 61]

ATLAS γγ 65–600 20.3 (8 TeV) [62]

γγ 65–110 80 [63]

hh 260–500 36.1 [64]

Zγ 250–2400 36.1 [65]

CMS jj 50–300 35.9 [66]

γγ 70–110 19.7 (8 TeV), 35.9 [67]

γγ 150–850 19.7 (8 TeV) [68]

hh 260–500 35.9 [69]

ZZ → llll 140–2500 12.9 [70]

WW 200–3000 35.9 [71]

Table 2. This table collects all the relevant analyses used in our phenomenological study of a

light dilaton with their respective mass range and luminosity, including LEP, ATLAS and CMS

results. The ATLAS and CMS results are mainly from the LHC run-2 with the center of mass

energy 13 TeV, whereas the ones from 8 TeV are indicated.

searches. The set of LHC (and LEP) searches that we consider is listed in table 2, where the

mass range and the luminosity of a given search is mentioned. Concerning the LEP con-

straints, we employ the search looking for Higgs-like state decaying into bb̄ final state [60]

and into hadrons [61], which provide bounds on the C2
φZZ coupling times the relevant

branching ratio. We will choose the strongest of the two constraints for every point of our

parameter space and we will show only one common line for the LEP bounds.

At the LHC there are several searches for a Higgs-like state decaying into different

channels, that we employ in our analysis.6 When available, we used the reported limits

corresponding to the gluon fusion production. For final states covered both by ATLAS

and CMS searches, in our plots we will display the resulting stronger limit. For the low

mass di-jet resonant search of CMS [66], where the original interpretation is based on a

model with quark-antiquark production, we used a conversion factor as derived in [72]

to convert to a limit for a gluon fusion process. In order to asses the mono-jet reach

of the analysis [73], we have implemented our model in FeynRules [74] and computed

the efficiency of emitting one hard extra jet with MadGraph5 [75, 76]. We consider all the

signal categories of [73] and we select the strongest in order to draw the sensitivity lines. We

argue that this simplified procedure is sufficient to identify the reach of the LHC monojet

in our phenomenological analysis. When relevant, we also add the bound obtained in the

phenomenological analysis of [72], based on the experimental public data from di-photon

cross section measurements. We label this bound as γγmrst. Finally, the high-luminosity

LHC (HL-LHC) sensitivity curves are derived by taking the current expected sensitivities

at 95% CL from the experimental papers and by rescaling them with the square root

of the luminosity (counting a total of 3000fb−1), that is by assuming that the dominant

uncertainty on the SM background is statistical.

6We neglect possible effects due to interference between the SM-Higgs and the dilaton production, that

could occur when mφ ' 125 GeV.
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Remarks on the different dilaton mass regions: in the following we study the LHC

phenomenology of the three different benchmark dilaton models explained in the previous

section, with or without the dark sector portal, focusing on the less explored dilaton mass

range [10–300] GeV. Within this mass window, in order to characterize the relevant LHC

signatures, it is instructive to separate three mass ranges:

R1 = [10 ∼ 60] GeV, R2 = [60 ∼ 160] GeV, R3 = [160 ∼ 300] GeV. (3.6)

The range R1 covers masses below mh/2. Here LHC has currently limited searches and

as a result the LEP bounds become very important. In this mass range more dedicated

experimental analysis could improve the LHC reach and hence could constitute a promising

near future discovery channel for a light dilaton. The mass range R2 is between mh/2 and

2mW , and it is relatively much better covered at the LHC. In particular in this range

di-photon searches typically put stringent limits on the interaction scale f . Finally, for

dilaton masses above 2mW , i.e. the region R3, the dilaton couples and can decay into

massive gauge bosons analogously as a would-be-heavy Higgs boson, and therefore these

decay channels provide very strong constraints on scales f up to O(5–10) TeV.

3.1 Minimal dilaton

In this scenario, we assume that the dilaton has no kinetic mixing with the Higgs boson.

However, we include a mass mixing of the form cmm
2
φ0
φ0h0 in the effective Lagrangian (2.2).

In this case the mixing matrix is given by (2.9), where the mixing angle is parameterized

in terms of cm and the dilaton mass. For concreteness, in the following we consider two

cases with cm = 0 (no mass mixing) and cm = 0.1. In the case cm = 0.1 the mixing

angle asymptotes to sin2 θ → 0 and sin2 θ → 1% in the limits m2
φ � m2

h and m2
φ � m2

h,

respectively, see also eq. (2.10), while the mixing angle increases as the dilaton and Higgs

masses become degenerate. Regarding the dilaton couplings to the massless gauge bosons,

we assume the values of the gauge β-function coefficients as those of the SM fields, i.e.

b3 = 7, b2 = 19/6, and b1 = −41/6.

Branching ratios: in figure 2, the upper and lower panels show the branching ratios of

the dilaton to the various final states for the mass mixing parameters cm = 0 and cm = 0.1,

respectively. The left- (right-) panels show the branching ratios of the dilaton to the various

final states in the absence (presence) of the dilaton-dark sector portal interaction. The grey

band shows unphysical region where the masses of the SM-like Higgs and dilaton can not

be reproduced from the model parameters with mixing cm = 0.1. In these plots we also

fixed the scale of conformal breaking f = 5 TeV, but the dependence of the branching

ratios on f is very mild. For the dilaton decay to massive vector bosons, we also include

the off-shell 3- and 4-body decays since they are relevant to derive the collider bounds (in

particular the ZZ → ```` off shell decay).

The upper-left panel of figure 2 corresponds to no dilaton-Higgs mixing scenario and

without the presence of dark portal couplings. In this case, the dominant branching fraction

of the dilaton is to gluons for mφ . 2mW , i.e. in the mass ranges R1 and R2 (see (3.6)).

However, for the dilaton mass above 2mW , i.e. the R3 region, the dominant branching

fractions are to the SM massive bosons when kinematically allowed. The branching fraction
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Figure 2. Branching fractions of the dilaton in the minimal dilaton scenario as a function of

dilaton mass mφ for different choices regarding the dark sector portal. The upper (lower) panel

corresponds to the value of mass mixing parameter cm = 0 (0.1). The gray band in the lower-panel

plots corresponds to the unphysical region where the correct Higgs and dilaton masses cannot be

reproduced for the given dilaton-Higgs mixing.

of all the light quark flavors are summed and represented with q̄q curve. Since the dilaton

couplings are proportional to the fermion masses, the largest contribution is into bottom

quarks. Similarly, we show the leptonic branching ratio ¯̀̀ by summing over all leptons,

where the largest contribution is into ττ . Note that the di-photon branching fractions are

considerably larger than a SM-like Higgs at the dilaton mass. This is mainly due to the

fact that the dilaton-photon coupling receives additional contributions from the running of

gauge coupling proportional to bγ .

The upper-right panel of figure 2 corresponds to no dilaton-Higgs mixing but with

the presence of a portal to the dark sector. As mentioned, here we consider vector DM

mass mX = 1 GeV and the other dark sector parameters are set to cx = 1 and bx = 0.

In this case, the dominant decay mode for dilaton masses in the region R1 and R2, i.e.

mφ . 2mW , is into dark photon. For high mass region mφ > 2mW , instead, the invisible

branching fraction gets comparable to the one into massive bosons W±, Z, h. Note that

in the low mass regions (R1 and R2) the dilaton branching fraction into gluons is O(10)%

and it drops to O(5)% in the high mass region R3.
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In the lower panels of figure 2 we show the branching ratios in the case of dilaton-Higgs

mixing set by cm = 0.1 and without (left) or with (right) the presence of a portal to the

dark sector. The dominant branching ratios in the low and high mass regions are similar

to the case without the mixing. In particular, in the case with dark sector coupling, the

branching fraction to the dark photons is dominant in the low mass region, while in the

high mass region the SM massive gauge bosons branching ratios are the largest.

Note that in the region where |mφ−mh| . 25 GeV the mixing angle becomes large and

there are non-trivial cancellations in the effective couplings (precisely between the Higgs

mixing contribution gφ with the pure dilaton contribution g̃φ), leading to sudden drops

of some of the decay modes. In particular, we note that the branching ratio into gluons

(very relevant for LHC phenomenology) has a sharp dip at around mφ ∼ 141 GeV.7 We

can analytically understand the accidental cancelation in the gluon channel by inspecting

the effective dilaton-gluons coupling Cφgg (3.4). In this scenario, we have bg = b3 = 7 and

the top quark loop function can be approximated as F1/2(τt) ' −4/3. Hence the effective

dilaton-gluons coupling is

C2
φgg '

∣∣∣∣gφ +
23

2
g̃φ

∣∣∣∣
2

=

∣∣∣∣ sin θ +
23

2

v

f
cos θ

∣∣∣∣
2

. (3.7)

In figure 2 we fix f = 5 TeV, therefore, Cφgg vanishes around mφ ∼ 141 GeV where the

mixing angle sin θ is negative for cm = 0.1, see eq. (2.10). Note that in such region the

dilaton-Higgs mixing angle becomes quite large, and hence this region will be severely

constrained by Higgs coupling measurements.

Collider constraints: we present now the collider reach on the parameter space of the

minimal dilaton model. Analogously to what we did for the branching ratio plots, we fix

the couplings as in table 1 and we consider the cases with cm = 0 and cm = 0.1, with and

without the dark sector portal.

The remaining free parameters are the scale of conformal breaking f (which determines

the strength of the dilaton interactions with the SM fields) and the dilaton mass. We thus

present our collider analysis in the dilaton mass mφ vs f plane as it can be seen in figure 3.

The shaded colored areas are excluded because of LEP, Higgs coupling fit, ATLAS or CMS

searches with current available public data, as it is explained in the legend of the plots.

We begin our discussion with the case of vanishing mixing and no dark sector portal,

corresponding to the left upper plot in figure 3. It is convenient to discuss these limits

in the three dilaton mass regions R1,2,3 defined in (3.6). We can see that the mass range

R1 ∈ [10 ∼ 60] GeV is less constrained and the most stringent direct search bound comes

from the LEP experiments. This is the region where the LHC could, with dedicated

analysis, potentially improve the searches either in the di-photon or in di-jet final states.

In the dilaton mass range R2 ∈ [60 ∼ 160] GeV, the LHC direct searches in the di-

photon and di-jet channels8 are dominant and set a bound around f & 3 TeV. Note that

7Similarly, for instance the dilaton to di-Higgs branching ratio has a sharp dip at around mφ ∼ 295 GeV

for f = 5 TeV.
8We checked that the µµ and ττ channels do not provide any additional LHC constraints.
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Figure 3. The upper (lower) plots show the exclusion bound on the minimal dilaton parameter

space in the mφ vs f plane with the mass mixing parameter cm = 0 (0.1). The color coded legends

correspond to different exclusions bounds from the LHC and LEP experiments, see text. The

left-panel and right-panel shows the constraints without and with the portal to the dark sector,

respectively. The gray band in the lower-panel plots corresponds to the unphysical region.

the di-photon line includes both 8 and 13 TeV searches. In particular, the region where

mφ ∼ 125 GeV is covered only by an 8 TeV analysis (ATLAS) and this explains the small

dip in sensitivity in that mass region. Finally, in the mass region R3 ∈ [160 ∼ 300] GeV the

strongest limits are from the di-boson (WW,ZZ, hh) searches, constraining f ∼ 10 TeV.

The dash-dotted curve corresponds to the reach of HL-LHC direct searches with 3000 fb−1

luminosity at 95% CL, where we consider the envelope enclosing all the channels. It shows

that the scale f can be probed about three times stronger. We note that at present there

is a sizeable portion of the parameter space where mφ/f > 1% which is still allowed by

experiments. This will be however almost completely covered by HL-LHC.

In the upper-right panel of figure 3 we then consider the case of no dilaton-Higgs mixing

but in the presence of the dark sector portal. The dilaton portal to the dark sector has two

important phenomenological consequences: (a) it reduces the branching fractions of the
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dilaton to the visible sector which leads to the weakening of the bounds derived from SM

decay products, and (b) it makes the mono-jet searches at the LHC relevant for the dilaton

phenomenology. As we have observed, in the mass regions R1,2 the dominant branching

ratio is into the dark photons. This implies that the most stringent bounds in these mass

regions are now consequence of the mono-jet signature, leading again to a lower bound on

the scale f of around 3 TeV. In the mass region R3 the SM di-bosons bounds are still the

strongest when kinematically allowed and set f & 8 TeV. Note however that the presence

of the dark sector portal weakens slightly the constraints from visible channels. Also in

this scenario, the region where mφ/f > 1% will be completely probed at HL-LHC.

In the lowest plots of figure 3 we then display the constraint in the case of dilaton-

Higgs mass mixing. The relative relevance of the various direct searches in the dilaton

mass regions are analogous to the unmixed case. The mass mixing implies however that

the region where |mφ −mh| . 25 GeV is severely constrained by the Higgs data (or it is

unphysical) because of the large dilaton-Higgs effective mixing (see eq. (2.9)). Note that the

constraints deriving from Higgs measurements are not symmetric around the unphysical

band. This is due to the fact on our benchmark (with fixed cm) the mixing angle scales

differently for mφ larger or smaller than mh, as discussed in equation (2.10).

Once again, the HL-LHC reach can cover essentially all the portion of parameter space

with mφ/f > 1%. As a last remark, we note that for cm > 0.1 the direct and indirect

constraints get stronger and when cm & 0.3 they cover all the interesting parameter space

already with current LHC data.

3.2 Holographic dilaton

In the holographic dilaton scenario we have four free parameter mφ, f, ξ andMKK[f, k/MPl].

The natural value of the non-minimal dilaton-Higgs mixing parameter ξ is O(1), see

e.g. [48]. In this work we choose two cases: ξ = 0 (no kinetic mixing) and ξ = 1/6

(conformal point). The first one will serve as a reference point to compare with the other

scenarios without dilaton-Higgs mixing. As explained in section 2.2.2 the KK mass scale

MKK is a function of f and k/MPl. In our phenomenological analysis we choose the pa-

rameter k/MPl such that the scale of MKK is set to 4 TeV, making the KK resonances

beyond the LHC reach. We discuss our results as a function of the remaining two free pa-

rameters mφ ∈ [10–300] GeV and f . As mentioned, the parameter k/MPl can not be taken

arbitrarily large for consistency of the 5D action and this sets indirectly (since we fixed

MKK = 4 TeV) a lower bound on f & 1.6 TeV that we will display in our summary plots.

Branching ratios: in figure 4, we show the branching fractions of the dilaton in the

holographic dilaton case without (left-panel) and with (right-panel) the presence of the dark

sector. We remind that the dark sector is constituted by a dark photon which couples to the

dilaton through a term proportional to the mass (set by cx) and with a term proportional

to the β-function coefficient of the dark photon (set by bx). In the holographic dilaton

model we take cx = 1 and bx = 0 and we assume the dark vector mass to be mX = 1 GeV

for concreteness.
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Figure 4. Branching fractions of the dilaton in the holographic dilaton scenario as a function of

the dilaton mass mφ. The upper (lower) panels are for ξ = 0(1/6) without (left-panel) and with

(right-panel) the presence of dark vector dark portal, respectively. The gray vertical band in the

lower-panel plots corresponds to the unphysical region for the given parameters.

The left upper panels of figure 4 corresponds to no dilaton-Higgs kinetic or mass mixing

scenario, and without the presence of dark portal coupling. This case is very similar to

the minimal dilaton model studied in the previous section. The main difference is in the

gluon gluon decay mode which is reduced due to reduction in the value of the β-function

coefficients. A consequence of this is actually a slight increase in the di-photon branching

ratio, which is visible by comparing figure 4 and figure 2. The other mild difference is in a

small reduction of the coupling with the massive gauge bosons (see table 1).

The upper-right panel of figure 4 corresponds to the case of no dilaton-Higgs mixing

but in the presence of the dark sector portal. In this case, as in the minimal dilaton

scenario, the dominant branching fraction is to dark photons in the mass range R1, R2 and

it gets comparable to massive SM gauge bosons in the mass range R3.

In the lower-panels of figure 4, we instead consider non-minimal kinetic mixing between

the Higgs and dilaton at the conformal point, i.e. ξ = 1/6 or bk = v/f . At the conformal

point the dilaton does not couple to massive fields in the trace of energy-momentum tensor.

Nevertheless, as it can be seen in the plots, the dilaton has considerable branching fractions

to the massive fields. The reason for such couplings are twofold: (i) such couplings are
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induced due to the dilaton-Higgs mixing proportional to sin θ and they are stronger for

dilaton mass closer the Higgs mass 125 GeV, and (ii) the dilaton has non-zero coupling to

massive gauge bosons due to the fact that the gauge fields reside in the bulk. Note that

in the dilaton mass regions R1 and R2, in the absence of dark portal (lower-left panel) the

dominant branching fraction is to bottom quarks, while in the presence of the dark portal

(lower-right panel) the dominant fraction is to the dark vector Xµ. Furthermore, there is a

sharp dip in the gg channel for mφ ≈ 155 GeV, which is due to accidental cancelation of the

top loop contributions proportional to F1/2(τt), the anomalous gauge contribution b3, and

the bulk gauge contribution proportional to 1/(kR). At the same time, for higher dilaton

masses mφ & 2mW the branching fractions to dark sector are comparable to the massive

gauge bosons in the left and right-panels, respectively. The grey band around dilaton mass

∼ 125 GeV represents the unphysical region where the correct Higgs and dilaton masses

can not be obtained from the model parameters.

Collider constraints: in figure 5 we present the current and future collider reach on

the parameter space mφ vs f in the holographic dilaton case, without (left-panels) and

with (right-panels) dark sector portal. The upper-panels of figure 5 show the case for no

dilaton-Higgs mixing, i.e. bk = 0 (ξ = 0), while the lower-panels of figure 5 present the case

with a dilaton-Higgs kinetic mixing at the conformal point, i.e. bk = v/f (ξ = 1/6).

The shaded areas are excluded by direct LHC searches, LEP constraints, or Higgs

coupling fit, as explained in the legend. We also draw an horizontal dashed grey line

marking the validity region for the effective theory, that is where k/MPl ' 3. Values of f

smaller than that line should be considered not theoretically valid with a fixed KK scale

at 4 TeV. Alternatively, one can argue that in such region of parameter space, in order for

the effective theory to be valid, the KK scale should be lower, and hence complementary

direct LHC searches for KK gluons and/or KK gravitons should become relevant.

As mentioned, the case with vanishing kinetic and mass mixings bk = 0 and cm = 0 is

very similar to the minimal model with no mixings, however with one important difference

of the reduction in the gluon couplings in the holographic case. Phenomenologically this

difference is very important as the production cross-section of the dilaton at the LHC is due

to gluon fusion. The effective dilaton-gluon couplings defined in (3.4) are different in the

two cases due to different b3 coefficient. Note that in the holographic case the b3 = −1/3

coefficient contribution is only from the right-handed top quark tR which is fully composite.

The cross section of the dilaton via gluon fusion is hence reduced from the minimal dilaton

case (b3 = 7) to the holographic dilaton (b3 = −1/3) by the following quantity,

C2,HD
φgg

C2,MD
φgg

'
∣∣(gφ + g̃φ)F1/2(τt)− 2(−1

3 + 2
αskR

)g̃φ
∣∣2

∣∣(gφ + g̃φ)F1/2(τt)− 14 g̃φ
∣∣2 , (3.8)

where once again we included only the contribution from the top loop. For instance, in

the absence of dilaton-Higgs mixing, i.e. bk = 0, and by setting kR ≈ 10, the above ratio

is ∼ 1/10. Hence, the constraints on f reduces of about a factor of ∼ 3 in the holographic

model as compared to minimal dilaton (for the same cross section). The weakening of the
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Figure 5. Exclusion bound on the holographic dilaton parameter space in the mφ vs f plane. The

gray region in the lower-panel plots corresponds to the unphysical region.

constraints on the scale f are indeed manifestly visible in figure 5. In the case of no dilaton-

Higgs mixing and no dilaton-dark sector interaction, we obtain the bound f & 2 TeV. The

presence of the dark portal weakens even further the constraints on f , as it is visible in the

up right plot of figure 5. This is particularly significant in the low mass region. The reason

is that in the high mass region, the introduction of the dark sector portal only slightly

reduces the branching ratios into massive gauge bosons. Instead, in the low mass region,

the presence of the large invisible decay significantly suppress the di-photon branching

ratio and this reduce considerably the di-photon bound. At the same time, the limits from

mono-jet are not strong enough to significantly constrain the parameter space. In this

scenario there are significant portions of parameter space beyond the line k/MPl ∼ 3 which

are still experimentally allowed. As mentioned, in such regions direct resonant searches of

the KK-modes are naturally complementary strategies to probe the BSM theory.

The lower-left (-right) panel of figure 5 corresponds to conformal mixing ξ = 1/6

between the Higgs and dilaton without (with) the dilaton-dark sector interactions. As

discussed above, the branching fractions of the dilaton to the massive SM fields are reduced
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at the conformal point, which leads to reduced limits on the scale f in the lower-panel of

figure 5. Furthermore, at the conformal point ξ = 1/6 the effective couplings of the dilaton

with gluons parameterized in eq. (3.4) has an accidental suppression at mφ ≈ 155 GeV for

the b3 = −1/3 (2.15). This leads to sharp drop of the dilaton production cross section at the

LHC for mφ ≈ 155 GeV, weakening the LHC bounds. However, this mass region is partly

unphysical, the grey region, and partly it is strongly constrained by the Higgs coupling fit,

simply because the dilaton-Higgs mixing becomes large for masses of the dilaton closer to

the Higgs mass.

In the lower-right plot of figure 5, we see that the presence of the dilaton-dark sector

portal weakens the constraints on the interaction scale f derived from the dilaton decay into

SM states. At the same time, the model is now probed by mono-jet searches, potentially

relevant in the low mass dilaton region R1. However, we observe that this case is dominantly

constrained by the global χ2 fit to the Higgs data, which can bound the scale f to be

∼ 4 TeV for dilaton mass mφ . 2mW , and it is essentially independent of the dilaton-dark

sector portal interaction. We conclude that for the holographic dilaton the interesting

region for the dilaton mass (i.e. mφ/f > 1%) will be only partially covered also considering

HL-LHC, as a consequence of the reduced gluon fusion production cross section.

3.3 Gauge-philic dilaton

The gauge-philic dilaton case is the simplest in its disguise and involves a minimal set of

free parameters including mφ, f , and the gauge-philic gauge couplings bi’s. We assume

the values of the bi-coefficients are the same as in the SM, i.e. b3 = 7, b2 = 19/6, and

b1 = −41/6. Regarding the dark sector portal parameter, we take the dark vector mass

mX = 1 GeV and consider a non-zero bx (the β-function coefficient of the dark U(1)X
gauge coupling), while setting to zero the coupling proportional to the dark vector mass,

i.e. cx = 0. We remain agnostic about the exact field contents in the dark sector, therefore

we do not have exact value of bx. Furthermore, the dark gauge coupling αx ≡ g2
x/4π is

also an unknown parameter. On the other hand, what matters for the phenomenology of

the dilaton is the combination b̃x defined as,

b̃x ≡
αx

8π
bx. (3.9)

Hence, as a benchmark scenario we consider the value b̃x = 0.01 which could correspond

to a dark coupling of order 1 with a beta coefficient of order a few.

Branching ratios: in figure 6, we show the branching fractions of the dilaton to the

gauge bosons, without (left-panel) and with (right-panel) the dark portal interaction. The

gluon channel is the most dominant, whereas the di-photon branching fraction is about

10−4 times smaller than the gluon fraction. This can understood as the difference of the

strength of the coupling constants and b-coefficients of the two gauge fields, i.e.

Γφγγ

Γφgg
=

1

8

∣∣∣∣
αembem
αsb3

∣∣∣∣
2

≈ 10−4. (3.10)
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Figure 6. Branching fractions of the dilaton in the gauge-philic dilaton scenario as a function of

dilaton mass mφ for different choices regarding the vector DM.

For the mass of dilaton above 2mW , the WW and ZZ channels become active and their

branching fractions are of the order ∼ 10−3. The right-plot of figure 6 shows the case when

b̃x = 0.01, the branching fraction to vector DM is about 1%. In the limit mφ � mX (and

cx = 0), the dilaton partial width to dark vectors is (A.9),

ΓφXX =
m3
h,φ

4πf2
b̃2x . (3.11)

Therefore, it is straightforward to generalized the result of figure 6 for different b̃x values.

Note the branching fraction is independent of the interaction scale f .

Collider constraints: in the left and right panel of figure 7, we present the allowed

parameter space of the gauge-philic dilaton scenario. The shaded regions are excluded by

different searches coded in color. Note that for the left-plot (no dark portal), the dominant

constraint are from the di-photon and di-jet resonant searches. However, these constraint

start from 50 GeV and the lower mass region is pretty much unconstrained. For the dilaton

mass mφ & 50 GeV the di-photon and di-jet searches constraint f ∼ 1 TeV with the run-2

data. However with the HL-LHC these constraint can improve by a factor ∼ 4 (dashed-

dotted curve). In the low mass range we overlaid the constraint due to di-photon cross

section measurement, γγMRST, as derived in ref. [72]. However, overall the parameter space

is less constrained in the low mass region mφ ≤ 50 GeV.

We then consider the case when dark portal interaction is present (right panel in

figure 7). In the low mass region (mφ ≤ 50 GeV) there is some additional coverage due

to the mono-jet searches. For heavier dilaton, i.e. mφ & 50 GeV, the di-photon and di-jet

still dominate and the limits are similar to the scenario without the dark portal (left-plot).

Note that for larger values of b̃x the mono-jet constraint becomes very significant as the

branching ratio scales as b̃2x. However, values of the b̃x coefficient larger than 1% require

large dark U(1)X beta function coefficient bx and/or strong coupling regime, i.e. gx & 1.

Finally, the dashed horizontal line in figure 7 indicates the region where f < v and

hence where our effective theory description is not valid anymore. We nevertheless show
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Figure 7. Exclusion bound on the gauge-philic dilaton parameter space in the mφ − f plane.

the collider reach in such region for illustrative purpose in order to highlight the significant

opportunity for improvements in experimental coverage of such scenario. We conclude by

observing that in this simplified gauge-philic scenario there is a large portion of parameter

space with dilaton mass mφ/f > 1% which is still viable and that could be (at least

partially) covered at HL-LHC.

4 Conclusions

In this paper we studied the collider phenomenology of a light dilaton, focusing on the

dilaton mass range [10–300] GeV. The effective theory includes the SM plus a light scalar

(the dilaton) coupled through higher dimensional operators to the SM, suppressed by the

scale f of spontaneous breaking of the scale invariance. We also included possible sources

of mixing (kinetic or mass) between the dilaton and the SM-Higgs. In addition, we consider

the case in which the dilaton acts as a portal to a dark sector which respects the non-linearly

realized scale symmetry. The lightest state in the dark sector is a dark gauge boson of a

U(1)X gauge symmetry, with mass much smaller than the dilaton mass. This allows the

dilaton to decay invisibly and leads to missing energy signatures at the LHC.

We considered three benchmark scenarios with different values for the effective cou-

plings, that can be mapped to possible UV completions. First, we consider a minimal

dilaton model where the dilaton and the SM Higgs can have a mass mixing. Second, we

investigate the case of a holographic dilaton (within the paradigm of partial composite-

ness) and where we introduced also a dilaton-Higgs kinetic mixing. The third scenario we

consider is then a gauge-philic dilaton where the dilaton has only couplings to the gauge

bosons via the running of gauge couplings, and that results elusive for collider searches.

We explore in detail the parameter space in the mφ vs f plane for these benchmark

scenarios with the available LHC analysis and we point out the accessible region for future

HL-LHC. The interesting conclusion is that in minimal dilaton case where the coupling

of the dilaton with gluons is determined by the full SM β-function coefficient, the entire
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region with mφ/f > 1% will essentially be covered at the HL-LHC. This is valid even if the

dilaton acts as a portal to a dark sector and has a sizeable branching fraction into missing

energy, because of the impact of the mono-jet constraints.

In the holographic dilaton model, where we assumed only the Higgs doublet and the

right-handed top quark as composite states, the dilaton coupling to gluons is reduced

roughly by 1/3 as compared to the minimal dilaton case. This implies a weakening of

the constraints on f by a factor of 3 in the holographic dilaton case. Hence, large region

of the parameter space with mφ/f > 1% is still allowed with present LHC data and

will be only partially covered by the future HL-LHC. Similar features appears also in the

phenomenology of the gauge-philic dilaton. In that case the coupling with gluons is sizeable

but the coupling with photons and massive gauge bosons, which normally drive the LHC

limits, are reduced compared to the minimal dilaton case.

A common conclusion for all the benchmarks is that the very low mass region

mφ < 60 GeV remains still poorly covered and suggests that dedicated LHC analysis

could improve the reach for such low masses. In general, the region with mφ/f > 10% is

already significantly constrained by LHC searches and will be completely covered at the

HL-LHC, while the mφ/f > 1% will be at least partially probed by HL-LHC. We conclude

that there is a sizeable and interesting portion of parameter space, without a large hierar-

chy between mφ and f , where the future runs of the LHC can look for the existence of a

light dilaton.
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A Feynman rules and useful formulae

For completeness, in this appendix we collect all the relevant Feynman rules, partial widths

and formulae employed in the main text. The Feynman rules are given in a compact form in

table 3. It is straightforward to calculate the partial widths with the given Feynman rules.

Trilinear scalar interactions. As discussed in section 2, the trilinear Higgs couplings

are more involved in our case in the presence of dilaton-Higgs mixing. In particular, when

the mass of dilaton is larger (smaller) than twice (half) of the SM Higgs mass than the

dilaton (Higgs) would decay to two Higgs (dilaton) states. The partial width of a heavy

state i decaying to a lighter state j is given by,

Γ(i→ jj) =
g2
ijj

32π

1

mi

√
1−

4m2
j

m2
i

, (A.1)

where i/j can be the dilaton or Higgs depending on the dilaton mass. The trilinear cou-

plings gijj are derived from all the sources of trilinear interactions discussed in section 2.
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h, φ

k1 W,µ

W, νk2

i
2m2

W

v

[(
gh,φ + cw g̃h,φ

)
ηµν − αembw

4πm2
W

g̃h,φ
(
ηµνk1 ·k2 − kν1k

µ
2

)]

h, φ

k1 Z, µ

Z, νk2

i
2m2

Z

v

[(
gh,φ + cz g̃h,φ

)
ηµν − αembz

4πm2
Z

g̃h,φ
(
ηµνk1 ·k2 − kν1k

µ
2

)]

h, φ

k1 γ, µ

γ, νk2

i
αem

2πv

[
bγ g̃h,φ −

(
gh,φ + cig̃h,φ

)(
e2iN

i
cF1/2(τi) + F1(τi)

)](
ηµνk1 ·k2 − kν1k

µ
2

)

h, φ

k1 γ, µ

Z, νk2

i
αem

2πv

[
bγz g̃h,φ −

(
gh,φ + cig̃h,φ

)(
A1/2(τi) + A1(τi)

)](
ηµνk1 ·k2 − kν1k

µ
2

)

h, φ

k1 g, µ, a

g, ν, bk2

iδab
αs

4πv

[
2bg g̃h,φ −

(
gh,φ + cig̃h,φ

)
F1/2(τi)

](
ηµνk1 ·k2 − kν1k

µ
2

)

h, φ

k1 X,µ

X, νk2

i
2m2

X

v

[
cx g̃h,φ η

µν − αxbx
4πm2

X

g̃h,φ
(
ηµνk1 ·k2 − kν1k

µ
2

)]

h, φ

ψ

ψ̄

−imψ

v

(
gh,φ + cψ g̃h,φ

)
, where gh≡cθ+bk

sθ
Z
, gφ≡sθ−bk

cθ
Z
, g̃h≡−v

f

sθ
Z
, g̃φ≡

v

f

cθ
Z

Table 3. Feynman rules for the SM-like Higgs h and the dilaton φ couplings with the SM particles.

The triangle loop functions Fs and As are collected below where the subscript denote the spin of

the particle in the loop and the sum over all the particles in the corresponding loops is understood.

The model dependent coefficients b’s and c’s can be found in table 1.

After applying the rotational matrix (2.5), in the physical mass eigenbasis (φ, h), these

trilinear couplings have the form,

ghφφ =
1

fZ3
(sθZ − bkcθ)

(
3bkcθsθ + 2c2

θZ − s2
θZ
) (

2bhm
2
h − bhm2

φ − 4chm
2
h0

)

−
3m2

h0

vZ3
(bksθ + cθZ)(bkcθ − sθZ)2 , (A.2)

gφhh =
1

fZ3
(cθZ + bksθ)

(
3bkcθsθ + c2

θZ − 2s2
θZ
) (

2bhm
2
h − bhm2

φ − 4chm
2
h0

)

+
3m2

h0

vZ3
(bkcθ − sθZ)(bksθ + cθZ)2 . (A.3)

Note that in the absence of the dilaton-Higgs kinetic and mass mixings, i.e. bk = 0 and

cm = 0 (hence sθ = 0, Z = 1, bh = 1, ch = 1), the above trilinear couplings simplify to

ghφφ = 0, gφhh = −
m2
φ

f

(
1 +

2m2
h

m2
φ

)
. (A.4)
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Whereas, in the case of minimal dilaton, where bk = 0 and cm 6= 0 (hence sθ 6= 0, Z = 1,

bh = 1, ch = 1), we get the trilinear couplings as,

ghφφ =
sθ
f

[ (
2c2
θ − s2

θ

) (
2m2

h − 4m2
h0 −m2

φ

) ]
− 3cθs

2
θ

v
m2
h0 , (A.5)

gφhh =
cθ
f

[ (
c2
θ − 2s2

θ

) (
2m2

h − 4m2
h0 −m2

φ

) ]
− 3c2

θsθ
v

m2
h0 . (A.6)

The SM trilinear coupling ghhh can be an important probe of SM Higgs mixing with

other scalars. In our case, the Higgs trilinear coupling is modified to the following form:

ghhh =
sθ

2fZ3
(bksθ + cθZ)2

(
bhm

2
φ − 2bhm

2
h + 4chm

2
h0

)
−
m2
h0

2v

(
cθ +

bksθ
Z

)3

, (A.7)

In the minimal dilaton scenario the above coupling reduces to

ghhh =
c2
θsθ
2f

(
4m2

h0 − 2m2
h +m2

φ

)
− c3

θ

2v
m2
h0 , (A.8)

which obviously in the absence of any mixing reduces to the usual SM value −m2
h/(2v).

We note that deviations in the Higgs trilinear coupling are not constraining the parameter

space we explore. However future improved measurement of such coupling could also be

used as an indirect probe of the dilaton-Higgs mixing.

Dilaton/Higgs partial width to dark photon. In the presence of the dilaton-Higgs

mixing, both mass eigenstates of dilaton φ and SM-like Higgs h couple to the dark pho-

ton. The partial width of the Higgs/dilaton to the dark photon Xµ resulting from the

Lagrangian (2.8). is given by,

Γh,φXX =
m3
h,φg̃

2
h,φ

32πv2

√
1− 4m2

X

m2
h,φ

×
[

(c2
x + 8b̃2x)− 4(c2

x + 6cxb̃x + 8b̃2x)
m2
X

m2
h,φ

+ 12(cx + 2b̃x)2 m
4
X

m4
h,φ

]
, (A.9)

where g̃h,φ are given in (3.1) and b̃x in eq. (3.9). Note that in the absence of the coupling

bx, the above relation for partial width reduces to the standard width of a scalar to massive

gauge bosons, i.e. for bx = 0,

Γh,φXX =
c2
xm

3
h,φ g̃

2
h,φ

32πv2

√
1− 4m2

X

m2
h,φ

[
1− 4

m2
X

m2
h,φ

+ 12
m4
X

m4
h,φ

]
. (A.10)

Note that the partial width (A.9) becomes a simple expression in the limit mX � mh,φ,

that is

Γh,φXX =
m3
h,φ g̃

2
h,φ

32πv2

(
c2
x + 8b̃2x

)
, (A.11)

which is independent of the dark photon mass in this limit.
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The loop functions. The most frequently used form factors are the F1/2(τi) and F1(τi),

given as

F1/2(τi) = −2τi
[
1 + (1− τi)f(τi)

]
, F1(τi) = 2 + 3τi + 3τi(2− τi)f(τi), (A.12)

where τi ≡ 4m2
i /m

2
φ, and

f(τi) =





arcsin2

(
1√
τi

)
, if τi ≥ 1,

−1
4

[
ln

(
1 +
√

1− τi
1−√1− τi

)
− iπ

]2

, if τi < 1.

(A.13)

The asymptotic values of these form factors are:

F1/2(τi) =

{
−4/3, τi →∞
0, τi → 0

, F1(τi) =

{
7, τi →∞
2, τi → 0

. (A.14)

The exact expressions of the form factors A1/2(τi) and A1(τi) used in the Zγ final state

vertex can be found in the Higgs Hunter’s Guide [77].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[28] C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models,

Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].

[29] R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of

broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

– 31 –

https://indico.cern.ch/event/75810/contributions/1250635/attachments/1050757/1498158/Rattazzi.pdf
https://doi.org/10.1103/PhysRevD.87.115006
https://doi.org/10.1103/PhysRevD.87.115006
https://arxiv.org/abs/1209.3022
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3022
https://doi.org/10.1140/epjc/s10052-013-2333-x
https://arxiv.org/abs/1209.3299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3299
https://doi.org/10.1140/epjc/s10052-014-2790-x
https://doi.org/10.1140/epjc/s10052-014-2790-x
https://arxiv.org/abs/1305.3919
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3919
https://doi.org/10.1007/JHEP11(2013)057
https://arxiv.org/abs/1306.4601
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4601
https://doi.org/10.1007/JHEP02(2015)006
https://arxiv.org/abs/1411.1732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1732
https://doi.org/10.1103/PhysRevD.92.056004
https://doi.org/10.1103/PhysRevD.92.056004
https://arxiv.org/abs/1411.3758
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3758
https://doi.org/10.1007/JHEP08(2014)081
https://doi.org/10.1007/JHEP08(2014)081
https://arxiv.org/abs/1401.4998
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4998
https://doi.org/10.1007/JHEP10(2018)050
https://arxiv.org/abs/1711.02697
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02697
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905221
https://doi.org/10.1103/PhysRevLett.83.4922
https://doi.org/10.1103/PhysRevLett.83.4922
https://arxiv.org/abs/hep-ph/9907447
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9907447
https://doi.org/10.1007/JHEP10(2019)202
https://arxiv.org/abs/1905.02653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.02653
https://doi.org/10.1016/S0550-3213(05)80021-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B365,259%22
https://doi.org/10.1103/PhysRevD.85.015024
https://arxiv.org/abs/1111.2580
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2580
https://doi.org/10.1007/JHEP02(2014)032
https://arxiv.org/abs/1311.3663
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3663
https://doi.org/10.1016/j.physletb.2014.04.005
https://doi.org/10.1016/j.physletb.2014.04.005
https://arxiv.org/abs/1401.5586
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5586
https://doi.org/10.1103/PhysRevD.101.055045
https://arxiv.org/abs/1908.01668
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.01668
https://doi.org/10.1103/PhysRevD.76.125015
https://arxiv.org/abs/0705.3844
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.3844
https://doi.org/10.1016/j.physletb.2007.06.084
https://arxiv.org/abs/0704.1165
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1165


J
H
E
P
0
5
(
2
0
2
0
)
0
9
3

[30] W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the

dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463]

[INSPIRE].

[31] J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider

signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].

[32] L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D 82 (2010) 076009

[arXiv:1002.1721] [INSPIRE].

[33] T. Appelquist and Y. Bai, A light dilaton in walking gauge theories, Phys. Rev. D 82 (2010)

071701 [arXiv:1006.4375] [INSPIRE].

[34] V. Barger, M. Ishida and W.-Y. Keung, Differentiating the Higgs boson from the dilaton and

the radion at hadron colliders, Phys. Rev. Lett. 108 (2012) 101802 [arXiv:1111.4473]

[INSPIRE].

[35] T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting

hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].
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