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1 Introduction

Jet vetoes find frequent application at the LHC, to separate different types of hard processes

and cut away backgrounds. One key process where jet vetoes find application is in Higgs

production — for example, in the H → WW ∗ analysis, it is standard to apply a jet veto

to reduce the dominant tt̄ decay background.

For maximal background rejection, it is typically advantageous to set the jet veto scale

T cut to be much smaller than the hard scale of the process Q. This induces large logarithms

of T cut/Q in the perturbative series for the 0-jet cross section, which can be summed up

to all orders to obtain precise predictions [1, 2].

The standard jet variable by which jets are currently classified and vetoed is the trans-

verse momentum pTj of a jet. One identifies all jets with a given radius R in an event,

computes pTj for each jet, and vetoes the event if the pTj for any jet exceeds the veto scale

pcut
Tj . Predictions for the 0-jet Higgs production cross section with a jet veto imposed via

pTj have been obtained with a resummation of pTj/mH logarithms up to the NNLL′ order,

matched to either NNLO or N3LO fixed order perturbation theory [3–8]. However, there

are some drawbacks to using this variable. In harsh pile-up conditions, as are nowadays en-

countered at the LHC, it is hard to identify (and veto) jets with small pTj at large rapidity.

This is due to the lack of tracking information at large |ηj | ≥ 2.5, meaning that at large

rapidities it is difficult to disentangle small pTj jets from the primary process from pile-up

jets. One option is simply to raise the overall cut on pTj , but then the discriminating power

of the jet veto is reduced. An alternative possibility is to consider a step-like jet veto, with

a tight veto below some value of |η|, and a weaker veto above this value. The theoretical

description of such step-like vetoes is discussed in ref. [9].

A final possibility, proposed in refs. [10, 11] and which we focus on here, is to have a jet

veto that is a smooth function of rapidity, being tight at central rapidities and gradually
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weakening as one goes forward. Four jet-veto variables of this kind were considered in

ref. [11]:

TBj = mTje
−|yj−Y | TCj =

mTj

2 cosh (yj − Y )
(1.1)

TBjcm = mTje
−|yj | TCjcm =

mTj

2 cosh (yj)
(1.2)

where yj the rapidity of the jet and Y the rapidity of the Higgs. The transverse mass of the

jet mTj =
√
m2
j + p2

Tj and is close to pTj for small jet radius R. The quantity TBj(cm) has

the same rapidity weighting as the global beam thrust hadronic event shape [1, 12], whilst

TCj(cm) has the same rapidity weighting as the C-parameter defined for e+e− → hadrons.

Resummation of veto logarithms for all of these observables can be achieved using the same

framework (see ref. [11] for details).

The veto observables in eqs. (1.1) and (1.2) are closely linked, differing only in their

reference point from which to define whether jets are ‘central’ and ‘forward’; the observables

in eq. (1.1) do it with respect to the Higgs rapidity, whilst those in eq. (1.2) do it with

respect to the centre of momentum of the pp collision. In terms of avoiding the issues with

forward pile-up jets, the latter alternative will be superior, although there should not be

a drastic difference in performance between the two types of vetoes at the LHC, since the

majority of Higgs bosons are produced at rather low rapidities. Here, we choose to focus

on the observables in eq. (1.1), motivated in part by the fact that these seem to be the

preferred choice from an experimental perspective: in ref. [13] the H + 0-jet cross section

differential in TCj was measured in the ATLAS H → γγ analysis.

Apart from the above considerations, given the general utility of jet binning it is clearly

beneficial to have more than one way of dividing phase space up into jet bins — for certain

analyses it may be advantageous to use TB/Cj rather than pTj . Vetoed cross sections using

TB/Cj probe QCD radiation in a quite different way from cross sections with a pTj veto,1

so studying and measuring these observables is also of interest in terms of testing our

understanding of QCD radiation.

The factorisation framework to resum veto logarithms for colour-singlet 0-jet processes

with a jet veto imposed via TB/Cj was established in refs. [10, 11] within soft collinear

effective theory (SCET). For the gluon-fusion (ggF) Higgs cross section, predictions for

the 0-jet cross section with a TB/Cj jet veto have been obtained at NLL′+NLO [11]. In

ref. [14], the resummation ingredients (two-loop beam and soft functions) required for the

NNLL′ resummation of colour-singlet 0-jet processes with a TB/Cj jet veto were computed.

The main goal of the present paper is to elevate the precision of the 0-jet ggF Higgs pro-

duction predictions, for both TBj and TCj to NNLL′ in resummed logarithms of TB/Cj/mH ,

matched to NNLO fixed-order perturbation theory. We will include finite bottom and top

quark mass effects up to two loops (NLO) in the Higgs production process, and resum

time-like logarithms in the gg → H form factor to all orders [15–20]. Note that here we do

1Technically: pTj veto cross sections are SCETII observables whilst TB/Cj veto cross sections are SCETI

observables.
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not perform a resummation of logarithms of R (studied in refs. [8, 21–23]), nor logarithms

of mb/mH (studied in refs. [24–26]).

A further goal is to investigate the relative sensitivity of the 0-jet ggH cross sections

with TBj , TCj and pTj vetoes to the effects of hadronisation and underlying event (UE).

These effects are difficult to describe from first principles and are typically modelled, so a

minimal sensitivity to them is preferable. This investigation will be performed using a NLO

+ parton shower (PS) set-up, specifically Madgraph aMC@NLO [27] + Pythia8 [28].

We find that the cross sections with TBj and TCj vetoes are rather less sensitive to both

UE and hadronisation than that with a pTj veto, which constitutes another advantage of

using these veto observables.

This paper is organised as follows. In section 2 we review the SCET factorization

formula derived in refs. [10, 11] for the H + 0-jet TB/Cj cross section, and outline the

steps and necessary ingredients needed to obtain this cross section at NNLL′+NNLO. In

section 3 we give details of the procedure we use to determine the perturbative uncertainty

in our results. Section 4 contains our results for the H + 0-jet TB/Cj cross section at

NNLL′+NNLO, and we investigate the effects of UE and hadronisation on the H + 0-jet

TB/Cj and pTj cross sections using an NLO+PS set-up in section 5. Finally we conclude

in section 6.

2 Factorization for the H + 0-jet cross section

The full pp → H + 0-jet cross section with a cut on the rapidity-dependent observable

Tfj < T cut (f = B,C) is given by,

σ0(Tfj< T cut) = σresum
0 (Tfj< T cut) + σnons

0 (Tfj< T cut) , (2.1)

where the first term contains the resummed logarithms of T cut/mH , and dominates for

small values of T cut, while the second term contains the nonsingular corrections which are

suppressed by O(T cut/mH) and become important at large T cut. The resummed H+0-jet

cross section for Tfj < T cut can be factorized as follows, [10, 11]

σresum
0 (Tfj< T cut) =σBHgg(mt,mb,m

2
H , µ)Bg(mHT cut, xa, R, µ)

×Bg(mHT cut, xb, R, µ)Sf (T cut, R, µ) + σRsub
0 (Tfj< T cut, R) , (2.2)

where

xa,b =
mH

Ecm
e±Y , σB =

√
2GF m

2
H

576πE2
cm

. (2.3)

The hard function denoted by Hgg contains the hard virtual corrections and is obtained by

matching QCD onto the operator OggH in SCET. The gluon beam function Bg describes the

collinear initial state radiation from the incoming gluons, while Sf encodes the contribution

from the soft radiation across the entire event. The term σRsub
0 contains O(R2) corrections
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arising due to the clustering of two independent collinear or soft particles into one jet;

following refs. [7, 10] we separate these off and treat them separately.2

The hard function is the IR-finite part of the MS renormalized ggH form factor, and

is expressed in terms of the matching coefficient CggH as,

Hgg(mt,mb,m
2
H , µ) = |CggH(mt,mb,m

2
H , µ)|2 . (2.4)

At NNLL′, we require the hard function up to NNLO:

Hgg = |C(0)
ggH |

2 +
αs(µ)

4π
2Re

[
C

(1)
ggHC

(0)∗
ggH

]
+
α2
s(µ)

(4π)2

(
2Re

[
C

(2)
ggHC

(0)∗
ggH

]
+ |C(1)

ggH |
2
)

+ . . . ,

(2.5)

where the C
(0,1,2)
ggH are the perturbative expansion coefficients of CggH :

CggH = C
(0)
ggH +

αs
4π
C

(1)
ggH +

(
αs
4π

)2

C
(2)
ggH + . . . . (2.6)

Note that since CggH begins at O(αs) we absorb one power of αs into each coeffi-

cient C
(0,1,2)
ggH .

In C(0) and C(1) we include the top and bottom loops with the full mass dependence

using the results of refs. [29, 30]. For the NNLO coefficient C(2), we use the NNLO mt →∞
result extracted from refs. [31, 32], reweighted by the ratio of C(0) with finite mt to C(0)

with mt → ∞ (both with mb = 0). This approach to the NNLO term is the same as

in ref. [2].

The beam functions Bg are the same for both the TBj and TCj observables as they de-

scribe collinear emissions in the regions of large forward rapidities where the measurement

function for both these observables is the same. They can be computed as a convolution be-

tween the perturbative matching kernel Iij and the standard parton distribution functions

(PDFs) as follows [1, 33],

Bg(t
cut, x,R, µ) =

∑
j

∫ 1

x

dz

z
Igj(tcut, z, R, µ)fj

(
x

z
, µ

)
×
[
1 +O

(
Λ2

QCD

tcut

)]
. (2.7)

For NNLL′ precision we require the matching kernel up to O(α2
s):

Igj(t, z, µ) = I(0)
gj (tcut, x, µ) +

αs(µ)

4π
I(1)
gj (tcut, x, µ) +

α2
s(µ)

(4π)2
I(2)
gj (tcut, x, µ,R) +O(α3

s) .

(2.8)

The one-loop coefficients I(1) are given in ref. [11] and are equal to the cumulants of the

one-loop virtuality-dependent beam function matching coefficients computed in ref. [2].

One can write the two-loop coefficients I(2) as follows:

I(2)
gj (tcut, x, µ,R) = I(2)

G,gj(t
cut, x, µ) + ∆I(2)

gj (tcut, x, µ,R) (2.9)

2This scheme is the second one discussed in section 3.2 of ref. [14]. This implies that in the two-loop B

and S, we do not include the ∆Iindep, SC and ∆Sf,indep terms computed in ref. [14], and remove the C2
AR

2

term associated with independent emission contributions from the anomalous dimensions of B and S.
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where the I(2)
G are the cumulants of the two-loop virtuality-dependent beam function match-

ing coefficients computed in ref. [34], and the expressions for ∆I(2) are given in section

3.1.2 of ref. [14].

The soft function is defined as a vacuum matrix element of the product of soft Wilson

lines along the two incoming gluon directions, with a measurement function imposing

Tfj < T cut. As with the other ingredients, we require its expansion to NNLO:

Sf (T cut, R, µ) = 1 +
αs(µ)

4π
S

(1)
f (T cut, µ) +

α2
s(µ)

(4π)2
S

(2)
f (T cut, R, µ) +O(α3

s) (2.10)

The one-loop soft functions S
(1)
f for TBj and TCj are equal to the cumulants of the one-loop

soft functions for thrust and C-parameter respectively; the expressions for both observables

are given in ref. [11]. Let us decompose the two-loop soft function as follows:

S
(2)
f (T cut, R, µ) = S

(2),non-Ab
G,f (T cut, R, µ) +

1

2

[
S

(1)
f (T cut, µ)

]2
+ ∆S

(2)
f (T cut, R, µ) (2.11)

The quantity S
(2),non-Ab
G,f is the cumulant of the ‘non-Abelian’ part of the two-loop thrust/C-

parameter soft function. Expressions for ∆S
(2)
f are given in section 3.1.1 of ref. [14]. An-

alytic results for S
(2),non-Ab
G,B can be extracted from the results in refs. [35–38], whilst for

S
(2),non-Ab
G,C we extracted numerical results for nf = 5 from ref. [39]. In both cases the results

are of the form:

S
(2),non-Ab
G,f = aG,fCA + bG,fCA ln

(
T cut

µ

)
− 8

9
CA
(
67CA − 3CAπ

2 − 20nfTF
)

ln

(
T cut

µ

)2

+
16

9
CA (11CA − 4nfTF ) ln

(
T cut

µ

)3

(2.12)

where aG,f and bG,f are given by:

aG,C |nf=5 = 124.075 (2.13)

bG,C |nf=5 = −265.650 (2.14)

aG,B =
1

810

[
20nfTF (40 + 111π2 − 1044ζ3)

+ CA(−21400− 5025π2 + 396π4 + 57420ζ3)
]

(2.15)

bG,B = − 4

27

[
nfTF (112− 12π2) + CA(33π2 − 404 + 378ζ3)

]
(2.16)

Numerical results for the two-loop soft functions S
(2)
f (T cut, R, µ) have also been obtained

using SoftSERVE [40–42], where these results agree with those obtained using the proce-

dure above.

The hard, beam and soft functions are evaluated at their natural scales µH ∼ mH , µB ∼√
mHT cut and µS ∼ T cut, to minimize the logarithms they contain, and then RG evolved

to a common scale µFO ∼ mH which sums the large logarithms. These satisfy RG equations
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with a multiplicative form due to the cumulant nature of the jet veto observables [10]:

µ
d

dµ
ln
[
CggH(mt,m

2
H , µ)

]
= γgH(m2

H , µ) ,

µ
d

dµ
ln
[
Bg(t

cut, x,R, µ)
]

= γgB(tcut, R, µ) ,

µ
d

dµ
ln
[
SB,Cg (T cut, R, µ)

]
= γgS(T cut, R, µ) , (2.17)

where the anomalous dimension has a generic form consisting of the µ-dependent cusp part

and the non-cusp part as follows,

γgH(m2
H , µ) = Γgcusp[αs(µ)] ln

−m2
H−i0

µ2
+ γgH [αs(µ)] ,

γgB(tcut, R, µ) = −2Γgcusp[αs(µ)] ln
tcut

µ2
+ γgB[αs(µ), R] ,

γgS(T cut, R, µ) = 4Γgcusp[αs(µ)] ln
T cut

µ
+ γgS [αs(µ), R] . (2.18)

The hard matching coefficient contains double logarithms of (−m2
H − i0)/µ2

H , so we

choose µH ∼ −imH in order to avoid large left over logarithms ln2(−1− i0) = −π2.

Choosing an imaginary hard scale ensures that the logarithms are fully resummed and

results in better perturbative convergence. For NNLL′ resummation we require the cusp

anomalous dimension Γcusp up to 3 loops, and the non-cusp anomalous dimensions up to

2 loops. The expression for the former is given, for example, in ref. [2] (using the results

of refs. [43, 44]). The two-loop expression for γgH [αs(µ)] can be found in the same paper

(using the results of refs. [45–47]). The dependence on jet radius enters through the two-

loop non-cusp anomalous dimension of the beam and soft function, which can be split into

a global and an R-dependent part,

γgS [αs(µ), R] = γgG,S [αs(µ)] + ∆γgS [αs(µ), R]

γgB[αs(µ), R] = γgG,B[αs(µ)] + ∆γgB[αs(µ), R] (2.19)

The global non-cusp anomalous dimensions γgG,S [αs(µ)] and γgG,B[αs(µ)] are those of the

beam thrust soft and beam functions, and are given up to 2 loops in ref. [2]. The

R-dependent correction term for the soft function anomalous dimension, ∆γgS [αs(µ), R],

is given in section 3.1.1 of ref. [14]; RGE consistency demands ∆γgB[αs(µ), R] =

−1
2∆γgS [αs(µ), R].

The solution of the RGE (eq. (2.17)) has a similar structure for the hard, beam and

soft functions. For the beam function, solving the RGE yields,

Bg(t
cut, x,R, µ) = UB(tcut, µB, µ)Bg(t

cut, x,R, µB) (2.20)

with the evolution factor given by

UB(tcut, µB, µ) = eKB(µB ,µ)

(
tcut

µ2
B

)ηB(µB ,µ)

. (2.21)
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Explicit expressions for the evolution of the hard and soft functions along with the various

factors relevant for the resummation at NNLL′ can be found in refs. [2, 11].

The contribution σRsub
0 in eq. (2.2) takes account of the O(R2) corrections for the

clustering of independent emissions. The form of this term is as follows [4, 7, 14]:

σRsub
0 =

α2
s(µavg)

(4π)2
H(0)
gg Utotal(T cut, µH , µB, µS , µFO)

×
[{
fg (xa, µB) fj (xb, µB)⊗

(
∆I

(2)
gj,indep(xb, µavg, R) + SC

(2)
gj (xb, µavg, R)

)
+ (xa ↔ xb)

}
+ fg (xa, µB) fg (xb, µB) ∆S

(2)
f,indep (T cut, µavg, R)

]
(2.22)

where

Utotal(T cut, µH , µB, µS , µ) = US(T cut, µS , µ)× U2
B(mHT cut, µB, µ)× UH(µH , µ) (2.23)

is the total NNLL′ evolution kernel, and µavg =
√
µBµS . Since the O(α2

s) corrections in

the square brackets come from soft or collinear emissions, we choose to evaluate them at

the geometric mean of the soft and beam scales, as in ref. [7]. The expressions for these

corrections can be found in section 3.2 of ref. [14].

The nonsingular cross section computed at fixed order up to NNLO at scale µFO can

be obtained by expanding Eq. (2.1) up to NNLO with all scales set to µFO. In Eq. (2.2)

we expand the product of fixed order contributions to the H,B and S factors to O(α2
s),

such that setting all scales to µFO automatically results in the NNLO expansion. Thus:

σnons,NNLO
0 (Tfj< T cut, µFO) =σFO,NNLO

0 (Tfj< T cut) (2.24)

− σresum,NNLL′

0 (Tfj< T cut, µB = µS = µH = µFO) ,

We compute the first term on the right hand side at NNLO as follows:

σFO,NNLO
0 (Tfj< T cut) = σFO,NNLO

≥0 − σFO,NLO
≥1 (Tfj> T cut) (2.25)

where σFO,NNLO
≥0 is the full NNLO Higgs production cross section, and σFO,NLO

≥1 (Tfj> T cut)

is the NLO H + j cross section with the given cut.

We improve the NNLO nonsingular piece by including the resummation of time-like

logarithms in this piece as well. The expression for the final NNLO nonsingular piece that

we include is then [2, 7]:

σnons,NNLO+π2

0 (Tfj< T cut)

=

[
σnons,NNLO

0 (Tfj< T cut)− αs(µFO)CAπ
2

2π
σnons,NLO

0 (Tfj< T cut)

]
× UH(m2

H ,−iµFO, µFO) (2.26)

In practice, the computation of σnons,NNLO
0 is done with finite mb,mt up to NLO, and

with mb → 0,mt → ∞ in the NNLO coefficient. This means that in the σresum,NNLL′

0

term of eq. (2.24) we use a hard function Hgg which is given by using eq. (2.5) but with

the mt → ∞ limit in the NNLO coefficient. The NNLO Higgs cross section is obtained

– 7 –
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using HNNLO [48–50], whilst the H + j cross section for Tfj > T cut is generated using

Madgraph5 aMC@NLO [27, 51]. The computation of σnons,NLO
0 is done with finite

mt,mb using similar techniques. This procedure implies that for T cut →∞, we reproduce

the NNLO cross section including the resummation of time-like logarithms [20], which is

numerically very close to the N3LO total cross section [52, 53].

3 Profile scales and perturbative uncertainties

We now discuss how we choose the beam and soft scales as a function of T cut, which,

following a standard convention for SCET computations, we refer to as the profile scales [54,

55]. At small T cut � mH , logarithms of T cut/mH are large, eq. (2.2) applies, and we should

set the beam and soft scales to their canonical values µB ∼
√
mHT cut, µS ∼ T cut to resum

these logarithms appropriately. This is referred to as the resummation region. At large

T cut & mH , we enter the fixed-order region, in which the veto is sufficiently loose that the

fixed-order formula applies, and we should set µB ∼ mH , µS ∼ mH . In the intermediate

region, referred to as the transition region, one should ensure a smooth transition between

these two behaviours, which we achieve through a suitable choice of profile scales.

One can determine the locations of the boundaries between these regions by plotting

the fixed-order singular and nonsingular contributions to the fixed-order NNLO cross sec-

tion differential in Tfj . The singular piece directly follows from taking the derivative of

eq. (2.2) with respect to T cut, and contains the leading small Tfj terms ∼ lnn(Tfj/mH)/Tfj
(corresponding to the lnn(T cut/mH) terms in the cumulant). The nonsingular contains

the remainder of the NNLO cross section, obtained in practice by subtracting the sin-

gular contribution from a NLO H + j computation of the Tfj spectrum from Mad-

Graph5 aMC@NLO. At small Tfj this should diverge at most as lnn(Tfj/mH). The

resummation region should be defined by where the singular cross section greatly exceeds

the nonsingular one, and we should enter the fixed-order region when the singular and

nonsingular cross sections become of the same size.

We plot the singular, nonsingular and total NNLO cross sections differential in TBj
(left) and TCj (right) in figure 1. One observes that at small Tfj the computed nonsingular

contribution indeed has a rather mild dependence on Tfj , and does not diverge as strongly

as 1/Tfj ; this serves as an important cross-check of the two-loop pieces in eq. (2.2) not

proportional to δ(T cut), which also appear in the singular spectrum calculation. Towards

larger Tfj values, around Tfj ∼ 50 GeV, the singular and nonsingular contributions become

comparable, and for Tfj ∼ 70 GeV the singular contribution crosses zero. It is interesting

to observe that the nonsingular contribution for TCj is generally larger than that for TBj .
Comparing figure 1 to figure 2 of ref. [11], we see no particular reason to adjust the

boundaries of the resummation, transition and fixed-order regions from the ones chosen in

the NLL′+NLO calculation of ref. [11]. The two boundaries are chosen to be at 18.75 GeV

and 75 GeV for TBj , and at 12.5 GeV and 68.75 GeV for TCj .
The functional form of the profile scales we use are similar to those adopted in refs. [7,

11]. In particular, we have:

µH = −iµFO ,

µS(T cut) = µFOfrun(T cut/mH) ,
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Figure 1. The singular, nonsingular and full fixed order NNLO cross section differential in TBj

(left) and TCj (right) for R=0.5.

µB(T cut) =
√
µS(T cut)µFO

= µFO

√
frun(T cut/mH) , (3.1)

where the profile function frun(x) is:

frun(x) =



x0

[
1 + (2rs − 1)(x/x0)2/4

]
x ≤ 2x0 ,

rsx 2x0 ≤ x ≤ x1 ,

rsx+
(2− rsx2 − rsx3)(x− x1)2

2(x2 − x1)(x3 − x1)
x1 ≤ x ≤ x2 ,

1− (2− rsx1 − rsx2)(x− x3)2

2(x3 − x1)(x3 − x2)
x2 ≤ x ≤ x3 ,

1 x3 ≤ x .

(3.2)

For rs = 1 the profiles reduce to those of refs. [7, 11]. For 2x0mH < T cut < x1mH , µB
and µS have canonical scaling: µS = rsT cut and µB =

√
rsmHT cut for µFO = mH . The

fixed-order region is reached at T cut = x3mH , with a smooth transition being achieved in

two steps between x1mH and x3mH . We refer to T cut < 2x0mH as the ‘nonperturbative

region’, and choose 2x0mH to be in vicinity of ΛQCD. In this region the variation of µS/B
is gradually turned off as T cut → 0, with µS and µB approaching the positive values x0µFO

and
√
x0µFO at T cut = 0. This is to avoid αs and the PDFs being evaluated at too low

scales. In fact our purely perturbative predictions for the cross section will be insufficient

in this (small) region, since neglected power corrections can become of O(1).

For the parameters x0−x3 and µFO, we make the same choices as in ref. [11], which in

particular enforces the same boundaries between resummation, transition and fixed-order

regions as in that paper (and which are mentioned above). So, for TBj we have:

µFO = mH , x0 = 2.5 GeV/µFO , {x1, x2, x3} = {0.15, 0.375, 0.6} , (3.3)

and for TCj ,

µFO = mH , x0 = 2.5 GeV/µFO , {x1, x2, x3} = {0.1, 0.325, 0.55} .
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Figure 2. The left panel shows the collective variation of µB and µS scales by a factor of 2 (using

µFO = {mH , 2mH ,mH/2} in eq. 3.1)) which estimates the fixed order scale uncertainty. The plots

in the middle and right panels show µB and µS variation as discussed in the text (eq. 3.6), used to

estimate the resummation uncertainty. All plots in this figure have been generated using rs = 2 in

eq. (3.2).

The parameter rs should be chosen to be O(1). In the next section we will generate

results using both rs = 1 and rs = 2.

Let us now move to a discussion of how we estimate the theoretical uncertainty in

our predictions of the jet vetoed cross sections. These may be parametrized in terms

of fully correlated (yield) and fully anti-correlated (migration) components [2, 7, 56, 57].

The yield uncertainty corresponds to the fixed-order uncertainty ∆FO. At large T cut this

reproduces the fixed-order scale variation uncertainty in the total inclusive cross section.

The migration uncertainty corresponds to the uncertainty in the resummed logarithmic

series induced by the jet veto cut and is identified as the resummation uncertainty ∆resum.

The total uncertainty in the 0-jet cross section can be written as

∆2
0(T cut) = ∆2

FO(T cut) + ∆2
resum(T cut) . (3.4)

To estimate these perturbative uncertainties, we vary the profile scales about their central

values. For the fixed-order uncertainty ∆FO, we vary µFO in the range {2mH ,mH/2} in

eq. 3.1, and the resulting profiles are illustrated for the case rs = 2 in the left panel of

figure 2. The resummation uncertainty ∆resum can be obtained by varying the µB and µS
scales using a multiplicative factor,

fvary(x) =


2(1− (1 + δ)x2/x2

3) 0 ≤ x ≤ x3/2

1 + 2(1− 3δ)(1− x/x3)2 + 16δ(1− x/x3)4 x3/2 ≤ x ≤ x3

1 x3 ≤ x

, (3.5)

For δ = 0, this reproduces the functional form of fvary used in ref. [11]. Here we set

δ = 0.05, so that when using rs = 2, we avoid either µB or µS rising above the fixed-order

value of mH in any of the variations discussed below.

The up and down variations of µB and µS are parametrized using this multiplicative

factor as follows,

µvary
S (x, α) = fαvary(x)µS(x) = µFO f

α
vary(x) frun(x) ,

µvary
B (x, α, β) = µvary

S (x, α)
1/2−β

µ
1/2+β
FO = µFO

[
fαvary(x) frun(x)

]1/2−β
, (3.6)
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with (α, β) = {(+1, 0), (−1, 0), (0,+1/6), (0,−1/6)}. The variations in the parameter α

lead to a factor of 2 variation in µS for T cut → 0, and a factor of
√

2 variation in µB. The

profiles thus obtained with α variation are shown for rs = 2 by the dashed curves in the

middle panel of figure 2. The parameter β modifies µB by varying the canonical relation

µB ∼
√
µSµH while keeping µS fixed, as is shown for rs = 2 by the dotted lines in the right

panel of figure 2. A detailed discussion about the choice of these parameters can be found

in ref. [11]. These variations in µS and µB vary the arguments of the logarithms in the

evolution kernel, and thus help in estimating the higher-order corrections in the resummed

results. The total resummation uncertainty ∆resum is obtained by taking the maximum of

the absolute deviation from the central profile.

4 Resummed predictions at NNLL′+NNLO

In this section we present our results for the 0-jet gluon-fusion Higgs cross section at

NNLL′+ NNLO with the jet veto imposed via the TBj and TCj variables. We compare

these results to NLL′+NLO and NLL results for the same cross sections, to study the

perturbative convergence.

Let us briefly summarise our set-up. For the PDFs we use the MMHT sets [58]:

the mmht2014lo135 set for the NLL, the mmht2014nlo120 set for the NLL′+NLO, and

the mmht2014nnlo118 set for the NNLL′+NNLO predictions. We take mH = 125 GeV,

mt = 172.5 GeV, mb = 4.7 GeV, and set nf = 5 in all perturbative ingredients. The effect

of finite mb,mt are taken into account in the hard function of the resummation Hgg and

the nonsingular cross section up to NLO; for the NNLO coefficient of the nonsingular cross

section we use the mt →∞,mb → 0 result, whereas for the NNLO coefficient of Hgg we use

the approach described under eq. (2.5). The central prediction has iµH = µFO = mH and

µB, µS defined by the profile functions in eq. (3.1). The uncertainty bands are estimated

using profile scale variations as discussed in section 3.

We plot the cross section with TB/Cj < T cut as a function of T cut, for two choices of

rs in eq. (3.2): rs = 1 and rs = 2. In each case we make plots using both a linear and a

logarithmic x-axis. The results for rs = 2 are given in figure 3 and figure 5, and those for

rs = 1 are given in figure 4 and figure 6. In each figure, we plot our NNLL′+NNLO results

in orange, and give NLL′+NLO and NLL results in blue and green respectively.

In general, we see a substantial reduction of uncertainties going from NLL′ to NNLL′,

due to the increase in the accuracy of resummation as well as matching. The predictions of

higher orders fall within the uncertainty bands of lower orders, thereby indicating a good

perturbative convergence.

Comparing the results with rs = 2 to those with rs = 1, we see a better convergence

between different orders in resummed perturbation theory in the former case, where this is

particularly noticeable for TCj . In the case of TCj with rs = 1, one also observes that the

top of the uncertainty band at T cut ∼ 20 GeV greatly exceeds that of the total NNLO cross

section. This is of course unphysical. For these reasons we would advocate to use the results

with rs = 2 for TCj . The choice of rs = 2, corresponding to the choice of canonical scale

µS = 2T cut, also seems physically reasonable for TCj , since the cut TCj < T cut corresponds
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Figure 3. The dark orange band shows the cumulant NNLL′+NNLO cross section for TBj < T cut

(left panel) and TCj < T cut (right panel) for R = 0.5. The blue and green bands correspond

to NLL′+NLO and NLL predictions respectively, for each of the two observables. The solid lines

indicate the predictions using the central values of the profile scales. These results have been

obtained using rs = 2 in eq. (3.2).
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Figure 4. The same plots as in figure 3, but now generated setting rs = 1 in eq. (3.2).
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Figure 5. The same plots as in figure 3, but with a logarithmic x-axis.

to an mTj cut that is everywhere looser than mTj < 2T cut. For the case of TBj , there is

not a strong difference between the rs = 1 or rs = 2 results and one can use either of these.

We note in passing that similar conclusions with regards to the scales in the resum-

mation region were also found for thrust and C-parameter in e+e− collisions, in ref. [39].

Furthermore, we note that in ref. [2], where NNLL+NNLO predictions were obtained for
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Figure 6. The same plots as in figure 4, but with a logarithmic x-axis.

σ0(T cut)[pb] (rs = 1) σ0(T cut)[pb] (rs = 2)

NLL′+NLO

TBj < T cut = 20 GeV 32.88± 6.95 (21.2%) 32.02± 4.75 (14.8%)

TBj < T cut = 30 GeV 37.05± 6.12 (16.5%) 36.50± 4.96 (13.6%)

NNLL′+NNLO

TBj < T cut = 20 GeV 37.03± 4.06 (10.9%) 34.81± 2.57 (7.39%)

TBj < T cut = 30 GeV 39.77± 3.11 (7.82%) 38.30± 2.23(5.82%)

NLL′+NLO

TCj < T cut = 20 GeV 34.28± 7.37 (21.5%) 33.40± 5.24 (15.7%)

TCj < T cut = 30 GeV 38.10± 6.05 (15.8%) 37.82± 5.27 (13.9%)

NNLL′+NNLO

TCj < T cut = 20 GeV 40.05± 6.28 (15.69%) 37.27± 3.64 (9.77%)

TCj < T cut = 30 GeV 41.39± 3.75 (9.07%) 40.05± 2.75 (6.88%)

Table 1. Predictions for the TBj and TCj H+0-jet cross sections obtained using the central profile

scales, along with the total perturbative uncertainties. The equivalent percentage uncertainties are

shown in brackets.

Higgs production with a cut on beam thrust (the global equivalent of TBj), profile scales

that are rather close to µS = 2T cut, µB =
√
mHµS in the resummation region were used.

Finally, in table 1 we present numbers for the H+0-jet cross section defined by TB/Cj <
T cut, at two sample values of T cut: 20 GeV and 30 GeV. We give the central predictions

and perturbative uncertainties, for both the rs = 1 and rs = 2 cases.

These numbers highlight the improvement in perturbative convergence going from

rs = 1 to rs = 2 that was already visible in figures 3–6. For the results with rs = 2,

the perturbative uncertainties are smaller compared to the results with rs = 1, and the

NNLL′+NNLO results lie closer to the NLL′+NLO ones for rs = 2. We again see that this

is more pronounced for the TCj case, leading to the choice rs = 1 being disfavoured for TCj .

5 Effect of underlying event and hadronisation

The analytic resummed calculations presented in the previous section do not take into

account the effects of underlying event or hadronisation. These effects are formally sup-

pressed, but it is interesting to assess their practical numerical impact, and compare how

much TB/Cj are affected with respect to the conventional jet veto observable pTj .
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In order to do this, we employ a NLO + parton shower set-up, as implemented in

MadGraph5 aMC@NLO interfaced with Pythia8. In Pythia8, the parameters have been

set to their default values as specified by the MadGraph5 aMC@NLO interface. These

parameter values mainly correspond to the Monash 2013 tune [59] — in particular the

underlying event and hadronisation parameters are set as in this tune. We generate ggF

Higgs events, compute the cumulant distributions for TBj , TCj and pTj from these events,

and investigate the effect of turning on and off hadronisation and underlying event (UE) in

the shower on these cumulant distributions. Jets with R = 0.5 are identified in the events

using the anti-kT algorithm [60].

In figure 7, we give the NLO+PS plots for all jet vetoes, for three configurations

of the parton shower: hadronisation and UE turned on, hadronisation on and UE off,

and both hadronisation and UE turned off. figure 8 presents the same plots, but with a

logarithmic x-axis. For the TB/Cj cases, we also give the NNLL′+NNLO prediction, using

the same set-up as in section 4 and taking rs = 1 (rs = 2) for TBj (TCj). To allow for

a meaningful comparison, we rescale all NLO+PS predictions to the total cross section of

our NNLL′+NNLO predictions. The uncertainty bands on the NLO+PS results reflect the

(rescaled) fixed-order scale variation.

From these plots, one can see that hadronisation tends to shift the pTj and TB/Cj
distributions towards lower values, whilst UE pushes these distributions towards higher

values. Non-perturbative hadronisation ‘smears out’ the energy in QCD particle sprays

over a larger area in η−φ phase space, resulting in a loss of pTj and TB/Cj from any given

jet with fixed R. UE sprays extra particles fairly evenly over the η − φ phase space, with

these extra particles pushing up the pTj and TB/Cj values of all jets [61].

One can also already see from these plots that the cross section with a pTj veto is more

strongly affected by hadronisation and UE effects than those with TBj and TCj vetoes.

Finally, it is interesting to note that the rescaled NLO+PS predictions for TBj and TCj
turn out to lie fairly close to the NNLL′+NNLO predictions.

In order to exhibit in more detail the extent to which all three vetoed cross sections

are sensitive to UE and hadronisation, we plot in figure 9 the following ratios:

R(UE/no UE)(T cut) =
σ0

(
T cut

)
|had on, UE on

σ0 (T cut) |had on, UE off
(5.1)

R(no had/had)(T cut) =
σ0

(
T cut

)
|had off, UE off

σ0 (T cut) |had on, UE off
(5.2)

The first ratio indicates the extent to which each observable is sensitive to UE, and the

second indicates the extent to which each observable is sensitive to hadronisation. The

closer the R value is to 1, the lower the sensitivity is. For pTj and TBj , the cumulant cross

sections σ0

(
T cut

)
are computed by integrating pTj or TBj up to T cut as before, whilst for

TCj we integrate up to T cut/2. We do this so that at a given point on the x-axis in figure 9

all the different veto observables correspond to the same ‘central’ pTj veto at yj = Y in

the limit of small jet radius R (namely, pTj |yj=Y,R�1 < T cut).

These results confirm that the cross sections with TBj and TCj vetoes are less sensitive

to UE and hadronisation effects than that with the pTj veto, and show that the cross
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Figure 7. NLO + parton shower results for the Higgs cross section for TB/Cj , pTj < T cut and

R = 0.5, generated using MadGraph5 aMC@NLO interfaced with Pythia8. The overall nor-

malisation of these predictions has been adjusted such that the central predictions reproduce the

NNLO Higgs cross section (including resummation of time-like logarithms) for T cut → ∞. The

green, red and purple bands represent various configurations with regards to the hadronisation and

underlying event. For the TB/Cj cases, we also plot in blue the NNLL′+NNLO analytic prediction

for comparison.

section with the TBj veto is less sensitive than that with the TCj veto for the same central

pTj veto. Reduced sensitivity is of course advantageous, given that our current theoretical

description of these effects is based on models rather than first principles theory.

This ordering of sensitivities to UE and hadronisation effects actually makes intuitive

sense. The rapidity-dependent vetoes TB/Cj impose a similar veto as pTj at yj = Y , but as

one moves away from the Higgs rapidity and |yj − Y | increases, the veto is lifted and one

moves towards simply measuring the inclusive Higgs cross section in these forward regions.

The inclusive Higgs cross section is, of course, much less affected by hadronisation and UE

than the cross section with a restriction on pTj , and this leads to the cross sections with a

TB/Cj veto being less sensitive to UE and hadronisation than that with a pTj veto. With

the same ‘central’ pTj veto at yj = Y , the veto is lifted more quickly as one goes forward

in rapidity for TBj than TCj (see figure 1 of ref. [11]), and this leads to the cross section

with a TBj veto being less sensitive to UE and hadronisation than the cross section with a

TCj veto.
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Figure 8. The same plots as in figure 7, but with a logarithmic x-axis.
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Figure 9. Plots for the ratios R(UE/no UE)(T cut) and R(no had/had)(T cut) defined in eqs. (5.1)

and (5.2).

6 Conclusions

In this paper, we obtained NNLL′+NNLO predictions for the 0-jet gluon-fusion Higgs

cross section, σ0(T cut), where the jet veto is imposed by requiring that no identified jet

has a value of TB/Cj greater than T cut. The observables TBj and TCj , defined in eq. (1.1),

correspond to a rapidity-dependent jet veto: they impose the tightest constraint on jet

transverse mass at ‘central’ rapidities close to the Higgs rapidity, with the veto gradually

loosening as one goes to forward rapidities away from the Higgs. The perturbative uncer-

tainty in these predictions has been estimated through combined scale variations of the

different resummation and fixed-order scales involved. We compared the NNLL′+NNLO
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predictions to lower-order NLL and NLL′+NLO ones, observing in general that the per-

turbative uncertainties significantly reduce as the perturbative order is increased, and that

the predictions of higher orders fall within the uncertainty bands of lower orders, indicating

good perturbative convergence. Explicit results have been provided for jet radius R = 0.5,

but results for other jet radii can be provided on request to the authors.

In the ‘resummation region’ T cut � mH , the soft and beam resummation scales µS
and µB in our predictions should be chosen to be rsT cut and

√
rsmHT cut respectively,

where rs is some number of order 1. We investigated the use of both rs = 1 and rs = 2.

Whilst for TBj the rs = 1 and rs = 2 predictions look rather similar, for TCj use of rs = 2

notably improves the perturbative convergence and avoids an unphysical behaviour in the

jet-vetoed cross section. For these reasons, we advocate the use of our rs = 2 results for

TCj . Taking rs = 2 for TCj , we find, setting T cut to the benchmark value of 20 GeV and R

to 0.5, that the perturbative uncertainty on the vetoed cross section reduces from 15.7%

at NLL′+NLO to 9.77% at NNLL′+NNLO, with the central value increasing from 33.4

pb to 37.3 pb. Repeating the exercise with TBj and taking rs = 1, we find a reduction in

uncertainty from 21.2% to 10.9%, with the central value increasing from 32.9 pb to 37.0 pb.

Using an NLO+PS set-up, we compared the effect of underlying event (UE) and hadro-

nisation on 0-jet ggH cross sections where the jet veto constraint was implemented via TBj ,
TCj or the conventional jet veto observable pTj . Adjusting all three vetoes such that they

imposed the same jet veto at central rapidities (at small R), we found that the cross-section

with the TBj veto was minimally sensitive to both UE and hadronisation, followed by that

with TCj , and then finally the cross section with the pTj veto was the most sensitive. The

fact that the cross sections with rapidity-dependent jet vetoes have a reduced sensitivity

to these theoretically less-well-understood effects is one advantage of using such vetoes.

The use of TB/Cj rather than pTj to classify and veto jets has practical advantages, and

also provides complementary information on the properties of additional jet production in

a given hard process. We look forward to comparing our predictions for 0-jet ggH cross

sections with a TB/Cj veto against data from the LHC experiments.
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