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1 Introduction

The study of heavy quarkonium production or decay is useful to understand both pertur-

bative and nonperturbative physics of QCD. In the past two decades, the widely used

theory for quarkonium physics is the non-relativistic quantum chromodynamics (NRQCD)

factorization [1], which factorizes processes to perturbatively calculable hard parts multi-

plied by nonperturbative long-distance matrix elements (LDMEs). Because LDMEs are

simply numbers, the NRQCD factorization has strong predictive power.

However, recent studies reveal that NRQCD factorization encounters some difficulties

in describing inclusive quarkonium production data. In ref. [2], it was argued that the

difficulties of NRQCD may be caused by the bad convergence of relativistic expansion. To

overcome this problem, a new factorization method called soft gluon factorization (SGF)

was proposed [2]. In this method, a series of relativistic corrections can be resummed to

all orders and thus a better convergences in relativistic expansion is expected.

Exclusive quarkonium processes have also been paid a lot of attentions to. For ex-

ample, the leading order (LO) in αs calculation of J/ψ + ηc production at B factories

in NRQCD [3, 4] conflicts with experimental data [5], which attracts a lot of studies of

relativistic corrections [6, 7] and high order QCD corrections [8–10]. Later on, the fac-

torization theorem for double charmonia production was proved rigorously [11–13]. The

exclusive production of ηc + γ at B factories has also been studied extensively within the
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NRQCD factorization [14–21]. Recently, this cross section was measured by the Belle Col-

laboration [22], which found an unexpectedly small result comparing with all theoretical

predictions.

Due to the advantage of SGF, it is interesting to see what happens if one applies it to

exclusive quarkonium processes, which is the aim of this paper. In the rest of the paper,

we first establish the general method to apply SGF on exclusive quarkonium processes. We

then take σe+e−→ηc+γ and Γ(ηc → γ + γ) as examples to do phenomenological study. We

will find that the SGF can not only factorize perturbative physics from nonperturbative

physics but also factorize kinematical physics from dynamical physics. Because of the later

effect, the SGF has much less free parameters comparing with NRQCD factorization, and

therefore it has much stronger predictive power. Our result for ηc + γ production cross

section is the closest one to data among all theoretical calculations.

2 Factorization formula for exclusive processes

2.1 From inclusive formula to exclusive formula

In SGF, the differential cross section for inclusive production of a quarkonium H is given

by [2]

(2π)32P 0dσH
d3P

=
∑
n

∫
d4Pc
(2π)4

Hn(Pc)Fn→H(Pc, P ), (2.1)

where Hn(Pc) are perturbatively calculable hard parts that, roughly speaking, produce an

intermediate state n with total momentum Pc, and Fn→H(Pc, P ) are called soft gluon distri-

butions (SGDs) that describe the hadronization of the intermediate state to the quarkonium

H with momentum P .

Exclusive process can be thought of as a special case of inclusive process, where there is

no real emission during the hadronization process, described by Fn→H(Pc, P ). As a result,

all conserved quantities are the same between the intermediate state n and the quarkonium

H, which include total momentum, color charge, and JPC . The momentum conservation

enables the decomposition

Fn→H(Pc, P )→ (2π)4δ4(Pc − P )〈OHn 〉ex, (2.2)

where the subscript “ex” means exclusive production. Then we get the factorization for-

mula for exclusive production of polarization summed quarkonium

(2π)32P 0dσH
d3P

=
∑
n

Hn(P )〈OHn 〉ex. (2.3)

2.2 Definition of nonperturbative matrix elements

As discussed in ref. [2], the intermediate state n should at least contain a QQ pair. In

addition to that, n can also contain dynamical soft partons, i.e., gluons or light (anti-

)quarks. Contributions from intermediate states with soft partons are inevitably suppressed
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by powers of v, the typical velocity of heavy quark inside of the quarkonium, and usually

there is no mechanism to enhance this kind of contributions [2]. Therefore, as the first

approximation, we only consider intermediate states that do not contain dynamical soft

partons and denote quantum numbers of n in terms of spectroscopic notation 2S+1L
[1]
J,Jz

,

with superscript 1 denoting color singlet. Then, we have

〈OHn 〉ex =
∑
JH
z

〈0|[ΨKnΨ]†(0)|H〉S〈H|[ΨKnΨ](0)|0〉S , (2.4)

where “S” means removing hard modes in the operator definition [2], the quarkonium state

has standard relativistic normalization, and Kn are defined as [2]

Kn =

√
M

M + 2m

M + /P

2M
Γn
M − /P

2M
C[1] , (2.5)

where m is the mass of heavy quark, M is the mass of heavy quarkonium, and color

projector C[1] = 1/
√
Nc. If n is S-wave, we have

Γn =

{
γ5, if S = 0,

εµSz
γµ, if S = 1,

(2.6)

where εµSz
is polarization vector with P · εSz = 0. For other cases, we refer the definition of

Γn in ref. [2]. Following the discussion in ref. [2], we can obtain

〈OHn 〉ex =
1

2Nc
〈OHn 〉ex[1 +O(v2)], (2.7)

where 〈OHn 〉ex are standard NRQCD LDMEs for exclusive quarkonium production, which

can be related to inclusive quarkonium production LDMEs via vacuum saturation approx-

imation [1],

〈OHn 〉ex = 〈OHn 〉[1 +O(v4)]. (2.8)

2.3 Factorization formula at the amplitude level

Based on the above definition, it is clear that the factorization formula eq. (2.3) can be

expressed at the amplitude level as1

AH(P ) =
∑
n

Ân(P )R
n
H , (2.9)

where

R
n
H = 〈H|[ΨKnΨ](0)|0〉S . (2.10)

1Considered the fact that different intermediate states can interfere with each others, the factorization

formula at the amplitude level is more precise.
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with

〈OHn 〉ex =
∑
JH
z

∣∣RnH ∣∣2 , (2.11)

σH =
1

2s

∫ ∑
|AH(P )|2dPS, (2.12)

where “Σ” means averaging over initial states and summing over final states. Note that,

based on the relation eq. (2.7), R
n
H can be related to wave function at the origin of the

heavy quarkonium [1] up to O(v2) corrections.

2.4 Perturbative matching

The factorization formula eq. (2.9) will be our start point to study exclusive quarkonium

production in the following. To use this formula, we need to calculate Ân(P ) in perturba-

tion theory. To this end, we relable n in eq. (2.9) by n′ and then project H to a color-singlet

state n = QQ
(

2S+1L
[1]
J

)
in both sides of the equation, which results in

An(P ) =
∑
n′

Ân′(P )R
n′

n , (2.13)

where the definition of projection will be explained below.

Following ref. [2], we define a complete set of on-shell color-singlet state n =

QQ
(

2S+1L
[1]
J

)
with momenta

pQ = P/2 + q, (2.14)

pQ = P/2− q. (2.15)

We project the pair to color-singlet state by C[1], and we project the pair to state with

total spin S and Sz by replacing spinors of QQ pair by

Π̃SSz =
(/pQ −m)M−/P2M Γ̃sSSz

M+/P
2M (/pQ +m)

√
M(M/2 +m)

, (2.16)

with

Γ̃s00 = −γ5, (2.17a)

Γ̃s1Sz
= ε∗µSz

γµ. (2.17b)

On-shell conditions p2
Q = p2

Q̄
= m2 results in

P · q = 0, (2.18)

q2 = m2 −M2/4, (2.19)

which constrain two degrees of freedom of q. The other two degrees of freedom of q, defined

as spatial angles in the rest frame of the pair, can be removed by partial wave expansion.
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Eventually, we get our definition

An(P ) =
∑
Lz ,Sz

〈L,Lz;S, Sz|J, Jz〉
∫
d2Ω|q|−L

√
(2L+ 1)!!

4π(L!)
Y ∗Lz
L Tr

[
C[1]Π̃SSzAQ+Q(P )

]
,

(2.20)

where AQ+Q(P ) is the QQ production amplitude with spinors of QQ removed. Similarly,

R
n′

n =
∑
Lz ,Sz

〈L,Lz;S, Sz|J, Jz〉
∫
d2Ω|q|−L

√
(2L+ 1)!!

4π(L!)
Y ∗Lz
L Tr

[
C[1]Π̃SSzR

n′

Q+Q

]
. (2.21)

Following the derivation in ref. [2], we have

R
n′(0)
n = δnn′ , (2.22)

where the superscript “(0)” denotes leading order in αs expansion.

By inserting perturbative expansions

An = A(0)
n + αsA(1)

n + α2
sA(2)

n + · · · , (2.23a)

Ân′ = Â(0)
n′ + αsÂ(1)

n′ + α2
sÂ(2)

n′ + · · · , (2.23b)

R
n′

n = R
n′(0)
n + αsR

n′(1)
n + α2

sR
n′(2)
n + · · · (2.23c)

into eq. (2.13) and using the orthogonal relations eq. (2.22), we get the following relations

Â(0)
n =A(0)

n , (2.24a)

Â(1)
n =A(1)

n −
∑
n′

A(0)
n′ R

n′(1)
n , (2.24b)

Â(2)
n =A(2)

n −
∑
n′

A(1)
n′ R

n′(1)
n −

∑
n′

A(0)
n′ R

n′(2)
n , (2.24c)

and so on. Based on these relations, to get the perturbative expansion of Ân, we need to

calculate An and R
n′

n perturbatively.

2.5 Factorization formula for quarkonium exclusive decay

For quarkonium exclusive decay, we have similar factorization formula at the ampli-

tude level

AH =
∑
n

ÂnRn∗H , (2.25)

with decay width

ΓH =
1

2M

∫ ∑
|AH |2dPS. (2.26)
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Similar to quarkonium production, Ân can be perturbatively calculated with

Ân(0) =An(0), (2.27a)

Ân(1) =An(1) −
∑
n′

An′(0)R
n′∗(1)
n , (2.27b)

and so on. In these relations, An is defined by

An =
∑
Lz ,Sz

〈L,Lz;S, Sz|J, Jz〉
∫
d2Ω|q|−L

√
(2L+ 1)!!

4π(L!)
Y Lz
L Tr

[
C[1]ΠSSzAQ+Q

]
, (2.28)

where AQ+Q is the QQ decay amplitude with spinors of QQ removed and

ΠSSz =
(/pQ +m)M+/P

2M ΓsSSz

M−/P
2M (/pQ −m)

√
M(M/2 +m)

, (2.29)

with

Γs00 = −γ5, (2.30a)

Γs1Sz
= εµSz

γµ. (2.30b)

3 Applications

3.1 Leading order calculation of e+e− → ηc + γ

For ηc production, we have JPC = 0−+, which demands n = 1S
[1]
0 . Thus the amplitude of

e+e− → ηc + γ is given by

Ae+e−→ηc+γ = Â
e+e−→cc̄(1S[1]

0 )+γ
R

1S
[1]
0

ηc . (3.1)

At the lowest order in αs, we have

Â(0)

e+e−→cc̄(1S[1]
0 )+γ

= A(0)

e+e−→cc̄(1S[1]
0 )+γ

, (3.2)

with

A(0)

e+e−→cc̄(1S[1]
0 )+γ

=

∫
d2Ω

4π
Tr
[
C[1]Π̃00A(0)

e+e−→c+c̄+γ

]
. (3.3)

Therefore, we need to calculate the two Feynman diagrams in figure. 1. Since the

leptonic current is independent of spatial angles, we separate it from the complete amplitude

and rewrite eq. (3.3) as

A(0)

e+e−→cc̄(1S[1]
0 )+γ

=
−i
s
Lµε∗ν(k)Aµν (3.4)

where s = (ke+ + ke−)2 is the square of center of mass energy, ε∗ν(k) is the polarization

vector of the final-state photon and the leptonic current Lµ is defined by

Lµ = −ie v(ke+)γµu(ke−). (3.5)

– 6 –
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e−

e+

γ γ

ηc ηc
e−

e+

Figure 1. Feynman diagrams for the process e+e− → ηc + γ at leading order in αs.

Lorentz symmetry, C, P and T invariance imply that the hadronic current can be

expressed as

Aµν = εµνPkA, (3.6)

where A is a lorentz invariant quantity. Then we multiply εµνPk on both sides of eq. (3.6)

and sum over Lorentz indexes, we obtain

A =
AµνεµνPk
2(P · k)2

, (3.7)

where we have used εµνPkεµνPk = 2(P · k)2. Then the integration over spatial angles is

very easy, which eventually gives

A =
96παme2

c

M
√

3Mδ(s−M2)
ln

(
1 +
√
δ

1−
√
δ

)
(3.8)

where δ = 1− 4m2/M2 and electronic charge of charm quark is denoted by ec e.

By substituting for leptonic current

LµL∗µ′ → −
4e2s

3
gµµ′ (3.9)

and for the summation of photon polarization∑
ε∗(k)νε(k)ν′ → −gνν′ , (3.10)

we get the cross section

σe+e−→ηc+γ =
1

2s

∫
|Ae+e−→ηc+γ |2dPS2

=
1

2s

∫ (
1

s2

)(
1

4

)(
− 4e2s

3
gµµ′

)
(−gνν′)εµνPkεµ

′ν′Pk|A|2〈Oηc
1S

[1]
0

〉exdPS2

=
128π2α3m2e4

c(s−M2)

s3M3δ
ln2

(
1 +
√
δ

1−
√
δ

)
〈Oηc

1S
[1]
0

〉ex . (3.11)

According to the proposal in SGF [2], one can expand m in the hard part around M/2

to simply the calculation, which is equivalent to expand eq. (3.11) in power series of δ,

which gives

σe+e−→ηc+γ =
128π2α3e4

c(s−M2)

s3M
〈Oηc

1S
[1]
0

〉ex

(
1− 1

3
δ − 7

45
δ2 − 29

315
δ3 + . . .

)
, (3.12)
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where high order terms in this expansion can be thought of as relativistic corrections to

the lowest order term.

3.2 Leading order calculation of ηc → γγ

We begin with the amplitude of ηc → γγ

Aηc→γγ = Âcc̄(1S
[1]
0 )→γγR

1S
[1]
0 ∗

ηc , (3.13)

with

Acc̄(1S
[1]
0 )→γγ =

∫
dΩTr

[
C[1]Π00Ac+c̄→γγ

]
. (3.14)

The amplitude can be decomposed as

Acc̄(1S
[1]
0 )→γγ = ε∗µ(k1)ε∗ν(k2)Aµν , (3.15)

where ki(i = 1, 2) are momenta of γ’s in the final state and the hadronic current Aµν can

be calculated similarly to the production case.

The decay width of ηc → γγ in SGF gives

Γ(ηc → γγ) =
1

2M
· 1

2!

∫
|Aηc→γγ |2dPS2

=
1

2M
· 1

2!
· (−gµµ′)(−gνν′)εµνPkεµ

′ν′Pk|A|2 1

8π
〈Oηc

1S
[1]
0

〉ex

=
48πα2m2e4

c

M4δ
ln2

(
1 +
√
δ

1−
√
δ

)
〈Oηc

1S
[1]
0

〉ex.

(3.16)

This expression is consistent with NRQCD calculation in ref. [23] and references therein, al-

though the meaning of δ is significantly different in SGF and that in NRQCD. In the former

case, δ is a constant in perturbative hard part, while in the later case δ is a free parameter

in QCD calculation and Taylor expansion by which defines perturbative hard part.

3.3 Numerical result

Based on eqs. (3.11) and (3.16), we get

σe+e−→ηc+γ =
8παM(s−M2)

3s3
Γ(ηc → γγ), (3.17)

which relates the exclusive production cross section of ηc with the exclusive decay width.

This relation holds at leading order in αs and all orders in v if we ignore contributions

from operators with explicit dynamical soft fields. It is impressive that this relation has

no dependence on heavy quark mass m. We note that a relation similar to eq. (3.17) also

exists in NRQCD, which can be obtained by simply replacing M by 2mc in eq. (3.17).

However, the similar relation in NRQCD is valid only at leading order in v and it depends

on heavy quark mass. As a result, the prediction for σe+e−→ηc+γ using eq. (3.17) in SGF

has almost no free parameters, while the prediction using the similar relation in NRQCD

depends on how to play with heavy quark mass and relativistic corrections.
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In numerical calculation, we choose the fine structure constant α = 1/137, the quarko-

nium mass M = 2.98 GeV and collision energy
√
s = 10.58 GeV for B factories. By using

experiment result for decay width [24]

Γ(ηc → γγ) = 5.02± 0.13± 0.38 keV, (3.18)

we get the prediction for cross section of e+e− → ηc + γ in SGF:

σe+e−→ηc+γ = 26.2± 2.1 fb. (3.19)

Note that here we only include uncertainties from experimental side, but have not con-

sidered theoretical ones. Considering αs corrections and v2 corrections from operators

with explicit dynamical soft fields, a 30% uncertainty should be expected, which amounts

to ±8 fb.

If we further choose the heavy quark pole mass as m = 1.4± 0.2 GeV, we obtain

2Nc〈Oηc1S[1]
0

〉ex = 0.176± 0.014+0.021
−0.015 = 0.176+0.025

−0.021GeV3. (3.20)

where the later uncertainty is due to the varying of heavy quark mass.

4 Comparison with NRQCD factorization and the Belle’s measurement

In the NRQCD factorization [1], the calculation of the cross section of e+e− → ηc + γ is

very similar to that in the SGF method, but one needs to expand q2 in the hard part and

then put it into the definition of LDMEs. By setting M2 = 4m2 − 4q2, from eq. (3.11) we

can obtain the cross section calculated in NRQCD:

σe+e−→ηc+γ =σ̂v
0

1S
[1]
0

〈Oηc(1S
[1]
0 )〉ex + σ̂v

2

1S
[1]
0

〈Pηc(1S
[1]
0 )〉ex + · · · , (4.1)

with short-distance coefficients

σ̂v
0

1S
[1]
0

=
32π2α3e4

c(s− 4m2)

3ms3
, (4.2)

σ̂v
2

1S
[1]
0

= −16π2α3e4
c(5s+ 4m2)

9ms3
, (4.3)

where σ̂v
0

1S
[1]
0

agrees with results in refs. [15, 25] and σ̂v
2

1S
[1]
0

agrees with results in refs. [15–19].

The terms in eq. (4.1) are organized by the power counting in v, e.g., the second

term is v2 suppressed comparing with the first term. As each term introduces one free

parameter, in NRQCD factorization one needs a lot of nonperturbative parameters to

provide a precise description of the cross section. In contrast, one needs only one parameter

in SGF framework.2

In table 1, we compare predictions based on SGF and that based on NRQCD factor-

ization [16–18]. Because of different choice of parameters, results at lowest order in v are

2Note that, both in NRQCD and SGF, we have ignored intermediate states that explicitly include

dynamical soft partons.
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SGF NRQCD [16] NRQCD [18] NRQCD [17] Ex.UL [22]

v0 83.3 117 83.2

21.1
v2 73.5 92

v∞? 68.9

v∞ 26.2

Table 1. The cross section σe+e−→ηc+γ calculated in SGF and NRQCD at LO in αs, as well as

the experimental upper limit measured by the Belle Collaboration (in unit of fb).

very different between these references. Especially, the 〈Oηc
1S

[1]
0

〉ex is chosen as 0.437 GeV3 in

refs. [16, 17] and 0.694GeV3 in ref. [18]. The difference of the parameters can be well under-

stood. For example, comparing our result in eq. (3.20) with 〈Oηc
1S

[1]
0

〉ex = 0.437+0.111
−0.105 GeV3

obtained in ref. [23], nearly half of the suppression is due to the change of experimental

value Γ(ηc → γγ) from the older one 7.2±0.7±2.0 keV to the new one 5.02±0.13±0.38 keV.

About another half of the suppression is due to the missing of αs correction in our result.

As we have not calculated αs corrections, the value in eq. (3.20) can be only consistently

used for leading order in αs calculations, like that in eq. (3.12).

To improve theoretical precision in NRQCD factorization, in ref. [17] the authors resum

the relativistic correction to all orders for e+e− → ηc + γ. This resummation in principle

needs infinity number of nonperturbative parameters, which are modeled by assuming a

generalized Gremm-Kapustin relation [26] that relates all LDMEs at higher order in v to

〈Oηc(1S
[1]
0 )〉ex. The resummed result is also listed in table 1. One can find that the SGF

prediction is smaller than all predictions using NRQCD.

It is interesting to understand why there are less parameters in SGF comparing with

NRQCD. Let us begin with the Gremm-Kapustin relation [27],

〈Pηc(1S
[1]
0 )〉ex =

1

2
m(M − 2m)〈Oηc(1S

[1]
0 )〉ex(1 +O(v2)), (4.4)

where O(v2) terms are caused by matrix elements of operators with dynamical gluon fields.

The Gremm-Kapustin relation tells us that nonperturbative behavior (infrared divergences

in perturbation theory) of 〈Pηc(1S
[1]
0 )〉ex can be decomposed by that of leading LDME

〈Oηc(1S
[1]
0 )〉ex and other LDMEs with dynamical gluon fields. Therefore, for the purpose

of a valid factorization, the introduction of 〈Pηc(1S
[1]
0 )〉ex into the factorization formula is

unnecessary.

In NRQCD factorization, one introduces nonperturbative quantities like 〈Pηc(1S
[1]
0 )〉ex

into factorization formula so that hard parts in eq. (4.1) are independent of quarkonium

mass. But the price to pay is that one has lots of nonperturbative parameters.

In SGF, we do not introduce nonperturbative quantities similar to 〈Pηc(1S
[1]
0 )〉ex (see

discussion in appendix A of ref. [2]). Leading contributions of these quantities are purely

kinematic and they have been taken into account by coefficients of 〈Oηc
1S

[1]
0

〉ex. Other contri-

butions can be taken into account by nonperturbative SGDs with dynamical gluon fields,

which are neglected in this paper but can be systematically included. In this sense, be-

sides factorizing perturbative physics from nonperturbative physics, the SGF also factorizes

– 10 –
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kinematical physics from dynamical physics. It is the later effect that enables SGF to have

less free parameters and thus to have a stronger predictive power.

As for the experimental aspect, recently Belle Collaboration measured the total cross

section for e+e− → ηc + γ at various center of mass energies [22] and gave the upper limit

for the total cross section of this process as σUL = 21.1fb with
√
s = 10.58GeV at 90%

credibility level. It can be seen from table 1 that the SGF result is closest to the upper

limit of experimental result. Considering also theoretical uncertainties from higher order

corrections, our result is consistent with the Belle’s measurement.

5 Summary and outlook

In summary, we set up a general framework to apply the newly proposed SGF to ex-

clusive quarkonium production or decay. Comparing with the NRQCD factorization, our

method resums a series of relativistic corrections to all orders, which can reduce theoretical

uncertainties. More importantly, our method has much less number of nonperturbative pa-

rameters and therefore has a stronger predictive power. To make it possible, the SGF not

only factorizes perturbative physics from nonperturbative physics but also factorizes kine-

matical physics from dynamical physics. Although corrections from kinematical physics

and dynamical physics have similar velocity power counting in NRQCD effective theory,

they may be significantly different in size for phenomenological problems. Usually, we ex-

pect the kinematical part may have more important contributions. Therefore, the SGF,

which resums the series of relativistic corrections originating from kinematical effects, may

have a better convergence of velocity expansion comparing with NRQCD.

Taking σe+e−→ηc+γ and Γ(ηc → γ+γ) as examples, we show how to use our new method

to do phenomenological study. We find that these two quantities can be related to each

other in eq. (3.17), which holds to all orders in v, if we ignore operators involving explicit

dynamical soft fields, and is independent of charm quark mass. Based on experimental

inputs, we provide a prediction for σe+e−→ηc+γ . Comparing with other predictions, our

result agrees best with Belle’s measurement.
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