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A.1 Continuous series components 39

A.1.1 Basis functions and asymptotic coefficients 39

A.1.2 S̃L(2,R)-invariant two-point functions 43

A.1.3 Some special cases 48

A.2 Discrete series components 49

A.3 The algebra of S̃L(2,R)-invariant two-point functions 51

1 Introduction

Dilaton gravity in 1 + 1 dimensions is free of UV divergences and therefore should allow a

fully quantum treatment. A particularly simple model, due to Jackiw [1], Teitelboim [2],

and Almheiri and Polchinski [3], is well-studied semiclassically and represents a whole uni-

versality class. Its vacuum solution describes an eternal black hole. The spacetime is rigid

with constant negative curvature, and thus can be embedded in ÃdS2. The entire dynamics

is associated with two time-like boundaries that are close to the spatial infinities. They

may be regarded as particles moving in the anti-de Sitter space, see figure 1. However, the

quantization of this system and the construction of a canonical ensemble pose a challenge

because the phase volume is infinite. This issue is also pertinent to higher-dimensional

black holes and to the early Universe [4]. Completely resolving it in the simplest case

might help to make progress in the more realistic settings.
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a) b)

Figure 1. The Euclidean (a) and Lorentzian (b) geometries in the Jackiw-Teitelboim theory. The

physical spacetime (shaded) is embedded in the Poincare disk or the global anti-de Sitter space.

There are in fact several related problems that are reasonable to consider together.

The Sachdev-Ye-Kitaev (SYK) model [5–7] is a well-defined quantum system with a

finite-dimensional Hilbert space. At low temperatures, it exhibits a collective soft mode

with gravity-like behavior, whose effective action involves the Schwarzian derivative,

Sch
(
f(x), x

)
= f ′′′

f ′ −
3
2

(f ′′
f ′

)2
[6–8]. Specifically, the Euclidean action is

ISch[ϕ] = −γ
ˆ L

0
Sch(eiϕ, `) d`, (1.1)

where ` = JτSYK and L = JβSYK are the imaginary time and inverse temperature in natural

units, and γ = αSN with N being the system size and αS some numerical coefficient.

The dynamical degree of freedom is a smooth orientation-preserving map ϕ from a circle

of length L (representing the imaginary time) to the standard circle of length 2π. The

effective action (1.1) is applicable when JβSYK � 1 and N � 1. Under these assumptions,

the SYK partition function is given by the formula

lnZSYK ≈ −βSYKE0 + S0 + lnZSch, (1.2)

where S0 = Ns0 + const is a so-called “zero-temperature entropy”, and ZSch is defined as

the integral of exp(−ISch[ϕ]) with a suitable measure.

While the SYK problem has two large parameters, ZSch depends only on their ratio,

β = L/γ. Indeed, the effective action can be written as −(2π/β)
´ 2π

0 Sch(eiϕ, θ) dθ. If β �
1, the problem is classical. The minimum action is achieved at the function ϕ(θ) = θ; hence

ZSch(β) ∼ exp
(
−min

ϕ
ISch[ϕ]

)
= e2π2/β for β = L/γ � 1. (1.3)

In general, the Schwarzian partition function and density of states are as follows:

ZSch(β) =

ˆ ∞
0
e−βESchρSch(ESch) dESch ∝ β−3/2e2π2/β , ρSch(ESch) ∝ sinh

(
2π
√

2ESch

)
.

(1.4)

(The unspecified coefficients of proportionality depend on the normalization of the inte-

gration measure.) This result was derived in several ways, in particular, by solving the
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SYK model in the double-scaling limit [9], by evaluating the Schwarzian path integral ex-

actly [10], and by reducing the problem to Liouville quantum mechanics [11, 12]. The last

method is the most powerful one as it can also be used for calculation of matrix elements.

Two different reductions of the Schwarzian theory to a 2D CFT with a large central charge

were proposed in [13]. Our approach will be similar to that of [11, 12], but we consider a

more general problem, one that has two parameters but fewer infinities to worry about. As

a consequence, the wavefunction, including the overall factor, is defined unambiguously.

The Schwarzian action also arises from two-dimensional Jackiw-Teitelboim theory,

which involves the metric tensor g and a dilaton field Φ [14–16]. The Euclidean action is

IJT[g,Φ] = − 1

4π

ˆ
D

Φ(R+ 2)
√
g d2x− 1

2π

ˆ
∂D

ΦK d`, (1.5)

where D is a disk, d` is the boundary length element, and K is the extrinsic curvature.

The boundary term is such that the variation of the action depends only on δg and δΦ

but not their derivatives; this is necessary to define boundary conditions. The condition

Φ|∂D = Φ∗ (for some constant Φ∗) is imposed and the total boundary length L is fixed.

The bulk term in (1.5) gives the constraint R = −2 but vanishes on-shell. Thus one

can isometrically embed (or more generally, immerse) D in the Poincare disk so that the

action becomes −Φ∗
2π

´
∂DK d`. It is convenient to also add a trivial term proportional to L:

Ig = IJT + γL = −γ
ˆ
∂D

(K − 1) d`, γ =
Φ∗
2π
. (1.6)

Now, consider polar coordinates r, ϕ on the Poincare disk as functions on the curve ∂D,

which is parametrized by the proper length `. If L � 1, it is reasonable to assume that

r(`) is close to 1 and that the curve is roughly parallel to the unit circle. Then

K − 1 ≈ Sch(eiϕ(`), `). (1.7)

(For the reader’s convenience, this equation is derived in the beginning of the next section.)

We conclude that action (1.6) is approximately equal to the Schwarzian action.

Not making any approximations, one can still simplify action (1.6). By the Gauss-

Bonnet theorem,
´
∂DK d` equals 2π plus the area enclosed by the curve. Then we ar-

rive at the following geometric action and global constraint for a closed curve X in the

Poincare disk:

Ig[X] = −γ
(
area[X]− L+ 2π

)
, length[X] = L. (1.8)

We assume that γ > 0 and take area[X] to be positive if X goes counterclockwise. As has

just been explained, this model is classically equivalent to Jackiw-Teitelboim theory. How-

ever, the functional integrals appear to be different. Indeed, each of the integrals should

include all curves (even self-intersecting ones) for which the corresponding action makes

sense. The area is defined for all closed curves, whereas in the dilaton problem, a curve

should bound an immersed disk. On the other hand, both models are quantum mechani-

cally equivalent to the Schwarzian model if γ and L are large. The rough argument is that

under this assumption, typical curves have K ≈ 1 and do not wiggle too much, so that one

can use equation (1.7). We will refer to the condition γ, L� 1 as the Schwarzian limit.
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There are several ways to think about problem (1.8). One is that it describes a particle

with an imaginary charge in a constant magnetic field. We prefer a slightly different

interpretation: that there is a particle with spin ν = −iγ on the hyperbolic plane. One

may also view the region enclosed by a curve X as a balloon whose wall is flexible but

cannot be stretched; the air pressure inside tries to maximize the two-dimensional volume,

that is, area[X].

To elaborate on the previous statement regarding the fully quantum geometric model,

we need to define the functional integral. This involves regularization, whereby Ig[X] is

replaced by another action I[X] that is quadratic in derivatives, see section 3. We choose

not to include the term −2πγ in the regularized action, which results in the multiplication

of the partition function by e−2πγ . This partition function will be expressed as Z =´
e−βEρ(E) dE, with ρ(E) calculated explicitly. In general, the renormalized parameters

β and E depend on L, Eg, and the UV cutoff. But in the Schwarzian limit, there is a

cutoff-independent renormalization scheme,

β = L/γ, E = γEg −
γ2

2
+

1

8
, γEg = ESch, (1.9)

under which

lnZ(β) ≈ −β
(
−γ

2

2
+

1

8

)
− 2πγ + lnZSch(β), ρ(E) ≈ e−2πγρ(ESch). (1.10)

Let us stress some unusual features of the geometric model. To define the partition

function, we divide an infinite Euclidean path integral by the volume of the hyperbolic plane

(and also by 2π, so that we are actually dividing by the volume of the Euclidean symmetry

group PSL(2,R)). This makes for a reasonable statistical mechanics problem, but does not

guarantee that it can be formulated in terms of a Hilbert space and a Hamiltonian. In fact,

although Z =
´
e−βEρ(E) dE with ρ(E) ≥ 0, we cannot write Z = Tr

(
e−βH

)
. Or rather,

a formula like that exists, but the trace is not the conventional one. We will see that

Z(β) =
1

2
tr
(
e−βHP

)
, (1.11)

where tr is the usual trace divided by the volume of the Lorentzian symmetry group

S̃L(2,R), and P commutes with the Hamiltonian. Furthermore, the thermofield double

state is given by Z−1/2e−βH/2Φ for a certain Φ that is anti-Hermitian, squares to −P, and

commutes with H.

Some existing work related to our subject matter is as follows: the semi-classical

wavefunction for the Hartle-Hawking state in Jackiw-Teitelboim gravity was studied in [17],

and the quantum entropy of the Hartle-Hawking state in the same theory was studied

in [18].

2 Geometry and classical trajectories

The metric on the hyperbolic plane H2 (with unit curvature radius) is described by the

Poincare disk model:

ds2 = 4
(dx1)2 + (dx2)2

(1− r2)2
, r2 = (x1)2 + (x2)2. (2.1)
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Depending on the situation, it may be convenient to use polar coordinates (r, ϕ) or complex

variables z = x1 + ix2 and z̄ = x1 − ix2. The metric has a symmetry group G that

is isomorphic to PSL(2,R) = SL(2,R)/{±1}. It consists of all linear fractional maps

z 7→ az+b
cz+d preserving the unit disk, where the matrix

(
a b
c d

)
has unit determinant and is

defined up to sign. To work with spinors, we need to fix a gauge, i.e. a cross section of

the principal S̃O(2) bundle over H2 (where the tilde indicates the universal cover). This

is essentially equivalent to choosing an orthonormal frame (v1, v2) at each point. The spin

connection is given by the set of coefficients

ω a
µ b = ωµΞab, (2.2)

where the matrix
(

Ξ1
1 Ξ1

2

Ξ2
1 Ξ2

2

)
=
(

0 −1

1 0

)
is the rotation generator. For example, in the disk

gauge (̊v1, v̊2),

(
v̊1

1 v̊
1
2

v̊2
1 v̊

2
2

)
=

1− r2

2

(
1 0

0 1

)
, (2.3)

the spin connection is

(ω̊r, ω̊ϕ) =

(
0,

2r2

1− r2

)
. (2.4)

Let us consider a closed, counterclockwise curve X parametrized by proper length `,

and let α be the angle between the tangent to the curve and circumferential direction. Then

rϕ′ =
1− r2

2
cosα, r′ =

1− r2

2
sinα,

K = ϕ′ − α′ + ω̊µ(Xµ)′ =
1 + r2

2r
cosα− α′.

(2.5)

(2.6)

(In the last equation, ϕ′−α′ is the rotation rate of the tangent vector relative to the local

frame.) Knowing ϕ as a function of `, one can try to solve for r and α. The task is simplified

if 1− r and α are small. In the first approximation, 1 − r ≈ ϕ′ and α ≈ −ϕ′′/ϕ′. Hence

K − 1 ≈ 1

2
ϕ′2 − 1

2

(
ϕ′′

ϕ′

)2

+

(
ϕ′′

ϕ′

)′
= Sch(eiϕ, ϕ)ϕ′2 + Sch(ϕ, `) = Sch(eiϕ, `), (2.7)

as was stated in the introduction.

We now discuss the variational problem (1.8). Since the hyperbolic plane has scalar

curvature R = −2, the area inside a closed curve X is equal to
´

(−R/2)
√
g d2x =

´
ωµdX

µ.

The last expression represents the holonomy of a local frame; it serves as a (gauge-

dependent) analogue of the area for open curves. Imposing the constraint length[X] = L

using a Lagrange multiplier Eg, we obtain the modified action Ig−EgL which is expressed

in detail as

Ig[X]− Eg length[X] =

ˆ (
M d`− γωµ dXµ

)
− 2πγ, M = γ − Eg. (2.8)
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It is natural to assume that M > 0 so that classical trajectories are stable to ripples, and we

have already stated that γ > 0 so that the counterclockwise direction is preferred. (These

assumptions are relevant to quantization and thermodynamics rather than equations of

motion.) Recall that in the original problem, the path length L is the inverse temperature.

Therefore, one may interpret L−1Ig as free energy, Eg as energy, and Sg = −(Ig−EgL) as

entropy. Such interpretations are good semiclassically, but there are two caveats concerning

their use in the quantum case. First, the action (2.8) has no minima and only saddle

points, which are circles of a certain length L. Such a circle is minimal if L is fixed, but

represents a maximum with respect to L. For this reason, we will consider the fixed length

variant of the path integral, then express the partition function and discuss energy and

entropy. The second issue is that the path integral definition involves some renormalization

of parameters, see section 3.

To find the extremal paths, it is convenient to introduce an auxiliary time variable τ

and write the action as
´
LE dτ − 2πγ with the Euclidean Lagrangian

LE = M |Ẋ| − γωαẊα. (2.9)

(Here we have used the notation |v| =
√
gαβvαvβ .) The Euclidean momentum is

(pE)α =
∂LE

∂Ẋα
= M

Ẋα

|Ẋ|
− γωα, (2.10)

whereas the Hamiltonian is identically zero. Note the momentum satisfies the constraint

|pE + γω|2 = M2. (2.11)

The equation of motion,

MK = γ, (2.12)

is made intuitive using the balloon picture: M is the tension of the balloon wall, and γ is

the air pressure inside.

The solutions of equation (2.12) are curves with a constant curvature K. The ther-

modynamic interpretation requires that the curves be closed. Closed curves with constant

curvature in the Poincare disk are circles; all circles with the same curvature are related to

each other by symmetry transformations. Thus a representative solution is as follows:

zz̄ = r2, where r = K −
√
K2 − 1, K > 1. (2.13)

Some of its characteristics are

L =
2π√
K2 − 1

, Eg = γ−M = γ(1−K−1), Sg = −(Ig−EgL) = 2πγ
√

1−K−2. (2.14)

Using these relations, we can replace one of the conditions of the Schwarzian limit with

equivalent ones,

L� 1 ⇔ M/γ ≈ 1 ⇔ Eg � γ. (2.15)

To describe all circles with a given curvature, let us use the variables

z1 = z, z2 = z̄−1. (2.16)

– 6 –
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In this notation, the standard circle (2.13) is the set of points such that z2 = r−2z1. The

transformation z1 7→ z2 is a linear fractional map; symmetries of the Poincare disk take

it to conjugate maps because they act on z1 and z2 in the same way. Thus the relation

between z1 and z2 assumes the form

z2 = V (z1), where V (z) =
az + b

cz + d
, a+ d = 2K, ad− bc = 1. (2.17)

A more careful analysis gives the additional conditions

a > 1, d ∈ R, b = −c̄. (2.18)

To establish a correspondence between Euclidean and Lorentzian spacetimes, we embed

both H2 and ÃdS2 into a suitable complex manifold M. The latter may be regarded as a

complexification of the hyperbolic plane. It consists of all pairs of distinct points on the

Riemann sphere C∪{∞}, whereas H2 is the subset of pairs (z1, z2) = (z, z̄−1) with |z| < 1.

The embedding of anti-de Sitter space is chosen such that some time slice coincides with

a diameter of the Poincare disk. This is the embedding J̊ from ref. [19], which we will

now describe.

The space AdS2 consists of pairs of distinct points on the unit circle. Its universal

cover ÃdS2 is parametrized by real variables ϕ1, ϕ2 such that 0 < ϕ1 − ϕ2 < 2π. A more

standard description uses global anti-de Sitter time φ and spatial coordinate θ,

φ =
ϕ1 + ϕ2

2
, θ =

π − ϕ1 + ϕ2

2
, (2.19)

in terms of which the metric is

ds2 =
−dφ2 + dθ2

cos2 θ
. (2.20)

The embedding of ÃdS2 in the complex manifold M is given by the following equations,

where we have also introduced an analogue of Schwarzschild coordinates (r, t) covering the

shaded region:

z1 = tan

(
π

4
− ϕ1

2

)
= tan

(
θ − φ

2

)
= re−t,

z2 = tan

(
π

4
− ϕ2

2

)
= cot

(
θ + φ

2

)
=
(
ret
)−1

.

(2.21)

For certain purposes, functions on H2 are not analytically continued to the whole of ÃdS2,

but only to the Schwarzschild patch; Euclidean coordinates r and ϕ correspond to r and

it, respectively.

Now we describe classical Lorentzian trajectories. The symmetric ones are given by

the equation r = const. They consist of two disjoint pieces as shown in figure 1b on page 2,

and may be viewed as lines on a topological cylinder, the complex trajectory embedded

– 7 –
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in M. The Euclidean section of the cylinder
(
zz̄ = r2 in H2

)
is a circle crossing both

lines, see figure 4a on page 17. In the semiclassical picture, it describes tunneling between

propagating states. A general Lorentzian trajectory is given by equation (2.17) with real

coefficients a, b, c, d.

To conclude the geometric formalism, let us discuss the choice of gauge in Lorentzian

spacetime. A nice property of the disk gauge is that it admits an analytic continuation to

M (albeit with singularities), and is real on both H2 and ÃdS2 if the above embeddings

are used [19]. However, its anti-de Sitter version is regular only for |φ± θ| < π. A so-called

tilde gauge does not have this drawback. The corresponding local frame is proportional to

the (φ, θ) coordinate frame,

(
ṽ0

0 ṽ
0
1

ṽ1
0 ṽ

1
1

)
= (cos θ)

(
1 0

0 1

)
, (2.22)

and the spin connection is (ω̃φ, ω̃θ) = (tan θ, 0). The full set of spin connection coefficients

ω a
µ b = ωµΞab involves the Lorentz boost generator Ξ = ( 0 1

1 0 ). Relative to the tilde gauge,

the disk gauge is Lorentz boosted by ln cos((φ+θ)/2)
cos((φ−θ)/2) . The tilde gauge is compatible with a

different embedding of ÃdS2 in M, namely (z̃1, z̃2) = (eiϕ1 , eiϕ2).

3 Euclidean path integral

Ideally, we would like to define a path integral version of problem (1.8). The most useful

object is the propagator,

Gg(x1, x0;L) = eγ(−L+2π)

ˆ

paths/Diff[0,1]

DX δ
(
length[X]− L

)
exp

(
γ

ˆ
ωαdX

α

)
, (3.1)

where X : [0, 1] → H2 is a path from x0 to x1 considered up to reparametrizations.

However, path integrals of this type are sensitive to the UV cutoff. The simplest short-

distance regularization procedure is to replace smooth paths with jagged ones, consisting of

straight sections of length ε. When ε is small, path statistics are described by a quadratic

action which generates the diffusion equation. The effective time β in the diffusion problem

is proportional to L with an ε-dependent coefficient. Thus the regularized action and

corresponding propagator are

I[X] =

ˆ β

0
dτ

(
1

2
gαβẊ

αẊβ − γωαẊα

)
,

G(x1, x0;β) =

ˆ
X(0)=x0
X(β)=x1

DX e−I[X].

(3.2)

(3.3)

The latter is well-defined, whereas the original propagator involves some non-universal

parameters b1, b2:

Gg(x1, x0;L) = e(b2−γ)L+2πγ G(x1, x0;β), β = b−1
1 L. (3.4)

– 8 –
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a) b)

Figure 2. Typical path shapes, a) for εM � 1 and b) for εM � 1.

We will consider three more specific regularization recipes:

1. For general values of γ and L, one has to take the ε→ 0 limit, or at least to assume

that ε � min{γ−1, 1, L}. Then equation (3.4) holds for b1 = 2/ε and b2 = 0. A

similar result is derived in sections 9.1–9.2 of Polyakov’s book [20], but we will give a

simpler argument. Unfortunately, the arbitrariness of ε complicates the comparison

with the Schwarzian problem.

2. In the Schwarzian limit where both γ and L are large, ε need not be very small. If

we assume that γ−1 � ε� 1, then b1 and b2 are ε-independent, namely, b1 ≈ γ and

b2 ≈ γ/2. However, the accuracy of this approximation is not sufficient to match the

Schwarzian partition function.

3. The correct match is achieved if b1 = γ and b2 = γ/2 + 1/(8γ). This will be shown

later by calculating the density of states.

The qualitative difference between cases 1 and 2 is in the shape of a typical path

as we zoom in, see figure 2. To justify both claims, we first separate path properties at

small distances from those at intermediate and large distances. At distances ∆x ∼ 1 in

the Schwarzian limit, one may use classical equations. We have already found from their

analysis that M ≈ γ. At short distances, the parameter M is important, but γ (as the

coefficient in the area term) is not. Indeed, if ∆x � 1, one may replace the hyperbolic

plane with R2. The contribution to the area from a (∆x)-size section of the path with

fixed endpoints varies at most by (∆x)2. Thus, if ∆x� γ−1/2, the area term is negligible.

In the Schwarzian limit, the area term may actually be ignored if ∆x� 1 because, as we

will see shortly, typical paths are almost straight.

Let us discuss the short-distance behavior in more detail. For this purpose, we work in

R2 and neglect the area term. We also drop the trivial term γ(L− 2π) and simultaneously

subtract γ from Eg so that Ig[X] vanishes but the modified action remains the same (up

to an additive constant). The number Eg = −M plays the role of a chemical potential for

a small piece of a path. The simplified propagator Gch (excluding the eγ(−L+2π) factor) is

completely characterized by the integration measure

Dµ =

n∏
j=1

(
(2πε)−1δ(|Xj −Xj−1| − ε)

) n−1∏
j=1

dxj , X0 = x0, Xn = x1, n =
L

ε
. (3.5)

A convenient analogy is a fluctuating polymer chain. Suppose that one end of a chain, x0,

is fixed at some location far away (compared to ε). The probability density of the other

– 9 –
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end, fch(x1, L) = Gch(x1, x0;L), satisfies the equation

fch(x, L+ ε) =
1

2πε

ˆ
δ
(
|x− y| − ε

)
fch(y) dy. (3.6)

Now imagine pulling on that end with force pE. Applying the force and passing to the

grand canonical ensemble means multiplying fch(x, L) by exp((pE)µx
µ−ML). If the chain

is long enough to attain the thermodynamic limit, the modified fch should be constant.

Thus, the original function is fch(x, L) ∝ exp(−(pE)αx
α + ML). Plugging this ansatz

into (3.6), we find the dispersion relation

M =
ln I0(ε|pE|)

ε
≈


εp2

E

4
if ε|pE| � 1

|pE| if ε|pE| � 1

(3.7)

where I0 is the modified Bessel function. Typical path geometries in the two cases are

shown in figure 2. Thus in the ε→ 0 limit, equation (3.6) becomes ∂Lfch = (ε/4)∇2fch. It

can be reduced to the standard diffusion equation that corresponds to the quadratic action

I[X] = 1
2

´ β
0 Ẋ2dτ :

∂βfch =
1

2
∇2fch, where β =

ε

2
L. (3.8)

This proves claim 1. As for claim 2, the conditions εγ � 1 and M ≈ γ are consistent with

the second case of equation (3.7), namely, M ≈ |pE| for |pE| ≈ γ. To first order in |pE| − γ,

this dispersion relation can also be written as

M ≈
p2

E

2γ
+
γ

2
. (3.9)

Hence

fch(x, L) = e(γ/2)Lf(x, β), where ∂βf =
1

2
∇2f, β =

L

γ
. (3.10)

From here on, we study the quadratic action (3.2). The propagator can be obtained

by solving the diffusion equation with a suitable initial condition:

∂τG(x1, x0; τ) =
1

2
∇2
x1G(x1, x0; τ), lim

τ→0
G(x1, x0; τ) =

δ(x1 − x0)√
g(x1)

(3.11)

where the Laplacian involves the covariant derivative acting on ν-spinors,

∇αψ = (∂α − iνωα)ψ, ν = −iγ. (3.12)

The partition function is defined as the integral of e−I[X] over closed paths. To make the

quantity finite, we divide it by the volume of the symmetry group PSL(2,R), which is 2π

times the area of the hyperbolic plane:

Z(β) =
1

vol(PSL(2,R))

ˆ
H2
d2x

√
g(x)G(x, x;β) =

1

2π
G(0, 0;β). (3.13)

In the remainder of this section, we solve equation (3.11) and analyze the resulting

expression for the partition function. Without loss of generality, we may assume x0 = 0;
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then the solution G̊(x, 0; τ) is rotationally symmetric, i.e. independent of the polar angle

ϕ. (The ring accent indicates the disc gauge; we generally put it only where it matters.)

The Laplacian on the hyperbolic plane is related to the SL(2,R) Casimir operator Q,

−∇2 = Q+ ν2. (3.14)

The representation of S̃L(2,R) by spinors on H2 is described in [19]. However, some results

hold only for real ν, so the corresponding arguments have to be redone. The disk gauge

expression for the Casimir operator is

Q̊ = −(1− u)2
(
u∂2

u + ∂u
)

+
1− u

4u

(
(m− ν)2 − (m+ ν)2u

)
, (3.15)

where

u = r2, m = ν − i∂ϕ. (3.16)

While Q̊ is not Hermitian for imaginary values of ν, it becomes Hermitian when restricted to

them = ν subspace, which consists of rotationally symmetric functions. In this special case,

Q̊ = −(1− u)2
(
u∂2

u + ∂u
)

+ γ2(1− u). (3.17)

The functions in question depend only on u ∈ [0, 1), but we should use the correct inner

product and boundary condition at u = 0. The inner product is given by the integral over

the hyperbolic plane

〈f1|f2〉 = 2π

ˆ 1

0
f1(u)∗f2(u)

2 du

(1− u)2
. (3.18)

Therefore, normalizable functions vanish at u → 1 faster than (1 − u)1/2. To determine

the condition at the origin, we notice that eigenfunctions of Q̊ have the asymptotic form

f(u) ≈ a+b lnu for u→ 0. But in two dimensions, a singularity at the origin is not allowed;

hence b = 0. A more general condition is that f(0) is finite and limu→0 u∂uf(u) = 0. It

guarantees the Hermicity of Q̊ because 〈f1|Q̊f2〉−〈Q̊f1|f2〉 = 4πu
(
f∗1 (∂uf2)−(∂uf

∗
1 )f2

)∣∣
u=0

.

Let us find an eigenbasis of the operator Q̊ acting in the Hilbert space we have just

described. The m = ν eigenfunctions are as follows [19]:

ψ̊νλ(u) = ψ̊νλ(0) · (1− u)λ F(λ+ ν, λ− ν, 1; u), Q̊ψ̊νλ = λ(1− λ)ψ̊νλ, (3.19)

where F(a, b, c;x) = Γ(c)−1 F2 1(a, b, c;x) is the scaled hypergeometric function and ψ̊νλ(0)

is for now simply a normalization factor. The eigenvalue λ(1− λ) must be real; hence λ is

real or has the form 1
2 + is with a real s. Eliminating the λ↔ 1− λ redundancy, there are

three mutually exclusive cases: λ = 1
2 , λ > 1

2 , and λ = 1
2 + is with s > 0. It follows from

the asymptotic expression

ψ̊νλ(u)

ψ̊νλ(0)
≈ Γ(1− 2λ)

Γ(1−λ+ν) Γ(1−λ−ν)
(1−u)λ+

Γ(2λ− 1)

Γ(λ+ ν) Γ(λ− ν)
(1−u)1−λ for u→ 1 (3.20)

that the first two sets of eigenfunctions are not normalizable or δ-normalizable. Thus we

restrict to the third case. Fixing ψ̊νλ(0) =
(
(2π)−1 sinh(2πs)/(cosh(2πγ) + cosh(2πs))

)1/2
,

we have 〈
ψ−iγ1/2+is

∣∣ψ−iγ1/2+is′

〉
= s−1δ(s− s′). (3.21)
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(Unlike equation (3.20), the statements about normalization depend on the fact that ν is

purely imaginary.) Thus the eigenfunctions
∣∣ψ−iγ1/2+is

〉
form a basis in terms of which the

identity decomposes as

1 =

ˆ ∞
0

s ds
∣∣ψ−iγ1/2+is

〉〈
ψ−iγ1/2+is

∣∣. (3.22)

We are now in a position to solve the diffusion equation. Let E be the eigenvalue of

the operator −1
2∇

2 = 1
2(Q− γ2), and let ρ(E) = (2π)−1|ψE(0)|2:

E =
1

2

(
s2 +

1

4
− γ2

)
, ρ(E) = (2π)−2 sinh(2πs)

cosh(2πγ) + cosh(2πs)
. (3.23)

Relabeling ψ−iγ1/2+is as ψE , we can simplify some previous formulas,

〈ψE |ψE′〉 = δ(E − E′), 1 =

ˆ
dE |ψE〉〈ψE |, (3.24)

and represent the solution to equation (3.11) as

G̊(x1, x0; τ) =

ˆ
dE e−Eτ G̊E(x1, x0), G̊E(x, 0) = ψ̊E(u) ψ̊E(0)∗. (3.25)

Working with rotationally symmetric functions, we are restricted to the x0 = 0 case, but a

general expression for G̊E(x1, x0) can be obtained using PSL(2,R) symmetry. Representing

points of the Poincare disk as complex numbers z = reiϕ and following the argument at

the end of section 5.3 in [19], we get:

G̊E(z1, z0) = 2πρ(E)

(
1− z̄1z0

1− z1z̄0

)ν
(1− w)λ F(λ+ ν, λ− ν, 1; w), (3.26)

where

w =
(z1 − z0)(z̄1 − z̄0)

(1− z1z̄0)(1− z̄1z0)
. (3.27)

In particular, the partition function regularized as in (3.13) is given by

Z(β) =
1

2π
G̊(0, 0;β) =

ˆ
dE e−βE ρ(E) (3.28)

so that ρ(E) may be interpreted as the density of states. In the Schwarzian limit,

ρ(E) ≈ e−2πγρSch(ESch), ρSch(ESch) =
(
2π2
)−1

sinh

(
2π
√

2ESch

)
, (3.29)

where

ESch = γEg = E +
γ2

2
− 1

8
=
s2

2
. (3.30)

This result justifies the regularization recipe 3.
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4 Hilbert space and statistical mechanics

Our Lorentzian problem is defined by Wick-rotating both the proper Euclidean time and

spacetime in the regularized action (3.2) on H2. The new action is

S =

ˆ
dT

(
1

2
gαβẊ

αẊβ + γωαẊ
α

)
(4.1)

where T denotes proper time, and we have replaced ωα → iωα so as to preserve the spin

connection ω a
µ b = ωµΞab. Meanwhile, the spacetime is rotated as

(ϕ, r)→ (it, r), (4.2)

where (ϕ, r) are polar coordinates on H2 in which the metric is (2.1), and (t, r) are

Schwarzschild coordinates on the patch (2.21) of ÃdS2 in which the metric is

ds2 =
4

(1− r2)2
(dr2 − r2dt2). (4.3)

The rotation may be understood as an analytic continuation from H2 to ÃdS2, where

the former is embedded in the complex space M as (z1, z2) = (z, z̄−1) and the latter as

(z1, z2) = (re−t, r−1e−t). The second embedding is defined on the Schwarzschild patch,

see (2.21), but we are also using the fact that the two-dimensional Schwarzschild spacetime

can be extended to pure anti-de Sitter space.

In this section, we find — in the setting of our Lorentzian problem defined on global

ÃdS2 — the Hilbert space of single particles, and the wavefunction at each energy of two

particles corresponding to the boundaries of a two-sided black hole. We use the latter wave-

functions to construct the thermal density matrix and a variant of the thermofield double

state for black holes in ÃdS2. Throughout, the isometry group S̃L(2,R) (the universal

cover of SL(2,R)) will play an important role.

It follows from standard rules of quantization applied to (4.1) that single-particle wave-

functions are spinors with spin ν = −iγ; we elevate the momentum to an operator as

pα = gαβẊ
β + γωα → −i∂α, from which it follows that

H =
1

2
gµνẊ

αẊβ → −1

2
∇2 (4.4)

where ∇α = ∂α+νωα is the covariant derivative acting on such spinors. Here, let us discuss

our choice of gauge for the spinors. In our calculations on H2 in the previous section, it

was natural to use the disk gauge in which the local frame is non-singular at the origin,

see (2.3). As noted previously, the disk gauge is compatible with (4.2) in that frame vectors

remain real after continuation. Thus we can consistently match the Euclidean propagator

continued under (4.2) to a two-point function for spinors in ÃdS2 written in the disk gauge,

and we do so to obtain the aforementioned wavefunctions for a two-sided black hole. We will

also sometimes invoke the disk gauge in discussing S̃L(2,R)-invariant two-point functions

of spinors, as it is naturally compatible with Schwarzschild coordinates covering different

regions of ÃdS2, on whose boundaries the two-point function — with one point fixed at
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the origin — diverges. For most other purposes in the current section, we work with global

coordinates (φ, θ) in which the metric is (2.20), and use the tilde gauge in which the local

frame is smooth over the entirety of ÃdS2, see (2.22). Sometimes ũ = ei(π−2θ) will be a

convenient variable.1 The action of sl2 generators on spinors is then given by (A.5), and

in particular, a spinor with L0 = −m factorizes as

ψ̃(φ, θ) = f(θ) eimφ. (4.5)

In the following, spinors will be implicitly in the tilde gauge unless indicated otherwise.

4.1 Single-particle wavefunctions

The Schrodinger equation for a stationary single-particle wavefunction, −1
2∇

2ψ = Eψ,

reduces via (3.14) to the Casimir eigenvalue equation Qψ = λ(1− λ)ψ with

E =
1

2

(
λ(1− λ)− γ2

)
. (4.6)

Let us look for a basis of single-particle wavefunctions consisting of Casimir eigenfunctions

ψνλ,m organized into irreducible representations of S̃L(2,R). The parameters λ and µ (pos-

sible choices for µ, which depend on λ, are discussed below) specify a unique irreducible

representation type, while m ∈ µ+Z indexes states within that representation.2 In the Eu-

clidean problem, we saw that spinors which account for the density of states — the Green

functions GE with one point fixed at the origin — were eigenfunctions with λ = 1
2 + is

for s > 0. Here, we identify the single-particle Hilbert space as consisting of Lorentzian

wavefunctions ψνλ,m organized into representations with the same values of λ. Note that

for each ν, s, and m, there are two linearly independent Casimir eigenfunctions; thus the

sequences
(
ψνλ,m : m ∈ µ+Z

)
form a two-dimensional vector space. From a physical point

of view, these wavefunctions are each subject to an inverted potential that falls off to −∞
near the boundaries of ÃdS2 (see figure 3); they describe particles which propagate freely

near an asymptotic boundary, but must tunnel through a potential barrier to reach the

opposite near-boundary region. We will see that the tunneling probability calculated from

these wavefunctions reproduces the density of states found in the previous section.

To define the Hilbert space, we use the inner product〈
ψ1

∣∣ψ2

〉
=

ˆ
ÃdS2

d2x
√
−g ψ∗1(x)ψ2(x) (4.7)

for spinor wavefunctions. It is invariant under the action of sl2 generators L−1, L0, L1

(see (A.5)) on the wavefunctions. The physical interpretation of the wavefunctions and

inner product is as follows: the probability for a particle with spin ν = −iγ — describing a

boundary of nearly-ÃdS2 spacetime — to be in the state corresponding to wavefunction ψ

is given by the integral of ‖ψ‖2 over ÃdS2. From the point of view of quantum mechanics on

1Wavefunctions written in terms of φ and ũ satisfy the same equations as in the case of ϕ, u = r2, and

the Euclidean version of the tilde gauge. This is due to an alternative analytic continuation, which will not

be used in any serious way.
2Notice from (4.5) that µ characterizes the periodic behavior of ψ in φ, namely, ψ(φ+2πn) = ψ(φ) e2πiµn.
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Figure 3. Propagation of physical states in asymptotic regions of ÃdS2. We show coefficients

defined in (4.10) corresponding to amplitudes of ingoing and outgoing waves.

the boundary, the ÃdS2 coordinates are auxiliary variables, while E, the energy conjugate

to proper time, is the dynamical variable. We can think of the boundary particle as an

observer in ÃdS2 with a clock that measures proper time. In the most general setting,

the observer can emit and absorb excitations which change E, and which are described by

fields second-quantized on ÃdS2. In the absence of such interactions with bulk fields, E

is conserved.

Casimir eigenfunctions which are normalizable with respect to (4.7) fall into S̃L(2,R)

representations in either the principal series Cµλ(1−λ) with λ = 1
2 + is, s > 0 and µ ∈ R/Z,

or the discrete series D±λ with λ > 1/2, µ = ±λ. See appendix A for a complete discussion.

Let us consider the Casimir eigenvalue equation Qψ = λ(1 − λ)ψ for such a normalizable

wavefunction ψνλ,m. The explicit form of Q is as in (A.9). It follows that the spatial

part of the wavefunction f(θ) in the decomposition in (4.5) satisfies a time-independent

Schrodinger equation with a certain potential and energy,

(
−∂2

θ + U(θ)
)
f =

(
m2 − γ2

)
f, U(θ) = −λ(1− λ)

cos2 θ
+ 2γm tan θ. (4.8)

Note the first term in the potential U dominates sufficiently close to the two boundaries of

ÃdS2 at θ = ±π
2 . For a wavefunction in a principal series representation with λ(1 − λ) =

1
4 + s2, the potential falls off to −∞ near the boundaries. Thus the corresponding particle

is classically allowed in some asymptotic regions near each boundary, where it can move

in or out, but must tunnel through a potential barrier to go from one asymptotic region

to another, see figure 3. On the other hand, for a wavefunction in the discrete series with

a generic value of λ(1 − λ) < 1
4 , the particle is bound in the interior of ÃdS2. A precise

characterization of wavefunctions in the principal series, as opposed to the discrete series, is

that only the former have non-vanishing Klein-Gordon flux in the θ direction F =
´
dφ Jθ,

Jµ = i
2 (∇µψ∗ · ψ − ψ∗∇µψ). They correspond to propagating states whose energies are

greater than some threshold, E > 1
2

(
1
4 − γ

2
)
.3 We take them to be the physical single-

particle wavefunctions in our problem.

3Normalizable wavefunctions in the discrete series have complementary characteristics; their flux is non-

vanishing in the φ-direction of ÃdS2 and their energies are below the threshold, E < 1
2

(
1
4
− γ2

)
. Because

their frequencies with respect to φ are bounded, they are appropriate for describing matter fields quantized

on global ÃdS2, although in the case of matter fields ν must take integer and half-integer values rather than

ν = −iγ. See section 5 for an application.
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Given a physical wavefunction ψνλ,m with some λ and µ such that

λ =
1

2
+ is, s > 0, µ ∈ R/Z, (4.9)

we may define coefficients of ingoing and outgoing waves in each of the asymptotic regions as

ψνλ,m(φ, θ) ≈


(
cin

+(π − 2θ)λ + cout
+ (π − 2θ)1−λ

)
eimφ for θ → π

2(
cin
−(π + 2θ)λ + cout

− (π + 2θ)1−λ
)
eimφ for θ → −π

2

. (4.10)

Furthermore, it is natural to define a scattering matrix using the in and out coefficients,(
cout

+

cout
−

)
= S

(
cin

+

cin
−

)
, S =

(
S++ S+−
S−+ S−−

)
, (4.11)

and to calculate the tunneling probability p = |S+−|2. To obtain the coefficients cin
± , cout

± ,

and thus S, we solve for the two linearly independent solutions to the Casimir eigenvalue

equation in the complex ũ = ei(π−2θ) plane; see (A.30).

We find that in fact S±± and |S+−|2 are independent of m for m ∈ µ+ Z, or in other

words, well-defined for a particle whose state belongs to a given representation type. In

particular, the probability for the particle to tunnel is given by

p(s, µ) =
sinh2(2πs)

4ab
, a =

1

2
(cosh(2πs) + cosh(2πγ)) , b =

1

2
(cosh(2πs) + cos(2πµ)) .

(4.12)

Integrating over the non-observable parameter µ to obtain the total tunneling probability

at a given energy, we find that it coincides with the density of states ρ found in (3.23) up

to a constant,

p(s) =

ˆ
dµ p(s, µ) = (2π)2ρ(E). (4.13)

In this context, the factor e−2πγ in the Schwarzian limit of ρ, isolated in (3.29), expresses

the exponential suppression of tunneling probability in the height of the potential barrier

(relative to the “energy” in the Schrodinger equation), which grows like γ2. Using (2.15)

and (3.30), the Schwarzian limit can also be written as

γ � 1, s2 � γ2. (4.14)

Then we also see, from the potential in (4.8), that in this limit particles are constrained to

stay very close to the boundary, where π/2− |θ| � 1.

4.2 Two-sided wavefunctions and density matrices

In the above, we saw that the density of states in our system appeared as a probability

of tunneling computed from asymptotic coefficients of single-particle wavefunctions. It

turns out that the density is also encoded in the square of an S̃L(2,R)-invariant two-

point function ΦE(x;x′) determined by the characteristics that i) ΦE(x; 0) on an exterior

Schwarzschild patch agrees with the analytic continuation of the Euclidean Green function

– 16 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
8

a) b)

Figure 4. a) Relation between H2 (horizontal disk) and ÃdS2 (vertical cross section) embedded in

the complex spaceM. Euclidean and Lorentzian classical trajectories consist of intersections of H2

and ÃdS2 with a complex classical trajectory, shown as a colored hyperboloid. To obtain Φ̊E(x; 0),

the Euclidean Green function G̊E(x, 0) is continued from H2 to the right Schwarzschild patch of

ÃdS2. b) We can view ΦE(x;x′) as a wavefunction for the two boundaries of a two-sided black hole

in ÃdS2, which are space-like at any given instant of proper time.

G̊E(x, 0) = ψ̊E(x)ψ̊E(0)∗ from H2, and ii) ΦE(x;x′) is non-vanishing only at space-like

separation. To satisfy the first condition, we analytically continue G̊E(x, 0) from H2 to

the right exterior Schwarzschild patch of ÃdS2, then continue the resulting ΦE(x; 0) to

the rest of ÃdS2 using the spinor wave equation, and finally extend it to ΦE(x;x′) using

S̃L(2,R) symmetry. The function ΦE(x;x′) may be interpreted as a tunneling amplitude.

Alternately, we can identify it as the physical wavefunction of a two-sided black hole with

definite energy. The space-like support of the wavefunction implies that the two sides of

the black hole, viewed as particles in ÃdS2, are causally disconnected; see figure 4.

After introducing a regularized notion of trace in which we quotient out by S̃L(2,R),

the thermal partition function we found by Euclidean methods (3.28) can be reconstructed

in Lorentzian signature as Z(β) = 1
2 tr(e−βHP), P = ΦΦ†, where Φ =

´
dE ΦE , and ΦE is

the operator acting on the single-particle Hilbert space for which ΦE(x;x′) = 〈x|ΦE |x′〉 is

a matrix element in the position basis. More generally, any density matrix for a one-sided

black hole in ÃdS2 without matter fields will take the form % =
´
dE f(E)PE , where the

weight function f satisfies the trace condition
´
dE f(E)ρ(E) = 1.

Let us first describe the Hilbert space of single-particle states Hν∂ (we use the subscript

∂ which stands for boundary, as a particle describes a boundary of nearly-ÃdS2 spacetime)

more precisely, and also the space of S̃L(2,R)-invariant operators acting on it. We will then

specify the two-sided black hole wavefunction ΦE and proceed to construct the thermal

partition function and general density matrices for a one-sided black hole.
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4.2.1 Single-particle Hilbert space and S̃L(2,R)-invariant operators

In the previous section, we found that single-particle wavefunctions in our problem consist

of ν-spinors on ÃdS2 which fall into principal series representations of S̃L(2,R) with λ =
1
2 + is, s > 0, and µ ∈ R/Z. In fact, the space of intertwiners ψ which map states

|λ,m〉 in such a representation to wavefunctions ψνλ,m in Hν∂ is two-dimensional. In other

words, there are two independent solutions to the equations (A.8) with Q and L0 given

by (A.7), (A.5), and both are normalizable under the inner product (4.7). It follows that

an S̃L(2,R)-invariant operator acting on the subspace Hν∂;λ,µ ⊂ Hν∂ with quantum numbers

λ and µ takes the form

Ψν
λ,µ[R] =

∑
α,β

Rαβ
∑

m∈µ+Z

∣∣(ψα)νλ,m
〉〈

(ψβ)νλ,m
∣∣ (4.15)

where R is best understood as an operator on the space of intertwiners with matrix elements

Rαβ with respect to some basis ψα, α = 1, 2. Given R as a function of s and µ, we may

integrate Ψν
λ,µ[R(s, µ)] as

Ψν [R] =

ˆ
dE

ˆ
dµ ρPl(E,µ) Ψν

1/2+is,µ[R(s, µ)], ρPl(E,µ) = (2π)−2 sinh(2πs)

2b
(4.16)

to obtain an arbitrary S̃L(2,R)-invariant operator acting on Hν∂ . Here E is related to

s by (4.6) and b was defined in (4.12). The Plancherel measure dE dµ ρPl(E,µ) is used

because it is a natural measure on S̃L(2,R) irreps; it plays the role of effective dimension

and enters the definition (4.28) of trace.4 For consistency, wavefunctions in (4.15) are

normalized as in (A.36) with an inverse Plancherel factor, so that the total operator Ψν

is independent of the normalization and the multiplication rule Ψν [R] · Ψν [R′] = Ψν [RR′]

holds. It will be convenient to separately label the operator at fixed energy,

Ψν
E [R] =

ˆ
dµ ρPl(E,µ) Ψν

1/2+is,µ[R(s, µ)]. (4.17)

An arbitrary S̃L(2,R)-invariant two-point function Ψν(x;x′) transforming as a (ν,−ν)

spinor is then a representation of some operator Ψν with respect to the position basis,

Ψν(x;x′) = 〈x|Ψν |x′〉. (Note it follows from our inner product for wavefunctions (4.7) that

1 =
´
d2x
√
−g |x〉〈x| is representation of the identity operator.) On symmetry grounds,

Ψν has the general structure

Ψν(x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν fj(w), w =
ϕ13ϕ24

ϕ14ϕ23
(4.18)

where ϕ1 = φ−θ+ π
2 , ϕ2 = φ+θ− π

2 and ϕ3 = φ′−θ′+ π
2 , ϕ4 = φ′+θ′− π

2 are coordinates

of points x and x′, ϕkl = 2 sin ϕk−ϕl
2 , and j in fj points to a region bounded by light rays

from x′ to which x belongs. Let us elaborate further. Given the pair of points (x;x′), we

may use an element of S̃L(2,R) to map x′ to the origin. At the same time, x is mapped to

4In appendix A.3, we represent the same measure as ds dµ ρcont(s, µ) and also include a discrete series

part dλ ρdisc(λ). The latter is not needed for the present problem.
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a) b)

Figure 5. a) Division of AdS2 into regions bounded by light rays from the point x′ = 0. There

are infinitely many copies of regions 1, 2, . . . , 6 that are translations by φ → φ + 2πn for n ∈ Z.

b) Orbits of points under the subgroup H ⊂ S̃L(2,R) preserving the origin (thin lines), and points

in a skeleton representation S of the quotient space H\ ÃdS2 (thick lines). The coordinate u is

shown in regions 1, 3, 5.

some point with Schwarzschild-like coordinates (t, u) (using the notation u = r2) in some

region j bounded by light rays from the origin reflected at the boundaries of ÃdS2, see

figure 5a. Elements of the subgroup H ⊂ S̃L(2,R) fixing the origin act as boosts within

each region by shifting t and preserving u, so we can further boost (t, u) to (0, u). The

union S of t = 0 slices over all regions constitutes a representation of the quotient H\ ÃdS2

and is shown in figure 5b by thick lines (vertical in regions 3, 4 and their copies, horizontal

in other regions). We have

0 < u < 1 in regions 1, 2, u < 0 in regions 3, 4, u > 1 in regions 5, 6 (4.19)

and the same for translations of each region under φ→ φ+ 2πn. Notice that u is equal to

w in (4.18), which is invariant under S̃L(2,R) transformations:

w|(x;x′) = w|((0,u);0) = u. (4.20)

The parameter w measures the geodesic distance of x from x′, and is related to the cross

ratio χ = (ϕ12ϕ34)/(ϕ13ϕ24) as χ = 1−w−1. The function fj(w) in (4.18) is the two-point

function Ψν((0, u); 0) between the final image of x and the origin, and the phase factor

in front of it represents the Lorentz transformation of spinors. In the case where x′ = 0,

the phase factor also corresponds to the transition between the tilde gauge and the disk

gauge; hence

Ψ̊ν(x; 0) = fj(u) in region j. (4.21)

Note that fj(u) is analytic inside region j but in general singular on its non-asymptotic

boundaries, and the function Ψν(x; 0) is continued across boundaries between regions by

the condition that it satisfies the wave equation for a ν-spinor.
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4.2.2 Main results

Now, let us choose an S̃L(2,R)-invariant operator Φ = Ψν [R] based on physical require-

ments for the two-point function ΦE = Ψν
E [R] at each energy E (see (4.17)) suitable for it

being a wavefunction of the two boundaries of a two-sided black hole in ÃdS2:

1. In the right Schwarzschild patch, ΦE(x; 0) is the analytic continuation of the Eu-

clidean propagator G̊E(x, 0) = ψ̊E(u) ψ̊E(0)∗ on H2 (see (3.25), (3.19)) under the

Wick rotation (4.2), i.e.

Φ̊E(x; 0) = ψ̊E(u)ψ̊E(0)∗ in region 2. (4.22)

2. The support of ΦE(x;x′) is at space-like separation, i.e. Φ̊E(x; 0) is non-vanishing

only in regions 1, 2.

In appendix A.1.2, we compute the two-point function Ψν
λ,µ[R] associated with an arbitrary

R at fixed s and µ. The function vanishes in regions 3, 4, 5, 6 and their copies if R is propor-

tional to a certain operator Z, which is expressed in different ways by (A.37), (A.38), and

by (A.62) as a 2× 2 matrix, using bases of single-particle wavefunctions defined in (A.24).

Note that Z is Hermitian with eigenvalues 1 and −1. To satisfy both conditions 1 and 2,

we must set R = −i
√
b/aZ so that

Φ = Ψν
[
−i
√
b/aZ

]
,

Φ̊E(x; 0) =

{
±2πρ(E)Aλ,ν,−ν(u) “+” in region 2, “−” in region 1

0 in all other regions

(4.23)

where

Aλ,l,r(u) = u(l+r)/2(1− u)λ F
(
λ+ l, λ+ r, 1 + l + r; u

)
. (4.24)

To derive (4.23) from the expression (A.73) for the function Ψν
λ,µ[Z], we integrate over

µ with the Plancherel factor. It is nontrivial that the integral
´
dµ ρPl Ψν

λ,µ

[
−i
√
b/aZ

]
van-

ishes in copies of regions 1 and 2 — this is due to the integrand not depending on µ in regions

1, 2 and to twisted periodicity, Ψν
λ,µ[R](φ + 2π, θ;φ′, θ′) = e2πiµΨν

λ,µ[R](φ, θ;φ′, θ′), which

follows from the φ-dependence of wavefunctions (4.5) and the condition m ≡ µ (mod 1).

Incidentally, the two-point function Ψν
[
−i√pZ

]
is identical to Φ in regions 1, 2 and agrees

with the Euclidean propagator in the same sense as Φ.5 However, it does not vanish in

copies of regions 1, 2 and thus does not satisfy our second criterion of vanishing at time-like

separation. Nor does its square encode the density of states in the way that ΦΦ† does and

which we explain below.

As already mentioned, the space-like support of ΦE(x;x′) allows us to alternatively

interpret it as the tunneling amplitude of a boundary particle. Its relation to the density

of states of a black hole can first be seen by inserting an integral over an intermediate

5The operator Ψν
[
−i√pZ

]
measures the Klein-Gordon flux of single-particle states in the spatial θ-

direction of ÃdS2, see (A.40).
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point in the path integral that is the Euclidean partition function, 2πZ(β) = G̊(0, 0;β) =´
X(0)=X(β)=0DX e−I[X] (see (3.2)):

Z(β) = (2π)−1
ˆ

H2
d2x
√
g(x) G̊(0, x; τ) G̊(x, 0;β − τ)

=

ˆ
dE dE′ e−Eτe−E

′(β−τ)

ˆ
2du

(1− u)2

(
ψ̊E(u)∗ψ̊E(0)

)(
ψ̊E′(u)ψ̊E′(0)∗

)
︸ ︷︷ ︸

δ(E−E′)ρ(E)

. (4.25)

We can view the integral in the last line,ˆ
2du

(1− u)2

(
ψ̊E(u)∗ψ̊E(0)

)(
ψ̊E′(u)ψ̊E′(0)∗

)
=

ˆ
2du

(1− u)2
Φ̊E(x; 0)∗Φ̊E′(x; 0)

∣∣∣
region 2

,

(4.26)

as one half the result of a trace performed in Lorentzian signature in which we quotient

out the infinite volume of S̃L(2,R):

tr
(

Φ†EΦE′

)
=

ˆ
S̃L(2,R)\ ÃdS2× ÃdS2

Φ†E(x′;x)ΦE′(x;x′)

=
∑

regions 1, 2

ˆ
2du

(1− u)2
Φ̊E(x; 0)∗ Φ̊E′(x; 0). (4.27)

In the first line, we have inserted two factors of the identity 1 =
´
d2x
√
−g |x〉〈x|

and quotiented the domain of integration for the two points by S̃L(2,R). In the sec-

ond line, we have represented the quotient space S̃L(2,R)\ ÃdS2× ÃdS2 = H\ ÃdS2 as

{(x, x′) : x ∈ S, x′ = 0} where S is the skeleton set depicted by thick lines in fig-

ure 5b. (Recall that H is the group of boosts fixing the origin, or simply translations in

Schwarzschild time t.) The quotient space comes with the measure 2du/(1− u)2, equal to

the ratio of d2x
√
−g and dt. To perform the integral, we use that Φ†E(x′;x) = ΦE(x;x′)∗

and that the phase factor in (4.18) cancels between ΦE(x;x′)∗ and ΦE′(x;x′), so that

ΦE(x; 0)∗ΦE′(x; 0) = Φ̊E(x; 0)∗Φ̊E′(x; 0). The integrand is nonzero only in regions 1 and

2, which contribute equally.

More formally, let us define a trace operation on an operator (4.16) acting on Hν∂ as

tr
(
Ψν [R]

)
≡
ˆ
dE

ˆ
dµ ρPl(E,µ) Tr(R(s, µ)). (4.28)

Unlike in (4.16), the Plancherel factor here is not canceled by the normalization of wave-

functions. It represents the dimension of the S̃L(2,R) irrep with given s and µ divided

by the volume of the group. In appendix A.3, we show that the trace defined as such of

the product of two operators can indeed be computed as in (4.27)—in other words, for

operators F and G with

F (x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν fj(w), G(x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν gj(w), (4.29)

tr(F †G) =
∑
j

ˆ
2du

(1− u)2
fj(u)∗ gj(u). (4.30)

– 21 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
8

This has to do with the fact that matrix elements of R appear in the asymptotic behavior

of Ψν
λ,µ[R] near the boundaries of each region j, which applied to F and G determine the

integral in (4.30). In fact, we also find that for a sufficiently regular operator F , tr(F ) itself

can be extracted from the coefficient of the logarithmic singularity in fj(u), j = 1, 2, 3, 4

as u→ 0, namely, fj(u) = − tr(F ) ln |u|+ · · · ; see (A.94).

We conclude the thermal partition function of a one-sided nearly-ÃdS2 black hole (4.25)

can be constructed in Lorentzian signature as

Z(β) =
1

2
tr
(
e−βHP

)
, P = ΦΦ†, H = Ψν(EI). (4.31)

The factor of 1
2 is due to the fact that our trace is over the entirety of ÃdS2 with two bound-

aries, whereas the partition function is for a one-sided system (in particular, P is a one-sided

operator that maps states of one boundary of ÃdS2 to those of the same boundary). Then

as compared to the expected formula from standard statistical mechanics, we have the

additional insertion of P. Note our starting point (3.13), (4.25) was to apply the standard

formula in an appropriately regularized Euclidean problem (3.2).6 In passing to Lorentzian

signature,
´

PSL(2,R)\H2×H2 G̊E(x′;x)G̊E′(x;x′) = 1
2

´
S̃L(2,R)\ ÃdS

2
× ÃdS

2 Φ†E(x′;x)ΦE′(x;x′),

it became necessary to insert the operator P.

The explicit form of P is given by

P = Ψν
[
(b/a)I

]
,

P̊E(x; 0) = ρ(E)



−2Cλ,ν(u) in regions 1, 2

−2C̆λ,ν(u) in regions 3, 4

Γ(λ+ ν)Γ(1− λ+ ν)Aλ,ν,ν
(
u−1

)
in regions 5, 6′

Γ(λ− ν)Γ(1− λ− ν)Aλ,−ν,−ν
(
u−1

)
in regions 5′, 6

0 in all other regions

,
(4.32)

where the functions Cλ,ν , C̆λ,ν , which are defined in (A.58), (A.64), (A.63) diverge loga-

rithmically as u → 0, being ≈ ln |u|. The operator PE encodes the density of states of a

one-sided black hole at a given energy as 1
2 tr(PE) = ρ(E). (In comparison, tr(ΦE) = 0.)

We can extrapolate that any density matrix for such a black hole will take the form

% = Ψν [fI] · P =

ˆ
dE f(E) PE ,

1

2
tr(%) =

ˆ
dE f(E) ρ(E) = 1, (4.33)

where f is some weight function over energies — for example, f(E) = Z−1e−βE at thermal

equilibrium. This is valid in the absence of particles in the bulk, so that the left and right

boundaries form an S̃L(2,R) singlet with the wavefunction
´
dE
√
f(E) ΦE(x;x′). The

quantum entropy of the density matrix (4.33) should be taken as

S = −1

2
tr(%(ln %− ln P)) = −

ˆ
dE ρ(E) f(E) ln f(E), (4.34)

where ln Ψν [R] = Ψν [lnR] is an invariant definition of the logarithm of an operator.

6Note the trace we used in (3.13) was regularized analogously to our Lorentzian trace, by quotienting

out PSL(2,R).
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5 Correlation functions of external operators

External operators in the SYK model, such as χj(τ), are at least approximately dual to bulk

fields added to Jackiw-Teitelboim theory. In principle, the fields should satisfy some (say,

Neumann) condition at the physical boundary of spacetime. This is a dynamical coupling,

and hard to solve. We simplify the problem by using boundary conditions at infinity, which

is a good approximation in the Schwarzian limit. Note that matter and gravity are still

coupled kinematically, meaning that any amplitude describing the emission and absorption

of matter fields from the boundary is SL(2,R) invariant — thus, for instance, positive-

energy matter emitted from the boundary will kick the boundary towards infinity due to

conservation of momentum.

5.1 Statement of the problem and some results

Let us discuss correlators of matter fields in black hole states, in two different settings.

The first one is best understood in the Euclidean case. Let us consider some field theory

in H2 with local observables X (x), Y(x), etc. In addition, there is a fluctuating curve X

with the regularized geometric action (3.2), and we are interested in correlation functions

of the fields with respect to the (regularized) proper time τ . For simplicity, we focus on a

two-point function of fields with zero spin,

FX ,Y(τ, 0) = Z−1

ˆ
DX e−I[X]

〈
X (X(τ))Y(X(0))

〉
. (5.1)

The correlator is easily expressed in terms of the Euclidean propagator for the curve,

FX ,Y(τ, 0) = Z−1

ˆ
PSL(2,R)\H2×H2

G(x0, x1;β − τ)G(x1, x0; τ) 〈X (x1)Y(x0)〉. (5.2)

Here the quotiented domain indicates the same regularization of (5.1) as in (3.13).

Assuming that the field theory admits an analytic continuation to ÃdS2 and a Hilbert

space description, it should also be possible to define Lorentzian correlators. However,

there is one ambiguity — whether matter fields in global ÃdS2 should be quantized with

respect to time φ or −φ. In the former case, an excited state O|0〉 (where O is some field

operator) evolves in time with positive frequencies with respect to φ, whereas in the latter,

it evolves with negative frequencies with respect to φ.7 Let us label the Hilbert space of

excitations in the two cases Hfields and H∗fields, respectively. We will only resolve the choice

between them in the Schwarzian limit; however, there will be correlators which do not

depend on the choice, and thus are well-defined in general.

We now attempt to define the total Hilbert space of a black hole, consisting of matter

fields and two boundaries represented by particles with spin ν and −ν. The matter fields

7We use the convention that the phase e−iωt has frequency ω with respect to t.
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are decoupled from the boundaries, which imposes the structure

H ⊆ (Hfields ⊕H∗fields)⊗Hν∂ ⊗H−ν∂ . (5.3)

Here, we have not resolved the ambiguity regarding quantization of fields; in addition, it

should be understood that only S̃L(2,R) singlet states are physical. Now, in the Schwarzian

limit, the two-dimensional Hilbert space Hν∂;λ,µ of a particle with definite quantum numbers

splits into two one-dimensional subspaces HνR;λ,µ and HνL;λ,µ — localized near the right and

left boundaries, respectively — because tunneling is suppressed. As explained in the next

subsection, the correct choice of time for matter fields is such that we should choose Hfields

if the spin-ν particle is on the right, and H∗fields if it is on the left. (The (−ν)-particle is

always on the opposite side for black hole states.) This leads us to the total Hilbert space

of a two-sided black hole

H =
(
Hfields ⊗HνR ⊗H−νL

)
⊕
(
H∗fields ⊗HνL ⊗H−νR

)
. (5.4)

Note the Hamiltonian, for say the ν-particle, does not mix the spaces HνR and HνL. Thus in

the above the two terms in the direct sum do not mix under dynamics, and the quantization

of fields is well-defined for any given state.

We proceed to find the thermofield double state in the Hilbert space (5.4). Note ΦE

can be viewed as a vector in Hν∂ ⊗ H
−ν
∂ — this justifies assigning the spins ν and −ν to

the two particles of a black hole.8 Then the state

|Ξ〉 = Z−1/2

ˆ
dE e−βE/2|ΦE〉. (5.5)

describes the thermofield double state of just the particle system. In general, we would like

to take the tensor product of the field theory vacuum (which gives rise to a thermal state in

the Schwarzschild patch) with the above. But to find the total state in (5.4), we recall that

ΦE(x;x′) is supported in region 2, where the ν-particle is to the right of the (−ν)-particle,

and in region 1, in which relative positions are flipped; this leads to the decomposition of

|Ξ〉 into two orthonormal vectors |ΞRL〉 and |ΞLR〉, and to the total state

|TFD〉 = |0〉fields ⊗ |ΞRL〉+ |0∗〉fields ⊗ |ΞLR〉. (5.6)

Now, let us represent an operator O acting at the position of the ν-particle as

Ôν =

ˆ
d2x
√
−g(x)O(x)⊗ |x〉〈x| ⊗ 1, Ôν(T ) = eiH

νT Ôνe−iHνT , (5.7)

where Hν = 1fields ⊗ H ⊗ 1. The operators Ô−ν , Ô−ν(T ) acting at the location of the

(−ν)-particle are defined similarly, with the replacement Hν → H−ν = −1fields⊗1⊗HT.9

8Mathematically, ΦE is a vector in Hν∂ ⊗
(
Hν∂
)∗

, but
(
Hν∂
)∗

(the Hilbert space dual to Hν∂) is isomorphic

to H−ν∂ because complex conjugation flips the imaginary spin ν.
9If the field O has nonzero spin, it should be transformed by the PT symmetry in the definition of Ô−ν ,

and its Euclidean version in (5.1) should be taken in the tilde gauge.
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Then we consider the correlation functions

Fν, −νX ,Y (T, 0) =
1

2

〈
TFD

∣∣X̂ ν(T )Ŷ−ν(0)
∣∣TFD

〉
, (5.8)

Fν, νX ,Y (T, 0) =
1

2

〈
TFD

∣∣X̂ ν(T )Ŷν(0)
∣∣TFD

〉
. (5.9)

(We define the inner product of S̃L(2,R)-invariant functions as an integral over

S̃L(2,R)\ ÃdS2× ÃdS2 but multiply it by 1
2 to obtain a physical quantity such as proba-

bility, see e.g. (4.31).) We will see the two-sided correlator (5.8) is not sensitive to the

difference between fields quantized in Hfields and H∗fields; thus we can replace |TFD〉 with

|0〉fields⊗|Ξ〉 in its definition, and interpret it as a correlator in the thermofield double state

quite generally, beyond the Schwarzian limit. It will be straightforward to show the corre-

lator coincides with the analytic continuation of FX ,Y(τ, 0) at τ = β/2 + iT . In contrast,

the one-sided correlator (5.9) will turn out to be sensitive to the difference in quantization

of fields. Making non-trivial use of the Schwarzian limit, we will show

Fν, νX ,Y (T, 0) = FX ,Y(iT, 0). (5.10)

The second version of the problem is set in the context of the SYK or a similar quantum

mechanics model. In this case, X̂ , Ŷ are understood as microscopic observables on a single

copy of the system, but their Euclidean correlators can be expressed in a form similar

to (5.1) using the Schwarzian approximation. For example, if X̂ = Ŷ = χ̂j is one of the

Majorana modes in the SYK model, then

FX ,Y(τ, 0) = Z−1 Tr
(
e−(β−τ)HmicX̂ e−τHmicŶ

)
≈
ˆ
Dϕe−ISch[ϕ]

〈
X (ϕ(τ))Y(ϕ(0))

〉
ϕ′(τ)∆ϕ′(0)∆,

(5.11)

where 〈X (ϕ1)Y(ϕ0)〉 ∝ ϕ−2∆
10 sgnϕ10, ϕ10 = 2 sin ϕ1−ϕ0

2 , and ISch is defined in (1.1). The

Lorentzian correlators are defined using the microscopic thermofield double

|TFDmic〉 = Z−1/2
∑
n

e−βEn/2|n, n〉 ∈ Hmic ⊗H∗mic. (5.12)

More specifically,

FR,L
X ,Y (T, 0) =

〈
TFDmic

∣∣X̂ (T )⊗ ŶT(0)
∣∣TFDmic

〉
, (5.13)

FR,R
X ,Y (T, 0) =

〈
TFDmic

∣∣X̂ (T )Ŷ(0)⊗ 1
∣∣TFDmic

〉
, (5.14)

so that the analogue of equation (5.10), FR,R
X ,Y (T, 0) = FX ,Y(iT, 0), is trivial. Thus prov-

ing (5.10) in the previous setting is a consistency check: it amounts to showing that the

Schwarzian model has been correctly quantized such that |TFD〉 is an adequate coarse-

grained representation of |TFDmic〉.
The study of correlation functions in the Schwarzian limit can be framed in terms of

asymptotic geometry. In the Euclidean case, we consider an infinitesimal neighborhood of

the boundary of the Poincare disk with coordinates ϕ and

ζ = 2γ(1− r). (5.15)
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a) b)

Figure 6. Regions contributing to the asymptotic configuration space of a pair of points (x, x′):

a) when x is restricted to a neighborhood of the right boundary and x′ to a neighborhood of the

left boundary of ÃdS2; b) when both points are on the right.

(Note that 1 − r ≈ ϕ′, see the paragraph after equations (2.5), (2.6)). Fields in this

neighborhood are related to those at the boundary as

O(ϕ, ζ) ≈ (ζ/γ)∆O(ϕ). (5.16)

Although the Schwarzian approximation is valid only for 1− r � 1, i.e. ζ � γ, asymptotic

expressions of relevant functions do not depend on γ (except as an overall factor) and can

be extrapolated to ζ ∈ (0,∞). Thus the neighborhood of the boundary is S1 × (0,∞),

which is a topological cylinder. We will not define a metric on it, but rather use the

functions w and χ = 1−w−1 of a pair of points as analogues of the geodesic distance. Two

points on the Poincare disk may be specified as complex numbers zj = rje
iϕj , j = 0, 1. In

this notation, χ is the cross-ratio of (z1, z̄
−1
1 ; z0, z̄

−1
0 ):

χ = −(1− z1z̄1)(1− z0z̄0)

(z1 − z0)(z̄1 − z̄0)
≈ − ζ1ζ0

γ2ϕ2
10

. (5.17)

The method of [11, 12] corresponds to fixing one of the points, (ϕ0, ζ0) = (−π, 1), and

using the variable φ = − ln(−χ) + const.

In taking the Schwarzian limit in Lorentzian signature, we replace ÃdS2 with the union

of neighborhoods of the right and left boundaries, parametrized by φ and ζ = γ(π ∓ 2θ).

Each component of the asymptotic space is a half-plane, R×(0,∞). It can be represented as

a quotient of S̃L(2,R) by the subgroup generated by a parabolic element (e.g. Λ2±Λ0 using

the notation of [19]). Functions on the asymptotic space provide a rigorous model of the

S̃L(2,R) representation HνR⊕H
−ν
L for ν = −iγ, γ � 1, which is actually independent of γ.

Adapting the theory of S̃L(2,R) invariant operators to the asymptotic setting involves

the reduction of the relative configuration space S̃L(2,R)\ ÃdS2× ÃdS2 to certain regions.

The result would be more obvious if we studied functions on the asymptotic space from

scratch, but let us give an informal argument based on what we already know. The space
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of operators on HνR⊕HνL splits into four subspaces. To describe an operator in a particular

subspace by a function Ψν(x;x′), we need to specify which side of ÃdS2 each point is

on. For example, if x is on the right and x′ is on the left, then only region 2 and its

copies are substantial, see figure 6a. Similarly, if both x and x′ are on the right, then the

asymptotic geometry includes only region 6 and its copies, as illustrated by figure 6b. These

geometries are relevant to the two-sided correlator (5.8) and one-sided correlator (5.9),

respectively, as follows. We may consider only the first term in (5.6) in the expectation

values, simultaneously eliminating the overall factor of 1
2 . Then in the two-sided correlator,

the ν- and (−ν)-particles are restricted to be on the right and left, respectively. In the

one-sided case, we integrate over the position of the left particle, obtaining a function of

two points that are both on the right.

5.2 Evaluation of Lorentzian correlators

In this section, we focus on correlators of matter fields in the coarse-grained thermofield

double state |TFD〉. Before evaluating (5.8) and (5.9), let us describe the physical moti-

vation for the times chosen for quantizing matter fields in (5.6). The reasoning is that it

should agree with the direction of proper time of boundary particles on classical trajecto-

ries. Recall that a classical particle with spin ν = −iγ, γ > 0 moves counter-clockwise on

circles in the Poincare disk. Hence the Euclidean proper time τ runs in the same direction

as the polar coordinate ϕ, and the Lorentzian proper time T = −iτ , in the same direc-

tion as Schwarzschild time t = −iϕ; the last statement means that the particle traverses

a pair of hyperbola-like trajectories counterclockwise. A particle with spin −ν moves in

the opposite direction. Thus if the particles with spin ν and −ν stay on opposite sides of

ÃdS2, they move in the same direction, either up or down, as shown in figure 7 a,b. By

quantizing matter fields in that direction, we will obtain a complete agreement between

different correlators in the Schwarzian limit. Note that there is another possible choice of

time direction, based on the Hamiltonian

HTFD = 1fields ⊗
(
H ⊗ 1− 1⊗HT

)
, (5.18)

which is a symmetry of the thermofield double. Since the second term, acting on the (−ν)-

particle, has a minus sign, HTFD pushes that particle in the opposite direction. As a result,

the proper time for both ν- and (−ν)-particles is in the same direction as Schwarzschild

time, see figure 7c.

We now proceed to use the state (5.6) in (5.8) and (5.9). Each expectation value can

be expressed as a trace of operators acting on Hν∂ :

Fν,−νX ,Y (T, 0) =

〈
1

2
tr
(√

Z−1e−βH Φ† X̂ (T )
√
Z−1e−βH Φ Ŷ(0)

)〉
fields

, (5.19)

Fν, νX ,Y (T, 0) =

〈
1

2
tr
(
Z−1e−βHP X̂ (T ) Ŷ(0)

)〉
fields

. (5.20)

(The matter operators are defined as Ô(T ) = eiH
νT Ôe−iHνT , Ô =

´
d2x
√
−g(x)O(x) ⊗

|x〉〈x|.) Note Φ = −Φ† commutes with H = Ψν [EI]. Compared to standard expressions,
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a) b) c)

Figure 7. a,b) The time with respect to which matter fields should be quantized, determined

by the natural direction of propagation for ν- and (−ν)-particles on opposite sides of a classical

trajectory; c) the direction corresponding to evolution by HTFD.

we have the substitutions % → %P,
√
% → ±√%Φ. This is a natural extension of our pre-

scription for density matrices given in (4.33). Now, we may expand each trace as an integral

over the quotient S̃L(2,R)\ ÃdS2× ÃdS2, or the space S shown in figure 5b, as in (4.27);

the expectation value 〈X (x)Y(x′)〉 of matter fields in their vacuum state will appear in

the integrand, along with two-point functions that are position space representations of

operators such as Φ and P. The resulting integrals are a prescription for evaluating matter

correlators in black hole states. We use them to establish the equivalence of the matter

correlators to analytic continuations of the Euclidean correlator FX ,Y given by (5.2).

Let us first consider the two-sided correlator (5.19). Its integral expansion is given by

Fν,−νX ,Y (T, 0) = Z−1

ˆ
dEdE′ e−(β/2−iT )Ee−(β/2+iT )E′WX ,Y(E,E′), (5.21)

WX ,Y(E,E′) =
1

2

ˆ
S̃L(2,R)\ ÃdS

2
× ÃdS

2
Φ†E(x′;x)ΦE′(x;x′)〈X (x)Y(x′)〉 (5.22)

=
1

2

∑
regions 1, 2

ˆ
2du

(1− u)2
Φ̊E(x; 0)∗ Φ̊E′(x; 0)〈X (x)Y(0)〉. (5.23)

Note that in (5.22), because of the space-like support of Φ, the Wightman function

〈X (x)Y(0)〉 is only used in space-like regions so does not depend on whether it is eval-

uated in Hfields or H∗fields. Thus as claimed in the previous subsection, we may replace

|TFD〉 with |0〉fields⊗|Ξ〉 in the definition of Fν,−νX ,Y in (5.8), and interpret it as a correlator

in the thermofield double state in general, not just in the Schwarzian limit. In fact, WX ,Y
is just the kernel that appears in the Euclidean correlator

FX ,Y(τ, 0) = Z−1

ˆ
dEdE′ e−(β−τ)Ee−τE

′
ˆ

2du

(1− u)2
G̊E(0, x)G̊E′(x, 0)〈X (x)Y(0)〉︸ ︷︷ ︸

WX ,Y (E,E′)

,

(5.24)

where to take the quotient with respect to PSL(2,R) in the domain of (5.2), we have

restricted x0 = 0 and further divided the integral over x1 by 2π. (To express WX ,Y in the

form in (5.24), we use the fact that the integrand in (5.22) is symmetric between regions

1, 2, as well as (4.22) and the analogous condition for 〈X (x)Y(0)〉 that it is analytically
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continued from H2 to region 2 of ÃdS2. We made a similar transition between Euclidean

and Lorentzian integrals in (4.26).) It follows that

Fν,−νX ,Y (T, 0) = FX ,Y(β/2 + iT, 0). (5.25)

As an aside, let us note that WX ,Y(E,E′) is invariant under E ↔ E′ and X ↔ Y,

independently. The former follows from Φ̊E(x; 0) being real, see (4.23). To see the latter, in

the first line of (5.22), we replace 〈X (x)Y(x′)〉 → 〈Y(x′)X (x)〉 using that Φ has space-like

support, then note the rest of the integrand Φ†E(x′;x)ΦE′(x;x′) = −ΦE(x′;x)ΦE′(x;x′) is

invariant under x ↔ x′. These symmetries imply an emergent time-reversal symmetry in

our correlators Fν,−νX ,Y (T, 0) and Fν, νX ,Y (T, 0) (the function WX ,Y also determines the latter

via (5.10) which we prove below), in the sense that in a generic quantum mechanical

system, analogous correlators (5.13), (5.14) will be invariant under X ↔ Y only if there

the Hamiltonian H and operators X ,Y are invariant under time-reversal.

Next, we turn to expanding the one-sided correlator (5.20) as an integral. To do so

we need, besides matrix elements of P, those of the identity operator on Hν∂ ; the latter

operator is physically just the propagator for a ν-particle.10 It is given by

I = Ψν
[
I
]
,

I̊E(x; 0) = (2π)−2



−2Cλ,ν(u)e2πiλ|n| in regions (1, n) and (2, n)

−2C̆λ,ν(u)e2πiλ|n| in regions (3, n) and (4, n)

Γ(λ+ ν)Γ(1− λ+ ν)Aλ,ν,ν
(
u−1

)
e2πiλ|n|

+Γ(λ− ν)Γ(1− λ− ν)Aλ,−ν,−ν
(
u−1

)
e2πiλ|n+1|

in regions (5, n) and (6,−n− 1)

(5.26)

where we have denoted the translation of region j, j = 1, . . . , 6 by φ → φ + 2πn as (j, n).

Note P(x;x′) and I(x;x′) are non-vanishing at space-like separation. In the Schwarzian

limit (4.14), however, the two-point functions conform to our usual intuition as to how

massive particles behave, in that they are suppressed in space-like regions 1, 2 (and in fact

also their copies), exponentially in γ. Furthermore, to leading order, they are also sup-

pressed in interior regions — regions 3, 4 and their copies — which is a manifestation of the

tendency of a particle to localize near a boundary, first seen in single-particle wavefunctions.

See figure 8a. Thus we have

Fν, νX ,Y (T, 0) = Z−1

ˆ
dEdE′ e−βEei(E−E

′)T W 1-sided
X ,Y (E,E′), (5.27)

10As for P, its matrix elements give the amplitude for a ν-particle to propagate via tunneling to and back

from the other side of the black hole.
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W 1-sided
X ,Y (E,E′)

=
1

2

ˆ
S̃L(2,R)\ ÃdS

2
× ÃdS

2
PE(x′;x)IE′(x;x′)〈X (x)Y(x′)〉,

≈
γ→∞

1

2

∑
regions 5,5′,6,6′

ˆ
2du

(1− u)2
P̊E(x; 0)∗ I̊E′(x; 0)〈X (x)Y(0)〉.

(5.28)

We may compare W 1-sided
X ,Y , which is a kind of spectral function, with its analogue in a

microscopic theory — there, the one-sided correlator FR,R
X ,Y would be given by (5.27) but

with W 1-sided
X ,Y replaced by

∑
n,m〈n|X̂ |m〉δ(Em − E′)〈m|Ŷ|n〉δ(En − E). In both spectral

functions, there is a propagation of intermediate states and a trace over initial/final states,

but in our case the trace is performed with a factor of the density of states, i.e. we have

the operator P completing the diagram in (5.28) rather than another insertion of I.

Now let us note that the integral in (5.28), which includes the evaluation of 〈X (x)Y(x′)〉
in the state (5.6), is defined only in the Schwarzian limit: it is only after taking the

Schwarzian limit of P and I, which reduces the support of the integral to regions 5, 5′, 6, 6′,

then interpreting the regions in the context of the asymptotic geometry described at the

end of the last subsection (consisting of disconnected left and right components), that we

can impose the quantization in (5.6) on 〈X (x)Y(x′)〉, which depends on whether the points

x, x′ (which are positions of ν-particles) are in the right or left component. As shown in

figure 6b, in the Schwarzian geometry, the relative configuration (x;x′) being in region 6

or 6′ implies that x, x′ are in the right component, and similarly, the relative configuration

being in region 5 or 5′ implies that the points are in the left component. Then it follows

from (5.6) that in regions 6, 6′, fields should be quantized with respect to time φ, and

in regions 5, 5′, time −φ. In the remainder of this section, we will show that using the

quantization prescribed as such in (5.28), W 1-sided
X ,Y is equal to WX ,Y , which implies (5.10).

The equality between W 1-sided
X ,Y and WX ,Y follows from analytic continuation between the

time-like support of (5.28) and space-like support of (5.22), see figure 8b.

As a first step in the proof, let us obtain the Schwarzian limit of the particle two-

point functions Φ, P, and I. In taking γ � 1, it is convenient to decompose the functions

Aλ,ν,−ν(u) and Aλ,±ν,±ν(u) appearing in (4.23), and (4.32), (5.26), in terms of the basis

functions Bλ,ν,−ν(u), B1−λ,ν,−ν(u), and Bλ,ν,ν(u−1), B1−λ,ν,ν
(
u−1

)
, respectively — where

Bλ,l,r(u) = u(l+r)/2(1 − u)λ F
(
λ + l, λ + r, 2λ; 1 − u

)
. This is so that γ appears in only

the first and second arguments of hypergeometric functions; the decompositions are given

in (A.59) and (A.69). We then use the identity lima,b→∞F
(
a, b, c; z2

4ab

)
=
(
z
2

)1−c
Ic−1(z)

where Iυ(z) is the modified Bessel function of the first kind. After also taking s � γ —

recall (4.14)—and restricting to the near-boundary region |1− u| � 1, we find that using

the rescaled coordinate

y = 2γ
√
|1− u|, (5.29)

Φ̊E(x; 0) ≈ ±γ−1e−πγ
sinh(2πs)

2π2
yK2is(y) +: in region 1, −: region 2, (5.30)
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a) b)

Figure 8. a): in the Schwarzian limit, one-sided propagators P(x;x′) and I(x;x′) are only supported

in time-like, near-boundary regions 5, 6 and their copies; b) Analytic continuation between the time-

like support of (5.28) (orange) and space-like support of (5.22) (purple).

a) b) c)

Figure 9. a) We analytically continue DuPE(0;x)IE′(x; 0) in the coordinate 2γ(1−u)1/2 — which

appears as the argument of Bessel functions in (5.30), (5.31)—to the real axis or u < 1, i.e. x ∈
regions 1, 2. The sum of continuations from regions 5 and 5′ (or 6 and 6′) givesDuΦ†E(0;x)ΦE′(x; 0).

b, c) The analytic continuation between regions 5, 5′, 6, 6′ and 1, 2 of G∆,φ(x; 0) and G∆,−φ(x; 0).

P̊E(x; 0) ≈ γ−1e−2πγ sinh(2πs)

2π2

{
yK2is(−iy) in regions 5, 6′

yK2is(iy) in regions 5′, 6
, (5.31)

I̊E(x; 0) ≈ γ−1

4π

{
iyI2is(iy) in regions 5, 6′

−iyI−2is(−iy) in regions 5′, 6,
(5.32)

where Kυ(z) = π
2 sin(πυ) (I−υ(z)− Iυ(z)) is the modified Bessel function of the second kind.

We have shown IE in regions entering (5.28); more generally, it is supported in regions

(5, n) and (6,−n− 1), where it is given by

I̊E(x; 0) ≈ γ−1

4π2
y
((
−e−2πs

)|n|
K2is(−iy) +

(
−e−2πs

)|n+1|
K2is(iy)

)
. (5.33)
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Now, the measure for integration on S in each region is written using the y coordi-

nate (5.29) as Du = 16γ2y−3dy.11 Then also using (5.30), (5.31), and (5.32), we find that

the sum of analytic continuations shown in figure 9a, of DuPE(0;x)IE′(x; 0) in the pair of

regions (5, 5′) or (6, 6′), equals DuΦ†E(0;x)ΦE′(x; 0) in region 1 or 2,12

16 dy

y
· e
−2πγ sinh(2πs)

(2π2)2
· iπ

2

K2is(iy)I2is′(iy)︸ ︷︷ ︸
x ∈ region 5 (6′)

−K2is(−iy)I−2is′(−iy)︸ ︷︷ ︸
x ∈ region 5′ (6)



−→
cont. in figure 9a

16 dy

y
· e
−2πγ sinh(2πs)

(2π2)2 · iπ
2
·K2is(y)

I2is′(y)− I−2is′(y)︸ ︷︷ ︸
2
iπ

sinh(2πs′)K2is′ (y)

 . (5.34)

Note expressions for PE(x; 0), IE(x; 0) in each region given in (5.31), (5.32) can be moved

to the opposite imaginary axis in the argument of Bessel functions as(
Kυ(−iy)

I−υ(−iy)

)
=

(
e−iπυ iπ

0 eiπυ

)(
Kυ(iy)

I−υ(iy)

)
. (5.35)

But then PE(x; 0) becomes a linear combination of K2is and I∓2is functions, and

DuPE(0;x)IE′(x; 0) acquires a term quadratic in I2is (regions 5, 6′) or I−2is (regions 5′, 6).

These functions grow exponentially at infinity, Iυ(z) ≈ (2πz)−1/2ez for Re z > 0 (in com-

parison, Kυ(z) ≈ (π/2z)1/2e−z), so the quadratic term diverges at infinity and prohibits

DuPE(0;x)IE′(x; 0) from being continued to the real axis. It follows that the direction of

analytic continuation we show in figure 9a is the only viable one from each of the regions

5, 5′, 6, 6′ to regions 1, 2.

It remains to consider analytic properties of the two-point function 〈X (x)Y(0)〉 appear-

ing in (5.22) and (5.28). We have already determined that in (5.28), matter fields should

be quantized with respect to φ in regions 6, 6′, and −φ in regions 5, 5′. By definition,

quantization with respect to a time variable t̃ means that the corresponding Hamilto-

nian H̃ is positive. Ignoring the spatial dependence of X (x) for simplicity, we may write

X (x) = eiH̃t̃X e−iH̃t̃, and hence, 〈X (x)Y(0)〉 =
∑

m〈0|X |m〉e−iẼm t̃〈m|Y|0〉 with Ẽm > 0.

To be concrete, let us assume that the matter fields X , Y are free and consider single-

particle excitations. By symmetry, these are the basis vectors |m〉, ±m = ∆,∆ + 1, . . . of

some discrete series representation D±∆. By setting t̃ to φ or −φ, we identify the frequency

Ẽm with −m or m, respectively;13 this number is positive if we use the representation D−∆
in the first case and D+

∆ in the second case.

Matter fields have integer or half-integer spins. For fields with zero spin, we can

reuse the results of appendix A.2 (which are generally applicable to boundary particles

11We integrate near the boundary u ≈ 1 in each region, so that given (4.19), the range and measure for

integration is
´
1

2du (1−u)−2 in regions 5, 5′, 6, 6′, and
´ 1

2du (1−u)−2 in region 1, 2. Using the coordinate

y, they can be uniformly expressed as
´ c
0

16γ2dy y−3, where c is a cutoff proportional to γ.
12Recall that PE(0;x)IE′(x; 0) = P†E(x; 0)∗IE′(x; 0) = PE(x; 0)∗IE′(x; 0), and similarly Φ†E(0;x)ΦE′(x; 0),

are gauge-invariant combinations of two-point functions.
13On page 15, we described how S̃L(2,R) representations, and spinors within a representation, are indexed

by certain parameters. Here, it is relevant that a spinor depends on φ as eimφ.
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with ν = −iγ). Thus the Wightman function G(x;x′) = 〈X (x)Y(x′)〉 evaluated for fields

with dimension ∆ and quantized in Hfields or H∗fields — which we denote G∆,φ and G∆,−φ,

respectively — are obtained by setting ν = 0 and λ = ∆ in (A.86). In the Schwarzian

limit, we have, up to a constant,

G∆,±φ(x; 0) ≈



(
y

2γ

)2∆

in regions 1, 2(
∓iy
2γ

)2∆

in regions 5, 6(
±iy
2γ

)2∆

in regions 5′, 6′

. (5.36)

But then the direction of analytic continuation of the matter two-point function

〈X (x)Y(0)〉, from each of the regions 5, 5′, 6, 6′ to regions 1, 2, is aligned with that of

the rest of the integrand DuPE(0;x)IE′(x; 0) in (5.28), see figure 9. This completes our

proof that W 1-sided
X ,Y = WX ,Y .

Before concluding, we obtain for completeness an explicit expression for the spectral

function WX ,Y(E,E′) in the Schwarzian limit. Using (5.30) and (5.36) in (5.22), we get

WX ,Y(E,E′) ≈ γ−2∆ e
−2πγ

2π4
sinh(2πs) sinh(2πs′)

Γ(∆± is± is′)
Γ(2∆)

(5.37)

where Γ(∆± is± is′) = Γ(∆ + is+ is′) Γ(∆ + is− is′) Γ(∆− is+ is′) Γ(∆− is− is′). We

have used the identity

ˆ ∞
0

Ka(x)Kb(x)x1−c dx = 2c−3 Γ
(
c+a+b

2

)
Γ
(
c+a−b

2

)
Γ
(
c−a+b

2

)
Γ
(
c−a−b

2

)
Γ(c)

, (5.38)

which follows from the integral representation of the modified Bessel function of the second

kind, Ka(x) = 1
2

´ +∞
−∞ e−x cosh ξ−aξ dξ. Plugging (5.37) into (5.24) yields an expression for

the Euclidean correlator that coincides with (4.10) in [13] up to a constant factor and is

also consistent with equations (22), (23) in [11].

6 Summary and discussion

Our main result is the construction of the two-point wavefunction ΦE(x;x′) with a fixed

energy E for a two-sided black hole. It may be viewed as a coarse-grained analogue of

the microcanonical thermofield double state for the SYK model, which is proportional to∑
n |n, n〉〈n, n| with the sum taken over all Hamiltonian eigenstates in a narrow energy

window. Both ΦE and the eigenstate sum are highly entangled. In the SYK case, we

assume that the energy window is much smaller than the temperature, but still contains

exponentially many eigenstates. Naively, ΦE has an infinite amount of entanglement be-

cause it includes all states in some infinite-dimensional representations of S̃L(2,R). Much

of the work was related to factoring out this infinity.

It is important that our geometric model and its limiting case, the Schwarzian model,

have a complete Hilbert space description in Lorentzian spacetime. However, we used
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some input from the Euclidean version of the problem. To avoid this, we can reformulate

condition 1 in section 4.2.2 as follows:

1

2

ˆ
S̃L(2,R)\ ÃdS2× ÃdS2

Φ†E(x′;x) ΦE′(x;x′) = ρ(E) δ(E − E′), ρ(E) = (2π)−1ΦE(x;x),

(6.1)

where the integral is taken with the standard measure on the quotient space, 2du/(1−u)2.

In the Schwarzian limit, we assume that x and x′ are close to opposite boundaries of

ÃdS2; therefore ΦE(x;x) is undefined. Instead of ΦE(x;x), one may use the asymptotics

of ΦE(x;x′) in the classically forbidden region to express ρ(E) up to a constant factor. This

seems to be the simplest and most robust interpretation of the density of states, which is

implicit in [11, 12].

One of our motivations was to elucidate the meaning of wavefunctions on spaces with

indefinite signatures, which appear in connection with the Wheeler-DeWitt equation. For

single-particle wavefunctions on ÃdS2, the inner product as the integral over the entire

spacetime (rather than a time slice) is well justified. Indeed, the parameter E — which

is conjugate to proper time, and thus may also be regarded as a particle’s mass — is in

general a dynamical variable; therefore, our particle has more degrees of freedom than the

usual one. However, the integral in (6.1) is essentially over a time slice. So we cannot draw

a definite conclusion right now, but hope that our results will be useful in this context.

Another open question is concerned with correlation functions. Our theory of (two-

point) correlators is valid only in the Schwarzian limit; we do not know how to extend it

to the general case. Perhaps one should abandon the idea that the Hilbert space factors

into the spaces of fields and two individual boundaries. A more general principle is that

“particles” with coordinates x, x′ representing the boundaries are always space-like sepa-

rated, with x on the right of x′. This allows for connecting x and x′ by a space-like curve

that may be regarded as a time slice of the physical spacetime.

Finally, the construction of higher-order correlators in the Schwarzian limit seems

straightforward, but it is still a nontrivial exercise to check the consistency between Eu-

clidean and Lorentzian cases.
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A Representation of S̃L(2,R) by ÃdS2 spinors

We use the notation and definitions from ref. [19]. Let us give a quick summary and

set up some further conventions. The standard ÃdS2 coordinates are (φ, θ), whereas the
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appropriate complex embedding is given by

(z̃1, z̃2) = (eiϕ1 , eiϕ2), where ϕ1 = φ− θ +
π

2
, ϕ2 = φ+ θ − π

2
. (A.1)

We will also use the variable

ũ = z̃1/z̃2 = ei(π−2θ). (A.2)

On ÃdS2 itself (rather than the bigger complex space), ũ takes values in the unit circle

without point 1.

The Lie algebra of the symmetry group G̃ ∼= S̃L(2,R) is generated by three elements:

Λ0 (an infinitesimal shift in the φ direction), Λ1 (a certain vector field preserving the φ = 0

slice), and Λ2 (the Lorentz boost at the origin). It is often convenient to use the complex

generators L0 = −iΛ0 and L±1 = ∓Λ1 − iΛ2, which satisfy the commutation relations

[Ln, Lm] = (n −m)Ln+m. Note that symmetries act on each of the variables ϕ1, ϕ2 (and

hence, z̃1, z̃2) separately, but in the same way.

In order to define spinors, consider the principal fiber bundle G̃ → ÃdS2 with the

structure group H generated by Λ2. The fiber over point x consists of the elements g ∈ G̃

such that g(0) = x. Each point of the fiber may be identified with the local frame at point

x that is obtained from the standard frame at the origin by the symmetry transformation g.

A ν-spinor on ÃdS2 is a function ψ on G̃ that has a special form on each fiber: ψ(ge−ϑΛ2) =

eνϑψ(g) for all ϑ. For calculational purposes, spinors are represented as functions on ÃdS2

by restricting ψ to a particular cross section, called a “gauge”. The standard nonsingular

gauge is the tilde gauge defined in equation (2.22) and surrounding text. Its relation to

the disk gauge is described by this formula:

ψ̃(φ, θ) =

∣∣∣∣cos((φ+ θ)/2)

cos((φ− θ)/2)

∣∣∣∣ν ψ̊(φ, θ). (A.3)

One may also view a spinor as a
(
ν
2 ,−

ν
2

)
-form, that is, the formal expression

ψ̃(φ, θ) (dϕ1)ν/2(dϕ2)−ν/2 (A.4)

which behaves like an ordinary function if ψ̃ is transformed appropriately under S̃L(2,R)

and the differentials dϕ1, dϕ2 obey the standard transformation rules.

From now on, all spinors are implicitly given in the tilde gauge, unless indicated oth-

erwise. The action of the sl2 generators L−1, L0, L1 on ν-spinors in the (φ, ũ) and (φ, θ)

coordinates is given by these equations, where ũ1/2 is understood as ei(π/2−θ):

L0 = i∂φ,

L±1 = e±iφ
(
±(1− ũ)ũ1/2∂ũ +

ũ−1/2 + ũ1/2

2
(i∂φ) +

ũ−1/2 − ũ1/2

2
ν

)
= e±iφ

(
± cos θ · ∂θ + sin θ · (i∂φ)− cos θ · (iν)

)
.

(A.5)

If the spin value ν = −iγ is purely imaginary, the S̃L(2,R) action is unitary, meaning that

L−n is adjoint to Ln with respect to the inner product

〈ψ1|ψ2〉 =

ˆ
d2x
√
−g ψ1(x)∗ψ2(x). (A.6)
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Our goal is to split this representation into isotypic components and study them individ-

ually. Recall that the S̃L(2,R) irreps are characterized by parameters λ and µ such that

the Casimir operator

Q = −L2
0 +

1

2
(L−1L1 + L1L−1) (A.7)

is equal to λ(1− λ) and the central element e2πiL0 to e−2πiµ. (Note that µ is defined up to

an integer and λ up to the transformation λ↔ 1−λ.) Thus the (λ, µ) isotypic component

consists of solutions to these equations:

Q|ψ〉 = λ(1− λ)|ψ〉, L0|ψ〉 = −m|ψ〉, m ∈ µ+ Z. (A.8)

We will first find all solutions, and then select those that are normalizable or δ-normalizable.

The first part amounts to searching for functions of the form ψ(φ, ũ) = f(ũ) eimφ

satisfying the equation Qf = λ(1− λ)f with

Q = −(1− ũ)2
(
ũ∂2

ũ + ∂ũ
)

+
1− ũ

4ũ

(
(m− ν)2 − (m+ ν)2ũ

)
. (A.9)

This equation is closely related to the hypergeometric equation. Its solution space is two-

dimensional, and one can define fundamental solutions by their asymptotic form at the

regular singular points:

w1 ∼ (−ũ)
m−ν

2 , w2 ∼ (−ũ)−
m−ν

2 for ũ→ −0,

w3 ∼ (−ũ)
m+ν

2 , w4 ∼ (−ũ)−
m+ν

2 for ũ→ −∞,

w±5 ∼ (1− ũ)λ, w±6 ∼ (1− ũ)1−λ for ũ→ 1± i0.

(A.10)

These functions are defined on the complex plane with a branch cut from 0 to +∞. The

first four solutions are more conveniently written in terms the variable

y =
ũ

ũ− 1
=

1

2
− i

2
tan θ, y /∈ (−∞, 0] ∪ [1,∞) (A.11)

so that the conditions ũ→ −0 and ũ→ −∞ become y → +0 and y → 1− 0, respectively.

The concrete expressions are as follows:

w1(φ, ũ) = y
m−ν

2 (1− y)−
m+ν

2 F
(
λ− ν, 1− λ− ν, 1 +m− ν; y

)
eimφ,

w2(φ, ũ) = y−
m−ν

2 (1− y)
m+ν

2 F
(
λ+ ν, 1− λ+ ν, 1−m+ ν; y

)
eimφ,

w3(φ, ũ) = y
m−ν

2 (1− y)−
m+ν

2 F
(
λ− ν, 1− λ− ν, 1−m− ν; 1− y

)
eimφ,

w4(φ, ũ) = y−
m−ν

2 (1− y)
m+ν

2 F
(
λ+ ν, 1− λ+ ν, 1 +m+ ν; 1− y

)
eimφ.

(A.12)

The other fundamental solutions and their more accurate ũ→ 1± i0 asymptotics are

w±5 (φ, ũ) = i±λB±λ,m,−ν(ũ) eimφ ≈ 1

Γ(2λ)

(
±i(1− ũ)

)λ
eimφ,

w±6 (φ, ũ) = i±(1−λ)B±1−λ,m,−ν(ũ) eimφ ≈ 1

Γ(2− 2λ)

(
±i(1− ũ)

)︸ ︷︷ ︸
≈π∓2θ for θ→±π/2

1−λ
eimφ.

(A.13)
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Here we have used the notation

Bλ,l,r(u) = u(l+r)/2(1− u)λ F
(
λ+ l, λ+ r, 2λ; 1− u

)
, (A.14)

whereas B±λ,l,r(u) is the analytic continuations of Bλ,l,r(u) from u ∈ (0, 1) to the domain

C− [0,+∞) through the upper (+) or lower (−) half-plane.

The S̃L(2,R) action is completely characterized by the operators L±1, which raise or

lower m:

L−1w1,m = iw1,m−1, L1w1,m = −i(m+ λ)(m+ 1− λ) w1,m+1,

L−1w2,m = i(m− λ)(m− 1 + λ) w2,m−1, L1w2,m = −iw2,m+1,

L−1w3,m = −i(m− λ)(m− 1 + λ) w3,m−1, L1w3,m = iw3,m+1,

L−1w4,m = −iw4,m−1, L1w4,m = i(m+ λ)(m+ 1− λ) w4,m+1,

L−1w
±
5,m = ∓(m− λ) w±5,m−1, L1w

±
5,m = ∓(m+ λ) w±5,m+1,

L−1w
±
6,m = ∓(m− 1 + λ) w±6,m−1, L1w

±
6,m = ∓(m+ 1− λ) w±6,m+1.

(A.15)

For given λ and m, the 8 fundamental solutions are related by these connection

formulas:

sin(2πλ)

π
w1 =

i±(−λ−m+ν)

Γ(1− λ+m) Γ(1− λ− ν)
w±5 −

i±(λ−1−m+ν)

Γ(λ+m) Γ(λ− ν)
w±6 ,

sin(2πλ)

π
w2 =

i±(−λ+m−ν)

Γ(1− λ−m) Γ(1− λ+ ν)
w±5 −

i±(λ−1+m−ν)

Γ(λ−m) Γ(λ+ ν)
w±6 ,

sin(2πλ)

π
w3 =

i±(λ−m−ν)

Γ(1− λ−m) Γ(1− λ− ν)
w±5 −

i±(1−λ−m−ν)

Γ(λ−m) Γ(λ− ν)
w±6 ,

sin(2πλ)

π
w4 =

i±(λ+m+ν)

Γ(1− λ+m) Γ(1− λ+ ν)
w±5 −

i±(1−λ+m+ν)

Γ(λ+m) Γ(λ+ ν)
w±6 .

(A.16)

In fact, any element ψ of the two-dimensional solution space can be expressed as a linear

combination of w+
5 , w+

6 and as a linear combination of w−5 , w−6 with the coefficients

proportional to the numbers cin
+ , cout

+ and cin
− , cout

− in this equation:

ψ(φ, θ) ≈


(
cin

+(π − 2θ)λ + cout
+ (π − 2θ)1−λ

)
eimφ for θ → π

2 ,(
cin
−(π + 2θ)λ + cout

− (π + 2θ)1−λ
)
eimφ for θ → −π

2 .
(A.17)

If λ = 1
2 +is with s > 0, then the terms cin

±(π∓2θ)λ and cout
± (π∓2θ

)1−λ
may be interpreted

as incoming and outgoing waves, respectively. The coefficients cin
+ , cout

+ are related to cin
− ,

cout
− by some transfer matrix T :(

cin
+

cout
+

)
= T

(
cin
−

cout
−

)
, T =

(
T in,in T in,out

T out,in T out,out

)
. (A.18)
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The explicit expression for T is obtained from the connection formulas (A.16):

T in,in =
eiπν sin(π(λ−m)) + e−iπν sin(π(λ+m))

sin(2πλ)
,

T in,out =
2π Γ(1− 2λ) Γ(2− 2λ)

Γ(1− λ+ ν) Γ(1− λ− ν) Γ(1− λ+m) Γ(1− λ−m)
,

T out,in = − 2π Γ(2λ− 1) Γ(2λ)

Γ(λ+ ν) Γ(λ− ν) Γ(λ+m) Γ(λ−m)
,

T out,out = −e
iπν sin(π(λ+m)) + e−iπν sin(π(λ−m))

sin(2πλ)
.

(A.19)

A wavefunction with the asymptotic form (A.17) is normalizable or δ-normalizable in

the following two cases (up to the λ↔ 1− λ ambiguity):

1. λ = 1
2 + is with s > 0.

2. λ > 1
2 and cout

+ = cout
− = 0. The last condition is satisfied (for a one-dimensional

subspace of functions) if T out,in = 0, that is, if m = λ, λ+1, . . . or m = −λ,−λ−1, . . ..

The first case corresponds to continuous series representations Cµq with q = λ(1 − λ) > 1
4

and the second to the discrete series representations D+
λ , D−λ (using the notation from [19]).

Thus, the Hilbert space Hν of square-integrable ν-spinors with purely imaginary ν splits

into the isotypic components Hνλ,µ ∼= C2 ⊗ Cµλ(1−λ) for λ = 1
2 + is, s > 0 and Hνλ,± ∼= D

±
λ

for λ > 1
2 .

The rest of the analysis will be done separately for the continuous and discrete series.

One goal is to find all intertwiners from each S̃L(2,R) irrep to the space of spinors. An

intertwiner ψ takes each basis vector |m〉 of the irreducible representation space to some

function ψm. These functions should transform as the vectors |m〉, namely

L−1|m〉 = −
√

(m− λ)(m− 1 + λ) |m− 1〉,

L0|m〉 = −m |m〉,

L1|m〉 = −
√

(m+ λ)(m+ 1− λ) |m+ 1〉.

(A.20)

The space of intertwiners (of dimension 2 or 1) is denoted by Lνλ,µ or Lνλ,± so that one may

write Hνλ,µ = Lνλ,µ ⊗ C
µ
λ(1−λ) and Hνλ,± = Lνλ,± ⊗ D

±
λ in the continuous and discrete case,

respectively.

We will also construct the decomposition of the identity operator into projectors Πν
λ,µ,

Πν
λ,± onto the isotypic components:

1 =

ˆ ∞
0
ds

s

(2π)2

ˆ 1/2

−1/2
dµ

sinh(2πs)

cosh(2πs) + cos(2πµ)
Πν

1/2+is,µ

+

ˆ ∞
1/2

dλ
λ− 1/2

(2π)2

(
Πν
λ,+ + Πν

λ,−

)
(A.21)
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The scalar factors in the integration measure are a matter of convention. Here, the

Plancherel measure is used as it corresponds to standard short-distance asymptotics of

the two-point functions representing the projectors; namely, the coefficient in front of a

logarithm is minus the dimension of the intertwiner space. In the continuous series case,

there are four linearly independent operators (including the projector) that act within the

corresponding isotypic component and commute with the group action. Of particular in-

terest is a certain operator Z that represents the particle flux in the θ direction. Its discrete

series analogue is Πν
λ,+ −Πν

λ,−; this operator measures the flux through a time slice.

A.1 Continuous series components

Let

s > 0, λ =
1

2
+ is, −1

2
< µ ≤ 1

2
, ν = −iγ. (A.22)

We will also use these abbreviations:

a = sin(π(λ+ ν)) sin(π(λ− ν)) =
1

2

(
cosh(2πs) + cosh(2πγ)

)
,

b = sin(π(λ+ µ)) sin(π(λ− µ)) =
1

2

(
cosh(2πs) + cos(2πµ)

)
.

(A.23)

A.1.1 Basis functions and asymptotic coefficients

The isotypic component Hνλ,µ is spanned by functions of the form ψ(φ, θ) = f(θ) eimφ such

that m ∈ µ + Z and Qf = λ(1 − λ)f . All such functions have already been found; we

just need to organize them into sequences that transform as the vectors |m〉 in (A.20). To

this end, we multiply each sequence of fundamental solutions, which transform according

to (A.15), by suitable coefficients that depend on m:(
ψ←+
)ν
λ,m

=
Γ(λ+ ν) Γ(1− λ+ ν)√
Γ(λ+m) Γ(1− λ+m)

im (w2)νλ,m ,

(
ψ←−
)ν
λ,m

=
Γ(λ+ ν) Γ(1− λ+ ν)√
Γ(λ−m) Γ(1− λ−m)

i−m (w4)νλ,m ,

(
ψ→+
)ν
λ,m

=
Γ(λ− ν) Γ(1− λ− ν)√
Γ(λ+m) Γ(1− λ+m)

i−m (w3)νλ,m ,

(
ψ→−
)ν
λ,m

=
Γ(λ− ν) Γ(1− λ− ν)√
Γ(λ−m) Γ(1− λ−m)

im (w1)νλ,m ,

(
ψin
±
)ν
λ,m

=
Γ(1− λ+ ν) Γ(1− λ− ν)√

2π

√
Γ(1− λ∓m)

Γ(λ∓m)

(
w∓6
)ν
λ,m

,

(
ψout
±
)ν
λ,m

=
Γ(λ+ ν) Γ(λ− ν)√

2π

√
Γ(λ∓m)

Γ(1− λ∓m)

(
w∓5
)ν
λ,m

.

(A.24)

The choice of normalization factors and the meaning of indices will be clear from the

subsequent discussion.

As already mentioned, a sequence of functions ψm transforming as the basis vectors

|m〉 represents an intertwiner from the S̃L(2,R) irrep with parameters (λ, µ) to the space
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of ν-spinors. An arbitrary intertwiner ψ can be expressed in any of the four standard bases(
ψ←+ , ψ

←
−
)
,
(
ψ→+ , ψ

→
−
)
,
(
ψin

+ , ψ
in
−
)
,
(
ψout

+ , ψout
−
)
:

ψ = rσ+ψ
σ
+ + rσ−ψ

σ
−, σ =←, →, in, out. (A.25)

The corresponding numbers rσ±, termed “asymptotic coefficients”, are related by transfor-

mation matrices: (
rσ+

rσ−

)
= Iσ,τ

(
rτ+

rτ−

)
, Iσ,τ =

(
Iσ,τ++ Iσ,τ+−

Iσ,τ−+ Iσ,τ−−

)
. (A.26)

It follows from the connection formulas (A.16) that

I in,← =
Γ(λ+ ν)√

2π

(
η

1/2
+ i−λ−ν iλ+ν

iλ+ν η
−1/2
+ i−λ−ν

)
,

Iout,← =
Γ(1− λ+ ν)√

2π

(
η

1/2
− iλ−1−ν i1−λ+ν

i1−λ+ν η
−1/2
− iλ−1−ν

)
,

I in,→ =
Γ(λ− ν)√

2π

(
η
−1/2
− iλ−ν i−λ+ν

i−λ+ν η
1/2
− iλ−ν

)
,

Iout,→ =
Γ(1− λ− ν)√

2π

(
η
−1/2
+ i1−λ−ν iλ−1+ν

iλ−1+ν η
1/2
+ i1−λ−ν

)
,

η± = e2πiµ sin(π(λ± µ)

sin(π(λ∓ µ)
,

(A.27)

and also

I→← =
Γ(λ+ ν) Γ(1− λ+ ν)

π

 i

2
(eiπν − e−iπνe2πiµ)

√
b

√
b

i

2

(
eiπν − e−iπνe−2πiµ

)
 , (A.28)

Iout,in =
Γ(1− λ− ν) Γ(1− λ+ ν)

2π

e
iπν + η−1e−iπν

i sinh(2πs)√
b

i sinh(2πs)√
b

eiπν + ηe−iπν

 , (A.29)

where η =
sin(π(λ+ µ))

sin(π(λ− µ))
.

For each pair of bases, the transformation in one direction is shown. All transformation

matrices are unitary, and therefore their inverses are obtained easily.

Let us now explain the meaning of the asymptotic coefficients. The numbers rin
± and

rout
± are related to the amplitudes cin

± , cout
± of incoming and outgoing waves for the functions
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ψm (see (A.17)):

cin
± =

√
2b

π
Γ(1− 2λ)

√
Γ(λ±m)

Γ(1− λ±m)
rin
± ,

cout
± =

√
2b

π
Γ(2λ− 1)

√
Γ(1− λ±m)

Γ(λ±m)
rout
± ,

|cin
± |2

|rin
± |2

=
|cout
± |2

|rout
± |2

=
b

s sinh(2πs)
(A.30)

In physical applications, an important object is the S-matrix connecting the in- and out-

amplitudes. Its elements are equal to the coefficients Iout,in
αβ up to some phase factors. From

the explicit formula (A.29) for Iout,in, we extract the tunneling probability:

p = |Iout,in
+− |2 = |Iout,in

−+ |2 =
sinh2(2πs)

4ab
. (A.31)

Meanwhile, the coefficients r←± and r→± appear in an m→ ±∞ asymptotic formula for ψm,

which can be derived as follows. First, we express ψm as a linear combination of w1,m

and w3,m. By equation (A.12), the question is reduced to asymptotic properties of the

hypergeometric function. The basic one is this:14

lim
m→+∞

F2 1(a, b, c+m; y) = 1. (A.32)

The transition to the scaled hypergeometric function F is straightforward, whereas the

m→ −∞ case is analyzed using the identity

F(a, b, c; y)

Γ(b− c+ 1) Γ(a− c+ 1)
=
y1−c(1− y)c−a−b F(1− b, 1− a, 2− c; y)

Γ(a) Γ(b)

+
sin(πc)

π
F(a, b, a+ b− c+ 1; 1− y).

(A.33)

This calculation yields the following result:

ψm(φ, θ) ≈ |m|−1/2
(
r←± i|m|

(
2|m| cos θ

)ν
eim(φ−θ) + r→± i−|m|

(
2|m| cos θ

)−ν
eim(φ+θ)

)
for m→ ±∞ in any finite region of ÃdS2.

(A.34)

Since the standard bases are related by unitary matrices, one can define an inner

product on the intertwiner space Lνλ,µ such that all four bases are orthonormal. Specifically,

if intertwiners ψ and ψ′ are characterized by the coefficients rσ± and r′ σ±, then

〈ψ|ψ′〉ν = (rσ+)∗ r′
σ
+ + (rσ−)∗ r′

σ
−, σ =←, →, in, out. (A.35)

The inner product (A.35) is related to the usual inner product (A.6) between the cor-

responding functions ψm and ψ′m′ . On general grounds, the latter is proportional to

14This formula holds for all y in the domain D = C− [1,+∞). It also extends to the part of the Riemann

surface that is obtained by gluing infinitely many copies of the half-plane Re y > 1
2

to D and to each other

along the branch cut [1,+∞). For our purposes, y takes values on the line Re y = 1
2
, which is contained

in D.
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δ(s− s′) δ(m−m′) with some coefficient that can be calculated using the θ → ±π
2 asymp-

totics. Thus,

〈ψm|ψ′m′〉 =
(

(cin
+)∗ c′

in
+ + (cin

−)∗ c′
in
− + (cout

+ )∗ c′
out
+ + (cout

− )∗ c′
out
−

)
4π2δ(s− s′) δ(m−m′)

= 〈ψ|ψ′〉 · 2b

sinh(2πs)
(2π)2s−1δ(s− s′) δ(m−m′). (A.36)

Note that the last expression contains the inverse of the Plancherel factor. This was

arranged by a suitable normalization of the basis vectors.

Finally, we comment on the geometric arrangement of the vectors |ψσ±〉. Recall that

these vectors are associated with the fundamental solutions of the hypergeometric equation.

We have normalized them in a particular way, but the phase factors are arbitrary. An up-

to-phase unit vector |ψ〉 ∈ C2 is characterized by the Pauli-like operator 2|ψ〉〈ψ| − I, or

equivalently, by the associated Bloch vector n ∈ R3. An orthonormal basis corresponds to

a pair of antipodal points on the Bloch sphere. A pair of bases such as |ψ←± 〉, |ψ→± 〉 makes

a configuration with two 180◦ rotation symmetries. In this example, they are described by

Pauli-like operators X and Z:

|ψ→+ 〉〈ψ→+ |−|ψ←− 〉〈ψ←− | = |ψ←+ 〉〈ψ←+ |−|ψ→− 〉〈ψ→− | =
√

1− b

a
X,

|ψ→+ 〉〈ψ→+ |−|ψ←+ 〉〈ψ←+ | = |ψ←− 〉〈ψ←− |−|ψ→− 〉〈ψ→− | =
√
b

a
Z.

(A.37)

Similarly, for the |ψin
± 〉, |ψout

± 〉 bases,

|ψout
+ 〉〈ψout

+ | − |ψin
− 〉〈ψin

− | = |ψin
+ 〉〈ψin

+ | − |ψout
− 〉〈ψout

− | =
√

1− pX ′,

|ψout
+ 〉〈ψout

+ | − |ψin
+ 〉〈ψin

+ | = |ψin
− 〉〈ψin

− | − |ψout
− 〉〈ψout

− | =
√
pZ,

(A.38)

where p = sinh2(2πs)
4ab is the tunneling probability. Importantly, Z is the same in both cases.

The operator
√
pZ measures the particle flux in the θ direction. Indeed, let us consider

the Klein-Gordon current, whose matrix element between two wavefunctions is defined

as follows: 〈
ψ
∣∣Jα(x)

∣∣ψ′〉 =
i

2

(
∇αψ∗(x) · ψ′(x)− ψ∗(x) · ∇αψ′(x)

)
. (A.39)

The current has zero divergence if ψ and ψ′ are Casimir eigenfunctions with the same

eigenvalue. To find the flux, we integrate the current over a vertical cross section, which

can be placed at the right asymptotic boundary of ÃdS2:〈
ψm

∣∣∣ ˆ
θ=π

2
−0
dxµ εµνg

ναJα(x)
∣∣∣ψ′m′ 〉 = 2s

((
cout

+

)∗
c′

out
+ −

(
cin

+

)∗
c′

in
+

)
2π δ(m−m′)

= 2π
〈
ψ
∣∣√pZ∣∣ψ′〉 · 2b

sinh(2πs)
δ(m−m′).

(A.40)

(Once again, the inverse Plancherel factor multiplying the delta-function is a consequence

of the normalization convention.)
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A.1.2 S̃L(2,R)-invariant two-point functions

We now describe the functions that correspond to various operators acting in the two-

dimensional space Lνλ,µ. Associated with an operator R is the function Ψν
λ,µ[R] defined

as follows:

Ψν
λ,µ[R](φ, θ;φ′, θ′) =

∑
α,β

Rαβ
∑

m∈µ+Z
(ψα)νλ,m (φ, θ) · (ψβ)νλ,m (φ′, θ′)∗ (A.41)

Here Rαβ are the matrix elements of R in an arbitrary basis. A more specific notation

(involving two bases) is Rσταβ = 〈ψσα|R|ψτβ〉; the whole matrix is denoted by Rστ .

Evaluating the sum (A.41) presents some difficulty, so we take an indirect approach.

Let us discuss some general properties of the two-point function Ψν
λ,µ[R]. First, it is a

ν-spinor with respect to one point, x = (φ, θ) and a −ν-spinor with respect to the other

point, x′ = (φ′, θ′). Furthermore, it is invariant under S̃L(2,R) transformations. One may

also regard Ψν
λ,µ[R] (or more exactly, the expression similar to (A.4)) as a

(
ν
2 ,−

ν
2 ;−ν

2 ,
ν
2

)
form in the following variables:

ϕ1 = φ− θ +
π

2
, ϕ2 = φ+ θ− π

2
; ϕ3 = φ′ − θ′ + π

2
, ϕ4 = φ′ + θ′ − π

2
. (A.42)

Dividing it by another S̃L(2,R)-invariant form of the same type will produce an invariant

scalar. Let

ϕjk = 2 sin
ϕj − ϕk

2
, (A.43)

and let us use |ϕ14|−ν |ϕ23|ν as a standard invariant form of the indicated type. Thus,

Ψν
λ,µ[R](x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν f [R](x;x′), (A.44)

where f [R] is an S̃L(2,R)-invariant scalar function.

To describe the position of x relative to x′, let us place x′ at the origin, i.e. set ϕ3 =
π
2 and ϕ4 = −π

2 . Then we consider x up to residual symmetries preserving x′ = 0.

Under such symmetries, the space splits into one-dimensional orbits filling two-dimensional

regions. As shown in figure 10, there are non-equivalent regions 1, 2, 3, 4, 5, 6, and

also their images under vertical translations, e.g. 5′, 6′. Since Ψν
λ,µ[R](φ + 2π, θ;φ′, θ′) =

e2πiµΨν
λ,µ[R](φ, θ;φ′, θ′), it is sufficient to consider one copy of each region. We conclude

that up to S̃L(2,R) transformations, the pair (x;x′) is characterized by a discrete variable j

pointing to a particular region, as well as a continuous variable w. Hence, equation (A.44)

may be written as follows:

Ψν
λ,µ[R](x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν fj [R](w), w =
ϕ13ϕ24

ϕ14ϕ23
(A.45)

0 < w < 1 in regions 1, 2, w < 0 in regions 3, 4, w > 1 in regions 5, 6. (A.46)

In regions 1 and 2, the points x and x′ are space-like separated and w = tanh2(ξ/2),

where ξ is the geodesic distance. These are some related quantities, including the familiar

cross-ratio χ:

1− w =
ϕ12ϕ34

ϕ14ϕ32
, 1− w−1 =

ϕ12ϕ34

ϕ13ϕ24
= χ. (A.47)
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a) b)

Figure 10. a) Subdivision of ÃdS2 into regions relative to x′ = 0; b) Orbits of points under the

subgroup preserving x′ (thin lines) and a skeleton representation of the quotient set (thick lines).

Next, we use the fact that when x′ is fixed, Ψν
λ,µ[R](x, x′) is a Casimir eigenfunction.

To express this condition in terms of f [R], we notice that Ψν
λ,µ[R](x, 0) and f [R](x, 0)

in (A.44) are related by the same factor as ψ̃ and ψ̊ in (A.3). (Indeed, cos
(φ+θ

2

)
= ϕ32 and

cos
(φ−θ

2

)
= ϕ14.) Therefore, f [R](x, 0) is the disk gauge variant of Ψν

λ,µ[R](x, 0). The disk

gauge allows for straightforward analytic continuation between the Schwarzschild patch,

i.e. region 2, and the hyperbolic plane. In fact, the Casimir operator in the Schwarzschild

patch is obtained from its hyperbolic plane version (3.17) by simply replacing u with w:

Q̊ = −(1− w)2
(
w∂2

w + ∂w
)
− ν2(1− w). (A.48)

This expression for Q̊ is valid in all regions, although f1[R], . . . , f6[R] are not each other’s

analytic continuations. In each region j, the function fj [R] is a linear combination of two

fundamental solutions with some coefficients. We will find them from equation (A.41) by

matching asymptotics.

The function Ψν
λ,µ[R](x;x′) has singularities at all locations where ϕ13, ϕ14, ϕ23, or

ϕ24 vanishes. These are exactly the region boundaries, which include the lines ϕ1 = ϕ3,

ϕ2 = ϕ4 (representing the light cone), the lines ϕ1 = ϕ4, ϕ2 = ϕ3, and their translational

copies. Since each term in (A.41) is a smooth function, the singularities come from m →
±∞. In this limit, each individual term is a product of a function of the form (A.34) and

the complex conjugate of such a function. We may write

ψm(x) ≈ |m|−1/2
(
r←± i|m|

(
|m|ϕ12

)ν
eim(ϕ1−π/2) + r→± i−|m|

(
|m|ϕ12

)−ν
eim(ϕ2+π/2)

)
,

ψ′m(x′) ≈ |m|−1/2
(
r′
←
± i
|m|(|m|ϕ34

)ν
eim(ϕ3−π/2) + r′

→
± i
−|m|(|m|ϕ34

)−ν
eim(ϕ4+π/2)

)
.

(A.49)

The product ψm(x)ψ′m(x′)∗ involves the coefficients rσ±(r′ τ±)∗, but in the full function

Ψν
λ,µ[R], they become Rστ±± = 〈ψσ±|R|ψτ±〉. Now the summation in m is easy to perform,
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and we obtain the following expressions for the singular parts of Ψν
λ,µ[R](x;x′) near the

critical lines:

Ψν
λ,µ[R](x;x′) ≈

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν



−(R←←++ +R←←−− ) ln |ϕ13|+ i
π

2
(R←←++ −R←←−− ) sgnϕ13

if ϕ1 ≈ ϕ3,

−(R→→++ +R→→−− ) ln |ϕ24|+ i
π

2
(R→→++ −R→→−− ) sgnϕ24

if ϕ2 ≈ ϕ4,

Γ(2ν)
(
eiπν sgnϕ14R←→++ + e−2πiµe−iπν sgnϕ14R←→−−

) ∣∣∣∣ϕ14ϕ23

ϕ12ϕ34

∣∣∣∣−ν
if ϕ1 ≈ ϕ4,

Γ(−2ν)
(
e−iπν sgnϕ23R→←++ + e2πiµeiπν sgnϕ23R→←−−

) ∣∣∣∣ϕ14ϕ23

ϕ12ϕ34

∣∣∣∣ν
if ϕ2 ≈ ϕ3.

(A.50)

Equation (A.50) and the Casimir eigenvalue equation are sufficient to reconstruct

Ψν
λ,µ[R]. However, let us also calculate the θ, θ′ → ±π

2 asymptotics in order to allow

for some cross-checks. By analogy with (A.49), we write

ψm(φ, θ) ≈ eimφ
(
cin
αϕ

λ
12 + cout

α ϕ1−λ
12

)
for θ → α

π

2
, α = ±1,

ψ′m(φ′, θ′) ≈ eimφ′
(
c′

in
β ϕ

λ
34 + c′

out
β ϕ1−λ

34

)
for θ′ → β

π

2
, β = ±1.

(A.51)

In the expression for ψm(φ, θ)ψ′m(φ′, θ′)∗, it is sufficient to keep the terms

cin
α

(
c′ out
β

)∗
eim(φ−φ′)ϕλ12ϕ

λ
34 and cout

α

(
c′ inβ
)∗
eim(φ−φ′)ϕ1−λ

12 ϕ1−λ
34 . The other two terms may

be neglected because they oscillate in m. When passing to the full function Ψν
λ,µ[R], the

coefficients cin
α

(
c′ out
β

)∗
and cout

α

(
c′ inβ
)∗

should be replaced with

cin,out
αβ =

2b

π
Γ(1− 2λ)2

√
Γ(λ+ αm) Γ(λ+ βm)

Γ(1− λ+ αm) Γ(1− λ+ βm)
Rin,out
αβ ,

cout,in
αβ =

2b

π
Γ(2λ− 1)2

√
Γ(1− λ+ αm) Γ(1− λ+ βm)

Γ(λ+ αm) Γ(λ+ βm)
Rout,in
αβ .

(A.52)

We consider four cases:

region 1: α = −1, β = 1, −π < φ− φ′ < π,

region 2: α = 1, β = −1, −π < φ− φ′ < π,

region 5: α = −1, β = −1, 0 < φ− φ′ < 2π,

region 6: α = 1, β = 1, 0 < φ− φ′ < 2π.

(A.53)

In each case, the summation in m is reduced to the Fourier series(
2 sin

ϕ

2

)−2∆

=
∑

m∈µ+Z

Γ(1− 2∆)

Γ(1−∆ +m) Γ(1−∆−m)
eim(ϕ−π), 0 < ϕ < 2π. (A.54)
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The result is as follows, where w → 1:

Ψν
λ,µ[R](x;x′) ≈



2
√
b
(

Γ(1− 2λ)Rin,out
−+ (1− w)λ + Γ(2λ− 1)Rout,in

−+ (1− w)1−λ
)

in region 1,

2
√
b
(

Γ(1− 2λ)Rin,out
+− (1− w)λ + Γ(2λ− 1)Rout,in

+− (1− w)1−λ
)

in region 2,

2eiπµ
(

sin(π(λ+ µ)) Γ(1− 2λ)Rin,out
−−

(
1− w−1

)λ
+ sin(π(λ− µ)) Γ(2λ− 1)Rout,in

−−
(
1− w−1

)1−λ )
in region 5,

2eiπµ
(

sin(π(λ− µ)) Γ(1− 2λ)Rin,out
++

(
1− w−1

)λ
+ sin(π(λ+ µ)) Γ(2λ− 1)Rout,in

++

(
1− w−1

)1−λ )
in region 6.

(A.55)

We now find the exact function Ψν
λ,µ[R] that matches the asymptotics (A.50)

and (A.55). It has the form (A.45) with f1[R], . . . , f6[R] satisfying the equation Q̊f =

λ(1 − λ)f . The concrete expressions involve fundamental solutions, which are chosen dif-

ferently in three major cases.

Regions 1 and 2: for 0 < w < 1, the solutions with power-law behavior at w → 1 make

one suitable basis:

Bλ,ν,−ν(w) = (1− w)λ F
(
λ+ ν, λ− ν, 2λ; 1− w

)
,

B1−λ,ν,−ν(w) = (1− w)1−λ F
(
λ+ ν, λ− ν, 2− 2λ; 1− w

)
,

(A.56)

where the function Bλ,l,r is defined by (A.14). The w → 0 solutions are constructed from

Aλ,l,r(w) = w(l+r)/2(1− w)λ F
(
λ+ l, λ+ r, 1 + l + r; w

)
. (A.57)

Specifically, we will use Aλ,ν,−ν(w) = (1− w)λ F(λ+ ν, λ− ν, 1; w) and

Cλ,ν(w) = lim
m→ν

Aλ,m,−ν(w)−Aλ,−m,ν(w)

m− ν︸ ︷︷ ︸
≈ lnw−2ψ(1) for w→0

+
ψ(λ+ ν) + ψ(1− λ+ ν) + ψ(λ− ν) + ψ(1− λ− ν)

2
Aλ,ν,−ν(w),

(A.58)

where ψ(x) = d
dx ln(Γ(x)). The last term is included so that the digamma function does

not appear in the connection formulas:

sin(2πλ)

π
Aλ,ν,−ν(w) =

Bλ,ν,−ν(w)

Γ(1− λ+ ν) Γ(1− λ− ν)
−

B1−λ,ν,−ν(w)

Γ(λ+ ν) Γ(λ− ν)
,

−2a

π2
Cλ,ν(w) =

Bλ,ν,−ν(w)

Γ(1− λ+ ν) Γ(1− λ− ν)
+

B1−λ,ν,−ν(w)

Γ(λ+ ν) Γ(λ− ν)
.

(A.59)
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In this notation,

f1[R](w) = −Tr(R)Cλ,ν(w) + πTr
((
D − i

√
b/aZ

)
R
)
Aλ,ν,−ν(w)

f2[R](w) = −Tr(R)Cλ,ν(w) + πTr
((
D + i

√
b/aZ

)
R
)
Aλ,ν,−ν(w)

(A.60)

where D = −i
√

(b/a)(1− p)X ′Z, see (A.38). Note that D is traceless and anticommutes

with Z (which is also traceless). The comparison with the asymptotic formulas is best done

by doing calculations in one particular basis, for example, |ψ→± 〉. These are the expressions

for D and Z in that basis:

D→→ =

√
b

a


sin(2πµ)

2
√
b

eiπν + e−iπνe2πiµ

2

eiπν + e−iπνe−2πiµ

2
−sin(2πµ)

2
√
b

 , (A.61)

Z→→ =
1√
a


√
b

eiπν − e−iπνe2πiµ

2i

−e
iπν − e−iπνe−2πiµ

2i
−
√
b

 . (A.62)

Regions 3 and 4: for w < 0, we reuse Aλ,ν,−ν(w) but modify Cλ,ν(w) so as to make it

real. Let

Ăλ,l,r(w) = i−(l+r)A+
λ,l,r(w) = y

l+r
2 (1−y)

−l+r
2 F

(
λ+r, 1−λ+r, 1+ l+r; y

)
, y =

w

w − 1
,

(A.63)

where A+
λ,l,r(w) is the analytic continuation of Aλ,l,r(w) through the upper half-plane. The

basis function complementary to Ăλ,ν,−ν(w) = Aλ,ν,−ν(w) is

C̆λ,ν(w) = lim
m→ν

Ăλ,m,−ν(w)− Ăλ,−m,ν(w)

m− ν︸ ︷︷ ︸
≈ ln(−w)−2ψ(1) for w→0

+
ψ(λ+ ν) + ψ(1− λ+ ν) + ψ(λ− ν) + ψ(1− λ− ν)

2
Ăλ,ν,−ν(w).

(A.64)

The solutions with power-law behavior at w → −∞ are:

Ăλ,−ν,−ν
(
w−1

)
= (1− w)ν F

(
λ− ν, 1− λ− ν, 1− 2ν;

1

1− w

)
,

Ăλ,ν,ν
(
w−1

)
= (1− w)−ν F

(
λ+ ν, 1− λ+ ν, 1 + 2ν;

1

1− w

)
.

(A.65)

The two bases are related by the connection formulas:

sin(2πν)

π
Ăλ,ν,−ν(w) =

Ăλ,−ν,−ν
(
w−1

)
Γ(λ+ ν) Γ(1− λ+ ν)

−
Ăλ,ν,ν

(
w−1

)
Γ(λ− ν) Γ(1− λ− ν)

,

−2a

π2
C̆λ,ν(w) =

Ăλ,−ν,−ν
(
w−1

)
Γ(λ+ ν) Γ(1− λ+ ν)

+
Ăλ,ν,ν

(
w−1

)
Γ(λ− ν) Γ(1− λ− ν)

.

(A.66)
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Let us write the result in the first basis:

f3[R](w) = −Tr(R) C̆λ,ν(w) + πTr
((
D + i

√
1− b/aX

)
R
)
Ăλ,ν,−ν(w)

f4[R](w) = −Tr(R) C̆λ,ν(w) + πTr
((
D − i

√
1− b/aX

)
R
)
Ăλ,ν,−ν(w)

(A.67)

where the operator X was defined in (A.37). It is traceless, anticommutes with Z, and has

this matrix form:

X→→ =

√
b

a(a− b)


a− b√
b

−e
iπν − e−iπνe2πiµ

2i

eiπν − e−iπνe−2πiµ

2i
−a− b√

b

 . (A.68)

Regions 5 and 6: for w > 1, the two standard bases of the solution space are related

as follows:
sin(2πλ)

π
Aλ,−ν,−ν

(
w−1

)
=

Bλ,ν,ν
(
w−1

)
Γ(1− λ− ν)2

−
B1−λ,ν,ν

(
w−1

)
Γ(λ− ν)2

,

sin(2πλ)

π
Aλ,ν,ν

(
w−1

)
=

Bλ,ν,ν
(
w−1

)
Γ(1− λ+ ν)2

−
B1−λ,ν,ν

(
w−1

)
Γ(λ+ ν)2

.

(A.69)

Using the A basis, the answer is:

f5[R](w) = e2πiµ Tr

((
1

2
I +G−

)
R

)
Γ(λ− ν)Γ(1− λ− ν)Aλ,−ν,−ν

(
w−1

)
+ Tr

((
1

2
I −G+

)
R

)
Γ(λ+ ν)Γ(1− λ+ ν)Aλ,ν,ν

(
w−1

)
f6[R](w) = Tr

((
1

2
I +G+

)
R

)
Γ(λ− ν)Γ(1− λ− ν)Aλ,−ν,−ν

(
w−1

)
+ e2πiµ Tr

((
1

2
I −G−

)
R

)
Γ(λ+ ν)Γ(1− λ+ ν)Aλ,ν,ν

(
w−1

)
(A.70)

where

G± =
a

sin(2πν)

(
D ± i

√
1− b/aX

)
. (A.71)

A.1.3 Some special cases

The most important cases are R = I and R = Z. The function Ψν
λ,µ[I] = Πν

λ,µ rep-

resents the projector onto the (λ, µ) irrep. Its expression in the form (A.45) involves

these functions:

f1[I](w) = f2[I](w) = −2Cλ,ν(w)

f3[I](w) = f4[I](w) = −2C̆λ,ν(w)

f5[I](w) = e2πiµ Γ(λ− ν)Γ(1−λ−ν)Aλ,−ν,−ν
(
w−1

)
+ Γ(λ+ ν)Γ(1−λ+ν)Aλ,ν,ν

(
w−1

)
f6[I](w) = Γ(λ− ν)Γ(1−λ−ν)Aλ,−ν,−ν

(
w−1

)
+ e2πiµ Γ(λ+ ν)Γ(1−λ+ν)Aλ,ν,ν

(
w−1

)
(A.72)
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Remarkably, the function Ψν
λ,µ[Z] has support only in regions 1 and 2 and their copies:

−f1[Z](w) = f2[Z](w) = 2πi
√
b/aAλ,ν,−ν(w)

f3[Z](w) = f4[Z](w) = f5[Z](w) = f6[Z](w) = 0
(A.73)

A.2 Discrete series components

The logic here is quite similar to that for the continuous series. Given ν = −iγ and λ > 1/2,

there are two sequences of normalizable ν-spinors ψνm that transform as the basis vectors

|m〉 ∈ D±λ : one for m = λ+ n and the other for m = −(λ+ n) with n = 0, 1, . . .. They can

be expressed in terms of the fundamental solutions (A.12), (A.13) in several ways:

ψνλ,λ+n = c i−ν
√

Γ(2λ+ n)

n!

(
w+

5

)ν
λ,λ+n

= c iν(−1)n
√

Γ(2λ+ n)

n!

(
w−5
)ν
λ,λ+n

= c
Γ(1− λ+ ν)√

Γ(2λ+ n)n!
in (w2)νλ,λ+n = c

Γ(1− λ− ν)√
Γ(2λ+ n)n!

i−n (w3)νλ,λ+n ,

(A.74)

ψνλ,−(λ+n) = c i−ν
√

Γ(2λ+ n)

n!

(
w−5
)ν
λ,−(λ+n)

= c iν(−1)n
√

Γ(2λ+ n)

n!

(
w+

5

)ν
λ,−(λ+n)

= c
Γ(1− λ+ ν)√

Γ(2λ+ n)n!
in (w4)νλ,−(λ+n) = c

Γ(1− λ− ν)√
Γ(2λ+ n)n!

i−n (w1)νλ,−(λ+n) .

(A.75)

Let us also give an explicit formula and the expression for the normalization factor c that

corresponds to a nice inner product:

ψνλ,±(λ+n)(φ, θ) = c

√
Γ(2λ+ n)

n!
i∓n
(
−ũ
)−λ−n±ν

2
(
1− ũ

)λ
× F

(
−n, λ± ν, 2λ; 1− ũ

)
e±i(λ+n)φ,

c =
√

Γ(λ+ ν) Γ(λ− ν).

(A.76)

The inner product (A.6) between such functions is proportional to δ(λ − λ′) δn,n′ with

some coefficient that depends on λ but not on n. So it is sufficient to consider the case

n = n′ = 0, where the scaled hypergeometric function is equal to Γ(2λ)−1. The result is

as follows: 〈
ψνλ,±(λ+n)

∣∣ψνλ′,±(λ′+n′)

〉
= (2π)2 δ(λ− λ′)

λ− 1/2
δn,n′ . (A.77)

Unlike in the continuous series case, there is no flux in the θ direction because the

functions ψνλ,±(λ+n) vanish at the boundaries of AdS2. Thus we may interpret them as

bound states, as opposed to scattering states for the continuous series. However, they do

have non-trivial flux in the φ direction, F =
´
dθ Jφ with Jα the Klein-Gordon current,

see (A.39). To calculate the flux, we first consider its matrix element between different

Casimir eigenfunctions and then take the limit λ′ → λ. When λ 6= λ′, the current is not
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conserved, but rather, we have these equations:

F =

ˆ
φ>0

d2x
√
−g∇µJµ(x), (A.78)

〈
ψ
∣∣∇µJµ(x)

∣∣ψ′〉 =
i

2

(
∇2ψ(x)∗ · ψ′(x)− ψ(x)∗ · ∇2ψ′(x)

)
. (A.79)

Let us plug ψ = ψνλ,±(λ+n), ψ
′ = ψνλ′,±(λ′+n′), and use the fact that ∇2 = −Q− ν2:

〈
ψνλ,±(λ+n)

∣∣∇µJµ(x)
∣∣ψνλ′,±(λ′+n′)

〉
=
i

2

(
−λ(1− λ) + λ′(1− λ′)

)
ψνλ,±(λ+n)(x)∗ · ψνλ′,±(λ′+n′)(x). (A.80)

Integrating over the φ > 0 region and taking the λ′ → λ limit, we get:〈
ψνλ,±(λ+n)

∣∣F ∣∣ψνλ,±(λ+n′)

〉
= ±2π δn,n′ . (A.81)

Let us now calculate the projector onto the isotypic component Hνλ,±,

Πν
λ,±(φ, θ;φ′, θ′) =

∞∑
n=0

ψνλ,±(λ+n)(φ, θ) · ψ
ν
λ,±(λ+n)(φ

′, θ′)∗. (A.82)

By the S̃L(2,R) symmetry, Πν
λ,±(x;x′) =

∣∣ϕ23/ϕ14

∣∣νfj(w). As in the continuous series case,

the functions fj can be found by matching asymptotics at the region boundaries. However,

we will instead use analyticity in a complex domain. Let us view the coordinates z̃j = eiϕj

(j = 1, . . . , 4) as specifying a point ((z̃1, z̃2), (z̃3, z̃4)) ∈M×M, whereM is a complexified

hyperbolic plane in which AdS2 is embedded. Plugging eiφ =
√
z1z2, ũ = z1/z2 into (A.76)

and taking out the n-independent factor (z1/z2)ν(z±1
1 − z

±1
2 )λ, we find that ψνλ,±(λ+n)(φ, θ)

is a homogeneous degree n polynomial in z±1
1 and z±1

2 . We can also use the fact that(
ψνλ,±(λ+n)

)∗
= (−1)nψ−νλ,∓(λ+n). Hence, up to the indicated factor, Πν

λ,± is analytic in

the domain

D± =
{

(z1, z2) : |z1|±1, |z2|±1 < 1
}
×
{

(z3, z4) : |z3|∓1, |z4|∓1 < 1
}
. (A.83)

The sum in (A.82) is easy to calculate in the limit z±1
1 → 0, z∓1

3 → 0; the result is

extended to a function of the form (ϕ32/ϕ14)νf(w) with w = (z1 − z3)(z2 − z4)/((z1 −
z4)(z2 − z3)). Thus,

Πν
λ,+(z1, z2; z3, z4)

= |c|2 i−2ν

(
z1z3

z2z4

)ν/2(1− z2/z3

1− z1/z4

)ν
︸ ︷︷ ︸

(ϕ32/ϕ14)ν

(1− w)λ F
(
λ− ν, λ+ ν, 2λ; 1− w

)︸ ︷︷ ︸
Bλ,ν,−ν(w)

(A.84)

in the domain D+, and Πν
λ,+(z1, z2; z3, z4) in D− is related by the symmetry z1 ↔ z3,

z2 ↔ z4, ν ↔ −ν.

Finally, we analytically continue the functions Πν
λ,±. For simplicity, let us focus on

the “+” case. The expression on the right-hand side of (A.84) is uniquely defined if

– 50 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
8

Figure 11. Analytic continuation of the projector Πν
λ,+.

z1 → +0, z2 ∈ (0, 1), z3 → +∞, z4 ∈ (1,+∞), and therefore, 0 < w < 1. This gives a

straightforward continuation to regions 1 and 2. When continuing to other regions, we fix

z3 = i, z4 = −i and move z1, z2 along the unit circle, pushing them inward to get around

z3, z4. Thus,

arg

(
ϕ32

ϕ14

)
=


0 in regions 1, 2, 3, 4,

π in region 5,

−π in region 6,

(A.85)

whereas the continuation of Bλ,ν,−ν(w) from region 2 to regions 3 and 6 is shown in figure 11.

Considering the other regions and the “−” case, we arrive at the following equation:

Πν
λ,±(x, x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν Γ(λ+ ν) Γ(λ− ν)



Bλ,ν,−ν(w) in regions 1, 2

B∓λ,ν,−ν(w) in region 3

B±λ,ν,−ν(w) in region 4

e±iπνB∓λ,ν,−ν(w) in region 5

e∓iπνB∓λ,ν,−ν(w) in region 6

(A.86)

(Here B±λ,ν,−ν(w) is the analytic continuation of Bλ,ν,−ν(w) from w ∈ (0, 1) to the other

parts of the real axis through the upper half-plane for the “+” sign and lower half-plane

for the “−” sign.)

A.3 The algebra of S̃L(2,R)-invariant two-point functions

This subsection is concerned with the functions Ψν
λ,µ[R] (see (A.41)) for variable λ and µ.

Here R is an operator acting in the intertwiner space Lνλ,µ. In the discrete series case, R is

simply a complex number, and Ψν
λ,±[R] = RΠν

λ,±.

More generally, let us consider S̃L(2,R)-invariant (ν,−ν)-spinors on ÃdS2 × ÃdS2.

Such spinors may be interpreted as integral kernels: the kernel of operator F acting in Hν

is F (x;x′) = 〈x|F |x′〉. Therefore, the product and the Hermitian conjugate are given by
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these formulas:

(FG)(x, x′′) =

ˆ
ÃdS2

d2x′
√
−g(x′)F (x, x′)G(x′, x′′), F †(x, x′) = F (x′, x)∗. (A.87)

Using the orthogonality relation (A.36) for the basis one-point functions, we obtain the

following identity:

Ψν
1/2+is,µ[R] ·Ψν

1/2+is′,µ′ [R
′] = Ψν

1/2+is,µ[RR′]
δ(s− s′) δ(µ− µ′)

ρcont(s, µ)
, (A.88)

where

ρcont(s, µ) =
s

(2π)2

sinh(2πs)

cosh(2πs) + cos(2πµ)
. (A.89)

Similarly, for the discrete series,

Ψν
λ,±[R] ·Ψν

λ′,±[R′] = Ψν
λ,±[RR′]

δ(λ− λ′)
ρdisc(λ)

, ρdisc(λ) =
λ− 1/2

(2π)2
. (A.90)

The product of functions Ψν
λ,µ, Ψν

λ,± associated with different irreps is always zero.

Now, let R be a function of s and µ for the continuous series and a function of the ±
sign and λ and for the discrete series. Then we may define

Ψν [R] =

ˆ ∞
0

ds

ˆ 1/2

−1/2
dµ ρcont(s, µ) Ψν

1/2+is,µ[R(s, µ)] +

ˆ ∞
1/2

dλ ρdisc(λ)
∑
α=±

Ψν
λ,α[Rα(λ)].

(A.91)

All S̃L(2,R)-invariant (ν,−ν)-spinors can be cast in this form, and we have the identities

Ψν [R] ·Ψν [R′] = Ψν [RR′], Ψν [R†] = Ψν [R]†. (A.92)

Furthermore, one can define a formal trace as follows:

tr
(
Ψν [R]

)
=

ˆ ∞
0

ds

ˆ 1/2

−1/2
dµ ρcont(s, µ) Tr(R(s, µ)) +

ˆ ∞
1/2

dλ ρdisc(λ)
∑
α=±

Rα(λ). (A.93)

Note that tr
(
Ψν [R]

)
is not the usual trace of the operator Ψν [R] because the latter is

infinite. Essentially, equation (A.93) is a way to normalize the trace and make it finite

while satisfying the cyclic property, tr(FG) = tr(GF ).

It is also possible to define tr(F ) directly, not using the irreducible decomposition.

Indeed, under certain assumptions, the function F (x;x′) has the same asymptotic form at

x→ x′ as fj [R](w) for j = 1, 2, 3, 4 and w → 0 (see (A.60) and (A.67)). Specifically,

F (x;x′) ≈
∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν

− tr(F ) ln |w|+ q − q′ in region 1,

− tr(F ) ln |w|+ q + q′ in region 2,

− tr(F ) ln |w|+ q + q′′ in region 3,

− tr(F ) ln |w|+ q − q′′ in region 4,

(A.94)

where q, q′, q′′ are some complex numbers. To see this, let F = Ψν(R) with R(s, µ) and

R(λ) decaying sufficiently fast at large values of s and λ. Then equation (A.94) follows
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from (A.60), (A.67) for the continuous series and (A.86) for the discrete series. Thus, tr(F )

may be defined as the coefficient in front of ln 1
|w| in the asymptotic form of F (x;x′).

We will now formulate a somewhat more natural condition that guarantees particular

asymptotic behaviors at all region corners and boundaries. It may be viewed as a statement

of generalized smoothness. First, let us write F in a form similar to (A.44), namely,

F (x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν f(x;x′), (A.95)

where f is an S̃L(2,R)-invariant scalar function. Essentially, f is a function on the quo-

tient space

G̃\ÃdS2 × ÃdS2 = H\ÃdS2 = H\G̃/H, (A.96)

where G̃ = S̃L(2,R) and H ⊆ G̃ is the subgroup preserving the point x′ = 0. (As mentioned

at the beginning of this appendix, H is generated by the Lie algebra element Λ2.) Of three

equivalent quotient spaces in (A.96), the simplest is H\ÃdS2, that is, the space of orbits

under the (left) action of H on ÃdS2. These orbits are shown in figure 10b by thin

lines; each nondegenerate orbit is represented by a unique point of the skeleton subset S

composed of thick lines. So one may consider f as a function on S, but it is not clear how

to define smoothness at the junctions. To resolve this problem, suppose that f is obtained

from a sufficiently smooth spinor supported by some neighborhood of S by the integration

along the orbits. The spinor being smooth means that its tilde gauge representation ψ is

smooth,15 whereas the integrals is defined using the disk gauge:

f(x; 0) =

ˆ ∞
−∞

dϑ ψ̊
(
eϑΛ2x

)
. (A.97)

It is fairly easy to elaborate these conditions and prove that they imply the asymptotic

form (A.94) with tr(F ) = ψ(0).

At last, we consider the inner product between S̃L(2,R)-invariant (ν,−ν)-spinors. Let

F (x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν fj(w), G(x;x′) =

∣∣∣∣ϕ23

ϕ14

∣∣∣∣ν gj(w), (A.98)

where j ranges over all regions, including translational copies. By definition, the inner

product is

〈F |G〉 =
∑
j

ˆ
2 dw

(1− w)2
fj(w)∗ gj(w). (A.99)

(The integration measure is the ratio of volume elements for ÃdS2 and H.) One can show

that the Casimir operator Q is Hermitian with respect to this inner product; more exactly,

if F and G satisfy the aforementioned smoothness condition, then 〈F |Q|G〉 = 〈G|Q|F 〉∗.
Hence, functions of the form Ψν

λ,µ[R] or Ψν
λ,±[R] are orthogonal to each other if they

correspond to different irreps. In general, their inner product is equal to a δ-function with

15In the neighborhood of the origin, the disk gauge representation is also smooth.
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some coefficient that can be calculated from the asymptotic formula (A.55) or a similar

expression for the discrete series. Thus,〈
Ψν

1/2+is,µ[R]
∣∣∣Ψν

1/2+is′,µ′ [R
′]
〉

= Tr(R†R′)
δ(s− s′) δ(µ− µ′)

ρcont(s, µ)
,

〈
Ψν
λ,±[R]

∣∣∣Ψν
λ′,±[R′]

〉
= R∗R′

δ(λ− λ′)
ρdisc(λ)

,

(A.100)

It follows that

〈F |G〉 = tr(F †G) (A.101)
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