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1 Introduction

General Relativity (GR) describes the gravitational interaction as the effect of spacetime

curvature. Einstein’s field equations, that rule the dynamics of the gravitational field, can

be derived from the Einstein-Hilbert (EH) action

S =
1

16πG

∫
d4x
√
|g|R , (1.1)

which is essentially the simplest non-trivial covariant action one can write for the metric

tensor. This beautiful theory has passed a large number of experimental tests — includ-

ing the recent detection of gravitational waves coming from black hole and neutron star

binaries [1–6]— and it is broadly accepted as the correct description of the gravitational

interaction.
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However, there are good reasons to think that GR should be modified at high energies.

One of these reasons is that GR is incompatible with quantum mechanics. Although

we still lack a quantum theory of gravity, it is a common prediction of many quantum

gravity candidates that the gravitational action (1.1) will be modified when the curvature

is large enough. For instance, String Theory predicts the appearance of an infinite series

of higher-derivative terms [7–9] correcting the Einstein-Hilbert action. The precise terms

and the scale at which they appear depend on the scheme and on the compactification

chosen. Nevertheless, whatever the modification of GR is, it should be possible to describe

it following the rules of Effective Field Theory (EFT): we add to the action all the possible

terms compatible with the symmetries of the theory and we group them following an

increasing order of derivatives (or more generally, an increasing energy dimension). In the

case of gravity, we would like to preserve diff. invariance and local Lorentz invariance,1 and

this means that the corrections take the form of a higher-curvature, or higher-derivative

gravity [14]. A more general possibility — that we will also consider here — is to increase

the degrees of freedom in the gravitational sector, by adding other fields that are not active

at low energies [15].

Generically, the introduction of higher-derivative interactions means that Ricci-

flat metrics no longer solve the gravitational field equations. As a consequence, the

Schwarzschild [16] and Kerr [17] metrics, that describe static and rotating black holes

(BHs) in GR, are not solutions of the modified theories. One has to solve the modified

field equations in order to determine the corrected black hole solutions, and it is an inter-

esting task to look at the properties of these corrected geometries.

On general grounds, the higher-derivative corrections modify the gravitational interac-

tion when the curvature is large, and they usually improve the UV behaviour of gravity [18].

The effect of the corrections will be drastic precisely in situations where GR fails, such as in

the Big-Bang or black hole singularities, and it is expected that higher-derivative terms can

resolve these divergencies [19–27]. However, the corrections can also significantly modify

the properties of a black hole at the level of the horizon if its mass is small enough. For

example, the divergence of Hawking temperature in the limit M → 0 in Einstein gravity

(EG) black holes can be cured by higher-derivative interactions [28–30]. In this way, one

learns about new high-energy phenomena that might be interpreted as the signature of a

UV-complete theory of gravity.

Besides its intrinsic interest, there is another reason why studying higher-derivative-

corrected black hole geometries is interesting: they can be used to obtain phenomenological

implications of modified gravity. Thanks to the LIGO/VIRGO collaborations [31, 32] and

the Event Horizon Telescope [33], amongst other initiatives [34], it will be possible in the

next years to test GR with an unprecedented accuracy, and to set bounds on possible mod-

ifications of this theory [35–41]. But in order to do so, we first need to derive observational

signatures of modified gravity. In order to measure deviations from GR on astrophysical

black holes, the corrections should appear at a scale of the order of few kilometers, which

is roughly the radius of the horizon for those BHs. Although this seems to be an enor-

1See e.g. [10–13] for other possible extensions of GR.
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mous scale for short-distance modifications of gravity, we should only discard it if there is

some fundamental obstruction that forbids unnaturally large couplings in the effective the-

ory [42]. But if that is not the case, the possibility of observing higher-derivative corrections

on astrophysical black holes should be considered [43]. Hence, studying in a systematic way

black hole solutions of modified gravity and their observational implications is a mandatory

task for the black hole community in the coming years.

Black hole solutions in alternative theories of gravity have been largely explored in

the literature, but for obvious reasons we will restrict our attention to four-dimensional

solutions that modify in a continuous way the Einstein gravity black holes, and that do not

include matter. This excludes, for example, solutions of pure quadratic gravity, without a

linear R term [44–47]. In the same way, theories such as f(R) gravity are not interesting

for us, since they do not modify EG solutions in the vacuum (see e.g. [48]). Some other

theories allow for EG solutions, but additionally possess disconnected branches of different

solutions, as is the case of black holes in quadratic gravity [49, 50]. We will not consider

this case here either, since we are interested in continuous deviations from GR. On the

contrary, static black holes correcting Schwarzschild’s solution have been studied in the

context of Einstein-dilaton-Gauss-Bonnet gravity (EdGB) [15, 51–53], and in other scalar-

Gauss-Bonnet theories, e.g. [54–57]. Those theories contain a scalar that is activated due

to the higher-curvature terms. In the case of pure-metric theories, spherically symmetric

black holes have been constructed, non-perturbatively in the coupling, in Einsteinian cubic

gravity [58–60]. Although the profile of the solution has to be determined numerically, this

theory has the remarkable property that black hole thermodynamics can be determined

analytically. These results have recently been generalized to higher-order versions of the

theory [30, 61, 62].

The case of rotating black holes, which is more interesting from an astrophysical

perspective, is also more challenging. Obtaining rotating black hole solutions of higher-

derivative gravity theories is a very complicated task, and for that reason only approximate

solutions or numerical ones are known. One of the most studied theories in this context is

EdGB gravity, where rotating black holes have been constructed perturbatively in the spin

and in the coupling [43, 63, 64], and numerically [65, 66]. Rotating black holes in dynamical

Chern-Simons (dCS) modified gravity2 [67] have also been studied, both perturbatively [68–

70] and numerically [71]. On the other hand, ref. [72] considers a generalization of EdGB

and dCS theories. Finally, for pure-metric theories, the recent work [73] studies rotating

black holes in the eight-derivative effective theory introduced in [74].

A usual approximation, that is used by many of the papers above, consists in obtain-

ing the solution perturbatively in the higher-order couplings. For some purposes it is also

interesting to obtain non-perturbative solutions — for which one usually needs numerical

methods— but, from the perspective of EFT, it does not make any sense to go beyond

perturbative level, since the theory will include further corrections at that order. Addi-

tionally, the solution is often expanded in a power series of the spin parameter χ = a/M .

2This theory does not modify spherically symmetric GR solutions, because the corrections are sourced

by the Pontryagin density, that vanishes in the presence of spherical symmetry. However, it does modify

rotating black holes.
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In most of the literature, only few terms in this expansion are included, so the solutions

are only valid for slowly-rotating black holes. However, astrophysical black holes — and in

particular those created after the merging of a black hole binary [75] — can have relatively

high spin. Moreover, some effects of rotation — such as the deformation of the black hole

shadow [33, 76–78] — are barely observable when the spin is low, and other phenomena

only happen for rapidly spinning black holes [79–81]. Although numerical solutions are not

in principle limited to small values of the spin, analytic solutions are most useful for evident

reasons. Hence, it would be interesting to provide analytic solutions valid for high-enough

angular momentum. Finally, instead of having a large catalogue of alternative theories of

gravity and their black hole solutions, it would be desirable to describe a minimal model

that captures all the possible modifications of GR at a given order — probably, up to field

redefinitions — and to characterize the black holes of that theory.

The preceding discussion motivates the three main objectives of the present work.

First, to establish a general effective theory that can be used to study the leading-order

higher-derivative corrections to Einstein gravity vacuum solutions. Second, to obtain the

corrections to Kerr black hole in these theories, providing an analytic solution that is

accurate for high enough values of the spin. And third, to study in detail some of the

properties of these rotating black holes, such as the shape of horizon or the surface gravity,

that have often been disregarded in the literature.

The paper is organized as follows. In section 2 we describe the models with higher-

derivative terms and non-minimally coupled scalars that we will use throughout the text,

and we argue that they capture the most general corrections of this kind. In section 3 we

describe the ansatz used in order to find the rotating black holes in the previous theories and

we solve the equations performing a series expansion in the spin. For the computations

in the text we use a series up to order O(χ14), that is accurate up to χ ∼ 0.7. We

provide as well a Mathematica notebook that computes the solution at any given order

(it is contained in the supplementary material). In section 4 we study some properties of

the modified Kerr black holes: horizon, ergosphere, photon rings and scalar hair, and we

highlight the interesting geometry of black holes in parity-violating theories, that do not

possess Z2 symmetry. We summarize our findings in section 5, commenting on possible

extensions and applications of the present work. Finally, there are several appendices with

supplemental information.

2 Leading order effective theory

The most general diffeomorphism-invariant and locally Lorentz-invariant metric theory of

gravity is given by an action of the form

S =

∫
d4x
√
|g|L (gµν , Rµνρσ,∇αRµνρσ,∇α∇βRµνρσ, . . .) . (2.1)

This is, the most general Lagrangian for such theory will be an invariant formed from

contractions and products of the metric, the Riemann tensor, and its derivatives. However,

the theory above can be generalized by slightly relaxing some of the postulates. We may
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construct the Lagrangian using as well the dual Riemann tensor:

R̃µναβ =
1

2
εµνρσR

ρσ
αβ . (2.2)

These terms generically lead to violation of parity, hence the theory is not (locally) invariant

under the full Lorentz group, but only under one of its connected components. However,

we know that parity is not a symmetry of nature, so in principle there is no reason to

discard terms constructed with R̃µναβ . In general, one expands this Lagrangian in terms

containing increasing numbers of derivatives, being the first one the Einstein-Hilbert term

R, with two derivatives. The rest of the terms can symbolically be written as

∇pRn . (2.3)

Since this term contains 2n+p derivatives, it should be multiplied by a constant of dimen-

sions of length2n+p−2 with respect to the Einstein-Hilbert term. This is the length scale `

at which the higher-derivative terms modify the law of gravitation. When the curvature

is much smaller than this length scale (||Rµνρσ|| � `−2), the effect of the higher-derivative

terms can be treated as a perturbative correction, and terms with increasing number of

derivatives become more and more irrelevant. Thus, it is an interesting exercise to obtain

the most general theory that includes all the possible leading-order corrections. Here we

summarize how we construct this theory, but we refer to the appendix A for the details.

The first terms one may introduce in the action are quadratic in the curvature and hence

they contain four derivatives. These terms would induce corrections in the metric tensor at

order `2, but in four dimensions it turns out that all of these terms either are topological

or do not introduce corrections at all. Thus, the first corrections in a metric theory appear

at order `4 and they are associated to six-derivative terms. As we show in appendix A,

it turns out that, up to field redefinitions, there are only two inequivalent six-derivative

curvature invariants, one of them parity-even and the other one parity-odd. However, one

could consider a more general theory, allowing the coefficients of the higher-derivative terms

to be dynamical i.e., controlled by scalars. This is actually a very natural possibility that

is predicted, for instance, by String Theory [15]. In that case, some of the four-derivative

terms do contribute to the equations and they also correct the metric at order `4. For

simplicity, we will restrict ourselves to massless scalars, but we will allow, in principle, to

have an undetermined number of them. Within this large family of theories, it is possible

to show that the most general leading correction to Einstein’s theory is captured by the

action

S =
1

16πG

∫
d4x
√
|g|
{
R+ α1φ1`

2X4 + α2 (φ2 cos θm + φ1 sin θm) `2RµνρσR̃
µνρσ

+ λev`
4R ρσ

µν R δγ
ρσ R µν

δγ + λodd`
4R ρσ

µν R δγ
ρσ R̃ µν

δγ − 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2

}
,

(2.4)

where

X4 = RµνρσR
µνρσ − 4RµνR

µν +R2 (2.5)

is the Gauss-Bonnet density and φ1, φ2 are scalar fields. Besides the overall length scale

`, there are only five parameters: α1, α2, λev, λodd and θm. The parameter λodd violates
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parity, while the “mixing angle” θm represents as well a sort of parity breaking phase. For

θm = 0, π (no mixing between scalars), φ2 is actually a pseudoscalar and the quadratic

sector is parity-invariant. For any other value (θm 6= 0, π), parity is also violated by

this sector.

The theory (2.4) contains, as particular cases, some well-known models that have been

frequently used in the literature. The case λev = λodd = θm = 0, α2 = −α1 = 1/8

corresponds to the prediction of String Theory, where the length scale of the corrections

in that case is the string length `2 = `2s ≡ α′. As we show in the appendix B, the

corresponding action can be obtained from direct compactification and truncation of the

Heterotic superstring effective action at order α′. In that case, φ1 is identified with the

dilaton, while φ2 is the axion, which appears after dualization of the Kalb-Ramond 2-form.

Another well-known possibility (which is also claimed to proceed from the low-energy

limit of String Theory) is λodd = λev = α2 = 0, which corresponds to the Einstein-

dilaton-Gauss-Bonnet theory. Rotating black holes in EdGB gravity have been studied both

numerically [65, 66] and in the slowly-rotating limit [43, 63, 64]. The case θm = π/2, which

represents an extension of EdGB gravity, has also been considered [72] (note that this case

only contains one dynamical scalar and violates parity). On the other hand, the case α2 6= 0

with the rest of couplings set to zero corresponds to dynamical Chern-Simons gravity, whose

rotating black holes were studied in refs. [68–70] in the slowly-rotating approximation, while

ref. [71] performs a non-perturbative numerical study. As for the cubic theories, the parity-

even term (controlled by λev) can be mapped (modulo field redefinitions) to the Einsteinian

cubic gravity (ECG) term [58], for which static black hole solutions have been constructed

non-perturbatively in the coupling [59, 60]. Phenomenological signatures of static black

holes in ECG have also been recently studied in [82, 83], where a first bound on the

coupling was provided, and the possibility to detect deviations from GR in gravitational

lensing observations was discussed. Rotating black holes in ECG have not been studied so

far. Lastly, to the best of our knowledge, the parity odd cubic term has never been used

in the context of black hole solutions.

The theory (2.4) has been constructed following the sole requirement of diff. invariance,

but there are some other constraints that could be imposed on physical grounds. For

instance, if one wants to preserve parity, then one should set θm = λodd = 0. Nevertheless,

we know that nature is not parity-invariant, so keeping these terms is not unreasonable.

If one does not wish to include additional light degrees of freedom the scalars should

be removed, which amounts to setting α1 = α2 = 0 (in that case the scalars are just not

activated). On the other hand it is known that higher-derivative terms may break unitarity

by introducing ghost modes — non normalizable states. In the case, for instance, of the

Gauss-Bonnet term in (2.4) this problem does not exist since it produces second-order

equations. The equations of the cubic terms do contain higher-order derivatives — namely

of fourth order —, but the mass scale at which we expect the new modes to appear is

m2 ∼ 1

`4||Rµνρσ||
. (2.6)

This is simply telling us that Effective Field Theory works up to the scale ||Rµνρσ|| ∼

– 6 –
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`−2, which is something we already knew. Finally, it is also possible to study causality

constraints [84]. In relation to this, the results in [42] impose a severe bound on the

coupling constants λev`
4, λodd`

4 of the cubic terms. If one wants to observe any effects

of higher-derivative corrections on astrophysical black holes, necessarily the corrections

should appear at a scale ` of the order of few kilometers (otherwise the effect would be

too small to be detected). Such large couplings are very unnatural, since the natural scale

of (quantum) gravity should be Planck length. According to [42], these large couplings

lead to violation of causality, that could only be restored by adding an infinite tower of

higher-spin particles of mass ∼ `−1. Since, obviously, this is not observed, it was concluded

that the couplings associated to the cubic terms should be of the order of Planck scale,

hence those corrections would not be viable phenomenologically.3

In any case, nothing prevents us from studying the effect of the cubic curvature terms

on black holes, no matter the scale at which they appear. These corrections give us valuable

information about the effects of modified gravity at high energies, and this is intrinsically

interesting, even if those corrections are not viable on an observational basis.

If, for some reason, all the theories in the model (2.4) were discarded, then the leading

correction to GR would be given by the quartic-curvature terms introduced in [74]. These

terms modify the metric at order O(`6) hence they are subleading when the couplings

in (2.4) are non-vanishing. Rotating black holes in those theories were recently studied

in [73] up to order χ4 in the spin. The methods that we present in this work could be

applied to the quartic theories as well and could be used in order to extend some of the

results in [73]. For instance, one might compute the solution for higher values of the spin

or obtain the form of the horizon, as we do in section 4.1.

2.1 Equations of motion

Our goal is to compute the leading corrections to vacuum solutions of Einstein’s theory.

Thus, our starting point is a metric g
(0)
µν that satisfies vacuum Einstein’s equations

R(0)
µν = 0 , (2.7)

while the scalars φ
(0)
1 , φ

(0)
2 take a constant value that can be chosen to be zero without loss

of generality.4 But this field configuration is not a solution when we take into account the

higher-derivative terms. First we note that the coupling between scalars and the curvature

densities in the action (2.4) induce source terms in the scalar equations of motion, so that

they will not be constant anymore. More precisely the first correction is of order `2,

φ1 = `2φ
(2)
1 , φ2 = `2φ

(2)
2 , (2.8)

and it satisfies

∇2φ
(2)
1 = −α1RµνρσR

µνρσ
∣∣∣
g=g(0)

− α2 sin θmRµνρσR̃
µνρσ

∣∣∣
g=g(0)

, (2.9)

∇2φ
(2)
2 = −α2 cos θmRµνρσR̃

µνρσ
∣∣∣
g=g(0)

. (2.10)

3Let us note that, according to [74], the conclusion might be different if one considers different UV

completions of the effective theory from the one assumed in [42].
4The action 2.4 is invariant (up to a surface term) under constant shifts of the scalars.
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On the other hand, the modified Einstein equations, derived from the action (2.4), can be

written as

Gµν = T scalars
µν + T cubic

µν , (2.11)

where we have passed all the corrections to the right-hand-side in the form of some energy-

momentum tensors, that read

T scalars
µν =− α1`

2gνλδ
λσαβ
µργδ R

γδ
αβ∇ρ∇σφ1 + 4α2`

2∇ρ∇σ
[
R̃ρ(µν)σ (cos θmφ2 + sin θmφ1)

]
+

1

2

[
∂µφ1∂νφ1 −

1

2
gµν (∂φ1)

2

]
+

1

2

[
∂µφ2∂νφ2 −

1

2
gµν (∂φ2)

2

]
,

(2.12)

and

T cubic
µν =λev`

4

[
3Rµ

σαβRαβ
ρλRρλσν +

1

2
gµνR

ρσ
αβ R δγ

ρσ R αβ
δγ − 6∇α∇β

(
RµαρλRνβ

ρλ
)]

+ λodd`
4

[
− 3

2
R ραβ
µ RαβσλR̃

σλ
νρ − 3

2
R ραβ
µ RνρσλR̃

σλ
αβ

+
1

2
gµνR

ρσ
µν R δγ

ρσ R̃ µν
δγ + 3∇α∇β

(
RµασλR̃

σλ
νβ +RνβσλR̃

σλ
µα

)]
(2.13)

Since the scalars are of order O(`2), we can see that the leading correction to the metric

associated to the scalar sector is of order O(`4), the same order at which cubic curvature

terms come into play. Thus, we expand the metric as

gµν = g(0)µν + `4g(4)µν , (2.14)

where g
(4)
µν is a perturbative correction. Now, taking into account that g

(0)
µν solves Einstein’s

equations, we get the value of the Einstein tensor to linear order in g
(4)
µν :

Gµν = `4
[
−1

2
∇2ĝ(4)µν −

1

2
g(0)µν∇α∇β ĝ

(4)
αβ +∇α∇(µĝ

(4)
ν)α

]
+O(`6) . (2.15)

where ∇ is the covariant derivative associated with the zeroth order metric, and ĝ
(4)
µν is the

trace-reversed metric perturbation

ĝ(4)µν = g(4)µν −
1

2
g(0)µν g

(4)
αβg

(0)αβ . (2.16)

Then, ĝ
(4)
µν satisfies the equation

− 1

2
∇2ĝ(4)µν −

1

2
g(0)µν∇α∇β ĝ

(4)
αβ +∇α∇(µĝ

(4)
ν)α = `−4

[
T scalars
µν + T cubic

µν

] ∣∣∣
g=g(0) , φi=`2φ

(2)
i

(2.17)

3 The corrected Kerr metric

After introducing the theory (2.4), here we present the rotating black hole ansatz that we

will use in the rest of the text, and in section 3.1 we sketch how to solve the equations
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of motion. From now on we set G = 1. Let us first consider Kerr’s metric expressed in

Boyer-Lindquist coordinates:

ds2 =−
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ+ Σ

(
dr2

∆
+ dθ2

)
+

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdφ2 ,

(3.1)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 . (3.2)

Let us very briefly recall some of the properties of this metric.

• Being a solution of vacuum Einstein’s equations, it is Ricci flat: Rµν = 0.

• It is stationary and axisymmetric, with related Killing vectors ∂t and ∂φ respectively.

• It represents an asymptotically flat spacetime with total mass M and total angular

momentum J = aM .

• When M > |a| the solution represents a black hole, whose (outer) horizon is placed

at the largest radius r+ where ∆ vanishes:

r+ = M +
√
M2 − a2 . (3.3)

Since Ricci flat metrics do not solve the modified Einstein’s equations, the rotating

black holes of the theory (2.4) will not be described by Kerr metric. The search for an

appropriate metric ansatz that can be used to parametrize deviations from Kerr metric

is a far from trivial problem that has been studied in the literature [85, 86]. However,

as long as the mass is much larger than the scale at which the higher-derivative terms

appear, M � `, the deviation with respect General Relativity will be small — at least

outside the horizon. In that case, we can build the rotating black hole solution of (2.4) as

a perturbative correction over Kerr metric. Since we want to describe an stationary and

axisymmetric solution, the corrected metric has to conserve the Killing vectors ∂t and ∂φ.

On the other hand, we do not expect to “activate” additional components of the metric, so

that the corrections appear in the already non-vanishing components. Taking into account

these observations, we can write a general ansatz for the corrected Kerr metric

ds2 =−
(

1− 2Mρ

Σ
−H1

)
dt2 − (1 +H2)

4Maρ(1− x2)
Σ

dtdφ+ (1 +H3)
Σ

∆
dρ2

+ (1 +H5)
Σdx2

1− x2
+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)
Σ

)
(1− x2)dφ2 ,

(3.4)

where H1,2,3,4,5 are functions of x = cos θ and ρ only, and they are assumed to be small

|Hi| � 1. Note that we have introduced the coordinate ρ in order to distinguish it from

the coordinate r in Kerr metric. We have also introduced the functions

Σ = ρ2 + a2x2 , ∆ = ρ2 − 2Mρ+ a2 . (3.5)
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However, the ansatz (3.4) is far too general, and it turns out that we can fix some of

the functions Hi by performing a change of coordinates. In particular, it can be shown

that there exists a (infinitesimal) change of coordinates (ρ, x)→ (ρ′, x′) that preserves the

form of the metric and for which H ′5 = H ′3. Thus, we are free to choose H3 = H5, and in

that case, the metric reads

ds2 =−
(

1− 2Mρ

Σ
−H1

)
dt2 − (1 +H2)

4Maρ(1− x2)
Σ

dtdφ

+ (1 +H3) Σ

(
dρ2

∆
+

dx2

1− x2

)
+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)
Σ

)
(1− x2)dφ2 .

(3.6)

Note that we are choosing the coordinates x and ρ such that the form of the (ρ, x)-

metric is respected — up to a conformal factor — when the corrections are included. It

is easy to see that this choice of coordinates has a crucial advantage: the horizon of the

metric (3.6) will still be placed at the (first) point where ∆ vanishes: ρ+ = M+
√
M2 − a2.

If we were not careful enough choosing the coordinates, the description of the horizon could

be very messy, and this is perhaps the reason why in previous studies the horizon of the

corrected solutions has not been studied in depth.

We note that, whenever we consider the corrections, the coordinate ρ does not coincide

asymptotically with the usual radial coordinate r. Advancing the results in next subsection,

we get that the functions Hi behave asymptotically as

Hi = h
(0)
i +

h
(1)
i

ρ
+O

(
1

ρ2

)
, i = 1, 2, 3, 4 , (3.7)

where h
(k)
i are constant coefficients. Then, we can see that the usual radial coordinate r

that asymptotically measures the area of 2-spheres is related to ρ according to

ρ = r

(
1− h

(0)
3

2

)
− h

(1)
3

2
+O

(
1

r

)
. (3.8)

Using this coordinate, the asymptotic expansion of the metric (3.6) reads

ds2(r →∞) =−

(
1− h(0)1 −

2M +Mh
(0)
3 + h

(1)
1

r

)
dt2

−
(

1 + h
(0)
2 + h

(0)
3 /2

) 4Ma sin2 θ

r
dtdφ

+ dr2

(
1 +

2M +Mh
(0)
3 + h

(1)
3

r

)
+ r2dθ2

+
(

1 + h
(0)
4 − h

(0)
3

)
r2 sin2 θdφ2 .

(3.9)

When we solve the equations, we see that we are free to fix the asymptotic values of

the coefficients h
(0)
i . On the other hand, the metric must be asymptotically flat (with the
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correct normalization at infinity), and we want the parameters M and a to still represent

the mass and the angular momentum per mass of the solution, so the asymptotic expansion

should read

ds2(r →∞) =−
(

1− 2M

r

)
dt2 − 4Ma sin2 θ

r
dtdφ

+ dr2
(

1 +
2M

r

)
+ r2dθ2 + r2 sin2 θdφ2 .

(3.10)

From this, we derive the asymptotic conditions that we have to impose on our solution:

h
(0)
1 = 0 , h

(0)
3 = h

(0)
4 = −h

(1)
3

M
, h

(0)
2 = −h

(0)
3

2
. (3.11)

Apparently, the condition Mh
(0)
3 + h

(1)
1 = 0 is also required, but this is actually imposed

by the field equations.

3.1 Solving the equations

Once we have found an appropriate ansatz for our metric, eq. (3.6), we have to solve

the equations of the theory (2.4). The first step is to solve the equations for the

scalars (2.9), (2.10), from where we obtain φ1 and φ2 at order O(`2). Using this result

we determine the right-hand-side of (2.17), while in the left-hand-side we introduce the

metric correction g
(4)
µν ,

`4g(4)µν dx
µdxν =H1dt

2 −H2
4Maρ(1− x2)

Σ
dtdφ+H3Σ

(
dρ2

∆
+

dx2

1− x2

)
+H4

(
ρ2 + a2 +

2Mρa2(1− x2)
Σ

)
(1− x2)dφ2 ,

(3.12)

which can be read from (3.6). In this way, we get a (complicated) system of equations

for the functions Hi, that we have to solve. Unfortunately, these equations (including the

ones for the scalars) are very intricate and we are not able to obtain an exact solution.

However, a possible strategy is to expand the solution in powers of the angular momentum

a, assuming that it is a small parameter. In previous works [43, 63, 64, 68, 69, 72], this

method has been employed in order to obtain a few terms in the expansion, which yields an

approximate solution for slowly rotating black holes. Nonetheless, if one includes enough

terms in the expansion, the result should give a good approximation to the solution also

for high values of the spin. One of the goals of this paper is precisely to provide a method

that allows for the construction of the solution at arbitrarily high-orders in the spin.

For simplicity, let us first introduce the dimensionless parameter

χ =
a

M
, (3.13)

that ranges from 0 to 1 in Kerr’s solution, χ = 0 corresponding to static black holes and

χ = 1 to extremal ones.5 Then, we expand our unknown functions in a power series in χ

φ1 =

∞∑
n=0

φ
(n)
1 χn , φ2 =

∞∑
n=0

φ
(n)
2 χn , Hi =

∞∑
n=0

H
(n)
i χn , i = 1, 2, 3, 4 , (3.14)

5When the corrections are included, we expect that the extremality condition is modified, χext 6= 1,

but this is not important for our discussion, since we will not deal with extremal or near-extremal geome-

tries here.
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where we recall that all the functions depend on ρ and x. Then, the idea is to plug these

expansions in (2.9), (2.10), (2.17), expand the equations in powers of χ, and solve them

order by order. The equations satisfied by the n-th components are much simpler than the

full equations, and we are indeed able to solve them analytically. These are second-order,

linear, inhomogeneous, partial differential equations, so that the general solution can be

expressed as the sum of a particular solution plus all the solutions of the homogeneous equa-

tion. In general, the “homogeneous part” of the solution represents infinitesimal changes

of coordinates, and the physics is contained in the inhomogeneous part, which is the one

sourced by the higher-derivative terms. So, we have to find the solution that captures the

corrections but does not introduce unnecessary changes of coordinates. We observe that

the appropriate solution can always be expressed as a polynomial in x and in 1/ρ. More

precisely, we get6

φ
(n)
1 =

n∑
p=0

kmax∑
k=0

φ
(n,p,k)
1 xpρ−k , φ

(n)
2 =

n∑
p=0

kmax∑
k=0

φ
(n,p,k)
2 xpρ−k ,

H
(n)
i =

n∑
p=0

kmax∑
k=0

H
(n,p,k)
i xpρ−k , (3.15)

where φ
(n,p,k)
1,2 , H

(n,p,k)
i are constant coefficients and in each case the value of kmax depends

on n and p. When we solve the equations we also observe that all the terms in these series

are determined except the constant ones: those with p = k = 0. However, those coefficients

are fixed by the boundary conditions. In the case of the scalars, their value at infinity is

arbitrary, so we can set it to zero for simplicity (this does not affect the rest of the solution)

φ
(n,0,0)
1 = φ

(n,0,0)
2 = 0 , n = 0, 1, 2, . . . . (3.16)

On the other hand, for the Hi functions we take into account the relations (3.11) that we

derived previously, which imply that

H
(n,0,0)
1 = 0 , H

(n,0,0)
3 = H

(n,0,0)
4 = −H

(n,0,1)
3

M
, H

(n,0,0)
2 = −H

(n,0,0)
3

2
. (3.17)

In this way, the solution is completely determined. Since this process is systematic, we can

easily program an algorithm that computes the series (3.14) at any (finite) order n. We

provide a Mathematica notebook as supplementary material that does the job. Using this

code, we have computed the solution up to order χ14. As we show in appendix D, this

expansion provides a minimum accuracy of about 1% everywhere outside the horizon for

χ = 0.7, and much higher for smaller χ. Thus, we have an analytic solution that works for

relatively high values of χ, and we will exploit this fact in next section. Due to the length

of the expressions, in appendix C we show the solution explicitly up to order χ3, but the

full series up to order n = 14 is available in the Mathematica notebook.

Before closing this section, we would like to clarify the following point. In the preceding

scheme the corrections are expressed as a powers series in the spin, but we are taking

6Equivalently, one may expand these functions using Legendre polynomials Pp(x).
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the zeroth-order solution to be the exact Kerr’s metric, which is non-perturbative in the

spin. Thus, for consistency sake, one should imagine that we also expand the zeroth-order

solution in the spin up to the same order at which the corrections were computed. However,

for evident reasons we do not do this explicitly. Thus, in the next section, we will write the

formulas for several quantities as the result for Kerr’s metric, exact in the spin, plus linear

corrections, perturbative in the spin, but one should bear in mind that the zeroth-order

result should also be expanded.

4 Properties of the corrected black hole

In this section we analyze some of the most relevant physical properties of the rotating

black hole solutions we have found. We study the geometry of the horizon and of the

ergosphere, light rings on the equatorial plane, and scalar hair.

4.1 Horizon

In order for the metric (3.6) to represent a black hole, we have to show that it contains

an event horizon. We have argued that, with the choice of coordinates we have made, the

horizon is defined by the equation ∆ = 0, whose roots are ρ = ρ±, where

ρ± = M
(

1±
√

1− χ2
)
. (4.1)

The largest root ρ+ corresponds to the event horizon, while ρ = ρ− is in principle an inner

horizon.7 In this work we will only deal with the exterior solution ρ ≥ ρ+.

Then, let us show that ρ = ρ+ is indeed an event horizon. More precisely, we will

show that it is a Killing horizon, i.e. a null hypersurface where the norm of a Killing vector

vanishes. Let us first check that the hypersurface defined by ρ = ρ+ is null. In order to do

so, we consider the induced metric at some constant ρ, which is given by

ds2|ρ=const = −
(

1− 2Mρ

Σ
−H1

)
dt2 − (1 +H2)

4Maρ(1− x2)
Σ

dtdφ

+ (1 +H3)
Σdx2

1− x2
+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)
Σ

)
(1− x2)dφ2 .

(4.2)

Then, we can see that when we evaluate at ρ = ρ+, the previous metric is singular,

namely it has rank 2. Evaluating the determinant of the (t, φ)-metric at ρ+, we get

(
gttgφφ − g2tφ

) ∣∣∣
ρ=ρ+

=
4M2ρ2+(1− x2)
ρ2+ + a2x2

[
H1 −

a2
(
1− x2

)
ρ2+ + a2x2

(2H2 −H4)

] ∣∣∣∣∣
ρ=ρ+

, (4.3)

where, for consistency with the perturbative approach, we have expanded linearly in the

Hi functions. When we expand the combination between brackets in powers of χ using the

solution we found, we see that all the terms vanish. Thus, the determinant vanishes,(
gttgφφ − g2tφ

) ∣∣∣
ρ=ρ+

= 0 , (4.4)

7When the corrections are included, most likely the inner horizon of Kerr’s black hole becomes singular.

For instance, one expects that the scalars diverge there.
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which proves that this hypersurface is null. The next step is to show that there exists a

Killing vector whose norm vanishes at ρ = ρ+. Such vector is a linear combination of the

two Killing vectors ∂t and ∂φ:

ξ = ∂t + ΩH∂φ , (4.5)

for some constant ΩH . One can check that the only possible choice of ΩH for which ξ is

null at ρ+ is

ΩH =
|gtφ|
gφφ

∣∣∣∣
ρ=ρ+

=
a

2Mρ+
(1 +H2 −H4)

∣∣
ρ=ρ+

, (4.6)

which represents the angular velocity at the horizon. It is then clear that the norm of the

vector ξ vanishes at ρ = ρ+, since

ξ2
∣∣∣
ρ=ρ+

=
(
gtt + 2gtφΩH + Ω2

Hgφφ
) ∣∣∣
ρ=ρ+

=

(
gtt −

g2tφ
gφφ

)∣∣∣∣∣
ρ=ρ+

= 0 , (4.7)

where in the last step we have used (4.4). However, the crucial point here is whether

ΩH , given by (4.6), is constant. A priori, this quantity could well depend on x, in whose

case ξ would not be a Killing vector, and therefore ρ = ρ+ would not be a Killing horizon.

Nevertheless, expanding this quantity in powers of χ we do find that it is constant (see (4.8)

below), a fact that provides a very strong check on the validity of our results. Thus, we

have shown that ρ = ρ+ is a Killing horizon, and hence it should correspond to the event

horizon of the black hole.

We can now evaluate the angular velocity in order to study deviations with respect to

Kerr’s solution. A useful way to express it is the following,

ΩH =
χ

2M
(

1 +
√

1− χ2
) +

`4

M5

[
α2
1 ∆Ω

(1)
H + α2

2 ∆Ω
(2)
H + λev ∆Ω

(ev)
H

]
, (4.8)

where the first term is the value in Kerr black hole and we made explicit the linear correc-

tions related to the different terms in the action. It turns out that the parity breaking terms

do not contribute to this quantity — nor to many others, as we will see. The dimensionless

coefficients ∆Ω
(i)
H depend on the spin, and the first terms in the χ-expansion read8

∆Ω
(1)
H =

21χ

80
− 21103

201600
χ3 − 1356809

8870400
χ5 − 78288521

461260800
χ7 − 25394183

143503360
χ9 +O(χ11) , (4.9)

∆Ω
(2)
H = −709χ

1792
− 169

1536
χ3− 254929

2365440
χ5− 613099

5271552
χ7− 1684631453

13776322560
χ9+O(χ11) , (4.10)

∆Ω
(ev)
H =

5χ

32
+

1

64
χ3 +

3

448
χ5 +

11

1792
χ7 +

377

57344
χ9 +O(χ11) . (4.11)

The profile of these coefficients is shown in figure 1. This plot was done using the expansion

up to order χ15, which provides an accurate result up to χ = 0.7. Interestingly, we observe

that the correction related to α1 increases the angular velocity, while the one related to

8The first term in each of the formulas (4.9) and (4.10) reproduces previous results in the cases of EdGB

gravity [63] and dCS gravity [70], respectively. The horizon area we obtain (see eqs. (4.24) and (4.25) below)

also agrees with the results in those works, that computed the area at quadratic order in the spin.
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Figure 1. Correction to the angular velocity of the black hole associated to every interaction.

α2 decreases it. The one associated to λev can have either effect, since the sign of λev
is in principle arbitrary. We observe that the effect of these terms is larger for smaller

masses: the quantity that controls how relevant the corrections are is `4/M4 times the

corresponding coupling. They become of order 1 when M ∼ `, which marks the limit of

validity of the perturbative approach.

Surface gravity. At this stage, the natural step is to compute the surface gravity κ,

defined by the relation

ξν∇νξµ = κξµ , (4.12)

that the Killing vector (4.5) must satisfy on the horizon. The computation of κ is not

straightforward because the coordinates we are using are singular at the horizon. A possibil-

ity in order in order to circumvent this problem consists in working in Eddington-Finkelstein

coordinates, that cover the horizon. However, there exist a number of alternative methods

that can be used in order to obtain the surface gravity even if the coordinates are not

well-behaved. Here we will follow a trick proposed in [87]. First, let us rewrite (4.12) as

− ∂µξ2 = 2κξµ , (4.13)

where we made use of the Killing property ∇(µξν) = 0. Then, let us focus on the left hand

side of the equation. The norm ξ2 is a function of x and ρ, so that ∂µξ
2 only has non-

vanishing µ = x, ρ components. However, one can explicitly check that limρ→ρ+ ∂xξ
2 = 0,

hence the only non-vanishing component is µ = ρ, and it is given by

−∂ρ ξ2|ρ=ρ+ =
(ρ+ −M)

2M2ρ2+

(
ρ2+ + a2x2

) [
1 + 2H2 −H4

+ 4M2ρ2+
∂ρ
(
−H1Σ+a2(1−x2)(2H2−H4)

)
+2 (ρ+ −M) (H4−2H2)

2 (ρ+ −M)
(
ρ2+ + a2x2

)2
]∣∣∣∣∣
ρ=ρ+

,

(4.14)
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where, as usual, we are expanding linearly in the Hi functions. On the other hand, since

ξ is normal to the horizon, we must have ξµ = C δµ
ρ for some constant C. Of course,

this is not true in general: one should imagine that the previous formula holds only on the

horizon, where the coordinate ρ is singular. The exact factor C is computed by taking the

norm ξ2 = C2gρρ and evaluating at the horizon, so that we get

C = lim
ρ→ρ+

√
ξ2

gρρ
=
ρ2+ + a2x2

2Mρ+

[
1 +H2 +

H3

2
− H4

2

+4M2ρ2+
∂ρ
(
−H1Σ + a2(1− x2)(2H2 −H4)

)
+ 2 (ρ+ −M) (H4 − 2H2)

4 (ρ+ −M)
(
ρ2+ + a2x2

)2
] ∣∣∣∣∣

ρ=ρ+

.

(4.15)

Then, we can plug (4.14) and (4.15) into (4.13) to find

κ =−
∂ρ ξ

2|ρ=ρ+
C

=
(ρ+ −M)

2Mρ+

[
1 +H2 −

H3

2
− H4

2

+M2ρ2+
∂ρ
(
−H1Σ + a2(1− x2)(2H2 −H4)

)
+ 2 (ρ+ −M) (H4 − 2H2)

(ρ+ −M)
(
ρ2+ + a2x2

)2
] ∣∣∣∣∣

ρ=ρ+

.

(4.16)

Finally, evaluating this expression on the solution and expanding order by order in χ we find

κ =

√
1− χ2

2M
(

1 +
√

1− χ2
) +

`4

M5

[
α2
1∆κ

(1) + α2
2∆κ

(2) + λev∆κ(ev)
]
, (4.17)

where the coefficients ∆κ(i) read

∆κ(1) =
73

480
− 61

384
χ2 +

3001

322560
χ4 +

5376451

70963200
χ6 +

67632847

615014400
χ8 +O

(
χ10
)
, (4.18)

∆κ(2) =
2127

7168
χ2 +

14423

86016
χ4 +

429437

3153920
χ6 +

125018653

984023040
χ8 +O

(
χ10
)
, (4.19)

∆κ(ev) =
1

32
− 7

64
χ2 − 3

64
χ4 − 7

256
χ6 − 157

8192
χ8 +O

(
χ10
)
. (4.20)

Again, we observe that parity-breaking terms do not modify this quantity. In addition,

the fact that we obtain a constant surface gravity is another strong check of our solution,

since this is a general property that any Killing horizon must satisfy. The profile of these

coefficients as functions of χ is shown in figure 2, using an expansion up to order χ14.

We see that both quadratic curvature terms controlled by α1 and α2 increase the surface

gravity, with the difference that the α2 correction vanishes for static black holes. On the

other hand, the contribution from λev has a different sign depending on χ. For χ < 0.5 the

surface gravity is greater than in Kerr black hole, while for χ > 0.5 it is lower, or viceversa,

depending on the sign of λev.

Another aspect that we can mention is that these contributions do not seem to be

vanishing when χ → 1. This would imply that κ
∣∣
χ=1
6= 0, hence the solutions with χ = 1

would not be extremal. In fact, there is a priori no reason to expect that the relation
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Figure 2. Variation of the surface gravity ∆κ(i) due to every correction, as a function of χ. We can

observe that contributions coming from curvature-squared terms always increase the temperature,

since ∆κ(1) and ∆κ(2) are positive and also the coefficients multiplying them. The contribution

from λev has different sign depending on χ.

between mass and angular momentum of extremal black holes is preserved when higher-

derivative corrections are taken into account.9 Our results in figure 2 suggest precisely this;

extremality will be reached for a value of χ slightly different from 1. However, let us note

that the series expansion in χ breaks down for χ = 1, so the perturbative approach is not

reliable in order to analyze the corrections to the extremal Kerr solution. One would need

to compute directly the corrections to extremal rotating black holes in order to confirm

whether the extremality condition is indeed corrected.

Horizon geometry. Let us finally study the size and shape of the horizon, which will

be affected by the corrections. The induced metric at the horizon is

ds2H = (1 +H3) |ρ=ρ+
ρ2+ + a2x2

1− x2
dx2 + (1 +H4) |ρ=ρ+

4M2ρ2+
(
1− x2

)
ρ2+ + a2x2

dφ2 . (4.21)

First, we can find the area, which is given by the integral

AH =4πMρ+

∫ 1

−1
dx

(
1 +

H3

2
+
H4

2

) ∣∣∣∣∣
ρ=ρ+

. (4.22)

Computing the integral order by order in χ, we can write the area as

AH = 8πM2
(

1 +
√

1− χ2
)

+
π`4

M2

(
α2
1 ∆A(1) + α2

2 ∆A(2) + λev ∆A(ev)
)
, (4.23)

9In the case of charged black holes, it is known that higher-curvature corrections modify the relation

between mass and charges, see e.g. [88, 89].
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Figure 3. Variation of the black hole area ∆A(i) due to every one of the corrections. The quadratic

curvature corrections, controlled by α1 and α2 always decrease the area with respect to the result

in Einstein gravity, while for the even cubic correction the contribution depends on the sign of λev.

where every contribution ∆A(i) depends on χ, and the first terms read

∆A(1) = −98

5
+

11χ2

10
+

28267χ4

25200
+

11920241χ6

7761600
+

2263094063χ8

1210809600
+O

(
χ10
)
, (4.24)

∆A(2) = −915χ2

112
− 25063χ4

6720
− 528793χ6

295680
− 39114883χ8

53813760
+O

(
χ10
)
, (4.25)

∆A(ev) = −10 + 4χ2 +
69χ4

40
+

263χ6

280
+

183χ8

320
+O

(
χ10
)
. (4.26)

In figure 3 we show the profile of these quantities as functions of χ, using the expansion up

to order χ14. We observe that the quadratic corrections always reduce the area (except α2

in the static case, that does not contribute). On the other hand, the cubic even correction

reduces or increases the area depending on whether λev > 0 or λev < 0, respectively.

So far, we have not observed the effect of the parity-breaking corrections — they do

not contribute either to the area, the surface gravity or the angular velocity of the black

hole. This is expected on general grounds since these corrections contain only odd powers

of x, and it is easy to see that the contribution, for instance, to the area, must vanish.

Nevertheless, these terms do change the geometry and they will affect the shape of the

horizon. Indeed, these parity-breaking corrections break the Z2 symmetry of the solution,

i.e. the reflection symmetry on the equatorial plane x → −x. It is expected that this loss

of symmetry is manifest in the form of the horizon.

In order to visualize the event horizon, we perform an isometric embedding of it in

3-dimensional Euclidean space E3. In terms of Cartesian coordinates (x1, x2, x3), we can

parametrize the most general axisymmetric surface as

x1 = f(x) sinφ , x2 = f(x) cosφ , x3 = g(x) , (4.27)

where f(x) and g(x) are some functions that must be determined by imposing that the
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induced metric on the surface, given by

ds2 =
[(
f ′
)2

+
(
g′
)2]

dx2 + f2 dφ2 , (4.28)

coincides with (4.21). We get immediately that these functions are given by

f(x) = 2Mρ+

(
1 +

H4

2

) ∣∣∣∣∣
ρ=ρ+

(
1− x2

ρ2+ + a2x2

)1/2

, (4.29)

g(x) =

∫
dx

[
(1 +H3) |ρ=ρ+

ρ2+ + a2x2

1− x2
−
(
f ′
)2]1/2

. (4.30)

However, it can happen that the solution does not exist if the argument of the square root

in the integral becomes negative. In that case, the horizon cannot be embedded completely

in E3. It turns out that this only happens for quite large values of χ (around χ ∼ 0.9), and

for the values we are considering here, the complete horizon can be embedded. As usual, we

expand the expressions (4.29) and (4.30) linearly on Hi and at the desired order in χ and

we obtain explicit formulas for f and g that we do not reproduce here for a sake of clarity.

Now we can use the result to visualize the horizon. In figure 4 we show the horizon for

parity-preserving theories. We fix the mass to some constant value and χ = 0.65 and we

compare the horizon of Kerr black hole with the one in the corrected solutions for different

values of the couplings. In this way, we can observe clearly the change in size and in shape

of the horizon. As we already noted, both α1 and α2 reduce the area, but it turns out

that they deform the horizon in different ways: α1 squashes it while α2 squeezes it. We

also show the deformation corresponding to the “stringy” prediction α1 = α2. In that case

we observe that the effect of both terms together is to make to horizon rounder than in

Einstein gravity. As for the cubic even correction, it mainly changes the size of the black

hole while its shape is almost unaffected.

In figure 5 we present the horizon in the parity-breaking theories (characterized by

the two parameters θm and λodd). In the top row we plot the horizon for a fixed choice of

higher-order couplings and for various masses, keeping χ = 0.65 constant. The visualization

is clearer in this way since these corrections do not change the area. In addition, we can

see that for large M the horizon has almost the same form as in EG, but as we decrease

the mass the corrections become relevant and it is deformed. We observe in this case that

the Z2 symmetry is manifestly broken. Due to exotic form of these horizons we include as

well a 3D plot in which we can appreciate them better. Very recently other works have

described black hole solutions that do not possess Z2 symmetry [73, 90]. However, to the

best of our knowledge, these are the first plots of black hole horizons without Z2 symmetry

in purely gravitational theories.

4.2 Ergosphere

Another important surface of rotating black holes is the ergosphere, which marks the limit

in which an object can remain static outside the black hole. When gtt < 0, there are no

timelike trajectories with constant (ρ, x, φ), so the ergosphere is identified by the condition
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Figure 4. Isometric embedding of the horizon in E3 for different values of the parameters and

for χ = 0.65. In black we represent the horizon of Kerr black hole and in blue the horizon of the

corrected solution for a fixed mass and different values of the couplings. From light to darker blue

we increase the value of the corresponding coupling. In each case, only the indicated couplings are

non-vanishing. Top left: `4

M4α
2
1 = 0.05, 0.1, 0.15, 0.2, top right: `4

M4α
2
2 = 0.05, 0.1, 0.15, 0.2, bottom

left: `4

M4α
2
1 = `4

M4α
2
2 = 0.05, 0.1, 0.15, 0.2, bottom right: `4

M4λev = −0.4,−0.2, 0.2, 0.4.

gtt = 0, which for the metric (3.6) can be written as

1− 2Mρ

Σ
= H1 . (4.31)

This equation determines the value of the “ergosphere radius” ρerg. Unlike the horizon

radius ρ+, that does not receive corrections due to the clever choice of coordinates, the

ergosphere radius is modified with respect to its value in Kerr metric. We may express the
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reasons we do not include the comparison with Kerr solution. In the top row we plot the horizon

for different masses (M0 ≥M ≥ 0.7M0 for some reference mass M0) while keeping χ = 0.65 and the

couplings constant. In each case, only the indicated couplings are non-vanishing. Left: α1 = α2,

θm = π/2, M0 ≈ 2.23`
√
|α1|. Right: λodd > 0, M0 ≈ 1.46`λ

1/4
odd. Bottom row: 3D embedding of

the horizon for `4

M4α
2
1 = `4

M4α
2
2 = 0.15, θm = π/2 (left) and for `4

M4λodd = 0.6 (right). In both cases,

the Z2 symmetry is manifestly broken.

corrections to ρerg as

ρerg = M
(

1 +
√

1− χ2x2
)

(4.32)

+
`4

M3

[
α2
1∆ρ

(1) + α2
2∆ρ

(2) + α1α2 sin θm∆ρ(m) + λev∆ρ(ev) + λodd∆ρ(odd)
]
, (4.33)

where the first term represents the result in Einstein gravity and we have to determine the

value of the coefficients ∆ρ(i). Plugging this into (4.31), we find these coefficients, whose

first terms in the χ-expansion are shown in eq. (E.1). In this case, we do get a non-vanishing

contribution from the parity-breaking terms, though this is not directly relevant, since ρerg
has no physical meaning by itself. However, an interesting property that we note by looking
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at (E.1) is that all the corrections to ρerg vanish at x = ±1, corresponding to the north and

south poles of the ergosphere. There is a nice interpretation of this fact: the ergosphere and

the horizon overlap at the poles. Indeed, the horizon radius ρ+ does not have corrections,

and the zeroth-order value of the ergosphere radius ρ
(0)
erg = M

(
1 +

√
1− χ2x2

)
already

coincides with ρ+ at the poles ρ
(0)
erg(x = ±1) = ρ+. Hence, the corrections to ρ

(0)
erg must

vanish at x = ±1 if we want the horizon and the ergosphere to still overlap.

In order to study the geometry of the ergosphere, we can compute the induced metric

for ρ = ρerg(x) at a constant time t = t0, which reads

ds2erg = (1 +H3) Σ

(
1

∆

(
dρerg
dx

)2

+
1

1− x2

)
dx2

+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)
Σ

)
(1− x2)dφ2

∣∣∣∣
ρ=ρerg(x)

,

(4.34)

Using the value of ρerg that we have found yields a complicated expression that we

omit here for clarity sake. The most useful way to visualize the geometric properties of the

ergosphere is to find an isometric embedding of the previous metric in Euclidean space,

as we have just done with the horizon. The embedding is shown in figure 6 for parity-

preserving theories, and in figure 7 for parity-breaking ones. In the former case, we plot

the ergosphere for a fixed mass and χ = 0.65, and for different values of the couplings,

including the GR result. We observe that the corrections change the size and shape of

the ergosphere. The quadratic terms α1 and α2 both reduce the area of the ergosphere,

while the cubic even term reduces its size for λev > 0, and increases it for λev < 0. The

characteristic conical singularity at the poles of the ergosphere is also considerable affected

by some corrections. In particular, we see that α2 and λev < 0 have the effect of making the

cone less sharp. In the top row of figure 7 we show instead the embedding of the ergosphere

for several values of the mass, while keeping the couplings and χ = 0.65 constant. This

helps the visualization since parity-breaking interactions do not change the area of the

ergosphere. As the mass decreases, the effect of the corrections becomes relevant and we

observe, as in the case of the horizon, that the ergosphere does not possess Z2 symmetry.

This is more explicit for the cubic odd correction λodd that deforms the ergosphere giving

it a characteristic “trompo” shape. The effect of Z2 symmetry breaking is less obvious for

the θm deformation, but nevertheless it can still be observed. To the best of our knowledge,

these are the first examples of ergospheres without Z2 symmetry.

4.3 Photon rings

Another aspect of the modified Kerr black holes we would like to explore is their geodesics.

The analysis of geodesics is necessary in order to obtain some observable quantities, such

as the form of the black hole shadow [37]. However, a detailed analysis of geodesics will

require of an independent study due to their intricate character.10 For that reason, here we

10For instance, a preliminary exploration shows that integrability is lost, i.e., there is no Carter con-

stant [91].
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Figure 6. Isometric embedding of the ergosphere in E3 for different values of the parameters and

for χ = 0.65. In black we represent the ergosphere of Kerr black hole and in blue the ergosphere

of the corrected solution, for a fixed mass and different values of the couplings. From light to

darker blue we increase the value of the corresponding coupling. In each case, only the indicated

couplings are non-vanishing. From left to right and top to bottom: `4

M4α
2
1 = 0.03, 0.07, 0.11, 0.15,

`4

M4α
2
2 = 0.03, 0.07, 0.11, 0.15, `4

M4α
2
1 = `4

M4α
2
2 = 0.03, 0.07, 0.11, 0.15, `4

M4λev = −0.6,−0.3, 0.3, 0.6.

consider only a special type of geodesics that are particularly interesting: circular orbits

(ρ = constant) for light rays at the equatorial plane, i.e. at x = 0, known as the photon

rings or light rings of the black hole. However, an appropriate question that we must

answer first is whether there are geodesics contained in the equatorial plane at all. In the

case of Kerr metric, the reason of their existence is the reflection symmetry x → −x, but

we have seen that in our black holes this symmetry does not exist if we include parity-
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Figure 7. Isometric embedding of the ergosphere in E3 for parity-breaking theories. In the top

row we plot the ergosphere for different masses (M0 ≥ M ≥ 0.7M0 for some reference mass M0)

while keeping χ = 0.65 and the couplings constant. In each case, only the indicated couplings are

non-vanishing. Left: α1 = α2, θm = π/2, M0 ≈ 2.23`
√
|α1|. Right: λodd > 0, M0 ≈ 1.35`λ

1/4
odd. In

the bottom row we show a 3D embedding of the ergosphere for `4

M4α
2
1 = `4

M4α
2
2 = 0.15, θm = π/2

(left) and for `4

M4λodd = 0.6 (right). In the latter case we observe clearly that the Z2 symmetry is

broken and the ergosphere acquires a characteristic “trompo” shape. The effect is more subtle in

the left picture, but the Z2 symmetry is also broken.

breaking terms. In fact, in those solutions there is no equatorial plane! Therefore, we

should not expect the existence of geodesics contained in the plane x = 0 if we include

those corrections. In order to understand this better, let us examine the geodesic equations:

ẍµ + Γµαβẋ
αẋβ = 0 , (4.35)

where ẋµ = dxµ

dλ and λ parametrizes the curve xµ(λ). Let us evaluate these equations for a

trajectory with ρ̇ = 0 and x = 0, which represents a circular orbit. We find that the µ = x
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component of (4.35) reads

− ∂xH1|x=0

2ρ2±
ṫ2 +

2M2χ

ρ3±
∂xH2|x=0 ṫ φ̇−

ρ3± + 2M3χ2 +M2χ2ρ±

2ρ3±
∂xH4|x=0 φ̇

2 = 0 . (4.36)

In order for the truncation x = 0 to be consistent, the left-hand-side should vanish indepen-

dently of the value of ṫ and φ̇. This does not always happens, and the reason is precisely the

presence of parity-breaking interactions, controlled by λodd and sin θm. Note that all the

terms appearing in (4.36) are proportional to ∂xHi|x=0. When the theory preserves parity,

the solution possesses Z2 symmetry and the functions Hi only contain even powers of x,

so that ∂xHi|x=0 = 0. On the contrary, the parity-breaking terms introduce odd powers

of x in the Hi functions — in particular terms linear in x — implying that ∂xHi|x=0 6= 0.

Thus, in such theories setting x = 0 is not consistent and there are no orbits contained in

the plane x = 0 (probably there are no orbits contained in a plane at all, besides the radial

geodesics at the axes x = ±1).11 For simplicity, from now on we set the parity-violating

parameters to zero, λodd = θm = 0, so that we can study equatorial geodesics. However, we

believe that studying the geodesics in those theories is an interesting problem that should

be addressed elsewhere.

Let us then focus on the remaining equations. When they are evaluated on ρ̇ = 0

and x = 0, the µ = t and µ = φ components of the geodesic equations (4.35) tell us that

ṫ = const and φ̇ = const and, consequently, the angular velocity ω ≡ dφ/dt is also constant.

On the other hand, the component µ = ρ gives an equation for ω:

Γρφφω
2 + 2Γρtφ ω + Γρtt = 0 , (4.37)

where the Christoffel symbols are shown in eq. (E.6). Finally, we take into account that

for massless particles we have gµν ẋ
µẋν = 0, that gives the following equation

(1 +H4)
(
ρ3 +M2χ2ρ+ 2M3χ2

)
ω2 − 4M2χ (1 +H2) ω = ρ− 2M − ρH1 . (4.38)

Now, using the equations (4.37) and (4.38) we can solve for ρ and ω. We get two

solutions that we can express as the result in Einstein gravity plus corrections:

ρph±
M

= 2

(
1 + cos

(
2

3
arccos (∓χ)

))
+

`4

M4

[
α2
1∆ρ

(1)
ph± + α2

2∆ρ
(2)
ph± + λev∆ρ

(ev)
ph±

]
, (4.39)

Mω± = ±

 1√
48 cos4

(
1
3 arccos (∓χ)

)
+ χ2

+
`4

M4

(
α2
1∆ω

(1)
± + α2

1∆ω
(1)
± + λev∆ω

(ev)
±

) ,
(4.40)

11In ref. [73], rotating black holes were studied in the presence of quartic-curvature corrections, including

a parity-violating combination, and it was stated that this interaction does not have effects on equatorial

geodesics. Apparently, the analysis of geodesics in that paper missed the fact that those geodesics are not

permitted if the parity-violating term is activated. On the other hand, that analysis should be perfectly

valid if the problematic term is removed.
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The “+” solution corresponds to the prograde photon ring (the photons rotate in the same

direction as the black hole), while the “−” solution represents the retrograde photon ring.

We reproduce here the values of the coefficients ∆ω
(i)
± expanded up to order χ7 in the spin

∆ω
(1)
± =

314903

5051970
√

3
∓ 4622χ

295245
+

8851591201χ2

51719542875
√

3
± 42673456073χ3

2792855315250

+
11374135507830761χ4

151551500826726000
√

3
± 499170611564647χ5

41332227498198000

+
2353403000148834509χ6

637075878244532496000
√

3
± 39466007326001941781χ7

5733682904200792464000
+O

(
χ8
)
, (4.41)

∆ω
(2)
± = ± 475χ

15309
− 94860881χ2

1471133664
√

3
± 9171782047χ3

198603044640
− 1554821121481χ4

104970736503360
√

3

±531813118668851χ5

10776995614344960
− 58139937236064179χ6

2044934917821956160
√

3

±873454908530834053χ7

21235862608151083200
+O

(
χ8
)
, (4.42)

∆ω
(ev)
± =

2812

168399
√

3
∓ 304χ

19683
+

4741441χ2

91945854
√

3
∓ 253447787χ3

14895228348

+
1055872965625χ4

57733905076848
√

3
∓ 1752163706099χ5

86600857615272

+
13016738847143χ6

1629670684214664
√

3
∓ 105611309632721χ7

5423105806294176
+O

(
χ8
)
, (4.43)

while the coefficients ∆ρ
(i)
ph± are shown in eq. (E.9) of the appendix. However, ρph± is a

meaningless quantity, since ρ does not have a direct interpretation as a radius. What we

should really consider as the radius of the light rings is

R± =
√
gφφ

∣∣∣
x=0, ρ=ρph±

. (4.44)

Since the light ring (more precisely, the photon sphere) determines the shape of the black

hole shadow, this quantity give us information about the deformation of the shadow (near

the equator) due to the corrections. On the other hand, ω± is also an interesting quantity,

since it is related to the time-scale of the response of the black hole when it is perturbed. In

fact, there is a known quantitative relation between the orbital frequency of the light ring

and the quasinormal frequencies of static black holes in the eikonal limit [92, 93]. Although

the relation probably does not extend to the rotating case, we do expect that ω± captures

qualitatively the (real) frequencies of the first quasinormal modes. Hence, we can use ω±
in order to perform a first estimation of the effects of the corrections on the black hole

quasinormal frequencies.

In figure 8 we show the frequencies ω± and the radius R± for several values of the

higher-order couplings and we compare them to the GR values. These plots were computed

using an expansion up to order χ14 of both quantities. We note some characteristic features

for each correction. In the case of the quadratic correction controlled by α1 we see that

both ω+ and |ω−| increase with respect to the Einstein gravity values. On the other hand,
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Figure 8. Frequencies and radii of the light rings in parity-preserving theories. In blue we plot the

quantity corresponding to the prograde orbit and in purple that corresponding to the retrograde

one. In the left column we show the frequencies for different values of the couplings and compare

them to GR. In the right column we plot the radii R± for the same values of the couplings.

for α2 corrections we observe that ω+ decreases while |ω−| increases so that the difference

between the two frequencies is reduced. As for the cubic correction, it increases or decreases

ω+ if λev > 0 or λev < 0 respectively. It has little effect on ω−, but interestingly the sign

is different depending on the value of χ. However, in order to characterize deviations from

GR it is more useful to look at the ratio of frequencies ω+/|ω−|, that we show for a few cases

in figure 9. In GR, this quantity is completely determined by the spin parameter χ, but in

these theories it also depends on the combination `4/M4. Thus, if one is able to determine

χ by other means, the ratio ω+/|ω−| can be used to constrain the higher-order couplings.
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Figure 9. Ratio of light ring frequencies ω+/|ω−| in several theories.

4.4 Scalar hair

So far, we have only focused on the geometry, but one of the most remarkable features

of the solutions of (2.4) is that the scalar fields acquire a non-trivial profile. In fact,

the coupling of the scalars to the quadratic curvature invariants prevent these from being

constant whenever the invariants are non-vanishing. A slightly less trivial fact —though

also well-known [15, 51–53, 94]— is that the scalars actually get a charge that can be

measured at infinity. More precisely, the scalar φ1 gets a charge Q while φ2 gets dipolar

moment P , that can be identified by looking at the asymptotic behaviour12

φ1 ∼ −
Q

ρ
, φ2 ∼ P

x

ρ2
. (4.46)

Using the solution in powers of χ that we have found, we obtain

Q = −α1`
2

M

(
2− χ2

2
− χ4

4
− 5χ6

32
− 7χ8

64
− 21χ10

256
− 33χ12

512
− 429χ14

8192
+ . . .

)
, (4.47)

P = α2`
2 cos θm

(
5χ

2
− χ3

4
− 3χ5

32
− 3χ7

64
− 7χ9

256
− 9χ11

512
− 99χ13

8192
− 143χ15

16384
+ . . .

)
.

(4.48)

Remarkably enough, it is possible to guess the general term of these series and to sum

them. We find

Q = −4α1`
2

M

√
1− χ2

1 +
√

1− χ2
, (4.49)

P = α2`
2 cos θm

2χ(5− 8χ2 + 4χ4)

2− 3χ2 + 2χ4 + 2(1− χ2)3/2
. (4.50)

12The reason for the negative sign in front of Q is that the charge is conventionally defined as

Q =
1

4π

∫
d2Σµ∂µφ1 , (4.45)

where the integral is taken on spatial infinity.
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One can check that the series expansion of these expressions matches those in (4.47)

and (4.48), so they are most likely correct, and they give the exact value of the charges

as functions of the spin. In the case of the charge Q, we also check that it agrees with

previous results [39, 41, 95].

Despite having non-vanishing scalar charge, we note however that the solution has no

“hair”, because the charge is completely fixed in terms of the mass and the spin. In other

words, the charge cannot be arbitrary. The reason is that the previous value of the charge

is the only one compatible with the requirement of regularity of the solution at the horizon.

If we introduce, by hand, any other value of the scalar charge, the resulting solution would

develop a singularity at the horizon.

As we mentioned in section 2, in the context of String Theory φ1 is related to the

dilaton, while φ2 is the axion. In appendix B we show that the precise identification

with the effective action of Heterotic Superstring Theory is α1 = −α2 = −1/8 , `2 = α′,

ϕ = ϕ∞ + φ1
2 . Then, the dilaton charge D associated to a rotating black hole reads, at

leading order in α′,

D =
α′

4M

√
1− χ2

1 +
√

1− χ2
. (4.51)

This can be expressed in a very appealing form as D = α′πT , where T = κ/(2π) is

the Hawking temperature of the black hole. It turns out that this intriguing connection

between asymptotic charge and temperature (or surface gravity) is not a coincidence, but

a general phenomenon that happens in EdGB theory with linear coupling [95].

The field φ2 gets a dipolar moment instead of charge because it is sourced by the

parity-violating Pontryagin density — φ2 is essentially the scalar that appears in dynamical

Chern-Simons gravity [67]. When the spin vanishes we get P = 0, and in fact, φ2 = 0, so

that this kind of scalar hair is not present in spherically symmetric solutions [96].

Besides the asymptotic behaviour, it is also interesting to study the profile of the scalar

fields as a function of x. The field φ2 is odd under the Z2 transformation x → −x, while

φ1 is even only for θm = nπ, n ∈ Z. For other values of θm, φ1 does not have a defined

parity, which is a manifestation of the breaking of the Z2 symmetry. For instance, when

evaluated on the horizon, ρ = ρ+, the field φ1 is given by

φ1

∣∣∣
ρ+

=
`2

M2

[
α1

(
11

6
+

(
5

16
− 59x2

40

)
χ2 +

(
11

160
− 117x2

80
+

167x4

224

)
χ4 + . . .

)
+α2 sin (θm)

(
29xχ

16
+

(
187x

160
− 13x3

12

)
χ3+

(
67x

80
− 629x3

448
+

251x5

512

)
χ5+. . .

)]
.

(4.52)

We only show here a few terms in the χ-expansion for definiteness, but using the

solution up to order χ14 we can determine accurately the profile of φ1 on the horizon for

high values of χ. In figure 10 we plot φ1 as a colormap on the horizon for χ = 0.65, and

`2α1 = `2α2 = 0.4M2. From left to right, the parity-breaking parameter θm takes the

values θm = 0, π/4, π/2. For θm = 0 the profile is Z2-symmetric and has a mild variation,

taking a maximum value at the equator. When θm 6= 0, we observe the deformation of
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Figure 10. Profile of the scalar field φ1 on the horizon. We show here the case for `2α1 = `2α2 =

0.4M2 and for a parity-breaking phase θm = 0, π/4, π/2, from left to right.

the horizon that we reported in section 4.1, plus a “polarization” of the scalar field, that

develops a maximum at the north pole and a minimum at the south one.

Interestingly enough, the scalar profile provides an intuitive picture of the deformation

of the horizon. The northern “hemisphere” grows due to the θm correction, while the

southern one has a smaller size, and this coincides with the fact that the scalar field

is “concentrated” on the northern hemisphere, producing a larger energy density there.

Thus, the horizon is enlarged in the region that has a greater scalar energy density.

5 Conclusions

In this work, we have computed the modified Kerr black hole solution in the effective

theory (2.4), which provides a general framework to study the leading-order deviations

from GR associated to higher-derivative corrections. We expressed the solution as a power

series in the spin parameter χ and we showed that including enough terms we get an

accurate result even for large values of χ. In this text we have worked with an expansion

up to order χ14, that provides a good approximation for χ ≤ 0.7, but with the software

we supply it should be possible to compute the series to higher orders in χ and to get a

solution valid for χ ∼ 1. Although the series expansion involves lengthy expressions, it has

obvious advantages with respect to numerical solutions, since it allows for many analytic

computations, as we have illustrated in section 4.

We have studied some of the most remarkable properties of these rotating black holes,

with special emphasis on the horizon. We have shown that the corrections modify the shape

of the horizon, and in particular, that parity-violating interactions break the Z2 symmetry

of Kerr’s black hole. We observed the same phenomenon in the case of the ergosphere, and,

as far as we know, figure 7 contains the first example of ergospheres without Z2 symmetry.

In addition, we have computed some quantities that were disregarded in previous

studies on rotating black holes in modified gravity. In particular, we have obtained the

surface gravity of these black holes, from which one obtains the Hawking temperature

according to T = κ
2π , in natural units. Thus, from the results in section 4.1 we conclude

that the quadratic curvature terms with non-minimally coupled scalars always increase the

temperature of black holes, for any value of the spin. On the other hand, the cubic curvature
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term raises or lowers the temperature depending on the sign of the coupling λev and on

the value of the spin χ. The modification of Hawking temperature may have important

consequences for the evaporation process of black holes [30], and it would be interesting to

extend these results by obtaining the value of the temperature non-perturbatively in the

coupling and in the spin.

As a first step in analyzing the geodesics of the modified Kerr black holes, we studied

the photon rings, i.e. circular light-like geodesics on the equatorial plane. Remarkably, we

have found that for parity-breaking theories there are no such orbits: indeed, there are

no orbits contained in the equatorial plane because there is no equator at all. Thus, we

computed the photon rings for parity-even theories, characterizing the deviations from GR.

Finally, we also noticed the non-trivial scalar fields, and we were able to obtain exact

formulas for the monopole and dipole charges. We also computed the profile of the scalar φ1
on the horizon and we observed how the Z2 symmetry is broken when the parity-violating

phase θm is activated.

Let us now comment on some possible extensions and future directions. As we already

mentioned, it would be interesting to obtain the solution for even larger values of the

angular momentum, since the effects of rotation are more drastic when the spin is close to

the extremal value. It would also be more or less straightforward to extend the results of this

paper to other theories that we did not consider here, particularly the quartic ones in [73,

74]. Another possible extension would entail adding a mass term for the scalars in (2.4),

though this would considerably increase the difficulty of finding an analytic solution.

We have studied some basic properties of the modified Kerr black holes, but the

next natural step is to derive observational signatures of these spacetimes. Analyzing the

geodesics of these black holes is an interesting task, as one would potentially observe effects

coming from the loss of integrability or from the absence of Z2 symmetry in parity-violating

theories. Once the geodesics are determined, one could study gravitational lensing or the

black hole shadow, similarly as done e.g. in [76, 77]. However, the most sensitive quantity

to the corrections — and that we expect to measure in the near-future thanks to gravita-

tional wave detectors [97] — is the quasinormal mode spectrum of the black hole. Hence,

determining the quasinormal modes and frequencies of the rotating black holes presented

here is a very relevant task, for which one needs to perform perturbation theory. Analyzing

electromagnetic and scalar perturbations for test fields (or for one of the scalars contained

in the model (2.4)) should not involve outstanding complications. On the other hand, the

study of gravitational perturbations presents a more challenging problem, since one would

need to derive the analogous of the Teukolsky equation [98] for the modified Kerr black

holes. We feel that this problem should be addressed in future work.

The observation of deviations from General Relativity in astrophysical black holes

would represent a tremendous breakthrough that would revolutionize our current under-

standing of gravity. But even if this is not the case, studying the effects of higher-derivative

corrections on black hole geometries provides us with a rich source of new physics, and al-

lows us to learn about new phenomena that could be inherent to an underlying UV-complete

theory of gravity.
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A Higher-derivative gravity with dynamical couplings

In this appendix, we are going to motivate our choice of effective action (2.4). Since our goal

is to parametrize the leading corrections to vacuum solutions, we will start writing down

an action including all possible curvature invariants containing at most 2n derivatives, and

then we will discuss which terms are going to induce corrections. By dimensional analysis,

a term with 2n derivatives will be multiplied by a factor `2n−2, where ` is some length scale

that we will assume to be small as compared with the size of the black hole, i.e. GM � `.

It is clear then that the effective action can be always written as

S =
1

16πG

∫
d4x
√
−gR+

∑
n≥2

`2n−2

16πG
S(2n) , (A.1)

where in S(2n) we will include the terms with 2n derivatives.

Up to four-derivative terms, we can add the following terms to the Einstein-Hilbert

action

S(4) =

∫
d4x
√
−g
[
α1X4 + α2RµνρσR̃

µνρσ + α3RµνR
µν + α4R

2
]
. (A.2)

It turns out that, if the coefficients αi are constants, none of these terms will modify a

vacuum solution of GR at O
(
`2
)
. The reasons are the following: both X4 and RµνρσR̃

µνρσ

are topological terms and therefore do not contribute to the equations of motion. The last

two terms are quadratic in Ricci curvature, which means that their contributions to the

equations of motion will vanish when evaluated on a GR vacuum solution. In other words,

Ricci flat metrics are also solutions of EG plus four-derivative terms.

However, we can think of adding dynamical couplings, i.e. promoting αi →
αifi

(
φ1, . . . , φN

)
, where

{
φA
}
A=1,...,N

is a set of N massless scalars.13 To this aim, we

have to include also a kinetic term for them in the action (A.1) so that it becomes

S =
1

16πG

∫
d4x
√
−g
[
R− 1

2
MAB(φ)∂µφ

A∂µφB
]

+
∑
n≥2

`2n−2

16πG
S(2n) , (A.3)

whereMAB(φ) is the (symmetric) matrix that characterizes the non-linear σ-model. How-

ever, as we check a posteriori, the scalars will be excited by the higher-derivative terms at

order `2. Then, we only need to include terms that are at most quadratic in the scalars,

13A natural extension of this work would be to include a non-vanishing scalar potential.
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which contribute to the gravitational equations at order `4. Thus, we can expand MAB

in a Taylor series and only the constant term will contribute at leading order. By means

of a redefinition of the scalar fields, this constant term can always be taken to be the

identity matrix: MAB|φA=0 = δAB. On the other hand, the generalized action for the

four-derivative terms, that we denote again by S(4), is

S(4) =

∫
d4x
√
−g
[
α1f1 (φ)X4 + α2f2 (φ)RµνρσR̃

µνρσ + α5f5 (φ)∇2R
]
, (A.4)

where we already neglected the RµνR
µν and R2 terms, that do not induce corrections at

leading order, and we have now added the term α5f5 (φ)∇2R that was neglected in (A.2)

because in the non-dynamical case it is just a total derivative. In the dynamical case, this

term can be written (ignoring total derivatives) as α5∇2f5 (φ) R and, it is possible to prove

that it can always be eliminated, at leading order, by a field redefinition of the metric, so

that we can set α5 = 0.

Indeed it is possible to show that if Kµν is a symmetric tensor and we consider a term

`4KµνR
µν in the action, the contribution to the field equations is trivial since it can always

be eliminated by a field redefinition: gµν → gµν − `4K̂µν , where K̂µν = Kµν − 1
2gµνK

α
α .

To show this, let us compute the contribution of this term to the field equations. Passing

this contribution to the right-hand-side of the equations. it can be written as an effective

energy-momentum tensor

Tµν = `4
[
∇ρ∇(µKν)ρ −

1

2
∇2Kµν −

1

2
g(0)µν∇ρ∇σKρσ

]
+ . . . , (A.5)

where the dots indicate other possible contributions that vanish when evaluated on the

zeroth-order Ricci-flat metric. Then by comparison with (2.15), it is clear that the corrected

Einstein equation is solved by gµν = g
(0)
µν + `4K̂µν + . . . , being K̂µν trace-reversed with

respect to Kµν . Since the equation is integrable, it is equivalent to preforming a field

redefinition, so this kind of terms do not really contain new physics. We can use this

result to demonstrate that other type of terms such as φR or Gµν∇µφ∇νφ, that appear

for instance in Horndeski theories [99], can be also removed by a field redefinition.

Let us now analyze the couplings f1(φ) and f2(φ). The first we can do is to expand the

functions around φi = 0 and neglect O
(
φ2
)

terms, which is equivalent to neglect O
(
`6
)

corrections in the metric. Thus, fi = ai+biBφ
B+O

(
φ2
)

and, for the same reasons exposed

above, the constant coefficients ai can be neglected. Finally, observe that we still have the

freedom to perform a SO (N) rotation of the scalars that leaves invariant the kinetic terms.

Using this freedom, up to global factors that can be reabsorbed in a redefinition of α1 and

α2, we can always choose

f1 = φ1 , f2 = φ2 cos θm + φ1 sin θm . (A.6)

This implies that the theory contains at most two active scalars. In summary, for our
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purposes the action (A.3) reduces to

S =
1

16πG

∫
d4x
√
−g
{
R− 1

2

(
∂φ1

)2 − 1

2

(
∂φ2

)2
+ `2

[
α1φ

1X4 + α2

(
φ2 cos θm + φ1 sin θm

)
RµνρσR̃

µνρσ
]}

+
∑
n≥3

`2n−2

16πG
S(2n) .

(A.7)

Then, corrections to vacuum solutions due to these curvature-squared terms will be

parametrized by three parameters: α1, α2 and θm. These terms will induce O
(
`4
)

cor-

rections in the metric of the solution, since the scalars will be of order O
(
`2
)
. Therefore,

these corrections are equally important to those coming from the six-derivative terms (with

constant couplings), which will also induce O
(
`4
)

corrections in the metric. Since our goal

is to parametrize the leading corrections to vacuum solutions in the most general way

possible, we shall also include them.

The most general parity-invariant action formed with curvature invariants with six

derivatives is

S(6) =

∫
d4x
√
|g|
{
λ1R

ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ + λ2R

ρσ
µν R δγ

ρσ R µν
δγ + λ3RµνρσR

µνρ
δR

σδ

+λ4RµνρσR
µνρσR+ λ5RµνρσR

µρRνσ + λ6R
ν
µ R

ρ
ν R

µ
ρ + λ7RµνR

µνR

+λ8R
3 + λ9∇σRµν∇σRµν + λ10∇µR∇µR

}
. (A.8)

There are other six-derivative terms that could be added, such as ∇α∇βRµανβRµν and

∇αRµνρσ∇αRµνρσ, but these can be reduced to a combination of the terms included in the

action. In addition, not all the terms in the previous action are linearly independent. In

four dimensions we have two constraints that can be expressed as

R µ1µ2
[µ1µ2

R µ3µ4
µ3µ4 R µ5µ6

µ5µ6]
= 0 , R µ1µ2

[µ1µ2
R µ3µ4
µ3µ4 R µ5

µ5]
= 0 . (A.9)

The first of these constraints actually corresponds to the vanishing of the cubic Lovelock

density, X6 = 0. These relations allow us to express the terms proportional to λ1 and λ3
as a combination of the rest of the terms since (A.9) can be rewritten as

R ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ =

1

2
R ρσ
µν R δγ

ρσ R µν
δγ − 3RµνρσR

µνρ
δR

σδ +
3

8
RµνρσR

µνρσR (A.10)

+3RµνρσR
µρRνσ + 2R ν

µ R
ρ
ν R

µ
ρ −

3

2
RµνR

µνR+
1

8
R3 ,

RµνρσR
µνρ
δR

σδ = 2
(
RµνρσR

µρRνσ +R ν
µ R

ρ
ν R

µ
ρ −RµνRµνR

)
(A.11)

+
1

4

(
RµνρσR

µνρσR+R3
)
.

Hence, we can always set λ1 = λ3 = 0. The remaining terms, except those controlled by λ2
and λ4 are at least quadratic in Ricci curvature and do not induce corrections on Ricci-flat

metrics, so we can ignore them: λ5 = λ6 = λ7 = λ8 = λ9 = λ10 = 0. As already discussed,

the term proportional to λ4 can be eliminated by a field redefinition, since it is proportional
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to Ricci curvature. Consequently, we will not take it into account from now on, so we set

λ4 = 0. Therefore, we are left with only one term out of the initial ten. However, as we

did with the four-derivative terms, we can also add parity-breaking densities by using the

dual Riemann tensor. One finds again that there is only one independent term, and then

the action S(6) reads

S(6) =

∫
d4x
√
|g|
{
λevR

ρσ
µν R δγ

ρσ R µν
δγ + λoddR

ρσ
µν R δγ

ρσ R̃ µν
δγ

}
, (A.12)

where we have renamed the parameter λ2 for evident reasons. Finally, we combine (A.7)

and (A.12) to get the action of the effective field theory considered in the main text (2.4)

and that we repeat here for convenience

S =
1

16πG

∫
d4x
√
|g|
{
R− 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2

+ α2 (φ2 cos θm + φ1 sin θm) `2RµνρσR̃
µνρσ + α1φ1`

2X4 + λev`
4R ρσ

µν R δγ
ρσ R µν

δγ

+ λodd`
4R ρσ

µν R δγ
ρσ R̃ µν

δγ

}
+
∑
n≥4

`2n−2

16πG
S(2n) . (A.13)

B Compactification and truncation of the effective action of the Het-

erotic String

Let us consider the effective action of the Heterotic Superstring, at first-order in the α′

expansion, without gauge fields. The ten-dimensional action is given by14

S =
g2s

16πG(10)

∫
d10x

√
|g| e−2φ

[
R+ 4 (∂φ)2 − 1

2 · 3!
H2 +

α′

8
RµνρσR

µνρσ

]
+ . . . , (B.1)

where α′ = `2s, being `s the string scale, G(10) is the ten-dimensional Newton’s constant,

and gs is the string coupling constant. The curvature-squared term15 is needed in order to

supersymmetrize the action at first order in α′, which otherwise would not be supersym-

metric due to the presence of the Chern-Simons terms in the definition of the 3-form field

strength H (see [101] for more details). As a consequence, the Bianchi identity is no longer

dH = 0 but it is corrected by

dH =
α′

4
Rab ∧Rba + . . . , (B.2)

where Rab = 1
2!Rµν

a
b dx

µ ∧ dxν is the curvature 2-form.

Now, let us perform the dimensional reduction of (B.1) on a six torus, truncating all

the Kaluza-Klein degrees of freedom. We get exactly the same action but now with the

14With respect to the conventions of [88, 100], here we are using mostly plus signature gµν → −gµν and

the definition of the Riemann tensor differs by a minus sign, i.e. Rµνρ
σ → −Rµνρσ.

15The curvature-squared term in the Bergshoeff-de Roo scheme [101] is R(−)µνρσR(−)
µνρσ, where R(−)

a
b

is the curvature of the torsionful spin-connection Ω(−)
a
b = ωab − 1

2
Hµ

a
b dx

µ. For our purposes, however,

R(−)µνρσR(−)
µνρσ = RµνρσR

µνρσ + . . . , where the dots are terms that can be ignored.
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indices µ, ν running from 0 to 4

S =
1

16πG

∫
d4x
√
|g| e−2(φ−φ∞)

[
R+ 4 (∂φ)2 − 1

2 · 3!
H2 +

α′

8
RµνρσR

µνρσ

]
+ . . . , (B.3)

where G is the four-dimensional Newton’s constant, related to the ten-dimensional one by

G(10) = (2π`s)
6 G , (B.4)

and we have also introduced eφ∞ = gs. Let us show that, ignoring terms whose contribution

to the equations of motion is either zero or trivial, this action can be rewritten in a form

such that it is manifestly a particular case of (2.4). First of all, let us rewrite the Bianchi

identity (B.2) as

1

3!

√
|g|∇µHνρσε

µνρσ = −α
′

8

√
|g|RµνρσR̃µνρσ + . . . . (B.5)

Secondly, we have to dualize the 3-form into a (pseudo)scalar ϕ. Following the usual

procedure, we introduce a Lagrange multiplier into the action (B.3),

S =
1

16πG

∫
d4x
√
|g|
{
e−2(φ−φ∞)

[
R+ 4 (∂φ)2 − 1

2 · 3!
H2 +

α′

8
RµνρσR

µνρσ

]
+ ϕ

(
1

3!
∇µHνρσε

µνρσ +
α′

8
RµνρσR̃

µνρσ

)}
+ . . . .

(B.6)

The relation between the 3-form field strength and the scalar is found by imposing that

the variation of the action with respect to H vanishes,

δS

δH
= 0 ⇒ Hµνρ = e2(φ−φ∞)εµνρσ∂σϕ . (B.7)

Now, we rewrite (B.6) in terms of ϕ, getting

S =
1

16πG

∫
d4x
√
|g| e−2(φ−φ∞)

[
R+ 4 (∂φ)2 − e4(φ−φ∞)

2
(∂ϕ)2 +

α′

8
RµνρσR

µνρσ

+
α′e2(φ−φ∞)

8
ϕRµνρσR̃

µνρσ

]
+ . . . .

(B.8)

Since this action is not written in the Einstein frame, let us rescale the metric gµν →
e−2(φ−φ∞)gµν in order to eliminate the conformal factor. Expanding in (φ − φ∞) and

keeping only the leading terms, we get

S =
1

16πG

∫
d4x
√
|g|
[
R− 2 (∂φ)2 − 1

2
(∂ϕ)2 +

α′

8
(1− 2φ+ 2φ∞)RµνρσR

µνρσ

+
α′

8
ϕRµνρσR̃

µνρσ

]
+ . . .

(B.9)

where we have dropped some terms that can be removed with a field redefinition. Finally,

defining φ1 = 2φ − 2φ∞ and φ2 = ϕ, and ignoring terms that do not contribute to the

equations of motion at leading order, we can write the action in the following final form

S =
1

16πG

∫
d4x
√
|g|
[
R− 1

2

(
∂φ1

)2 − 1

2

(
∂φ2

)2 − α′

8
φ1X4 +

α′

8
ϕRµνρσR̃

µνρσ

]
. (B.10)
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We have upgraded the Riemann squared term to the Gauss-Bonnet density X4 since both

give the same contribution at leading order (the Ricci2 and R2 terms do not contribute).

This can also be done by means of a field redefinition. Then, the choice of parameters that

gives us the corrections predicted by the simplest compactification of the effective action

of the Heterotic Superstring is

α1 = −1

8
, α2 =

1

8
, θm = 0 , λev = λodd = 0 , ` = `s . (B.11)

C The solution

In this appendix, we show the metric functions H1, H2, H3, H4 as well as the scalars of the

solution, φ1 and φ2 up to order O
(
χ3
)
,

φ1 = α1`
2

{
8M

3ρ3
+

2

ρ2
+

2

Mρ

+

[
−M

2

5ρ4
− 2M

5ρ3
− 1

2ρ2
− 1

2Mρ
+

(
−96M3

5ρ5
− 42M2

5ρ4
− 14M

5ρ3

)
x2
]
χ2

+

[
−2M3

35ρ5
− M2

7ρ4
− 3M

14ρ3
− 1

4ρ2
− 1

4Mρ
+

(
4M4

7ρ6
+

24M3

35ρ5
+

3M2

7ρ4
+
M

7ρ3

)
x2

+

(
360M5

7ρ7
+

110M4

7ρ6
+

22M3

7ρ5

)
x4
]
χ4

}
+α2`

2 sin θm

{
x

(
9M2

ρ4
+

5M

ρ3
+

5

2ρ2

)
χ+

[
x3
(
−100M4

3ρ6
− 12M3

ρ5
− 3M2

ρ4

)
+x

(
−2M3

5ρ5
− 3M2

5ρ4
− M

2ρ3
− 1

4ρ2

)]
χ3

}
+O(χ5) , (C.1)

φ2 = α2`
2 cos θm

{
x

(
9M2

ρ4
+

5M

ρ3
+

5

2ρ2

)
χ+

[
x3
(
−100M4

3ρ6
− 12M3

ρ5
− 3M2

ρ4

)
+x

(
−2M3

5ρ5
− 3M2

5ρ4
− M

2ρ3
− 1

4ρ2

)]
χ3

}
+O(χ5) . (C.2)

H1 = α2
1`

4

{
416M3

11ρ7
+

112M2

165ρ6
+

428M

1155ρ5
− 3202

385ρ4
− 122

385Mρ3
− 1117

1155M2ρ2
+

1117

1155M3ρ

+χ2

[
x2
(
−87008M5

165ρ9
+

3377728M4

35035ρ8
+

903092M3

15015ρ7
+

493638556M2

7882875ρ6
− 22915196M

7882875ρ5

− 169553

160875ρ4
− 7721321

1126125Mρ3

)
− 3635392M4

105105ρ8
− 2245064M3

105105ρ7
− 87538336M2

7882875ρ6
+

995398M

2627625ρ5

+
2988737

1126125ρ4
+

736487

1126125Mρ3
− 787153

450450M2ρ2
+

787153

450450M3ρ

]}
+α2

2`
4χ2

{
x2
(

342M5

ρ9
− 9279M4

637ρ8
− 19280M3

1001ρ7
− 1094689M2

42042ρ6
+

298393M

84084ρ5
+

80291

24024ρ4

+
80291

24024Mρ3

)
− 20268M4

637ρ8
− 11710M3

637ρ7
− 30707M2

3234ρ6
+

1074M

7007ρ5
− 271

12012ρ4
− 271

12012Mρ3

+
72185

48048M2ρ2
− 72185

48048M3ρ

}
+α1α2 sin(θm)`4

{
χx

[
21120M4

91ρ8
− 21352M3

1001ρ7
− 43564M2

2145ρ6
− 551776M

15015ρ5
− 5618

15015ρ4
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+
89989

30030M2ρ2

]
+ χ3

[
x3
(
−11556352M6

4641ρ10
+

1402164667M5

3828825ρ9
+

12014583319M4

53603550ρ8

+
879521737M3

4873050ρ7
− 895892573M2

76576500ρ6
− 611550767M

153153000ρ5
− 43683743

12252240ρ4

)
+ x

(
−555211M5

49725ρ9

−417419143M4

53603550ρ8
− 278633M3

17867850ρ7
+

2744165393M2

536035500ρ6
+

244492811M

30630600ρ5
+

157764391

306306000ρ4

− 75784931

61261200M2ρ2

)]}
+λev`

4

{
−48M3

11ρ7
− 8M2

33ρ6
− 40M

231ρ5
− 32

231ρ4
− 32

231Mρ3
− 64

231M2ρ2
+

64

231M3ρ

+χ2

[
x2
(

1728M5

11ρ9
+

1752M4

7007ρ8
− 800M3

1001ρ7
− 8660M2

7007ρ6
− 9518M

7007ρ5
− 1005

1001ρ4
− 2669

1001Mρ3

)
−5952M4

7007ρ8
− 520M3

1617ρ7
− 68M2

1911ρ6
+

830M

7007ρ5
+

587

3003ρ4
+

587

3003Mρ3
− 865

1001M2ρ2
+

865

1001M3ρ

]}
+λodd`

4

{
χx

[
−3456M4

91ρ8
− 1152M3

1001ρ7
− 96M2

143ρ6
− 384M

1001ρ5
− 192

1001ρ4
+

768

1001M2ρ2

]
+χ3

[
x3
(

745344M6

1547ρ10
− 86140M5

17017ρ9
− 13190M4

2431ρ8
− 515974M3

119119ρ7
− 47015M2

17017ρ6
− 274763M

238238ρ5

− 511811

476476ρ4

)
+ x

(
−596M5

221ρ9
− 8530M4

119119ρ8
+

100326M3

119119ρ7
+

111563M2

119119ρ6
+

153991M

238238ρ5

+
111151

476476ρ4
− 13735

68068M2ρ2

)]}
+O

(
χ4
)
, (C.3)

H2 = α2
1 `

4

{
1117

2310
+

208

11ρ6
− 208

165ρ5
− 142

231ρ4
− 5188

1155ρ3
− 337

1155ρ2
− 1117

2310ρ

+χ2

[
787153

900900
− 1817696

105105ρ7
− 3258916

315315ρ6
− 42983383

7882875ρ5
+

93497

5255250ρ4
+

36396163

31531500ρ3

+
2033089

7882875ρ2
− 787153

900900ρ
+ x2

(
−40384

165ρ8
− 4002832

105105ρ7
− 1675328

315315ρ6
+

190462

9625ρ5
+

80274479

15765750ρ4

+
8052437

6306300ρ3
− 988269

350350ρ2

)]}
+α1α2 sin θm`

4

{
χx

(
10560

91ρ7
+

2570584

45045ρ6
+

5030294

225225ρ5
− 1352913

175175ρ4
− 2310579

350350ρ3
− 2964341

750750ρ2

− 12761

17875ρ

)
+χ3

[
x

(
− 555211

99450ρ8
− 33606289

4123350ρ7
− 1807455889

321621300ρ6
− 185905529

160810650ρ5
+

5347197771

1667666000ρ4

+
20139019441

15008994000ρ3
+

827344753

1000599600ρ2
− 7696421

25014990ρ

)
+ x3

(
−5239616

4641ρ9
− 2886836873

7657650ρ8

−3454981169

53603550ρ7
+

18272087263

321621300ρ6
+

3088505012

134008875ρ5
+

88918288507

15008994000ρ4
+

24278291273

45026982000ρ3

)]}
+α2

2 `
4

{
− 27

2ρ5
− 60

7ρ4
− 5

ρ3
+ χ2

[
−72185

96096
− 10134

637ρ7
− 447949

57330ρ6
− 564161

194040ρ5
+

154675

96096ρ4

+
1153277

1345344ρ3
+

457841

3363360ρ2
+

72185

96096ρ
+ x2

(
171

ρ8
+

81219

637ρ7
+

4701743

126126ρ6
− 32689

5544ρ5

− 1852791

224224ρ4
− 3310225

1345344ρ3
+

462029

672672ρ2

)]}
+λev `

4

{
32

231
− 24

11ρ6
− 4

33ρ5
− 20

231ρ4
− 16

231ρ3
− 16

231ρ2
− 32

231ρ
+ χ2

[
865

2002
− 2976

7007ρ7
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− 920

1617ρ6
− 853

1911ρ5
− 7349

28028ρ4
− 15739

168168ρ3
+

1783

84084ρ2
− 865

2002ρ
+ x2

(
840

11ρ8
+

624704

21021ρ7

+
328360

21021ρ6
+

1781

231ρ5
+

276011

84084ρ4
+

156647

168168ρ3
− 78439

84084ρ2

)]}
+λodd `

4

{
χx

(
−1728

91ρ7
− 6560

1001ρ6
− 4040

1001ρ5
− 17676

7007ρ4
− 11112

7007ρ3
− 948

1001ρ2
− 135

1001ρ

)
+χ3

[
x

(
− 298

221ρ8
− 176734

119119ρ7
− 255071

357357ρ6
− 2333

51051ρ5
+

64221

238238ρ4
+

257645

952952ρ3

+
10575

68068ρ2
− 1185

34034ρ

)
+ x3

(
343296

1547ρ9
+

208174

2431ρ8
+

4665742

119119ρ7
+

5774105

357357ρ6
+

657785

119119ρ5

+
22837

17017ρ4
+

12379

408408ρ3

)]}
+O

(
χ4
)
, (C.4)

H3 = α2
1 `

4

{
−1117

1155
− 368

33ρ6
− 1168

165ρ5
− 1102

231ρ4
− 404

1155ρ3
− 19

1155ρ2
+

1117

1155ρ

+χ2

[
−787153

450450
+

210256

105105ρ7
+

358564

105105ρ6
+

29284144

7882875ρ5
+

2871703

1126125ρ4
+

888572

1126125ρ3

+
10139

150150ρ2
+

787153

450450ρ
+ x2

(
23488

165ρ8
+

6074176

105105ρ7
+

1857368

105105ρ6
− 64561864

7882875ρ5
− 124199

25025ρ4

− 329289

125125ρ3
+

43252

20475ρ2

)]}
+α1α2 sin θm `

4

{
χx

[
−6144

91ρ7
− 34044

1001ρ6
− 31664

2145ρ5
+

16854

5005ρ4
+

16241

5005ρ3
+

89989

30030ρ2

]
+χ3

[
x

(
1399373

232050ρ8
+

76931759

8933925ρ7
+

237697639

35735700ρ6
+

197152489

76576500ρ5
− 142049293

102102000ρ4

− 7454231

5105100ρ3
− 75784931

61261200ρ2

)
+ x3

(
9126080

13923ρ9
+

1870089271

7657650ρ8
+

1696574476

26801775ρ7

− 320470309

15315300ρ6
− 42765071

4504500ρ5
− 29731159

8751600ρ4
+

132059

2356200ρ3

)]}
+α2

2 `
4

{
χ2

[
72185

48048
+

639

1274ρ7
+

2005

2548ρ6
+

41549

42042ρ5
+

8581

12012ρ4
+

887

1716ρ3
+

270

1001ρ2

− 72185

48048ρ
+ x2

(
−99

ρ8
− 57843

1274ρ7
− 455055

28028ρ6
+

5891

3822ρ5
+

3425

8008ρ4
− 2969

4004ρ3
− 14015

6864ρ2

)]}
+λev `

4

{
− 64

231
− 392

11ρ6
+

8

33ρ5
+

40

231ρ4
+

32

231ρ3
+

32

231ρ2
+

64

231ρ
+ χ2

[
− 865

1001

+
3664

7007ρ7
+

11380

21021ρ6
+

752

1911ρ5
+

213

1001ρ4
+

139

3003ρ3
− 32

429ρ2
+

865

1001ρ
+ x2

(
7960

11ρ8

− 372584

21021ρ7
− 199660

21021ρ6
− 101648

21021ρ5
− 6455

3003ρ4
− 1921

3003ρ3
+

3043

3003ρ2

)]}
+λodd `

4

{
χx

(
−19008

91ρ7
+

4320

1001ρ6
+

384

143ρ5
+

1728

1001ρ4
+

1152

1001ρ3
+

768

1001ρ2

)
+χ3

[
x

(
2802

1547ρ8
+

167628

119119ρ7
+

71475

119119ρ6
− 2087

119119ρ5
− 148143

476476ρ4
− 768

2431ρ3
− 13735

68068ρ2

)
+x3

(
2964736

1547ρ9
− 838886

17017ρ8
− 2761840

119119ρ7
− 1189205

119119ρ6
− 3665

1001ρ5
− 486569

476476ρ4
+

601

34034ρ3

)]}
+O

(
χ4
)
, (C.5)
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H4 = α2
1`

4

{
−1117

1155
− 368

33ρ6
− 1168

165ρ5
− 1102

231ρ4
− 404

1155ρ3
− 19

1155ρ2
+

1117

1155ρ

+χ2

[
−787153

450450
+

1984

33ρ9
+

3232

165ρ8
+

529624

21021ρ7
+

92864

9555ρ6
+

91595428

7882875ρ5
+

489939

125125ρ4

+
5646292

1126125ρ3
+

981961

450450ρ2
+

787153

450450ρ
+ x2

(
−1984

33ρ9
+

6752

55ρ8
+

1212104

35035ρ7
+

1194428

105105ρ6

−126873148

7882875ρ5
− 7126703

1126125ρ4
− 7721321

1126125ρ3

)]}
+α1α2 sin θm `

4

{
χx

[
−6144

91ρ7
− 34044

1001ρ6
− 31664

2145ρ5
+

16854

5005ρ4
+

16241

5005ρ3
+

89989

30030ρ2

]
+χ3

[
x

(
33408

91ρ10
+

17348416

45045ρ9
+

736024381

2552550ρ8
+

1195689244

8933925ρ7
+

5169579091

107207100ρ6
+

11447047

1392300ρ5

− 124881623

102102000ρ4
− 43008619

30630600ρ3
− 75784931

61261200ρ2

)
+ x3

(
−33408

91ρ10
+

69003776

255255ρ9
− 291804563

7657650ρ8

−1659697979

26801775ρ7
− 957111191

15315300ρ6
− 1159441303

76576500ρ5
− 43683743

12252240ρ4

)]}
+α2

2 `
4

{
χ2

[
72185

48048
− 54

ρ8
− 27897

637ρ7
− 40995

1274ρ6
− 18587

1617ρ5
− 12993

2002ρ4
− 12241

3432ρ3
− 85145

48048ρ2

− 72185

48048ρ
+ x2

(
−45

ρ8
− 705

637ρ7
+

234445

14014ρ6
+

294806

21021ρ5
+

183353

24024ρ4
+

80291

24024ρ3

)]}
+λev `

4

{
− 64

231
− 392

11ρ6
+

8

33ρ5
+

40

231ρ4
+

32

231ρ3
+

32

231ρ2
+

64

231ρ

χ2

[
− 865

1001
+

736

11ρ9
+

384

11ρ8
+

393088

21021ρ7
+

5356

539ρ6
+

107504

21021ρ5
+

6109

3003ρ4
+

2075

1001ρ3
+

2819

3003ρ2

+
865

1001ρ
+ x2

(
− 736

11ρ9
+

7576

11ρ8
− 251560

7007ρ7
− 132388

7007ρ6
− 66960

7007ρ5
− 3975

1001ρ4
− 2669

1001ρ3

)]}
+λodd `

4

{
χx

(
−19008

91ρ7
+

4320

1001ρ6
+

384

143ρ5
+

1728

1001ρ4
+

1152

1001ρ3
+

768

1001ρ2

)
+χ3

[
x

(
34560

91ρ10
+

175360

1001ρ9
+

1340034

17017ρ8
+

3834240

119119ρ7
+

25469

2431ρ6
+

138241

119119ρ5
− 122901

476476ρ4

− 10151

34034ρ3
− 13735

68068ρ2

)
+ x3

(
−34560

91ρ10
+

29630976

17017ρ9
− 2148098

17017ρ8
− 6428452

119119ρ7
− 2365711

119119ρ6

− 576463

119119ρ5
− 511811

476476ρ4

)]}
+O

(
χ4
)
. (C.6)

D Convergence of the χ-expansion

In this section we analyze the convergence of the solution presented in section 3.1, and

whose first terms in the χ-expansion are shown in appendix C. In order to study the

convergence, first we must consider the partial sums

Hi,n =

n∑
k=0

H
(k)
i χk , i = 1, 2, 3, 4 . (D.1)

Then, we have to investigate if the sequence of functions Hi,n converges to a function Hi,

this is,

lim
n→∞

Hi,n = Hi , (D.2)
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and what is the radius of convergence for a given domain (ρ, x) ∈ Ω. We can study the

convergence of the four functions Hi at the same time by introducing the “norm” ‖H‖n, as

‖H‖n :=
√
H2

1,n +H2
2,n +H2

3,n +H2
4,n . (D.3)

Thus, every Hi,n converges if and only if ‖H‖n converges. Since we are only interested in

the exterior region of the black hole, it is sufficient to look at the convergence for ρ ≥ ρ+,

−1 < x < 1. Using the terms of the solution up to order n = 14, we observe that the

sequence ‖H‖n converges in the exterior region if the spin is small enough. We wish to

determine the maximum value of χ for which the expansion up to order n = 14 — the one

we use thorough the text — provides an accurate approximation to the full series. This

value of course depends on the point of the spacetime. For instance, far from the black

hole the few first terms in the expansion already provide a very precise result, even for

χ ∼ 1. On the contrary, the convergence is worse at the horizon ρ = ρ+, and, specially, at

the axes x = ±1. Thus, we should look at the convergence at those points. It is useful to

define the relative differences,

dn =
‖H‖n+1 − ‖H‖n

‖H‖n
. (D.4)

For instance, when we evaluate this for α1 = 0.5, α2 = 0.7, θm = π/4, λev = λodd = 1 and

χ = 0.7, at the north pole of the horizon, ρ = ρ+, x = 1, we get the following sequence

(starting at n = 0): 1.3, -0.79, 2.7, -0.74, 2.9, -0.61, -0.52, 0.25, 0.72, -0.27, -0.21, 0.14,

0.076, -0.039, . . . We see that the sequence starts converging from n = 8, and the difference

between ‖H‖13 and ‖H‖14 is barely a 4%. Since the difference with the term n = 15 will

be even smaller, we are confident that the series up to n = 14 provides a precision of the

order of 1%, for χ = 0.7 when evaluated at the north pole of the horizon. In the rest of

points, and for smaller values of χ, the accuracy is significantly greater. We illustrate this

in In figure 11 , where we show the profile of ‖H‖n, for several values of n, in the line x = 1,

ρ ≥ ρ+. Also, if for the same values of the couplings we set χ = 0.65, we get d13 = −0.81%,

so the series up to order n = 14 is around five times more accurate than for χ = 0.7.

Finally, one could try to determine what is the maximum value of χ for which the series

will converge all the way up to the horizon. In order to find the radius of convergence, one

can apply for example the root test to the coefficients H
(k)
i in (D.1):

χmax = inf

{
lim
k→∞

∣∣∣H(k)
i

∣∣∣−1/k ∣∣∣∣ i = 1, 2, 3, 4, ρ ≥ ρ+, −1 < x < 1

}
. (D.5)

Using the coefficients up to order n = 14 it is difficult to provide a definitive answer,

but the results seem to be consistent with χmax ∼ 1. So, it could be possible to get close

to the extremal limit adding enough terms in the series expansion, though the number of

terms required to get a good approximation increases quite rapidly as we approach χ = 1.
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Figure 11. Convergence of the norm of the Hi functions, ‖H‖n. We show the profile of ‖H‖n in

the axis x = 1, ρ ≥ ρ+ for the values of n indicated, for spin χ = 0.7, and for couplings α1 = 0.5,

α2 = 0.7, θm = π/4, λev = λodd = 1. The accuracy of the expansion up to n = 14 at ρ = ρ+ is

around 1%, but the convergence is much better as we move far from the horizon.

E Some formulas

Radius of the ergosphere:

∆ρ(1) = χ2(1− x2) 53

120
+ χ4(1− x2)

(
56750791

84084000
− 41115397x2

63063000

)
(E.1)

+χ6(1−x2)
(
−679368329719x4

912546835200
+

10245671873x2

165917606400
+

336187298257

1825093670400

)
+O(χ8) ,

∆ρ(2) = − χ2(1− x2)709x2

448
− χ4(1− x2)

(
4433503x2

2690688
+

504467

1345344

)
(E.2)

− χ6(1− x2)
(

915791950769x4

625746401280
+

148163587307x2

312873200640
+

8754619243

18962012160

)
+O(χ8) ,

∆ρ(m) = χ5x(1− x2)
(

401316913x2

22870848000
− 401316913

22870848000

)
(E.3)

+ χ7x(1− x2)
(

1222303361x5

85085952000
+

116649901427x3

12167291136000
− 39651603x

1655413760

)
+O(χ9) ,

∆ρ(ev) = χ2(1− x2)1

2
+ χ4(1− x2)

(
1245x2

5096
+

3243

10192

)
(E.4)

+ χ6(1− x2)
(

14596973x4

79008384
+

24066599x2

158016768
+

1021961

4051712

)
+O(χ8) ,

∆ρ(odd) = χ5x(1− x2)
(

669

106624
− 669x2

106624

)
(E.5)

+ χ7x(1− x2)
(
−109x4

14896
+

131x2

144704
+

6495

1012928

)
+O(χ9) .

– 42 –



J
H
E
P
0
5
(
2
0
1
9
)
1
8
9

Some Christoffel symbols:

Γρtt =
ρ2± − 2Mρ± +M2χ2

ρ4±

[
M +

`4

2M4

(
2MH3 + ρ2∂ρH1

)] ∣∣∣∣∣
ρ=ρ±,x=0

, (E.6)

Γρtφ = −
(
ρ2± − 2Mρ± +M2χ2

)
M2χ

ρ4±

[
1− `4

M4
(H3 −H2 + ρ∂ρH2)

]∣∣∣∣∣
ρ=ρ±,x=0

, (E.7)

Γρφφ = −
ρ2± − 2Mρ± +M2χ2

ρ4±

[ (
ρ3± −M3χ2

)(
1 +

`4

M4
(H4 −H3)

)

+y
`4

2M4

(
ρ4± + 2M3χ2ρ± +M2χ2ρ2±

)
∂ρH4

]∣∣∣∣∣
ρ=ρ±,x=0

. (E.8)

Photon rings:

∆ρ
(1)
ph± = − 11833

280665
∓ 1894454χ

841995
√

3
+

7366829759χ2

3831077250
∓ 63500581373χ3

51719542875
√

3
(E.9)

+
4499912684330179χ4

5613018549138000
∓ 2518625711779631χ5

16839055647414000
√

3
+

39043683908212961χ6

237415044638772000

± 88176541508946559687χ7

153370118836646712000
√

3
+O

(
χ8
)
,

∆ρ
(2)
ph± = ± 124χ

81
√

3
− 27237253χ2

27243216
± 7143579103χ3

3677834160
√

3
− 4930918052561χ4

8018597927340
(E.10)

± 941808834424915χ5

538849780717248
√

3
− 105521162301612787χ6

151476660579404160

± 328617664140943525921χ7

184044142603976054400
√

3
+O

(
χ8
)
,

∆ρ
(ev)
ph± =

424

6237
∓ 656χ

693
√

3
+

11087308χ2

15324309
∓ 88055819χ3

91945854
√

3
+

18900112949χ4

44547766263
(E.11)

∓ 2387981426735χ5

3207439170936
√

3
+

965001464261χ6

2874198737592
∓ 4056120100091χ7

6384037580613
√

3
+O

(
χ8
)
.
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[49] H. Lü, A. Perkins, C.N. Pope and K.S. Stelle, Black holes in higher-derivative gravity, Phys.

Rev. Lett. 114 (2015) 171601 [arXiv:1502.01028] [INSPIRE].
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