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1 Introduction

The cusp anomalous dimension is a universal and ubiquitous quantity in QCD and the ef-

fective field theories describing its IR behavior as e.g. heavy quark effective theory (HQET)

and soft collinear effective theory (SCET). It governs the IR singularity structure of QCD

scattering amplitudes [1–5]. In the presence of massive partons the IR divergences are

controlled by the angle dependent cusp anomalous dimension Γcusp(φ, αs). It can be deter-

mined from the UV divergences of a time-like Wilson loop with a cusp of (Euclidean) angle

φ [4]. The light-like cusp anomalous dimension K(αs) relevant for scattering of massless

partons emerges as the φ → i∞ limit of Γcusp(φ, αs) [4, 6]. It is the key ingredient to

Sudakov resummation for scattering processes at high-energy colliders.
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In addition to the light-like limit, there are two more interesting limits, the anti-parallel

lines and the small angle limit. In the anti-parallel lines limit the cusp anomalous dimension

is in one-to-one correspondence with the static quark-antiquark potential up to terms that

are due to the conformal anomaly of (massless) QCD [11, 24, 25]. At small cusp angle the

cusp anomalous dimension is given by a regular expansion Γcusp(φ, αs) = −φ2B(αs)+O(φ4)

in φ2 and corresponds to the Bremsstrahlung function. The Bremsstrahlung function

describes the radiation loss of a slowly moving heavy quark in an external gauge field.

Furthermore, the cusp anomalous dimension determines the renormalization group (RG)

running of the Isgur-Wise function, a universal function in HQET [26, 27]. At small cusp

angles it is used for the extraction of the CKM matrix element Vcb from semileptonic

B → D(∗) decays, see e.g. [28].

The QCD cusp anomalous dimension Γcusp(φ, αs) is known up to three loops [11, 29]

in perturbation theory for arbitrary φ. At four loops partial results are available and

summarized in table 1. At four loops in N = 4 super Yang Mills (sYM) theory the light-

like limit of the cusp anomalous dimension has been computed numerically [30, 31] and

the full angle dependence is known analytically in the planar limit [32]. In addition, the

Bremsstrahlung coefficient B(αs) is known exactly (to all loop orders, and including the

full color dependence) in N = 4 sYM [25].

In [11, 29] it was observed that, up to three loops, the cusp anomalous dimension has a

universal structure. Namely, expanding Γcusp(φ) in K(αs) instead of αs, the coefficients of

Kn(αs) are universal. In particular, they are equal in QCD, pure Yang-Mills, and N = 4

sYM. Based on their observation the authors of [11, 29] conjectured that this universality

holds to all orders in perturbation theory. The conjecture allows to predict the fermionic

contributions to Γcusp(φ) in QCD at a given loop order (up to a normalization factor) using

only lower loop results as an input. By ‘fermionic’ contributions we refer to terms that

depend on nf , the number of active fermion flavors.

A major goal of this paper is to check the validity of these predictions at four loops. The

idea is to predict the fermionic four-loop terms with full angle dependence and verify the

conjectured expressions against analytic results for Γcusp(φ) calculated in the small angle

expansion. This analysis was initiated in [19] by investigating the nf term proportional

to the quartic Casimir color factor. It was found that the conjecture does not hold for

that particular color structure. This may be connected to the special nature of the quartic

Casimir contributions, which appear at four loops for the first time in the perturbative

expansion and are the reason for Casimir scaling violation. It is therefore interesting to

ask whether the conjecture possibly holds for the other four-loop color structures. For the

terms proportional to (nfTF )3CR, (nfTF )2CRCF and (nfTF )CRC
2
F , in the following called

‘Abelian’ color structures (as they are independent of CA), a quick answer can be given:

these contributions are known with full angle dependence, cf. table 1, and exactly comply

with the conjecture.

This encouraged us to extend the analysis also to the other four-loop nf contributions,

where no explicit all-angles result is available to date. In the present paper we therefore

compute the corresponding terms up to O
(
φ4
)

and partly O
(
φ6
)

in the small angle ex-

pansion and use them to test the conjecture. From the O
(
φ0
)

term of our Wilson loop
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color structure sample diagram Γcusp(φ) φ� 1 light-like γh

(TFnf )3CR [7] [7] [8, 9] [10]

(TFnf )2CRCF [11, 12] [11, 12] [11–13] [11, 12]

(TFnf )2CRCA [×] [×] [13–15] [16] [×]

(TFnf )CRC
2
F [17] [17] [17] [17]

(TFnf )CRCFCA [×] [×] [18]∗ [×] [16]∗ [×]

(TFnf )CRC
2
A [×] [18]∗ [×] [16]∗ [×]

nf
dRdF
NR

[19] [×] [18, 20]∗

[21, 22]

[19]

n1
f , Nc →∞ [×] [14, 18] [×]

CRC
3
A [18, 20]∗ [16]∗

dRdA
NR

[18, 20]∗ [16]∗

n0
f , Nc →∞ [18, 23]

Table 1. Four-loop contributions to Γcusp(φ) and its limits in QCD as well as the HQET field

anomalous dimension γh. The ∗ marks numerical results. The results [×] are obtained in the

present paper.
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v1 v2

φ

Figure 1. Wilson line with two straight line segments forming a cusp with Euclidean cusp angle φ.

calculation we obtain analytical expressions for the four-loop heavy quark field anomalous

dimension in heavy quark effective theory (HQET). Our approach closely follows the lines

of [19]. In addition, we study the anti-parallel lines limit of the cusp anomalous dimension.

Given our findings regarding the validity of the conjecture at four loops we derive new

terms in its relation to the static quark-antiquark potential.

The paper is organized as follows. In section 2 we present the setup and in section 3

details of our calculation. Section 4 contains our four-loop results for the small angle

expansion of the cusp anomalous dimension as well as the HQET field anomalous dimension.

In section 5 we review the conjecture of [11, 29], test it against our results for the small

angle expansion and discuss the outcome. Section 6 elaborates on the consequences for

the relation between the cusp anomalous dimension and the static potential. We conclude

in section 7. In appendix A we collect all conjectured expressions for the four-loop cusp

anomalous dimension with full angle dependence.

2 Definitions and ultraviolet properties of Wilson line operators

We start with the definition of the cusp anomalous dimension in QCD. To this end we

consider a closed Wilson loop with a time-like integration contour C

W =
1

NR
TrR

〈
0|T P exp

(
ig

∮
C
dxµAµ(x)

)
|0
〉

= 1 +O
(
g2
)
. (2.1)

Here Aµ = Aaµ T
a
R is the gluon field, T and P are the time- and path-ordering operators,

the trace is over (color) indices in the representation R of the gauge group SU(Nc) and

αs = g2/(4π). A cusp in the integration contour gives rise to UV divergences, which are

renormalized multiplicatively [33, 34]. The associated anomalous dimension depends on

the cusp angle φ and is correspondingly called cusp anomalous dimension Γcusp(φ, αs). To

compute it we conveniently consider a contour consisting of two straight line segments

along directions vµ1 and vµ2 (v2
1 = v2

2 = 1), which form a cusp in the origin and extend to

infinity where the contour is closed, see figure 1. The Euclidean cusp angle is defined by

cosφ = v1 · v2. In Minkowskian spacetime and for real v1 and v2 the Euclidean cusp angle

is purely imaginary leading to the definition of the Minkowskian cusp angle cosh ϕ = v1 ·v2,

such that φ = iϕ. The full angle-dependent cusp anomalous dimension was computed up

to three loops in [11, 29, 34–36] and we use the same setup as in [11] to calculate it in the

small angle expansion at four loops.

The cusp anomalous dimension appears also in the context of heavy quark effective

theory (HQET), see e.g. [7, 28, 37]. In the HQET picture the Wilson line configuration
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depicted above corresponds to a heavy quark moving with four-velocity vµ1 , then scatter-

ing at an external (electromagnetic) source to instantaneously change its velocity to vµ2 .

This allows us to compute the cusp anomalous dimension using HQET momentum space

Feynman rules for the heavy quark propagator and the heavy-quark-gluon vertex

v

p
=

i

v · p+ δ
,

v
= igvµT aR . (2.2)

The double line represents a heavy quark (or Wilson) line with v2 = 1 in the SU(Nc)

representation R. We take the heavy quark to be slightly off-shell δ 6= 0 in order to regulate

IR divergences in eq. (2.1), since we are only interested in the UV divergences arising from

loops involving the cusp. The off-shellness δ can be interpreted as the residual energy of

the heavy quark. Without loss of generality we choose δ = −1/2 in our calculation.

We distinguish two types of Feynman diagrams contributing to the Wilson loop in

eq. (2.1). The first are HQET self-energy diagrams, which are φ-independent. The second

are (one-particle-irreducible) vertex corrections depending on the cusp angle. The sum of

the former is related to the sum of the latter at zero cusp angle by a HQET Ward identity.

Denoting the sum of the vertex diagrams as V (φ), we thus have [34]

logW = log V (φ)− log V (0) +O
(
ε0
)

= logZ +O
(
ε0
)
, (2.3)

where we have introduced the MS cusp renormalization constant Z. Here and throughout

this paper we use dimensional regularization with d = 4− 2ε and we expand as

Γcusp(φ, αs) =
∑
k≥1

(αs
π

)k
Γ(k)

cusp(φ) . (2.4)

The cusp anomalous dimension is defined by the renormalization group equation (RGE)

Γcusp(φ, αs) =
d logZ

d log µ
, (2.5)

where µ is the renormalization scale. Iteratively solving this equation yields

logZ = −αs
π

Γ
(1)
cusp

2ε
+
(αs
π

)2
[
β0Γ

(1)
cusp

16ε2
− Γ

(2)
cusp

4ε

]
(2.6)

+
(αs
π

)3
[
−β

2
0Γ

(1)
cusp

96ε3
+
β1Γ

(1)
cusp + 4β0Γ

(2)
cusp

96ε2
− Γ

(3)
cusp

6ε

]
+
(αs
π

)4

+
β3

0Γ
(1)
cusp

512ε4

−
β0

(
β1Γ

(1)
cusp + 2β0Γ

(2)
cusp

)
256ε3

+
β2Γ

(1)
cusp + 4β1Γ

(2)
cusp + 16β0Γ

(3)
cusp

512ε2
− Γ

(4)
cusp

8ε

+O(α5
s) .

From this expression we see that, at a given order in perturbation theory, the poles higher

than 1/ε are determined by lower order results of the cusp anomalous dimension and the
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β-function of QCD. The only new information at each loop enters through the 1/ε term.

For the β-function we use

d logαs
d log µ

= −2ε+ 2β(αs) , β(αs) = −
∑
k≥0

(αs
4π

)k+1
βk , (2.7)

with β0 = 11
3 CA −

4
3 TF nf . The relevant higher order coefficients can e.g. be found in [38,

39]. The parameter nf denotes the number of active fermion flavors.

So far we considered the angle dependent cusp anomalous dimension Γcusp(φ, αs), orig-

inating from the UV divergences of a cusped Wilson loop with a time-like integration

contour. For a light-like integration contour the corresponding light-like cusp anomalous

dimension is denoted by K(αs). The light-like limit is reached for φ→ i∞ or equivalently

for ϕ→∞ and we have [4, 6]

Γcusp(φ, αs) = −iφK(αs) for φ→ i∞ . (2.8)

As mentioned in the introduction the cusp anomalous dimension and especially its light-like

limit are universal and appear in many physical quantities. The recent four loop results

of K(αs) are for instance obtained from the computation of the quark (and a scalar) form

factor [14, 21–23] and splitting functions [13, 15, 18, 20]. In the form factor the light-like

cusp anomalous dimension appears in the 1/ε2 IR divergences [1–5]. The splitting functions

Pij(x) govern the evolution of the parton distribution functions [40–42]. In this context

the light-like cusp anomalous dimension is relevant for the threshold limit x→ 1 [43].

Finally we briefly discuss the heavy quark field renormalization in HQET. The cor-

responding MS renormalization constant Zh can be obtained from the derivative of the

HQET self energy Σh(δ) w.r.t. the residual energy δ of the heavy quark using

log

(
1− dΣh

dδ

)
= − logZh +O(ε0) . (2.9)

Note that the L-loop term of Σh(δ) is proportional to δ1−2Lε according to dimensional

analysis. Using the HQET Ward identity

V (0) = 1− dΣh

dδ
, (2.10)

we can relate the renormalization constant to the vertex function at zero cusp angle

log V (0) = − logZh +O(ε0) . (2.11)

This quantity is not gauge invariant (and not observable). The corresponding HQET heavy

quark field anomalous dimension therefore also depends not only on the strong coupling αs,

but also on the gauge. Choosing generalized covariant gauge a dependence on the gauge

parameter ξ remains:

γh(αs, ξ) =
d logZh
d log µ

. (2.12)

This RGE can be solved analogously to eq. (2.6) in a perturbative fashion. This time, how-

ever, we have to take the dependence on the gauge parameter ξ(µ) into account, which itself

is renormalization scale dependent. The relevant terms of the corresponding anomalous

dimension can e.g. be found in [38].

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
8
6

3 Four-loop calculation of matter-dependent terms at small angle

In this section we describe the computation of the cusp anomalous dimension at four

loops in the small angle expansion. We begin with the discussion of the color structures.

Then we describe the general computational workflow, including the calculation of the

Feynman diagrams, partial fraction decomposition, integration-by-parts reduction and the

computation of the master integrals. Here we follow in the most parts [19]. Finally we

point out a subtlety in the renormalization procedure of the off-shell and therefore gauge-

dependent Wilson loop in order to obtain eq. (2.6).

3.1 Color dependence of Γcusp to four loops

The structure of the QCD cusp anomalous dimension in terms of color factors is determined

by non-Abelian exponentiation [44–46]. Up to three loops we have

Γcusp =
αs
π
CRΓRcusp +

(αs
π

)2
CR

[
ΓRAcusp + nfTFΓfRcusp

]
+
(αs
π

)3
CR

[
C2
AΓRAAcusp

+ (nfTF )2ΓffRcusp + nfTF

(
CFΓfRFcusp + CAΓfRAcusp

) ]
+O(α4

s) . (3.1)

The quadratic Casimir operators CR, CA, CF are defined according to T aRT
a
R = CR1R,

where T aR is the generator of the SU(Nc) representation R with Tr[T aRT
b
R] = TRδ

ab and

Tr[1R] = NR. In QCD the two relevant representations are the adjoint (R = A) and

the fundamental representation (R = F ) with TF = 1/2. Up to three loops the cusp

anomalous dimension obeys Casimir scaling, i.e. it depends linearly on CR, where R is

the representation of the Wilson loop. Starting at four loops, however, Casimir scaling

is violated by terms proportional to quartic Casimir operators. There are two types of

such color factors at this order, which we denote by dRdA/NR and nfdRdF /NR. Like the

color factor CRC
3
A the former belongs to the purely gluonic part of the cusp anomalous

dimension. The quartic Casimir operators are defined by symmetrized traces1 of four

generators [47]

dRdR′

NR
≡
dabcdR dabcdR′

NR
, dabcdR = STr

[
T aRT

b
RT

c
RT

d
R

]
. (3.2)

At four loops Γcusp then takes the form

Γ(4)
cusp =CRC

3
AΓRAAAcusp +

dRdA
NR

ΓdRAcusp+(nfTF )3CRΓfffRcusp+(nfTF )2
(
CRCFΓffRFcusp +CRCAΓffRAcusp

)
+nfTF

(
CRC

2
FΓfRFFcusp +CRCFCAΓfRFAcusp +CRC

2
AΓfRAAcusp

)
+nf

dRdF
NR

ΓfdRFcusp . (3.3)

In table 1 we show for each of the four-loop color structures an example of a contributing

Feynman diagram. We will employ the analogous notation regarding the coefficients of

the different color factors in eqs. (3.1) and (3.3) also for the light-like cusp anomalous

dimension K and the HQET field anomalous dimension γh.

1The symmetrized trace is defined by STr[T a1 · · ·T an ] = 1
n!

∑
σ∈Sn Tr[T aσ(1) · · ·T aσ(n) ], where the sum

runs over all permutations of indices.

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
1
8
6

The fermionic quartic Casimir operator nfdRdF /NR only appears in 18 Feynman di-

agrams at four loops. Those are the diagrams with a fermion box subdiagram, where

the four gluons are directly attached to the Wilson lines as shown in the (planar) sample

diagram in table 1. The gluonic quartic Casimir operator does not only appear in the

corresponding diagrams with a gluon or ghost box, but for instance also in diagrams like

the example diagram for dRdA/NR shown in table 1. That diagram has the color factor

1

NR
Tr
[
T aRT

b
RT

c
RT

d
RT

a
RT

b
RT

c
RT

d
R

]
=

1

NR
Tr
[
T aRT

b
RT

c
RT

d
R

]
Tr
[
T aAT

b
AT

c
AT

d
A

]
+· · · = dRdA

NR
+. . . ,

(3.4)

where the ellipses denote terms involving only quadratic Casimir operators and in the

second step we repeatedly used the Lie algebra [T aR, T
b
R] = ifabcT cR and

(
T bA
)
ac

= ifabc.

In a similar way also diagrams with three gluon vertices give rise to dRdA/NR terms.

This illustrates that the gluonic quartic Casimir operator appears in a much larger set of

Feynman diagrams than nfdRdF /NR.

3.2 Calculation of Feynman diagrams

Next we outline our calculation of the four-loop cusp anomalous dimension expanded in

small cusp angle φ. More details on the calculation, especially on the analytic evaluation

of the master integrals, can be found in [19], where the quartic Casimir nfdRdF /NR con-

tribution was studied. Since we are dealing with many more Feynman diagrams than [19],

we automatize the calculation to a higher degree. The Feynman diagrams are generated

with qgraf [48], then mapped to integral topologies and after this the color, Dirac and

Lorentz algebra is performed using a dedicated Mathematica code.

The integrals appearing in the Feynman diagrams are regular at φ = 0. To obtain their

small angle expansion we can therefore simply expand their integrand in a Taylor series. In

this way we get a power series in φ, where the coefficients are given by linear combinations

of tensor integrals. We perform a tensor reduction to relate the tensor integrals to scalar

integrals. After that only even powers of φ survive upon integration, since the original

integrals before expansion are functions of cos φ. We end up with expressions for each

diagram in terms of scalar four-loop integrals of (Wilson line) propagator-type.

Depending on the Feynman diagram, it may contain integrals with linearly depen-

dent HQET-type propagators. For example the sample diagrams for the color structures

dRdA/NR and nfTFCRC
2
A in table 1 give rise to such integrals in the small angle expan-

sion. In order to prepare them for straightforward integration-by-part (IBP) reduction,

we remove the linear dependences between propagators beforehand. This is achieved by

applying the multivariate partial fraction decomposition algorithm outlined in [49]. With

the help of a Gröbner basis, the algorithm constructs for a given integral topology with lin-

early dependent propagators a set of replacement rules. For any integral belonging to that

topology we then obtain an appropriate partial fraction decomposition by simply applying

these rules recursively. The use of a Gröbner basis ensures that the recursion terminates.

The result is a sum of integrands with linearly independent propagators.

– 8 –
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3.3 Integral topologies and master integrals

For the IBP reduction we use FIRE5 [50] in combination with LiteRed [51, 52]. After the

IBP reduction we are left with 46 master integrals (MI), belonging to five integral topologies

shown in figure 2. The integral families associated with the first three topologies reduce to

43 MI, which are already known [19]. We refer the interested reader to the latter reference

for the definition of these topologies. The remaining three MI are new and belong to the

topologies 4 and 5. One of these three MI is a particular case of an integral calculated

in [53, 54].

Conveniently we introduce one large set of propagators {Dk} to represent the integrals

of both two new topologies 4 and 5 and then restrict the exponents of the propagators

accordingly. We define

G(a1, . . . , a16) = e4εγE

∫
ddk1

iπd/2

∫
ddk2

iπd/2

∫
ddk3

iπd/2

∫
ddk4

iπd/2

16∏
k=1

D−akk , (3.5)

with the denominators

D1 = −2v · k1 + 1 , D2 = −2v · k2 + 1 , D3 = −2v · k3 + 1 , (3.6)

D4 = −2v · k4 + 1 , D5 = −k2
1 , D6 = −k2

2 ,

D7 = −k2
3 , D8 = −k2

4 , D9 = −(k1 − k2)2 ,

D10 = −(k1 − k3)2 , D11 = −(k1 − k4)2 , D12 = −(k2 − k3)2 ,

D13 = −(k2 − k4)2 , D14 = −(k3 − k4)2 , D15 = −2v · (k1 − k2) + 1 ,

D16 = −2v · (k1 − k3) + 1 ,

and v2 = 1. Note that an integral at four loops with our kinematics can have at most 14

linear independent propagators. The restrictions on the (integer) exponents for the two

topologies are given by

topology 4: a15, a16 = 0 and a10, a11, a12 ≥ 0 , (3.7)

topology 5: a1, a3 = 0 and a4, a5, a10, a11 ≥ 0 . (3.8)

The exponents that are not listed are not restricted.

To compute the three new MI we proceed exactly as in [19]. Let us briefly summarize

the method here. By raising the power of the (IR-regulated) Wilson line propagators we

choose a basis of integrals that are finite up to a factorizable overall UV divergence (and

trivial divergent factors from bubble-type subdiagrams that we integrate out). To factor out

the overall divergence we conveniently work in position space. Using Feynman parameters

we are then left with finite parameter integrals, which we expand to the required order in

ε. The individual terms in the ε expansion are evaluated with the HyperInt package [55].

We checked our analytic results for the MI nummerically with FIESTA4 [56]. The analytic

results for the MI are presented in the appendix B.
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Figure 2. Integral topologies of the master integrals of all nf dependent color structures of the

cusp anomalous dimension in the small angle expansion.

3.4 Renormalization

Putting all pieces together we get the bare expression for the one-particle-irreducible vertex

function V (φ) and from eq. (2.3) the bare expression of logW up to O
(
α4
s

)
. In order to

extract Γ
(4)
cusp using eq. (2.6) we first need to express the bare logW in terms of renormalized

quantities. All present 1/εn divergences are of UV origin, because we introduced an off-

shellness δ = −1/2 in the HQET propagator to regulate the IR divergences. This IR

regulator breaks gauge invariance, which becomes evident when computing the off-shell

Wilson loop in covariant gauge, i.e. using the gluon propagator

p
=

−i
p2 + i0+

(
gµν + ξ

pµpν

p2 + i0+

)
. (3.9)

In fact, not only the finite part, but also some divergent terms of logW depend on ξ. The

latter are related to the interplay of finite and divergent pieces of lower-loop subdiagrams.

Therefore it is crucial to renormalize the gauge parameter ξ. We emphasize that the

corresponding renormalization of the gauge fixing part of the Lagrangian is necessary even

when using Feynman gauge (ξ = 0) from the start. In our convention the gauge parameter

renormalizes according to 1 − ξbare = ZA(1 − ξ), where ZA is the renormalization factor

of the gauge field Abare
µ =

√
ZAAµ. The required renormalization constants are e.g. given

in [38]. After expressing αbare
s and ξbare through the respective renormalized quantities the

only divergences left in logW are those associated with the Wilson loop cusp and match

eq. (2.6). As the cusp anomalous dimension is of UV origin and thus insensitive to the off-

shellness, it is gauge invariant. Hence, Z must be ξ independent. This serves as a strong

check of our calculation. Note that the finite part of logW does depend on the gauge

parameter as well as on the off-shellness. The determination of the HQET field anomalous

dimension γh from V (0) follows the same lines. Unlike for Γcusp in this case, however, a

dependence on ξ persists.

3.5 Checks of the calculation

We performed several checks of our calculation. Using our computational setup we repro-

duce the known lower loop results of Γcusp(φ, αs) [11, 34] and γh(αs) [57–59]. In the case

of γh(αs) our findings at four loops are in agreement with the known analytical and nu-

merical results [16]. Regarding the cusp anomalous dimension, our result for the nfCRC
2
F
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term agrees with [17]. Furthermore, RG consistency and gauge invariance provide strin-

gent tests. Due to the RGE, the higher 1/εn poles of logW in eq. (2.3) are completely

determined by the β-function and lower loop results of the cusp anomalous dimension, see

eq. (2.6). The same applies to the HQET field anomalous dimension. We use this as a

direct check of our four loop computation. As argued before all divergent terms in logW

are gauge invariant. We explicitly verify gauge invariance by computing logW in covariant

gauge up to four loops and observe that the dependence on the gauge parameter ξ drops

out in the divergent terms. For γh this check is not possible, since it is gauge dependent.

4 Results

In this section we collect the our results for the fermionic contributions to the four-loop

cusp anomalous dimension Γ
(4)
cusp(φ) in the small angle expansion to O(φ4) or higher. We

also give the corresponding contributions to the HQET heavy quark field anomalous di-

mension γ
(4)
h (αs).

4.1 HQET field anomalous dimension

We determine γ
(4)
h from our calculation of the vertex function at zero cusp angle, V (0).

According to eqs. (2.11) and (2.12) we obtain

γffRAh =

(
−35ζ3

24
+

π4

120
− 4157

31104

)
+ ξ

(
− ζ3

24
+

269

7776

)
, (4.1)

γfRFAh =

(
−15ζ5

8
− 105ζ3

32
+

23π4

960
+

36503

13824

)
+ ξ

(
−11ζ3

32
− π4

960
+

767

1536

)
, (4.2)

γfRAAh =

(
−2299ζ5

1152
− 3ζ2

3

8
+

37π2ζ3

864
+

1751ζ3

256
− 1529π4

69120
− π2

48
+

690965

497664

)
+ ξ

(
− ζ5

576
+
π2ζ3

432
+

65ζ3

192
− 7π4

23040
+

49729

497664

)
+ ξ2

(
− 7ζ3

768
+

π4

46080
− 109

9216

)
, (4.3)

where we used the notation of eq. (3.3). The result for γffRAh agrees with the analytic

expression obtained in [16]. The other two results for γfRFAh and γfRAAh agree with the

numerical results of [16]. Note that the remaining terms can also be found in that reference.

4.2 Cusp anomalous dimension

Regarding Γ
(4)
cusp(φ), the results for the ‘Abelian’ color structures (nfTF )3CR [7], (nfTF )2

· CRCF [11, 12] and (nfTF )CRC
2
F [17] are known with full angle dependence and given

in eq. (A.4) in the appendix. The φ2 and φ4 terms of the nfdRdA/NR contribution were

computed in [19]. Here we extend its small angle expansion to include the φ6 term, see
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also [60]:

ΓfdRFcusp = φ2

(
−4π2ζ3

9
+

5π2

54
+

5π4

108

)
+ φ4

(
71ζ3

225
− 16π2ζ3

675
− 4ζ5

9
− 23

900
− 157π2

8100
+

49π4

8100

)
(4.4)

+ φ6

(
983ζ3

33075
− 32π2ζ3

11025
− 64ζ5

1323
+

797

264600
− 1333π2

595350
+

421π4

595350

)
+O(φ8) .

Using the notation of eq. (3.3) we find for the remaining nf dependent color structures in

the small angle expansion

ΓffRAcusp = φ2

(
−35ζ3

81
+

7π4

3240
+

19π2

1458
− 1835

15552

)
+φ4

(
− 7ζ3

243
+

7π4

48600
+

19π2

21870
− 5201

699840

)
+φ6

(
− 2ζ3

729
+

π4

72900
+

19π2

229635
− 25397

36741600

)
+O(φ8) , (4.5)

ΓfRFAcusp = φ2

(
π2ζ3

9
−85ζ3

54
−5ζ5

12
+

11π4

2160
−55π2

432
+

25943

15552

)
(4.6)

+φ4

(
π2ζ3

135
−41ζ3

405
− ζ5

36
+

11π4

32400
−11π2

1296
+

24953

233280

)
+O(φ6) ,

ΓfRAAcusp = φ2

(
− 7

54
π2ζ3+

3611ζ3

1296
−55ζ5

72
+

11π4

648
−923π2

2916
+

48161

31104

)
(4.7)

+φ4

(
−13π2ζ3

1350
+

149327ζ3

486000
− 47ζ5

1080
+

293π4

486000
−35837π2

1749600
+

112207

34992000

)
+O(φ6) .

5 Conjecture on full angle dependence

Before we compare its predictions to our results of the previous section, let us briefly review

the conjecture we want to test.

5.1 Conjecture

In [11, 29] the authors observed an intriguing pattern in the result of the cusp anomalous

dimension at the first three loop orders. To see this pattern we expand Γcusp(φ) in an

effective coupling λ = πK(αs)/CR as

Γcusp

[
φ, αs(λ)

]
=
∑
k≥1

(
λ

π

)k
Ω(k)(φ) . (5.1)

In the light-like limit the cusp anomalous dimension equals the lowest order (k = 1) term

in eq. (5.1) by construction. All higher order λ terms vanish in that limit. Starting at

four loops λ depends on the SU(Nc) representation R due to the appearance of the quartic

Casimir operators. In [11, 29] it was found that the expansion coefficients Ω(k)(φ) for k ≤ 3

are independent of the matter content of the theory, i.e. the number of scalars (ns) and
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fermions (nf ), see eqs. (A.1)–(A.3). In particular, they are equal in QCD, pure Yang-Mills,

andN = 4 sYM theory. The parameters nf and ns enter eq. (5.1) only through the light-like

cusp anomalous dimension K(αs), i.e. through λ. Based on this observation, the authors

of [11, 29] conjectured that the coefficients Ω(k)(φ) in eq. (5.1) are matter-independent to

all orders in the λ expansion.

This conjecture is particularly interesting because of its predictive power. It allows

for predictions on the matter-dependent terms in the loop expansion of Γcusp based on

lower-loop results. This can be understood by re-expanding eq. (5.1) in αs:

Γcusp(φ, αs) =
αs
π

Ω(1)(φ) +
(αs
π

)2
[
Ω(2)(φ) +

1

CR
K(2)Ω(1)(φ)

]
(5.2)

+
(αs
π

)3
[
Ω(3)(φ) +

1

CR

(
K(3)Ω(1)(φ) + 2K(2)Ω(2)(φ)

)]
+
(αs
π

)4
[
Ω(4)(φ) +

1

CR

(
K(4)Ω(1)(φ) + 2K(3)Ω(2)(φ) + 3K(2)Ω(3)(φ)

)
+

1

C2
R

(
K(2)

)2
Ω(2)(φ)

]
+O

(
α5
s

)
,

where we have already inserted the explicit one-loop expression for the light-like cusp

anomalous dimension K(1) = CR. To predict for instance the nf piece of Γcusp at two loops

it is sufficient to know Ω(1) = CR(φ tanφ − 1) and the nf term of the two-loop light-like

cusp anomalous dimension KfR = −5nfTFCR/9:

ΓfRcusp = nfTFΩ(1)KfR = −nfTFCR
5

9
(φ tanφ− 1) . (5.3)

In general, at L loops the angle dependence of the nf contribution to Γcusp is completely

determined by the lower loop coefficients Ω(k)(φ) with k ≤ L− 1. In addition some L-loop

input, e.g. from the asymptotic behavior of Γfcusp in one of the limits, light-like, small angle

or anti-parallel lines, is required to fix the constant K(L).

Note that the conjecture does not make any statement on the purely gluonic contri-

butions to the cusp anomalous dimension. In the following we systematically address the

question, for which of the fermionic four-loop terms the conjecture can be successfully val-

idated, and if some of the yet unknown contributions to Γ
(4)
cusp(φ) can be predicted reliably.

The known CA-independent (‘Abelian’) fermionic terms with full angle-dependence are

easily confirmed to exactly agree with the conjectured results in eq. (A.4). For the quartic

Casimir color structure the check was performed in [19] using the terms in the small angle

expansion up to O
(
φ4
)
. Here we extend it to the remaining four-loop nf contributions.

5.2 Test of the conjecture at small angles

In appendix A we give the expressions for the nf terms in Γ
(4)
cusp(φ) as predicted by the

conjecture. They are obtained by inserting the known lower order Ω(k)(φ) results [29] in

eq. (5.2) and identifying the nf -dependence from the K(i) with i = 2, 3, 4. Except for the

four-loop terms KfRFA and KfRAA associated with the color structures nfTFCRCFCA
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and nfTFCRC
2
A, respectively [cf. eq. (3.1)], for which only numerical results are available

in the literature [18], all relevant terms of the K(i) are known analytically, cf. table 1 and

eqs. (A.9) and (A.10). Now we test the conjectured predictions for the (‘non-Abelian’) nf
contributions, where the full angle dependence is unkown yet, using our results at small

angles.

Color structures nfTFCRC
2
A and nfdRdF/NR. The contribution with the quartic

Casimir factor nfdRdF /NR was studied already in [19]. It was found that the conjectured

result for that color structure is incorrect. Nevertheless, we repeat here the numerical

comparison between conjectured and calculated result in the φ expansion including the

new φ6:

ΓfdRF = 0.150721φ2 + 0.00965191φ4 + 0.000925974φ6 +O(φ8) , (5.4)

ΓfdRFconj. = 0.161321φ2 + 0.0107548φ4 + 0.00102426φ6 +O(φ8) . (5.5)

The first equation is the numerical version of eq. (4.4). The second equation represents

the conjectured result, where we have used the recent analytic result for KfdRF [21, 22]

as the four-loop input. Instead, in [19] the overall normalization constant was determined

from the anti-parallel lines limit and the quartic Casimir nf term in the analytic result

for the static potential [61]. In that case the conjectured expression is numerically even

closer to the correct result in eq. (5.4) than is eq. (5.5). Regardless of the overall factor

the conjectured φ dependence disagrees (at small angles) with the correct result on the

analytical level.

Similarly for the color structure nfTFCRC
2
A the conjecture can be disproved. Using the

φ2 term of our expanded result in eq. (4.7) we can determine the light-like cusp anomalous

dimension term KfRAA in the conjectured all-angles result, eq. (A.7), analytically. The

numerical value KfRAA = −3.4375 is quite close to the known numerical result KfRAA =

−3.4426± 0.0016 of [18]. With KfRAA fixed we obtain an analytical prediction for the φ4

term of ΓfRAA. This prediction however contradicts eq. (4.7) despite being numerically

close:

ΓfRAA = 1.09716φ2 + 0.069745φ4 +O(φ6) , (5.6)

ΓfRAAconj. = 1.09716φ2 + 0.069845φ4 +O(φ6) . (5.7)

Color structures (nfTF )2CRCA and nfTFCRCFCA. For the (nfTF )2CRCA struc-

ture the light-like cusp anomalous dimension KffRA is known analytically [14, 15], cf.

Equation eq. (A.10). In the small angle limit we have computed the expansion to O(φ6),

see eq. (4.5). This allows for three independent test of the conjectured expression in

eq. (A.5). We find perfect agreement.

The nfTFCRCFCA structure is more complex and there is less analytical data available.

We have obtained the small angle expansion to O(φ4) in eq. (4.6) and the corresponding

light-like limit is only known numerically [18]. These results are still sufficient to allow for

one analytical and one numerical check in order to validate the conjecture, i.e. eq. (A.6).
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Using the φ2 term of our result in eq. (4.6) as input we find for the (conjectured) light-like

cusp anomalous dimension

KfRFA
conj. = −1

6
π2ζ3 +

29ζ3

9
+

5ζ5

4
− 11π4

720
+

55π2

288
− 17033

5184
= 0.3031 . (5.8)

This is in perfect agreement with the known numerical value KfRFA = 0.3027±0.0016 [18].

In addition, with eq. (5.8) the analytic φ4 terms of the conjectured and the computed result

match exactly.

5.3 Summary of results and discussion

For the two color structures nfTFCRC
2
A and nfdRdF /NR the conjecture does not hold.

We also checked that a redefinition of the quartic Casimir such that a rational fraction

of the nfTFCRC
2
A coefficient is shifted to the nfdRdF /NR coefficient does not change

the conclusion.2 The nfTFCRC
2
A and nfdRdF /NR terms have in common that, unlike

the other fermionic terms, they receive contributions from the diagrams with a one-loop

fermion box subdiagram. The latter first appear at four loops, where they represent the

most complicated class of Feynman diagrams. It is conceivable that only these particular

diagrams are responsible for the disagreement with the conjectured results. This would

explain why, at least according to our tests, all fermionic four-loop contributions except

for the nfTFCRC
2
A and nfdRdF /NR terms do agree with the conjecture.

Most interestingly, we have shown that the conjectured (nfTF )2CRCA and nfTFCRCFCA
contributions to Γcusp(φ), given in eqs. (A.5) and (A.6), respectively, exactly reproduce

both the small φ expansion as well as the light-like limit (φ → i∞). We think that these

exact predictions of complicated analytical results containing transcendental numbers up

to weight five strongly supports the conjecture for both of these color structures. While we

were able to perform one such analytical test of the nfTFCRCFCA term, the (nfTF )2CRCA
term even passes three independent analytical tests of that kind. On the other hand, the

light-like nfTFCRCFCA prediction is in addition checked numerically at the per-mil level.

We remark that unlike for the ‘Abelian’ color structures (without CA), the φ-dependence

of these terms is not just given by the one-loop coefficient Ω(1), but also involves the more

complicated coefficient Ω(2) of the λ expansion in eq. (5.1).

Our conjectured result for the nfTFCRCFCA contribution includes the important spe-

cial case of the light-like cusp anomalous dimension KfRFA, for which we provide a novel

analytic result in eq. (5.8). Based on the evidence found we assume in the following that

eq. (5.8) is the correct exact result. As shown in [22], we are thus in the position to de-

termine also the last missing fermionic contribution KfRAA analytically by combining the

other linear nf pieces and the known planar nf term [14, 18]:

KfRAA
conj. = 2K

(4)
planar,nf

−
KfRFA

conj.

2
− KfRFF

4
− KfdRF

24
(5.9)

= −361ζ3

54
+

7π2ζ3

36
+

131ζ5

72
− 24137

10368
+

635π2

1944
− 11π4

2160
(5.10)

= −3.44271 .

2This includes the particular linear combination obtained in the planar limit (Nc →∞) of the linear nf
contribution to Γcusp(φ).
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To obtain eq. (5.9) we have expanded the associated color factors to leading order in

1/Nc in order to match the prefactor of K
(4)
planar,nf

. Again we find perfect agreement of

our conjectured result in eq. (5.10) with the numerical result KfRAA = −3.4426 ± 0.0016

of [18].

6 Anti-parallel lines limit

In the anti-parallel lines limit the cusp anomalous dimension is closely related to the static

quark-antiquark potential, which was first observed at one loop in [24]. The expansion

around δ = π − φ� 1 takes the form

Γcusp(π − δ, αs) = −CRαs
Vcusp(αs)

δ
+O

(
α4
s

log δ

δ

)
, (6.1)

where the log δ term at four loops is only present in the CRC
3
A color structure [60] and

the coefficient Vcusp is δ-independent. The relation to the static quark-antiquark potential

can be understood by interpreting δ on the right hand side of the equation above as the

distance between the static quarks. Indeed, there exits a conformal transformation for

δ � 1 that maps the cusp configuration to two anti-parallel Wilson lines separated by the

distance δ, see e.g. [11, 36]. In momentum space the static quark-antiquark potential is

given by [61–63]

V (~q ) = −CR
4παs(|~q |)

~q 2 VQQ̄
(
αs(|~q |)

)
, (6.2)

where we set the renormalization scale to µ = |~q | in order to avoid logarithms of the

form logn(µ2/~q 2). It is however straightforward to restore the full dependence on the

renormalization scale [64]. After Fourier transformation to position space and for equal

renormalization scales in the cusp anomalous dimension and the position-space static po-

tential, one directly finds Vcusp(αs) = VQQ̄(αs) in a conformal theory like N = 4 sYM, for

details we refer to [11].

In QCD, however, conformal invariance is broken by an anomaly, which becomes man-

ifest in the running of the strong coupling αs. The relation between Vcusp and VQQ̄ must

therefore be supplemented by terms proportional to the QCD β-function, β(αs) = O(αs),

see e.g. [65–68],

Vcusp(αs)− VQQ̄(αs) = β(αs)C(αs) , C(αs) =
∑
k≥1

(αs
π

)k
C(k) . (6.3)

With the known three-loop cusp anomalous dimension and the two loop static potential [69–

71] we have C(1) = (47CA− 28nfTF )/27 [11]. Note the absence of transcendental terms in

this expression.

Since also the three-loop result for the static potential is available analytically [61],

we can use the conjecture to extract information on C(2). Given that the conjecture

does not hold for all color structures at four loops, we decompose the cusp anomalous

dimension in two terms. The first term is predicted by the conjecture, while the second
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term accommodates the correction to the conjecture for the nfTFCRC
2
A and nfdRdF /NR

contributions. Assumig the correctness of the conjectured results for all other four-loop

color structures we thus write in the anti-parallel lines limit3

Vcusp(αs)
∣∣
ferm.

= Vconj.(αs)−
(αs
π

)3
nf

[
dRdF
NRCR

V fdRF
corr. + TFC

2
AV

fRAA
corr.

]
+O(α4

s) . (6.4)

According to eq. (6.3) this information from the fermionic contributions is sufficient to fix

C(2) = (nfTF )2

(
116

243
+

2ζ3

9

)
+ nfTFCA

(
−5ζ3

4
− π4

24
+

79

3888

)
(6.5)

+ nfTFCF

(
19ζ3

6
+
π4

60
− 1711

288

)
+ C2

A

(
3KfRAA − 3V fRAA

corr. −
171ζ2

3

128
− 211π6

17920

− 1091ζ5

128
− 55π2ζ3

192
+

203π4

1152
+

81ζ3

4
− 11821π2

5184
+

238315

31104
+

9

4
ζ−5,−1

+
21

32
π2ζ3 log(2) +

3

2
π2Li4

(
1

2

)
+

1

16
π2 log4(2)− 3

64
π4 log2(2)

+
5

192
π4 log(2) +

1

16
π2 log(2)

)
.

The (nfTF )2 and nfTFCF terms agree with [12] and the absence of the C2
F term has also

been shown in [17]. The transcendental constants log(2), Li4(1/2) and ζ−5,−1 come from

the α3
snfTFC

2
A term in the static potential. Also the quartic Casimir α3

s(nfdRdF )/(NRCR)

term in the static potential contains log(2) [61], cf. eq. (6.7) below. This is a rather inter-

esting observation, because only the two color structures that disagree with the conjecture

contain transcendental constants other than single zeta values.

We can also quantify the corrections in the anti-parallel lines limit for the quartic

Casimir nfdRdF /NR color structure. The anomaly term β(αs)C(αs) is independent of the

quartic Casimir nfdRdF /NR at O(α3
s), thus we have from eqs. (6.3) and (6.4)

V fdRF
cusp = KfdRF − V fdRF

corr. = V fdRF

QQ̃
. (6.6)

With the known value for the light-like cusp anomalous dimension KfdRF = −0.484 [21, 22]

and the three loop static potential [61]

V fdRF

QQ̃
=

5π6

192
− 61π2ζ3

24
− 23π4

48
+

79π2

72
+ log(2)

(
21

4
π2ζ3 −

1

4
π4 log(2) +

1

12
π4 +

1

2
π2

)
= −0.444 . (6.7)

we see that in the anti-parallel lines limit the correction to the conjecture amounts to

V fdRF
corr. ≈ −10% for the quartic Casimir nf contribution.

3Note the (traditional) factor of 1/CR in the definition of the quartic Casimir color structure associated

with the V fdRF potential coefficient. We adopt this convention also in eqs. (6.6) and (6.7).
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7 Conclusion

In this work we computed the small angle (φ) expansion of fermionic contributions to the

QCD cusp anomalous dimension at four loops. Our results are given in section 4. They

include terms up to O
(
φ4
)

and for some of the color structures even up to O
(
φ6
)
. From

our calculation for zero cusp angle, i.e. at O
(
φ0
)
, we also obtain new analytic results for

the HQET field anomalous dimension in generalized covariant (ξ) gauge.

We then used our small angle results for Γcusp(φ) to verify the conjecture of [11,

29]. This conjecture allows to predict the full angle dependence of the fermionic part of

Γcusp(φ) from lower-loop results. Comparing the predicted four-loop expressions, given in

appendix A, to our calculated analytic results at small angle we found strong evidence that

the conjectured all-angles expressions are correct for all fermionic contributions except for

the nfTFCRC
2
A and the nfdRdF /NR terms. The reason for these exceptions might be

connected to four-loop HQET Wilson-line diagrams with a fermion box subdiagram, which

exclusively contribute to the nfTFCRC
2
A and nfdRdF /NR pieces. For further discussion

see section 5.3.

The conjectured expressions passing our tests include novel results for the (nfTF )2CRCA

and nfTFCRCFCA contributions to Γcusp(φ) with full angle dependence. Using the light-

like limit of the conjectured nfTFCRCFCA term together with available results from the

literature we determined in addition novel analytic expressions for the nfTFCRCFCA and

the nfTFCRC
2
A contributions to the light-like cusp anomalous dimension. They are in

perfect agreement with the known numerical values. This completes the analytic result for

the fermionic part of the four-loop light-like cusp anomalous dimension in QCD [22].

Finally, we also studied the anti-parallel lines limit of the cusp anomalous dimension.

In this limit Γcusp(φ) is related to the static quark-antiquark potential plus a conformal

anomaly term. The latter is proportional to the QCD β-function. In section 6, we used our

results for Γcusp(φ) in order to explore this relationship. We obtained new contributions

to the conformal anomaly term at O
(
α3
s

)
.
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A Lower-loop and conjectured four-loop Γcusp(φ)

In this appendix we list the known and conjectured full angle-dependent results for all

fermionic color structures of the cusp anomalous dimension at four loops. The results are

expressed in terms of the light-like cusp anomalous dimension K(αs) and seven coefficient

functions A1,2,3,4,5, and B3,5, encoding the angle dependence. For convenience we also

present the expansions of the coefficient functions in the small angle and the anti-parallel

lines limits. We start with the expansion coefficients of Γcusp[φ, αs(λ)] in eq. (5.1) as given

in [11],

Ω(1)(φ) = CRÃ1 , (A.1)

Ω(2)(φ) =
CRCA

2

(
π2Ã1

6
+ Ã2 + Ã3

)
, (A.2)

Ω(3)(φ) =
CRC

2
A

4

(
−Ã2 + Ã4 + Ã5 + B̃3 + B̃5 −

π4

180
Ã1 +

π2

3

(
Ã2 + Ã3

))
, (A.3)

where Ãi = Ãi(x) and B̃i = B̃i(x) with x = eiφ. The ‘Abelian’ nf -dependent contributions

to Γcusp(φ) are known. They have the same functional angle dependence as the one-loop

result [7, 11, 12, 17]:

ΓCcusp = KCÃ1 , with C = fffR, fRF, fRFF . (A.4)

Here and in the following we use the notation of eqs. (3.1) and (3.3) for the different color

structures. Next we give the results for the other fermionic color structures as predicted

by the conjecture:

ΓffRAconj. = KffRAÃ1 +

((
KfR

)2
2

+KffR

)(
π2Ã1

6
+ Ã2 + Ã3

)
, (A.5)

ΓfRFAconj. = KfRFAÃ1 +KfRF

(
π2Ã1

6
+ Ã2 + Ã3

)
, (A.6)

ΓfRAAconj. = KfRAAÃ1 +KfRA

(
π2Ã1

6
+ Ã2 + Ã3

)
+KfR

[
− π4

240
Ã1 +

π2

4

(
Ã2 + Ã3

)

+
3

4

(
−Ã2 + Ã4 + Ã5 + B̃3 + B̃5

)
+KRA

(
π2Ã1

6
+ Ã2 + Ã3

)]
,

(A.7)

ΓfdRFconj. = KfdRF Ã1 . (A.8)
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Analytical expressions for the light-like cusp anomalous dimension are available up to three

loops [34, 73, 74]:

K = CR
αs
π

+
(αs
π

)2
[
−5

9
nfTFCR + CACR

(
67

36
− π2

12

)]
+
(αs
π

)3
[
− 1

27
(nfTF )2CR

+ nfTFCRCF

(
ζ3 −

55

48

)
+ nfTFCRCA

(
−7ζ3

6
− 209

216
+

5π2

54

)
+ CRC

2
A

(
11ζ3

24
+

245

96
− 67π2

216
+

11π4

720

)]
+
(αs
π

)4
K(4) +O(α5

s) .

(A.9)

Depending on the color factor the contributions at four loops are either known analytically

or numerically [9, 14, 15, 18, 20–23]:

K(4) = (nfTF )3CR

(
− 1

81
+

2ζ3

27

)
+(nfTF )2CRCA

(
35ζ3

27
− 7π4

1080
−19π2

972
+

923

5184

)
(A.10)

+(nfTF )2CRCF

(
−10ζ3

9
+
π4

180
+

299

648

)
+nfTFCRC

2
F

(
37ζ3

24
−5ζ5

2
+

143

288

)
+nfTFCRCFCA

(
0.3027±0.0016

)
+nfTFCRC

2
A

(
−3.4426±0.0016

)
+nf

dRdF
NR

(
π2

6
−ζ3

3
−5ζ5

3

)
+
dRdA
NR

(
−1.9805±0.0078

)
+CRC

3
A

(
2.38379±0.00039

)
.

The coefficient functions are given by [11]

Ãi(x) = Ai(x)−Ai(x) , B̃i(x) = Bi(x)−Bi(x) , (A.11)

A1(x) = ξ̃
1

2
H1(y) ,

A2(x) =

[
π2

3
+

1

2
H1,1(y)

]
+ ξ̃

[
−H0,1(y)− 1

2
H1,1(y)

]
,

A3(x) = ξ̃

[
−π

2

6
H1(y)− 1

4
H1,1,1(y)

]
+ ξ̃2

[
1

2
H1,0,1(y) +

1

4
H1,1,1(y)

]
,

A4(x) =

[
−π

2

6
H1,1(y)− 1

4
H1,1,1,1(y)

]
+ ξ̃

[
π2

3
H0,1(y) +

π2

6
H1,1(y) + 2H1,1,0,1(y)

+
3

2
H0,1,1,1(y) +

7

4
H1,1,1,1(y) + 3ζ3H1(y)

]
+ ξ̃2

[
− 2H1,0,0,1(y)− 2H0,1,0,1(y)

−2H1,1,0,1(y)−H1,0,1,1(y)−H0,1,1,1(y)− 3

2
H1,1,1,1(y)

]
,

A5(x) = ξ̃

[
π4

12
H1(y) +

π2

4
H1,1,1(y) +

5

8
H1,1,1,1,1(y)

]
+ ξ̃2

[
−π

2

6
H1,0,1(y)− π2

3
H0,1,1(y)

−π
2

4
H1,1,1(y)−H1,1,1,0,1(y)− 3

4
H1,0,1,1,1(y)−H0,1,1,1,1(y)− 11

8
H1,1,1,1,1(y)
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−3

2
ζ3H1,1(y)

]
+ ξ̃3

[
H1,1,0,0,1(y) +H1,0,1,0,1(y) +H1,1,1,0,1(y) +

1

2
H1,1,0,1,1(y)

+
1

2
H1,0,1,1,1(y) +

3

4
H1,1,1,1,1(y)

]
,

B3(x) =

[
−H1,0,1(y) +

1

2
H0,1,1(y)− 1

4
H1,1,1(y)

]
+ ξ̃

[
2H0,0,1(y) +H1,0,1(y) +H0,1,1(y) +

1

4
H1,1,1(y)

]
,

B5(x) =
x

1− x2

[
−π

4

60
H−1(x)− π4

60
H1(x)− 4H−1,0,−1,0,0(x) + 4H−1,0,1,0,0(x)

−4H1,0,−1,0,0(x) + 4H1,0,1,0,0(x) + 4H−1,0,0,0,0(x) + 4H1,0,0,0,0(x)

+ 2ζ3H−1,0(x) + 2ζ3H1,0(x)

]
,

with ξ̃ = (1+x2)/(1−x2), y = 1−x2, x = eiφ. The H~a (y) denote harmonic polylogarithms

according to [75, 76].

For the small angle expansion of the above coefficient functions around φ = 0 we find

up to O
(
φ6
)
:

A1(φ) = 1− 1

3
φ2 − 1

45
φ4 − 2

945
φ6 +O(φ8) , (A.12)

A2(φ) =
π2

3
− 2− 1

9
φ2 − 14

675
φ4 − 304

99225
φ6 +O(φ8) ,

A3(φ) =

(
1− π2

3

)
+ φ2

(
π2

9
− 7

18

)
+ φ4

(
π2

135
− 2

225

)
+ φ6

(
38

99225
+

2π2

2835

)
+O(φ8) ,

A4(φ) =

(
6ζ3 +

2π2

3
− 6

)
+ φ2

(
−2ζ3 +

91

54
+
π2

27

)
+ φ4

(
−2ζ3

15
+

1789

20250
+

14π2

2025

)
+ φ6

(
− 4ζ3

315
+

250121

20837250
+

304π2

297675

)
+O(φ8) ,

A5(φ) =

(
−3ζ3 +

π4

6
− 2π2

3
+ 2

)
+ φ2

(
2ζ3 −

65

54
+

5π2

27
− π4

18

)
+ φ4

(
−ζ3

5
+

1649

10125

+
41π2

2025
− π4

270

)
+ φ6

(
−2ζ3

63
+

6401

1157625
+

349π2

99225
− π4

2835

)
+O(φ8) ,

B3(φ) = 4− 5

54
φ2 − 889

40500
φ4 − 80299

20837250
φ6 +O(φ8) ,

B5(φ) =
3ζ3

2
+ φ2

(
ζ3

3
+

1

18

)
+ φ4

(
11ζ3

225
+

31

2700

)
+ φ6

(
202ζ3

33075
+

143

99225

)
+O(φ8) .

In the anti-parallel lines limit δ = π − φ� 1 we obtain:

δA1(π−δ) = −π+O(δ) , (A.13)

δA2(π−δ) = 2π log(iδ)−iπ2+2π log(2)+O(δ) ,
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δA3(π−δ) = −2π log(iδ)+iπ2+2π−2π log(2)+O(δ) ,

δA4(π−δ) =
π4

3δ
+4π log2(iδ)+

(
−4iπ2+

4π3

3
+8π log(2)

)
log(iδ)

+9πζ3−
2iπ4

3
−2π3−8π+4π log2(2)+

(
4π3

3
−4iπ2

)
log(2)+O(δ) ,

δA5(π−δ) = −π
4

3δ
−2π log2(iδ)+

(
2π+2iπ2−4π3

3
−4π log(2)

)
log(iδ)−9πζ3

+
2iπ4

3
+π3−iπ2+3π−2π log2(2)+

(
2π+2iπ2−4π3

3

)
log(2)+O(δ) ,

δB3(π−δ) = −2π log2(iδ)+
(
−4π log(2)+2iπ2

)
log(iδ)−2π log2(2)+2iπ2 log(2)+O(δ) ,

δB5(π−δ) =
π5

16
+O(δ) .

B Master integrals

For the small angle expansion of the fermionic part of the cusp anomalous dimension 46

master integrals are needed; 43 of which are already known [19]. Below we list the three

new master integrals, which we compute with the method outlined in section 3.3. These

integrals are defined by the eqs. (3.5) and (3.6). The first integral is associated with

topology 3 and the other two integrals are associated with topology 5 in figure 2.

G(1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0) (B.1)

=
1

ε3
π2

18
+

1

ε2

(
2π2

9
−7ζ3

3

)
+

1

ε

(
−28ζ3

3
+

181π4

540
+

2π2

3

)
+

(
−251

27
π2ζ3−28ζ3−

250ζ5

3
+

181π4

135
+

16π2

9

)
+ε

(
910ζ2

3

9
−1004π2ζ3

27
−224ζ3

3
−1000ζ5

3
+

1711π6

1260
+

181π4

45
+

40π2

9

)
+ε2

(
3640ζ2

3

9
−11617π4ζ3

405
−1004π2ζ3

9
−560ζ3

3
−4634π2ζ5

15
−1000ζ5

−14729ζ7

6
+

1711π6

315
+

1448π4

135
+

32π2

3

)
+O(ε3) ,

G(0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 2, 1, 2) (B.2)

=
1

ε2

(
−π

2

12

)
+

1

ε

(
9ζ3

4
+
π2

3

)
+

(
−31ζ3−

277π4

720
−π2

)
+ε

(
487π2ζ3

36
+27ζ3−

5ζ5

4
+

883π4

180
+

16π2

3

)
+ε2

(
−1505ζ2

3

4
−1753π2ζ3

9
−408ζ3−2405ζ5−

703π6

1680
−277π4

60
−52π2

3

)
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+ε3
(

9085ζ2
3

3
+

98243π4ζ3

1080
+

487π2ζ3

3
+820ζ3−

23821π2ζ5

60
−15ζ5

−4184ζ7+
164417π6

3780
+

2926π4

45
+80π2

)
+O(ε4) ,

G(0, 2, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 0, 2, 3) (B.3)

=
1

ε

(
1

2
−π

2

12

)
+

(
6ζ3−

2π2

3
+3

)
+ε

(
48ζ3−

167π4

180
−5π2

2
+14

)
+ε2

(
325π2ζ3

9
+

898ζ3

3
+372ζ5−

334π4

45
−29π2

3
+60

)
+ε3

(
−584ζ2

3+
2600π2ζ3

9
+1412ζ3+2976ζ5−

1733π6

252
−4109π4

90
−38π2+248

)
+ε4

(
−4672ζ2

3+
25403π4ζ3

135
+

5494π2ζ3

3
+

18232ζ3

3
+

31891π2ζ5

15

+
102658ζ5

5
+20052ζ7−

3466π6

63
−1931π4

9
−452π2

3
+1008

)
+O(ε5) .

Using IBP relations, the three master integrals can be exchanged for integrals with

uniform transcendental weight:

G(1, 1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0) (B.4)

=
1

ε3(1− 2ε)

[
π2

9
− ε14ζ3

3
+ ε2

181π4

270

+ ε3
(
−502

27
π2ζ3 −

500ζ5

3

)
+ ε4

(
1820ζ2

3

9
+

1711π6

630

)

+ ε5
(
−23234

405
π4ζ3 −

9268π2ζ5

15
− 14729ζ7

3

)
+O(ε6)

]
,

G(0, 1, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 2, 0, 1, 2) (B.5)

=
1

ε4

[
− 1

2
− ε2 13π2

6
+ ε3

110ζ3

3
− ε4 63π4

10

+ ε5
(

1718π2ζ3

9
+

1502ζ5

5

)
+ ε6

(
−22468ζ2

3

9
− 233π6

15

)

+ ε7
(

12274π4ζ3

15
+

23366π2ζ5

15
− 74338ζ7

7

)
+O(ε8)

]
,

G(0, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 1, 2, 1, 1) (B.6)

=
1

ε3(1− 2ε)

[
π2

9
− ε11ζ3

3
+ ε2

383π4

540
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+ ε3
(
−709

27
π2ζ3 −

335ζ5

3

)
+ ε4

(
4625ζ2

3

9
+

35437π6

11340

)

+ ε5
(
−128977

810
π4ζ3 −

7693π2ζ5

15
− 18037ζ7

6

)
+O(ε6)

]
. (B.7)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.V. Ivanov, G.P. Korchemsky and A.V. Radyushkin, Infrared Asymptotics of Perturbative

QCD: Contour Gauges, Yad. Fiz. 44 (1986) 230 [Sov. J. Nucl. Phys. 44 (1986) 145]

[INSPIRE].

[2] G.P. Korchemsky and A.V. Radyushkin, Infrared asymptotics of perturbative QCD:

Renormalization properties of the Wilson loops in higher orders of perturbation theory, Sov.

J. Nucl. Phys. 44 (1986) 877 [Yad. Fiz. 44 (1986) 1351] [INSPIRE].

[3] G.P. Korchemsky and A.V. Radyushkin, Infrared Asymptotics of Perturbative QCD. Quark

and Gluon Propagators, Sov. J. Nucl. Phys. 45 (1987) 127 [Yad. Fiz. 45 (1987) 198]

[INSPIRE].

[4] G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group

for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

[5] G.P. Korchemsky and A.V. Radyushkin, Infrared Asymptotics of Perturbative QCD. Vertex

Functions, Sov. J. Nucl. Phys. 45 (1987) 910 [Yad. Fiz. 45 (1987) 1466] [INSPIRE].

[6] G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy

quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].

[7] A.G. Grozin, Heavy quark effective theory, Springer Tracts Mod. Phys. 201 (2004) 1

[INSPIRE].

[8] J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at O(1/Nf ) in deep

inelastic scattering, Phys. Lett. B 322 (1994) 141 [hep-ph/9401214] [INSPIRE].

[9] M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production,

Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].

[10] D.J. Broadhurst and A.G. Grozin, Matching QCD and HQET heavy-light currents at two

loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240] [INSPIRE].

[11] A.G. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous

dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140

[arXiv:1510.07803] [INSPIRE].

[12] A.G. Grozin, Leading and next-to-leading large-nf terms in the cusp anomalous dimension

and quark-antiquark potential, PoS(LL2016)053 (2016) [arXiv:1605.03886] [INSPIRE].

[13] B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies and A. Vogt, First Forcer results on

deep-inelastic scattering and related quantities, PoS(LL2016)071 (2016) [arXiv:1605.08408]

[INSPIRE].

– 24 –

https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,44,145%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,44,877%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,45,127%22
https://doi.org/10.1016/0370-2693(86)91439-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B171,459%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,45,910%22
https://doi.org/10.1016/0370-2693(92)90405-S
https://arxiv.org/abs/hep-ph/9203222
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9203222
https://doi.org/10.1007/b79301
https://inspirehep.net/search?p=find+J+%22Springer%20Tracts%20Mod.Phys.,201,1%22
https://doi.org/10.1016/0370-2693(94)90502-9
https://arxiv.org/abs/hep-ph/9401214
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9401214
https://doi.org/10.1016/0550-3213(95)00439-Y
https://arxiv.org/abs/hep-ph/9506452
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9506452
https://doi.org/10.1103/PhysRevD.52.4082
https://arxiv.org/abs/hep-ph/9410240
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9410240
https://doi.org/10.1007/JHEP01(2016)140
https://arxiv.org/abs/1510.07803
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07803
https://doi.org/10.22323/1.260.0053
https://arxiv.org/abs/1605.03886
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.03886
https://doi.org/10.22323/1.260.0071
https://arxiv.org/abs/1605.08408
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.08408


J
H
E
P
0
5
(
2
0
1
9
)
1
8
6

[14] J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor

and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126]

[INSPIRE].

[15] J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-Nf contributions to the

four-loop splitting functions in QCD, Nucl. Phys. B 915 (2017) 335 [arXiv:1610.07477]

[INSPIRE].

[16] P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop wave function

renormalization in QCD and QED, Phys. Rev. D 97 (2018) 054032 [arXiv:1801.08292]

[INSPIRE].

[17] A.G. Grozin, Four-loop cusp anomalous dimension in QED, JHEP 06 (2018) 073 [Addendum

JHEP 01 (2019) 134] [arXiv:1805.05050] [INSPIRE].

[18] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet

Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041

[arXiv:1707.08315] [INSPIRE].

[19] A.G. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation in the cusp

anomalous dimension at small angle, JHEP 10 (2017) 052 [arXiv:1708.01221] [INSPIRE].

[20] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On quartic colour factors in

splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B 782 (2018) 627

[arXiv:1805.09638] [INSPIRE].

[21] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with

quartic fundamental colour factor, JHEP 02 (2019) 172 [arXiv:1901.02898] [INSPIRE].

[22] J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp

anomalous dimension, arXiv:1901.03693 [INSPIRE].

[23] J. Henn, R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop photon quark

form factor and cusp anomalous dimension in the large-Nc limit of QCD, JHEP 03 (2017)

139 [arXiv:1612.04389] [INSPIRE].

[24] W. Kilian, T. Mannel and T. Ohl, Unimagined imaginary parts in heavy quark effective field

theory, Phys. Lett. B 304 (1993) 311 [hep-ph/9303224] [INSPIRE].

[25] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a

moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455]

[INSPIRE].

[26] N. Isgur and M.B. Wise, Weak Decays of Heavy Mesons in the Static Quark Approximation,

Phys. Lett. B 232 (1989) 113 [INSPIRE].

[27] N. Isgur and M.B. Wise, Weak transition form-factors between heavy mesons, Phys. Lett. B

237 (1990) 527 [INSPIRE].

[28] M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320]

[INSPIRE].

[29] A.G. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous

Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].

[30] R.H. Boels, T. Huber and G. Yang, Four-Loop Nonplanar Cusp Anomalous Dimension in

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 119 (2017) 201601

[arXiv:1705.03444] [INSPIRE].

– 25 –

https://doi.org/10.1007/JHEP05(2016)066
https://arxiv.org/abs/1604.03126
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03126
https://doi.org/10.1016/j.nuclphysb.2016.12.012
https://arxiv.org/abs/1610.07477
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.07477
https://doi.org/10.1103/PhysRevD.97.054032
https://arxiv.org/abs/1801.08292
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.08292
https://doi.org/10.1007/JHEP06(2018)073
https://doi.org/10.1007/JHEP01(2019)134
https://arxiv.org/abs/1805.05050
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.05050
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08315
https://doi.org/10.1007/JHEP10(2017)052
https://arxiv.org/abs/1708.01221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.01221
https://doi.org/10.1016/j.physletb.2018.06.017
https://arxiv.org/abs/1805.09638
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09638
https://doi.org/10.1007/JHEP02(2019)172
https://arxiv.org/abs/1901.02898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.02898
https://arxiv.org/abs/1901.03693
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.03693
https://doi.org/10.1007/JHEP03(2017)139
https://doi.org/10.1007/JHEP03(2017)139
https://arxiv.org/abs/1612.04389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04389
https://doi.org/10.1016/0370-2693(93)90301-W
https://arxiv.org/abs/hep-ph/9303224
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9303224
https://doi.org/10.1007/JHEP06(2012)048
https://arxiv.org/abs/1202.4455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4455
https://doi.org/10.1016/0370-2693(89)90566-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B232,113%22
https://doi.org/10.1016/0370-2693(90)91219-2
https://doi.org/10.1016/0370-2693(90)91219-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B237,527%22
https://doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9306320
https://doi.org/10.1103/PhysRevLett.114.062006
https://arxiv.org/abs/1409.0023
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.0023
https://doi.org/10.1103/PhysRevLett.119.201601
https://arxiv.org/abs/1705.03444
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03444


J
H
E
P
0
5
(
2
0
1
9
)
1
8
6

[31] R.H. Boels, T. Huber and G. Yang, The Sudakov form factor at four loops in maximal super

Yang-Mills theory, JHEP 01 (2018) 153 [arXiv:1711.08449] [INSPIRE].

[32] J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in N = 4 super

Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147

[arXiv:1304.6418] [INSPIRE].

[33] R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops,

Phys. Rev. D 24 (1981) 879 [INSPIRE].

[34] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the

Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

[35] A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

[36] D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three

loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

[37] A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys.

Cosmol. 10 (2000) 1 [INSPIRE].

[38] K.G. Chetyrkin, G. Falcioni, F. Herzog and J.A.M. Vermaseren, Five-loop renormalisation of

QCD in covariant gauges, JHEP 10 (2017) 179 [Addendum JHEP 12 (2017) 006]

[arXiv:1709.08541] [INSPIRE].

[39] T. Luthe, A. Maier, P. Marquard and Y. Schröder, The five-loop β-function for a general
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[60] R. Brüser, A.G. Grozin, J.M. Henn and M. Stahlhofen, Four-loop results for the cusp

anomalous dimension, PoS(LL2018)018 (2018) [arXiv:1807.05145] [INSPIRE].

[61] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Analytic three-loop static

potential, Phys. Rev. D 94 (2016) 054029 [arXiv:1608.02603] [INSPIRE].

[62] C. Anzai, Y. Kiyo and Y. Sumino, Static QCD potential at three-loop order, Phys. Rev. Lett.

104 (2010) 112003 [arXiv:0911.4335] [INSPIRE].

[63] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop static potential, Phys. Rev.

Lett. 104 (2010) 112002 [arXiv:0911.4742] [INSPIRE].

[64] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Fermionic contributions to the three-loop

static potential, Phys. Lett. B 668 (2008) 293 [arXiv:0809.1927] [INSPIRE].

[65] D.J. Broadhurst and A.L. Kataev, Connections between deep inelastic and annihilation

processes at next to next-to-leading order and beyond, Phys. Lett. B 315 (1993) 179

[hep-ph/9308274] [INSPIRE].

[66] R.J. Crewther, Relating inclusive e+e− annihilation to electroproduction sum rules in

quantum chromodynamics, Phys. Lett. B 397 (1997) 137 [hep-ph/9701321] [INSPIRE].

[67] V.M. Braun, G.P. Korchemsky and D. Mueller, The Uses of conformal symmetry in QCD,

Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

[68] A.V. Garkusha, A.L. Kataev and V.S. Molokoedov, Renormalization scheme and gauge

(in)dependence of the generalized Crewther relation: what are the real grounds of the

β-factorization property?, JHEP 02 (2018) 161 [arXiv:1801.06231] [INSPIRE].

– 27 –

https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2372
https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2685
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1145
https://doi.org/10.1088/1126-6708/2000/03/013
https://arxiv.org/abs/hep-ph/0002266
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0002266
https://doi.org/10.1142/S0217751X04016775
https://arxiv.org/abs/hep-ph/0307297
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0307297
https://doi.org/10.1016/j.cpc.2014.10.019
https://arxiv.org/abs/1403.3385
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3385
https://doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/1511.03614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03614
https://doi.org/10.1016/0370-2693(91)90532-U
https://arxiv.org/abs/hep-ph/9908362
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9908362
https://doi.org/10.1016/S0550-3213(00)00526-5
https://arxiv.org/abs/hep-ph/0005131
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0005131
https://doi.org/10.1016/S0550-3213(03)00490-5
https://arxiv.org/abs/hep-ph/0303113
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0303113
https://doi.org/10.22323/1.303.0018
https://arxiv.org/abs/1807.05145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.05145
https://doi.org/10.1103/PhysRevD.94.054029
https://arxiv.org/abs/1608.02603
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02603
https://doi.org/10.1103/PhysRevLett.104.112003
https://doi.org/10.1103/PhysRevLett.104.112003
https://arxiv.org/abs/0911.4335
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4335
https://doi.org/10.1103/PhysRevLett.104.112002
https://doi.org/10.1103/PhysRevLett.104.112002
https://arxiv.org/abs/0911.4742
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4742
https://doi.org/10.1016/j.physletb.2008.08.070
https://arxiv.org/abs/0809.1927
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1927
https://doi.org/10.1016/0370-2693(93)90177-J
https://arxiv.org/abs/hep-ph/9308274
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9308274
https://doi.org/10.1016/S0370-2693(97)00157-3
https://arxiv.org/abs/hep-ph/9701321
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9701321
https://doi.org/10.1016/S0146-6410(03)90004-4
https://arxiv.org/abs/hep-ph/0306057
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0306057
https://doi.org/10.1007/JHEP02(2018)161
https://arxiv.org/abs/1801.06231
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.06231


J
H
E
P
0
5
(
2
0
1
9
)
1
8
6

[69] M. Peter, The Static quark-anti-quark potential in QCD to three loops, Phys. Rev. Lett. 78

(1997) 602 [hep-ph/9610209] [INSPIRE].

[70] M. Peter, The Static potential in QCD: A Full two loop calculation, Nucl. Phys. B 501

(1997) 471 [hep-ph/9702245] [INSPIRE].
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