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1 Introduction

The two dimensional real φ4 theory has been extensively studied as the simplest model

with a spontaneous symmetry breaking which plays important roles in particle physics.

Although the continuous symmetry as in the complex φ4 theory cannot be broken in two

dimensions [1], the real φ4 theory has a discrete Z2-symmetry that can be spontaneously

broken [2]. The critical coupling, which separates two phases, has been studied by various

approaches with and without lattice simulations [2–26]. While many Monte Carlo studies

have been carried out, there are several studies using deterministic schemes such as matrix

product state (MPS), Hamiltonian truncation methods, and Borel resummation. In both

directions, the thermodynamic limit is important to seriously study the critical phenomena.

The tensor renormalization group (TRG) [27] enables us to take the thermodynamic

limit easily: the computational cost of the TRG depends on the space-time volume logarith-

mically while that of the Monte Carlo methods is proportional to the volume. Furthermore,

the TRG method does not contain any stochastic procedure to evaluate physical quantities.

Then, using the TRG, we can observe precisely the symmetry breaking effects with larger

volumes avoiding statistical uncertainties.

Since the TRG was originally proposed for the two dimensional Ising model, several

improved algorithms [28–30] and extensions to fermion systems [31, 32] have been devel-

oped. Those techniques are introduced into the path-integral formulation of the field theory
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and many studies have been carried out [33–45].1 It is, however, not straightforward to

apply the TRG to lattice scalar theories because the indices of tensor are essentially the

field variables so that their dimension is infinite unlike the Ising case.2

An attempt to construct a tensor network (TN) in scalar field theory was made in

ref. [47], where an orthogonal function expansion was employed to define a finite dimen-

sional tensor. It, however, suffers from unavoidable loss of significance through its numerical

procedure. To overcome this difficulty, the authors have recently proposed another formu-

lation in which the Gaussian quadrature formula is used to discretize the field variables [48].

Although such a simple discretization of continuous variables has already been attempted

in creating transfer matrices [49–54], we use it to represent the partition function as a ten-

sor network in two dimensional system in ref. [48]. The effectiveness of our formulation has

been confirmed only in a non-interacting system. In the current paper, with studying the

critical phenomena, we also aim to establish our TN formulation for an interacting case.

In this paper we determine the critical coupling of the two dimensional lattice φ4 theory

employing the TRG method with our TN formulation. The critical coupling is determined

from the power law behavior of the susceptibility for the expectation value of the scalar

field near the critical point. We extrapolate the critical coupling to the continuum limit and

compare it to other recent results obtained by different approaches [16, 17, 20, 26]. We also

make some analyses to estimate the magnitude of systematic error from the discretization

of the field variables.

This paper is organized as follows. We present the two dimensional continuum and

lattice φ4 theories to fix our notation in section 2. A TN formulation of the expectation

value of the scalar field is given in section 3. In section 4, numerical results are presented.

Some details of our method and systematic errors are discussed in section 4.1. The results of

susceptibility are then presented in section 4.2, and the critical couplings at several lattice

spacings are listed in table 1 of section 4.3. We show the final result of the critical coupling

in the continuum limit in section 4.4. Section 5 is devoted to summary and discussion. In

appendix A the coarse-graining algorithm of TN with an impurity tensor is explained. The

systematic error originated from the Gaussian quadrature is discussed in appendix B.

2 Two dimensional φ4 theory

The Euclidean continuum action of the two dimensional real φ4 theory is defined as

Scont. =

∫
d2x

1

2

2∑
ρ=1

(∂ρφ (x))2 +
µ2

0

2
φ (x)2 +

λ

4
φ (x)4

 (2.1)

with a real scalar field φ (x) ∈ R, the bare mass µ0, and the quartic coupling constant

λ > 0. This theory is super renormalizable. The mass renormalization is required only

1Separately from the path-integral formulation employed in this paper, Hamiltonian based approaches

also show a remarkable developments; for the detail see a recent review given in ref. [46].
2In lattice gauge theories, one can use the character expansion with a truncation to construct a finite

dimensional tensor.
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at one-loop level while the renormalization of the coupling constant is not necessary to all

orders of perturbation theory. The suffix zero is used to indicate that the mass is a bare

parameter and to be renormalized.

This model has the Z2-symmetry (φ → −φ) classically, but it may be spontaneously

broken at a quantum level. The expectation value of the scalar field 〈φ (x)〉, which does

not actually depend on the coordinate x from the translational invariance, is an order

parameter of the symmetry breaking: 〈φ (x)〉 = 0 for the symmetric phase and 〈φ (x)〉 6= 0

for the symmetry broken phase.

The dimensionful coupling λ gives a typical scale of this model while a dimension-

less coupling

κ =
λ

µ2
(2.2)

characterizes its physical behavior, where µ is the renormalized mass. At the tree level,

two phases and the sign of κ0 = λ/µ2
0 are in one-to-one correspondence, and the critical

point is κ0,c = 0. The negative one corresponds to the broken phase. However, the critical

point can change with the quantum corrections. The lattice simulations play a crucial role

to determine the renormalized critical point κc beyond the perturbation theory.

Let us define the lattice theory on a square lattice

ΓL = { (n1, n2) | n1, n2 = 1, 2, . . . , L } , (2.3)

where a positive integer L is the lattice size. The lattice spacing a is assumed to be a = 1,

and we suppress it unless necessary. We label the lattice site (n1, n2) simply as n. The

lattice scalar field φn is defined on the site n and satisfies the periodic boundary conditions,

φn+ρ̂L = φn for ρ = 1, 2, (2.4)

where ρ̂ is the unit vector of the ρ-direction. The lattice action is given by

S =
∑
n∈ΓL

{
1

2

2∑
ρ=1

(φn+ρ̂ − φn)2 +
µ2

0

2
φ2
n +

λ

4
φ4
n

}
. (2.5)

Note that µ0 and λ are dimensionless quantities written as a2µ2
0 and a2λ, respectively.

The mass renormalization can be calculated by the lattice perturbation theory. We

employ the same renormalization condition as in refs. [2, 16]. The renormalized mass µ is

defined as

µ2 = µ2
0 + 3λA

(
µ2
)

(2.6)

with

A
(
µ2
)

=
1

L2

L∑
k1=1

L∑
k2=1

1

µ2 + 4 sin2 (πk1/L) + 4 sin2 (πk2/L)
, (2.7)

which is the one-loop self energy. We use eq. (2.6) to determine the renormalized critical

coupling in later section.
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3 Tensor network formulation for two dimensional lattice φ4 theory

The expectation value of the scalar field can be expressed as a TN form. We present the

detailed procedure following our previous work [48].

We begin with the partition function

Z =

∫
Dφ e−Sh (3.1)

with
∫
Dφ ≡

∏
n∈ΓL

∫∞
−∞ dφn. The action Sh is given by

Sh = S − h
∑
n∈ΓL

φn, (3.2)

where a constant external field h is introduced to investigate the phase transition taking

h→ 0 after L→∞.

The Boltzmann weight can be expressed as a product of local factors,

e−Sh =
∏
n∈ΓL

2∏
ρ=1

f (φn, φn+ρ̂) , (3.3)

where

f (φ1, φ2) = exp

{
−1

2
(φ1 − φ2)2 − µ2

0

8

(
φ2

1 + φ2
2

)
− λ

16

(
φ4

1 + φ4
2

)
+
h

4
(φ1 + φ2)

}
. (3.4)

The function f (φ1, φ2) is a symmetric matrix with the continuous indices φ1, φ2 ∈ R, and

the continuity makes numerical treatments hard.

To define a finite dimensional tensor, we use the Gauss-Hermite quadrature formula, in

which the integral of a target function g (x) with the weight function e−x
2

is approximated

by a discrete sum as ∫ ∞
−∞

dye−y
2
g (y) ≈

K∑
α=1

wαg (yα) , (3.5)

where yα (α = 1, 2, . . . ,K) is the α-th root of the K-th Hermite polynomial HK (y) and wα
is the associated weight.3 K is the order of approximation. If g (x) is a polynomial function

with the degree of 2K − 1 or less, the Gauss-Hermite quadrature is known to reproduce

the exact result. For general functions, the convergence of the Gauss-Hermite quadrature

is not obvious, and in this paper we numerically check it for our particular case.

By replacing each integral in eq. (3.1) by eq. (3.5) and using eq. (3.3), we obtain a

discretized version of the partition function

Z (K) =
∑
{α}

∏
n∈ΓL

wαn exp
(
y2
αn

) 2∏
ρ=1

f
(
yαn , yαn+ρ̂

)
, (3.6)

3The n-th Hermite polynomial is defined by Hn (x) = (−1)n exp
(
x2

)
(dn/dxn) exp

(
−x2

)
. The root

yα and weight wα of the n-point Gauss-Hermite quadrature are given by Hn (yα) = 0 and wα =

2n−1n!
√
π/(n2Hn−1 (yα)2). See ref. [55] for the detail.
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where
∑
{α} ≡

∏
n∈ΓL

∑K
αn=1. Since f is regarded as a K ×K matrix Mαβ ≡ f (yα, yβ), it

can be decomposed by the singular value decomposition (SVD) as 4

f (yα, yβ) =

K∑
i=1

UαiσiV
†
iβ , (3.7)

where σi are the singular values sorted as σ1 ≥ σ2 ≥ · · · ≥ σK ≥ 0 and U, V are uni-

tary matrices. The range of the summation in eq. (3.7) will be truncated to reduce the

computational cost later. To this end, we used the SVD here. Finally we have

Z (K) =
∑
{x,t}

∏
n∈ΓL

T (K)xntnxn−1̂tn−2̂
(3.8)

with

T (K)ijkl =
√
σiσjσkσl

K∑
α=1

wαe
y2αUαiUαjV

†
kαV

†
lα, (3.9)

where
∑
{x,t} ≡

∏
n∈ΓL

∑K
xn=1

∑K
tn=1.

Now let us turn to the expectation value of φ,

〈φn〉 =
Z1

Z
, (3.10)

where

Z1 =

∫
Dφ φn e−Sh . (3.11)

Since Z is already expressed as a uniform TN as shown in eq. (3.8), the remaining task is

to represent the numerator Z1 as a TN. The insertion of the operator φn in eq. (3.11) yields

T̃ (K)ijkl =
√
σiσjσkσl

K∑
α=1

yαwαe
y2αUαiUαjV

†
kαV

†
lα, (3.12)

where an extra yα is inserted compared to eq. (3.9). The modified tensor T̃ . is referred to

as impurity tensor. Repeating the same procedures as for the partition function, we obtain

the following TN form:

Z1 (K) =
∑
{x,t}

T̃ (K)xntnxn−1̂tn−2̂

∏
m∈ΓL,m 6=n

T (K)xmtmxm−1̂tm−2̂
, (3.13)

in which one of T s in eq. (3.9) is replaced by the impurity tensor T̃ .

The contraction of tensor indices in eq. (3.8) is exactly taken from 1 to K. In actual

computations, we initially truncate the bond dimension from K to D on account of com-

putational complexity; namely we redefine
∑
{x,t} as

∏
n∈ΓL

∑D
xn=1

∑D
tn=1, and then the

4The Takagi factorization is also available since Mαβ is a square symmetric matrix. Then we can

take V † = UT.
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partition function in eq. (3.8) is initially approximated. In TRG, renormalized tensors have

a truncated bond dimension D′ as a tunable parameter. In this study we set D′ = D.5

Now we have two parameters to control the accuracy of the approximations, the degree of

the Gauss-Hermite quadrature K and the size of tensors D, and we will check the stability

of numerical results with respect to D and K in appendix B.

4 Numerical results

In this section the numerical results are shown step by step. First, the technical details

related to the Gauss-Hermite quadrature and the TRG are summarized in section 4.1. In

section 4.2 the susceptibility of 〈φ〉 in the thermodynamic limit is evaluated. Using the

susceptibility we determine the critical parameters in section 4.3, and in section 4.4 we

take the limit λ→ 0 to obtain the critical coupling in the continuum limit.

4.1 Methods

The expectation value 〈φ〉 is obtained by the ratio of Z (K) and Z1 (K) shown as eq. (3.10),

which are individually evaluated by the TRG method with the truncated bond dimension

D ∈ [16, 64]. One can use the standard technique for computing Z (K) in eq. (3.8) and

needs a little ingenuity for Z1 (K) in eq. (3.13). The coarse-graining procedure of the

tensor network with an impurity tensor is shown in refs. [37, 47, 56, 57], and the detailed

technique is also described in appendix A.

We remark that the systematic errors can be estimated by investigating the K- and

D-dependences of the numerical results. There are three sources of systematic errors in

the present case: (a) the discretization of the scalar fields with the K-point Gauss-Hermite

quadrature, (b) the truncation of the bond dimension of the initial tensor discussed in the

last paragraph in section 3, and (c) the truncation in coarse-graining steps of TRG. The

effect of (a) is appeared as K-dependence of the results while the errors from (b) and (c)

are observed through the D-dependence of the results.

In figure 1 we plot the singular values of the SVD in eq. (3.7). The values of µ0

are chosen near the criticality for a given λ. A clear hierarchy of the singular values

assures that the modification of contraction range that is explained at the end of the last

section effectively work. We fix K = 256 that is large enough so that the systematic errors

associated with the choice of K are to be smaller than those of D as discussed in appendix B.

In section 4.3 we investigate the D-dependence of the critical coupling λ/µ2
c and estimate

the systematic errors by measuring small fluctuations which occur when D changes.

4.2 Susceptibility

The critical point is given by the peak position of the susceptibility for 〈φ〉 defined by

χ = lim
h→0

lim
L→∞

〈φ〉h,L − 〈φ〉0,L
h

, (4.1)

5See appendix A for more details.
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σ
i/σ

1

number of singular value, i

µ0
2
=-0.1841626, λ=1.0

µ0
2
=-0.1006174, λ=0.5

µ0
2
=-0.06635522, λ=0.0312

µ0
2
=-0.02395010, λ=0.01

µ0
2
=-0.01280510, λ=0.005

Figure 1. Singular values of the SVD in eq. (3.7), which is used to define the initial tensor in

eq. (3.9).

where 〈φ〉h,L denotes the expectation value measured for a given constant external field

h and lattice size L.6 Equation (4.1) is reduced to χ = limh→0 limL→∞ 〈φ〉h,L /h since

〈φ〉0,L = 0. It is rather complicated procedure to take the double limits with respect

to h and L numerically. We first find a constant behavior of 〈φ〉h,L /h as L increases,

which effectively represents 〈φ〉h,∞ /h. Then, χ is obtained as a converged value of 〈φ〉h,∞
taking h→ 0.

In figure 2 we show 〈φ〉h,L /h as a function of L for several values of h. One can see

that it becomes a constant for larger volumes L ≥ 106, which effectively corresponds to the

thermodynamic limit within the systematic errors.7 〈φ〉h,∞ /h is thus obtained for several

small values of the external field h. As a representative case we choose D = 32, λ = 0.05

and, µ2
0 = µ2

0,rep. with

µ2
0,rep. = −0.1006174, (4.2)

in the symmetric phase very close to the critical point: 1 − µ2
0,rep./µ

2
0,c ≈ 10−5.

Figure 3 shows the h-dependence of 〈φ〉h,∞ /h with the same parameter set as in

figure 2. It seems to converge to a constant for sufficiently small h ≤ 10−11. Figure 4

shows a zoomed version of figure 3, and there the values of 〈φ〉h,∞ /h lie on a quadratic

function. This is because 〈φ〉h,∞ is an odd function of h as a consequence of the Z2

6One can evaluate the susceptibility also by differentiating the free energy twice with respect to h

numerically, but it may suffer from a loss of significant digits. Since 〈φ〉 is obtained as a direct output of

the TRG, we use eq. (4.1) to avoid such a problem.
7For sufficiently large L, 〈φ〉h,L /h is not exactly a constant but behaves as a constant within small

fluctuations which basically come from the effects of finite K and D.
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Figure 2. Thermodynamic limit of 〈φ〉h,L /h with µ2
0 = µ2

0,rep., λ = 0.05, D = 32.

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e-12 1e-10 1e-08 1e-06 1e-04 1e-02

<
φ
>

/h

h

Figure 3. 〈φ〉h,∞ /h as a function of h with the same parameters as in figure 2.

symmetry and 〈φ〉h,∞ /h = c0 + c2h
2 + · · · for h � 1 with coefficients ci (i = 0, 2, . . .).

Then we simply fit them using a quadratic function to determine χ, and its error is defined

as the difference between the obtained susceptibility and 〈φ〉h,∞ /h at h = 10−11.8

8This error will propagate to the next analysis, and in the end it will become that of λ/µ2
c for given

λ. The propagated error, however, does not affect the final result because it is very small compared to a

fluctuation originated from D as shown in figure 6.
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Figure 4. Closer look on 〈φ〉h,∞ /h in figure 3.

Similar behaviors are observed for other parameter sets employed in this work (see

table 1). We obtain the susceptibility for all the parameter sets taking the same procedure

as here.

4.3 Critical mass for each λ

The scaling behavior of χ near the critical point in the symmetric phase is given by

χ = A
∣∣µ2

0,c − µ2
0

∣∣−γ (4.3)

with the critical bare mass µ0,c, the critical exponent γ, and a constant A. This formula

can be used to determine µ0,c by fitting the numerical result of χ. It is useful to express

eq. (4.3) as

χ−1/γIsing = A′
∣∣µ2

0,c − µ2
0

∣∣γ/γIsing . (4.4)

The φ4 theory is expected to belong to the universality class of the two dimensional Ising

model, whose critical exponent is exactly known to be γIsing = 7/4 = 1.75 [58]. Equa-

tion (4.4) could make it easier to check the consistency between γ and γIsing because

χ−1/γIsing is linear in µ2
0 if γ = γIsing.

Figure 5 shows χ−1/γIsing as a function of µ2
0 at λ = 0.05 and D = 32. It is clear that

the results are on a straight line which implies γ = γIsing. We determine the values of

µ2
0,c by fitting the susceptibility using the expression of eq. (4.4) with µ2

0,c and A′ as free

parameters and fixed γ = γIsing.

The bare critical mass µ2
0,c for another value of λ is obtained by repeating the pro-

cedures above.9 Then the renormalized critical mass µ2
c is determined by solving the

self-consistent equation (2.6) using µ2
0,c and λ as inputs.

9In this context the critical mass is regarded as a function of λ. To emphasize this we do not hide the

argument λ in eq. (4.5). Note that the critical mass also depends on D as shown in table 1, but we extract

the D-independent ones to take the continuum limit as discussed in the last of this section.
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4e-06
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6e-06

-0.1006180 -0.1006176 -0.1006172 -0.1006168

χ
-1

/1
.7

5

µ0

2

Figure 5. χ−1/1.75 as a function of µ2
0 at λ = 0.05 and D = 32.

Table 1 summarizes the results of µ2
0,c obtained for 0.005 ≤ λ ≤ 0.1 and 16 ≤ D ≤ 64.

We also present the dimensionless critical coupling λ/µ2
c . Since χ2/d.o.f. ≤ 1 for all λ

and D, the linear fittings with fixing γ = γIsing are reasonable. The critical bare mass

µ2
0,c monotonically decreases as λ approaches zero while it does not show any smooth

dependence on D at each λ.

In figure 6 we plot the D-dependence of λ/µ2
c for λ = 0.05. In the large D region λ/µ2

c

converges to a value while oscillating. This kind of behavior is also observed in the TRG

computations of other models such as the Ising and the Potts models [59]. As also shown

in figure 6 we determine the central value of λ/µ2
c as an average between the maximum

and minimum values in the oscillating region. The error is estimated using the half width

of the oscillation. Although the critical coupling for each D has a rather small systematic

error as given in table 1, its magnitude is negligible compared to the fluctuation of the

critical coupling with the variation of D. Thus, we present the results of the renormalized

critical coupling λ/µ2
c only with the systematic errors associated with D.

4.4 Continuum limit of the critical coupling

We finally obtain the value of the critical coupling in the continuum limit as[
λ

µ2
c

]
cont.

= lim
λ→0

λ

µ2
c (λ)

. (4.5)

Note that the continuum limit is understood as a2λ→ 0.

Figure 7 shows the λ-dependence of the critical coupling with the systematic errors.

Let us take the continuum limit (λ→ 0) of eq. (4.5) by a linear extrapolation. The result

of the linear fit for λ ≤ 0.05 shown in the figure gives a reasonable chi-squared value:
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λ D µ2
0,c λ/µ2

c χ2/d.o.f.

0.1 32 −0.184163558(16) 10.5143879(52) 0.0019

0.1 36 −0.184317627(22) 10.5628049(70) 0.021

0.1 40 −0.184352147(32) 10.573692(10) 0.0015

0.1 44 −0.184356707(34) 10.575132(10) 0.0049

0.1 46 −0.184357220(35) 10.575293(11) 0.0031

0.1 48 −0.184323247(40) 10.564577(12) 0.0017

0.1 52 −0.184305955(40) 10.559127(12) 0.044

0.1 56 −0.184344222(33) 10.571191(10) 0.037

0.05 32 −0.1006180444(70) 10.6517781(44) 0.0072

0.05 36 −0.100671024(11) 10.6856832(74) 0.087

0.05 38 −0.100737125(13) 10.7281795(89) 0.08

0.05 40 −0.100758319(14) 10.7418512(95) 0.0051

0.05 42 −0.1007510328(81) 10.7371484(52) 0.87

0.05 44 −0.100729217(17) 10.723084(11) 0.17

0.05 48 −0.100714173(18) 10.713399(11) 0.015

0.05 52 −0.100694733(14) 10.7009008(96) 0.35

0.05 54 −0.100702523(54) 10.705907(35) 0.018

0.05 56 −0.100708214(17) 10.709566(11) 0.02

0.05 60 −0.100714918(53) 10.713879(34) 0.8

0.05 64 −0.100733523(19) 10.725858(12) 0.0078

0.0312 32 −0.066355403(12) 10.698476(12) 0.25

0.0312 36 −0.066424884(14) 10.770365(14) 0.55

0.0312 40 −0.066451867(14) 10.798450(15) 0.57

0.0312 44 −0.066469304(10) 10.816649(10) 0.11

0.0312 48 −0.066440457(12) 10.786563(13) 0.082

0.0312 52 −0.0664157556(89) 10.7608852(92) 0.16

0.0312 56 −0.066434790(23) 10.780665(24) 0.76

0.01 32 −0.0239502718(48) 10.575644(15) 0.33

0.01 36 −0.0240350323(49) 10.848845(16) 0.49

0.01 40 −0.0240490620(57) 10.894934(18) 0.26

0.01 44 −0.0240668834(51) 10.953841(16) 0.84

0.01 48 −0.0240397741(63) 10.864395(20) 0.0051

0.01 52 −0.024025540(25) 10.817802(84) 0.0081

0.01 56 −0.0240288600(74) 10.828648(24) 0.42

0.005 36 −0.0128280765(46) 10.735394(29) 0.4

0.005 40 −0.0128621903(37) 10.958938(25) 0.15

0.005 42 −0.0128734615(84) 11.034101(56) 0.012

0.005 44 −0.0128536408(33) 10.902359(21) 0.49

0.005 48 −0.0128508376(42) 10.883889(27) 0.37

0.005 52 −0.012841211(17) 10.82077(11) 0.013

0.005 56 −0.0128303006(66) 10.749790(43) 0.28

0.005 60 −0.0128349426(48) 10.779915(31) 0.0065

Table 1. Bare critical mass µ2
0,c, renormalized critical coupling λ/µ2

c , and χ2/d.o.f. of the linear

fitting described in the main body of the text for given λ and D. Errors are originated from that

of the susceptibility as explained in section 4.2.
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Figure 6. D-dependence of λ/µ2
c for λ = 0.05. The error estimated from the fluctuation is also

shown as the colored band.

χ2/d.o.f. ≈ 0.026. The critical coupling in the continuum limit is found to be[
λ

µ2
c

]
cont.

= 10.913(56) (4.6)

with the systematic error from the D-dependence in the TRG.

Figure 8 shows a comparison among our result and the recent Monte Carlo results in

refs. [16, 17, 20, 26] for small λ.10 We have reached the smallest lattice spacing: λ = 0.005.

The error bar is relatively large compared to the latest Monte Carlo result around λ ≈ 0.01.

However, such a direct comparison about the efficiency cannot be made because the strategy

used in this paper is rather different from that of the worm algorithm. References [20, 26]

employ the condition L/ξ = const. with the lattice extent L and the correlation length ξ to

search the critical coupling. This condition implies that ξ grows linearly with L, so that we

arrive at the critical point when L/a→∞ with the lattice spacing a. But what they have

done is fixing the maximum value of L/a to 384 or 512 for all the calculation at different

lattice spacings. In this case a longer extrapolation to the critical coupling is required

towards the continuum limit, and the finite size corrections could contaminate the results

more severely. Actually, figure 8 shows that the results of ref. [20] agree well with thoese of

ref. [16] at the coarser lattice spacing while they become systematically deviated towards

the continuum limit. Although further studies are thus needed for a direct comparison, the

final results seem to be roughly consistent with each other.

10The previous result by the MPS [18] is also remarkable. In this section, however, we just draw the

reader’s attention to the paper and do not compare the numerical values since, in their method, the time

direction in space-time is not discretized; i.e. their set up is slightly different from ours.
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-3.9(1.3) λ + 10.913(56)

Figure 7. Extrapolation of λ/µ2
c to the continuum limit λ → 0. The line represents the result of

the linear extrapolation with χ2/d.o.f. ≈ 0.026.
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11.2
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11.6

 0  0.02  0.04  0.06  0.08  0.1

λ
/µ

c
2

λ

Schaich and Loinaz: cluster (2009)
Wozar and Wipf: with SLAC derivative (2012)
Bosetti et al.: worm (2015)
Bronzin et al.: worm with gradient flow (2018)
This work

Figure 8. Comparison of the continuum extrapolations of the critical coupling λ/µ2
c given in recent

Monte Carlo studies (Schaich and Loinaz [16], Wozar and Wipf [17], Bosetti et al. [20], and Bronzin

et al. [26]) and this work. At λ = 0, data points are horizontally shifted to ensure the visibility.

Note that the results by Wozar and Wipf cannot be compared at non-zero λ since they used the

SLAC derivative for scalar bosons, but, in the continuum limit (λ = 0), their results are consistent

with naively discretized ones within errors.
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5 Summary and outlook

We have studied the two dimensional lattice φ4 theory using the TRG with our new formu-

lation of making a finite dimensional tensor for scalar field theories given in ref. [48]. The

TRG method, whose computational cost depends on the space-time volume logarithmically,

allows us to access to large volume lattices so that the thermodynamic limit and the power

law behavior of the susceptibility can be precisely studied. This work is the first study to

determine the critical coupling in the continuum limit employing the TRG method.

The dimensionless critical coupling was obtained as[
λ

µ2
c

]
cont.

= 10.913(56) (5.1)

with sufficiently small error albeit the simplest form of the TRG is employed. The error

is the systematic one coming from the finite D effects. Our result shows a reasonable

consistency with the recent results obtained by different approaches.

The simplest TRG algorithm suffers from the growth of the systematic errors around

the criticality. Alternative coarse-graining procedures such as the tensor network renor-

malization (TNR) [29] and loop-TNR [30] might be useful to obtain more precise results.

These methods effectively work around the critical point and, in principle, are applicable to

any two dimensional model irrespective of the field contents. The fact that the discretiza-

tion of scalar fields does not ruin the effectiveness of the TRG approach would encourage

further studies using the improved algorithms, and we could expect further improvements

for the accuracy of the critical coupling.

A Coarse-graining of tensor network including impurity tensors

We describe the coarse-graining algorithm for a tensor network with an impurity tensor

such as Z1 (K) in eq. (3.13), which is given with a fixed integer D for truncating the SVD.

Before discussing the nonuniform case, we first explain the coarse-graining of a uniform

network such as Z (K) in eq. (3.8) without impurity tensors. The graphical representation

of a coarse-graining step is given in figure 9. Firstly, by using the SVD, the tensor T with

the bond dimension N is decomposed in two ways:

Tijkl = M
[13]
(ij)(kl) =

N2∑
m=1

S
[1]
(ij)mσ

[13]
m S

[3]
m(kl), (A.1)

Tijkl = M
[24]
(li)(jk) =

N2∑
m=1

S
[2]
(li)mσ

[24]
m S

[4]
m(jk), (A.2)

where M [13] and M [24] (N2×N2 matrices) are obtained by arranging the indices of T , σ[13]

and σ[24] are the singular values in the descending order, and S[i] (i = 1, 2, 3, 4) denotes

the singular matrix. We actually apply eq. (A.1) to the tensors on even sites and eq. (A.2)

to ones on odd sites.
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Figure 9. Coarse-graining step for uniform TN. Circles represent tensors, and closed indices are

contracted. A local block on the network is taken into account here. In the first step, every rank-

four tensor is decomposed into two rank-three tensors. By contracting the four rank-three tensors,

a new rank-four tensor is obtained in the second step. Here, decomposed tensors with tilde are

defined by S̃[1(3)] =
√
σ[13]S[1(3)] and S̃[2(4)] =

√
σ[24]S[2(4)].

The decompositions are approximated by restricting the range of the summation for

the new index m as 1 ≤ m ≤ D,11

Tijkl ≈
D∑

m=1

S
[1]
(ij)mσ

[13]
m S

[3]
m(kl), (A.3)

Tijkl ≈
D∑

m=1

S
[2]
(li)mσ

[24]
m S

[4]
m(jk), (A.4)

and the following coarse-grained tensor is obtained:

T new
ijkl =

√
σ

[13]
i σ

[24]
j σ

[13]
k σ

[24]
l

N∑
a,b,c,d=1

S
[3]
i(cd)S

[4]
j(da)S

[1]
(cd)kS

[2]
(bc)l. (A.5)

In the first few steps in the TRG, N2 might not be larger than D. In this case D is replaced

by N2 for N2 < D.12 Note that the coarse-grained tensor T new is defined by gathering S[i]

(i = 1, 2, 3, 4) and its bond dimension is at most D. One can see that the tensor network

of T is approximately expressed as a coarse network of T new.

The number of tensors decreases at each coarse-graining step since T provides two S’s

while T new is made of four S’s. Repeating the procedure above over and over again, we

finally find that the network is expressed as a single tensor whose indices are contracted

with itself. The value of the tensor network is thus obtained.

Now let us turn to the coarse-graining of the tensor network with an impurity tensor.

As explained below, an important point is that the number of impurity tensors does not

increase beyond four (the impurity tensors are located in four corners of a plaquette) even

if the coarse-graining step is repeated many times.

Suppose we consider a coarse-graining procedure for the tensor network with four

impurity tensors as shown in figure 10 (left), where the impurity tensors are represented

11Of course one can arbitrarily choose the truncation order of the new index at each coarse-grained step.

In this paper, however, we keep it to D for simplicity. This choice is convenient in actual computations

because the bond dimension of the tensor does not change in every coarse-graining step.
12In the case of N2 < D, eqs. (A.3) and (A.4) are not approximations but the same as eqs. (A.1) and (A.2),

respectively.

– 15 –



J
H
E
P
0
5
(
2
0
1
9
)
1
8
4

Figure 10. Coarse-graining of TN with four impurity tensors. Red, orange, yellow, and green

circles denote the impurity tensors, and the normal tensors are shown by blue ones. Note that the

impurity tensors colored in red, orange, yellow, and green are inherited in both decomposition and

contraction processes. A key point is that the number of impurity tensors does not change through

the coarse-graining.

as the red, orange, yellow, and green circles while the normal tensors are given by the blue

circles. In the first step, the rank-four tensors are decomposed into rank-three tensors. As

seen in the middle panel in figure 10, those rank-three impurity tensors form a closed loop.

Thanks to this structure, after taking the contraction, one obtains a network which again

contains only four impurity tensors as shown in the right panel in figure 10. In this way,

one can suppress the spread of the impurity tensors.

Starting from a tensor network with a single impurity tensor such as eq. (3.13), one

obtains a network with two neighboring impurity tensors after a course-graining step. In

the next step it is coarse-grained to yield a network with three impurity tensors located

on three corners of a plaquette. In this way, the number of impurity tensors stepwisely

increases until it reaches four. After that, as shown above, the number of impurity tensors

does not change anymore.

B Systematic error from discretization of scalar fields

As shown in section 3 we discretize the scalar fields using the Gauss-Hermite quadrature

in order to create a finite dimensional tensor, which gives the approximated expressions for

the partition function and expectation values. The order of approximation is characterized

by the degree of the Hermite polynomial K. In this appendix we discuss the systematic

error associated with the approximation, namely the finite K-effect, for Z and 〈φ〉.13

For an one dimensional integral in eq. (3.5), the Gauss-Hermite quadrature gives an

exact result when g (x) is a 2K − 1 degree (or less) polynomial function. In the case of

multi dimensional integrals, unfortunately, the convergence is not trivial. We have to check

whether or not the numerical results do not have large systematic errors from the finite

K-effect with K = 256, which is employed in this study.

In figure 11 the K-dependence of 〈φ〉 is presented. It is clear that the results do not

depend on K for K ∈ [64, 256] while much larger D-dependence is observed. Thus we can

13In ref. [48] we also checked the K-dependence of the free energy in the free boson system (with the

Wilson term), and the reader can refer to the paper for more discussion.
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Figure 11. K-dependence of 〈φ〉 at µ2
0 = µ2

0,rep. (see eq. (4.2)), λ = 0.05, h = 10−12, and L = 1024.
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Figure 12. D-dependence of lnZ at µ2
0 = µ2

0,rep., λ = 0.05, h = 10−12, K = 256, and L = 1024.

conclude that our choice K = 256 is large enough, and the main source of systematic errors

is the truncation of the SVD for constructing the initial tensor and the coarse-graining steps

in the TRG.

Here we also show the D-dependence of lnZ and 〈φ〉 in figures 12 and 13. Although

lnZ shows a good convergence, 〈φ〉 is relatively not stable. However, in the large D region

(D ∈ [32, 64]), the results seem to be in a fluctuation region, and we set the range of D to

[32, 64] in section 4.
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