
J
H
E
P
0
5
(
2
0
1
9
)
1
7
4

Published for SISSA by Springer

Received: November 6, 2018

Revised: April 2, 2019

Accepted: May 8, 2019

Published: May 27, 2019

Production and backreaction of spin-2 particles of

SU(2) gauge field during inflation

A. Maleknejada and E. Komatsua,b

aMax-Planck-Institute for Astrophysics,

Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
bKavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI),

UTIAS, The University of Tokyo,

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

E-mail: amalek@MPA-Garching.MPG.DE, komatsu@MPA-Garching.MPG.DE

Abstract: Primordial SU(2) gauge fields with an isotropic background lead to the pro-

duction of spin-2 particles during inflation. We provide a unified formalism to compute this

effect in all of the inflation models with isotropic SU(2) gauge fields such as Gauge-flation

and Chromo-Natural inflation with and without spectator axion fields or the mass of the

gauge field from the Higgs mechanism. First, we calculate the number and energy densities

of the spin-2 particles. We then obtain exact analytical formulae for their backreaction on

the background equations of motion of SU(2) and axion fields in (quasi) de Sitter expan-

sion, which were calculated only numerically for one particular model in the literature. We

show that the backreaction is directly related to the number density of the spin-2 field.

Second, we relate the number density of the spin-2 particles to the power spectrum and

the energy density of the gravitational waves sourced by them. Finally, we use the size of

the backreaction to constrain the parameter space of the models. We find that the tensor-

to-scalar ratio of the sourced gravitational waves can at most be on the order of that of

the vacuum contribution to avoid a large backreaction on slow-roll dynamics of the gauge

and axion fields in quasi-de Sitter expansion.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM, CP violation

ArXiv ePrint: 1808.09076

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2019)174

mailto:amalek@MPA-Garching.MPG.DE
mailto:komatsu@MPA-Garching.MPG.DE
https://arxiv.org/abs/1808.09076
https://doi.org/10.1007/JHEP05(2019)174


J
H
E
P
0
5
(
2
0
1
9
)
1
7
4

Contents

1 Introduction 1

2 Review of theory 3

2.1 Tensor perturbations 6

3 Spin-2 Schwinger-type particle production 9

4 Backreaction 14

4.1 Induced current and backreaction 15

4.2 Energy density of spin-2 fields 17

5 Gravitational waves 19

6 Constraints on the parameter space 21

6.1 Parameter space of massless models 23

7 Conclusion 27

A Symmetry of the VEV SU(2) field 28

B Transverse-traceless field 29

B.1 (pseudo) spin-2 in perturbed SU(2) field? 30

C Mathematical supplement 31

D Computation of the induced currents 33

D.1 Regularized current 38

D.2 Energy density 40

E Sourced graviational waves 41

1 Introduction

Inflation [1–4] with SU(2) gauge fields [5–8] has a rich phenomenology that is not shared

by canonical single-scalar-field inflation models (see [9] for a review). As was first discov-

ered by one of the authors (A.M.), when the conformal symmetry of Yang-Mills theory is

broken by an effective (FF̃ )2 term in the Lagrangian, non-Abelian gauge fields acquire an

isotropic and homogeneous background (vacuum expectation value; VEV) solution during

inflation [5, 6]. This VEV produces a copious amount of spin-2 particles which, in turn,

linearly mix with tensor perturbations in the metric, i.e., gravitational waves. The same
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phenomenology is obtained when the conformal symmetry is broken by a Chern-Simons

interaction with an axion field ϕFF̃ [7, 8].

In addition to the original models,1 there are several more inflationary models with

the SU(2) VEV which share the above features [11–16]. Despite differences in details of the

models, their tensor sector can be presented in a unified manner. As the sourced tensor

power spectrum is proportional to the density parameter of the gauge field during inflation,

these models violate the Lyth bound [17, 18]. Depending on the details of the slow-roll

dynamics of the gauge field VEV, e.g., a form of the axion potential, the tensor spectral

index nT can be negative or positive, and thus violates the conventional consistency rela-

tion of single-field slow-roll inflation, nT = −r/8. Moreover, parity-violating interactions

in linear perturbations make this spin-2 field chiral and hence generate observable circu-

larly polarized gravitational waves as well as parity-odd correlations of cosmic microwave

background (CMB) anisotropies, i.e., non-zero TB and EB [19]. Due to self-interactions

of gauge fields, the gravitational waves can be highly non-Gaussian, yielding a large tensor

bispectrum with approximately an equilateral shape [20–22]. Finally, chiral gravitational

waves can generate baryon asymmetry via a gravitational anomaly [13, 23–25], and can

serve as a natural leptogenesis mechanism during inflation to explain the observed baryon

asymmetry in the Universe.

All of these signatures are robust consequences of having gauge fields during inflation

and carry important information about the matter content of the early universe. The

stochastic background of gravitational waves can be within reach of future CMB exper-

iments [26–28], and that of nT > 0 can be within reach of future gravitational wave

interferometers [13, 19, 29]. As none of these features exists in canonical single-scalar-field

inflation models, we can use them to distinguish the particle physics models of inflation.

For example, these models could be embedded in supergravity [30] and string theory [31].

In this paper, we take a closer look at the phenomenology of the spin-2 particles

generated from SU(2) gauge fields. Particularly significant is the backreaction of spin-2

particles on the background equations of motion of the gauge and axion fields, as it could

spoil significant properties of inflation with SU(2) gauge fields. We also gain better insights

into the power spectrum and energy density of primordial gravitational waves by relating

them to the number density of the spin-2 particles.

This paper is organized as follows. In section 2, we briefly review the existing models

of inflation with an SU(2) gauge field in a unified approach. We study the spin-2 particle

production in section 3. In section 4, we compute the backreaction of this spin-2 field on

the background field equations. We then relate the power spectrum and energy density of

the sourced gravitational waves to the number density of the spin-2 particles in section 5.

In section 6, we use the size of the backreaction to constrain the parameter space of the

models. Finally, we conclude in 7. In appendix A, we discuss the symmetry structure of the

background SU(2) gauge field. In appendix B, first, we discuss the action of the transverse-

traceless perturbed SU(2) field around its VEV in a unified approach. In B.1, we prove that

1The original models of gauge-flation and chromo-natural inflation have been ruled out by the Planck

data [8, 10].
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a perturbed SU(2) field around its VEV has a spin-2 field. The details of our analytical

study as well as some necessary mathematical tools are presented in appendices C–E.

2 Review of theory

Consider an inflationary model with a Friedmann-Lemâıtre-Robertson-Walker (FRLW)

background

ds2 = −dt2 + a2(t)δijdx
idxj , (2.1)

that can support slow-roll inflation with a slowly varying SU(2) gauge field VEV given

by [5, 6]

Āµ(t) ≡ Āaµ(t)Ta =

{
0 µ = 0

aψ(t)δai Ta µ = i ,
(2.2)

where {Ta} are the generators of the su(2) algebra with a = 1, 2, 3

TaTb =
1

4
δabIn +

1

2
iεabcTc, (2.3)

where Inδab is the identity matrix and εabc is the totally antisymmetric matrix. In ap-

pendix A, we show that ansatz (2.2) is the general background solution for a gauge field

with an isotropic and homogeneous energy-momentum tensor. We unify all the inflation

models with an SU(2) field in the literature in the following Lagrangian

S =

∫
d4x
√
−g
[
LA(Aµ, ϕ) + αsL0(χ) + αHLH(Aµ, H)

]
, (2.4)

where LA is the gauge field theory sector (with possibly an axion field ϕ), L0 is a (possible)

scalar theory and LH is a (possible) Higgs sector which makes the gauge field massive. The

parameters αs and αH classify models as (see table 1)

αs =

{
0 (axion)-SU(2) gauge field inflaton,

1 spectator (axion)-SU(2) gauge field ,
and αH =

{
0 massless models,

1 Higgsed models .

In these models, the conformal symmetry of Yang-Mills theory is broken by either adding

a (FF̃ )2 effective term to the gauge theory, e.g. Gauge-flation [5, 6], or by coupling the

gauge field sector to an axion field ϕ with slow-roll dynamics, e.g. chromo-natural [7, 8].

The former models are given by [5, 6]

LA → LGf ≡ −
1

4
FµνF

µν +
κ

96
(FµνF̃

µν)2, (2.5)

while the latter are given by2 [7, 8]

LA → LCn ≡ −
1

4
FµνF

µν − λϕ

4f
FµνF̃

µν − 1

2
∂µϕ∂

µϕ− V (ϕ), (2.6)

2A more general action including two dimension six operators, tr(FFF ) and the (PT violating) Weinberg

operator tr(FFF̃ ) [32], has been considered in [23].
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Model αs αH LA Original references

0 0
LGf [5, 6]

LCn [7, 8]

Spectator 1 0
LGf −
LCn [15]

Higgsed 0 1
LGf [12, 16]

LCn [14]

Spectator-Higgsed 1 1
LGf −
LCn −

Table 1. Inflationary models involving an SU(2) gauge field in the literature and their relation to

LA, αs and αH .

where Fµν = TaF
a
µν is the field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + gAε

abcAbµA
c
ν ,

while F̃µν ≡ 1
2ε
µνλσFλσ, ϕ is the axion and V (ϕ) is the axion potential.3 Moreover, in

the Higgsed version of the models, the gauge field becomes massive by a Higgs field and

we have an extra term for the dynamics of the Goldstone boson which in the Stueckelberg

form is [33, 34]4

LH = −g2
AZ

2
0 tr

(
Aµ −

i

gA
U−1∂µU

)2

, (2.8)

where U = exp(igAπ) and π is the Goldstone mode corresponding to the Higgs fluctuations

around its VEV, π = πaTa. We relate these models to the literature in table 1.

The (FF̃ )2 term in (2.5) comes as an effective theory of (2.6) by integrating out the

massive axion on energy scales below the mass of the axion, M ' µ2/f . In that case, the

parameter κ is given as κ = 3λ2

µ4
[9, 35, 36]. Therefore, gauge-flation models are effectively

equivalent to chromo-natural models in the limit that the axion is very massive, and they

have the same tensor and vector perturbations [9]. (See also appendix B.)

These models can be specified in terms of three dimensionless parameters, ξA, ξ and

ξZ0 , which are defined in the following. First, the almost constant gauge field configuration

3In the original chromo-natural model, the potential is the standard cosine potential, V (ϕ) = µ4(1 +

cos(ϕ
f

)), with f �MPl and λ & 103 f
MPl

.
4Here, the full Higgs field theory is

LZ = −1

2
DµZD

µZ† − V (z), (2.7)

with a VEV given as Z̄A = Z0(t)δaA Ta in which A = 1, 2, 3 is the field’s internal index, and Dµ = ∂µ−igAAµ
is the covariant derivative. However, we are interested in the limit that the Higgs mass is much greater than

the Hubble scale. Therefore, the only relevant sector is the Goldstone boson part given in (2.8). Notice

that LH is gauge invariant and it can be written as LH = −g2AZ2
0 tr(UDµU

−1/(−igA))2.
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of the form (2.2) leads to a slowly-varying dimensionless parameter

ξA ≡
gAψ

H
. (2.9)

Validity of perturbation theory in the scalar sector of the SU(2) gauge field requires [8, 10,

17]

ξA >
√

2. (2.10)

A scalar mode in these models would have a negative frequency at k
a ∝ (2 − ξ2

A) which is

unstable for ξA <
√

2. In refs. [15, 20, 21], ξA has been called mQ. The second dimensionless

parameter is

ξ ≡ λϕ̇

2fH
. (2.11)

In the Higgsed version of the models (αH = 1), we also have

ξZ0 ≡
gAZ0

H
. (2.12)

Another important quantity in this setup is

εA ≡ 2
ρ̄YM

ρ̄
= (1 + ξ2

A)

(
ψ

MPl

)2

, (2.13)

which is the contribution of the gauge field to the total slow-roll parameter and equals

twice the ratio of the energy density of the gauge field background ρ̄YM to the total energy

density ρ̄. In refs. [15, 20, 21], εB = εAξ
2
A/(1 + ξ2

A) is used instead of εA.

The background field equation of the gauge field is given by the µ = i component of

the following equation5

D̄ν

(
F̄µν + ᾱAε

µνλσF̄λσ

)
+ αHg

2
AZ

2
0 Ā

µ = 0, (2.15)

where a bar denotes a background quantity and Dν is the covariant derivative

Dµ ≡ ∇µ − igAAµ (D̄µ = ∇̄µ − igAĀµ),

and ᾱA is a function of the background fields which, depending on the form of LA, is given

as6

ᾱA =

{
−2κ

96FF̃ for LA = LGf ,
λ
2f ϕ̄ for LA = LCn.

(2.16)

Note that the zeroth component of (2.15) is a constraint equation which is equivalent to

zero for our background ansatz.

5The explicit form of the background field equation of Āµ is

δai

(
(aψ)̈

a
+
H(aψ)̇

a
+ 2g2Aψ

3 + αHg
2
AZ

2
0ψ − 2 ˙̄αAgAψ

2

)
= 0. (2.14)

6In (2.16), we have FF̃ = 12gA(Hψ + ψ̇)ψ2.
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Assuming slow-roll dynamics in the background, equation (2.15) relates ξA, ξZ0 , and
˙̄αA/H as

˙̄αA
H
'

(1 + ξ2
A + αH

2 ξ2
Z0

)

ξA
. (2.17)

In the LCn models, the background field equation of the axion is

ϕ̈+ 3Hϕ̇+ Vϕ +
3λgA

f
ψ2(ψ̇ +Hψ) = 0. (2.18)

2.1 Tensor perturbations

The existence of a spin-2 degree of freedom in the gauge field is a unique feature of the

SU(2) inflation models. This is the primary focus of our work. Once we have a slow-

roll background dynamics, the tensor perturbations in this family of models are entirely

determined by the background quantities ξ, ξA, ξZ0 , and by the perturbed gauge field sector

of the model, LA + αHLH . The vector and tensor perturbations in LGf and LCn are the

same. Let us first briefly review the spin-2 part of the perturbed SU(2) gauge field. More

details are presented in appendix B. See [5, 6] for the full decomposition of the field into

the scalar, vector, and tensor perturbations.

Once we perturb the metric and the SU(2) gauge field around their homogeneous and

isotropic solutions (2.2), we have the following spin-2 fluctuations

δT gij(t, ~x) = a2γij(t, ~x), (2.19)

δTA
a
i (t, ~x) = MPl δ

ajBij(t, ~x), (2.20)

where δT denotes the spin-2 subsector of the perturbed field. In appendix B.1, we prove

that γ̃ij = Bij/a is a (pseudo) spin-2 field. Nonetheless, throughout this paper, we shall

call Bij a spin-2 field. In Fourier space, the vacuum (free) γij and Bij can be expanded as

aMPlγij(t, ~x) =
√

2
∑
σ=±2

∫
d3kei

~k.~xeij(σ, k̂)
[
âσ(~k)hσ(~k) + â†σ(−~k)h∗σ(−~k)

]
, (2.21)

MPlBij(t, ~x) =
1√
2

∑
σ=±2

∫
d3kei

~k.~xeij(σ, k̂)
[
b̂σ(~k)Bσ(~k) + b̂†σ(−~k)B∗σ(−~k)

]
, (2.22)

where hσ and Bσ are the canonically normalized fields, eij(±, k̂) are the polarization tensors

associated with the ±2 helicity states,7 which are normalized as eij(σ,~k)e ∗ij (σ′,~k) = 2δσσ′ ,

and âσ(~k) and b̂σ(~k) are the annihilation operators of the spin-2 modes of the metric and

gauge field, respectively, satisfying

[âσ(~k), â†σ′(
~k′)] = [b̂σ(~k), b̂†σ′(

~k′)] = δ3(~k − ~k′)δσσ′ .

7The polarization tensor of the spin-2 field in the direction k̂ = −r̂ is given as

eij(±2, k̂) =
√

2ei(±1, k̂)ej(±1, k̂) where ~e(±1,−r̂) =
1√
2

(θ̂ ∓ iφ̂), (2.23)

where r̂, θ̂ and φ̂ are the local orthogonal unit vectors in the directions of increasing r, θ, and φ. Note that

eij(σ,~k) = e∗ij(σ,−~k), and ~k × ~e(±1, ~k) = ∓ik~e(σ,~k).
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LA references 1
2
m2

H2 ( ψ
MPl

)−2 βc θc δc
m̃2

H2
α
H

=
0

LGf [5, 6] (ξ2
A−1) ξA ξ2

A
2(1+2ξ2A)

ξA
2(2+ξ2

A)

LCn
[7, 8, 11,

13, 15]
(ξ2

A−1) ξA ξ2
A 2(ξA +ξ) 2(1+ξξA)

α
H

=
1 LGf [12, 16] (ξ2

A−1+ξ2
Z0

) ξA ξ2
A +ξ2

Z0

2(1+2ξ2A)+ξ2Z0

ξA
2(2+ξ2

A +ξ2
Z0

)

LCn [14] (ξ2
A−1+ξ2

Z0
) ξA ξ2

A +ξ2
Z0

2(ξA +ξ) 2(1+ξξA)+ξ2
Z0

Unified
(ξ2

A−1+

αHξ
2
Z0

)
ξA

ξ2
A +

αHξ
2
Z0

2(ξA + α̇A
H )

2(1+ξA
α̇A
H )+

αHξ
2
Z0

Table 2. Definition of parameters in the equations of tensor perturbations in (2.24)–(2.25) in terms

of ξA, ξ and ξZ0
for each type of models. The last row shows the parameters in the unified form for

the generic action given in (2.4).

The tensor perturbations obey the following equations of motion

h′′σ +

[
k2 − a′′

a
+
m2

H2
H2

]
hσ =

2ψ

MPl
H
[
(−λσβck + θcH)Bσ −B′σ

]
, (2.24)

B′′σ +

[
k2 − λσδckH−

a′′

a
+
m̃2

H2
H2

]
Bσ = O

(
ψ

MPl
hσ

)
, (2.25)

where λ± = ±1. See [5, 8, 14] for the expression on the right hand side of (2.25) which we

ignore here.8 The primes denote a derivative with respect to conformal time, τ , while m2

H2 ,
m̃2

H2 , βc, θc and δc are dimensionless slowly varying parameters defined in table 2 for each

model. The field equation (2.25) can be written as a Whittaker equation as

∂2
zBσ +

[
− 1

4
+
κσ
z

+
1

z2

(
1

4
− µ2

)]
Bσ = 0, (2.26)

where z = 2ikτ and we used the slow-roll relation aH ' − 1
τ . The parameters κσ and µ

are given as

κσ = − iλσδc

2
and µ2 =

9

4
− m̃2

H2
. (2.27)

Since |κ+| = |κ−|, we write

|κ| ≡ |κσ| =
1

2
δc.

General solutions are given by linear combinations of the Whittaker functions Wκλ,µ(z),

Mκλ,µ(z). Imposing the Bunch-Davies vacuum condition in the asymptotic past, we have

8The neglected term in r.h.s. of (2.25) is proportional to ψ
MPl
� 1 and therefore is subleading inside the

horizon. However, after the horizon crossing when the homogeneous solution of Bσ decays due to its mass,

this term acts like a small source term for Bσ. See for instance [18]. However, this effect makes a negligible

correction to the sourced gravitational waves and the backreaction.

– 7 –
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(see (C.12))

Bσ(τ,~k) =
eiκσπ/2

(2π)
3
2

√
2k
Wκσ ,µ(2ikτ) . (2.28)

Using the above in the field equation of hσ (2.24), we find the sourced part of the gravita-

tional waves.

Here, we summarize the main features of the spin-2 field with the field equation

of (2.25) and the quadratic action of (B.6).

• B± evolves as a massive field in de Sitter space with a parity breaking linear derivative

interaction term, ∓δckHB±, with δc given by table 2. In terms of ᾱA (2.16), we can

write it in a unified form, δc = 2(ξA +
˙̄αA
H ).

• The first term in δc (2ξA) comes from the interaction of Bσ with the VEV of the

gauge field through the covariant derivative Dµ, and is due to the self-interactions of

gauge field in Yang-Mills theory.

• The second contribution in δc (2
˙̄αA
H ) is a time derivative of ᾱA. As shown in (2.16),

for LA = LGf , this parameter is due to the VEV of FF̃ while for LA = LCn, it is

due to the derivative interaction with the VEV of the axion field.

• The sound speeds of B± field and GWs are unity in all of the models in this family.9

• Due to the self-interactions of the gauge field, the Bσ is massive with a mass term
m̃2

H2 , given in table 2. The mass of the spin-2 field can be written in the unified form
m̃2

H2 = 2(1 +
˙̄αA
H ξA) + αHξ

2
Z0

.

• In a similar Abelian field case (see (B.5)), the first derivative interaction as well as

the mass term are missing. Thus, the non-Abelian nature of the gauge field makes

i) a more efficient particle production, while making ii) the transverse field massive

and therefore decaying after horizon crossing.

• As we will see in section 3, these derivative interactions are responsible for production

of the spin-2 particle by the background fields.

• In SU(2) gauge field setups, the right hand side of the field equation of the gravita-

tional waves in (2.24) is non-zero and is given by an anisotropic inertia proportional

to ψ
MPl

. Therefore, the efficiency of the mixing between the spin-2 field and the

gravitational waves is specified by the VEV of the SU(2) gauge field.

• This anisotropic inertia is parametrized in terms of θc, βc, and a small mass term for

the graviton, m2

H2 , given in table 2.

• The term βc is the coefficient of a linear derivative interaction which is equal to ξA

regardless of the model. The other parameter can be written as θc = ξ2
A + αHξ

2
Z0

.

The mass term is m2

H2 = 2(ψ/MPl)
2(ξ2

A − 1 + αHξ
2
Z0

).

9This is also valid in the presence of dimension six operators, tr(FFF ) and the (PT violating) Weinberg

operator tr(FFF̃ ) [23].
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• All the interaction and parameters in the tensor perturbation sector are specified

only by LA and LH , and therefore independent of whether the gauge field sector is a

spectator or not.

In this work, we assume (quasi) de Sitter expansion and keep terms up to first order in

slow-roll. The slow-roll time evolution of ξA and ξZ0 , which is model dependent, contributes

to the spectral tilt of the sourced gravitational waves. Depending on the details of the

evolution of the gauge field VEV, the spectral tilt of the sourced gravitational waves can be

positive or negative [37]. Since we are interested in the number density and the backreaction

of the Bσ particle as well as in the amplitude of the sourced gravitational waves which are

model independent, we neglect this effect in this paper.

3 Spin-2 Schwinger-type particle production

In this section, we study the spin-2 particle production due to their interactions with the

VEV of the background fields. The background fields act as a classical source for the

quantum fluctuations analogous to the well-known Schwinger effect [38]. However, unlike

the standard Schwinger process in which the quantum field is sourced only by a background

gauge field, here the spin-2 quantum field is sourced by both the backgrounds of axion and

gauge fields. The derivation given in this section follows closely section 3.2 of [39].

To have a better qualitative understanding of the particle production process, let us

write the field equation of Fourier modes using the (normalized) physical momentum

τ̃ =
k

aH
,

as

∂2
τ̃Bσ(τ,~k) + ω2

σ(τ̃)Bσ(τ,~k) = 0, (3.1)

where ωσ(τ̃) is the (time-dependent) effective frequency of the modes

ω2
±(τ̃) = 1∓ δc

τ̃
+

(
−2 +

m̃2

H2

)
1

τ̃2
. (3.2)

In the limits that the effective frequency is slowly varying and(
∂τ̃ωσ(τ̃)

ω2
σ(τ̃)

)2

� 1 and

∣∣∣∣∂2
τ̃ωσ(τ̃)

ω3
σ(τ̃)

∣∣∣∣� 1 , (3.3)

the particle production is zero and the modes are in an adiabatic vacuum state. Then the

solution can be well-approximated by the WKB form,

BWKB
σ1,2 (τ,~k) =

1

(2π)
3
2

√
2kωσ(τ̃)

exp

(
± i
∫
ωσ(τ̃)dτ̃

)
, (3.4)

in which BWKB
σ1 and BWKB

σ2 are the positive and negative frequency modes respectively.

The WKB approximation is the exact solution of

∂2
τ̃Bσ + ω2

σ(τ̃)

(
1− Ωσ(τ̃)

)
Bσ = 0, (3.5)

– 9 –
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Figure 1. Effective frequency squared (ω2) and deviation from adiabaticity (|Ω|). The left panel

shows ω2 (3.2) as a function of τ̃ while the right panel shows |Ω±(τ̃)| (3.6) for massless systems

(αH = 0) with ξA =
√

2 (red line) and 10 (blue line). For comparison, the dotted black line shows

the vacuum gravitational waves. Here, the solid red and blue lines show the plus polarization modes

while the dashed blue and red lines show the minus polarization. The shaded areas in the right

panel show the particle production regime.
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ξZ0 =5
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2

Figure 2. (left) τ̃1,2 interval for which Bσ has instability as a function of ξA and ξZ0
. (Right) three

slices of the left panel. We show τ̃1,2 as a function of ξA for ξZ0
= 0 in (dashed) purple, ξZ0

= 5 in

(dotted) black, and ξZ0
= 10 in (solid) red.

where Ω(τ̃) is defined as

Ωσ(τ̃) ≡ 3

4

(
∂τ̃ωσ(τ̃)

ω2
σ(τ̃)

)2

− 1

2

∂2
τ̃ωσ(τ̃)

ω3
σ(τ̃)

, (3.6)

which quantifies the deviation of our mode function from the exact adiabatic solution (see

figure 1). We find that Ω− is always very small and thus B−(τ,~k) remains adiabatic.

However, Ω+ becomes large around the roots of ω+

τ̃1,2 =
1

2

(
δc ±

√
8 + δ2

c − 4
m̃2

H2

)
'
(
|κ| ±

√
|κ|2 − |µ|2

)
, (3.7)

and the system experiences a large deviation from adiabaticity. The above roots are pre-

sented in figure 2.
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When the adiabatic conditions hold, i.e., |Ω| � 1, we have a well-defined adiabatic

vacuum, and the field excitation about it describes particles. Deviations from adiabaticity

in the asymptotic past and future are

Ω±(τ̃)→


1

2τ̃3

(
∓ δc + 3

τ̃ (7
8δ

2
c + 2− m̃2

H2 )

)
' 0, if τ̃ →∞

1

8(1− m̃2

H2 )
, if τ̃ → 0 .

(3.8)

In the asymptotic past, τ̃ → ∞, the adiabaticity conditions are satisfied and the WKB

solution (3.4) is the Bunch-Davies vacuum (2.28). At later times the adiabaticity conditions

are violated and particles are produced. In the asymptotic future, recalling that ξA >
√

2

and using table 2, we have limτ̃→0|Ω+(τ̃)| . 10−2. Thus, the positive frequency modes

(vacuum mode functions) in the asymptotic future, vσ(τ,~k), are given by the WKB solution

in (3.4), as

vσ(τ,~k) = lim
−kτ→0

BWKB
σ1 (τ,~k) '

√
τ̃

(2π)
3
2

√
2k|µ|

ei|µ| ln τ̃ , (3.9)

in which we used µ = i|µ| and limτ̃→0 ω(τ̃) ' |µ|/τ̃ . Using (C.12), the asymptotic future

vacuum mode functions can be well approximated by the M -Whittaker functions as

vσ(τ,~k) =
eiµπ/2

2(2π)
3
2

√
k|µ|

Mκσ ,µ(−2iτ̃) . (3.10)

Using (C.14), the asymptotic past and future vacuum modes are related as

vσ(τ,~k) = ei(κσ−µ)π
2

√
2|µ|Γ(2µ)

Γ(1
2 + µ+ κσ)

Bσ(τ,~k) + iei(κσ+µ)π
2

√
2|µ|Γ(2µ)

Γ(1
2 + µ− κσ)

B∗σ(τ,−~k). (3.11)

Therefore, the spin-2 field can be either expanded in terms of the positive frequency modes

in the asymptotic past (2.28) as in (2.22), or in terms of the positive frequency modes in

the asymptotic future (3.10), as

MPlBij(τ, ~x) =
1√
2

∑
σ=±2

∫
d3kei

~k.~xeij(σ, k̂)
[
b̃σ(~k)vσ(~k, τ) + b̃†σ(−~k)v∗σ(−~k, τ)

]
, (3.12)

where b̃σ(~k) and b̃†σ(~k) are the annihilation and creation operations of a particle with respect

to the asymptotic future vacuum respectively. By definition, we have

bσ(~k)|0in〉 = 0 and b̃σ(~k)|0out〉 = 0, (3.13)

where |0in〉 and |0out〉 are the vacuum states in the asymptotic past and future of the (quasi)

de Sitter spacetime, respectively.

Using Bogoliubov transformation, we can write b̃σ(~k) in terms of bσ(~k) and b†σ(~k) as

b̃σ(~k) = α
σ,~k
bσ(~k) + β∗

σ,~k
b†σ(−~k), (3.14)

where α
σ,~k

and β
σ,~k

are Bogoliubov coefficients which satisfy the normalization condition

|α
σ,~k
|2 − |β

σ,~k
|2 = 1 . (3.15)

– 11 –
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Figure 3. Efficiency of the particle production, |κ| − |µ|, as a function of ξA and ξZ0
.

From the combination of eqs. (2.22), (3.11) and (3.12), we find

α
σ,~k

=
√

2|µ|e(λσ |κ|+|µ|)π/2 Γ(−2µ)

Γ(1
2 − µ− κσ)

, (3.16)

β
σ,~k

= −i
√

2|µ|e(λσ |κ|−|µ|)π/2 Γ(2µ)

Γ(1
2 + µ− κσ)

. (3.17)

Having the β
σ,~k

coefficients, we are ready to determine the particle number density as well

as the vacuum-vacuum transition amplitude. The efficiency of the particle production for

σ = +2 is given by the exponent |κ| − |µ|, which, recalling (2.10) and using (2.27), can be

approximated as

|κ| − |µ| ≈ ξA

2

[
1 +

(√
1 + αH(

ξZ0

ξA
)2 −

√
2

)2 ]
>
ξA

2
. (3.18)

This quantity is presented in figure 3 as a function of ξA and ξZ0 and has the following

asymptotic forms

|κ| − |µ| ≈

 (2−
√

2)ξA if
ξZ0
ξA
� 1

1
2αH

ξ2Z0
ξA

if
ξZ0
ξA
� 1 .

(3.19)

The number density of the created particles with a given comoving momentum, ~k, in

the asymptotic future is

nσ(~k) = 〈0in|b̃†
σ,~k
b̃
σ,~k
|0in〉 = |βσ|2 =

e2λσ |κ|π + e−2|µ|π

2 sinh(2|µ|π)
, (3.20)

which has a k-independent spectrum for each polarization state. As we see, there is a large

pair production in the plus polarization while it is almost zero for the minus state

n+(~k) & eξAπ and n−(~k) . e−6ξAπ. (3.21)
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The total particle creation from the asymptotic past to the asymptotic future, there-

fore, is

Nσ =
1

(2π)3
|βσ|2

∫
d3k =

1

(2π)2

e2λσ |κ|π + e−2|µ|π

sinh(2|µ|π)

∫ ∞
0

k2dk, (3.22)

which is divergent since it expresses the number of pairs created for all times. The physically

meaningful quantity, however, is the pair production rate, i.e., the number of pairs produced

per unit time per unit physical volume

Γσpairs =
1

a(τ)4

dNσ

dτ
. (3.23)

To calculate the derivative we need to convert the wavenumber integral into a time integral.

It has been shown in the right panel of figure 1 that the system has two sharp deviations

from adiabaticity around the roots of ω+. Therefore, pairs of particles with +2 helicity

state of a given comoving momentum, k, are produced mostly around (3.7)

τ1,2(k) ' −(|κ| ±
√
|κ|2 − |µ|2)/k . (3.24)

Note that τ̃ = k/(aH) ' −kτ . As a result, the total particle creation at τ1(k) and τ2(k)

are given respectively by

N1 ≈ (|κ|+
√
|κ|2 − |µ|2)3 e2|κ|π + e−2|µ|π

(2π)2 sinh(2|µ|π)

∫ 0

−∞
dτ (a(τ)H)4 , (3.25)

N2 ≈ (|κ| −
√
|κ|2 − |µ|2)3 e2|κ|π + e−2|µ|π

(2π)2 sinh(2|µ|π)

∫ 0

−∞
dτ (a(τ)H)4 . (3.26)

The corresponding production rates are

Γ1
pairs ≈ (|κ|+

√
|κ|2 − |µ|2)3 e2|κ|π + e−2|µ|π

(2π)2 sinh(2|µ|π)
H4 , (3.27)

Γ2
pairs ≈ (|κ| −

√
|κ|2 − |µ|2)3 e2|κ|π + e−2|µ|π

(2π)2 sinh(2|µ|π)
H4. (3.28)

We find that the particle production during τ1 is much more efficient than during τ2, i.e.

Γ2
pairs

Γ1
pairs

' 10−2. (3.29)

Therefore, we can neglect the burst of particles created at τ2. After integrating eq. (3.23),

we find that the physical number densities of pairs created up to time τ are also time

independent

npairs =
1

a(τ)3

∫ τ ′

−∞
dτ a(η)4Γ1

pairs ≈
Γ1

pairs

3H
, (3.30)

i.e., gravitational and Schwinger-type particle production are exactly balanced by the grav-

itational redshifting. We can approximate the above as

npairs ≈ (|κ|+
√
|κ|2 − |µ|2)3 H

3

6π2
e2(|κ|−|µ|)π . (3.31)

– 13 –
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Figure 4. The number density of the created pairs, npairs/H
3, as a function of ξA and ξZ0

.

The particle production increases exponentially with (|κ|−|µ|) and has the following asymp-

totic forms

npairs

H3
→


(2+
√

2)3

6π2 ξ3
Ae

2(2−
√

2)ξAπ if
ξZ0
ξA
� 1

1
6π2

( ξZ0
ξA

)3
e
ξ2Z0
ξA

π
if

ξZ0
ξA
� 1 (αH = 1) ,

(3.32)

which may cause a large backreaction on the background VEV fields. This is the next

subject of our study, given in section 4. The number density of the created particles is

presented in figure 4.

Another interesting quantity to compute is the vacuum-vacuum transition amplitude

defined by

|〈0out|0in〉|2 ≡ e(−
∫∫

d3xdτa4Υvac) = exp

[
− 1

(2π)3

∫
d3x

∫
dk3 ln(1 + |β

+,~k
|2)

]
, (3.33)

where Υvac is the vacuum decay rate. Using eq. (3.20) and (3.24), we obtain

Υvac = −2
H4

(2π)2
(|κ|+

√
|κ|2 − |µ|2)3 ln

[
1 +

(
e2|κ|π + e−2|µ|π

2 sinh(2|µ|π)

)]
, (3.34)

which is well approximated by

Υvac ≈ −
H4

π
(|κ|+

√
|κ|2 − |µ|2)3

(
|κ| − |µ|

)
, (3.35)

implying a sizable vacuum decay rate. Finally, in the Minkowski limit with H → 0,

this setup with an isotropic SU(2) gauge field does not experience Schwinger-type particle

production [39].

4 Backreaction

In this section, we compute the induced current and backreaction of the spin-2 field on the

inflationary background.

– 14 –
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4.1 Induced current and backreaction

The continuous global SU(2) symmetry (A.5) leads to the conserved Noether current as

JµA = −T a δ(δBL)

δĀaµ
= δB

[
Dν

(
ḡµλḡνσ + ᾱAε

µνλσ

)
Fλσ

]
, (4.1)

where δB denotes quadratic order action with respect to Bij field, a bar denotes background

quantities, and Dµ ≡ ∂µ − igAAµ is the covariant derivative. The current affects the

background equations of motion as (see (2.15))

(∇ν − igAĀν)

(
F̄µν + ᾱAε

µνλσF̄λσ

)
+ αHg

2
AZ

2
0 Ā

µ = −〈JµA〉, (4.2)

where ᾱA is a function of background fields given in (2.16). The expectation value of the

zero-component of JµA vanishes

〈J0
A〉 = 0. (4.3)

Thus, the background field equation of ψ in (2.14) is sourced by JA defined by

JA ≡
a

3
δai J

i
Aa =

gAM
2
Pl

3a2

(
1

a
εiqpBjq∂iBjp + ˙̄αAB

2
ij

)
=

gA

3a3

∑
σ

∫
d3k

(
− λσk +H

˙̄αA
H

)
|Bσ(~k)|2. (4.4)

In the LA = LCn models with axion-gauge field coupling, Bij induces another backre-

action term of the form ∇µPµϕ where

Pµϕ =
λM2

Pl

2a3f
δµ0
(
εiqpBqj∂iBpj + gAaψBijB

ij
)
, (4.5)

with P iϕ = 0. The divergence of the zero-competent then backreacts on the background

axion field as

ϕ̈+ 3Hϕ̇+ Vϕ +
3λgA

f
ψ2(ψ̇ +Hψ) = 〈Pϕ〉, (4.6)

where

〈Pϕ〉 ≡ 〈∇µPµϕ 〉 =
λ

2a3f

∑
σ

d

dt

[ ∫
d3k

(
− λσk +HξA

)
|Bσ(~k)|2

]
. (4.7)

Note that Pµϕ is not a Noether current. In figure 5, we plotted JA and Pϕ with respect to ξA.

Both 〈JA〉 and 〈Pϕ〉 can be written in terms of the following momentum integral

K[X] ≡
∑
σ

(2π)2

∫
d3k

2H3

(
− λσk +HX

)
|Bσ(~k)|2. (4.8)

We find

〈JA〉 =
2gAH

3

3(2π)2
K[ ˙̄αA/H], (4.9)

〈Pϕ〉 =
λ

(2π)2a3f

d

dt

(
a3H3K[ξA]

)
' 3λH4

(2π)2f
K[ξA], (4.10)
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Figure 5. Backreaction terms on the gauge (JA) and axion (Pϕ) fields as a function of ξA and

ξZ0
. The dashed lines show negative values. We show 3

2gAH3JA and f
3λH4Pϕ.

where we have used
˙̄αA
H '

(1+ξ2A+
αH
2
ξ2Z0

)

ξA
from (2.17). We work out the integral of K[X]

and its renormalization (using the adiabatic subtraction technique) in appendix D. Here

we present its final regularized form

Kreg[X] =
1

6
e2(|κ|−|µ|)π

(
|µ|(−4|µ|2 +15|κ|2−4−9|κ|X)+

C(X)

4
Re

[
ψ(0)

(
1

2
+ i|κ|− i|µ|

)
−ψ(0)

(
1

2
+ i|κ|+ i|µ|

)])
, (4.11)

where ψ(0)(z) ≡ d
dz ln Γ(z) is the digamma function, and C(X) is

C(X) ≡ 3X

(
1

2
+ 6κ2 − 2µ2

)
− 3

2
(7 + 20κ2 − 12µ2)|κ|. (4.12)

We find that Kreg[X] is proportional to e2(|κ|−|µ|)π � 1 (see figure 3). In the limit that

|κ| − |µ| � 1, we can further simply Kreg[X] to

Kreg[X] =
1

6
e2(|κ|−|µ|)π

[
|µ|(−4|µ|2 + 15|κ|2− 4− 9|κ|X) +

C(X)

4
ln

(
|κ| − |µ|
|κ|+ |µ|

)]
, (4.13)

in which we used (C.8) to expand ψ(0)(z). This completes our derivation of the analytical

formulae for the backreaction terms.10 Using (3.31), we can relate Kreg[X] to the number

density of the spin-2 field as

Kreg[X] ' π2

10
IBR[X]

(
npairs

H3

)
, (4.15)

10As we see in figure 3, the generated pair particle number is very large and thus we are in the classical

regime. Therefore, we can estimate the induced gauge field current, JµA, by semi-classical approximations.

Specifically, we can approximate it as JA ∼ 2gAnpairsv. Assuming that the particles travel with the speed

of light v ∼ 1, we can approximate the induced gauge field current as

JA ∼
2gAH

3

6π2

(
|κ|+

√
|κ|2 − |µ|2

)3
e2(|κ|−|µ|)π, (4.14)

which is in agreement with the result of our exact solution in (4.9).
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where IBR[X] is of order unity and given as

IBR[X] ≡ 10

 |µ|(−4|µ|2 + 15|κ|2 − 4− 9|κ|X) + C(X)
4 ln

( |κ|−|µ|
|κ|+|µ|

)
(|κ|+

√
|κ|2 − |µ|2)3

 . (4.16)

The backreaction is also directly related to npairs. In particular, the backreaction to the

field equation of the gauge field is

JA '
gAIBR[(1 + ξ2

A + αH
2 ξ2

Z0
)/ξA]

60
npairs, (4.17)

where IBR[(1 + ξ2
A + αH

2 ξ2
Z0

)/ξA] is of order unity as presented in figure 6. Similar to JA,

the backreaction to the axion field equation is also directly given by the number density of

the spin-2 field, i.e. Pϕ ∼ λH
f npairs. This relation is valid for all the models considered in

this paper.

Equations (4.9)–(4.11) and (4.17) are the first main results of this paper. Equa-

tions (4.9)–(4.11) have been estimated only numerically for one model in this family previ-

ously in [40] which are in agreement with our formulae over the region where the comparison

is possible. The relation between the backreaction and the number density of the spin-2

field in (4.17) is derived here for the first time.

4.2 Energy density of spin-2 fields

The extra spin-2 field has a sizable energy-momentum density. The expectation value of

its energy density adds to the total energy density in the background, ρ̄, as

ρ̄(t) =
∑
I

ρ̄I(t) + 〈δBρ(t)〉~k=0
. (4.18)

Perturbing the energy momentum tensor and considering only terms quadratic in Bij , we

have

δBT00 = −ḡ00 δBρ and δBTij = ḡij δBP. (4.19)

– 17 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
4

ξZ0 =0

ξZ0 =1

ξZ0 =3

ξZ0 =5

2 4 6 8 10
10-14

10-9

10-4

10

106

ξA

(1
0-
6
M
pl

H

)2
δ
ρ
B

ρ-
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The contribution of Bij to the energy density, δBρ, is

〈δBρ〉 = M2
Pl〈

1

2a2
(∂0Bij)

2 +
1

2a4
(∂kBij)

2 +
gAψ

a3
εqpiBjq∂iBjp +

1

2
αHg

2
AZ

2
0B

2
ij〉. (4.20)

The contribution to the isotropic pressure is

〈δBP 〉 = 〈1
3
δBρ
〉
|αH=0 −

1

6
αHg

2
AZ

2
0M

2
Pl〈B2

ij〉. (4.21)

In the absence of interaction with the Higgs field, αH = 0, Bij field has the equation of

state of radiation. On the other hand, for a massive gauge field with αH = 1, the Bij field

gets closer to dust.

We compute the normalized energy density in appendix D.2, and only show the result

here. Using (D.41), we find the energy density fraction in the spin-2 field Bσ as

〈δBρ〉reg

ρ̄
≈
(
H

MPl

)2 (δc + 2ξA)

3(2π)2
Kreg

[
3ξA(δc − 3ξA)− 1

δc + 2ξA

]
, (4.22)

where 3ξA(δc−3ξA)−1
δc+2ξA

& 1. We show the energy density as a function of ξA and ξZ0 in figure 7.

Let us summarize the main features of the energy density:

• The energy density of B− is always positive while the energy density of B+ can be

negative.

• The total energy density in Bij is negative for ξZ0 . 9
5ξA.

• The energy density fraction is of order
〈δ

B
ρ〉
ρ̄ ∼

(
H
MPl

)2
δc|µ|3e2(|κ|−|µ|)π. Therefore,

reducing the energy scale of inflation decreases the energy fraction in Bij as
(
H
MPl

)2
.

• Validity of perturbation theory requires
〈δ

B
ρ〉
ρ̄ . 10−5, which constrains the parameter

space of the models as a function of the energy scale of inflation.
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Although 〈δBρ〉reg is negative in most of the parameter space, it is always a small part

of the total energy density of the setup. The total energy-momentum tensor satisfies null

and weak energy conditions, while the B+ field violates both. The reason underlying the

negative energy of the plus polarization is the existence of a short phase of instability for

each ~k-mode of B+ around horizon crossing. However, this phase ends as soon as the mode

exists the horizon; thus, the existence of the cosmic horizon evades (dangerous) infinite

energy extraction of negative energy systems, unlike in flat space.

5 Gravitational waves

Each polarization state of the spin-2 field Bij mixes with the corresponding polarization of

the gravitational waves, γij (see (2.24)). In particular, in the presence of the gauge field,

we have

γσ(t, ~x) = γvac
σ (t, ~x) + γs

σ(t, ~x), (5.1)

where γvac
σ (t, ~x) is the vacuum gravitational waves (i.e. by quantum fluctuations of the

spacetime [41, 42]) with helicity σ while γs
σ(t, ~x) is the part sourced by the spin-2 field.

Here, we compute the power spectrum and the energy density of γs
σ in terms of ξA and

ξZ0 and relate them with the number density of Bσ, npairs. We work out the exact form of

the sourced gravitational waves in (quasi) de Sitter in appendix E. The result in the super

horizon limit is

hs
σ(τ,~k) =

eiκσπ/2

(2π)
3
2

(
ψ

MPl

)(
aH
√

2k
3
2

)
Gσ(ξA, ξZ0), (5.2)

where the explicit form of Gσ(ξA, ξZ0) is given in (E.6) and shown in figure 8. It can be

well approximated as

Gσ(ξA, ξZ0) =
π

cos(πµ)Γ(−κσ)

[
(i+ λσβc)

κσ
+

(i− λσβc)Γ2(−κσ)

Γ(1
2 − κσ − µ)Γ(1

2 − κσ + µ)

]
. (5.3)

Taking the (classical) limit, |µ| � 1, and using (E.8), we have

γs
+(τ,~k) ' A+

(2π)
3
2

e(|κ|−|µ|)π
(

ψ

MPl

)(
H

k
3
2

)√
π|κ|, (5.4)

where A+ is (see (E.9))

A+ '
[ (i−ξA)Γ2

(
i

(
2ξA +

ξ2Z0
+2

2ξA

))
Γ
(

1
2 + i[2ξA +

ξ2Z0
+2

2ξA
−
√

2(1+ξ2
A +ξ2

Z0
)
1
2 ]
)
Γ
(

1
2 + i[2ξA +

ξ2Z0
+2

2ξA
+
√

2(1+ξ2
A +ξ2

Z0
)
1
2 ]
)

+
iξA−1

2ξA +
ξ2Z0

+2

2ξA

]
. (5.5)

Figure 8 shows |A+|2 as a function of ξA and ξZ0 . We find that |A+|2 oscillates between

zero and unity as a function of ξA.
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Figure 8. The prefactors |G+|2 (left) and |A+|2 (right) as functions of ξA and ξZ0
. The (black)

dashed line shows unity.
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Figure 9. The energy density (left) and power spectrum (right) of gravitational waves sourced

by the gauge field as a function of ξA and ξZ0
. We show

(
10−8M2

Pl/Hψ
)2
δρGW

s /ρ̄ (left) and(
10−2MPl/ψ

)2
P s
T /P

vac
T (right). The dashed line in the right panel shows unity.

Finally, we can write the ratio of the power spectra of sourced and vacuum gravitational

waves in term of the spin-2 fields number density as

P s
T

P vac
T

=
〈γs

+γ
s
+〉

〈γvac
+ γvac

+ 〉

∣∣∣∣
−kτ�1

'
(

ψ

MPl

)2(npairs

H3

)
6π3|A+|2|κ+|

(|κ+|+
√
|κ+|2 − |µ|2)3

, (5.6)

where P x
T (k)δ(3)(~k + ~k′) ≡ 8πk3〈γx

+(~k)γx
+(~k′)〉 is the power spectrum of γx

+ where x =

(s, vac). Moreover, 〈γvac
+ (~k)γvac

+ (~k′)〉 = H2

(2π)3k3
where aγ+(~k′) is a canonically normalized

field. In the right panel of figure 9, we show
(
10−2MPl/ψ

)2
P s
T /P

vac
T . This is the second

main result of this paper.

The next interesting quantity is the energy density of the gravitational waves. The

energy-momentum tensor of the gravitational wave is

tGW
µν =

M2
Pl

4
〈∂µγij∂νγij〉, (5.7)

which gives the energy density in the sourced part of the gravitational waves, δρGW
s = tGW

00 ,

as

δρGW
s =

M2
Pl

4a2
〈γs′ijγs

′
ij 〉. (5.8)
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In terms of the physical momentum, it can be written as

δρGW
s =

2H4

(2π)2

∑
σ=±

∫
τ̃3dτ̃k〈

(
∂τ̃h

s∗
σ +

H
k
hs∗σ

)(
∂τ̃h

s
σ +
H
k
hs
σ

)
〉. (5.9)

In the left panel of figure 9, we show
(
10−8M2

Pl/Hψ
)2
δρGW

s /ρ̄. The energy density can be

written as

δρGW
s =

4H4

3π2

(
ψ

MPl

)2

IGW(ξA, ξZ0)e2(|κ|−|µ|)π, (5.10)

where IGW(ξA, ξZ0) is roughly

IGW(ξA, ξZ0) ∼ (|κ|+
√
|κ|2 − |µ|2)2. (5.11)

Comparing to the number density of the (gauge field’s) spin-2 particles in (3.31), we find

δρGW
s ∼ 8π

(|κ+|+
√
|κ+|2 − |µ|2)

(
ψ

MPl

)2

Hnpairs. (5.12)

The above relation is correct up to order unity coefficients. The energy density in the

sourced gravitational wave is proportional to
( ψ
MPl

)2
, the number density of B+, Hnpairs,

and the inverse of τ̃1 in (3.7).

6 Constraints on the parameter space

In this section, we use the size of the backreaction to constrain the parameter space of

the models. Validity of perturbation theory requires that the backreaction terms be much

smaller than the other terms in the field equations. To do this, we normalize JA and Pφ
by H2ψ and λHgAψ

3/f respectively to construct two dimensionless backreaction terms

BA ≡
JA
H3

H

MPl

MPl

ψ
=

(
10−2MPl

ψ

)2( H

10−6MPl

)2 2× 10−8

3(2π)2
ξAK[

˙̄αA
H

], (6.1)

Bϕ ≡
Pϕ

λHgAψ3/f
=

(
10−2MPl

ψ

)2( H

10−6MPl

)2 3× 10−8

(2π)2

1

ξA
K[ξA], (6.2)

where the explicit forms of K[X] for X = ˙̄αA/H ' (1 + ξ2
A + αH

2 ξ2
Z0

)/ξA and X = ξA are

given in (4.11) and a good approximation is given in (4.13). Another backreaction is the

contribution of the spin-2 field, Bσ particle, to the total energy density which is presented

in figure 7 and is subleading comparing to the above quantities. As we see, both BA and

Bϕ are proportional to the scale of inflation as (H/MPl)
2 and hence decrease by reducing

the scale of inflation. These dimensionless backreaction terms are shown in figure 10. We

require both BA and Bϕ to be lower than 0.01 so that they are smaller than the slow-roll

suppressed terms in the background field equation. Figure 11 shows the available parameter

space corresponding to each scale of inflation.

Among the three backreactions, BA, Bϕ, and δBρ
ρ̄ , the first one is the largest. BA is an

exponential function of ξA and ξZ0 while it depends on the scale of inflation as H2. For a
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Figure 10. The dimensionless backreaction terms to the gauge and axion field equations as a

function of ξA. The dotted black line shows 0.01. We show
(
102ψ/MPl

)2(
10−6MPl/H

)2BA and(
102ψ/MPl

)2(
10−6MPl/H

)2Bϕ. The dashed lines show negative values.
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Figure 11. The parameter space (ξA, ξZ0
, H
MPl

, εA = 2 × 10−4) with dimensionless backreactions

less than 10−2.

given ψ and a bound on BA, lowering H by a factor of 10 enlarges the acceptable domain

of ξA and ξZ0 by one unit (see figure 11). For instance, for a ψ
MPl
∼ 10−2 and a GUT

scale inflation with H ∼ 10−6MPl, we find that 0 ≤ ξZ0 < 4 and
√

2 < ξA . 3.5 (lower

bound comes from stability of the scalar sector) are allowed. However, for a lower scale of

inflation with H ∼ 10−7MPl, we find that 0 ≤ ξZ0 < 5 and
√

2 < ξA . 4.5 are allowed.

In this region, the energy density fraction of the spin-2 field is δBρ
ρ̄ . 10−7 and decreases

linearly with the decrease of H.
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6.1 Parameter space of massless models

Up to now, our formulae have been presented in the unified form and are valid for any

models assuming slow-roll dynamics of the VEV of the gauge field and quasi-de Sitter

expansion. In this section, we use our backreaction formulae to further constrain the

massless models, i.e., ξZ0 = 0 [11, 15, 40].

The total slow-roll parameter, ε, is given by

ε = εϕ + αsεχ + εA, (6.3)

where εϕ and εA are respectively the contributions of the axion and the gauge fields to the

slow-roll parameter, whereas εχ is the contribution of the inflaton field in the spectator

case (with αs = 1).

In massless models with ξZ0 = 0 and in the regime ξA & 2.5, the extra scalar fields have

little effect on the scalar power spectrum and scalar tilt, and thus we have the standard

result given by Pζ ' 1
2ε

(
H

2πMPl

)2
and ns − 1 ' −2(3ε− η). On the other hand, adding the

sourced tensor power spectrum given in (5.6) to the standard vacuum part, we have the

total tensor power spectrum given by

PT ' 2

[
1 +

(
ψ

MPl

)2 e|κ+|π

2
|G+(ξA)|2

](
H

πMPl

)2

. (6.4)

The tensor-to-scalar ratio, r ≡ PT /Pζ , is

r = rvac + rsource ' 16ε

[
1 +

(
ψ

MPl

)2 e|κ+|π

2
|G+(ξA)|2

]
, (6.5)

where rvac = 16ε is the standard vacuum value, whereas rsource is the contribution from the

gauge field. Using Pζ = 2.2 × 10−9 and εA in (2.13), we write r and BA in terms of rvac,

εA/ε and ξA as

r ' rvac

[
1 +

εA
2

e
(1+2ξ2A)

ξA
π

(1 + ξ2
A)
|G+(ξA)|2

]
= rvac

[
1 +

rvac

32

εA
ε

e
(1+2ξ2A)

ξA
π

(1 + ξ2
A)
|G+(ξA)|2

]
, (6.6)

and

BA '
8.8

3× 109

ε

εA
ξA(1 + ξ2

A) K
[

1 + ξ2
A

ξA

]
. (6.7)

The exact form of K[
1+ξ2A
ξA

] is given in (4.11). It is approximately given by K[
1+ξ2A
ξA

] ∼

ξ3
Ae

2
(

(2−
√

2)ξA+ 2
ξA

)
π
.

In this section we constrain the parameter space of models in εB-ξA plane, following

refs. [21, 39]. Here, εB ≡ g2ψ4/(H2M2
Pl) is related to εA as εB = εAξ

2
A/(1 + ξ2

A). We can

relate this to the backreaction term as

εB
ε
' 8.8

3× 109

ξ3
A

BA
K
[

1 + ξ2
A

ξA

]
, (6.8)

which puts a lower bound on εB
ε from backreaction.

We restrict the parameter space by imposing the following constraints:
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Figure 12. Excluded parameter space of the massless models with rvac = 10−2. The blue shaded

area is excluded by the tensor-to-scalar ratio, the light red area by the large backreaction (BA >

10−2), the orange area by the inconsistent slow-roll condition (εA > ε), the cyan area by the tensor

non-Gaussianity, and the dark red area by the Schwinger pair-creation of scalar fields. The blue

and yellow lines show rsource = rvac and rsource = 10−3, respectively, while the dashed cyan line

shows f tens
NL = 1. The green line corresponds to the amount of backreaction as large as BA = 0.1.

• The BICEP2/Keck and Planck (BKP) upper bound on the tensor-to-scalar ratio,

r < 0.07 (95% C.L) [43];

• The Planck upper bound on the tensor non-Gaussianity parameter, f tens
NL [21, 44];

• Small backreaction given by BA < 10−2 or 10−1;

• Small Schwinger pair-creation of scalar fields [39];

• Consistency of the slow-roll parameter, εA < ε;

We show the constraints in figure 12 and 13 for rvac = 10−2, 10−3, and 10−4. We find that

large parameter space is excluded already. In particular, we find that rsource cannot be

much greater than rvac.

To see this in more detail, in figure 14 we show the ratio rsource/rvac = (r − rvac)/rvac

as a function of ξA for given values of εA/ε and rvac. Imposing the bound on the size of

the backreaction, BA < 10−2, as well as on εA/ε < 0.9, we find that the maximum possible

value of (r−rvac)/rvac can be at most 5 for r = 3×10−3, and smaller for smaller rvac because

of rsource/rvac ∝ rvac for a given εA/ε; see (6.6). The constraints weaken when we impose

a weaker bound on the backreaction, BA < 10−1. For larger values of rvac = 3 × 10−2,

the strongest constraint comes from the BKP upper bound on r < 0.07 rather than from

backreaction, yielding (r − rvac)/rvac < 1.3.
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Figure 13. Same as figure 12 but for rvac = 10−3 (top) and 10−4 (bottom). In the top panel the

blue and yellow lines show r = 10−2 and rsource = rvac, respectively, whereas in the bottom panel

they show rsource = rvac and rsource = 10−5, respectively.
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Figure 14. Constraints on the fractional contribution of the sourced gravitational waves relative

to the vacuum one, rsource/rvac = (r − rvac)/rvac, as a function of ξA for three different values of

rvac = 3 × 10−2 (top left), 3 × 10−3 (top right), and 3 × 10−4 (bottom). The blue shaded area is

excluded by the inconsistency of the slow-roll condition (εA/ε > 0.9), the yellow and orange areas by

the large backreaction BA > 10−2 and 10−1, respectively, and the gray area by the tensor-to-scalar

ratio r > 0.07. The dashed green line marks rsource/rvac = 1.

The allowed parameter space we find in this section is much more constrained than

that found in the literature for the spectator axion-SU(2) model [15, 40]. The reason is two

folds. First, the upper limit of εB ' 10−2 adopted by the previous study is too conservative

to satisfy the consistency of the slow-roll parameters given by εB/ε = 16εB/rvac < 1 for

a given value of rvac < 0.07. Second, the region of the strong backreaction was defined

as JA/(gAλψ
2ϕ̇/f) < 1, which is too conservative to satisfy the slow-roll dynamics of the

gauge field. The field equation of ψ for the massless case is given in (2.14)

(aψ)̈

a
+
H(aψ)̇

a
+ 2g2

Aψ
3 − gAλϕ̇

f
ψ2 = JA. (6.9)

Assuming slow-roll dynamics of the gauge field, i.e., ψ̈
H2ψ
� ψ̇

Hψ � 1, we can write it as

3Hψ̇ + Ḣψ + Veff,ψ(ψ) ' 0, (6.10)

where the field derivative of the effective potential of ψ is

Veff,ψ(ψ) ' 2H2ψ(1 + ξ2
A)− gAλϕ̇

f
ψ2. (6.11)
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Slow-roll demands Veff,ψ(ψ) � 1, while each of the terms in the right hand side can be

much larger, e.g., gAλϕ̇
f ψ2/Veff,ψ � 1. On the other hand, JA should be at most on the

order of the slow-roll suppressed terms, i.e., JA
H2ψ
≡ BA � 1, which is more restrictive.

Before we leave this section, let us comment on the Higgsed models, e.g., Higgsed

gauge-flation and Higgsed chromo-natural models [12, 14, 16]. Both scalar and tensor

perturbations are amplified by the Higgs VEV in this set up, with the scalar ones being

more strongly amplified; thus, the Higgs VEV, quantified by ξZ0 , reduces the tensor-to-

scalar ratio [14, 16]. On the other hand, in section 4, we find that the size of the backreaction

is much stronger in the Higgsed models with ξZ0 6= 0. Hence, requiring slow-roll dynamics

in the gauge field sector during (quasi)-de Sitter expansion, the Higgsed models cannot

evade r/rvac < O(1) bound either.

7 Conclusion

A background of axion and SU(2) gauge fields produces a copious amount of spin-2 particles

during inflation. In this paper, we have calculated the number [eq. (3.31)] and energy

densities [eq. (4.22)] of the spin-2 particles as well as their backreaction on the equations

of motion of the axion and gauge field backgrounds [eqs. (4.9) and (4.10)]. We provided

analytical formulae which are valid for all the inflation models with SU(2) gauge fields

studied in the literature (see eq.s (2.24) and (2.25) for the definition of the model parameters

and table 2 for their correspondence to the literature). The former results are new. The

latter results were presented only numerically for a single model in this family but in [40].

With that exception, this is the first time that the backreaction constrains this family of

models on the equations of motion. The analytical formulae derived in this paper allow

us to easily estimate the importance of the backreaction for any parameters and constrain

the parameter space that is consistent with perturbation theory. Moreover, it enables us to

relate the backreaction in the gauge field and axion background equations to the number

density of the spin-2 field as JA ∼ gAnpairs and Pϕ ∼ λH
f npairs respectively.

These spin-2 particles mix with gravitational waves. We related the number density

of the spin-2 particles to the power spectrum [eq. (5.6)] and energy density [eq. (5.12)]

of primordial gravitational waves from inflation as well as to the size of the backreaction

[eq. (4.17)]. The relation to the energy density δρGW
s is intuitive: δρGW

s is given by the

number density of spin-2 particles times particle’s physical momentum at horizon crossing

(i.e., k/a ∼ H), times the coupling strength squared, i.e., δρGW
s ∼ (ψ/MPl)

2Hnpairs.

Moreover, the ratio of the power spectra of sourced and vacuum gravitational waves is also

proportional to the number density of the spin-2 field and the VEV of the SU(2) gauge

field, i.e., P s
T /P

vac
T ∼ (ψ/MPl)

2(npairs/H
3). That gives us a physical insight into how the

strength of gravitational waves from SU(2) gauge fields is determined.

Finally, we constrained the parameter space of the massless models in this class of

inflationary scenarios. We find that the backreaction and the consistency of the slow-roll

condition exclude most of the parameter space. In particular, the tensor-to-scalar ratio of

the gravitational waves sourced by the gauge field can at most be on the order of that of
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the standard vacuum contribution. Going beyond the massless models, we argue that the

Higgsed models cannot evade this conclusion either.

The analytical study presented in this paper is based on quasi-de Sitter expansion

and slow-roll dynamics of the background gauge field. For more general situations, full

numerical analysis is required. At second order in perturbation, the spin-2 field couples to

the scalar sector and contributes to the scalar power spectrum and non-Gaussianity. This

non-linear effect may be important [45]. We expect that the loop contribution to the scalar

power spectrum is related to the number density of the spin-2 field, n2
pairs/H

6, that we

computed in this paper.
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A Symmetry of the VEV SU(2) field

In section 2, we present the metric and the VEV of the gauge field in a specific coordinate

system in which the spatial metric is a2δij . Here we present the general solution of the

VEV of the gauge field which generates a homogeneous and isotropic energy-momentum

tensor in general spatial coordinates.

Fixing the time-function, t, under a global rotation, we have

x
′µ 7→ xµ = Λµνx

′ν , (A.1)

where Λ0
ν = 0 and the tetrad fields (ηαβ = eαµeβµ) transform as

e
′α
µ(t) 7→ eαµ(t) = Λνµe

′α
ν(t). (A.2)

Since we choose to use the tetrad system with e
′a
0 (t) = 0 and e

′a
i (t) = aδai , under the action

of (A.1), we have ea0(t) = 0. The general form of the gauge field’s VEV in the temporal

gauge that can generate a homogeneous and isotropic energy-momentum tensor (hence

respect the symmetries of the FLRW background) is given by

Āaµ(t, ~x) = ψ(t)eaµ(t). (A.3)

More precisely, using (A.2) and the above solution, the field strength tensor is

F̄ a0i =
1

a
∂0

(
aψ
)
eai (t) and F̄ aij = gAψ

2εabce
b
i(t)e

c
j(t), (A.4)

which leads to a homogeneous and isotropic energy-momentum tensor for the gauge field

sector. In addition to the above global rotational symmetry, there is a residual gauge

symmetry, a continuous global SU(2) symmetry, as well

U(α) = exp(iαaTa), (A.5)
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which respects the temporal gauge and the form of the VEV in (A.3)

Āµ 7→
1

−igA
UD̄µU

−1 = ψ(t)eaµ(t)UTaU
−1 = ψ(t)eaµ(t)T ′a. (A.6)

It is straightforward to see that the VEV gauge field in (A.3) also satisfies

∇µĀµ(t) = 0. (A.7)

Finally, action has a Z2 symmetry, Parity, as

ψ 7→ −ψ (and for LA = LCn ϕ 7→ −ϕ),

which can be spontaneously broken by the VEV while it is still the symmetry of the

background energy-momentum tensor.

B Transverse-traceless field

In this part, we expand the gauge field’s action around the VEV as11

Aµ(xν) = Āµ(t) +ASV
µ (xν) +Bµ(xν), (B.1)

where ASV
µ (xν) parameterizes the scalar and vector modes in Aaµ (longitudinal modes),12

while Bµ(xν) is the transverse part of the gauge field

∇µBµ(xν) = 0. (B.3)

Notice that under the action of the continuous global symmetry (A.5), Bµ transforms

similar to (A.6). We have

tr(BµĀ
µ) = 0. (B.4)

Perturbing action (2.5) and (2.6) and using (B.4), the quadratic action of Bµ(xν) is13

δBLA[ϕ,A] = −1

2
[D̃µBν ]a[D̃µBν ]a + εµνλσ∂µᾱA Ba

ν∂λB
a
σ −

1

2
αH g2

AZ
2
0B

a
µB

µ
a

−1

2
[M2

µν ]a[BµBν ]a − 1

2
[MµBν ]a[MνBµ]a, (B.6)

11Interestingly, the linear Einstein equations combine the Bµ with the GWs. However, it is independent

of the other parts of the perturbed gauge field. In other words, the linearized Einstein equations do not

combine Bi and ASVi which makes the decomposition (B.1) physically meaningful and possible.
12More precisely, after fixing the gauge, the perturbed gauge fields have 3× 4− 3 = 9 degrees of freedom

which can be decomposed in terms of 3 scalars, 2 vectors and one tensor fluctuation. In particular, in the

temporal gauge, we have

δAai = δai Q+ δak∂ikZ̃ + gAψaε
a k
i ∂k(Z − Z̃) + δja∂ivj + εa ji wj + aδaj γ̃ij , (B.2)

where Q, Z, and z̃ are scales, vi, wi and γ̃ij are transverse fields and γ̃ij is symmetric. However, γ̃ij is the

only field that contributes to the transverse part of the Aai .
13For an Abelian field with action (2.6), the quadratic action of Bµ is

δBLA[ϕ,A] = −1

2
∇µBν∇µBν +

λ

2f
εµνλσ∂µϕBν∂λBσ −

αH
2
g2AZ

2
0BµB

µ. (B.5)
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where δB denotes terms quadratic order in Bµ, ᾱA is defined in (2.16), while the explicit

form of the covariant derivative, D̃µ, and the mass terms are14

D̃µ ≡ ∇µ − 2igAĀµ, (B.7)

M2
µν ≡ 4igAε

λσ
µν ∂λᾱA ĀaσTa, (B.8)

Mµ ≡ 2gAĀ
a
µTa. (B.9)

Note that (MµBν)2 cancels the term proportional to ĀµĀν in the (D̃µBν)2. Therefore, the

only actual masses are the one proportional to ᾱA and αH .

One can determine ˙̄α as a function of Āµ by the gauge field background equation

in (2.15). Notice that a given value of Āµ and Z0 gives the same value for ᾱA regardless

of whether LA is LGf or LCn. That indicates that their tensor sectors are the same at the

linear order.

We emphasize that unlike the U(1) field in which its transverse part is a spin-1 field,

the transverse part of Aaµ (in the temporal gauge) can be written as

Ba
i = δajBij = aδaj γ̃ij . (B.10)

In the following, we prove that γ̃ij is a (pseudo) spin-2 field.

B.1 (pseudo) spin-2 in perturbed SU(2) field?

At first, it may come as a surprise that there is a (pseudo) spin-2 degree of freedom in a

spin-1 SU(2) gauge field as in (2.20). In this appendix, we show that once the gauge field

is perturbed around its isotropic and homogeneous solution (2.2), there is a sector in the

perturbed field that transforms as a spin-2 field under rotations and is an odd eigenstate

of parity.15

It is convenient to write the fields in the complex spherical coordinates (r, z, z̄) which

are related to the standard spherical coordinates (r, θ, φ) as

z = eiφ tan
θ

2
and z̄ = e−iφ tan

θ

2
. (B.11)

The FLRW background geometry in this coordinate system is

ds2 = −dt2 + a2(t)

(
dr2 + 2r2ηzz̄dzdz̄

)
, (B.12)

where

ηzz̄ =
2

(1 + zz̄)2
. (B.13)

Moreover, consider a choice of the spatial triads (eαi eαj = gij) as

eαr = a(t)δαr and eαz = a(t)δαz , (B.14)

14Note that comparing to the background covariant derivative D̄µ = ∇µ − igAĀµ, the gauge field has

a factor of 2 in (B.7). That comes from the fact that [XµYν ]a = 1
2
[Xµ, Yν ]a and therefore ([D̄µ, Bν ])a =

(D̃µBν)a.
15Another way to see the pseudo-tensor nature of the spin-2 degree of freedom is the fact that it always

couples with the tensor metric perturbation with a factor of ψ which is a pseudo-scalar.
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where α is the index of the SO(3) algebra and runs from 1 to 3. One can write Ba
i in (B.10)

as

Ba
i = γ̃ij(t, ~x)eαjδaα. (B.15)

Then in the (r, z, z̄) coordinates and for a wave propagating in the direction k̂ = −r̂, we

have Ba
r = 0 while Ba

z and Ba
z̄ are non-zero. Moreover, given the fact that tr(γ̃ij) = 0, the

only non-zero components of γ̃ij are γ̃zz and γ̃z̄z̄. Under the action of a rotation around

the x3−direction, we have

z
R7−→ w = eiδz and z̄

R7−→ w̄ = e−iδ z̄, (B.16)

and

eαz
R7−→ eαw = eiδeαz (B.17)

δTA
a
z

R7−→ δTA
a
w = e−iδδTA

a
z . (B.18)

Finally, from the combination of (B.17) and (B.18) we arrive at the desired result

γ̃zz
R7−→ γ̃ww = e−2iδγ̃zz, (B.19)

which shows that γ̃ij transforms as a spin-2 field under the action of rotations. Moreover,

under the action of parity, we have

δAai
P7−→ −δAai , (B.20)

which leads to

γ̃ij
P7−→ −γ̃ij . (B.21)

Thus, γ̃ij is a pseudo-tensor. This completes the proof that γ̃ij is a (pseudo) spin-2 degree

of freedom.

C Mathematical supplement

Here, we present some mathematical formulae and relations which we need throughout

this work including some properties of Gamma and Whittaker functions as well as the

asymptotic form of the Meijer G-functions in the large argument limit.

The Gamma function has simple poles for non-positive integers

Res(Γ,−n) =
(−1)n

n!
(n ∈ N). (C.1)

Moreover, for any complex z, it satisfies

Γ(z + 1) = zΓ(z), (C.2)

which for non-integer values of z, gives

Γ(z)Γ(−z) = − π

z sin(πz)
(z /∈ Z). (C.3)
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The derivative of the Γ-function can be written as a polygamma function

ψ(d−1)(z) =
dd

dzd
ln Γ(z), (C.4)

which has the following series representation

ψ(d−1)(z) = (−1)d(d− 1)!

∞∑
j=0

1

(z + j)d
, (C.5)

which holds for d > 1 and any complex z not equal to a negative integer. Therefore, the

harmonic series can be written as

n∑
q=1

1

q
= −ψ(0)(1) + ψ(0)(n+ 1). (C.6)

Furthermore, the asymptotic series

lim
|z|→∞

Γ(z) '
√

2πzz−
1
2 exp(−z)

(
1 +

1

12z
+

1

288z2
− 139

51840z3
+ . . .

)
, (C.7)

which is valid in the sector |arg(z)| < π, leads to the following asymptotic expansion of the

digamma function

ψ(0)(z) = ln(z)− 1

2z
− 1

12z2
+

1

120z4
+ . . . , where |z| → ∞ . (C.8)

For complex values of z in which z = x+ iy with finite real x and y →∞, we have [46]

Γ(x+ iy) '
√

2π|y|x−
1
2 e−πy/2e−i(y+π

2
( 1
2
−x)). (C.9)

Finally, in the limit that z goes to zero, Gamma functions satisfy

lim
z→0

zΓ(−z − n) = −(−1)n

n!
and lim

z→0

d

dz
(zΓ(−z − n)) =

(−1)n

n!
ψ(0)(n+ 1), (C.10)

where n ∈ N. For later convenience, we recall that in the complex analysis, if f(z) has a

pole of order k at z = z0 then the residues are given as

Res(f, z0) =
1

(k − 1)!

dk−1

dzk−1

(
(z − z0)kf(z)

)∣∣∣∣
z=z0

. (C.11)

The W and M Whittaker functions, which are the solutions of (2.26), have the asymp-

totic expansions

Wκ,µ ∼ e−z/2zκ(1 +O(1
z )) for |z| → ∞, (C.12)

Mκ,µ ∼ zµ+ 1
2 (1 +O(z)) for |z| → 0, (C.13)

implying that W/M functions correspond to positive frequency modes in the asymptotic

past/future limits of de Sitter, respectively.
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The W function satisfies the following relation

Wκ,−µ(z) = Wκ,µ(z).

In our setup in which z, µ and κ are all imaginary quantities, we have W ∗κ,µ(z) = W−κ,µ(−z).

The W and M functions are related as

Mκ,µ(z) =
Γ(2µ+ 1)

Γ(1
2 + µ+ κ)

e−i(
1
2

+µ−κ)πWκ,µ(z) +
Γ(2µ+ 1)

Γ(1
2 + µ− κ)

eiκπW−κ,µ(eiπz), (C.14)

which holds when 2µ is not an integer and −3π
2 < |argz| < π

2 [47]. The W-Whittaker

functions have the Mellin-Barnes integral representation [46]

Wκ,µ(z) =
e−

z
2

2iπ

∫ i∞

−i∞

Γ(1
2 + µ+ s)Γ(1

2 − µ+ s)Γ(−κ− s)
Γ(1

2 + µ− κ)Γ(1
2 − µ− κ)

z−sds where |arg(z)| < 3

2
π,

(C.15)

which holds when 1
2 ± µ− κ 6= 0,−1,−2, . . . , and the contour of the integration separates

the poles of Γ(1
2 + µ+ s)Γ(1

2 − µ+ s) from poles of Γ(−κ− s).
The Whittaker functions satisfy the following integral identities

∫
xne−ixWκ,µ(−2ix)dx =

xn+1G2,2
2,3

(
−2ix

∣∣∣∣ −n, 1 + κ
1
2 − µ, µ+ 1

2 , −n− 1

)
Γ(1

2 − κ− µ)Γ(1
2 − κ+ µ)

, (C.16)

∫
xneixWκ,µ(−2ix)dx = xn+1G2,1

2,3

(
−2ix

∣∣∣∣ −n, 1− κ
1
2 − µ, µ+ 1

2 , −n− 1

)
. (C.17)

The Meijer G-functions with Re(p) > 0, Re(q) > 0 and p − q 6= 0, has the following

asymptotic form for x� 1

1

xp−1
G2,1

2,3

(
−2ix

∣∣∣∣ p, q
1
2−µ,

1
2 +µ, p−1

)
' i(−2i)p

2
Γ

(
3

2
−p−µ

)
Γ

(
3

2
−p+µ

)
Γ(p−q),

+
i(−2i)q

2(q−p)
Γ

(
3

2
−q−µ

)
Γ

(
3

2
−q+µ

)
xq−p. (C.18)

1

xp−1
G2,2

2,3

(
−2ix

∣∣∣∣ p, q
1
2−µ,

1
2 +µ, p−1

)
' i(−2i)p

2

Γ(3
2−p−µ)Γ(3

2−p+µ)

Γ(1−p+q)
. (C.19)

D Computation of the induced currents

In this appendix, we compute the momentum integral K[X] in (4.8) which is necessary

for the induced currents and energy density.16 First, we work out the total integral which

is divergent. In appendix D.1, we regularize this current by using adiabatic subtraction.

Finally, in appendix D.2, we compute the energy density of the spin-2 fluctuations.

16The scalar induced current in the same setup has been worked out in [39]. The scalar induced current

due to a U(1) case has been worked out in [48].
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It is convenient to decompose K[X] in terms of polarizations as

K[X] =
∑
σ=±2

Kσ[X].

Using (2.28) and (4.8), we can write Kσ[X] as

Kσ[X] = lim
Λ→∞

eiκσπ
∫ Λ

0

τ̃ dτ̃

2

(
− λσ τ̃ +X

)
|Wκσ ,µ(−2iτ̃)|2, (D.1)

where τ̃ is a rescaled physical momentum and Λ is the physical UV cutoff which in the end

will be sent to infinity

τ̃ ≡ k

aH
and Λ =

kUV

aH
.

Note that in our setup, both κ and µ are pure imaginary. In the following, for notational

convenience, we drop the argument X of Kσ[X] and σ subscript in κσ and λσ, unless

otherwise stated. Upon using the integral representation of Whittaker functions in (C.15),

we find

Kσ= lim
Λ→∞

1

8(2π)2
eiκπ

[
Γ

(
1

2
+µ−κ

)
Γ

(
1

2
−µ−κ

)
Γ

(
1

2
+µ∗+κ

)
Γ

(
1

2
−µ∗+κ

)]−1

×
∫ i∞

−i∞
ds

∫ i∞

−i∞
ds′ei(s−s

′)π
2 (2Λ)2−s−s′

(
− λΛ

3−s−s′
+

X

2−s−s′

)
Γ

(
1

2
+µ+s

)
Γ

(
1

2
−µ+s

)
×Γ(−κ−s)Γ

(
1

2
+µ∗+s′

)
Γ

(
1

2
−µ∗+s′

)
Γ(κ−s′). (D.2)

The integrand has singularities at s′ = −1
2 ± µ− n, κ+ n, 3− s, and 2− s. Moreover, it is

proportional to Λ2−s−s′ which vanishes for Re(s′) > 3− Re(s) in the limit Λ →∞. Upon

choosing the contour of s such that Re(s) > −1 and closing the s′-contour in the right-half

plane without passing through the poles,17 we are left with the following six poles

s′1 = κ, s′2 = κ+ 1, s′3 = κ+ 2, s′3 = κ+ 3, s′5 = 2− s, and s′6 = 3− s. (D.3)

Doing the s′-integral, we obtain

Kσ =
eiκπ

24(2π)2

[
Γ

(
1

2
+ µ− κ

)
Γ

(
1

2
− µ− κ

)
Γ

(
1

2
+ µ∗ + κ

)
Γ

(
1

2
− µ∗ + κ

)]−1

× lim
Λ→∞

∫ i∞

−i∞
ds Γ

(
1

2
+ µ+ s

)
Γ

(
1

2
− µ+ s

)
Γ(−κ− s)Kσ(s,Λ). (D.4)

17Note that the integral of (D.2) over a finite path along the real axis vanishes at lim Im(s′)→ ±∞.
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where Kσ(s,Λ) is

Kσ(s,Λ) = (2iπ)e−iκπei(s+κ)π
2

[
3XΓ

(
5

2
+ µ∗ − s

)
Γ

(
5

2
− µ∗ − s

)
Γ(κ− 2 + s)

+
3

2
iλΓ

(
7

2
+ µ∗ − s

)
Γ

(
7

2
− µ∗ − s

)
Γ(κ− 3 + s)

+ (2Λ)2−s−κ
(

3λΛ

s+ κ− 3
− 3X

s+ κ− 2

)
Γ

(
1

2
+ µ∗ + κ

)
Γ

(
1

2
− µ∗ + κ

)
+ i(2Λ)1−s−κ

(
3λΛ

s+ κ− 2
− 3X

s+ κ− 1

)
Γ

(
3

2
+ µ∗ + κ

)
Γ

(
3

2
− µ∗ + κ

)
− 1

2!
(2Λ)−s−κ

(
3λΛ

s+ κ− 1
− 3X

s+ κ

)
Γ

(
5

2
+ µ∗ + κ

)
Γ

(
5

2
− µ∗ + κ

)
− i

4
(2Λ)−s−κ

λ

s+ κ
Γ

(
7

2
+ µ∗ + κ

)
Γ

(
7

2
− µ∗ + κ

)]
. (D.5)

This integral is divergent and includes terms proportional to Λ3, Λ2 and Λ.

Let us first compute the (first two) finite terms in (D.5). Using (C.3), we write them

as

Kσ,1 =
1

24

[
Γ

(
1

2
+ µ− κ

)
Γ

(
1

2
− µ− κ

)
Γ

(
1

2
+ µ∗ + κ

)
Γ

(
1

2
− µ∗ + κ

)]−1

Iσ, (D.6)

where

Iσ =
3π

(2iπ)

∫ +i∞

−i∞
ds

ei(s+κ)π

sin(π(s+κ))
Γ

(
1

2
+µ∗−s

)
Γ

(
1

2
−µ∗−s

)
Γ

(
1

2
+µ+s

)
Γ

(
1

2
−µ+s

)
×
(
(3

2−s)
2−µ2

)(
(1

2−s)
2−µ2

)
(κ+s)(κ+s−1)(κ+s−2)

[
X+iλ

(5
2−s)

2−µ2

2(κ+s−3)

]
. (D.7)

It can be further simplified as

Iσ =
π

(2iπ)

∫ +i∞

−i∞
ds Γ

(
1

2
+µ∗−s

)
Γ

(
1

2
−µ∗−s

)
Γ

(
1

2
+µ+s

)
Γ

(
1

2
−µ+s

)
ei(s+κ)π

sin(π(κ+s))

×
[
C̃(s)−C̃(s−1)+

C(X)

(κ+s)

]
, (D.8)

in which C(X) and C̃(s) are

C(X) ≡ 3X

(
1

2
+ 6κ2 − 2µ2

)
− 3

2
(7 + 20κ2 − 12µ2)|κ|, (D.9)

C̃(s) ≡ c1(s+ 3)− 3c1(s+ 2) + 3c1(s+ 1)− c2(s+ 2) + 2c2(s+ 1)

κ+ s

+
c1(s+ 2)− 3c1(s+ 1)− c2(s+ 1)

κ+ s− 1
+
c1(s+ 1)

κ+ s− 2
+ 9Xs(s+ 1− 2κ)

+
3

2
iλ(7 + 20κ2 − 12µ2)s+ 5iλs(s+ 1)(1 + 2s− 3κ). (D.10)
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Here, c1(s) and c2(s) are the following functions of s

c1(s) = − iλ
4

[(
5

2
− s
)2

− µ2

][(
3

2
− s
)2

− µ2

][(
1

2
− s
)2

− µ2

]
, (D.11)

c2(s) =
3X

2

[(
3

2
− s
)2

− µ2

][(
1

2
− s
)2

− µ2

]
. (D.12)

Recalling that µ is pure imaginary, the first two terms in integral (D.8) can be written as

Iσ,1 =
π

(2iπ)

(∫ +i∞

−i∞
ds−

∫ +i∞−1

−i∞−1
ds

)
Γ

(
1

2
+ µ∗ − s

)
Γ

(
1

2
− µ∗ − s

)
×Γ

(
1

2
+ µ+ s

)
Γ

(
1

2
− µ+ s

)
ei(s+κ)π

sin(π(κ+ s))
C̃(s). (D.13)

which has poles at

sn,± = −1

2
± µ− n, sn,0 = −κ+ n, (D.14)

s̃n,± =
1

2
± µ+ n, s̃n,0 = −κ− n, (n ∈ N). (D.15)

Notice that sn,0 poles with n = 0, 1, 2 are 2nd rank while the rest are simple poles. There-

fore, it is more convenient to close the contour path of s on the left half-plane which only

includes simple poles below

s1 = −1− κ, s0,± = −1

2
± µ.

Doing the complex integral, we have

Iσ,1 = Γ

(
1

2
+ µ∗ + κ

)
Γ

(
1

2
− µ∗ + κ

)
Γ

(
1

2
+ µ− κ

)
Γ

(
1

2
− µ− κ

){
C̃(−1− κ)

+
i

2

[
e2iπκ + e2iπµ

sin(2πµ)
C̃
(
−1

2
+ µ

)
− e2iπκ + e−2iπµ

sin(2πµ)
C̃
(
−1

2
− µ

)]}
, (D.16)

in which the explicit forms of C̃(−1
2 + µ) and C̃(−1

2 − µ) are

1

2

[
C̃
(
−1

2
+µ

)
+C̃
(
−1

2
−µ
)]

=
9

4
X(−1+4κ+4µ2)− 3iλ

4
(7+20κ2−12µ2+5κ(−1+4µ2)),

1

2

[
C̃
(
−1

2
+µ

)
−C̃
(
−1

2
−µ
)]

= 2λ|µ|
[
−9X|κ|−4−15κ2+4µ2

]
. (D.17)

Now we turn to the last term in (D.8) which is

Iσ,2 =
C(X)

(2iπ)
π

∫ +i∞

−i∞
ds Γ

(
1

2
+ µ∗ − s

)
Γ

(
1

2
− µ∗ − s

)
Γ

(
1

2
+ µ+ s

)
Γ

(
1

2
− µ+ s

)
× ei(s+κ)π

(κ+ s) sin(π(κ+ s))
. (D.18)
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Closing the contour on the left half-plane with an infinite radius semicircle,18 we have

the poles sn,± and s̃n+1,0, which are an infinite number of simple poles. Summing up the

contribution of sn poles and using (C.5), we have

Iσ,2
∣∣
s̃n+1,0−poles = C(X) ψ(1) Γ

(
1

2
+µ∗+κ

)
Γ

(
1

2
−µ∗+κ

)
Γ

(
1

2
+µ−κ

)
Γ

(
1

2
−µ−κ

)
.

(D.19)

Moreover, using (C.5), we find the contribution of sn,± poles as

Iσ,2
∣∣
sn,±−poles = C(X) Γ

(
1

2
+µ∗+κ

)
Γ

(
1

2
−µ∗+κ

)
Γ

(
1

2
+µ−κ

)
Γ

(
1

2
−µ−κ

)
× i

2sin(2µπ)

(
(e2iκπ+e2iµπ)ψ(0)

(
1

2
−κ−µ

)
−(e2iκπ+e−2iµπ)ψ(0)

(
1

2
−κ+µ

))
, (D.20)

where ψ(0)(z) = d
dz ln Γ(z) is the digamma function. Finally, adding (D.16), (D.19)

and (D.20), we obtain

Kσ,1 =
1

24

[
C̃(−1−κ)+2iλ|µ|(4µ2−15κ2−4−9|κ|X)

[
cos(2πµ)+e2iπκ

sin(2πµ)

]
− 9

4
(4µ2−1)X

+C(X)

(
ψ(0)(1)+

i

2

(e2iκπ+e2iµπ)

sin(2µπ)
ψ(0)

(
1

2
−κ−µ

)
− i

2

(e2iκπ+e−2iµπ)

sin(2µπ)
ψ(0)

(
1

2
−κ+µ

))
+

3iλ

4
(7+20κ2−12µ2 +12X|κ|)− 15

4
|κ|(1−4µ2)

]
. (D.21)

Now we turn to the remaining 4 (Λ-dependent) lines in (D.5). Here, we close the

contour in the right-half plane which encloses the following poles at the Λ →∞ limit

s1 = −κ, s2 = 1− κ, s3 = 2− κ, and s4 = 3− κ.

Some of the above poles are second rank and therefore the integral includes a derivative

of the Gamma function, i.e. ψ(0)(z). Doing the second complex integral in (D.4) and

using (C.10) and (C.11), we find

Kσ,2 =
1

24
lim

Λ→∞

[
−4λΛ3 +6(X−|κ|)Λ2 +3λΛ

(
4|κ|X+

1

2
(1+12κ2−4µ2)

)
−C(X) ln(2Λ)

+C(X)

(
iπ

2
−ψ(0)(1)+ψ(0)

(
1

2
+µ−κ

)
+ψ(0)

(
1

2
−µ−κ

))
−C̃(−1−κ)

−3iλ

4

(
7+20κ2−12µ2 +12X|κ|

)
−|κ|(20+37κ2)+X

(
3

2
+21κ2 +6µ2

)]
. (D.22)

18More precisely, we use (κ+ s)d (d > 1) in the denominator of (D.18) and then compute the d→ 1 limit

solution. As a result, the added infinite radius semicircle integral vanishes.
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Adding (D.21) and (D.22), we finally find the desired Kσ as

Kσ=
1

24
lim

Λ→∞

[
−4λσΛ3+6(X−|κ|)Λ2+3λσΛ

(
4|κ|X+

1

2
(1+12κ2−4µ2)

)
−C(X)ln(2Λ)−|κ|

(
95

4
+37κ2−15µ2

)
+2iλσ|µ|(4µ2−15κ2−4−9|κ|X)

[
cos(2πµ)+e2iπκσ

sin(2πµ)

]
+
i

2
C(X)

(
π+

(e2iκσπ+e−2iµπ)

sin(2µπ)
ψ(0)

(
1

2
−κσ−µ

)
− (e2iκσπ+e2iµπ)

sin(2µπ)
ψ(0)

(
1

2
−κσ+µ

))
+3X

(
5

4
+7κ2−µ2

)]
. (D.23)

It has divergent terms of the order 3, 2, 1 and log of Λ. Summing over the polarization

states, we find

K =
1

12
lim

Λ→∞

{
6(X−|κ|)Λ2−C(X)ln(2Λ)−|κ|

(
95

4
−37|κ|2+15|µ|2

)
+3X

(
5

4
−7|κ|2+|µ|2

)
+2|µ|(−4|µ|2+15|κ|2−4−9|κ|X)

sinh(2π|κ|)
sinh(2π|µ|)

+
C(X)

4
Re

[
(e2|κ|π+e2|µ|π)

sinh(2|µ|π)
ψ(0)

(
1

2
+i|κ|−i|µ|

)
−(e2|κ|π+e−2|µ|π)

sinh(2|µ|π)
ψ(0)

(
1

2
+i|κ|+i|µ|

)
+

(e−2|κ|π+e2|µ|π)

sinh(2|µ|π)
ψ(0)

(
1

2
−i|κ|−i|µ|

)
−(e−2|κ|π+e−2|µ|π)

sinh(2|µ|π)
ψ(0)

(
1

2
−i|κ|+i|µ|

)]}
. (D.24)

We find that K is real and has divergent terms of the order 2 and log of Λ.

Before renormalizing K and removing Λ terms, let us take a closer look at the finite

terms in (D.24). Recalling (2.10) and (3.18) (|κ| > 3.5), we realize that the dominant finite

terms are proportional to e2(|κ|−|µ|)π > eπξA � 1. Thus, we can approximate K[X] as

K[X] =
1

6
e2(|κ|−|µ|)π

{
|µ|(−4|µ|2 +15|κ|2−4−9|κ|X)+

C(X)

4
Re

[
ψ(0)

(
1

2
+ i|κ|− i|µ|

)
−ψ(0)

(
1

2
+ i|κ|+ i|µ|

)]}
+ lim

Λ→∞

[
1

2
(X−|κ|)Λ2− C(X)

12
ln(2Λ)

]
+O(ξ3−m

A ξmZ0
), (D.25)

where O(ξ3−m
A ξmZ0

) with m = 0, 1, 2, 3 are the next leading terms and hence negligible. The

quantity (|κ| − |µ|) is presented in figure 3. In the next section, we renormalize the above

and find the physical quantity, Kreg[X], as

Kreg[X] ≡ K[X]−Kc.t.[X], (D.26)

where Kc.t.[X] is the counter-term.

D.1 Regularized current

In this section, we use the adiabatic subtraction technique in curved QFT to remove the

divergent terms in the current. The mode function B
σ,~k

(τ) has the following WKB form

BWKB
σ,~k

(τ) =
1

(2π)
3
2

√
2W

σ,~k
(τ)

e
−i

∫ τ
−∞ dτ̃W

σ,~k
(τ̃)
, (D.27)
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where W 2
σ,~k

can be written in terms of the instantaneous frequency, ω2
σ,~k

, defined by

ω2
σ,~k

= k2 − λσδckH+
m̃2

H2
H2, (D.28)

as

W 2
σ,~k

= ω2
σ,~k
− a′′

a
+

3

4

(W ′
σ,~k

W
σ,~k

)2

− 1

2

W ′′
σ,~k

W
σ,~k

. (D.29)

If W
σ,~k

is real and positive, then BWKB
σ,~k

(τ) corresponds to canonically normalized

positive frequency modes in the asymptotic past. For regularization in 4 dimension, we

need to expand W
σ,~k

up to the second order of time derivatives with respect to a as

W 2
σ,~k

= ω2
σ,~k
− a′′

a
+

3

4

(ω′
σ,~k

ω
σ,~k

)2

− 1

2

ω′′
σ,~k

ω
σ,~k

. (D.30)

Using (D.30) in (4.8), we obtain Kc.t.σ [X] as19

Kc.t.σ = lim
Λ→∞

∫ Λ

τ̃ ′2dτ̃ ′
H

2ω
σ,~k

(
− λσ τ̃ ′ +X

)(
1 +

H2

ω2
σ,~k

+
H4

4ω4
σ,~k

(
− 2λσ|κ|τ̃ ′ +

27

4
− 3µ2

)

−5

8

H6

ω6
σ,~k

(
−λσ|κ|τ̃ ′ +

9

4
− µ2

)2)
. (D.31)

Doing the integral, and summing over the polarization states, we obtain

Kc.t.σ =
1

12
lim

Λ→∞

[
6(X − |κ|)Λ2 − C(X) ln(2Λ)

]
+O(ξ3−m

A ξmZ0
). (D.32)

The above counter term has divergences of the order 2 and log of Λ which cancel with the

divergences of the total K in (D.25). Moreover, it has finite terms of order O(ξ3−m
A ξmZ0

)

which are subleading compared to the dominate terms in K and we neglect them here.

Finally, subtracting (D.32) from (D.25), we have the desired regularized K[X] as

Kreg[X] =
1

6
e2(|κ|−|µ|)π

{
|µ|(−4|µ|2 +15|κ|2−4−9|κ|X)+

C(X)

4
Re

[
ψ(0)

(
1

2
+ i|κ|− i|µ|

)
−ψ(0)

(
1

2
+ i|κ|+ i|µ|

)]}
+O(ξ3−m

A ξmZ0
), (D.33)

where O(ξ3−m
A ξmZ0

) with m = 0, 1, 2, 3 are the next leading terms and hence negligible.

19Note that the instantaneous frequency squared is negative in the interval τ̃ ∈ (τ̃2, τ̃1) in (3.7). Therefore,

technically, we have to consider an IR cut-off for the momentum integral, ΛIR & τ̃1. In principle it can be

a problem since ΛIR explicitly appears in the finite terms. However, this effect and the other finite terms

in Kc.t. are at most of the order O(ξ3−mA ξmZ0
) with m = 0, 1, 2, 3 and are subleading comparing with the

dominant finite terms of K in (D.25). As a result, a more careful regularization process would not improve

our results.
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D.2 Energy density

Here we compute the energy density in the spin-2 fluctuations of the gauge field which is

presented in (4.20). Going to Fourier space, we can write 〈δBρ〉 as

〈δBρ〉 =
1

2a4

∑
σ

∫ Λ

0
dk3

[
|B′σ|2 +

(
k2 − 2λσξAkH+ αHξ

2
Z0
H2

)
|Bσ|2

]
, (D.34)

where in the end we send Λ to infinity. From (2.28), we can write Bσ as

Bσ(τ,~k) =
1√
k
B̄σ(τ̃).

We then write the energy density as

〈δBρ〉 = (2π)H4
∑
σ

∫ Λ

0
τ̃ dτ̃

[
τ̃2
(
|∂τ̃ B̄σ|2 + |B̄σ|2

)
+
(
− 2λσξAτ̃ + αHξ

2
Z0

)
|B̄σ|2

]
. (D.35)

The first term in the integral can be written as∫ Λ

0
τ̃3dτ̃ |∂τ̃ B̄σ|2 =

∫ Λ

0
dτ̃

[
∂τ̃

(
τ̃3B̄σ∂τ̃ B̄σ −

3

2
τ̃2B̄σ

2
)

+ 3τ̃ B̄σ
2 − τ̃3B̄σ∂

2
τ̃ B̄σ

]
. (D.36)

Using the field equation of B̃σ in (2.25), we arrive at∫ Λ

0
τ̃3dτ̃ |∂τ̃ B̄σ|2 =

∫ Λ

0
τ̃ dτ̃

[
1 + τ̃2 − λσδcτ̃ +

m̃2

H2

]
|B̄σ|2

]
+ C̃c.t., (D.37)

where C̃c.t. comes from integrating the total derivative term

C̃c.t. = lim
Λ→∞

(
τ̃3B̄σ∂τ̃ B̄σ −

3

2
τ̃2B̄σ

2
)∣∣∣∣

τ̃=Λ

. (D.38)

Using (D.36), we can write the bare energy density as

〈δBρ〉 = (2π)H4

{∑
σ

∫ Λ

0
τ̃ dτ̃

[
(δc + 2ξA)

(
−λσ τ̃ +

1 + m̃2

H2 + αHξ
2
Z0

δc + 2ξA

)
+ 2τ̃2

]
|B̄σ|2 + Cc.t.

}
.

(D.39)

From (4.8), the first two terms can be written in terms of K
[1+ m̃2

H2 +αHξ
2
Z0

δc+2ξA

]
and we have

its renormalized form in (D.33). The regularized part of the last term inside the brackets

satisfies the following inequality (see figure 15)∑
σ

∫
dτ̃ τ̃3|B̄σ|2 . 0.1× (δc + 2ξA)

∑
σ

∫
|B̄σ|2τ̃2dτ̃ , (D.40)

which implies that it is negligible comparing to the first term in (D.39). Thus, the regular-

ized energy density can be well approximated as

〈δBρ〉reg ≈
H4

(2π)2
(δc + 2ξA)Kreg

[
1 + m̃2

H2 + αHξ
2
Z0

δc + 2ξA

]
, (D.41)

which, as we see, is given in terms of the regularized Kreg[X] in (D.33) with X =

1+ m̃2

H2 +αHξ
2
Z0

δc+2ξA
.

– 40 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
4

ξZ0 =0

ξZ0 =1

ξZ0 =3

ξZ0=5

2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

ξA

|Δ
|

Figure 15. The ratio ∆ ≡
( ∫ τ̃IR

0 dτ̃ τ̃3|B̄+|2

(δc+2ξA)
∫ τ̃IR
0 dτ̃ τ̃2|B̄+|2

)
as a function of ξA and ξZ0

. Here τ̃IR is the

physical momentum in which the deviation from adiabaticity is Ω+(τ̃IR) = 0.1. The ratio ∆ for the

minus polarization is smaller with the same order of magnitude.

E Sourced graviational waves

In this appendix, we work out the analytical form of the gravitational waves sourced by

the gauge field for the general action (2.4). The derivation given here follows closely [11].

The inhomogeneous solution of (2.24) sourced by Bσ is given as

hsσ(τ,~k) =

∫ Λ

τ̃
G(τ̃ , τ̃ ′)STσ (τ̃ ′)dτ̃ ′, (E.1)

where the source term, STσ (τ̃ ′), and the retarded Green’s function, G(τ̃ , τ̃ ′), are given by

STσ (τ̃ ′) =
2

τ̃ ′

(
ψ

MPl

)[(
−λσβc +

θc
τ̃ ′

)
Bσ(τ̃ ′, ~k) + ∂τ̃ ′Bσ(τ̃ ′, ~k)

]
, (E.2)

G(τ̃ , τ̃ ′) =

(
τ̃ ′ − τ̃
τ̃ ′τ̃

cos(τ̃ ′ − τ̃)−
(

1 +
1

τ̃ τ̃ ′

)
sin(τ̃ ′ − τ̃)

)
Θ(τ̃ ′ − τ̃), (E.3)

respectively. Here Θ(τ̃ ′ − τ̃) is the Heaviside step function. Using the integral rela-

tions (C.16) and (C.17) and doing the integral (E.1) for −kτ = τ̃ � 1, we obtain

hsσ(τ,~k)' e
iκσπ/2

(2π)
3
2

[
−(i+λσβc)

{G2,1
2,3

(
−2iτ̃Λ

∣∣∣∣ 1, 1+κσ
1
2−µ,

1
2 +µ, 0

)
Γ(1

2−κσ−µ)Γ(1
2−κσ+µ)

+G2,2
2,3

(
−2iτ̃Λ

∣∣∣∣ 1, 1−κσ
1
2−µ,

1
2 +µ, 0

)}

− 1

τ̃Λ

{
G2,2

2,3

(
−2iτ̃Λ

∣∣∣∣ 2, −κσ
1
2−µ,

1
2 +µ, 1

)
−(1−κσ− iλσβc+θc)G

2,2
2,3

(
−2iτ̃Λ

∣∣∣∣ 2, 1−κσ
1
2−µ,

1
2 +µ, 1

)
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Figure 16. The exact form of Gσ(ξA, ξZ0) in (E.6) compared to the approximated from in (E.7)

with respect to ξA for different values of ξZ0
. The solid (black) lines are the exact forms while the

dashed line on the top of each curve is its approximated form.

+

G2,1
2,3

(
−2iτ̃Λ

∣∣∣∣ 2, 2+κσ
1
2−µ,

1
2 +µ, 1

)
Γ(−1

2−κσ−µ)Γ(−1
2−κσ+µ)

+(1+κσ− iλσβc−θc)

G2,1
2,3

(
−2iτ̃Λ

∣∣∣∣ 2, 1+κσ
1
2−µ,

1
2 +µ, 1

)
Γ(1

2−κσ−µ)Γ(1
2−κσ+µ)

}

+
1

τ̃2
Λ

{
i(θc−κσ)

[
G2,2

2,3

(
−2iτ̃Λ

∣∣∣∣ 3, 1−κσ
1
2−µ,

1
2 +µ, 2

)
−

G2,1
2,3

(
−2iτ̃Λ

∣∣∣∣ 3, 1+κσ
1
2−µ,

1
2 +µ, 2

)
Γ(1

2−κσ−µ)Γ(1
2−κσ+µ)

]
(E.4)

−iG2,2
2,3

(
−2iτ̃Λ

∣∣∣∣ 3, −κσ
1
2−µ,

1
2 +µ, 2

)
+ i

G2,1
2,3

(
−2iτ̃Λ

∣∣∣∣ 3, 2+κσ
1
2−µ,

1
2 +µ, 2

)
Γ(−1

2−κσ−µ)Γ(−1
2−κσ+µ)

}]
×
(

ψ

MPl

)(
aH
√

2k
3
2

)
.

which implies that the sourced part of the gravitational wave can be written as

hsσ(τ,~k) =
eiκσπ/2

(2π)
3
2

(
ψ

MPl

)(
aH
√

2k
3
2

)
Gσ(ξA, ξZ0). (E.5)

Using the asymptotic form of Meijer-G functions at τ̃Λ � 1 in (C.18)–(C.19), we can

simplify Gσ as

Gσ(ξA, ξZ0) =
Γ(1

2−µ)Γ(1
2 +µ)

Γ(−κσ)

{[
(i+λσβc)

κσ
− 2(λσβc+ i(2+θc))

(1
4−µ2)

+
4i(2+θc)(1+κσ)

(9
4−µ2)(1

4−µ2)

]
+

[
i−λσβc+

2iκσ(iλσβc+θc)

(1
4−µ2)

+
4iκσ

(
1
4−µ

2 +2κσ+θ(κσ−1)
)

(9
4−µ2)(1

4−µ2)

]
× Γ2(−κσ)

Γ(1
2−κσ−µ)Γ(1

2−κσ+µ)

}
. (E.6)

We show |G+(ξA, ξZ0)|2 in figure 8. As we see, this function decreases with the increase of

ξA and ξZ0 and due to the Gamma function has infinite number of roots on the ξA axis.

We can well approximate the above as (see figure 16)

Gσ(ξA, ξZ0) ' π

cos(πµ)Γ(−κσ)

[
(i+ λσβc)

κσ
+

(i− λσβc)Γ2(−κσ)

Γ(1
2 − κσ − µ)Γ(1

2 − κσ + µ)

]
. (E.7)
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Finally, after using (C.9) in the limit that |µ| � 1, and up to a phase factor, we have

Gσ(ξA, ξZ0) ' Aσ
√

2π|κ|eπ( 1
2
λσ |κ|−|µ|), (E.8)

where Aσ is the following quantity

Aσ ≡
(

(i+ λσβc)

κσ
+

(i− λσβc)Γ2(−κσ)

Γ(1
2 − κσ − µ)Γ(1

2 − κσ + µ)

)
. (E.9)

In figure 8, we present |A+|2 as a function of ξA and ξZ0 .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness

problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

[2] K. Sato, First order phase transition of a vacuum and expansion of the universe, Mon. Not.

Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].

[3] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon,

flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982)

389 [INSPIRE].

[4] A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively

induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

[5] A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian gauge field inflation, Phys. Rev. D 84

(2011) 043515 [arXiv:1102.1932] [INSPIRE].

[6] A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: inflation from non-Abelian gauge

fields, Phys. Lett. B 723 (2013) 224 [arXiv:1102.1513] [INSPIRE].

[7] P. Adshead and M. Wyman, Chromo-natural inflation: natural inflation on a steep potential

with classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302

[arXiv:1202.2366] [INSPIRE].

[8] P. Adshead, E. Martinec and M. Wyman, Perturbations in chromo-natural inflation, JHEP

09 (2013) 087 [arXiv:1305.2930] [INSPIRE].

[9] A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge fields and inflation, Phys. Rept.

528 (2013) 161 [arXiv:1212.2921] [INSPIRE].

[10] R. Namba, E. Dimastrogiovanni and M. Peloso, Gauge-flation confronted with Planck, JCAP

11 (2013) 045 [arXiv:1308.1366] [INSPIRE].

[11] A. Maleknejad, Axion inflation with an SU(2) gauge field: detectable chiral gravity waves,

JHEP 07 (2016) 104 [arXiv:1604.03327] [INSPIRE].

[12] C.M. Nieto and Y. Rodriguez, Massive gauge-flation, Mod. Phys. Lett. A 31 (2016) 1640005

[arXiv:1602.07197] [INSPIRE].

– 43 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.23.347
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D23,347%22
https://doi.org/10.1093/mnras/195.3.467
https://doi.org/10.1093/mnras/195.3.467
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,195,467%22
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B108,389%22
https://doi.org/10.1103/PhysRevLett.48.1220
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,48,1220%22
https://doi.org/10.1103/PhysRevD.84.043515
https://doi.org/10.1103/PhysRevD.84.043515
https://arxiv.org/abs/1102.1932
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1932
https://doi.org/10.1016/j.physletb.2013.05.001
https://arxiv.org/abs/1102.1513
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1513
https://doi.org/10.1103/PhysRevLett.108.261302
https://arxiv.org/abs/1202.2366
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2366
https://doi.org/10.1007/JHEP09(2013)087
https://doi.org/10.1007/JHEP09(2013)087
https://arxiv.org/abs/1305.2930
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.2930
https://doi.org/10.1016/j.physrep.2013.03.003
https://doi.org/10.1016/j.physrep.2013.03.003
https://arxiv.org/abs/1212.2921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2921
https://doi.org/10.1088/1475-7516/2013/11/045
https://doi.org/10.1088/1475-7516/2013/11/045
https://arxiv.org/abs/1308.1366
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1366
https://doi.org/10.1007/JHEP07(2016)104
https://arxiv.org/abs/1604.03327
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03327
https://doi.org/10.1142/S0217732316400058
https://arxiv.org/abs/1602.07197
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.07197


J
H
E
P
0
5
(
2
0
1
9
)
1
7
4

[13] R.R. Caldwell and C. Devulder, Axion gauge field inflation and gravitational leptogenesis: a

lower bound on B modes from the matter-antimatter asymmetry of the universe, Phys. Rev.

D 97 (2018) 023532 [arXiv:1706.03765] [INSPIRE].

[14] P. Adshead, E. Martinec, E.I. Sfakianakis and M. Wyman, Higgsed chromo-natural inflation,

JHEP 12 (2016) 137 [arXiv:1609.04025] [INSPIRE].

[15] E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial gravitational waves from

axion-gauge fields dynamics, JCAP 01 (2017) 019 [arXiv:1608.04216] [INSPIRE].

[16] P. Adshead and E.I. Sfakianakis, Higgsed gauge-flation, JHEP 08 (2017) 130

[arXiv:1705.03024] [INSPIRE].

[17] E. Dimastrogiovanni and M. Peloso, Stability analysis of chromo-natural inflation and

possible evasion of Lyth’s bound, Phys. Rev. D 87 (2013) 103501 [arXiv:1212.5184]

[INSPIRE].

[18] P. Adshead, E. Martinec and M. Wyman, Gauge fields and inflation: chiral gravitational

waves, fluctuations and the Lyth bound, Phys. Rev. D 88 (2013) 021302 [arXiv:1301.2598]

[INSPIRE].

[19] B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu and M. Shiraishi, Finding the

chiral gravitational wave background of an axion-SU(2) inflationary model using CMB

observations and laser interferometers, Phys. Rev. D 97 (2018) 043506 [arXiv:1707.03240]

[INSPIRE].

[20] A. Agrawal, T. Fujita and E. Komatsu, Large tensor non-Gaussianity from axion-gauge field

dynamics, Phys. Rev. D 97 (2018) 103526 [arXiv:1707.03023] [INSPIRE].

[21] A. Agrawal, T. Fujita and E. Komatsu, Tensor non-Gaussianity from axion-gauge-fields

dynamics: parameter search, JCAP 06 (2018) 027 [arXiv:1802.09284] [INSPIRE].

[22] E. Dimastrogiovanni, M. Fasiello, R.J. Hardwick, H. Assadullahi, K. Koyama and D. Wands,

Non-Gaussianity from axion-gauge fields interactions during inflation, JCAP 11 (2018) 029

[arXiv:1806.05474] [INSPIRE].

[23] A. Maleknejad, Chiral gravity waves and leptogenesis in inflationary models with non-Abelian

gauge fields, Phys. Rev. D 90 (2014) 023542 [arXiv:1401.7628] [INSPIRE].

[24] A. Maleknejad, Gravitational leptogenesis in axion inflation with SU(2) gauge field, JCAP

12 (2016) 027 [arXiv:1604.06520] [INSPIRE].

[25] P. Adshead, A.J. Long and E.I. Sfakianakis, Gravitational leptogenesis, reheating and models

of neutrino mass, Phys. Rev. D 97 (2018) 043511 [arXiv:1711.04800] [INSPIRE].

[26] T. Matsumura et al., Mission design of LiteBIRD, arXiv:1311.2847 [INSPIRE].

[27] Simons Observatory collaboration, The Simons observatory: science goals and forecasts,

JCAP 02 (2019) 056 [arXiv:1808.07445] [INSPIRE].

[28] CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

[29] V. Domcke, B. Mares, F. Muia and M. Pieroni, Emerging chromo-natural inflation, JCAP

04 (2019) 034 [arXiv:1807.03358] [INSPIRE].

[30] G. Dall’Agata, Chromo-natural inflation in supergravity, Phys. Lett. B 782 (2018) 139

[arXiv:1804.03104] [INSPIRE].

[31] E. McDonough and S. Alexander, Observable chiral gravitational waves from inflation in

string theory, JCAP 11 (2018) 030 [arXiv:1806.05684] [INSPIRE].

– 44 –

https://doi.org/10.1103/PhysRevD.97.023532
https://doi.org/10.1103/PhysRevD.97.023532
https://arxiv.org/abs/1706.03765
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.03765
https://doi.org/10.1007/JHEP12(2016)137
https://arxiv.org/abs/1609.04025
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.04025
https://doi.org/10.1088/1475-7516/2017/01/019
https://arxiv.org/abs/1608.04216
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04216
https://doi.org/10.1007/JHEP08(2017)130
https://arxiv.org/abs/1705.03024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03024
https://doi.org/10.1103/PhysRevD.87.103501
https://arxiv.org/abs/1212.5184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5184
https://doi.org/10.1103/PhysRevD.88.021302
https://arxiv.org/abs/1301.2598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.2598
https://doi.org/10.1103/PhysRevD.97.043506
https://arxiv.org/abs/1707.03240
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.03240
https://doi.org/10.1103/PhysRevD.97.103526
https://arxiv.org/abs/1707.03023
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.03023
https://doi.org/10.1088/1475-7516/2018/06/027
https://arxiv.org/abs/1802.09284
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.09284
https://doi.org/10.1088/1475-7516/2018/11/029
https://arxiv.org/abs/1806.05474
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.05474
https://doi.org/10.1103/PhysRevD.90.023542
https://arxiv.org/abs/1401.7628
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7628
https://doi.org/10.1088/1475-7516/2016/12/027
https://doi.org/10.1088/1475-7516/2016/12/027
https://arxiv.org/abs/1604.06520
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06520
https://doi.org/10.1103/PhysRevD.97.043511
https://arxiv.org/abs/1711.04800
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.04800
https://arxiv.org/abs/1311.2847
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2847
https://doi.org/10.1088/1475-7516/2019/02/056
https://arxiv.org/abs/1808.07445
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.07445
https://arxiv.org/abs/1610.02743
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.02743
https://doi.org/10.1088/1475-7516/2019/04/034
https://doi.org/10.1088/1475-7516/2019/04/034
https://arxiv.org/abs/1807.03358
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.03358
https://doi.org/10.1016/j.physletb.2018.05.020
https://arxiv.org/abs/1804.03104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.03104
https://doi.org/10.1088/1475-7516/2018/11/030
https://arxiv.org/abs/1806.05684
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.05684


J
H
E
P
0
5
(
2
0
1
9
)
1
7
4

[32] S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev.

Lett. 63 (1989) 2333 [INSPIRE].

[33] H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265

[hep-th/0304245] [INSPIRE].

[34] T. Kunimasa and T. Goto, Generalization of the Stueckelberg formalism to the massive

Yang-Mills field, Prog. Theor. Phys. 37 (1967) 452 [INSPIRE].

[35] M.M. Sheikh-Jabbari, Gauge-flation vs chromo-natural inflation, Phys. Lett. B 717 (2012) 6

[arXiv:1203.2265] [INSPIRE].

[36] P. Adshead and M. Wyman, Gauge-flation trajectories in chromo-natural inflation, Phys.

Rev. D 86 (2012) 043530 [arXiv:1203.2264] [INSPIRE].

[37] T. Fujita, E.I. Sfakianakis and M. Shiraishi, Tensor spectra templates for axion-gauge fields

dynamics during inflation, arXiv:1812.03667 [INSPIRE].

[38] J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664

[INSPIRE].

[39] K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger effect by an SU(2) gauge field

during inflation, JHEP 02 (2019) 041 [arXiv:1805.09318] [INSPIRE].

[40] T. Fujita, R. Namba and Y. Tada, Does the detection of primordial gravitational waves

exclude low energy inflation?, Phys. Lett. B 778 (2018) 17 [arXiv:1705.01533] [INSPIRE].

[41] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the

universe, JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719] [INSPIRE].

[42] L.P. Grishchuk, Statistics of the microwave background anisotropies caused by the squeezed

cosmological perturbations, Phys. Rev. D 53 (1996) 6784 [gr-qc/9504045] [INSPIRE].

[43] BICEP2 and Keck Array collaborations, Improved constraints on cosmology and

foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion

of 95 GHz band, Phys. Rev. Lett. 116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].

[44] Planck collaboration, Planck 2015 results. XVII. Constraints on primordial

non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

[45] A. Papageorgiou, M. Peloso and C. Unal, Nonlinear perturbations from the coupling of the

inflaton to a non-Abelian gauge field, with a focus on chromo-natural inflation, JCAP 09

(2018) 030 [arXiv:1806.08313] [INSPIRE].

[46] F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST handbook of mathematical

functions, 1st ed., Cambridge University Press, New York, NY, U.S.A. (2010).

[47] Z. Wang and D. Guo., Special functions, World Scientific, Singapore (1989).

[48] T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on

magnetogenesis in the early universe, JHEP 10 (2014) 166 [arXiv:1408.4141] [INSPIRE].

– 45 –

https://doi.org/10.1103/PhysRevLett.63.2333
https://doi.org/10.1103/PhysRevLett.63.2333
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,63,2333%22
https://doi.org/10.1142/S0217751X04019755
https://arxiv.org/abs/hep-th/0304245
https://inspirehep.net/search?p=find+EPRINT+hep-th/0304245
https://doi.org/10.1143/PTP.37.452
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,37,452%22
https://doi.org/10.1016/j.physletb.2012.09.014
https://arxiv.org/abs/1203.2265
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2265
https://doi.org/10.1103/PhysRevD.86.043530
https://doi.org/10.1103/PhysRevD.86.043530
https://arxiv.org/abs/1203.2264
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2264
https://arxiv.org/abs/1812.03667
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.03667
https://doi.org/10.1103/PhysRev.82.664
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,82,664%22
https://doi.org/10.1007/JHEP02(2019)041
https://arxiv.org/abs/1805.09318
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09318
https://doi.org/10.1016/j.physletb.2017.12.014
https://arxiv.org/abs/1705.01533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.01533
https://inspirehep.net/search?p=find+J+%22JETPLett.,30,682%22
https://doi.org/10.1103/PhysRevD.53.6784
https://arxiv.org/abs/gr-qc/9504045
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9504045
https://doi.org/10.1103/PhysRevLett.116.031302
https://arxiv.org/abs/1510.09217
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.09217
https://doi.org/10.1051/0004-6361/201525836
https://arxiv.org/abs/1502.01592
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01592
https://doi.org/10.1088/1475-7516/2018/09/030
https://doi.org/10.1088/1475-7516/2018/09/030
https://arxiv.org/abs/1806.08313
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.08313
https://doi.org/10.1007/JHEP10(2014)166
https://arxiv.org/abs/1408.4141
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4141

	Introduction
	Review of theory
	Tensor perturbations

	Spin-2 Schwinger-type particle production
	Backreaction
	Induced current and backreaction
	Energy density of spin-2 fields

	Gravitational waves
	Constraints on the parameter space
	Parameter space of massless models

	Conclusion
	Symmetry of the VEV SU(2) field
	Transverse-traceless field
	(pseudo) spin-2 in perturbed SU(2) field?

	Mathematical supplement
	Computation of the induced currents
	Regularized current
	Energy density

	Sourced graviational waves

