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faces in the dual bulk spacetime. While such surfaces need not exist in sufficiently general

spacetimes, the maximin construction demonstrates that they can be found in any smooth

asymptotically locally AdS spacetime without horizons or with only Kasner-like singu-

larities. In this work, we introduce restricted maximin surfaces anchored to a particular

boundary Cauchy slice C∂ . We show that the result agrees with the original unrestricted

maximin prescription when the restricted maximin surface lies in a smooth region of space-

time. We then use this construction to extend the existence theorem for HRT surfaces to

generic charged or spinning AdS black holes whose mass-inflation singularities are not

Kasner-like. We also discuss related issues in time-independent charged wormholes.
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1 Introduction

As is by now well established [1, 2], in AdS/CFT the Ryu-Takayangi [3, 4] and Hubeny-

Rangamani-Takayanagi (HRT) [5] prescriptions generally describe the von Neumann en-

tropy of CFT regions A in terms of the area of an appropriate bulk surface. In particular,

SA =
Area[ext(A)]

4G
, (1.1)

where ext(A) is the smallest extremal surface satisfying ∂(ext(A)) = ∂A and with ext(A)

homologous to A. When there is more than one such surface with minimal area, the HRT

surface is ambiguous. Such situations arise at HRT phase transitions, when the HRT

surface jumps discontinuously as one varies the region A.

Now, there are spacetimes in which HRT surfaces fail to exist or where those that do

exist do not correctly compute the von Neumann entropy [6]. However, known spacetimes

M0 with the latter issue are λ→ 0 limits of spacetimes Mλ in which the HRT prescription

succeeds, but where the correct (smallest) extremal surface recedes to the future or past

singularity as λ→ 0. Similarly, known spacetimes M ′
0 where extremal surfaces fail to exist

are again λ → 0 limits of spacetimes Mλ where HRT succeeds but in which all extremal

surfaces recede in this way.

One thus expects that HRT surfaces do in fact correctly compute the entropy in con-

texts such recessions are forbidden; i.e., where extremal surfaces are guaranteed to exist as

surfaces in smooth regions of the bulk. The maximin construction of [7] shows this to be

the case in asymptotically locally-AdS (AlAdS) spacetimes without horizons or where the

future and past boundaries consist only of Kasner-like singularities.1 Ref. [7] also shows in

this context that HRT surfaces satisfy strong subadditivity.

1In contrast, the examples of [6] contain smooth de Sitter-like pieces of future or past infinity as well

as special non-Kasner-like singular points where the smooth parts of future/past infinity meet otherwise-

Kasner-like singularities.
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Figure 1. The maximal analytic extension of the AdS-Reissner-Nordström black hole. for our

study in section 2.2 we truncate it to the AdS-hyperbolic unshaded region between the past and

future (AdS-) Cauchy horizons (heavy dashed lines).

However, the full array of possible spacetimes have not yet been explored. Of particular

interest are charged or rotating black holes. As is well known, stationary such black holes

generally contain Cauchy horizons (see figure 1 for the AdS-Reissner-Nordström [AdS-RN]

case). But this structure is unstable, and perturbations transform the Cauchy horizons

into null mass-inflation singularities which are not Kasner-like [8–14]; see figure 2. As

discussed in the above references, generic black holes are believed to contain singularities

of this type. We show below that HRT surfaces exist in such spacetimes as well.

Our method of proof extends the maximin arguments of [7]. As defined in [7], a

maximin surface is a codimension-2 surface anchored to ∂A and satisfying the homology

constraint, and minimizing area within some bulk Cauchy surface Σ ⊃ A, but which is also

maximal among such minimal surfaces with respect to variations of Σ. In particular, the

intersection of Σ with the AlAdS boundary is allowed to vary so long as it still contains ∂A.

Below, we consider restricted maximin surfaces — defined by bulk Cauchy surfaces Σ that

intersect the AlAdS boundary on a fixed boundary Cauchy surface C∂ — and show that

they must agree with HRT surfaces (and thus with unrestricted maximin surfaces) when

they lie in a smooth region of the spacetime. In particular, since any Cauchy surface Σ

is achronal, restricted maximin surfaces must be achronally related to some C∂ . They are

thus forbidden from reaching the null singularities in figure 2 and must lie in the smooth

interior of the bulk spacetime as desired.

We begin by introducing restricted maximin surfaces in section 2 and showing their

equivalence to HRT surfaces when they lie in a smooth region of spacetime. Existence of

HRT surfaces in (perturbed) AdS-RN-like spacetimes then follows immediately, and more

– 2 –
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Figure 2. Perturbed one-sided (left) and two-sided (right) AdS-RN black holes. The null parts are

mass-inflation singularities. A spacelike piece of the singularity forms whenever caustics arise on a

null singularity. Such caustics always arise in the one-sided case, and also occur for strong enough

perturbations (as shown here) in the two-sided case. The resulting spacelike singularities should be

Kasner-like, as can be seen from the fact that the region between the inner- and outer-horizons in

figure 1 admits a foliation by spatially homogenous slices that, when subjected to correspondingly

homogeneous perturbations, becomes precisely an AdS-Kasner solution. Sufficiently close to a

curvature singularity, one should be able to treat any solution as approximately homogeneous, so

the spacelike part of the singularity should again be Kasner-like. In the left panel, the black hole

is formed by a collapsing shell (in blue).

generally in spacetimes where boundary-anchored bulk Cauchy surfaces can reach a future

boundary only at Kasner-like singularities. Section 3 concludes with a brief discussion of

possible extensions to spacetimes with more complicated null singularities.

2 Restricted maximin surfaces

This section will discuss restricted maximin surfaces. In a different context, a maximin

construction that fixes the entire boundary of a (in that case partial) Cauchy surface

was also used in [15]. Here and below we assume i) the null curvature condition (NCC):

Rabk
akb ≥ 0 at each point for every null vector ka, ii) the generic condition [16], which

requires at least some positive focusing along each segment of any null geodesic,2 and iii)

AdS-hyperbolicity in the sense of [7]. We choose an achronal codimension-1 surface A in

the AlAdS boundary ∂M to define the boundary region whose entropy we wish to study.

The boundary of A is denoted ∂A. Our restricted maximin surfaces are then defined via

the following two-step procedure.

Definition 1. For a chosen Cauchy surface C∂ of ∂M with satisfies A ⊂ C∂ , on any

complete bulk Cauchy surface Σ with Σ∩ ∂M = C∂ let min(A,Σ, C∂) denote the minimal-

2In fact, for our purposes it suffices for the spacetime to be a limit of spacetimes in which the generic

condition holds, where the amount of focusing can vanish in the limit. This will be the case in examples

like exact AdS-RN discussed below in which the generic condition does not hold.

– 3 –
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area codimension-2 surface anchored to ∂A and homologous to A within Σ (i.e., such that

there is a region R of Σ for which ∂R = A ∪min(A,Σ, C∂)).

If there are multiple minimal area surfaces on Σ, then min(A,Σ, C∂) can refer to any

of them.

Definition 2. The restricted maximin surface MR(A,C∂) is defined as the min(A,Σ, C∂)

whose area is maximal with respect to variations of Σ that preserve C∂ . We use ΣMR(A,C∂)

to denote a Cauchy surface on which MR(A,C∂) is minimal.

In the case where there are multiple such surfaces, let MR(A,C∂) denote any such

surface that is stable in the following sense: when Σ is deformed infinitesimally to any

nearby slice Σ′ (still containing C∂), the new Σ′ still contains a locally-minimal surface

M ′
R(A,C∂) on Σ′ close to MR(A,C∂) which has no greater area, i.e. Area[M ′

R(A,C∂)] ≤
Area[MR(A,C∂)].3

Below, we follow [7] in assuming that the stability criterion can be satisfied. When

ΣMR(A,C∂) is both spacelike and smooth, this follows by the technical argument in sec-

tion 3.5 of [7]. But it remains an assumption more generally. Existence of MR(A,C∂)

then follows as in section 3.4 of [7] so long as boundary-anchored Cauchy surfaces can

future or past boundaries only at Kasner-like singularities. In particular, the space of

boundary-anchored achronal slices is compact in the same sense as the space of achronal

slices anchored only to ∂A.

2.1 Equivalence of HRT surfaces and restricted maximin surfaces in smooth

regions of spacetime

We now show that the restricted maximin surface MR(A,C∂) is an HRT surface for every

choice of C∂ that contains A so long as MR(A,C∂) lies in a smooth region of the bulk

spacetime. The argument follows that given in [7] for the original unrestricted maximin

surfaces.

We first show that MR(A,C∂) extremizes the area with respect to all variations that

preserve ∂A. We begin with the case where ΣMR(A,C∂) has continuous first derivative.

For every point on a restricted maximin surface MR(A,C∂), there are two independent

directions that are normal to MR(A,C∂). The area is minimal with respect to variations

on ΣMR(A,C∂), and maximal with respect to variations normal to this surface. The corre-

sponding first order variations of the area vanish. Linearity of first order variations then

implies the area to be stationary under all deformations that preserve ∂A; i.e., the surface

is extremal as desired.

If instead the first derivative of ΣMR(A,C∂) jumps discontinuously, the surface MR(A,C∂)

must still be extremal. The argument is identical to that of theorem 15(b) in [7].

We now show that MR(A,C∂) is the (properly anchored) extremal surface with least

area, and thus an HRT surface. The argument uses the notion introduced in [7] of the

‘representative’ of any extremal surface x(A) on a Cauchy surface Σ. The representative

3This definition of stability fixes certain difficulties with the definition given in [7]. A similary improved

version of [7] will appear soon.

– 4 –
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x̃Σ(A) is defined by observing that x(A) splits some Cauchy surface into two pieces, which

we arbitrarily label as Σ1 and Σ2. When the new Cauchy surface Σ lies to the future of Σ1,

this representative may be taken to be the intersection of Σ with the boundary of the future

of Σ1 (one may alternatively use Σ2). As noted in [7] (theorem 3), since the bulk satisfies

NCC and the boundary of the future contains only null geodesics without conjugate points,

the focusing theorem [17] guarantees the representative to have no more area than x(A).

And since ∂Σ is fixed to be C∂ , the representative must have the same anchor set as x(A).

If Σ is not entirely to the future of Σ1, one may similarly use e.g. the union of the boundary

of the future of Σ1 and the boundary of the past of Σ2 (or alternatively other combinations

of the futures and pasts of Σ1,2). And the representative on ΣMR(A,C∂) must have area

at least as great as MR(A,C∂) since the latter surface is minimal on ΣMR(A,C∂). Thus

Area[MR(A,C∂)] ≤ Area[x̃Σ(A)] ≤ Area[x(A)], and MR(A,C∂) is a least-area extremal

surface.

2.2 Existence of HRT surfaces in standard charged and rotating black holes

The above result will show that HRT surfaces exist in charged or rotating black hole space-

times. Let us begin with the AdS-Reissner-Nordstrom (AdS-RN) solution. The maximal

analytic extension is shown in figure 1. However, since the Cauchy horizons are unstable to

forming mass-inflation singularities, it is natural to truncate the solution to the unshaded

region between the past and future Cauchy horizons.4 Given any boundary region A ⊂ ∂M ,

we may then choose a boundary Cauchy surface C∂ ⊂ ∂M with C∂ ⊃ A and construct the

restricted maximin surface MR(A,C∂) and the associated bulk Cauchy surface ΣMR(A,C∂).

For C∂ to be a full Cauchy surface it must include pieces on both boundaries even if A is

contained in a single boundary.

Now, by definition, M includes only finite boundary times. Since ΣMR(A,C∂) is achronal

(i.e., no two of its points can be connected by a timelike curve) and ends on C∂ , it cannot

reach the Cauchy horizon. Thus MR(A,C∂) lies in the (smooth) interior of the spacetime

and the argument of section 2.1 shows that MR(A,C∂) is also an HRT surface for AdS-RN

(truncated at the Cauchy horizons).

Furthermore, it is clear that the same conclusion holds for any AdS-hyperbolic space-

time satisfying i) NCC, ii) the generic condition, and for which iii) all bulk Cauchy sur-

faces Σ anchored on boundary Cauchy surfaces C∂ meet future or past boundaries only at

Kasner-like singularities. We may then use the analysis of Kasner-like singularities in [7] to

argue as above. In particular, this is true of the perturbed AdS-RN spacetimes with mass-

inflation singularities shown in figure 2. And it continues to hold when rotation is added to

the black holes, again truncating the spacetime at Cauchy horizons and/or mass-inflation

singularities. Furthermore, strong subadditivity follows precisely as in [7].

4If one insists on including regions beyond the Cauchy horizons then, as argued in section 6 of [18], it

appears natural to require the homology surface (used in the homology constraint) to be achronal. This

then requires any entangling surface to again lie in our truncated spacetime between the Cauchy horizons.

So for the purposes of entanglement computations there is no harm in our truncation.

– 5 –
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Figure 3. Time-independent charged wormhole which is constructed by sewing two AdS-RN

spacetimes together along a domain wall (thick line). Due to the internal infinities (small circles),

the Cauchy horizons are union of the Cauchy horizons of the two AdS-RN spacetimes. Limits of

Cauchy surfaces like the one shown (red) can reach such horizons.

3 Discussion

We have used restricted maximin surfaces to show the existence of HRT surfaces in a

broad class of spacetimes including standard black holes with mass-inflation singularities.

In such cases, it also follows that HRT areas satisfy strong subadditivity. The above class

of solutions is believed to be generic in the class of charged and rotating black holes [8–14].

As explained in the introduction, our result forbids such spacetimes from displaying

the HRT-pathologies found in the examples of [6]. Taken together with the Lewkowycz-

Maldacena [1] and Dong-Lewkowycz-Rangamani [2] derivations, this strongly suggests that

these HRT surfaces correctly compute the associated entropies of the dual CFT state.5

While our requirements are expected to be satisfied generically, one can nevertheless

imagine spacetimes where they fail. Indeed, generalizing the time-independent wormholes

of [26] to include electric charge immediately yields solutions of the sort shown in figure 3

in which (limits of) boundary-anchored bulk Cauchy surfaces can reach the bulk Cauchy

horizons. For this particular spacetime one may nevertheless use the fact that the right-

most and left-most wedges are identical to those of AdS-RN to show that, for any A, there

is a (perhaps disconnected) extremal surface anchored to ∂A that is entirely contained in

the union of these wedges. Thus HRT surfaces again exist for this spacetime, but it remains

to argue that smaller such surfaces have not been lost to the future and past boundaries.

Other interesting spacetimes may remain to be investigated as well.
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