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1 Introduction

Finding eigenfunctions and eigenvalues of differential or difference operators is an ubiqui-

tous problem in physics. Finding exact expressions for them is most of the time rather

difficult, even in the one dimensional case where the operator acts on functions on the real

line (the setup often considered in standard quantum mechanics). The operators considered

in this work are built as Laurent polynomials of the exponentials

u = ex, v = ey, (1.1)

where the operators x and y satisfy the canonical commutation relation [x, y] = i~ for

~ ∈ R. The operators u and v can be represented as multiplication and shift operators

acting on functions on R. Polynomials of u and v and their inverses correspond to more

general difference operators acting on functions. Such operators arise in several areas

of theoretical physics. One example is the quantization of the spectral curves of some

particular integrable systems, yielding the Baxter equation which is central in the study
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of those systems. Another is the quantization of mirror curves. When the genus gΣ of the

underlying curve is greater or equal to one, the operator may have a discrete spectrum.

More precisely, it has been shown in many examples that the inverse operator of the

quantized curve is a positive definite trace class self-adjoint operator acting on L2(R) [1, 2],

implying that the spectrum of the operator is discrete.

Our main motivation for the study of such difference operators stems from local mirror

symmetry for toric Calabi-Yau (CY) threefolds. It is well known that the mirror geometry

of a toric CY threefold is encoded in a curve in C∗×C∗ called the mirror curve. Period inte-

grals on this curve give the Kähler parameters in term of the complex structure parameters,

as well as the derivatives of the prepotential. More recently, it has been proposed that an

appropriate quantization of this same mirror curve leads to interesting deformations of the

prepotential, which are tightly related to topological strings and enumerative invariants of

the toric CY threefold [3, 4]. Building on insights coming from ABJ(M) theory, this idea

has been further developed, in particular in [5, 6]. The most complete realization of this

idea is the so called “Topological String/Spectral Theory” (TS/ST) correspondence [7, 8]

(for a review, see [9]), whose extension to the open sector has been undertaken in [10, 11].

In the context of the TS/ST correspondence, the central object to consider is an

operator acting on L2(R), essentially given by the quantization of the mirror curve of the

underlying CY threefold. The main idea is that spectral quantities of this operator can

be written down explicitly using enumerative invariants of the underlying geometry.1 The

operator itself leads to a difference equation, which takes the form we consider here. In fact,

all examples of difference equations that we will consider come from geometries studied in

this context. That is why, in the following, we will call each example by the name of the

underlying toric CY threefold. The TS/ST correspondence is in a very large measure yet

unproven, so it has to be explicitly tested case by case (see for example [7, 8, 12–16]). Such

tests require the knowledge of the various spectral quantities of the operator, as for example

the eigenvalues and eigenfunctions of the corresponding difference equation. It is therefore

highly desirable to have an explicit and first principle way of computing these objects.

In the original TS/ST approach, one considers a spectral problem in one dimension for

the (inverse) quantized mirror curve operator. The quantization condition proposed in [7, 8]

for the spectrum gives a codimension one manifold in the space of moduli of the curve.

A proposal for the eigenfunctions was put forward in [10, 11]. However, there is another

spectral problem related to the mirror curve, given by the associated Goncharov-Kenyon

integrable system, or cluster integrable system [30]. It is an integrable system with gΣ

mutually commuting hamiltonians, where gΣ is the genus of the mirror curve. This defines

a spectral problem in gΣ dimensions. The quantization conditions giving the energies of

the joint eigenstates of the integrable system were proposed in [17, 20], and give a discrete

subset of the codimension one manifold of [8]. In fact, the difference equation given by

the quantized mirror curve (i.e. the spectral problem in one dimension) corresponds to the

Baxter equation of the cluster integrable system. Based on the study of other integrable

1These enumerative invariants essentially boil down to BPS numbers, counting BPS states of an M-

theoretic lift of the topological string.
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systems, as was done for example in the case of the non-relativistic Toda lattice in [22–

24], it is natural to expect that the appropriate solutions of the Baxter equation satisfy

more restrictive boundary conditions when the moduli of the curve correspond to a joint

eigenstate of the integrable system. More precisely, we expect that for special values

of the moduli, one of the square-integrable eigenfunctions of the quantized mirror curve

operator decays more rapidly at plus or minus infinity, thus signalling a joint eigenstate

of the corresponding integrable system. This phenomenon was checked in [11] in the case

of the mirror curve of the geometry known as the resolution of C3/Z5, for ~ = 2π. This

subset of solutions of the difference equation with enhanced decay will be called “fully

on-shell”, meaning that values of the true moduli are “on-shell” from the point of view of

the integrable system.

The aim of this paper is to show how to construct these “fully on-shell” eigenfunctions

directly from the difference equation. This can be explicitly done when ~ is of the form

~/2π ∈ Q. We will refer to this as the “rational case”.

The solution presented here is an ansatz which is based on several recent developments.

It was noticed in [17] that the quantization conditions given in that reference can be written

in a way that is for the most part invariant under ~/2π ↔ 2π/~. The importance of this

duality was also emphasised in [18]. This duality is to be considered as a manifestation

of the “modular double” structure [21] of the corresponding integrable system (see [25] for

the case of the relativistic Toda lattice). It is then natural to assume that the invariance

under ~/2π ↔ 2π/~ should not only be manifest in the spectrum of the difference equation,

but also in its eigenfunctions, at least for the subset which is “fully on-shell”. This is the

point of view taken in [26], where an ansatz is proposed for the eigenfunctions based on

this consideration. Concretely, the ansatz of [26] consists in taking the resummed WKB

eigenfunction and symmetrize it with respect to ~/2π ↔ 2π/~. Monodromy invariance of

the eigenfunction thus constructed yields the quantization conditions of [17]. Unfortunately,

this idea alone does not allow us to get explicit, closed expressions for the “fully on-shell”

eigenfunction, because the resummed WKB expression is not known exactly, but only,

for example, as a large X = ex expansion. We argue here, and show in many examples,

that this resummation can be performed in the rational case, that is, when ~/2π ∈ Q.

Technically, the method to perform this resummation can be seen as a refinement of what

is done in [27, 28] to obtain the relation between the spectrum at ~ and at its dual value

4π2/~. In particular, a certain matrix appearing in those references plays an important

role. Our method is also inspired by [29], even if in that reference the authors mainly

consider the case where ~ has an imaginary part.2

As already alluded to, given any toric CY threefold, one can consider the corresponding

cluster integrable system. The archetypical example is the relativistc Toda lattice of N

particles, which is the cluster integrable system associated to the toric CY threefolds often

called the resolved AN−1 geometries. For the relativistic Toda lattice, it has been shown

2The common domain of validity of our method and the results of [29] is the case ~ = 2π, where we

find agreement between the two solutions. At the time of the writing of [29], it has already been suggested

to us by one of the authors, R. Kashaev, that the case ~/2π ∈ Q could be somehow addressed using a

matrix-based method.
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in [25] using the Quantum Inverse Scattering Method, that the joint eigenfunctions of the

integrable system (the spectral problem in gΣ dimensions) can be explicitly built from the

“fully on-shell” eigenfunctions of the Baxter equation through a certain integral transform.

Our method should thus provide a solution for the relativistic Toda lattice eigenfunctions

for the rational case. Let us mention that the eigenfunctions for the relativistic Toda have

been constructed in [31, 32], using a different method relying on gauge theory computations

of instanton partition functions in the presence of defects. That construction gives a

solution for any value of ~, but only as an expansion in an auxiliary parameter.

The paper is structured as follows: in section 2, we present the family of difference

equations, and study them using the WKB ansatz. In section 3, we derive the main result,

and present the different formulas to compute its components. Section 4 is devoted to

examples and tests of the formula. In section 5, we investigate the relationship between

our quantization condition and the conjectural one of [17, 19, 20]. In the last section, we

give some concluding remarks.

2 About the difference equation

We introduce the family of difference equations. They are then studied using the WKB

ansatz, yielding the WKB eigenfunction, which is central in our construction. In this

section, we do not yet assume that ~/2π is rational. For simplicity, we will focus on the

cases where the difference equation is of second order, which we call “hyperelliptic cases”

because the underlying Riemann surface is a two-sheeted cover of the plane. But the

method is in principle also applicable to higher order cases.

2.1 The difference equation and its dual

Since our main motivation is the TS/ST correspondence, our starting point is a mirror

curve of genus gΣ ≥ 1, defined by a curve

W (x, y) = 0, (2.1)

where W (x, y) is a Laurent polynomial of ex and ey with N monomials, and can take

the form

W (x, y) =
N−1∑
k=1

ξke
µkx+νky + κ. (2.2)

The µn and νn are integer numbers. The parameter κ is a true modulus of the curve,

whereas the parameters ξn can be mass parameters as well as other true moduli, depending

on the curve.3 By performing constant shifts of x and y and by an overall scaling of the

equation defining the mirror curve, we can always set three of the parameters ξn to 1. These

curves are typical in the study of mirror symmetry of toric Calabi-Yau threefolds. We

3For a curve of genus gΣ, there are gΣ “true” moduli, and the remaining ones are usually called “mass

parameters”. They are associated to non-compact cycles in the mirror geometry and lead to trivial mir-

ror maps.
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quantize the curve by promoting x and y to canonically commuting self-adjoint operators

(and use Weyl prescription to fix ordering ambiguities):

x, y → x, y, [x, y] = i~, ~ ∈ R. (2.3)

This quantization procedure is the one used in the TS/ST correspondence. It gives the

operator W (x, y), which can be expressed as a polynomial of ex and ey using the BCH

formula to split exponentials. In the x representation, the operator y acts as a derivative

−i∂x. The operator eνky acts as a shift operator on a function, since its action amounts to

Taylor expanding it. The operator given by

O =

N−1∑
k=1

ξke
µkx+νky (2.4)

is then a difference operator acting on functions. Its inverse

ρ = O−1 (2.5)

has nice properties: it has been shown in many examples in [1, 2] that it is a positive

definite trace class self-adjoint operator on L2(R), at least for appropriate values of ξk.

As such, it admits a discrete set of eigenvalues (−κn)−1 and eigenfunctions ψn(x). An

eigenfunction ψn(x) is in the kernel of the operator W (x, y) given by states |ψ〉 such that

W (x, y)|ψ〉 = 0, (2.6)

but not necessarily all functions in this kernel are eigenfunctions of ρ since they may not

be in the image of ρ. Indeed, the operator O should really be considered as the inverse of

ρ, so its domain should be restricted to the image ρ(L2(R)). We will sometimes call the

eigenfunctions ψn(x) “on-shell” eigenfunctions, and other functions ψ(x) in the kernel of

W (x, y) will be called “off-shell” eigenfunctions by abuse of language (since they are not

truly eigenfunctions of ρ). All these functions satisfy the difference equation

N−1∑
n=1

ξk e−µkνk
i~
2 eµnxψ(x− νni~) + κψ(x) = 0, (2.7)

but only for the specific values κ = κn do we find on-shell eigenfunctions. We will focus

on hyperelliptic curves, where the difference equation is of order 2.

In the case where the underlying mirror curve is of genus gΣ greater then 1, we have

gΣ true moduli, gΣ−1 of which are among the ξk. In principle, they could act as spectator

parameters (like the other ξk) and take arbitrary values. As we will see in the examples,

our method only gives the eigenfunctions for some specific values of these true moduli

which, in this sense, are also quantized. Their values turn out to correspond to the joint

eigenstates of the corresponding integrable system (the gΣ commuting hamiltonians), and

the eigenfunctions thus obtained are the “fully on-shell” eigenfunctions.

The spectrum and eigenfunctions of the operator ρ can be numerically well approxi-

mated using the difference equation (2.7) and a hamiltonian truncation method on a basis
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of L2(R), which we take to be the harmonic oscillator basis. All the numerical results used

to test against the proposed exact expressions are generated using this technique.

These difference equations have an interesting modular duality structure, as pointed

out in the seminal paper [21]. As already implied, equation (2.6) can be written as the

eigenvalue equation

O|ψ〉 = −κ|ψ〉, (2.8)

with O given by (2.4). The point is that there exist two other operators which formally

commute with this operator, and so all the algebra spanned by them commutes with O.

Indeed, for any integers m,n, we formally have

[emx, en
2π
~ y] = 0, [emy, en

2π
~ x] = 0. (2.9)

For example, the following operator Õ, which we call the dual operator

Õ =

N−1∑
n=1

ξ̃neµn
2π
~ x+νn

2π
~ y, (2.10)

formally commutes with O, and so we may expect that it can be diagonalized by some of

the eigenfunctions of the operator O. We assume that this is true for the “fully on-shell”

eigenfunctions. The eigenvalue of Õ will be denoted −κ̃. The operator Õ has essentially the

same form as O, but a priori the different moduli and parameters can take arbitrary values.

In the following, we will see some examples of relations between κ and κ̃ (and ξn and ξ̃n),

and how they arise concretely. The difference equation given by the dual operator is

N−1∑
n=1

ξ̃n e−µnνn
i~
2

4π2

~2 eµn
2πx
~ ψ(x− 2πiνn) + κ̃ψ(x) = 0. (2.11)

By rescaling the eigenfunction ψ̃(x) = ψ
( ~

2πx
)
, and renaming

~D =
4π2

~
, xD =

2πx

~
, (2.12)

this gives
N−1∑
n=1

ξ̃n e−µnνn
i~D

2 eµnxD ψ̃(xD − νni~D) + κ̃ψ̃(xD) = 0, (2.13)

which is exactly of the same form as the initial difference equation (2.7), but using the dual

variables. We call this the dual difference equation.

Let us comment on the role of the dual difference equation. If we consider only the

difference equation given by O, we remark that a formal solution can be multiplied by any

i~-periodic function in order to get another formal solution. By requiring that a solution

is simultaneously a solution of the dual difference equation given by Õ, we drastically

reduce the set of eigenfunctions. Since the dual difference equation has the same form as

the original difference equation, the small ~ expansion and the small ~D expansion of the

eigenfunction should be closely related. We will use this argument when constructing the

“fully on-shell” eigenfunction from the resummed WKB solutions.

– 6 –
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2.2 WKB eigenfunction at small ~

One possible approach to study the difference equation (2.7) is to consider the small ~
regime, using the well known WKB ansatz:

ψWKB(x) = exp

(
− 1

i~

∞∑
n=0

Sn(x)(−i~)n

)
. (2.14)

Using this ansatz, for any d ∈ C we can write

ψWKB(x+ d i~)

ψWKB(x)
= exp

[
− 1

i~

∞∑
n=1

(−i~)n

(
n−1∑
k=0

(−d)n−k

(n− k)!
S

(n−k)
k (x)

)]
. (2.15)

Inserting this into the difference equation and expanding everything at small ~, we can

recursively solve for S′n(x) order by order in −i~. Then, we can integrate to obtain Sn(x).

Let us define y(x) to be the solution of W (x, y) = 0. We find for the first orders

S0(x) =

∫ x

y(x)dx,

S1(x) =
1

2
log

∂y(x)

∂κ
.

(2.16)

The natural domain of y(x) is not the C-plane, but the mirror curve itself, which is a

multi-sheeted cover of the plane. Since we consider the hyperelliptic case only, we have

two sheets.4 We need to take either branch of the function y(x), which we also call y(x)

by abuse of notation. The two choices of the branch of y(x) correspond to the WKB

expansions of two independent solutions of the difference equation. Let us define

X = ex. (2.17)

At large X, we have

S0(x) = s0(x) + Sinst
0 (X) = s0(x) +

∫ X

∞
ỹ(X ′)

dX ′

X ′
,

S1(x) = s1(x) + Sinst
1 (X),

(2.18)

where s0(x) is an order 2 polynomial, s1(x) is an order 1 polynomial, and ỹ(X) is equal to

y(x) minus the polynomial part in x which appears in the large X expansion. Both s0 and

s1 are independent of κ. It can be verified that the higher Sn(x) are only functions of X:

by this we mean that there is no polynomial in x in the large X expansion. We use this

remark and build the truncated WKB function

ΨWKB(X) = ψWKB(x)e−(−i~)−1s0(x)−s1(x), (2.19)

which only depends on x through X.

4Strictly speaking, it is ey(x) which is defined on a two-sheeted cover.

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
4

2.3 Resummed WKB from recursion

By adapting the manipulations done in [4], we can resum the small ~ WKB expansion

order by order in another expansion parameter, here X−1. Let us define

q = ei~. (2.20)

Shifting x by i~ in the eigenfunction ψWKB(x) correspond to multiplying X by q in the trun-

cated function ΨWKB(X). The difference equation can be rewritten in terms of ΨWKB(X)

only, by using the explicit forms of s0(x), s1(x). In our hyperelliptic cases, it can be put in

the form

ΨWKB(q−1X)− a(X)ΨWKB(X) + b(X)ΨWKB(qX) = 0, (2.21)

where a(X) and b(X) are rational functions of X, which also may depend on the moduli

and parameters, as well as on q1/2. It is useful to perform a change of variables and use

X̃ =
X

κ
, (2.22)

and

Ψ̃WKB(X̃) = ΨWKB(X). (2.23)

Using this, we find that (for the appropriate parametrization of the mirror curve) the

difference equation takes the rather general form

(1 + X̃−1)Ψ̃WKB(X̃)− Ψ̃WKB(q−1X̃) +
1

κr
P [Ψ̃WKB(X̃)] = 0, (2.24)

where r is a strictly positive integer, and P is the remaining part coming from the difference

equation. This form suggests that we can solve this q-equation in a large κ expansion. The

ansatz we use is

ΨWKB(X̃) = Ψ(0)(X̃)e
∑∞
k=1 φk(X̃)κ−k . (2.25)

The leading part Ψ(0)(X̃) is universal, and is essentially a quantum dilogarithm:

Ψ(0)(X̃) =
∞∏
N=0

(1 +X−1q−N−1) = exp

( ∞∑
k=1

1

k(1− qk)
(−X̃)k

)
. (2.26)

To perform the recursion at large κ, we divide everything by ΨWKB(X̃) and use that

Ψ̃WKB(q−1X̃)

Ψ̃WKB(X̃)
= (X̃−1 + 1)e

∑∞
k=1 gk(X̃)κ−k ,

Ψ̃WKB(qX̃)

Ψ̃WKB(X̃)
=

1

q−1X̃−1 + 1
e−

∑∞
k=1 gk(qX̃)κ−k .

(2.27)

At each order in large κ, we get a linear equation determining gk(X̃) recursively. The

recursion can be solved for gk(X̃), which are rational functions of X̃. The functions φk(X̃)

are given by

gk(X̃) = φk(q
−1X̃)− φk(X̃), (2.28)

– 8 –
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which can be formally solved in the following way:

φk(X̃) = −
∞∑
n=0

gk(q
−nX̃). (2.29)

This is especially useful if we work with an X̃-expanded form for gk(X̃), since

∞∑
n=0

(q−nX̃)−k =
X̃−k

1− qk
, (2.30)

Also, we find that the larger k is, the larger is the leading power of 1
X̃

in the large X̃

expansion of gk(X̃). In the end, after going back to the original variable X, we find the

following structure:

log V (X) ≡ log
ΨWKB(q−1X̃)

ΨWKB(X̃)

=
∑
k=1

fk(κ, ξ, q)X
−k,

(2.31)

and so, formally,

log ΨWKB(X) =
∑
k=1

fk(κ, ξ, q)

qk − 1
X−k. (2.32)

In the above, we have collected the {ξi}i≥1 into the vector ξ. The fk(κ, ξ, q) are polynomials

in the variables κ and ξi. If we expand this expression at small ~, we retrieve the large X

expansion of all the WKB corrections. So this expression is effectively a resummation of

the small ~ WKB expansion. To illustrate this procedure, we give here as examples the

resummed WKB eigenfunctions for some cases which are associated to mirror curves of

toric CY threefolds.

For the geometry called local P2, we have only one true modulus which is κ. The

mirror curve and the WKB eigenfunction are

W (x, y) = ex + ey + e−x−y + κ,

log ΨWKB(X) =
κ

(q − 1)X
+

κ2

(2− 2q2)X2
+

3
q3/2 − κ3

(3− 3q3)X3

+
κ
(
κ3
(
−q5/2

)
+ 4q + 4

)
4q5/2 (q4 − 1)X4

+
κ2
(
κ3 − 5(q2+q+1)

q7/2

)
5 (q5 − 1)X5

−
κ6q6 + 3q3 − 6κ3q3/2(q + 1)

(
q2 + 1

)
+ 6

6q6 (q6 − 1)X6
+ . . .

(2.33)

For the geometry called local P1×P1, we have one true modulus which is κ, and one extra

parameter ξ1 which is a mass parameter. We rename it m. The mirror curve and the WKB

– 9 –
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eigenfunction are

W (x, y) = ex +me−x + ey + e−y + κ,

log ΨWKB(X) =
κ

(q − 1)X
+
−2mq + κ2q + 2

(2q − 2q3)X2
+
κ
(
q
(
−3mq + κ2q + 3

)
+ 3
)

3q2 (q3 − 1)X3

−
2(mq − 1)

(
q2(mq − 1)− 2

)
+ 4κ2q

(
−mq3 + q2 + q + 1

)
+ κ4q4

4q4 (q4 − 1)X4
+ . . .

(2.34)

For the geometry called the resolution of C3/Z5, we have two true moduli, κ and an

extra one which is ξ1. We rename this second one κ1. The mirror curve and the WKB

eigenfunction are

W (x, y) = ex + ey + e−3x−y + κ1e−x + κ,

log ΨWKB(X) =
κ

(q − 1)X
+

κ2 − 2κ1

(2− 2q2)X2
+

κ3 − 3κκ1

3 (q3 − 1)X3

+
κ4 − 4κ2κ1 + 2κ2

1

(4− 4q4)X4
+
−κ5 + 5κ3κ1 − 5κκ2

1 + 5
q5/2

(5− 5q5)X5

−
−
(
κ2 − 2κ1

) (
κ4 − 4κ2κ1 + κ12

)
+ 6κ

q5/2 + 6κ
q7/2

(6− 6q6)X6
+ . . .

(2.35)

In each of these three cases, the polynomial part of the large X WKB expansion is given by5

1

−i~
s0(x) + s1(x) =

i

2~
x2 − 1

2

(
2π

~
+ 1

)
x. (2.36)

3 The rational case

In the following, we focus on the rational case, where ~ is given by 2π times a rational

number. Using pole cancellation and modularity, we manage to write down an exact

formula for a formal eigenfunction ψ(x). We will see that requiring modular invariance

for this eigenfunction fixes all the true moduli, and ψ(x) then becomes the “fully on-shell”

eigenfunction. The truncated WKB eigenfunction log ΨWKB(X) is the only ingredient, but

it comes with its modular dual which is invisible in the small ~ WKB expansion. As we

will see, the resummation of the large X expansion of log ΨWKB can be done explicitly in

the rational case.

3.1 Pole cancellation and modular duality

When ~ is of the form

~ = 2π
P

Q
, (3.1)

for positive coprime integers P and Q, the quantity q = e
2πiP
Q is a root of unity:

qQ = 1. (3.2)

5This depends on the choice of branch for y(x). Here we choose the one which reproduces (2.36).
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The formal solution (2.32) is ill-defined since it has poles when k is a multiple of Q. We

introduce a regulating parameter ε and consider the small ε expansion by setting

~ = 2π
P

Q
+ ε. (3.3)

We expand (2.32) in small ε by using

1

q`Q − 1
= − i

ε`Q
− 1

2
+O(ε), (3.4)

and find

log ΨWKB(X) = − i

ε

∞∑
`=1

f`Q(κ, ξ, q)

`Q
X−`Q +O(1). (3.5)

As it is, the naive resummation of the WKB expansion given by log ΨWKB is singular at

rational ~/2π. We conclude that it has to be corrected by something which

1) is non-pertubative at small ~, so that it is invisible in the small ~ WKB expansion,

2) cancels the poles in the rational case.

Also, we have not taken into account the modular duality structure outlined in the previous

section. Indeed, our point of view was to start with the small ~ WKB resummation of the

eigenfunction. However, we could have equally well started from the dual equation (2.13)

also satisfied by the “fully on-shell” eigenfunction, and consider its small ~D WKB ex-

pansion. By doing the same recursive procedure, we would end up with a very similar

expression for the truncated dual WKB eigenfunction

log ΨD
WKB(X) =

∑
k=1

fk(κ̃, ξ̃, qD)

qDk − 1
X−kD , (3.6)

where XD = exD = e
2π
~ x, ~D = 4π2/~ and qD = ei~D = e

2πQ
P . The fk are precisely the same

polynomials as in (2.32), since the dual equation is of the same form as the initial equation.

So we would expect an eigenfunction which is invariant under the exchanges ~↔ 4π2

~ and

(κ, ξ) ↔ (κ̃, ξ̃). Following what is suggested in [26], let us add its dual to the resummed

WKB, which is a non-perturbative contribution at small ~:

log Ψ(X) = log ΨWKB(X) + log ΨD
WKB(X)

=
∑
k=1

fk(κ, ξ, q)

qk − 1
X−k +

∑
k=1

fk(κ̃, ξ̃, qD)

qDk − 1
X−kD .

(3.7)

The dual part also has poles when k = `P for integer `. Using (3.3) and expanding at

small ε, we obtain

log ΨD
WKB(X) =

i

ε

P

Q

∞∑
`=1

f`P (κ̃, ξ̃, qD)

`Q
X−`Q +O(1). (3.8)

In the full expression (3.7), this pole cancels with the corresponding pole in (3.5) if the

following condition is fulfilled:

P f`P (κ̃, ξ̃, qD) = Qf`Q(κ, ξ, q) (3.9)
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for all positive integers `. This defines relations

κ̃(κ, ξ; ~), and ξ̃(κ, ξ; ~). (3.10)

Since the fk are polynomials in κ and ξk, these relations are algebraic at fixed rationsl ~.

The system of equations (3.9) seems strongly overdetermined, but nevertheless we find that

there actually are solutions as a consequence of the form of the fk. Some examples can

be found below. The “fully on-shell” values of κ and ξ depend on ~, so we should write

κ(~), ξ(~) and κ̃(κ(~), ξ(~); ~), ξ̃(κ(~), ξ(~); ~). Once these relations are fixed, our claim

is that (3.7) is the full non-pertrubatively completed WKB eigenfunction in the large X

expansion, and can be used to build the “fully on-shell” eigenfunctions.

Let us remark quickly that, in contrast with [26], we did not make use of the so called

quantum mirror map, or quantum A periods. In [26] (and also in the setup of the TS/ST

correspondence of [7, 8, 10]), the quantum mirror map fixes the relations between the

moduli/parameters κ and ξi and their duals κ̃ and ξ̃i. Here, we impose these relations

in the rational case using pole cancellation. This is less general but in some sense more

natural and straightforward from the point of view of the difference equation.

3.2 Finite contribution

Requiring cancellation of poles and modular duality is what motivated us to write expres-

sion (3.7). Let us now work out the finite terms at ~ = 2πP/Q. We insist that when varying

~, we should also vary the modulus κ (corresponding to the eigenvalue) as well as all the

other true moduli among the ξ. By using that qk+`Q = qk, the first part of (3.7) gives

∑
k=1

fk(κ, ξ, q)

qk − 1
X−k = − i

ε

∞∑
`=1

f`Q(κ, ξ, q)

`Q
X−`Q

+

∞∑
`=0

−i∂~f`Q(κ, ξ, q)

`Q
X−`Q − 1

2

∞∑
`=0

f`Q(κ, ξ, q)X−`Q

− iκ′
∂

∂κ

∞∑
`=0

f`Q(κ, ξ, q)

`Q
X−`Q

− i

(
ξ′ · ∂

∂ξ

) ∞∑
`=0

f`Q(κ, ξ, q)

`Q
X−`Q

+

Q−1∑
k=1

1

qk − 1

∞∑
`=0

f`Q+k(κ, ξ, q)X
−`Q−k

+O(ε),

(3.11)

where ∂~fk(κ, ξ, q) = iq∂qfk(κ, ξ, q). We have denoted κ′ and ξ′ the ~ derivatives of κ

and ξ. Every term in the sum above can be written using the function log V (X) defined

in (2.31), which is finite for any value of ~. The function log V (X) is for the moment only

known as a large X expansion. However, as we will see below, it can be obtained exactly

for any integers Q,P . For a, k integers we have that 1
Q

∑Q−1
m=0 q

m(a−k) = δ0,(a−k) mod Q. We
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define for k = 1, 2, . . . , Q,

ϕk(X) ≡
∞∑
`=0

f`Q+k(κ, ξ, q)X
−`Q−k =

1

Q

Q−1∑
m=0

log V (qmX)qmk. (3.12)

The instance with k = Q can also be written as

ϕQ(X) ≡
∞∑
`=1

f`Q(κ, ξ, q)X−`Q =
1

Q

Q−1∑
m=0

log V (qmX). (3.13)

The function ϕQ also appears in the following combination:

∞∑
`=1

f`Q(κ, ξ, q)

`Q
X−`Q = −

∫ X

∞
ϕQ(X ′)

dX ′

X ′
. (3.14)

So (3.11) becomes

∑
k=1

fk(κ, ξ, q)

qk − 1
X−k =

i

ε

∫ X

∞
ϕQ(X ′)

dX ′

X ′

+

∫ X

∞
i∂~ϕQ(X ′)

dX ′

X ′
+ iκ′

∫ X

∞
∂κϕQ(X ′)

dX ′

X ′

+ iξ′ ·
∫ X

∞
∂ξϕQ(X ′)

dX ′

X ′
−
ϕQ(X)

2
+

Q−1∑
k=1

ϕk(X)

qk − 1
+O(ε).

(3.15)

The function ∂~ϕQ(X ′) can be obtained through

∂~ϕQ(X) =
1

Q

Q−1∑
m=0

∂~V

V

∣∣∣∣
X→qmX

, (3.16)

whereas the functions ∂κϕQ and ∂ξϕQ can be obtained by direct differentiation of ϕQ.

Let us now look at the expansion of the dual part. We find

∑
k=1

fk(κ̃, ξ̃, qD)

qDk − 1
X−kD =

i

ε

P

Q

∞∑
`=1

f`P (κ̃, ξ̃, qD)

`Q
X−`Q

+
i

2π

( ∞∑
`=1

f`P (κ̃, ξ̃, qD)

`Q
X−`Q + x

∞∑
`=1

f`P (κ̃, ξ̃, qD)X−`Q

)

+

∞∑
`=1

−i∂~Df`P (κ̃, ξ̃, qD)

`P
X−`PD − 1

2

∞∑
`=1

f`P (κ̃, ξ̃, qD)X−`Q

+ i
P

Q

(
κ̃′
∞∑
`=1

∂κ̃f`P (κ̃, ξ̃, qD)

`Q
X−`Q +

(
ξ̃
′ · ∂
∂ξ̃

) ∞∑
`=1

f`P (κ̃, ξ̃, qD)

`Q
X−`Q

)

+
P−1∑
k=1

1

qkD − 1

∞∑
`=0

f`P+k(κ̃, ξ̃, qD)XD
−`P−k +O(ε). (3.17)

– 13 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
4

Explicitly, XD = XQ/P . Also, κ̃ and ξ̃ have several sources of ~ dependance, and we

have denoted their total derivative w.r.t. ~ by κ̃′ and ξ̃
′
. As before, we can write all the

contributions in terms of a unique function log VD(XD), which is defined as

log VD(XD) ≡
∑
k=1

fk(κ̃, ξ̃, qD)X−kD . (3.18)

This is basically log V (X) where we replaced all the variables by their duals. As before,

we define for k = 1, 2, . . . , P ,

ϕ̃k(XD) ≡
∞∑
`=0

f`P+k(κ̃, ξ̃, qD)X−`P−kD =
1

P

P−1∑
m=0

log VD(qmDXD)qmkD . (3.19)

Using (3.9), we see that the special case k = P is related to ϕQ:

ϕ̃P (XD) =
Q

P
ϕQ(X). (3.20)

Now that we have performed the variation with respect to ~, it is considered to be fixed in

what follows. The relation between parameters and their duals are the algebraic ones (3.10)

at fixed ~. So we can write

∞∑
`=1

∂κ̃f`P (κ̃, ξ̃, qD)

`Q
X−`Q =

Q

P
(∂κ̃κ ∂κ + ∂κ̃ξ · ∂ξ)

∞∑
`=1

f`Q(κ, ξ, q)

Q`
X−`Q

= −Q
P
∂κ̃κ

∫ X

∞
∂κϕQ(X ′)

dX ′

X ′
− Q

P
∂κ̃ξ ·

∫ X

∞
∂ξϕQ(X ′)

dX ′

X ′
,

(3.21)

and similarly for the term with the derivative w.r.t. ξ. These are exactly the kind of terms

appearing in the expansion of the first part. So (3.17) becomes

∑
k=1

fk(κ̃, ξ̃, qD)

qDk − 1
X−kD = − i

ε

∫ X

∞
ϕQ(X ′)

dX ′

X ′

+
iQ

2πP

(
−
∫ X

∞
ϕQ(X ′)

dX ′

X ′
+ xϕQ(X)

)
+

∫ XD

∞
i∂~D ϕ̃P (X ′)

dX ′

X ′
− 1

2

Q

P
ϕQ(X)

− i(κ̃′∂κ̃κ+ ξ̃′i∂ξ̃iκ)

∫ X

∞
∂κϕQ(X ′)

dX ′

X ′

− i(κ̃′∂κ̃ξ + ξ̃′i∂ξ̃iξ) ·
∫ X

∞
∂ξϕQ(X ′)

dX ′

X ′

+

Q−1∑
k=1

ϕk(X)

qk − 1
+O(ε)

(3.22)
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Finally, by adding this to what we obtained previously, we can write down the finite part

of the full non-perturbative WKB eigenfunction (3.7) in the rational case:

log Ψ(X) =
iQ

2πP

(
−
∫ X

∞
ϕQ(X ′)

dX ′

X ′
+ λ

∫ X

∞
∂κϕQ(X ′)

dX ′

X ′

+ λξ ·
∫ X

∞
∂ξϕQ(X ′)

dX ′

X ′
+ xϕQ(X)

)
− 1

2

(
1 +

Q

P

)
ϕQ(X) +

∫ X

∞
i∂~ϕQ(X ′)

dX ′

X ′
+

∫ XD

∞
i∂~D ϕ̃P (X ′D)

dX ′D
X ′D

+

Q−1∑
k=1

ϕk(X)

qk − 1
+

P−1∑
k=1

ϕ̃k(XD)

qDk − 1
.

(3.23)

Here we have collected in λ and λξ all the terms in front of the corresponding integrals.

These terms cannot be determined directly by our method, and we will use monodromy

invariance of the eigenfunction to fix them. Let us also notice that in the first line in the

parenthesis, the first and last term can be put together using integration by part, to give∫
xdϕQ(x). So this first line corresponds to the integral of what is called the “deformed

symplectic potential” for the special case studied in [29], with deformation parameters λ

and λξ.

Once we know how to build log V and log VD and their ~ derivative, everything is

exactly determined. We will construct them in the following subsection.

3.3 Exact expressions for the building blocks

In this section, we present the method to compute exactly the various functions appearing

in (3.23) in the rational case. As we will see, since we are in the hyperelliptic case, a certain

product of 2 × 2 matrices will be crucial. We expect something similar for more general

cases, with matrices of larger size. The method presented here can be seen as a kind of

generalization of the manipulations done in [27, 28].

We recall the definition of V (X):

V (X) =
ΨWKB(q−1X)

ΨWKB(X)
. (3.24)

The difference equation (2.21), can be rewritten for V (X) as

V (X)V (qX)− a(X)V (qX) + b(X) = 0, (3.25)

where a(X) and b(X) are rational functions of X. The key feature of the rational case is

that this equation can be solved algebraically (using qQ = 1). To proceed, we shorten the

notation by using vk = V (qkX). The label k of vk is thus defined modulo Q. The previous

equation can be shifted, which gives the closed system of Q quadratic equations for the Q

variables vk, where k = 0, 1, . . . , Q− 1:

vkvk+1 − a(qkX)vk+1 + b(qkX) = 0, k = 0, 1, . . . , Q− 1. (3.26)
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To efficiently solve this system, we proceed by recursion. We define a(k)(X) and b(k)(X)

through the following relations

a(1)(X) = a(X),

b(1)(X) = b(X),

v0v1 · · · vk − a(k)(X)vk + b(k)(X) = 0.

(3.27)

The next term is obtained by multiplying the last line by vk+1, and using (3.26):

0 = v0v1 · · · vkvk+1 − a(k)(X)vkvk+1 + b(k)(X)vk+1

= v0v1 · · · vk+1 − [a(qkX)a(k) − b(k)(X)]vk+1 + b(qkX)a(k)(X).
(3.28)

From this we read out the relation(
a(k+1)(X)

b(k+1)(X)

)
=

(
a(qkX) −1

b(qkX) 0

)(
a(k)(X)

b(k)(X)

)
. (3.29)

This recursion can be easily solved, and we find, for example for k = Q,(
a(Q)(X)

b(Q)(X)

)
=M(X)

(
1

0

)
=

(
M11(X)

M21(X)

)
, (3.30)

where the matrix

M(X) =

Q∏
k=1

(
a(q−kX) −1

b(q−kX) 0

)
(3.31)

is defined such that the product is ordered from left to right as k increases. Using that

M(qX) =

(
a(X) −1

b(X) 0

)
M(X)

(
a(X) −1

b(X) 0

)−1

, (3.32)

we get (
a(Q)(qX)

b(Q)(qX)

)
=

(
M22(X)− a(X)M12(X)

b(X)M12(X)

)
. (3.33)

Let us define

Πv = v0v1 · · · vQ−1, (3.34)

which is invariant under q-shifts. We obtain from (3.27) (for k = Q):{
v0(Πv − a(Q)(X)) + b(Q)(X) = 0,

v1(Πv − a(Q)(qX)) + b(Q)(qX) = 0.
(3.35)

The second line is just the q-shift of the first. Using the expressions of a(Q) and b(Q) in

terms of the entries of M and then (3.26), we can rewrite this system as{
v0(Πv −M11(X)) +M21(X) = 0,

−(Πv −M22(X))− v0M12(X) = 0.
(3.36)
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This system can also be rewritten in matrix form:(
M11(X)−Πv M21(X)

M12(X) M22(X)−Πv

)(
−v0

1

)
=

(
0

0

)
, (3.37)

which has solutions only if

0 = det(MT −Πv 1) = det(M−Πv 1). (3.38)

We conclude that Πv is an eigenvalue of the matrix M(X):

Πv = v0v1 · · · vQ−1 =
trM(X)±

√
∆(X)

2
, (3.39)

where

∆(X) = (trM(X))2 − 4 detM(X). (3.40)

Both detM(X) and trM(X) are invariant under q-shifts (see (3.32)) and so depend on X

through XQ. The function v0 can be found for example using the second line of (3.36):

v0 =
Πv −M22(X)

−M12(X)
=
M11(X)−M22(X)±

√
∆(X)

−2M12(X)
. (3.41)

The other vk can be obtained by q-shifting v0. We thus provided the solution of the q-

equation (3.25) for all the rational cases: the solution is encoded in the matrix M(X)

which can be obtained by (3.31), i.e. a product of Q matrices which are q-shifted. Finally,

we find the following results for log V (X) and ϕQ(X):

log V (X) = log

(
M11(X)−M22(X)±

√
∆(X)

−2M12(X)

)
,

ϕQ(X) =
1

Q
log

(
trM(X)±

√
∆(X)

2

)
.

(3.42)

The dual quantities log VD(XD) and ϕ̃P (XD) can be obtained by exchanging Q and

P and replacing all the variables by their duals XD, κ̃ and ξ̃. This means redefining a(X)

and b(X) since they have implicit dependance on κ, ξ and perhaps q. For convenience, we

write the results here:

M̃(XD) =

P∏
k=1

(
aD(q−kXD) −1

bD(q−kXD) 0

)
,

∆D(XD) = (trM̃(XD))2 − 4 detM̃(XD),

log VD(XD) = log

(
M̃11(XD)− M̃22(XD)±

√
∆D(XD)

−2M̃12(XD)

)
,

ϕ̃P (XD) =
1

P
log

(
trM̃(XD)±

√
∆D(XD)

2

)
.

(3.43)
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All these functions are determined up to the sign in front of the square root. This

freedom of choice corresponds to the branch choice of y(x) in the WKB method of the

previous section. As we will see, in the final eigenfunctions both choices appear in a

symmetric way.

By now, the only ingredients appearing in (3.23) which have not been explicitly con-

structed are ∂~ϕQ(X) and its dual. They cannot be obtained by simply taking ~ derivatives

of ϕQ and ϕ̃P because we do not know their explicit ~ dependance as exact functions. We

only know their ~ dependance as a large X expansion, or an ~ dependant algorithm to

build them in the rational case. To find an expression for ∂~ϕQ(X) in the rational case, we

basically perform a first order WKB expansion but around ~ = 2πP/Q instead of ~ = 0.

In order to do this, let us take a total ~-derivative of equation (3.25), which is valid for

any ~:

0 = ∂~V (X)V (qX) + V (X)∂~V (qX) + iV (X)∂xV (qX)

− ∂~a(X)V (qX)− a(X)∂~V (qX)− ia(X)∂xV (qX) + ∂~b(X).
(3.44)

This is the q-equation obeyed by the first derivative of V . It can be solved in the rational

case. Using the notation

δ(X) =
∂~V

V
(X), (3.45)

this can be rewritten as

0 = δ(qX) + δ(X)

(
1− a(X)

V (X)

)−1

+

(
i∂x log V (qX)−

(
1− a(X)

V (X)

)−1 ∂~a(X)

V (X)
+
∂~b(X)

b(X)

)
(3.46)

Similarly as before, let us introduce the notations

δk = δ(qkX),

vk = V (qkX),
(3.47)

and

α(X) = −
(

1− a(X)

v0

)−1

β(X) = −

(
i∂x log v1 −

(
1− a(X)

v0

)−1 ∂~a(X)

v0
+
∂~b(X)

b(X)

)
.

(3.48)

Both α(X) and β(X) are of the form

(rational of X)± (rational of X)×
√

∆(X), (3.49)

Every further manipulations will leave invariant this structure, so the final result will also

be of this form. Equation (3.46) can be written as

0 = δ1 − α(X)δ0 − β(X), (3.50)
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which can be treated similarly as in the previous section. It is in principle even simpler

since it is a polynomial of order 1 in the δk, instead of order 2. By recursion,

α(1)(X) = α(X),

β(1)(X) = β(X),

δk − α(k)(X)δ0 − β(k)(X) = 0.

(3.51)

After shift,

0 = δk+1 − α(k)(qX)δ1 − β(qk)(X),

= δk+1 − α(k)(qX)α(X)δ0 − (β(k)(qX) + α(k)β(X)),
(3.52)

from which we read out(
α(k+1)(X)

β(k+1)(X)

)
=

(
α(X) 0

β(X) 1

)(
α(k)(qX)

β(k)(qX)

)
. (3.53)

From this, we get (
α(Q)(X)

β(Q)(X)

)
= A(X)

(
1

0

)
, (3.54)

where

A(X) =

Q−1∏
k=0

(
α(qkX) 0

β(qkX) 1

)
. (3.55)

Again, the product is ordered from left to right as k increases Since we have δQ = δ0, we

end up with

0 = δ0 − α(Q)(X)δ0 − β(Q)(X), (3.56)

which is solved by

δ0 ≡
∂~V

V
(X) =

β(Q)(X)

1− α(Q)(X)
. (3.57)

From the recursion (or its solution given by the matrix A), it is easily seen that

α(k)(X) =
k−1∏
`=0

α(q`X), (3.58)

which means that for k = Q, it is invariant under q-shifts. Also, we have

β(Q)(X) =

Q−1∑
k=0

β(qkX)α(Q−1−k)(qk+1X), (3.59)

where we used the convention α(0)(X) = 1. Finally, according to (3.16),

∂~ϕQ(X) =
1

Q

Q−1∑
k=0

β(Q)(qkX)

1− α(Q)(qkX)
=

1

Q

∑Q−1
k=0 β

(Q)(qkX)

1− α(Q)(X)
, (3.60)
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where we used invariance of α(Q)(qX) under q-shifts. We can change the order of summa-

tion, to obtain the following form, which is more useful in actual computations:

∂~ϕQ(X) =
1

Q(1− α(Q)(X))

Q−1∑
N=0

β(qNX)

(
Q−1∑
k=0

α(k)(qN+1X)

)
. (3.61)

The dual quantity ∂~D ϕ̃P (XD) is of course built in the same way, where we exchange Q

and P and use the dual quantities everywhere. In principle, we now have all the ingredients

to write down (3.23) exactly.

Let us remark that all these ingredients are functions which are multivalued (the sign

ambiguity in front of the square-root). So we must consistently choose a branch of these

functions. As we will see in the final result, both choices will contribute.

3.4 Relations between the parameters

We saw in section 3.1 that we need some conditions on the functions fk for pole cancel-

lation, which translate into relations between κ, ξ and κ̃, ξ̃. Here we make this relation

more explicit for the rational case, and give some examples. As we have already seen,

condition (3.9) can be rewritten as the functional relation

QϕQ(X,κ, ξ) = Pϕ̃P (XD, κ̃, ξ̃), (3.62)

valid for all X. Using results from the previous subsection, this is equivalent to

trM(X)±
√

∆(X) = trMD(XD)±
√

∆D(XD). (3.63)

A necessary condition for this to hold is the equality of the traces for all X

trM(X) = trMD(XD). (3.64)

This is a relation between two rational functions of XQ (we remind the reader that

XD = XQ/P ). Often, they are Laurent polynomials of XQ which are of the same or-

der, and equating each order gives algebraic relations between κ, ξ and the duals κ̃, ξ̃.

More generally, these relations can always be extracted even if we have rationals instead

of Laurent polynomials. These relations are essentially the same as the ones presented

in [27, 28] for local P1 × P1 and local B3. Here we put their procedure in a more general

context. If this does not give enough conditions as in the case of full B3, one can use

in addition the condition of equating the determinant too, or equivalently, the condition

given by

∆(X) = ∆D(XD). (3.65)

So in the end, even that case can be dealt with using 2 × 2 matrices instead of the larger

ones given in [28]. In any case, the relations between κ̃, ξ̃ and κ, ξ are fully determined

by (3.63). Let us give some examples.

For local P2 we only have κ, and no ξ. We find for a(X) and b(X) in (3.25):

a(X) = 1 +
κ

X
, b(X) =

q−3/2

X3
. (3.66)
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From this, we can build the matrix M(X) and its dual, compute their traces and equate

them. The relations in some rational cases are

P = 1, Q = 1, κ̃ = κ,

P = 1, Q = 2, κ̃ = −κ2,

P = 1, Q = 3, κ̃ = κ3 + 3,

P = 2, Q = 3, − κ̃2 = κ3 − 3,

P = 1, Q = 4, κ̃ = −κ4 − 4
√

2κ,

P = 3, Q = 4, κ̃3 − 3 = −κ4 + 4
√

2κ,

(3.67)

For local P1 × P1 we have κ, and a mass parameter m ≡ ξ1. We find

a(X) = 1 +
κ

X
+

m

X2
, b(X) =

q−1

X2
. (3.68)

The relations in some rational cases are

P = 1, Q = 1, κ̃ = κ,

m̃ = m,

P = 1, Q = 2, κ̃ = −κ2 + 2(m+ 1),

m̃ = m2,

P = 1, Q = 3, κ̃ = κ3 − 3(m+ 1)κ,

m̃ = m3,

P = 2, Q = 3, − κ̃2 + 2(m̃+ 1) = κ3 − 3(m+ 1)κ,

m̃2 = m3,

P = 1, Q = 4, κ̃ = −κ4 + 4(m+ 1)κ2 − 2(m2 + 1),

m̃ = m4,

P = 3, Q = 4, κ̃3 − 3(m̃+ 1)κ̃ = −κ4 + 4(m+ 1)κ2 − 2(m2 + 1),

m̃3 = m4,

(3.69)

For the resolved C3/Z5 we have κ, and another true modulus κ1 ≡ ξ1. We find

a(X) = 1 +
κ

X
+
κ1

X2
, b(X) =

q−5/2

X5
. (3.70)

The relations in some rational cases are

P = 1, Q = 1, κ̃ = κ,

κ̃1 = κ1,

P = 1, Q = 2, κ̃ = −κ2 + 2κ1,

κ̃1 = κ2
1,

P = 1, Q = 3, κ̃ = κ3 − 3κκ1,

κ̃1 = κ3
1 + 3κ,
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P = 2, Q = 3, − κ̃2 + 2κ̃1 = κ3 − 3κκ1, (3.71)

κ̃2
1 = κ3

1 − 3κ,

P = 1, Q = 4, κ̃ = −κ4 + 4κ2κ1 − 2κ2
1,

κ̃1 = κ4
1 + 4

√
2κκ1,

P = 3, Q = 4, κ̃3 − 3κ̃κ̃1 = −κ4 + 4κ2κ1 − 2κ2
1,

κ̃3
1 − 3κ̃ = κ4

1 − 4
√

2κκ1,

We see that here, in contrast with local P1 × P1, the extra parameter κ1 has a non-trivial

relation with its dual. This is certainly because it is a true modulus, whereas m in local

P1 × P1 is a simple mass parameter.

3.5 The “fully on-shell” eigenfunctions

To obtain the “fully on-shell” eigenfunction from expression (3.23), we need to do two

more steps. First, add the polynomial part in x, which was truncated in (2.19). Second,

since we are in the hyperelliptic case, we should linearly combine it with the second part

of the eigenfunction which corresponds to the second solution of the WKB. This consists

in taking the second branch of the function y(x) when performing the small ~ WKB. It is

not hard to convince oneself that in expression (3.23), this corresponds to evaluate all the

ingredients of (3.23) on their second branch. For the integral expressions, the base point

should not be changed (it remains at ∞ on the first sheet), but the path of integration

should extend to the point X̄ on the second sheet, which is the image of X under the

obvious involution that exchanges the two sheets of the double cover. This is exactly the

prescription which is used in [10, 11] to build eigenfunctions from open topological string

data.6 Let us denote Ψ(X) the exponential of expression (3.7). In the rational case, it is

the exponential of expression (3.23). We propose that the exact eigenfunction is given by

ψ(X) = e(−i~)−1s0(x)+s1(x)
(
Ψ(X) + Ψ(X̄)

)
. (3.72)

In the rational case, this is a completely explicit expression.

The point X̄ can be reached through different inequivalent paths when evaluating in-

tegrated expressions. Requiring single valuedness of the resulting eigenfunction, we should

impose that the difference between two inequivalent integrations give 2πi× integer. In this

way, the final eigenfunction will not depend on the path chosen to reach X̄. This leads to

the well known argument of monodromy invariance, and yields quantization conditions for

all the true moduli.

Let us now proceed to the testing of this construction in some examples. The eigen-

functions and eigenvalues are compared to purely numerical results which can be obtained

using the hamiltonian truncation method in the basis of the harmonic oscillator (appropri-

ately scaled Hermite functions). This method is explained for example in [26, 33], where

it is used for the same kind of difference equations as the ones considered here.

6In those references, the reasoning behind this prescription is a priori different: the sum of the two

related functions comes from the contribution of two distinct saddles in a certain integral transform.
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4 Examples

4.1 Local P2

The difference equation related to the geometry called local P2 is the simplest example of

our family of difference equations, since it has only one modulus κ. So the “fully on-shell”

eigenfunctions are exactly the on-shell eigenfunctions. In an appropriate parametrization,

its mirror curve is given by the zero locus of

W (x, y) = ex + ey + e−x−y + κ, (4.1)

which, after quantization, leads to the difference equation

exψ(x) + ψ(x− i~) + e−
i~
2 e−xψ(x+ i~) = −κψ(x). (4.2)

If we look at this system as the quantization of some classical one dimensional system,

then classically, the region allowed in the real phase space (x, y) is non empty for κ < −3.

We will assume this regime for κ. We now build the exact eigenfunctions and quantization

conditions for the spectrum using the technology developed in the previous sections.

As a warm up, let us consider the case ~ = 2π. This is the self dual case, where

P = Q = 1. So every quantity is identified with its dual. After computing every constituent

of (3.23), we obtain

log Ψ(X) =
i

2π

(∫ X

∞
log(X ′)

(
− 3

2X ′
+

3X ′ + κ

2
√
σ(X ′)

)
dX ′ + λ

∫ X

∞

dX ′√
σ(X ′)

)

+
1

2
log

(
X4

σ(X)

)
, (4.3)

where

σ(X) = 4X +X2(X + κ)2 ≡ X
3∏

n=1

(X −An). (4.4)

For the regime of κ we are interested in, we have A1 < 0 and Ā3 = A2, with positive real

part. We take the A cycle to be the one which encircles A2 and A3 counterclockwise, and

the B the one which encircles A1 and A2. We define the following A and B periods

ΠA,B =

∮
A,B

log(X)

(
− 3

2X
+

3X + κ

2
√
σ(X)

)
dX,

Π
(λ)
A,B =

∮
A,B

dX√
σ(X)

.

(4.5)

The last term in (4.3) with the logarithm function does not contribute to monodromy.7

Monodromy invariance is expressed as

log ΨWKB

∣∣∣
A

=
i

2π

(
ΠA + λΠ

(λ)
A

)
= 2πiM,

log ΨWKB

∣∣∣
B

=
i

2π

(
ΠB + λΠ

(λ)
B

)
= 2πiN,

(4.6)

7More precisely, it contributes with integer multiples of 2πi which are trivial.
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where M,N are integers. It turns out that the A periods are purely imaginary, so this sets

M=0. This gives an equation to fix the value of λ. Also, it turns out that the combination

of B periods in the second line above is positive. So the quantization condition is

i

2π

(
ΠB +

(
− ΠA

Π
(λ)
A

)
Π

(λ)
B

)
= 2πi(n+ 1). (4.7)

For each non negative integers n = 0, 1, 2, . . ., this equation fixes a value for κ which we

call κn. It can be checked numerically that this corresponds to the eigenvalues of the

spectral problem. Here are some values found by performing the integration numerically

and solving the equation using Newton’s method:

E0 = log(−κ0) = 2.56264206862381937081 . . . ,

E1 = log(−κ1) = 3.91821318829983977872 . . . ,

E2 = log(−κ2) = 4.91178982376733605820 . . . ,

E3 = log(−κ3) = 5.73573703542155946556 . . . ,

. . .

(4.8)

These values, and the quantization condition itself, agree with the literature, See for ex-

ample [7], where the periods are written down explicitly using hypergeometric and Meijer

functions. The eigenfunctions themselves can be seen to agree with the on-shell results

in [11] up to some overall phase.

Let us now consider a more involved case: ~ = 3π/2. This is a non-trivial case, since

both P and Q are different from 1, namely P = 3 and Q = 4. It is dual to the case

~ = 8π/3. The relation between κ and its dual can be found in section 3.4. Let us define

P3,4(κ) = −κ4 + 4
√

2κ, P4,3(κ̃) = κ̃3 − 3, (4.9)

so that the relation is

P3,4(κ) = P4,3(κ̃). (4.10)

We also have XD = X4/3. Let us define

σ(X) = −4X4 +X8(X4 + P3,4(κ))2

≡ X4
3∏

k=0

3∏
n=1

(X − e
πi
2
kAn),

(4.11)

and

p1(X) = κX10 − κ2X9 + (6
√

2κ2 − κ5)X6 + (−3− 6
√

2κ3 + κ6)X5

+ 15κX4 − 5κ2X3 + (−3
√

2 + κ3)X2 −
√

2κX,

p2(X) = X4 − κX3 + κ2X2 + (
√

2− κ3)X −
√

2κ,

p̃1(XD) = κ̃X7
D + (κ̃4 − 8κ̃)X4

D + 3κ̃2X3
D − κ̃3X2

D − 2κ̃XD,

p̃2(XD) = X3
D − κ̃X2

D + κ̃2XD − 1.

(4.12)
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Using the formulas given in the previous sections, we find

ϕQ(X) =
1

4
log

[
1

2

(
1 +

P3,4(κ)

X4

)
+

1

2X8

√
σ(X)

]
, (4.13)

as well as, after some tedious work of simplifications,

−1

2
ϕQ(X)+

∫ X

∞
i∂~ϕQ(X ′)

dX ′

X ′
+

Q−1∑
k=1

ϕk(X)

qk − 1

=
1

4
log

(
X8p2(X)

σ(X)

)
+

∫ X

∞

−i

2

p1(X ′)

p2(X ′)
√
σ(X ′)

dX ′,

− P

2Q
ϕQ(X)+

∫ XD

∞
i∂~D ϕ̃P (X ′D)

dX ′D
X ′D

+
P−1∑
k=1

ϕ̃k(XD)

qDk − 1

=
1

4
log

(
X6
Dp̃2(XD)

σ(X)

)
+

∫ XD

∞

i

2
√

3

p̃1(X ′D)

p̃2(X ′D)

√
σ(X ′D

3/4)
dX ′D.

(4.14)

Putting everything together, we obtain:

log Ψ(X) =
2i

3π

(∫ X

∞
log(X ′)

(
− 3

2X ′
+
X ′3(3X ′4 + P3,4(κ))

2
√
σ(X ′)

)
dX ′

+ λ

∫ X

∞

1
4P
′
3,4(κ)X ′3dX ′√

σ(X ′)

)

+

∫ X

∞

−i

2

p1(X ′)

p2(X ′)
√
σ(X ′)

dX ′ +

∫ X

∞

2i

3
√

3

p̃1(X ′4/3)X ′1/3

p̃2(X ′4/3)
√
σ(X ′)

dX ′

+
1

2
log

(
X8p2(X)p̃2(X4/3)

σ(X)

)
.

(4.15)

In the regime of κ we are interested in, the An defined in (4.11) are ordered as 0 < A1 <

A2 < A3. We take the A cycle to be the one which encircles A2 and A3 counterclockwise,

and the B cycle the one which encircles A1 and A2. We define the following A and B periods

ΠA,B =

∮
A,B

[
log(X)

(
− 3

2X
+
X3(3X4 + P3,4(κ))

2
√
σ(X)

)

+
−3π

4

p1(X)

p2(X)
√
σ(X)

+
π√
3

p̃1(X4/3)X1/3

p̃2(X4/3)
√
σ(X)

]
dX,

Π
(λ)
A,B =

∮
A,B

1
4P
′
3,4(κ)X3dX√

σ(X)
.

(4.16)

With these definitions, monodromy invariance is given by eq. (4.6) with a factor 4/3:

log ΨWKB

∣∣∣
A

=
2i

3π

(
ΠA + λΠ

(λ)
A

)
= 2πiM,

log ΨWKB

∣∣∣
B

=
2i

3π

(
ΠB + λΠ

(λ)
B

)
= 2πiN,

(4.17)
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Figure 1. Local P2 at ~ = 3π/2: exact ground state eigenfunction (real part in blue and imaginary

part in red) and the absolute difference with numerics coming from numerical diagonalization of a

250× 250 matrix (rescaled to match the exact eigenfunctions at x = 0). For this size of the matrix,

the maximal difference is of the order 10−12.

Empirically, the A periods are always imaginary in our regime of κ, so we get the following

quantization condition

2i

3π

(
ΠB +

(
− ΠA

Π
(λ)
A

)
Π

(λ)
B

)
= 2πin, (4.18)

for n = 0, 1, 2, . . .. This equation fixes a value for κ which we call κn. Here are some values

found by numerical integration and solving the equation using Newton’s method:

E0 = log(−κ0) = 2.23447824285951068410 . . . ,

E1 = log(−κ1) = 3.40332799272918290269 . . . ,

E2 = log(−κ2) = 4.26178057406546295246 . . . ,

. . .

(4.19)

These have been checked using numerical hamiltonian truncation. We can also test the

eigenfunction given by formula (3.72). The symmetric sum in (3.72) as well as monodromy

invariance ensure that the final eigenfunction is free of branch-points, single valued and

analytic on the X plane (at least in a sector of the X plane containing the positive real

line). The exact eigenfunctions can be seen in figure 1 and figure 2. They are obtained by

evaluating numerically the integral expressions in (4.15). The proposed exact expression

reproduces well the numerical result obtained using numerical hamiltonian truncation. The

difference between the exact results and the purely numerical results decrease as we increase

the size of the numerical truncated hamiltonian matrix.

4.2 Local P1 × P1

The difference equation related to local P1 × P1 is also a simple example, since we do not

have any additional true moduli, only a mass parameter ξ1 = m. The “fully on-shell”

eigenfunctions are exactly the on-shell eigenfunctions. We assume that m is positive. Also,
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Figure 2. Local P2 at ~ = 3π/2: same plot as in figure 1, for the first excited state. The maximal

difference is of the order 10−10.

this case is related to the relativistic Toda lattice with two particles. In an appropriate

parametrization, the mirror curve of local P1 × P1 is given by the zero locus of

W (x, y) = ex +me−x + ey + e−y + κ, (4.20)

which leads to the difference equation

(ex +me−x)ψ(x) + ψ(x− i~) + ψ(x+ i~) = −κψ(x). (4.21)

If we look at this system as the quantization of some classical one dimensional system, then

classically, the region allowed in the real phase space (x, y) is non-empty for κ < −2−2
√
m.

We will assume this regime for κ. We now build the exact eigenfunctions and quantization

conditions for the spectrum using the technology developed in the previous sections.

Let us again work out the self dual case ~ = 2π. We obtain

log Ψ(X) =
i

2π

(∫ X

∞
log(X ′)

(
− 1

X ′
+

X ′2 −m
X ′
√
σ(X ′)

)
dX ′

+λ

∫ X

∞

dX ′√
σ(X ′)

+ λm

∫ X

∞

dX ′

X ′
√
σ(X ′)

)

+
1

2
log

(
X4

σ(X)

)
,

(4.22)

where

σ(X) = −4X2 + (m+X(X + κ))2 =
4∏

n=1

(X −An). (4.23)

In the regime of κ we are interested in, all the branch-points An are positive real. We order

them increasingly. We define the cycle A encircling A3 and A4 counterclockwise, the cycle

Ã encircling A1 and A2 counterclockwise, and the cycle B encircling A2 and A3. Indeed,

since we have two undetermined constants λ and λm, we need three monodromy conditions

for the quantization condition. Fortunately, the cycles A and Ã are inequivalent since the
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integral in front of λm picks up a residue at the pole X = 0 when we deform the cycle A
to Ã. It is then better to consider the set A, A+ Ã and B as the set of independent cycles.

Let us define

ΠA,A+Ã,B =

∮
A,A+Ã,B

log(X)

(
− 1

X
+

X2 −m
X
√
σ(X)

)
dX,

Π
(λ)

A,A+Ã,B
=

∮
A,A+Ã,B

dX√
σ(X)

,

Π
(λm)

A,A+Ã,B
=

∮
A,A+Ã,B

dX

X
√
σ(X)

.

(4.24)

Monodromy invariance is expressed as

log ΨWKB

∣∣∣
A

=
i

2π

(
ΠA + λΠ

(λ)
A + λmΠ

(λm)
A

)
= 2πiM,

log ΨWKB

∣∣∣
A+Ã

=
i

2π

(
ΠA+Ã + λΠ

(λ)

A+Ã
+ λmΠ

(λm)

A+Ã

)
= 2πiM̃,

log ΨWKB

∣∣∣
B

=
i

2π

(
ΠB + λΠ

(λ)
B + λmΠ

(λm)
B

)
= 2πiN,

(4.25)

where M, M̃,N are integers. It turns out that the A and Ã periods are purely imaginary

whereas λ and λm should be real, so this fixes M=M̃=0. It is actually easy to compute

the periods for A+ Ã. By deforming the contour and taking the residue at X = 0, we find

Π
(λ)

A+Ã
= 0, Π

(λm)

A+Ã
=

2πi

m
. (4.26)

Also, using that σ(m/X) = m2σ(X)/X4, we find after a change of variables

ΠA+Ã = −2πi logm. (4.27)

Then, the quantization condition for the cycle A+ Ã yields

λm = m logm. (4.28)

It turns out that the combination of B periods in the third line of (4.25) is positive for our

regime of κ. So the remaining two monodromy conditions give the following quantization

condition:

i

2π

(
ΠB −

(
ΠA +m log(m)Π

(λm)
A

Π
(λ)
A

)
Π

(λ)
B +m log(m)Π

(λm)
B

)
= 2πi(n+ 1). (4.29)

In the case m = 1 we retrieve the results of [29]. By numerical computation of the periods

and Newton’s method for solving the quantization condition, we can get the eigenvalues

κn, n = 0, 1, 2, . . .. Here we list some results, which have been checked using numerical

diagonalization. For m = 1,

E0 = log(−κ0) = 2.88181542992629678247 . . . ,

E1 = log(−κ1) = 4.25459152858199378358 . . . ,

E2 = log(−κ2) = 5.28819530714418547625 . . . ,

. . .

(4.30)
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For m = 1/3,

E0 = log(−κ0) = 2.62164098025513043508 . . . ,

E1 = log(−κ1) = 3.98889597312465176636 . . . ,

E2 = log(−κ2) = 5.02068317784445369322 . . . ,

. . .

(4.31)

The eigenfunctions match the numerical results obtained by hamiltonian truncation. For

the case m = 1, up to an overall phase, the eigenfunction is equivalent to the exact result

of [29] and to the on-shell restriction of the result in [10].

Let us now take ~ = 2π/3, which is a more involved case. We have P = 1 and Q = 3.

Also, κ̃ = κ3 − 3(m+ 1)κ, m̃ = m3 and XD = X3. Let us define

σ(X) = −4X6 + (X6 +X3(κ3 − 3(m+ 1)κ) +m3)2

≡
4∏

n=1

(X −An)(X − e
2πi
3 An)(X − e

4πi
3 An),

(4.32)

and

p1(X) = X8κ+X7(2− 2m) +X6mκ+X5(κ4 − (5 + 3m)κ2 + 4− 4m)

+X4(−2mκ3 + 6m2κ+ 14mκ) +X3(mκ4 − (5 + 3m)mκ2 + 4m− 4m2)

+X2m3κ+Xm3(2− 2m) +m4κ,

p2(X) = X4 −X3κ+X2(κ2 −m− 1)−Xκm+m2.

(4.33)

Using (3.23) and the methods given in the previous sections to compute the different

ingredients, we obtain after some simplifications:

log Ψ(X) =
3i

2π

(∫ X

∞
log(X ′)

(
− 1

X ′
+

X ′6 −m3

X ′
√
σ(X ′)

)
dX ′

+λ

∫ X

∞

(κ2 −m− 1)X ′2dX ′√
σ(X ′)

+ λm

∫ X

∞

(m2 −X ′3κ)dX ′

X ′
√
σ(X ′)

)

+

∫ X

∞

i

2
√

3

p1(X)

p2(X)
√
σ(X)

dX ′ +
1

2
log

(
X8p2(X)

σ(X)

)
.

(4.34)

In a suitable regime, we have real positive An which we order increasingly. As before, we

define the cycle A encircling A3 and A4 counterclockwise, the cycle Ã encircling A1 and

A2 counterclockwise, and the cycle B encircling A2 and A3. Here we have an additional

contribution to monodromy given by the first term of the last line. We define

ΠA,Ã,B =

∮
A,Ã,B

[
log(X)

(
− 1

X
+
X6 −m3

X
√
σ(X)

)
+

π

3
√

3

p1(X)

p2(X)
√
σ(X)

]
dX,

Π
(λ)

A,Ã,B
=

∮
A,Ã,B

(κ2 −m− 1)X2dX√
σ(X)

,

Π
(λm)

A,Ã,B
=

∮
A,Ã,B

(m2 −X3κ)dX

X
√
σ(X)

.

(4.35)
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Monodromy invariance is expressed as

log ΨWKB

∣∣∣
A

=
3i

2π

(
ΠA + λΠ

(λ)
A + λmΠ

(λm)
A

)
= 2πiM,

log ΨWKB

∣∣∣
Ã

=
3i

2π

(
ΠÃ + λΠ

(λ)

Ã
+ λmΠ

(λm)

Ã

)
= 2πiM̃,

log ΨWKB

∣∣∣
B

=
3i

2π

(
ΠB + λΠ

(λ)
B + λmΠ

(λm)
B

)
= 2πiN,

(4.36)

Again, the A and Ã periods are purely imaginary, so M = M̃ = 0 and the first two

equations determine λ, λm. The last line gives the quantization condition, which again can

be written as

3i

2π

(
ΠB −

(
ΠA +m log(m)Π

(λm)
A

Π
(λ)
A

)
Π

(λ)
B +m log(m)Π

(λm)
B

)
= 2πi(n+ 1), (4.37)

for n = 0, 1, 2, . . .. Numerical implementation of the integration and then solving the

quantization condition yields the spectrum. Here are some examples, which have been

checked in the usual way. For m = 1,

E0 = log(−κ0) = 1.90354643917859092548 . . . ,

E1 = log(−κ1) = 2.61019754103359928676 . . . ,

E2 = log(−κ2) = 3.17373350397478965748 . . . ,

. . .

(4.38)

For m = 1/3,

E0 = log(−κ0) = 1.653431255487499979601 . . . ,

E1 = log(−κ1) = 2.351194617546936444270 . . . ,

E2 = log(−κ2) = 2.911361623248592459660 . . . ,

. . .

(4.39)

We can also test the eigenfunction given by formula (3.72). The symmetric sum in (3.72) as

well as monodromy invariance ensure that the final eigenfunction is free of branch-points,

single valued and analytic on the X plane (at least in a sector of the X plane containing the

positive real line). Examples of exact eigenfunctions can be seen in figure 3 and figure 4.

The difference between the exact results and the purely numerical results decrease as

we increase the size of the numerical truncated hamiltonian. In figure 5, we show the

importance of monodromy invariance in our construction: we compare an eigenfunction

which is on-shell against the evaluation of our expression for the eigenfunction for a generic

value of κ. When κ is generic, monodromy invariance is not ensured, and our expression

develops a singularity. Therefore, it is not a good eigenfunction for the difference equation.

4.3 Resolved C3/Z5

The resolved C3/Z5 geometry is the simplest genus 2 example. This is interesting, since

we have a second true modulus κ1. Therefore, the “fully on-shell” eigenfunctions are only
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Figure 3. Local P1 × P1 at ~ = 2π/3 and m = 1/3: exact ground state eigenfunction (which is

purely real) and the absolute difference with numerics coming from numerical diagonalization of a

200× 200 matrix (rescaled to match the exact eigenfunctions at x = 0). For this size of the matrix,

the maximal difference is of the order 10−17.
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1
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Figure 4. Local P1 × P1 at ~ = 2π/3 and m = 1/3: same plot as in figure 3, for the first excited

state. The maximal difference is of the order 10−16.
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Figure 5. Local P1 × P1 at ~ = 2π/3 and m = 1/3: on the left, the eigenfunction computed using

κ = κ0 ≈ −5.22487 (on-shell value), on the right, the same function computed for a generic value

κ = −5.5 (off-shell value). Our expression for the eigenfunction is singular when off-shell.
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a subset of the on-shell eigenfunctions. In an appropriate parametrization, its mirror curve

is given by

W (x, y) = ex + ey + e−3x−y + κ1e−x + κ, (4.40)

which leads to the difference equation

(ex + κ1e−x)ψ(x) + ψ(x− i~) + e−
3i~
2 e−3xψ(x+ i~) = −κψ(x). (4.41)

Finding the on-shell eigenfunctions corresponds to finding square integrable solutions ψ(x)

to this equation. In that case, κ1 acts as a parameter, and −κ is quantized. Finding the

“fully-on shell” eigenfunctions corresponds to finding a subset of the on-shell eigenfunctions

which have enhanced decay. This extra condition also quantizes κ1. These “fully on-shell”

eigenfunctions should also satisfy the dual difference equation.

We will now build some “fully on-shell” eigenfunctions using the formulas of the previ-

ous sections. In practice, we will restrict ourselves to the regime where κ is negative with

large absolute value and κ1 is positive, since it was found to be the good regime from the

point of view of the underlying cluster integrable system [20].

Let us look at the case where ~ = π. We have P = 1 and Q = 2, so the relations

between the parameters are κ̃ = −κ2 + 2κ1 and κ̃1 = κ2
1. We obtain

log Ψ(X) =
i

π

(∫ X

∞
logX ′

(
− 5

2X ′
+
X ′(5X ′4 + 3X ′2(−κ2 + 2κ1) + κ2

1

2
√
σ(X ′)

)
dX ′

+λ

∫ X

∞

−2κX ′3dX ′√
σ(X ′)

+ λ1

∫ X

∞

2X ′(X ′2 + κ1)dX ′√
σ(X ′)

)

+

∫ X

∞

i

2

5X ′2 − 3X ′κ+ κ1

(X ′2 −X ′κ+ κ1)
√
σ(X ′)

dX ′ +
1

2
log

(
X10(X2 −Xκ+ κ1)

σ(X)

)
,

(4.42)

with
σ(X) = −4X2 +X4(X4 + (−κ2 + 2κ1)X2 + κ2

1)2

≡ X2
5∏

n=1

(X −An)(X +An).
(4.43)

In our case, the branch points An are positive real and we order them increasingly. We

define the A1 cycle to be the one that encircles A4 and A5 counterclockwise, the A2 cycle

encircling A2 and A3 counterclockwise. We also define the B1 cycle encircling A1 and A4,

and the B2 cycle encircling A1 and A3. For a cycle C ∈ {A1,A2,B1,B2}, we define

ΠC =

∮
C

[
logX

(
− 5

2X
+
X(5X4 + 3X2(−κ2 + 2κ1) + κ2

1

2
√
σ(X)

)

+
π

2

5X2 − 3Xκ+ κ1

(X2 −Xκ+ κ1)
√
σ(X)

]
dX,

Π
(λ)
C =

∮
C

−2κX3dX√
σ(X)

,

Π
(λ1)
C =

∮
C

2X(X2 + κ1)dX√
σ(X)

.

(4.44)
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Figure 6. Local C3/Z5 at ~ = π: exact (0, 0) eigenfunction (real part in blue and imaginary

part in red) and the absolute difference with numerics coming from numerical diagonalization of a

250× 250 matrix (rescaled to match the exact eigenfunctions at x = 0). For this size of the matrix,

the maximal difference is of the order 10−10.
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Figure 7. Local C3/Z5 at ~ = π: same plot as in figure 6 for the exact (0, 1) eigenfunction. The

maximal difference is of the order 10−8.
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Figure 8. Local C3/Z5 at ~ = π: same plot as in figure 6 for the exact (1, 0) eigenfunction. The

maximal difference is of the order 10−8.

– 33 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
4

Then, by monodromy invariance along all the periods, we have to solve

i

π

(
ΠAi + λΠ

(λ)
Ai + λ1Π

(λ1)
Ai

)
= 2πiMi, i = 1, 2,

i

π

(
ΠBi + λΠ

(λ)
Bi + λ1Π

(λ1)
Bi

)
= 2πiNi, i = 1, 2.

(4.45)

From reality considerations, we find that M1 = M2 = 0, so(
λ

λ1

)
= −

(
Π

(λ)
A1

Π
(λ1)
A1

Π
(λ)
A2

Π
(λ1)
A2

)−1(
ΠA1

ΠA2

)
. (4.46)

Then, the two equations in the second line of (4.45) give the quantization conditions for κ

and κ1. Let us define N1 = n1 + n2 + 2, and N2 = n2 + 1. We find

(n1, n2) = (0, 0),

(κ, κ1)0,0 = ( −12.108260493297777783 . . . , 14.559207122129454382 . . .),

(n1, n2) = (1, 0),

(κ, κ1)1,0 = ( −25.786257255292478834 . . . , 19.332115669949562433 . . .),

(n1, n2) = (0, 1),

(κ, κ1)0,1 = ( −17.514284419555278234 . . . , 40.988214882454531661 . . .),

. . .

(4.47)

and so on. The case (n1, n2) = (1, 0) has been computed in [20] by other means, and our

result matches it. Some eigenfunctions and the comparison with numerical results can be

seen in figure 6, 7 and 8. We proceed in the following way: we fix the value of κ1 and

perform the numerical diagonalization with respect to κ, using hamiltonian truncation as

usual. We find good agreement for both eigenvalues and eigenfunctions.

5 Comparison with conjectured quantization condition

As already mentioned in the introduction, there are conjectural expressions for the quanti-

zation conditions related to our family of difference equation. These quantization conditions

were first presented in [17] for some simple cases (where the underlying mirror curve has

genus one) and in [19, 20] for more general cases. They are built using the refined topologi-

cal string partition function in the so called Nekrasov-Shatashvili (NS) limit. This function

is exact in ~, but is usually only known in the large-radius expansion, which corresponds to

the large eigenvalue expansion. This expansion is expected to be a convergent series when

~ is real.8 The exact quantization conditions found in the present work and the conjectured

ones give the same spectrum in all the examples we tested: they both correctly reproduce

8Evidence for the convergence of the NS quantization condition (as a function of the exponentiated

Kähler parameters) is given in [17, 19, 20], and in the complex ~ case in [34] after partial resummation of

the NS free-energy. Convergence of the NS partition function of four dimensional gauge theories is argued

more rigorously in [35].
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the numerical results. In this section, we provide numerical evidence that the two func-

tions not only agree on the spectrum, but for any value of κ. Our exact expressions are

in fact resummations of the conjectured quantization conditions in the rational case. For

concreteness, we take the difference equation of local P1 × P1.

The conjectured quantization condition for local P1×P1 has been written down in [17],

and it is the N = 2 case of [19]. The instanton part of the refined free energy of local P1×P1

can be computed for example in the refined topological vertex formalism [36]. In the NS

limit, it has the form

FNS(T1, T2, ~) = −
∞∑
w=1

∞∑
d1,d2=0

∑
jL,jR

Nd1,d2
jL,jR

sin ~w
2 (2jL + 1) sin ~w

2 (2jR + 1)

2w2 sin3 ~w
2

e−wd1T1e−wd2T2 ,

(5.1)

where the BPS invariants Nd1,d2
jL,jR

are integer numbers (determined by the geometry of the

underlying toric CY threefold) which are counting BPS states of the M-theoretic lift of the

topological string. In addition to the wrapping numbers d1 and d2, they depend on spin

numbers jL and jR which are half-integers. The first BPS invariants for local P1 × P1 can

be found for example in [37]. We also define the following derivative:

∂FNS

∂T
(T1, T2, ~) =

∂FNS(T1, T2, ~)

∂T1
+
∂FNS(T1, T2, ~)

∂T2
. (5.2)

The Ti are the Kähler parameters of the geometry. They will be replaced by the “quantum

mirror map” T̂i which is a deformation of the standard mirror map relating the Kähler

parameters to the moduli and parameters of the mirror curve, here κ and m. The quantum

mirror map for local P1×P1 has been constructed in [4]. Actually, it can be easily obtained

from the resummed WKB eigenfunction computed previously, using the gk(X̃) in (2.27):

T̂2 = log κ2 + 2Res
X̃=0

 1

X̃

∑
k≥1

gk(X̃)κ−k

 ,

= log κ2 − 2m+ 1

κ2
− 3m2 + 2m(4 + ei~ + e−i~) + 3

κ4
+ . . .

T̂1 = T̂2 − log(m).

(5.3)

We also need the classical volume of space phase, which can be computed using semiclassical

methods (it is also given in [17, 19]). In our case, we find

1

2π~
log(κ2)2 − 1

2π~
log(κ2) log(m)− π

3~
− ~

12π
. (5.4)

The quantum corrected volume is then conjectured to be given by the classical volume

where κ is replaced by the quantum mirror map, plus a contribution coming from the NS

free-energy. The quantization condition is then conjecturally given by

n+
1

2
=

1

2π~
T̂ 2

2 −
1

2π~
T̂2 log(m)− π

3~
− ~

12

+
∂FNS

∂T
(T̂1, T̂2, ~) +

∂FNS

∂T

(
2π

~
T̂1,

2π

~
T̂2,

4π2

~

)
.

(5.5)

– 35 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
4

order in κ−1 value for κ = −33 and m = 7

0 2. 126 503 418 773 313 1

2 2. 114 410 838 199 331 8

4 2. 114 292 905 714 983 6

6 2. 114 290 969 742 037 0

8 2. 114 290 931 400 628 3

10 2. 114 290 930 567 097 7

12 2. 114 290 930 547 962 6

14 2. 114 290 930 547 507 2

16 2. 114 290 930 547 496 5

exact value 2. 114 290 930 547 496 280 8. . .

Table 1. The values of the r.h.s. of the quantization condition (5.7) for m = 7 and off-shell value

κ = −33. The expression is truncated after the indicated order in large κ. It converges to the value

obtained by the evaluation of the exact expression (5.8) (the periods are evaluated numerically).

This expression is manifestly self dual under the duality transformation ~/2π ↔ 2π/~
and T̂i → 2π

~ T̂i, m → m2π/~. In the rational case when ~/2π ∈ Q, the two expressions

involving FNS have poles. But the singular parts exactly cancel and the overall result is

finite. Note that during this manipulation, the T̂i are assumed to be fixed (we do not vary

their ~ dependance). After pole cancellation, the κ expansions for T̂i can be plugged in the

expression, and we obtain a quantization condition for κ as a large κ series. For example,

for the case

~ = 2π/3, (5.6)

we find

n+
1

2
=

3 log
(

1
κ2

) (
log
(

1
κ2

)
+ log(m)

)
4π2

− 5

9
+

(m+ 1)
(
18 log

(
1
κ2

)
+ 9 log(m) + 2

√
3π
)

6π2κ2

+
3(m+ 1)2

(
6 log

(
1
κ2

)
+ 3 log(m) + 4

)
+ 2π(m(3m+4)+3)√

3

4π2κ4
+ . . .

(5.7)

This expression is found to converge for large enough |κ|, and we can use it to find the

spectrum κn for n = 0, 1, 2, . . ..

Let us recall the exact quantization condition in terms of period integrals, which we

found in (4.37). It can be written as

n+
1

2
=

3

4π2

(
ΠB −

(
ΠA +m log(m)Π

(λm)
A

Π
(λ)
A

)
Π

(λ)
B +m log(m)Π

(λm)
B

)
− 1

2
. (5.8)

Both expressions (5.7) and (5.8) give the same spectrum. Moreover, the righthand sides

agree also when κ does not satisfy the quantization condition, as can be seen in table 1.

The second expression is effectively the resummation of the first expression. In this exam-

ple, this can be also checked in the large κ expansion by explicitly expanding the period
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integrals (4.35). Since in the large κ limit the A cycle shrinks to a small cycle around

a pole, the large κ expansion of the different A period integrals can be computed using

residues. The B period integrals can be obtained in the large κ expansion using for ex-

ample the Picard-Fuchs equations. Let us define the following basic period integrals9 for

local P1 × P1:

πA,B(κ,m) = −
∮
A,B

log(X)

(
X2 −m

X
√
−4X2 + (m+X(X + κ))2

)
dX

=

∮
A,B

log

(
m+X2 + κX +

√
−4X2 + (m+X(X + κ))2

2X

)
dX

X
.

(5.9)

They satisfy the Picard-Fuchs equation given by

0 = κ3π′A,B − (16(m− 1)2 + 8(m+ 1)κ2 − 3κ4)π′′A,B

+ κ((κ− 2)2 − 2m)((κ+ 2)2 − 2m)π′′A,B
′,

(5.10)

where ′ denotes the derivative w.r.t. the modulus κ. We find

πA(κ,m) = iπ log

(
1

κ2

)
+

2iπ(m+ 1)

κ2
+

3iπ
(
m2 + 4m+ 1

)
κ4

+O(κ−6),

πB(κ,m) = log2

(
1

κ2

)
+ log

(
1

κ2

)
log(m)− 2π2

3
+

2(m+ 1)
(
2 log

(
1
κ2

)
+ log(m) + 2

)
κ2

+
6
(
m2 + 4m+ 1

)
log
(

1
κ2

)
+ 13m2 + 3

(
m2 + 4m+ 1

)
log(m) + 40m+ 13

κ4

+O(κ−6).

(5.11)

The constant −2π2

3 in the B period can be fixed numerically for example. Using these

expansions, we can obtain large κ series for (4.35) through the relations

Π
(λ)
A,B =

1

9

d

dκ
πA,B(κ3 − 3(m+ 1)κ,m3),

Π
(λm)
A,B =

1

9

d

dm
πA,B(κ3 − 3(m+ 1)κ,m3).

(5.12)

The periods in the first line of (4.35) are made of two parts. The first part is easily

expressed as

∮
A,B

[
log(X)

(
− 1

X
+
X6 −m3

X
√
σ(X)

)]
dX = −1

9
πA,B(κ3 − 3(m+ 1)κ,m3). (5.13)

It turns out that the derivative of the second part of (4.35) containing the polynomials

9These are essentially the classical periods of the curve.
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pi(X) can be obtained by applying a differential operator on πA,B. Indeed, we find that

d

dκ

∮
A,B

p1(X)

p2(X)
√
σ(X)

dX =

4m
(
3κ4 − 9κ2 + 2m3 − 3κ2m2 + κ4m− 12κ2m− 2

)
9κ (−κ2 +m+ 1) (−κ2 + 3m+ 3)

× d

dκ

(
1

κ2 −m− 1

d

dκ
πA,B(κ3 − 3(m+ 1)κ,m3)

)
+

4

9
m(m+ 1)

d

dm

(
1

κ2 −m− 1

d

dκ
πA,B(κ3 − 3(m+ 1)κ,m3)

)
.

(5.14)

The integration with respect to κ can be performed by integrating the large κ series for

the r.h.s. term by term. The extra constants of integrations are found to be

cA = 0, cB = − 4π

3
√

3
, (5.15)

for the A and B periods respectively. The cA can be found by performing a residue

computation, whereas cB is found numerically. Putting everything together, we can work

out the large κ expansion of (5.8). It precisely matches the expansion (5.7) predicted by

the conjecture of [17].

It is rather interesting to see that the complicated period integrals given by the l.h.s.

of (5.14) can be given by a differential operator applied on the basic periods (5.9) with the

moduli and parameters substituted. This property is not clearly seen10 from the algorithm

of section 3 producing the expressions for the l.h.s. of (5.14). However, it is tempting to

suppose that this is a general feature, and therefore, that the exact quantization conditions

for any ~ ∈ 2πQ can be expressed in terms of some basic ~ independent periods (like (5.9)

for local P1 × P1), together with the data given by a) the appropriate ~ dependent trans-

formations of the moduli and parameters, b) finite differential operators involving only

rational functions of the moduli and parameters, and c) an integration involving some

integration constants. This was checked for the simpler case ~ = π for local P1 × P1.

6 Conclusion

In this paper, we have built on several ideas and put them together in order to construct

exact quantization conditions and eigenfunctions for a family of difference operators in

the case where ~/2π ∈ Q. These difference operators appear in the context of quantized

mirror curves, and cluster integrable systems. The approach taken is constructive and not

completely rigorous, but the results have passed all numerical tests, and agree with the

existing results in the literature. These eigenfunctions, that we call “fully on-shell”, are a

subset of the on-shell (or square integrable) eigenfunctions of the difference operator, and

are relevant in the realm of integrable systems. In our construction, a central role is played

by the Faddeev modular duality structure underlying the operators under considerations.

10At least by the author.

– 38 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
4

Our discussion was restricted to the hyperelliptic cases, where the difference equation

is of order 2. This was merely for technical reasons, and a priori, we do not expect

conceptual difficulties in the treatment of higher order cases. Nevertheless, an explicit

check is desirable.

In the context of the TS/ST correspondence, it appears that not only the so called

“fully on-shell” eigenfunctions play a role, but rather a more general set of functions, where

neither κ nor the other true moduli are restricted to a discrete set of values (see [10, 11]).

It would be thrilling to have a first principle characterisation of those eigenfunctions too,

since those eigenfunctions seem to be a cornerstone towards a non-perturbative definition

of open topological string amplitudes on toric CY threefolds [10, 11].
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