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1 Introduction

Our understanding of quantum gravity has been dramatically advanced by the AdS/CFT

correspondence. In a sense, it provides a precise framework to tackle the gravity path

integral by formulating it non-perturbatively in terms of a quantum field theory. As we

still grapple with several challenges in black hole physics and cosmology, we require to

develop newer tools for calculating various observables and engineer mechanisms to adapt

holography to more general settings.

A question of fundamental importance is how can we formulate quantum gravity with

some specified boundary conditions and can holography turn out to be useful in this context.

A situation where we are posed with this problem appears is in the evolution of a closed

universe, wherein the wavefunction of interest is calculated with fixed boundary conditions

i.e. of an initial state [1]. For specified spatial boundary conditions, there has been some

progress from studies of the holographic renormalization group [2, 3]. Here, attempts
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were made to interpret the radial cut-off as a Wilsonian cut-off in field theory whereby

integrating out bulk geometry corresponds to integrating out high energy modes of the

field theory [4, 5]. Identifying the radial cut-off in the bulk with a short-distance cut-off

seems to work more naturally in this vein [6].

Another procedure for implementing such a regularization is to deform the holographic

CFT by some irrelevant operator, the scale associated to which is treated as the cut-off.

The important question is then to pinpoint this operator in holographic CFTs. Along

these lines, over the last couple of years a novel viewpoint has emerged via the T T̄ defor-

mation of QFTs. Discovered first in two dimensions, the T T̄ operator induces a solvable,

irrelevant, double-trace deformation of QFTs [8–10]. The one-parameter family of theo-

ries parametrized by the T T̄ coupling has a number of special properties. Deforming an

integrable theory by T T̄ preserves integrability. The deformed partition function obeys

diffusion-like equations [11] and is modular invariant in a unique sense [12, 13]. The finite-

size spectrum of this theory is exactly the same as Jackiw-Teitelbohm gravity coupled to

the undeformed ‘matter’ [14].

The T T̄ deformation, for large-c CFTs, has been proposed to be holographically dual

to AdS3 with a finite radial cut-off with Dirichlet boundary conditions [15]. Within the

pure gravity sector, this geometric notion does reproduce some characteristics of the de-

formed CFT for a specific sign of the coupling [16]. Some further tests of this cut-off

gravity/T T̄ relation include the finite-size spectrum, signal propagation velocities, stress

tensor correlators [16, 17], entanglement entropy [18–20]. Interestingly, among other obser-

vations, [15] noticed that the flow equation for the trace of the energy momentum tensor

in T T̄ deformed theory can be re-written as the Hamiltonian constraint in bulk gravity

theory on AdS3 spacetime. A different version of AdS3 holography in this context has

been put forward in [21, 22]. A Lorenz breaking cousin of this deformation and its holo-

graphic interpretation has been proposed in [23]. An application to de-Sitter holography

was studied in [20].

The holographic construction with a cut-off has also been generalized to higher dimen-

sions in [24, 25] (see also [26] for a supersymmetric generalization to higher dimensions).

The guiding principle behind these works was to define holographic TT -deformed theories

via a flow equation that originates from the Gauss-Codazzi equation i.e. the Hamiltonian

constraint. At large N , this flow can indeed be seen as coming from the deforming opera-

tors that are quadratic in the energy-momentum tensor (see also [11] for generalization in

the form of detT ). In [24, 25] it was shown that such a procedure is consistent with finite

cut-off holography through agreements of the quasi-local energy, speed of sound as well as

simple correlators within the pure gravity sector. It was also shown in [27] that for d = 4

various results of holographic RG, such as the gradient form of the metric beta functions,

are also captured by such irrelevant double trace deformations involving the stress tensor

and other suitably defined deforming operators.

In this work, we study the sphere partition functions of TT deformed CFTs in d ≥ 2.

The sphere partition function ZSd plays an important role in a wide variety of aspects. The

QFT on the sphere is free from IR divergences and for several supersymmetric theories it has

been computed exactly by localization techniques [28–31]. These have led to many precision
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tests of holography and a better understanding of RG flows. For CFTs in even dimensions,

it captures the anomalies. When anomalies are absent, for instance in 3 dimensions, F =

− log |ZS3 | serves as an analogue to the central charge in counting the degrees of freedom;

F decreases along the RG flow from the UV to the IR [32, 33]. Although the F -theorem is

different in flavour from the even dimensional analogues (the c and a theorems), a unified

formulation can be achieved by considering the sphere free energy. This quantity also has

other uses. In odd dimensional CFTs, the finite piece of the sphere free energy Fd measures

the entanglement entropy across a spherical region S
d−2 in flat spacetime R

d−1,1.

The spectrum of TT deformed CFTs can be computed from the flow equation. The

flow equation relies on special factorization properties of the TT -operator [8] which are

expected to hold true for large N theories in higher dimensions. For the case of the cylinder

S
d−1 × R

1, this takes the form of the Burgers’ equation in hydrodynamics. For the sphere

on the other hand, owing to its maximal symmetry, the flow equation can be reduced to

an algebraic equation and be solved exactly. This allows us to evaluate the sphere free

energy/partition function from the field theory side in a very simple manner. In the cut-off

AdS bulk, we calculate the on-shell action with the necessary counterterms [34] and observe

a precise agreement with the field theory analysis.

Since the holographic flow equation was deduced in [25] from re-writing the bulk Gauss-

Codazzi equation in terms of the holographic stress tensor, one may wonder how universal

or generic is this flow. Proving this equation starting from the definition of TT operators

in higher dimensions and on a curved background in ABJM or N = 4 SYM is beyond

the scope of this work and remains an important future problem. However, we address

the issue of how one can obtain such a universal flow equation from purely field theoretic

considerations, namely starting already from a local Callan-Symanzik equation describing

a CFT deformed only by an irrelevant TT operator.

The Wheeler-DeWitt equation is a quantum constraint equation in a theory of quantum

gravity that encodes the independence of the theory under choice of a foliation of space-

time by co-dimension one hypersurfaces. Such a foliation is typically chosen in order to

pass to the Hamiltonian formalism, as introduced in [35]. The diffeomorphism invariance

of the gravitational theory translates into the independence under the choice of foliation,

and is thereby encoded in a constraint. In our context, the relevant foliation of the bulk

is by successive finite radius cut-off surfaces. The TT flow equation is then mapped to the

semiclassical limit of the bulk Wheeler-DeWitt equation. In this work, we solve the mini-

superspace Wheeler-DeWitt equation in the WKB approximation and find the Wheeler-

DeWitt wavefunction that, indeed, up to holographic counterterms, matches our partition

functions.

This paper is organized as follows. In section 2, we compute holographic stress-tensor

and partition function in Euclidean anti-de Sitter geometries with spherical boundary at

finite radial cut-off up to 6 dimensions. In section 3, we review the TT deformation in field

theory and consider the flow equation on the sphere and its solution. This allows us to

obtain the sphere partition function and find an exact agreement with the gravity results,

at large N . We provide field theoretical derivation of the flow equation starting from the

local Callan-Symanzik equation and the regularization procedure of the TT operator in
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section 4. In section 5, we discuss the (mini-superspace) Wheeler-DeWitt equation and its

solution in the WKB approximation that captures our partition functions up to holographic

counterterms. Finally, we conclude and pose some open problems in section 6. Appendix A

contains a review of the Gauss-Codazzi equation as a flow equation. Appendix B has some

details on the field theory derivation of the flow.

2 Finite cut-off holography

We begin by computing the holographic energy-momentum tensor as well as the sphere

partition functions up to d = 6 dimensions using AdS/CFT with a finite cut-off. In standard

holographic computations, at large N and strong ’t Hooft coupling, both quantities are

related to the bulk gravity action evaluated on Euclidean AdS solution in one higher (d+1)

dimension.1

More precisely, we consider regularized gravity action given by the Einstein-Hilbert

(EH) and Gibbons-Hawking (GH) terms supplemented by local counterterms

I
(d+1)
on−shell = − 1

2κ2

∫

M

dd+1x
√
g (R− 2Λ) +

1

κ2

∫

∂M
ddx

√
γK + Sct, (2.1)

where the counterterm action, up to d = 6, takes the form [34]

Sct =
1

κ2

∫

∂M
ddx

√
γ

[

d− 1

l
c
(1)
d +

c
(2)
d l

2(d− 2)
R̃+

c
(3)
d l3

2(d− 4)(d− 2)2

(

R̃ijR̃ij −
d

4(d− 1)
R̃2

)

]

,

(2.2)

where κ2 ≡ 8πGN , R̃ and R̃ij are the Ricci scalar and Ricci tensor of the cut-off surface.

To keep track of different contributions, we introduce c
(1)
d = 1 for d ≥ 2, c

(2)
d = 1 for d ≥ 3

and c
(3)
d = 1 is non-zero from d ≥ 5.

We now consider a Euclidean AdS solution

ds2 =
l2 dr2

l2 + r2
+ r2dΩ2

d ≡ l2 dr2

l2 + r2
+ γij(r, x)dx

idxj , (2.3)

such that for a fixed value of r = rc the induced metric, γij(rc, x) = r2cγ
b
ij(x), describes

a sphere with radius rc. Metric γbij(x) of the unit sphere will later be identified with the

metric of the boundary QFT theory.

The full on-shell action corresponding to this solution can be used to compute the

energy-momentum tensor (Brown-York) and the holographic sphere partition function

T d
ij [r] ≡ − 2√

γ

δI
(d+1)
on−shell[r]

δγij
, logZSd [r] ≡ −I

(d+1)
on−shell[r]. (2.4)

Note that both quantities explicitly depend on the radius r at which we cut off spacetime.

In standard holography, we take r to infinity and the counterterm action yields finite

answers (modulo logarithmic divergences that correspond to anomalies). However, in the

1We ignore additional internal directions in this work.
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context of finite cut-off holography, we keep the radial dependence finite — this can be

holographically interpreted as a deformation by a generalization of the T T̄ operator to

arbitrary dimensions.

In what follows, we evaluate both quantities in (2.4) from the on-shell action with a

finite radial cut-off. From the symmetry of the problem, they are determined by a single

function of the radius ω[r] that we extract from both computations, with exact agreement.

We will later demonstrate that this function solves the algebraic flow equation that defines

the deformed theory.

2.1 Holographic stress-tensors

The holographic stress-tensor [3, 36] is obtained by variation of the on-shell action with

respect to the induced metric on the surface of constant r = rc. We first compute the

general variation and then show that, as constrained by the spherical symmetry, for our

metric (2.3), energy momentum tensor is proportional to the metric. Performing the stan-

dard variations we obtain [3, 34, 36]2

Tij =− 1

κ2

{

Kij −Kγij − c
(1)
d

d− 1

l
γij +

c
(2)
d l

(d− 2)
G̃ij

+
c
(3)
d l3

(d− 4)(d− 2)2

[

2

(

R̃ikjl −
1

4
γijR̃kl

)

R̃kl − d

2(d− 1)

(

R̃ij −
1

4
R̃γij

)

R̃

− 1

2(d− 1)

(

γij✷R̃+ (d− 2)∇i∇jR̃
)

+✷R̃ij

]}

, (2.5)

where G̃ij , R̃ikjl are the Einstein and Riemann tensors and ✷ is the Laplace-Beltrami

operator of the induced metric γij . On the field theory side, the above holographic stress

tensor will be used to construct the operator (or its expectation value) which deforms the

CFT. For future reference, we note the contributions of additional terms for d ≥ 3 in the

counterterm action (2.2). Following the conventions of [25] we denote

Cij =

{

c
(2)
d G̃ij + c

(3)
d bd

[

2

(

R̃ikjl −
1

4
γijR̃kl

)

R̃kl − d

2(d− 1)

(

R̃ij −
1

4
R̃γij

)

R̃

− 1

2(d− 1)

(

γij✷R̃+ (d− 2)∇i∇jR̃
)

+✷R̃ij

]}

. (2.6)

with bd = l2/((d− 4)(d− 2)).

Now we evaluate the stress-tensor (2.5) for the metric (2.3) with r = rc, so that the

induced metric3 becomes γij(rc, x). Firstly, the extrinsic curvature terms on the constant

r = rc surface become

Kij −Kγij =
d− 1

l

√

1 +
l2

r2c
γij . (2.7)

2Note that the signs of the first two terms in (2.5) differ from equation eq. (3.3) of [25] since the extrinsic

curvature is defined there with an opposite sign. The Gibbons-Hawking term in eq. (A.1) of [25] also appears

with a minus sign as opposed to our equation (2.1) where it appears with a plus sign.
3In section 2, γij refers to this induced metric and we suppress the explicit dependence on (rc, x). Later,

in the field theory part, section 3, we will work with boundary γij related by factor of r2c . We hope that

notation should be clear depending on the context.
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The Ricci tensor at rc is also proportional to the metric R̃ij =
d−1
r2c

γij such that the Einstein

tensor for the sphere (Einstein manifold) is given by

G̃ij = −(d− 2)(d− 1)

2r2c
γij . (2.8)

Then, the contraction of the Riemann tensor with Ricci tensor is also proportional to the

metric such that the second line of (2.5) becomes

2

(

R̃ikjl −
1

4
γijR̃kl

)

R̃kl − d

2(d− 1)

(

R̃ij −
1

4
R̃γij

)

R̃ =
(d− 1)(d− 4)(d− 2)2

8r4c
γij . (2.9)

Finally, the last line (2.5) vanishes for the sphere (constant curvature) and we get the holo-

graphic energy momentum-tensor (2.5) for the d-dimensional sphere at r = rc in Euclidean

AdSd+1 (2.3)

T d
ij [rc] =

(d− 1)

κ2l

[

c
(1)
d +

c
(2)
d l2

2r2c
− c

(3)
d l4

8r4c
−
√

1 +
l2

r2c

]

γij . (2.10)

Indeed, we see that it is proportional to the metric and we define the proportionality

function as

ω[rc] =
(d− 1)

κ2l

[

c
(1)
d +

c
(2)
d l2

2r2c
− c

(3)
d l4

8r4c
−
√

1 +
l2

r2c

]

. (2.11)

Clearly, we see that different counterterms in various dimensions contribute with polyno-

mial terms whereas the EH and GH terms yield the square-root part. As we shall show in

section 3, this function can be obtained by solving the QFT flow equation that becomes

an algebraic equation for ω[rc].

2.2 Sphere partition functions

The next step involves evaluation of the regularized gravity actions and the holographic

sphere partition functions with finite cut-off. We evaluate the action (2.1) in AdS with a

cut-off or wall at r = rc where we also take into account the counterterms (2.2).

Our metric (2.3) has a constant negative curvature R = −d(d+1)/l2 and is a solution

of the vacuum Einstein equations with negative cosmological constant Λ = −d(d−1)/(2l2).

With these ingredients and the formulae of the previous subsection, we can evaluate the

on-shell action

I
(d+1)
on−shell[rc] =

dldSd

κ2l





∫ rc

0

rd dr

ld+1
√

1 + r2

l2

−
(rc
l

)d−1
√

1 +
r2c
l2

+
rdc
ld

(

c
(1)
d

(d− 1)

d
+

c
(2)
d (d− 1)

2(d− 2)

l2

r2c
− c

(3)
d (d− 1)

8(d− 4)

l4

r4c

)]

(2.12)

The first term comes from the EH action, the second from the GH boundary term and

second line from the counterterms. There is an overall factor of the sphere area, Sd =

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
2

(2π
d+1
2 )/Γ

(

d+1
2

)

. Moreover, the first two terms i.e. the EH and GH terms, can be written

under one integral as

SEH + SGH = −d(d− 1)Sd

2κ2l

∫ q

0

√

l2qd−3 + qd−2dq, (2.13)

where we introduced q = r2c and this expression will be important in the Wheeler-DeWitt

analysis (section 5). Performing this integral yields the hypergeometric function and writing

the answer in terms of rc gives the full holographic sphere partition function (up to d = 6)

logZSd [rc] =− dSdr
d
c

κ2l

[

− l

rc
2F1

(

−1

2
,
d− 1

2
,
d+ 1

2
,−r2c

l2

)

+ c
(1)
d

(d− 1)

d
+

c
(2)
d (d− 1)

2(d− 2)

l2

r2c
− c

(3)
d (d− 1)

8(d− 4)

l4

r4c

]

. (2.14)

This is the main result of this section and in section 5 we will see how this expression is

related to the solution of the Wheeler-DeWitt equation.

The on-shell action (2.14), also allows us to extract ω[rc]. Namely, in general dimen-

sions, the derivative of the sphere partition function with respect to the radius is related

to the expectation value of the trace of the energy-momentum tensor. Therefore, we have

rc∂rc logZSd [rc] = −
∫

ddx
√
γ〈T i

i 〉 = −rdcSd dω[rc], (2.15)

where we used that for the sphere 〈Tij〉 = ω[rc]γij and 〈T i
i 〉 = dω[rc]. Differentiating (2.14)

we obtain

ω[rc] =
(d− 1)

κ2l

[

c
(1)
d + c

(2)
d

l2

2r2c
− c

(3)
d

l4

8r4c
−
√

1 +
l2

r2c

]

. (2.16)

This is precisely the proportionality function derived in the previous subsection. In the next

section, we show that it is the solution of the flow equations (with inclusion of anomalies)

in all dimensions that we analyze.

3 Field theory analysis

3.1 T T̄ deformation in general dimensions

As alluded to in the introduction the T T̄ operator was initially introduced in 2d by

Zamolodchikov [8]. This bi-local operator is defined as the following quadratic combination

of the components of the stress-tensor

T T̄ (z, z′) = Tzz(z)Tz̄z̄(z
′)− Tzz̄(z)Tzz̄(z

′). (3.1)

This definition is in flat Euclidean space (z = x+it). By using symmetries and conservation

laws of the stress tensor, it can be shown that the expectation value of this operator is

a constant. This fact motivates defining the operator at coincident points. Although

there are divergences which do appear upon taking the coincident point limit, it can be

– 7 –
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shown that these appear as total derivative terms. The operator T T̄ therefore makes sense

unambiguously within an integral. We can then deform a QFT by this operator as follows

dS(λ)

dλ
=

∫

d2xT T̄ (x). (3.2)

It is crucial to observe that the stress tensor components appearing in the right hand side

of the above equation are that of the action S(λ) and, therefore, the deformation is in a

sense recursive. This leads to modifications of the action/Lagrangian which are generically

non-linear in the coupling λ, see e.g. [10, 37]. For deformations of CFTs, the T T̄ coupling

is the only new dimensionful scale of the theory. If a single dimensionful scale is present,

the following Ward identity for the effective action holds

λ
dW

dλ
= −1

2

∫

d2x 〈T i
i 〉. (3.3)

Combining the equations (3.2) and (3.3) leads to the flow equation

〈T i
i 〉 = −2λ〈T T̄ 〉 = −2λ

(

〈Tzz〉〈Tz̄z̄〉 − 〈Tzz̄〉2
)

. (3.4)

If the theory lives on a cylinder R × S
1, the second equality of the above equation takes

the same form as the inviscid Burgers’ equation of hydrodynamics [9, 10].

The above analysis can be generalized for curved spaces and also to higher dimensions.

This has been carried out in [24, 25]. The strategy there was to make use of the holographic

stress tensor and higher dimensional analogues of (3.2) and (3.3) to build the deforming

operator. Although the factorization property (3.4) is not true in general for curved spaces

and d > 2, it is still expected to hold for large N theories. The deforming operator has the

following structure

Xd =

(

Tij +
αd

λ
d−2
d

Cij

)2

− 1

d− 1

(

T i
i +

αd

λ
d−2
d

Ci
i

)2

+
1

d

αd

λ
(d−2)

d

(

(d− 2)

2
R+ Ci

i

)

. (3.5)

The notation (Bij)
2 = BijB

ij has been used above. Here, αd is a dimensionless parameter

depending on the degrees of freedom of the theory — e.g. α4 = N/(27/2π) for N = 4 super-

Yang-Mills with an SU(N) gauge group. The last term in (3.5) vanishes for d = 3, 4. The

tensor Cij is the contribution to the holographic stress tensor from additional counterterms

in d ≥ 3, equation (2.6). For the field theory on a sphere (2.6) becomes

Cij = c
(2)
d Gij + c

(3)
d

2dαdλ
2
d

d− 4

[

2

(

RikjlR
kl − 1

4
γijRklR

kl

)

− d

2(d− 1)

(

RRij −
1

4
γijR

2

)]

,

(3.6)

where c
(n)
d are defined as in section 2 (see below equation (2.2)) so the first term only

appears from 3 dimensions and the second from 5 dimensions.

For even dimensions, the appropriate anomaly terms are included as a part of the

deforming operator.

Even though parameters αd and λ are conveniently introduced for higher dimensional

analysis, we can also reproduce the d = 2 flow equation. This requires some care and we

– 8 –
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have (see also appendix A)

α2 = lim
d→2

l

(d− 2)κ2
= lim

d→2

c

12π(d− 2)
, (3.7)

such that factors of (d−2) in front of R in (3.5) and in α2 cancel each other and we recover

the T T̄ flow equation (see below).

The above operator is quadratic in the stress tensor and should be viewed as the large

N approximation of a more general operator which could give rise to the dual quantum

field theory for cut-off AdS. Specifically, the deforming operators across various dimensions

are given by

X2 = (Tij)
2 −

(

T i
i

)2
+

1

2λ

c

24π
R, (3.8)

X3 =

(

Tij +
α3

λ
1
3

Gij

)2

− 1

2

(

T i
i +

α3

λ
1
3

Gi
i

)2

, (3.9)

X4 =

(

Tij +
α4

λ
1
2

Gij

)2

− 1

3

(

T i
i +

α4

λ
1
2

Gi
i

)2

, (3.10)

X5 =

(

Tij +
α5

λ
3
5

Cij

)2

− 1

4

(

T i
i +

α5

λ
3
5

Ci
i

)2

+
1

5λ

α5

λ
3
5

(

3

2
R+ Ci

i

)

, (3.11)

X6 =

(

Tij +
α6

λ
2
3

Cij

)2

− 1

5

(

T i
i +

α6

λ
2
3

Ci
i

)2

+
1

6λ

α6

λ
2
3

(

2R+ Ci
i

)

. (3.12)

In 2d, the relation l2 = cλ
3π has already been used to obtain the form above from (3.5). Also

note that in 4d, the squares appearing (3.10) can be expanded and the terms corresponding

to the anomaly can be manifestly separated

X4 = TijT
ij − 1

3
(T i

i )
2 + 2

α4√
λ

(

GijT
ij − 1

3
Gi

iT
i
i

)

+
1

4λ

CT

8π

(

GijG
ij − 1

3

(

Gi
i

)2
)

. (3.13)

Here we have used the relation between α4 and the central charge, CT = 32πα2
4 (further

details are provided below). This is the expression for the deforming operator in 4d which

appears in [25]. Similarly, in 6 dimensions, using

Cij = Gij + 6λ

(

α6

λ
2
3

)[

2

(

RikjlR
kl − 1

4
γijRklR

kl

)

− 3

5

(

RRij −
1

4
γijR

2

)]

, (3.14)

we can write the operator as

X6 = TijT
ij − 1

5
(T i

i )
2 + 2

α6

λ2/3

(

CijT
ij − 1

5
Ci
iT

i
i

)

+
144α3

6

6λ

[

RijRikjlR
kl − 1

2
RRklR

kl +
3

50
R3

]

+
1

λ2/3
O(R4). (3.15)

The term with third order in curvature precisely matches the (negative of) the 6d

anomaly [38] provided α6 = N/24π. Moreover, the terms quartic in curvature can be

compactly written as

O(R4) = (Cij −Gij)
2 − 1

5
(2R+ Ci

i )
2, (3.16)
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and they come as important part of the operator needed for the correct solution of the flow

equation.

The operator (3.5) was arrived at by using the form of the holographic stress tensor [25]

(see also appendix A). In section 4, we will also provide an independent procedure to derive

Xd by using a point-splitting procedure. However, for the rest of this section we assume

that this is a correct flow equation in large N holographic CFTs and employ in a concrete

example.

3.2 The deformation on S
d

We now consider the TT deformation of a CFT on the unit sphere S
d. Since the sphere is

a maximally symmetric space, the stress-tensor expectation values are proportional to the

metric4 〈Tij〉 = ωdγij . We can solve for ωd by using the trace equation in higher dimensions

〈T i
i 〉 = −dλ〈X〉. (3.17)

Inserting the explicit form of the operators, this equation becomes an algebraic equation

for ωd which can be compactly written as

dωd = dλ

[

d

d− 1
ω2
d +

2αd

λ
d−2
d

1

d− 1
Ci
iωd −

1

dλ

αd

λ
d−2
d

fd(R)

]

. (3.18)

where Cij is defined in (3.6) and the last term only depends on the curvature via

fd(R) =

(

d− 2

2
R+ Ci

i

)

+ dλ
αd

λ
d−2
d

(

CijC
ij − 1

d− 1
(Ci

i )
2

)

. (3.19)

The quadratic equation (3.18) can be solved for ωd in d = 2, 3, 4, 5, 6 and we get a general

formula

ω
(±)
d =

d− 1

2dλ






1− 2αdλ

2
d

d− 1
Ci
i ±

√

√

√

√

(

1− 2αdλ
2
d

d− 1
Ci
i

)2

+
4αdλ

2
d

d− 1
fd(R)






, (3.20)

where the − sign is taken in order to reproduce the anomalies in even dimensions as λ → 0.

In the “new” holographic dictionary, the TT coupling, λ, is expressed by the bulk

quantities via the relation [15, 25]

λ =
4πGN l

drdc
. (3.21)

We note that this relation implies that the TT coupling is dimensionless. This is because

there is an additional rescaling by the radius of the sphere, rdc .

Computing the counterterms and using (3.21), in all the examples up to d ≤ 6, the

above field theory result (3.20) agrees with the cut-off AdS computation of the stress

tensor (2.10) given ω[rc] = r−d
c ωd.

5 We show this explicitly below.

4Here γij refers to the metric on a unit sphere and all geometric quantities are computed using this

metric.
5This comes form T bulk

ij = r2−d
c T bdr

ij and our definitions of ω’s.
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d = 2. The case for d = 2 has been considered earlier in the context of entanglement

entropy computations in [18]. We include it here for completeness. For d = 2 equa-

tion (3.20) is

ω
(±)
2 =

1

4λ

(

1±
√

1 +
cλ

3π

)

. (3.22)

The solution with a − sign in front of the square-root agrees precisely with (2.10), with

the identification (3.21) for d = 2 and the usual Brown-Henneaux relation c = 3l
2GN

. The

λ → 0 limit of the − branch above reproduces the 2d trace anomaly appropriately. The +

branch is ruled out since it does not reproduce the trace anomaly in the CFT limit.

d > 2. For general d, the solution (3.20) of the flow equation on S
d (3.17), is given by

(with 〈Tij〉 = ωdγij)

ω
(±)
d =

d− 1

2dλ

[

1 + c
(2)
d αdλ

2
dd(d− 2)

(

1− c
(3)
d

αdλ
2
dd(d− 2)

2

)

±
√

1 + 2d(d− 2)αdλ
2
d

]

.

(3.23)

There are two branches of the solution since the flow equation yields an algebraic equation

quadratic in ωd.

Now for 3 ≤ d ≤ 6, the parameter αd is related to gravitational quantities via the

relation6

αd =
1

(2d)
d−2
d (d− 2)

(

ld−1

8πGN

)2/d

. (3.24)

This quantity can be related to the rank of gauge groups of conventional CFTd duals of

AdSd+1 as follows

α3 =
NABJM

6 21/3π2/3
, α4 =

NSYM

27/2π
, α6 =

N(2,0)

24π
, (3.25)

where, we used the relations for the ratio ld−1/GN for ABJM, N = 4 super-Yang-Mills and

the 6d (2,0) theory respectively. Moreover, the following relation between αd, l and λ can

be verified using (3.21) and (3.24)

l2

r2c
= 2d(d− 2)αdλ

2/d. (3.26)

Once we use (3.26), ω
(−)
d is in precise agreement with bulk ω[rc] in the bulk stress ten-

sor (2.10).

The behavior of ω
(+)
d in the λ → 0 limit is divergent and, similar to 2d, this branch

is ruled out since this does not reproduce the trace anomaly appropriately in the CFT

6This can be derived using the relation adr
d−2
c = αdλ

2−d

d and ad = 1
8πGN (d−2)

of [25]. Note that [25]

works with l = 1 and therefore powers of l need to be appropriately reinstated.
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limit. The situation here should be contrasted with that of the torus partition function,

wherein non-perturbative ambiguities exist for the negative values of the coupling [13]. In

a sense, the CFT trace anomaly provides an additional constraint for partition functions

on the sphere.

Finally, we have added appropriate counterterms to obtain the holographic stress tensor

and while defining the TT operator. Therefore, the λ → 0 limit of the deformed S
d stress

tensor (3.23), for ω
(−)
d , is devoid of any divergences even in d = 5, 6.7 Explicitly, ω

(−)
d has

the following forms in the undeformed CFT limit

ω
(−)
3,5 ≈ 0, ω

(−)
4 ≈ 12α2

4 =
3N2

SYM

32π2
, ω

(−)
6 ≈ −2880α3

6 = −
5N3

(2,0)

24π3
. (3.27)

These values are perfectly consistent with trace anomalies of the undeformed holographic

theory [38].

4 TT flow equation from the local Callan-Symanzik equation

The flow equation we have been using so far was derived in [25] starting from the bulk

Gauss-Codazzi equation, as explained in appendix A, and is taken to be a definition of the

dual theory on the boundary. In this section, we shed more light on this flow equation

by utilising the Callan-Symanzik (CS) equation for a holographic CFT deformed only by

a particular irrelevant operator constructed from the energy momentum tensor.8 In this

section we will work up to d = 5 and leave the technicalities of d = 6 as a future problem.

4.1 TT flow equation vs local CS equation

The flow equation at large N that serves as the starting point for the analysis presented

in the previous section is

T i
i +

αd

dλ
d−2
2

Ci
i = −dλ

(

(

Tij +
αd

λ
d−2
2

Cij

)2

− 1

d− 1

(

T i
i +

αd

λ
d−2
2

Ci
i

)2
)

− (d− 2)αd

2λ
d−2
2

R.

(4.1)

This can be made more compact by introducing the ‘bare’ energy momentum tensor

T̂ ij = T ij +
αd

λ
d−2
2

Cij , (4.2)

and now it reads

T̂ i
i = −dλ

(

T̂ ij T̂ij −
1

d− 1
(T̂ i

i )
2

)

− (d− 2)αd

dλ
d−2
2

R. (4.3)

7These additional counterterms have not been considered in [25].
8We would like to stress that, in this section, the Callan-Symanzik equation with only the TT deformation

is our starting point and we argue how the full flow equation in curved background emerges from the

regularisation procedure of defining the TT operator. We are not providing a prescription or an RG

scheme that would justify the use of CS with only TT . We would like to thank Edgar Shaghoulian for

correspondence and clarifications on this point.
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In this section, we aim to obtain the above flow equation from a more intrinsically field

theoretic starting point. Namely, the local Callan-Symanzik equation, which expresses the

response of the field theory under a local change of scale. This is encoded in the expectation

value of the trace of the energy momentum tensor.

First, we notice that on a flat background, the bare flow equation reduces to the one

proposed in [24]

T̂ i
i |(γij=ηij) = −dλ

(

T̂ ij T̂ij −
1

d− 1
(T̂ i

i )
2

)

. (4.4)

On such a background, this equation can certainly be seen as coming from the relationship

between the energy momentum tensor and the expectation value of a deforming operator9

〈T i
i 〉|(γij=ηij) = −dλ〈O〉, (4.5)

where O(x) is the irrelevant operator of interest, and the parameter λ is the scale associated

to the irrelevant deformation. This relationship is referred to as the local CS equation on

flat space.

On curved spaces, this equation generalizes to

〈T i
i 〉 = −dλ〈O(x)〉 − A(γ). (4.6)

For our purposes, A(γ) is the holographic anomaly which is present in even dimensions.

This equation readily provides the correct flow equation in d = 2. Here, in the large c

limit, we have

〈O(x)〉|c→∞ = lim
y→x

Gijkl(x)〈T ij(x)T kl(y)〉|c→∞ = 〈T ij〉〈Tij〉 − 〈T i
i 〉2, (4.7)

where Gijkl = γi(kγl)j − γijγkl, and the anomaly takes the form

A(γ) = − c

24π
R(γ). (4.8)

So, in the end, the two dimensional T T̄ deformed flow equation reads

T i
i = −2λ

(

T ijTij − (T i
i )

2
)

− c

24π
R(γ), (4.9)

where the angle brackets are dropped in the large c limit. From this derivation, we see that

the coincidence between conformal anomaly and the Ricci scalar was crucially important.

This is no longer the case in d = 3, 4, 5. In these dimensions, the anomaly in (4.6) no

longer provides for us the Ricci scalar term in (4.1). In fact, in d = 3 and d = 5 there is no

conformal anomaly whilst in d = 4 the anomaly is quadratic in the curvature. In order to

obtain the Ricci scalar term in the flow equation, it must somehow be ‘generated’ from the

definition of O(x). Furthermore, the anomaly in d = 4 must somehow also be absorbed

into the definition of this operator. These issues are addressed in what follows.

9We assume no other deforming operators are present.
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4.2 From local CS equation to the higher dimensional flow equation

Our aim, as described in the previous section, is to generate the Ricci scalar term in the

equation (4.1), from the local CS equation (4.6).

In dimensions higher than 2, the deforming operator O(x) is defined as

O(x) = lim
y→x

1

4

(

Tij(x)−
1

d− 1
T k
k (x)gij(x)

)

T ij(y). (4.10)

It will help to introduce

Gijkl(x) =

(

γi(k(x)γl)j(x)−
1

d− 1
γij(x)γkl(x)

)

, (4.11)

so that

Tij(x)−
1

d− 1
T k
k (x)gij(x) = Gijkl(x)T

kl(x). (4.12)

From the definition of the energy momentum tensor, we have

〈O(x)〉Z[γ] = lim
y→x

Gijkl(x)

(

1
√

γ(x)

δ

δγij(x)

(

1
√

γ(y)

δZ[γ]

δγkl(y)

))

. (4.13)

In order to generate the R term in (4.3), we will implement the coincidence limit through

the heat kernel. This method is similar to the one of [39] although the context is quite

different. The heat kernel K(x, y; ǫ), satisfies the property

lim
ǫ→0

K(x, y; ǫ) = δ(x, y). (4.14)

This property should be thought of as an initial condition for the heat equation

∂ǫK(x, y; ǫ) = (∇2
(x) + ξR(x))K(x, y; ǫ). (4.15)

We can now implement the point splitting regularization as follows

lim
y→x

Gijkl〈T ij(x)T kl(y)〉Z[γ]= lim
ǫ→0

∫

ddyK(x, y; ǫ)Gijkl(x)
1√
γ(x)

δ

δγij(x)

(

1√
γ(y)

δZ[γ]

δγkl(y)

)

.

(4.16)

We also exploit the fact that we can add to the effective action terms involving local

functions of the metric

Z[γ] → eC[γ]Z[γ], (4.17)

where C[γ] is chosen to be

C[γ] = α0

(

ǫ
d
2
−1

∫

ddx
√
γ +

(d2 − 3)ǫ
d
2

d(d− 1)

∫

ddx
√
γR

)

. (4.18)

Here, α0 is a constant given by

α0 =
αd

λ
d+2
2

(

d− 2

2d2κ(d)

)

, (4.19)
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where

κ(d) =
(d2 − 3)(d(d(9d− 11)− 28) + 42)

12d(d− 1)2
. (4.20)

With this choice of ǫ scaling in the improvement term C[γ], one can show (as we do in

appendix B) that the deforming operator becomes

〈O(x)〉 = lim
ǫ→0

∫

ddyK(x, y, ǫ)Gijkl(x)〈T ij(x)T kl(y)〉+ α0R(x) (4.21)

which we then subject to the large N limit to obtain

〈O(x)〉|N→∞ = lim
ǫ→0

∫

ddyK(x, y; ǫ)Gijkl(x)〈T ij(x)〉〈T kl(y)〉+ α0R(x)

= Gijkl(x)〈T ij(x)〉〈T kl(x)〉+ α0R(x). (4.22)

Here we have used the fact that the large N factorized two point function does not suffer

any coincidence divergences so the limit can be taken to turn the heat kernel into a delta

function, and the y integral can be performed. We can plug this back into the local CS

equation (4.6), which now reads, at large N

T i
i = −dλGijklT

ijT kl − (d− 2)αd

2λ
d−2
2

R−A(γ). (4.23)

In d = 3 and d = 5, the anomaly A(γ) = 0. Here we immediately obtain (4.3) provided we

make the choice T̂ ij = T ij . In d = 4, the holographic anomaly is given by

A = −α2
4

λ2

(

GijG
ij − 1

3
(Gi

i)
2

)

, (4.24)

where Gij = Rij − 1
2Rgij is the Einstein tensor, and a is the anomaly coefficient. This can

be absorbed into an improvement of the energy momentum tensor, which is subsumed in

the definition of the bare energy momentum tensor

T̂ ij = T ij +
α4

λ
Gij . (4.25)

In other words, the equation

T i
i = −4λ(T ijTij −

1

d− 1
(T i

i )
2)− α4

λ
R−A(γ)

becomes

T i
i +

α4

λ
Gi

i = −4λ

(

(

T ij +
α4

λ
Gij

)(

Tij +
α4

λ
Gij

)

− 1

d− 1

(

T i
i +

α4

λ
Gi

i

)2
)

− α4

λ
R, (4.26)

hence we get (4.1).

– 15 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
2

4.3 Limitations of this method

Despite the promise, we find that in d = 4, this method allows us to readily obtain (4.1)

where as in d = 3, 5, we automatically obtain (4.3). The reason for this distinction is that

the absorbing the anomaly into the improvement of the energy momentum tensor occurs

only in d = 4. In d = 3 and d = 5, the absence of the anomaly leaves us only with the

bare flow equation. The inclusion of the counterterms, especially as involved as in d = 6,

should arise from a further improvement of the energy momentum tensor.

In other words, the counterterms are accounted for automatically in d = 4 whereas

must be thought of as an additional input in odd dimensions. Perhaps a different method

or scheme would directly give us the renormalized flow equation no matter what dimension

we are working in, starting from the local CS equation.

Finally, one can ask what justifies the specific choices such as the powers of ǫ appearing

in the definition of C[γ], and the choice of ξ(d) that appears in the appendix B. For now,

we can only offer a post facto justification, in that these choices lead to the form of the flow

equation (4.3). It would be interesting to find an intrinsically field theoretic justification

for this scheme.

5 The Wheeler-DeWitt equation

In this section, we comment on the role played by the Wheeler-DeWitt equation in deriv-

ing the deformed partition function. We shall see that the WKB solution of the (minisu-

perspace) Wheeler-DeWitt equation perfectly reproduces the bulk and boundary on-shell

action without counterterms.

Let us briefly review the Wheeler-DeWitt equation that arises in the minisuperspace

approximation (we closely follow [40]). The minisuperspace ansatz for the Euclidean

asymptotically AdS metric is defined as

ds2 = N2(r)dr2 + a2(r)dΩ2
d, (5.1)

where N(r) is the lapse function and a(r) is the scale factor.

We first evaluate the EH and GH actions on this metric and then, in the Euclidean

gravity path integral, we redefine the lapse N → Nad−4 and introduce a variable10 q = a2

such that the action takes the form (see [40] and references therein)

SEH + SGH = −d(d− 1)Sd

2κ2

∫

dr

[

q′2

4N
+N

(

qd−3 + l−2qd−2
)

]

, (5.2)

where Sd is the sphere area.

To derive the Hamiltonian we compute the canonical momentum conjugate to q(r)

p =
∂L

∂q′
= −Sd

κ2
d(d− 1)

4N
q′, (5.3)

10The main advantage of the q variable here is the canonical kinetic term.
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and a Legendre’s transform yields

H = NĤ = − 2κ2

Sdd(d− 1)
N

[

p2 −
(

d(d− 1)Sd

2κ2l

)2
(

l2qd−3 + qd−2
)

]

. (5.4)

Inserting p = ~
d
dq , we derive the Hamiltonian constraint, or the Wheeler-DeWitt equation

for the wavefunction Ψ[q] [40]

ĤΨ[q] =

[

~
2 d2

dq2
−
(

d(d− 1)Sd

2κ2l

)2
(

l2qd−3 + qd−2
)

]

Ψ[q] = 0. (5.5)

This equation can be solved exactly in terms of special functions for d = 2, 3, 4 (e.g. in d = 3

the solution is the Airy function that reproduces the ABJM partition function [28, 29]

with perturbative 1/N corrections). However, let us focus just on the semi-classical limit,

GN → 0 (large N) but with fixed q. In this regime we can use the WKB approximation

and the leading order solutions are

ΨWKB(q) ≈ exp

[

±
(

d(d− 1)Sd

2κ2l~

)∫ q

0

√

l2qd−3 + qd−2 dq

]

. (5.6)

Performing the integral, we can see that with q = r2c , the − sign solution in d-dimensions

becomes11

ΨWKB[rc] = exp

[

dSdr
d−1
c

κ2
2F1

(

−1

2
,
d− 1

2
,
d+ 1

2
,−r2c

l2

)]

= e−(I
on−shell
GR

[rc]−Sct[rc]) (5.7)

where we have identified the exponent as the on-shell EH and GH actions (gravity on-shell

action without counterterms) evaluated on our Euclidean AdS metric with finite boundary

cut-off

Ion−shell
GR [rc]− Sct[rc] = SEH [rc] + SGH [rc], (5.8)

computed in (2.13). Analogous to [18], this bare partition function (translated to QFT)

can be used to compute entanglement entropy and matched with the Ryu-Takayanagi

prescription [41] applied to a spacetime with finite cut-off. The details of this computation

will be presented elsewhere [42].

A few comments are in order at this point. Firstly, this concrete example for the sphere

illustrates the known fact that the Wheeler-DeWitt wavefunction should be related to the

holographic partition function [2, 43, 44]. However, it is the minisuperspace approximation

that turns this equation into a powerful tool. Secondly, the counterterms (for the full

TT partition function that is obtained from the flow equation) are included by additional

canonical transformation as explained, for instance, in [6]. Thirdly, in the large N limit,

it is the WKB solution of the Wheeler-DeWitt equation that can be matched with the

on-shell action with finite cut-off. It is therefore an interesting future problem to compare

the full solution of the Wheeler-DeWitt equation12 with the CFT deformations at finite N .

11We also set ~ = 1 at the end.
12As shown in [40], the full WDW wavefunction is an Airy function in 3d. In 2d, the full solution can be

written in terms of the 1F1-hypergeometric function, whilst in 4d it is the parabolic cylinder function or a

Hermite polynomial upon variable transformations.
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Finally, let us also recall that the connection between solutions to the radial Wheeler-

DeWitt equation and the partition function of the T T̄ deformed conformal field theories

in two dimensions was first noticed in slightly different guise in [45]. The idea there was to

define the partition function for the deformed theory through an integral kernel as

ZQFT[e] =

∫

Df e
1
λ

∫
f+∧f−

ZCFT[e+ f ], (5.9)

where eIi is the dyad associated to the metric on the boundary γij . It was then shown that

this kernel, when applied to the Weyl Ward identity for the partition function ZCFT[e],

resulted in ZQFT [e] satisfying the Wheeler-DeWitt equation. From our discussion above,

it follows that this object can be seen as the generating functional for the T T̄ deformed

theory not including the counter-terms. See [15, 45] for more details.

It is intriguing to note that (5.9) is very similar to the proposal involving coupling the

CFT to Jackiw-Teitelboim gravity in [14]. It is also a very interesting open problem to find

such integral kernels in higher dimensions.

6 Conclusions

In this work we further explored generalized TT deformations in large N CFTs and holog-

raphy with a finite cut-off. We focused on the deformations defined by the trace of the

energy-momentum flow equation in holographic CFTs on the sphere. By computing the

energy momentum tensor and sphere partition functions holographically (up to d = 6), we

saw that the crucial information is contained in the proportionality function, ω[rc], of the

stress tensor, 〈Tij〉 = ω[rc]γij . In the field theory side, this function solves the (algebraic)

TT flow equation provided all the non-trivial ingredients of the holographic dictionary like

precise anomalies on S
d as well as relation between the deformation coupling and the grav-

ity parameters. This program can be generalized to other asymptotic geometries as well

as black hole solutions and we leave this for future work.

Since the higher dimensional flow equation originates from the Gauss-Codazzi equation,

or the Hamiltonian constraint in gravity, the above results may be seen as a consistency

check of AdS/CFT. On the other hand, without the T T̄ story, the relation between the

radial direction and deformation by irrelevant operators would have remained elusive. This

is why there is still a lot to be learned about this new ingredient of holography, especially

in higher dimensions. In particular, the definition of TT operators on curved manifolds or

purely field theory origin of the flow equation remains challenging. In section 4, we made

some progress on the latter and showed how the field theory flow equation emerges from

the regularization procedure in defining the TT operator at large N .

We hope that our arguments can be sharpened so that they capture, in arbitrary

dimensions, the 1/N corrections and additional matter content of the theories. Along these

lines, a potentially promising direction to pursue would be to obtain the flow equation for

a holographic theory away from large N . This is possible by first upgrading the parameter

λ to a local function of space, (i.e. a source) and then to apply the methods of the local

renormalization group in the presence of irrelevant operator deformations as was studied
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recently in [46, 47]. Then, setting the parameter to be constant would lead to a flow

equation of the kind we are interested in.

The Wheeler-DeWitt equation is ubiquitous in quantum gravity and plays an impor-

tant role in holographic RG [2, 43, 44]. In our example we can see that its mini-superspace

version can be employed to reproduce the holographic partition function with a finite cut-

off. We may hope that the Wheeler-DeWitt equation can guide us in defining the TT

operator and identify its expectation value in the flow equation beyond large N . In partic-

ular, understanding the relation between the coupling of the TT operator and the cut-off

in quantum gravity remains a challenge.

Finally, it is important to explore physical quantities under the TT deformation in

various dimensions. In particular, how do correlation functions and transport coefficients

(e.g. η/s) get modified. The quasi-normal modes get shifted upon putting a finite cut-off.

This should in turn affect the retarded Green’s functions. Similarly, an interesting avenue

to explore is how thermalization timescales get affected by TT . Since the deformation

introduces new interaction terms in the Lagrangian and also leads to superluminal signal

propagation, one might expect thermalization to occur faster. Last but not least, many

recently developed quantum information theoretic quantities in holography correspond to

bulk objects that are non-trivially modified by finite cut-off. Non-perturbative comparisons

with deformed CFTs, perhaps even beyond the planar limit, may provide important lessons

in this directions (see e.g. [48, 49]).
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A Gauss-Codazzi equation

In this appendix we give a lightning review of the ideas presented in [24, 25] for deriving a

flow equation for the trace of the energy momentum tensor in large N holographic CFTs

in d-dimensions. The main objective of these works is to generalize the T T̄ deformations

from 2d CFTs that result in the finite cut-off in dual holographic geometry (as in [15]).

As observed in [15], in two dimensions, the T T̄ flow equation can be rewritten as the
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Gauss-Codazzi equation (Hamiltonian constraint) in gravity. Therefore, the logic to derive

analogues in higher dimensions is to derive a flow starting from Gauss-Codazzi equation

and postulate that it should be realized as a flow in holographic CFT at large N deformed

by the TT operator.

In the Hamiltonian approach to holographic renormalization (see e.g. [6, 44]), it is

convenient to write Einstein’s equations in terms of intrinsic (R̃) and extrinsic (K) curva-

tures of the hypersurfaces Σr of constant radial direction r with induced metric γij . In this

formalism, Einstein’s equations are equivalent to Gauss-Codazzi equations. In particular,

in the case of pure gravity, their (r, r) component for d + 1-dimensional spacetime with

d-dimensional Σr is given by

K2 −KijK
ij = R̃+

d(d− 1)

l2
. (A.1)

This equation is just the Hamiltonian constraint namely, with the canonical momentum

conjugate to the boundary metric

πij =

√
γ

κ2
(Kγij −Kij) , πi

i =

√
γ

κ2
(d− 1)K, (A.2)

we have

πijπij −
1

d− 1
(πi

i)
2 =

γ

κ4
[

KijK
ij −K2

]

, (A.3)

and the Gauss-Codazzi equation (after multiplying by κ2/
√
γ) becomes

κ2√
γ

[

πijπij −
1

d− 1
(πi

i)
2

]

+

√
γ

κ2

[

R̃+
d(d− 1)

l2

]

= 0. (A.4)

This is the standard ADM Hamiltonian constraint H = 0, introduced in [35]. This becomes

the Wheeler-DeWitt equation HΨ = 0 for the wavefunction ψ after replacing canonical

momenta with derivatives w.r.t. the metric in the quantum theory.

A.1 Gauss-Codazzi as a holographic flow equation

The Gauss-Codazzi equation is also equivalent to the flow equation for the expectation

value of the trace of the holographic energy-momentum tensor. To see that, take a general

form of the holographic stress tensor13

〈Tij〉 = − 1

κ2

[

Kij −Kγij −
d− 1

l
γij

]

− adCij (A.5)

where κ2 = 8πGN and ad = l
(d−2)κ2 is the known coefficient of the first counterterm above

d = 2. It is convenient to introduce a “bare” stress-tensor

T̂ij = Tij + adCij , (A.6)

such that

T̂ij =
1

κ2

[

Kγij −Kij +
d− 1

l
γij

]

, T̂ i
i =

d− 1

κ2

[

d

l
+K

]

. (A.7)

13We will drop the expectation values for simplicity of the notation.
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From these relations, we have

K2 −KijK
ij = −2κ2

l
T̂ i
i − κ4

[

T̂ij T̂
ij − 1

d− 1

(

T̂ i
i

)2
]

+
d(d− 1)

l2
, (A.8)

and again, replacing the l.h.s. with the Gauss-Codazzi equation yields the holographic

“flow” equation for the bare stress-tensor

T̂ i
i = − lκ2

2

[

T̂ij T̂
ij − 1

d− 1

(

T̂ i
i

)2
]

− l

2κ2
R̃. (A.9)

We can now also write this equation in terms of the “renormalized” stress tensor by insert-

ing (A.6) such that we get [25]

T i
i = − lκ2

2

[

(Tij + adCij)
2 − 1

d− 1

(

T i
i + adC

i
i

)2
+

4

κ4

(

R̃

4
+

adκ
2

2l
Ci
i

)]

. (A.10)

Note that this is still purely phrased in terms of gravitational quantities but we can use

the holographic dictionary to turn it into a flow in dual CFTs deformed by a generalized

TT operator [24, 25].

A.2 A dual flow in deformed holographic CFTs

Formally, in holographic large N CFTs, we can translate the flow equation (A.10) to the

boundary theory on a unit sphere Sd by introducing boundary quantities related by powers

of the bulk radial cut-off rc. The bulk quantities are translated into the boundary (with

superscript b) as [25]

γij → r2cγ
b
ij , Tij → r2−d

c T b
ij T i

i = γijTij → r−d
c (T b)ii, R̃ = r−2

c R̃b, (A.11)

such that the bare flow equation in QFT becomes

(T̂ b)ii = − lκ2

2rdc

[

T̂ b
ij(T̂

b)ij − 1

d− 1

(

(T̂ b)ii

)2
+

(

lκ2

2rdc

)−1
lrd−2

c

2κ2
R̃b

]

. (A.12)

If we want to interpret this as a QFT flow, we should have

∫

ddx
√
γ〈(T b)ii〉 = −dλ〈X〉, (A.13)

and we need in total two relations to replace l and GN with boundary data. We can write

λ =
lκ2

2drdc
,

αd

λ
d−2
d

≡ lrd−2
c

(d− 2)κ2
, (A.14)

where αd is a QFT parameter (see the main text). Using these, we can then write the bare

QFT flow as

(T̂ b)ii = −dλ

[

T̂ b
ij(T̂

b)ij − 1

d− 1

(

(T̂ b)ii

)2
+

1

dλ

αd

λ
d−2
d

d− 2

2
R̃b

]

, (A.15)
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and similarly for the renormalized stress-tensor14

(T b)ii =−dλ

[

(

T b
ij +

αd

λ
d−2
d

Cij

)2

− 1

d−1

(

(T b)ii+
αd

λ
d−2
d

Ci
i

)2

+
1

dλ

αd

λ
d−2
d

(

(d−2)

2
R̃b + Ci

i

)

]

.

(A.16)

The expression can be expanded further (for simplicity we drop the superscript b) and we

get the equation used in the main text

T i
i = −dλ

[

TijT
ij − 1

d− 1
(T i

i )
2 +

2αd

λ
d−2
d

(

TijC
ij − 1

d− 1
T i
iC

i
i

)

+

(

αd

λ
d−2
d

)2(

CijC
ij − 1

d− 1
(Ci

i )
2

)

+
1

dλ

αd

λ
d−2
d

(

(d− 2)

2
R̃+ Ci

i

)

]

. (A.17)

where (up to 6d) in field theory we have

Cij = c
(2)
d Gij + c

(3)
d

2dαdλ
2
d

d− 4

[

2

(

RikjlR
kl − 1

4
γijRklR

kl

)

− d

2(d− 1)

(

RRij −
1

4
γijR

2

)]

,

(A.18)

where all the ingredients are of those of the unit metric on the sphere γij .

One last comment is that, naively, it appears that this formula is wrong for d = 2

because it would kill the anomaly. However, for consistency we must have

α2 = lim
d→2

ad = lim
d→2

l

(d− 2)κ2
= lim

d→2

c

12π(d− 2)
, (A.19)

where we used the Brown-Henneaux relation, and this precisely gives the anomaly piece

when Cij = 0 in d = 2.

B Generating R in the flow equation

The specific ǫ scaling of the coefficients in the expression (4.18) are chosen such that in the

limit ǫ → 0, the following terms vanish15

lim
ǫ→0

C[γ] = 0 = lim
ǫ→0

δC[γ]

δγij
. (B.1)

The second functional derivative however will remain finite, provided we smear it against

the heat kernel. This means that if we distribute the limit, we have

lim
ǫ→0

∫

ddyK(x, y, ǫ)Gijkl(x)
1√
γ(x)

δ

δγij(x)

(

1√
γ(y)

δ(eC[γ]Z[γ])

δγkl(y)

)

= lim
ǫ→0

∫

ddyK(x, y, ǫ)Gijkl(x)
1√
γ(x)

δ

δγij(x)

(

1√
γ(y)

δZ[γ]

δγkl(y)

)

+

(

lim
ǫ→0

∫

ddyK(x, y, ǫ)Gijkl(x)
1√
γ(x)

δ

δγij(x)

(

1√
γ(y)

δC[γ]

δγkl(y)

))

Z[γ]. (B.2)

14Using (T̂ b)ij → (T b)ij + adr
d−2
c Cij . Note that when translating Cij into field theory, in different

dimensions, its different components can have a different scaling with rc. Namely, in our examples, in 4d

we have Cij = Gij = Gb
ij but the extra term in 6 and 7 dimensions has a scaling r−2

c .
15Note that the order of limits here is to first take ǫ→0 with N fixed and then taking N→∞ at the end.
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We then take a closer look at the term on the second line of the r.h.s. in the expression above

(

lim
ǫ→0

∫

ddyK(x, y, ǫ)Gijkl(x)
1√
γ(x)

δ

δγij(x)

(

1√
γ(y)

δC[γ]

δγkl(y)

))

Z[γ],

= −α0 lim
ǫ→0

(

(

d(d2 − 3)

(d− 1)

)

ǫ
d
2
−1

4
K(x, x; ǫ) +

2ǫ
d
2

d

(

∇2
(x) + ξR(x)

)

K(x, x; ǫ)

)

Z[γ]. (B.3)

Here

ξ = −
(

3d3 − 4d2 − 9d+ 14

2d(d− 1)

)

. (B.4)

Then, the heat equation implies that we can write

lim
ǫ→0

α0

(

(

d(d2 − 3)

(d− 1)

)

ǫ
d
2
−1

4
K(x, x; ǫ) +

2ǫ
d
2

d

(

∇2
(x) + ξR(x)

)

K(x, x; ǫ)

)

= α0 lim
ǫ→0

(

(

d(d2 − 3)

(d− 1)

)

ǫ
d
2
−1

4
K(x, x; ǫ) +

2ǫ
d
2

d
∂ǫK(x, x; ǫ)

)

= α0R(x). (B.5)
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