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K∗(4307). A K∗ state with such a mass (in the charmonium region) and quantum numbers
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1 Introduction

The existence of exotic mesons and baryons, whose masses, widths and/or quantum num-

bers can not be explained within the constituent quark model of Gell-Mann and Zweig,

is one of the peculiar characteristics of Quantum Chromodynamics which has been, and

still is being, intensively explored in experiments and in theory. Typical examples are:

the scalar nonet in the meson sector, which includes the f0(500), κ(800), f0(980), a0(980)

states [1–6], and the Λ(1405) in the baryon sector [7–11]. With the increase of the acces-

sible energy range by the experimental facilities, claims for the observation of such states,

especially in the heavy quark sector, with a hidden charm content, started appearing in

the last decade, as the so called X, Y and Z families (see, e.g., refs. [12–20] for reviews on

the topic). In case of the Z family, consisting of charged particles with masses in the char-

monium mass range, 3.9–4.2 GeV, at least two quarks and two antiquarks are necessarily

required, with a cc̄ pair being responsible for their heavier masses. The isoscalar partners,

belonging to the X and Y families, are also categorized as exotic, not due to the fact that

to obtain their quantum numbers we need to invoke a different structure to that of qq̄, but

because their masses and widths cannot be explained within the traditional constituent

quark model [17, 19].

All these heavy exotic mesons found experimentally in the recent years share a com-

mon feature: they are mesons with no strangeness. A glance at the Particle Data Book

(PDB) [21] shows a low activity in the strange pseudoscalar and vector meson sectors since

the last 30 years: in the pseudoscalar sector, the last I(JP ) = 1/2(0−) Kaon state reported

corresponds to K(1830). Its existence was claimed in 1983 from a partial wave analyses

of the K−φ system produced in the reaction K−p → K+K−K−p [22], and, recently, the

LHCb collaboration took it into account in the amplitude analysis of the B+ → J/ψφK+
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decay [23]. Similarly, in the vector sector, the latest I(JP ) = 1/2(1−) K∗ state listed in

ref. [21] is the K∗(1680), whose existence dates to experiments and partial wave analysis

performed during 1978–1988 [24–27]. As in the case of K(1830) also, the LHCb collabo-

ration has recently considered its existence in the analysis of the amplitude for the decay

process B+ → J/ψφK+ [23]. And, overall, the final excited state in the meson sector,

with nonzero strangeness quantum number, reported in the PDB corresponds to K(3100),

whose quantum numbers are unknown, and which was observed in several Λp̄(Λ̄p)+pions

reactions during the years 1986–1993 [23].

In view of such a panorama, it is worth to explore whether or not there could be another

family member to be added to the already known X, Y , Z families whose members will

also have masses in the charmonium mass range, i.e., ∼ 3–4 GeV, but nonzero strangeness.

Such states are manifestly exotic, since within a quark description, we will need at least

a cc̄ pair as well as a s quark and a light antiquark (ū, d̄) to account for their masses

and quantum numbers. Surprisingly, although being currently accessible, the existence of

such states has not been yet explored experimentally. But formation of such states has

been claimed theoretically very recently using different models: in ref. [28], the DD∗K

system was studied by solving the Schrödinger equation and considering a pion exchange

potential model to describe the interactions between the pairs forming the three-body

system. As a result, a bound state with mass 4317.92+3.66
−4.32 MeV was obtained. Considering

G-parity arguments, the authors of ref. [28] claim also the existence of a DD̄∗K bound

state with basically the same mass. In ref. [29], the DD̄∗K system was studied by solving

the Faddeev equations under the fixed center approximation [30–37]. In this case, the

interaction between the particles in the two-body subsystems were obtained by solving the

Bethe-Salpeter equation in coupled channels with a kernel determined from an effective field

theory implementing symmetries like the chiral symmetry [38, 39] or the heavy quark spin

symmetry [40–42]. Under such an approach, the states D∗s0(2317), X(3872) and Zc(3900)

are generated from the coupled channel dynamics and are mainly DK bound states in

isospin 0, DD̄∗ states in isospin 0 and 1, respectively [43–46]. As a consequence of the

dynamics involved, a theoretical evidence for an I(JP ) = 1/2(1−) K∗ state with a mass

of (4307 ± 2) − i(9 ± 2) MeV was obtained when the DD̄∗ system clusters as X(3872)

or Zc(3900).

Theoretically, the attraction in the DK and DD̄∗ subsystems, which leads to the gen-

eration of the D∗s0(2317), X(3872) and Zc(3900) states, constitutes a compelling argument

in favor of the existence of such exotic K∗ state with a mass around 4.3 GeV and hidden

charm. Experimentally, observation of such K∗ state should be possible in the current

facilities and it would constitute an exciting novelty in the Kaonic spectroscopy and in

that of the exotic mesons.

In the present work, we continue with the investigation of the properties of the K∗ state

predicted in ref. [29] and calculate the decay widths to several open two-body channels.

Particularly, we consider the channels J/ψK∗(892), D̄D∗s , D̄
∗D∗s and D̄Ds, which are the

most relevant ones, based on the nature of K∗(4307). This information should be reliable

for experimental searches of the K∗ state proposed in ref. [29], since the decay mechanism

of the state is linked to the internal structure of the decaying particle.
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Figure 1. Decay mechanisms of the K∗
R state predicted in ref. [29] to the J/ψK∗ channel. The

vertex X → J/ψρ(ω) on the diagram (b) involves yet another triangular loop, as shown in figure 3.

J/ψ

K*
K

Zc

π

D

Ds

D*

D

D*

D*

D

(a)

(d)

(b)

(c)

Zc

K

Zc

Zc

K

K

KR*

KR* KR*

KR*

DS*

DS*

Figure 2. Main two-body decay channels for the K∗
R state found in the theoretical investigation

of ref. [29].

2 Theoretical framework

The coupled channel calculation of ref. [29] shows that the rescattering of a Kaon with the

D and D̄∗, which cluster to form X(3872) in isospin 0 and Zc(3900) in isospin 1, generates a

I(JP ) = 1/2(1−) K∗ state with a mass around 4307 MeV, which is below the KDD̄∗ thresh-

old, thus, it is a bound state. When considering the width of Zc(3900), which is around

28 MeV, a width close to 18 MeV is found for the K∗(4307) state. A K∗ state with such an

internal structure can naturally decay to three-body channels, like J/ψπK, since the state

itself is obtained as a consequence of the three-body dynamics involved in the KDD̄∗ sys-

tem. However, it can also decay to two-body channels. In this latter case, due to the nature

found for K∗(4307) in ref. [29], such a decay mechanism can proceed through triangular

loops (see figure 1) and we can have as main decay channels J/ψK∗(892), D̄D∗s , D̄
∗D∗s ,

and D̄Ds (see figure 2). In order to avoid confusion between K∗(4307) and K∗(892) and to

simplify the notation, we shall, henceforth, denote the former as K∗R and the latter as K∗.

From the results of ref. [29], the coupling of K∗R to KZc(3900) is around 4 times

bigger than that to KX(3872), thus, when calculating the decay width of K∗R (which is

proportional to the squared coupling of K∗R to KZc or KX), the contribution arising from

the diagram shown in figure 1(b) is negligible when compared to the one coming from
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Figure 3. Decay mechanism of X to the J/ψρ channel in an approach in which X is obtained

from the DD̄∗ interaction [47].
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Figure 4. Decay process of K∗
R into the D̄∗Ds channel.
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Figure 5. Contributions related to the diagram (a) of figure 2 for the decay mechanism

K∗0
R → J/ψK∗0.

the diagram in figure 1(a). On top of that, for the decay process K∗R → J/ψK∗, the

vertex X → J/ψρ(ω) shown in figure 1(b) involves yet another triangular loop [47] (see

figure 3) and such a vertex produces a contribution much smaller than that of the vertices

Zc → J/ψπ, D̄D∗, D̄∗D, since Zc(3900) couples directly to J/ψπ, D̄D∗ − c.c (where c.c

means complex conjugate) [46], at the tree level. It is also interesting to notice that, with

the internal structure found in ref. [29] for the predicted K∗R, the decay process K∗R → D̄∗Ds

could also be contemplated, but it would involve a three pseudoscalar vertex (see figure 4),

resulting in a null amplitude.

2.1 Determination of the vertices

Let us then start evaluating the contribution arising from the diagrams shown in figure 2.

Considering the decay of a neutral K∗0R into a J/ψ and a π0, we have two diagrams con-

tributing to each of the processes shown in figure 2: in one of the diagrams, the primary

vertex is K∗0R → K0Z0
c while in the other it is the vertex K∗0 → K+Z−c . We illustrate

these two contributions in figure 5 for the decay process K∗0R → J/ψK∗0.

To evaluate these diagrams, we need several vertices involving vector and pseudoscalar

mesons. The contribution for the K∗R → KZc vertices in figure 5 can be written in terms

of the polarization vectors εµK∗R
and εµZc associated with the vector mesons K∗R and Zc,
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Figure 6. Momenta and mass assignment in the decay process of the K∗
R state.

respectively, and the coupling of K∗R to the KZc(3900) channel as

tK∗0R →K0Z0
c

= gK∗0R →K0Z0
c
εK∗0R

(P ) · εZ0
c
(P − q),

tK∗0R →K+Z−c
= gK∗0R →K+Z−c

εK∗0R
(P ) · εZ−c (P − q), (2.1)

where the four momenta and masses assigned to the particles are as shown in figure 6. The

couplings gK∗0R →K0Z0
c

and gK∗0R →K+Z−c
in eq. (2.1) can be obtained from the isospin 1/2

scattering matrix, T(KZc) 1
2

, determined in ref. [29]. To do this, we consider, a Breit-Wigner

expression for this T -matrix in an energy region around the mass mK∗R
of the state, i.e.,

T(KZc) 1
2

'
g2
K∗R→(KZc) 1

2

s−M2
K∗R

+ iMK∗R
ΓK∗R

~εZc · ~εZc ≡ T̃ZcK~εZc · ~εZc , (2.2)

and we can get gK∗R→(KZc) 1
2

, i.e., the coupling of K∗R to the isospin 1/2 state KZc, from the

residue of T(KZc) 1
2

at the pole position in the complex energy plane. Alternatively, since

the decay width of K∗R is proportional to |gK∗R→(KZc) 1
2

|2, we can estimate such a value

directly from eq. (2.2), by considering the limit s→M2
K∗R

[48]

|gK∗R→(KZc) 1
2

| =
∣∣∣√iMK∗R

ΓK∗R T̃(KZc) 1
2

∣∣∣ ' 22143 MeV. (2.3)

Once we have the value of gK∗R→(KZc) 1
2

, the couplings gK∗0R →K0Z0
c

and gK∗0R →K+Z−c
can be

related to gK∗R→(KZc) 1
2

by using the fact that

|KZc; I =
1

2
, I3 = −1

2
〉 = − 1√

3
|K0Z0

c 〉+

√
2

3
|K+Z−c 〉, (2.4)

where we use the phase convention |K−〉 = −|12 ,−
1
2〉. In this way, from eq. (2.4),

gK∗0R →K0Z0
c

= − 1√
3
gK∗R→(KZc) 1

2

,

gK∗0R →K+Z−c
=

√
2

3
gK∗R→(KZc) 1

2

. (2.5)

Using isospin average masses for the particles belonging to the same isospin multiplet and

eq. (2.5), we can write eq. (2.1) as

tK∗R→KZc = CKZc gK∗R→(KZc) 1
2

εK∗R(P ) · εZc(P − q), (2.6)
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with

CKZc =

{
−1/
√

3 for K∗0R → K0Z0
c ,√

2/3 for K∗0R → K+Z−c .
(2.7)

Next, we need the vertices Zc → J/ψ π, D̄D∗, D̄∗D for different charge combinations.

As shown in ref. [46], a state with mass around 3872 MeV and 30 MeV of width is generated

from the dynamics present in the DD̄∗ + c.c. (c.c. means complex conjugate) and J/ψπ

coupled channel system in isospin 1 and positive G-parity. This state can be related to

Zc(3900) [46].

A comment regarding this latter state is here in order: the nature of Zc(3900) is still

under debate. Experimental investigations seem to report two states with JP = 1+ around

3900 MeV, Zc(3900) [49–51] and Zc(3885) [52, 53]. It is still not clear if these states are two

different ones or are the same. The lattice investigations [54–56], on the other hand, do not

seem to find an evidence for the existence of a molecular state around 3900 MeV. However,

the analysis made in ref. [57] shows that the lattice data is compatible with the existence

of the Zc(3900) resonance. Further, the latest experimental investigations continue to find

signals of a state with mass near 3900 MeV in different processes, such as B-decays [58], ηcρ

invariant mass spectra [59], etc. In spite of the debate, both experimental and theoretical

investigations indicate that the DD̄∗ interaction in isospin 1, spin-parity 1+ is attractive

in nature and produces a peak in the cross sections of the relevant processes. In our study,

the Zc(3900) we refer to is the state arising from the DD̄∗ and coupled channel dynamics

found in ref. [46].

Following the approach of ref. [46], we can write

tZc→J/ψ π = CJ/ψπgZc→(J/ψ π)1 εZc(P − q) · εJ/ψ(p),

tZc→D̄ D∗ = CD̄ D∗gZc→(D̄D∗)1 εZc(P − q) · εD∗(p), (2.8)

tZc→D̄∗D = CD̄∗DgZc→(D̄D∗)1 εZc(P − q) · εD̄∗(p),

where we have defined

gZc→(D̄D∗)1 =
1√
2
gZc→ 1√

2
[(D̄D∗)1+c.c]. (2.9)

The subscript 1 in the above equation indicates the total isospin of the D̄D∗ system. The

CD̄ D∗ and CD̄∗D coefficients in eq. (2.8), which relate the Zc state to the D̄ D∗ and D D̄∗

states in the charge basis, are given by

CD̄ D∗(D̄∗D) =


1, for Z+

c → D̄0D∗+ (D̄∗0D+),

1/
√

2, for Z0
c → D−D∗+ (D∗−D+),

−1/
√

2, for Z0
c → D̄0D∗0 (D̄∗0D0),

−1, for Z−c → D−D∗0 (D∗−D0),

(2.10)

where we have used the isospin phase convention |D∗0〉 = −|12 ,−
1
2〉 and |D0〉 = −|12 ,−

1
2〉.

In case of pions, we follow the isospin phase convention |π+〉 = −|1, 1〉. In this way,

CJ/ψπ = 1 for the processes Z0
c → J/ψπ0 and Z−c → J/ψπ−.

– 6 –
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The couplings in eq. (2.8) can be obtained from the residue of the isospin 1 two-body

scattering matrix determined in ref. [46] in the complex energy plane. We have calculated

them and obtain

|gZc→(J/ψπ)1 | ' 3715 MeV, |gZc→ 1√
2

[(D̄ D∗)1+c.c.]| ' 8149 MeV. (2.11)

Other vertices needed to evaluate the contribution of the diagrams shown in figure 2

are K π → K∗, D∗K → Ds and DK → D∗s . To determine these contributions, we use the

effective Lagrangian LPPV [60, 61] involving two pseudoscalars and a vector meson

LPPV = −ig〈V µ [P, ∂µP ]〉, (2.12)

with V µ and P being matrices containing the corresponding vectors and pseudoscalar fields,

Vµ =


ω+ρ0√

2
ρ+ K∗+ D̄∗0

ρ− ω−ρ0√
2

K∗0 D∗−

K∗− K̄∗0 φ D∗−s
D∗0 D∗+ D∗+s J/ψ


µ

,

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+ D̄0

π− η√
3

+ η′√
6
− π0
√

2
K0 D−

K− K̄0 − η√
3

+
√

2
3η
′ D−s

D0 D+ D+
s ηc

 , (2.13)

respectively. The coupling g in eq. (2.12) is given by mV /(2fπ) ' 4.41, with mV ' 815 MeV

being an average mass for the vector mesons ρ, ω and K∗ and fπ = 92.4 MeV being the pion

decay constant. While this value of the coupling produces a theoretical width of the K∗+

meson, which comes basically from the decay processes K∗+ → K0π+, K+π0, compatible

with the experimental result, it underestimates the width of the D∗+ meson, obtained from

the processes D∗+ → D0π+, D+π0. In this latter case, as shown in ref. [62], arguments

based on the heavy quark symmetry establish that g → mD∗g/mK∗ ' 9.9 when using the

Lagrangian in eq. (2.12) for describing processes involving heavy pseudoscalar and vector

mesons. Having this in mind and using eq. (2.12), we get the following amplitudes for the

above mentioned vertices

tKπ→K∗ = −2CKπ gL q · εK∗(k),

tKD→D∗s = −2CKD gH q · εD∗s (k), (2.14)

tKD∗→Ds = CKD∗ gH (k + q) · εD∗s (k − q).

In the above equations, gL = 4.41 and gH = 9.9, and the coefficients CKπ, CKD and CKD∗

are given by

CKπ =

{
1/
√

2, for K0π0 → K∗0,

−1, for K+π−→ K∗0,
(2.15)

CKD (KD∗) =

{
−1, for K+D0 → D∗+s (K+D∗0 → D+

s ),

−1, for K0D+ → D∗+s (K0D∗+ → D+
s ).

(2.16)
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The last vertex whose contribution needs to be determined corresponds to D∗K → D∗s .

To do this, we consider the effective Lagrangian LV V P [60, 63] involving two vectors and

a pseudoscalar meson

LV V P =
G′√

2
εµναβ〈∂µVν∂αVβP 〉, (2.17)

where the coupling G′ is given by 3g′2

4π2fπ
with g′ = −Mρ

2fπ
= −4.14. Using eq. (2.17), we

can write

tKD∗→D∗s = CKD∗G
′ εµναβ (k − q)µ kα εD∗,ν(k − q) εD∗s ,β(k), (2.18)

with

CKD∗ =

{
− 1√

2
, for K+D∗0 → D∗+s ,

− 1√
2
, for K0D∗+ → D∗+s .

(2.19)

2.2 Triangular loops

Once we have all the vertices associated with the decay mechanisms of K∗R, we can evaluate

the contributions related to the diagrams in figure 2. We start with the process shown in

figure 2(a) and the two Feynman diagrams shown in figure 5 (for the K∗0R decay). Using the

vertices given in eqs. (2.1), (2.8), (2.14), the corresponding amplitude can be written as,

ta = t(1)
a + t(2)

a = i
√

6 gK∗R→(KZc) 1
2

gZc→(J/ψ π)1 gL ε
µ
K∗R

(P ) ενJ/ψ(p) εαK∗(k)

×
∫

d4q

(2π)4

(
−gµν + (P−q)µ(P−q)ν

m2
Zc

)
qα

(q2 −m2
K + iε)[(k − q)2 −m2

π + iε][(P − q)2 −m2
Zc

+ iε]

= i
√

6 gK∗R→(KZc) 1
2

gZc→(J/ψ π)1 gL ε
µ
K∗R

(P ) ενJ/ψ(p) εαK∗(k)

×

[
−gµν I1

α −
Pν
m2
Zc

I2
µν +

1

m2
Zc

I3
µνα

]
, (2.20)

where we have introduced the three tensor integrals I1
α, I

2
µν , I

3
µνα, which are defined as

INµ1µ2,...,µN =

∫
d4q

(2π)4

qµ1qµ2 · · · qµN
(q2 −m2

1 + iε)[(k − q)2 −m2
2 + iε][(P − q)2 −m2

3 + iε]
, (2.21)

with m1, m2 and m3 being the masses of the particles in the triangular loops shown in

figure 2 (see figure 6 for the corresponding four momenta labels).

Based on the Lorentz covariance, eq. (2.21) can be written in terms of the external

momentum P and k. In particular, we have

I1
α = a1

1 Pα + a1
2 kα,

I2
µα = a2

1 gµα + a2
2 Pµ Pα + a2

3 (Pµ kα + kµ Pα) + a2
4 kµ kα, (2.22)

I3
µνα = a3

1(gµνPα + gµαPν + gναPµ) + a3
2(gµνkα + gµαkν + gναkµ)

+ a3
3PµPνPα + a3

4(PµPνkα + PµkνPα + kµPνPα)

+ a3
5kµkνkα + a3

6(kµkνPα + kµPνkα + Pµkνkα),

– 8 –
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which correspond to the standard Passarino-Veltman decomposition for tensor inte-

grals [64]. The coefficients aij are scalars to be determined. Considering the Lorenz gauge

and using P = p+ k, the amplitude ta in eq. (2.20) can be further simplified to

ta = i
√

6m2
Zc gK∗R→(KZc) 1

2

gZc→(J/ψ π)1 gL

[
(−m2

Zca
1
1 + a3

1)εK∗R(P ) · εJ/ψ(p) p · εK∗(k)

+ (−a2
1 + a3

1 + a3
2)εK∗R(P ) · εK∗(k) k · εJ/ψ(p) + a3

2k · εK∗R(P ) εJ/ψ(p) · εK∗(k)

+(−a2
3 + a3

4 + a3
6)k · εK∗R(P ) k · εJ/ψ(p) p · εK∗(k)

]
, (2.23)

and we need to determine seven coefficients, a1
1, a2

1, a2
3, a3

1, a3
2, a3

4, and a3
6. To do this, the

way of proceeding is: first, by using eq. (2.22), we can contract the expressions in eq. (2.22)

with the different Lorentz structures present there and get a system of coupled equations

which can be solved. For example, from the expression of I1
α in eq. (2.22), we have

P · I1 = a1
1P

2 + a1
2P · k,

k · I1 = a1
1k · P + a1

2k
2. (2.24)

By solving this system of coupled equations, we can write a1
1 as

a1
1 =

k2(PI1)− (k · P )(KI1)

k2P 2 − (k · P )2
, (2.25)

where

PI1 ≡ PµI1
µ, KI1 ≡ kµI1

µ, GI2 ≡ gµαI2
µα. (2.26)

Equation (2.25) clearly shows that the aij coefficients depend on the mass of the decaying

particle, mK∗R
, the masses of the particles in the loops, m1, m2 and m3, and the masses

ma and mb of the particles to which K∗R can decay (see figure 6). For all the diagrams

shown in figure 2, m1 = mK and m3 = mZc , and for the particular case of the diagram in

figure 2(a), m2 = mπ, ma = mJ/ψ and mb = mK∗ . The next step consists in calculating

the Lorentz scalar terms appearing in eq. (2.26) directly from the definition in eq. (2.21).

For example, using eq. (2.21), PI1 is given by

PI1 =

∫
dq0

2π

∫
d3q

(2π)3

P 0q0

(q02 − ω2
1 + iε)[(k0 − q0)2 − ω2

2 + iε][(P 0 − q0)2 − ω2
3 + iε]

, (2.27)

with

ω1 =
√
~q 2 +m2

1, ω2 =

√
(~k − ~q) 2 +m2

2, ω3 =
√
~q 2 +m2

3, (2.28)

where we have used the rest frame of the decaying particle, for which Pµ=(P 0,~0)=(mK∗R
,~0)

and

k0 =
P 02 −m2

a +m2
b

2P 0
, |~k| =

λ1/2(P 02
,m2

a,m
2
b)

2P 0
. (2.29)
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Figure 7. Contributions associated with the diagram (b) of figure 2 for the decay mechanism

K∗0
R → D−D∗+

s .

Next, we can use Cauchy’s theorem to determine the q0 integration of eq. (2.27), and we get

PI1 = −i
∫

d3q

(2π)3
P 0ω1

{
− k02

P 0ω2 + k0ω3[(ω1 + ω3)(ω1 + 2ω2 + ω3)− P 02
]

+ P 0ω2(ω1 + ω2)(ω1 + ω2 + 2ω3)
} 1

2ω1 ω2 ω3 (k0 + ω1 + ω2)

× 1

P 0 + ω1 + ω3

1

ω1 − k0 + ω2 − iε
1

ω1 − P 0 + ω3 − iε

× 1

k0 − P 0 + ω2 + ω3 − iε
1

P 0 − k0 + ω3 + ω2 − iε
. (2.30)

Similarly, we can continue with the evaluation of the other aij coefficients of eq. (2.23).

The results are given in the appendix A. Note that some of these aij coefficients, after per-

forming the integration on the q0 variable, involve integrals in d3q which are divergent. In

such a case, we regularize the corresponding integral by introducing a cutoff Λ = 700 MeV,

which corresponds to the value used in ref. [29] to get the resonance K∗R from the three-

body KDD̄∗ system. It is also interesting to notice that for the cases in which the d3q

integration does not involve divergences, the upper limit for such integration is also nat-

urally provided [65], in this case, by the value of the cut-off used when regularizing the

two-body loops involved in the generation of the Zc state from the interaction of DD̄∗ and

coupled channels, and which is also ∼700 MeV [46].

Let us consider now the decay mechanism shown in figure 2(b) and the two Feyn-

man diagrams contributing to it, which are shown in figure 7. In this case, considering

eqs. (2.1), (2.8) and (2.18), the amplitude describing the process is given by

tb = t
(1)
b + t

(2)
b = i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 G
′ εµK∗R

(P ) εD∗s ,β(k)

×
∫

d4q

(2π)4

(
−gµν +

(P − q)µ(P − q)ν

m2
Zc

)(
−gνλ +

(k − q)ν(k − q)λ
m2
D∗

)
× εσλαβ (k − q)σ kα

(q2 −m2
K + iε)[(k − q)2 −m2

D∗ + iε][(P − q)2 −m2
Zc

+ iε]

= i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 G
′ εµK∗R

(P ) εD∗s ,β(k) εσλαβ
[
gµλkαI

1
σ +

1

M2
Zc

PλkαI
2
µσ

]
,

(2.31)
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Figure 8. Contributions associated with the diagram (c) of figure 2 for the decay mechanism

K∗0
R → D∗−D∗+

s .

where the Lorenz gauge and the antisymmetric properties of the Levi-Civita tensor have

been used to get the last line. Using the decomposition in eq. (2.22) and considering once

again the antisymmetric properties of the Levi-Civita tensor, eq. (2.31) can be written as

tb = i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 G
′ εµK∗R

(P ) εD∗s ,β(k) εσλαβ
[
gµλPσa

1
1 +

1

M2
Zc

Pλgµσa
2
1

]
kα,

(2.32)

where the coefficient a1
1 can be obtained from eq. (2.25), where now, from figure 2(b),

m3 =mD∗ , ma=mD̄, mb=mD∗s , and the expression for a2
1 can be found in the appendix A.

Next, we continue with the evaluation of the process depicted in figure 2(c). In this

case, considering the diagrams shown in figure 8 and using the results in eqs. (2.1), (2.8),

(2.14), the amplitude associated with such decay mechanism reads as

tc = t(1)
c + t(2)

c = −i
√

6 gK∗R→(KZc) 1
2

gZc→(D̄D∗)1 gH ε
µ
K∗R

(P ) εµ
D̄∗

(P − k) εαD∗s (k)

×
∫

d4q

(2π)4

(
−gµν +

(P−q)µ (P−q)ν
m2
Zc

)
qα

(q2 −m2
K + iε)[(k − q)2 −m2

D + iε][(P − q)2 −m2
Zc

+ iε]

= −i
√

6 gK∗R→(KZc) 1
2

gZc→(D̄D∗)1 gH ε
µ
K∗R

(P ) εµ
D̄∗

(P − k) εαD∗s (k)

×

[
−gµνI1

α −
1

m2
Zc

PνI
2
µα +

1

m2
Zc

I3
µνα

]
. (2.33)

Note that the above expression is analogous (up to a phase) to the expression of ta in

eq. (2.20) changing gL → gH , J/ψ → D̄∗, π → D, K∗ → D∗s in the couplings and in the

products of four momenta, i.e., we have now m2 = mD (instead of mπ), ma = mD̄∗ (instead

of mJ/ψ) and mb = mD∗s (instead of mK∗). This result is expected since we are, basically,

changing a light pseudoscalar (the pion) by a heavy pseudoscalar (the D meson) and light

vector mesons (J/ψ and K∗) by heavy ones (D̄∗ and D∗s respectively).

At last, considering the vertices in eqs. (2.1), (2.8), (2.14) and the diagrams in figure 9,

we get the following amplitude for the description of the process shown in figure 2(d),

td = t
(1)
d + t

(2)
d = i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 gH εK∗R,µ(P )

×
∫

d4q

(2π)4

(
−gµν + (P−q)µ(P−q)ν

m2
Zc

)(
−gνα + (k−q)ν(k−q)α

m2
D∗

)
(k + q)α

(q2 −m2
K + iε)[(k − q)2 −m2

D∗ + iε][(P − q)2 −m2
Zc

+ iε]
. (2.34)
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Figure 9. Contributions related to the diagram (d) of figure 2 for the decay mechanism

K∗0
R → D∗−D∗+

s .

Using the Lorenz gauge, we can write eq. (2.34) as

td = i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 gH εK∗R,µ(P )

×

[
kµ
(

1− k2

m2
D∗

)
I0 +

(
1 +

k2

m2
D∗

+
P · k
m2
Zc

− k2P · k
m2
D∗m

2
Zc

)
Iµ1 +

kµ

m2
D∗
gαβI

αβ
2

+

(
(P − k)σ
m2
Zc

+
k2(P + k)σ
m2
D∗m

2
Zc

)
Iµσ2 −

(
1

m2
D∗

+
1

m2
Zc

+
k2 − P · k
m2
D∗m

2
Zc

)
gαβI

µαβ
3

−(P + k)σ
m2
D∗m

2
Zc

gαβI
µαβσ
4 +

1

m2
D∗m

2
Zc

gαβgσλI
µαβσλ
5

]
.

We could proceed as in the previous cases and use the Lorentz covariance to write the ten-

sor integrals in terms of the possible Lorentz structures and some aij coefficients. However,

the presence of the tensor integrals Iµαβσ4 and Iµαβσλ5 makes such a method inconvenient,

since many different Lorentz structures would appear. We adopt then a different strategy:

although the particles in the triangular loop are off-shell, their interactions give rise to the

K∗R and Zc states. In such a situation, the momenta associated with the particles generat-

ing such states are much smaller as compared to their energies. In this way, the temporal

component of the polarization vector (of the order momentum/mass) is negligible as com-

pared to the spatial components. Thus, when summing over the internal polarizations of

the particles, if we call Qµ and m the four-momentum and mass, respectively, of the vector

meson whose interaction with the corresponding pseudoscalar generates K∗R or Zc,

−gµν +
QµQν

m2
→ δij , (2.35)

with i and j being spatial indices. Considering such an approach, the amplitude in eq. (2.34)

can be written as

td = i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 gH ~εK∗R(P )

×
∫

d4q

(2π)4

~k + ~q

(q2 −m2
K + iε)[(k − q)2 −m2

D∗ + iε][(P − q)2 −m2
Zc

+ iε]

= i

√
3

2
gK∗R→(KZc) 1

2

gZc→(D̄D∗)1 gH ~εK∗R(P )(I0~k + ~I 1), (2.36)
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where I0 is given by eq. (2.21) (with m1 = mK , m2 = mD∗ and m3 = mZc) and

~I 1 ≡
∫

d4q

(2π)4

~q

(q2 −m2
K + iε)[(k − q)2 −m2

D∗ + iε][(P − q)2 −m2
Zc

+ iε]
. (2.37)

Note that the approach shown in eq. (2.35) could have also been used when calculating the

amplitudes in the diagrams depicted in figure 2(a)-(c). There, however, such an approach

would not lead to a significant simplification in the calculations, and we have not imple-

mented it. In any case, for completeness, in section 3, we discuss the validity of such an

approach by comparing the results obtained with and without the substitution of eq. (2.35)

for the diagram shown in figure 2(a).

The next step to get td consists in performing the q0 integration in eq. (2.37). The

details of this integration are given in the appendix A. After that, since in the rest frame of

the decaying particle ~P = ~0, the integral in eq. (2.37) is a function of ~k. In such a case, to

perform the integration in d3q, it is more convenient to introduce the dot product between

~q and ~k, which can be done by replacing∫
d3q ~q → ~k

∫
d3q

~q · ~k
~k2

. (2.38)

3 Results and discussion

The decay width of the K∗R state to the two-body channels shown in figure 2 can be obtained

from the amplitudes determined in the previous section as

Γi =

∫
dΩ

4π2

1

8M2
K∗R

pc.m.

3

∑
|ti|2 =

pc.m.

24πM2
K∗R

∑
|ti|2, (3.1)

where the index i = a, b, c, d is associated with the processes shown in figure 2 (a ≡ K∗R →
J/ψK∗, b ≡ K∗R → D̄D∗s , c ≡ K∗R → D̄∗D∗s , d ≡ K̄∗R → D̄Ds), dΩ represents the solid

angle, pc.m is the center of mass momentum of the particles in the final state, the factor 3

has its origin on the average over the K∗R meson polarizations and the symbol
∑

indicates

summation over the polarizations of the initial and final states.

Considering eq. (3.1) and eqs. (2.23), (2.32), (2.33), (2.36), we get, when regularizing

the integrals present in the aij coefficients with a cut-off Λ = 700 MeV,

Γa = 6.70 MeV, Γb = 0.47 MeV, Γc = 0.47 MeV, Γd = 0.98 MeV. (3.2)

It is interesting to notice that the process depicted in figure 2(b) involves an anomalous

vertex [66, 67], the D∗D∗sK vertex, whose contribution is given by the Lagrangian in

eq. (2.17). It is sometimes argued that processes involving anomalous vertices should give

smaller contributions that those in which no anomalous vertices are involved. However,

the importance of the anomalous vertices in different contexts, like in the determination

of production and absorption cross sections of several processes, calculation of radiative

decays of scalar and axial resonances and kaon photo-production, has been shown [68–75].

In the present work, as can be seen, the decay width found for the D̄D∗s channel, which,
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as stated above, involves an anomalous vertex, is comparable to the result obtained for

the D̄∗D∗s channel, which does not involve anomalous vertices, but has smaller phase space

than D̄D∗s .

We can study the sensitivity of the results to the cut-off used when regularizing the

integrals appearing in the aij coefficients of eqs. (2.23), (2.32), (2.33), (2.36). Changing Λ

in the range 700–800 MeV, we get the following values for the decay widths

Γa = 6.97± 0.27 MeV, Γb = 0.54± 0.08 MeV,

Γc = 0.54± 0.07 MeV, Γd = 1.14± 0.17 MeV. (3.3)

We can also study the uncertainty produced in the results under changes in the coupling

constant of K∗R → KZc. If we allow a variation of ±1% in this coupling, for a fixed cut-off

Λ = 700 MeV, we get

Γa = 6.71± 0.14 MeV, Γb = 0.47± 0.02 MeV,

Γc = 0.47± 0.01 MeV, Γd = 0.98± 0.02 MeV. (3.4)

In case of the diagram shown in figure 2(a), when calculating the decay width of

K∗R → J/ψK∗, we can also consider the fact that the K∗ meson has a width ΓK∗ ∼
47 MeV from its decay to the Kπ channel. This can be done by convoluting the expression

in eq. (3.1) with the spectral function associated with the K∗ meson, in which case

Γa =
1

N

(mK∗+2ΓK∗ )2∫
(mK∗−2ΓK∗ )2

dm̃2 Im

[
1

m̃2 −m2
K∗ + iΓK∗(m̃2)m̃

]
Γa(m̃

2)Θ(mK∗R
−mJ/ψ − m̃),

(3.5)

where

N =

(mK∗+2ΓK∗ )2∫
(mK∗−2ΓK∗ )2

dm̃2 Im

[
1

m̃2 −m2
K∗ + iΓK∗(m̃2)m̃

]
, (3.6)

the expression for Γa(m̃
2) in eq. (3.5) is given by eq. (3.1), and

ΓK∗(m̃
2) = ΓK∗

[
pc.m(m̃2,m2

K ,m
2
π)

pc.m(m2
K∗ ,m

2
K ,m

2
π)

]3

. (3.7)

Note, however, that since the mass of the K∗R resonance is far from the J/ψK∗ threshold,

even when the width of K∗ is taken into account, a significant change in the results is not

expected. We indeed find almost the same value for the decay width Γa.

It is also interesting to establish the validity of the approach in eq. (2.35). If we would

have considered such an approach when determining the amplitude in eq. (2.20), the terms

related to the coefficients different to a1
1 would have vanished. In such a case, we would

have got for Γa the value of 6.66 MeV instead of the result in eq. (3.2). This clearly shows

that the approach in eq. (2.35) is, in fact, reliable.
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4 Conclusion

In this work we have calculated the decay width of the K∗(4307) predicted in ref. [29]

to the two-body channels J/ψK∗, D̄D∗s , D̄
∗D∗s and D̄Ds. These channels, as well as the

decay mechanism, are related to the internal structure of the proposed K∗(4307), which, as

found in ref. [29], corresponds to a KDD̄∗ system in which the DD̄∗ subsystem clusters as

X(3872) or Zc(3900). The possible formation of vector meson resonances with strangeness

at the charmonium energy region has been, so far, unexplored. The mass and quantum

numbers of the state invoke a clear non quark-antiquark structure for it. The results

presented in this work constitute a prediction for the decay properties of this K∗(4307)

and should serve as a motivation for conducting experimental investigations of this state.

Acknowledgments

This work was partly supported by DFG and NSFC through funds provided to the Sino-

German CRC 110 “Symmetries and the Emergence of Structure in QCD” (Grant No.

TRR110), CNPq (Grant No. 310759/2016-1 and 311524/2016-8), and NSFC (Grant No.

11775099). X.-L. Ren thanks to the valuable discussion with Profs. Cheng-Ping Shen and

Li-Ming Zhang during the QNP 2018 conference, which motived the present calculation.

A Determination of the ai
j coefficients involved in the triangular loops

depicted in figure 2

In this appendix we give the details of the calculation of the aij coefficients appearing in

eqs. (2.20), (2.32), (2.33), which are related to the Lorentz decomposition of eq. (2.22), and

to determine eq. (2.37). By contracting I1
α, I2

µα and I3
µνα with the corresponding Lorentz

structures, we can get a set of coupled equations whose solution, in each case, allow us to

write the aij coefficients in terms of scalar integrals. We obtain (the expression for the a1
1

coefficient can be found in eq. (2.25) but, for convenience, we write it here again)

a1
1 =

k2(PI1)−(k ·P )(KI1)

k2P 2−(k ·P )2
,

a2
1 =

[
(P ·k)2−k2P 2

]
GI2+k2PPI2+P 2KKI2−2(P ·k)KPI2

2[(P ·k)2−k2P 2]
,

a2
3 =

1

2[(P ·k)2−k2P 2]2
[
P ·k

(
k2P 2−(P ·k)2

)
GI2−3k2(P ·k)PPI2

+2
(
k2P 2+2(P ·k)2

)
KPI2−3P 2(P ·k)KKI2

]
,

a3
1 =

1

2[(P ·k)2−k2P 2]2
[
k2
(
k2P 2−(P ·k)2

)
GPI3−P ·k

(
k2P 2−(P ·k)2

)
GKI3

−k4PPPI3+3k2(P ·k)PPKI3+P 2(P ·k)KKKI3 −
(
k2P 2+2(P ·k)2

)
KKPI3

]
,

a3
2 =

1

2[(P ·k)2−k2P 2]2
[
−P ·k

(
k2P 2−(P ·k)2

)
GPI3 +P 2

(
k2P 2−(P ·k)2

)
GKI3

+k2(P ·k)PPPI3−
(
k2P 2+2(P ·k)2

)
PPKI3−P 4KKKI3 +3P 2(P ·k)KKPI3

]
,
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a3
4 =− 1

2[(P ·k)2−k2P 2]3
[
3k2(P ·k)

(
k2P 2−(P ·k)2

)
GPI3−

(
k2P 2−(P ·k)2

)
×
(
k2P 2+2(P ·k)2

)
GKI3−5k4(P ·k)PPPI3+3k2

(
k2P 2+4(P ·k)2

)
PPKI3

+P 2
(
k2P 2+4(P ·k)2

)
KKKI3 −3(P ·k)

(
3k2P 2+2(P ·k)2

)
KKPI3

]
,

a3
6 =− 1

2[(P ·k)2−k2P 2]3
[(

(P ·k)2−k2P 2
)(

2(P ·k)2+k2P 2
)
GPI3

−3P 2(P ·k)
(
(P ·k)2−k2P 2

)
GKI3+k2

(
4(P ·k)2+k2P 2

)
PPPI3

−3(P ·k)
(
2(P ·k)2+3k2P 2

)
PPKI3−5P 4(P ·k)KKKI3

+3P 2
(
4(P ·k)2+k2P 2

)
KKPI3

]
. (A.1)

where,

PI1 =PµI1
µ, KI1 = kµI1

µ,

GI2≡ gµαI2
µα, PPI2≡PµPαI2

µα, KPI2≡ kµPαI2
µα, KKI2≡ kµkαI2

µα,

GPI3≡ gµνPαI3
µνα, GKI3≡ gµνkαI3

µνα, PPPI3≡PµP νPαI3
µνα, (A.2)

PPKI3≡PµP νkαI3
µνα, KKKI3≡ kµkνkαI3

µνα, KKPI3≡ kµkνPαI3
µνα.

Note that the aij coefficients in eq. (A.1) and the scalars in eq. (A.2) depend on the masses

m1, m2 and m3 of the particles involved in the triangular loop as well as of the mass of

the K∗R state and the masses of the particles to which it can decay, which we represent by

ma and mb (see figure 6).

Using eq. (2.21), and working in the rest frame of the decaying particle, we can write

PI1 =

∫
dq0

(2π)

∫
d3q

(2π)3

P 0q0

F (q0,~q)
, KI1 =

∫
dq0

(2π)

∫
d3q

(2π)3

k0q0−~k ·~q
F (q0,~q)

,

GI2 =

∫
dq0

(2π)

∫
d3q

(2π)3

q02−~q 2

F (q0,~q)
, PPI2 =

∫
dq0

(2π)

∫
d3q

(2π)3

(P 0q0)2

F (q0,~q)
, (A.3)

KPI2 =

∫
dq0

(2π)

∫
d3q

(2π)3

(k0q0−~k ·~q)P 0q0

F (q0,~q)
, KKI2 =

∫
dq0

(2π)

∫
d3q

(2π)3

(k0q0−~k ·~q)2

F (q0,~q)
.

where

F (q0, ~q) = [q02 − ω2
1 + iε][(k0 − q0)2 − ω2

2 + iε][(P 0 − q0)2 − ω2
3 + iε], (A.4)

with ω1 =
√
~q 2 +m2

1, ω2 =

√
(~k − ~q)2 +m2

2 and ω3 =
√
~q 2 +m2

3. The integrals in

eq. (A.3) are particular cases of the most general integral I(a, b, b′, c, d, e) defined as

I(a,b,b′, c,d,e) =

∫
dq0

(2π)

∫
d3q

(2π)3

aq02
+(b+b′cos2θ)~q 2+cq0|~q|cosθ+dq0+e |~q|cosθ

[q02−ω2
1 +iε][(k0−q0)2−ω2

2 +iε][(P 0−q0)2−ω2
3 +iε]

.

(A.5)

Indeed, we can write the integrals in eq. (A.3) as

PI1 = I(0, 0, 0, 0, P 0, 0), KI1 = I(0, 0, 0, 0, k0,−|~k|), GI2 = I(1,−1, 0, 0, 0, 0)

PPI2 = I(P 02
, 0, 0, 0, 0, 0), KPI2 = I(k0P 0, 0, 0,−|~k|P 0, 0, 0),

KKI2 = I(k02
, 0, |~k|2,−2k0|~k|, 0, 0), (A.6)
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where P 0 = mK∗R
and

k0 =
P 02 −m2

a +m2
b

2P 0
, |~k| =

λ1/2(P 02
,m2

a,m
2
b)

2P 0
. (A.7)

The q0 integration in eq. (A.5) can be performed analytically by using Cauchy’s theorem.

After that, the resulting integration in d3q is regularized. This is done by means of a cut-off

Λ ∼ 700 MeV, in agreement with the cut-off used in the study of the KDD̄∗ system, in

which the K∗R state was predicted [29]. In this way, we get

I(a, b, b′, c, d, e) = − i

(2π)2

Λ∫
0

dqq2

1∫
−1

dcosθ
N(q, θ; a, b, b′, c, d, e)

D(q, θ)
, (A.8)

with q = |~q| and

N(q,θ;a,b,b′, c,d,e) = aω1

[
k02{ω3(ω1+ω3)(ω1+ω2+ω3)−P 02

(ω2+ω3)}

+2k0P 0ω1ω2ω3−ω2(ω1+ω2){ω3(ω1+ω3)(ω2+ω3)−P 02
(ω1+ω2+ω3)}

]
+q(b̃q+ẽ)

[
−k02

ω2(ω1+ω3)+2k0P 0ω2ω3+(ω1+ω2){(ω1+ω3)(ω2+ω3)

×(ω1+ω2+ω3)−P 02
ω3}
]
+(c̃q+d)ω1

[
−k02

P 0ω2+k0ω3{(ω1+ω3)

×(ω1+2ω2+ω3)−P 02}+P 0ω2(ω1+ω2)(ω1+ω2+2ω3)
]
,

D(q,θ) = 2ω1ω2ω3(k0−ω1−ω2+iε)(k0+ω1+ω2)(P 0−ω1−ω3+iε)

×(P 0+ω1+ω3)(P 0−k0−ω2−ω3+iε)(k0−P 0−ω2−ω3+iε), (A.9)

where we have introduced b̃ ≡ b+ b′cos2θ, c̃ = c cosθ and ẽ = e cosθ.

Similarly,

GPI3 =

∫
dq0

(2π)

∫
d3q

(2π)3

(q02 − |~q|2)(P 0q0)

F (q0, ~q)
,

GKI3 =

∫
dq0

(2π)

∫
d3q

(2π)3

(q02 − |~q|2)(k0q0 − |~k||~q|cosθ)

F (q0, ~q)
,

PPPI3 =

∫
dq0

(2π)

∫
d3q

(2π)3

(P 0q0)3

F (q0, ~q)
,

PPKI3 =

∫
dq0

(2π)

∫
d3q

(2π)3

(P 0q0)2(k0q0 − |~k||~q|cosθ)

F (q0, ~q)
, (A.10)

KKKI3 =

∫
dq0

(2π)

∫
d3q

(2π)3

(k0q0 − |~k||~q|cosθ)3

F (q0, ~q)
,

KKPI3 =

∫
dq0

(2π)

∫
d3q

(2π)3

(k0q0 − |~k||~q|cosθ)2P 0q0

F (q0, ~q)
.

The integrals in eq. (A.10) are particular cases of the most general integral I(a, b, c, d, e, e′,

f, f ′, f ′′) defined as

I(a,b,c,d,e,e′,f,f ′,f ′′)

=

∫
dq0

(2π)

∫
d3q

(2π)3

aq04
+b̃ q03|~q|+cq03

+d̃q02|~q|+ẽq0|~q|2+f̃ |~q|3

[q02−ω2
1 +iε][(k0−q0)2−ω2

2 +iε][(P 0−q0)2−ω2
3 +iε]

, (A.11)
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with b̃ ≡ b cosθ, d̃ ≡ d cosθ, ẽ ≡ (e+ e′cos2θ), f̃ ≡ (f + f ′cosθ + f ′′cos3θ). Particularly, we

can write

GPI3 = I(0, 0, P 0, 0,−P 0, 0, 0, 0, 0), GKI3 = I(0, 0, k0,−|~k|,−k0, 0, 0, |~k|, 0),

PPI3 = I(0, 0, P 03
, 0, 0, 0, 0, 0, 0), PPKI3 = I(0, 0, P 02

k0,−P 02|~k|, 0, 0, 0, 0, 0),

KKKI3 = I(0, 0, k03
,−3k02|~k|, 0, 3k0|~k|2, 0, 0,−|~k|3), (A.12)

KKPI3 = I(0, 0, k02
P 0,−2k0|~k|P 0, 0, |~k|2P 0, 0, 0, 0).

The integral on the q0 variable of eq. (A.11) can be obtained using Cauchy’s theorem and

the remaining integration in d3q is regularized using a cut-off Λ ∼ 700 MeV. In this way,

I(a,b,c,d,e,e′,f,f ′,f ′′) =− i

(2π)2

Λ∫
0

dqq2

1∫
−1

dcosθ
N (q,θ;a,b,c,d,e,e′,f,f ′,f ′′)

D(q,θ)
, (A.13)

where

N (q, θ;a, b, c, d, e, e′, f, f ′, f ′′) = aω1

[
k04

ω3{(ω1 + ω3)2 − P 02}

− k02
ω2

{
P 04 − 2P 02

ω3(2ω1 + ω2 + ω3) + ω3(ω1 + ω3)(ω2
1 + 2ω1ω2 + 3ω1ω3

+ 2ω2ω3 + ω2
3)
}

+ 2k0P 0ω3
1ω2ω3 + ω2(ω1 + ω2)

{
P 04

(ω1 + ω2)

− P 02
ω3

(
ω2

1 + 2ω3(ω1 + ω2) + 3ω1ω2 + ω2
2

)
+ ω3(ω1 + ω3)(ω2 + ω3)

×
(
ω1(ω2 + ω3) + ω2ω3

)}]
+ q
[
b̃ ω1

{
k03

ω3

(
(ω1 + ω3)2 − P 02

)
+ k02

P 0ω2

(
ω3(2ω1 + ω3)− P 02

)
− k0ω2ω3

(
(ω1 + ω3){ω1(ω2 + 2ω3)

+ ω2ω3} − P 02
(2ω1 + ω2)

)
+ P 0ω2(ω1 + ω2)

(
P 02

(ω1 + ω2)

− ω3{ω3(ω1 + ω2) + 2ω1ω2}
)}

+ d̃ ω1

{
k02
(
ω3(ω1 + ω3)(ω1 + ω2 + ω3)

− P 02
(ω2 + ω3)

)
+ 2k0P 0ω1ω2ω3 − ω2(ω1 + ω2)

(
ω3(ω1 + ω3)(ω2 + ω3)

− P 02
(ω1 + ω2 + ω3)

)}
+ q
{
ẽ ω1

(
− k02

P 0ω2 + k0ω3{(ω1 + ω3)(ω1 + 2ω2 + ω3)

− P 02}+ P 0ω2(ω1 + ω2)(ω1 + ω2 + 2ω3)
)

+ f̃ q
(
− k02

ω2(ω1 + ω3) + 2k0P 0ω2ω3

+ (ω1 + ω2){(ω1 + ω3)(ω2 + ω3)(ω1 + ω2 + ω3)− P 02
ω3}
)}]

− c ω1

[
k03

ω3(P 0 − ω1 − ω3)(P 0 + ω1 + ω3) + k02
P 0ω2{P 02 − ω3(2ω1 + ω3)}

+ k0ω2ω3{(ω1 + ω3)(ω1ω2 + 2ω1ω3 + ω2ω3)− P 02
(2ω1 + ω2)}

+ P 0ω2(ω1 + ω2){ω3(ω3(ω1 + ω2) + 2ω1ω2

)
− P 02

(ω1 + ω2)}
]
. (A.14)

Next, we determine the I0 and ~I 1 integrals of eq. (2.36). By means of the Cauchy’s

theorem we can integrate on the q0 variable and get the following integration in d3q, which

– 18 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
3

is regularized by using a cut-off Λ ∼ 700 MeV,

I0 = − i

(2π)2

Λ∫
0

dqq2

1∫
−1

dcosθ
N(q, θ)

D(q, θ)
,

~I 1 = − i

(2π)2|~k|2
~k

Λ∫
0

dqq2

1∫
−1

dcosθ
N(q, θ)

D(q, θ)
~k · ~q, (A.15)

where

N(q, θ) = −k02
ω2(ω1 + ω3) + 2k0P 0ω2ω3 + (ω2 + ω3)

×
[
(ω2 + ω3)(ω1 + ω3)(ω1 + ω2 + ω3)− P 02

ω3

]
. (A.16)
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