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1 Introduction

The AdS-CFT correspondence has by now shown itself to be a powerful tool to probe the

dynamics of theories on both sides of the correspondence. Since its inception it has stim-

ulated progress constructing many CFTds and their dual AdSd+1 solutions, in many cases

embedded into 10 dimensions. One area where progress on the CFT side has somewhat

outpaced the other is the AdS3-CFT2 correspondence. This is not to say that progress on

the gravity side has not been made (see [1–24] for an incomplete list), merely that there is

much more yet to be studied.

Two dimensional CFTs play an important role in physics, in string theory and beyond

so there is clear motivation to construct holographic duals. The barrier to this is that when

embedded into 10 dimensional supergravity, their internal space is 7-dimensional which is

rather large. Progress can be made tractable by assuming extended supersymmetry — in

this case the dual geometry will realise an additional R-symmetry reducing the number

of undetermined dimensions. An interesting feature of superconformal field theories in

2 dimensions is that a relatively large number of superconformal algebras exist for each

number of preserved supercharges, with each preserving a distinct R-symmetry. Those

that can be embedded into 10 and 11 dimensions were classified in [25]. Given this, and
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the recent G-structure classification of N = 1 AdS3 solutions in type II supergravity [26],

the time seems right to begin to seriously explore the possibilities.

An interesting class of AdS3 solutions with limited examples exhibiting a compact

internal space (as required for a holographic dual of a 2d CFT) are those preserving at least

N = (4, 0) supersymmetry with the so-called “large” superconformal algebra d(2, 1, α).

This has maximal bosonic sub-algebra sl(2)⊕ so(4), where the second term is an SO(4) R-

symmetry. Large N = (4, 0) includes a Kac-Moody algebra su(2)k+ ⊕ su(2)k− (in contrast

to small N = (4, 0) which has just su(2)k) and CFTs with this symmetry are characterised

by the following relations between their central charge c, the continuous parameter α, and

the levels k± [27]

c = 6
k+k−
k+ + k−

. α =
k−
k+
. (1.1)

Precisely what is assigned to be k+ and k− appears ambiguous in c, but this is a manifes-

tation of the fact that d(2, 1, α) is isomorphic to d(2, 1, α−1) — as such the central charge

is sufficient to determine the value of α (up to identifying α ∼ α−1) for a given large

N = (4, 0) CFT2.

The canonical example of a supergravity solution dual to a CFT2 with large supercon-

formal symmetry is AdS3×S3×S3×S1 (see also [3] for a worldsheet perspective) and its

M-theory avatar AdS3 × S3 × S3 × T 2 [1, 4] which actually preserve large N = (4, 4) su-

persymmetry (a maximal case for AdS3 [32]) with algebra d(2, 1, α)⊕ d(2, 1, α), and where

α is related to the radii of the 3-spheres. In M-theory such solutions were classified locally

then globally in [10–12] where those consistent with a dual CFT2 were claimed to be locally

AdS3 × S3 × S3 × T 2 and so all reduce to AdS3 × S3 × S3 × S1 in IIA (at least locally).

Historically there was some difficulty ascertaining the CFT dual to AdS3×S3×S3×S1 [6],

though a recent attempt was made in [28]. In large part this difficulty was due to the fail-

ure of otherwise likely CFT proposals to reproduce the BPS spectrum of the supergravity

solution calculated in [4]. However this computation was recently found to be in error [19]

and the corrected spectrum was explicitly shown to match that of a certain symmetric

orbifold (Sk [6]) in [29].1

Beyond the cases with maximal supersymmetry (for AdS3), solutions with N = (4, 0)

were constructed from AdS3 × S3 × S3 × S1 using T-duality (and its non-abelian counter

part) in [15, 16] and a class of AdS3 × S2 × S2 × CY2 solutions in M-theory was found

in [18]. Another interesting example is a flow from AdS5 × T 1,1 to a twice T-dualised

version of AdS3 × S3 × S3 × S1 preserving N = (4, 2) [14] (other flows across dimensions

were found in [10–12], but these exhibit large N = (4, 4)). Finally, somewhat related to

this story, there is also a family of N = (2, 0) solution in IIB that are AdS3×S3×S3×S1

only topologically [9].

In this work new AdS3 preserving large N = (4, 0) supersymmetry will be constructed

that are neither locally AdS3 × S3 × S3 × S1 nor related to it by duality. To do this

one needs to arrange for the internal space to realise an SO(4) R-symmetry. There are

several ways to arrange for this to happen with products of 2 and 3-spheres. Here it will

1Actually the match between Sk and AdS3 × S3 × S3 × S1 additionally requires that some flux charges

are tuned.
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be assumed that the R-symmetry is realised with a foliation of S3 × S3 over an interval.2

Generically, such solutions will have a flavour SO(4) in addition to the R-symmetry.3

The reasons to make this choice are two fold: i) In short, it is the easiest example to

look at. However this simplicity will allow for a complete local description of all such

solution in type II supergravity.4 Additionally this should aid the process of finding a

CFT dual. ii) With S3 × S3 there is the possibility of an enhancement to large N = (4, 4)

supersymmetry, thereby generalising the classification of [10–12] to type II supergravity.

One should appreciate though that the assumption of S3×S3 limits the scope of this work

to a small portion of the space of possible solutions with large N = (4, 0). It will turn

out that this portion is far from empty, but one should view this as a first step in a much

broader classification endeavour with most solutions lying outside this ansatz.

The method used here to find new solutions with large N = (4, 0) supersymmetry shall

be to construct spinors manifestly realising the bosonic sub-algebra of d(2, 1, α)

sl(2)⊕ so(4).

The first factor will be realised by Killing spinors on AdS3 — it requires a little more

work to construct general spinors on the internal space that manifestly transform under

the action of SO(4). Having such spinors we shall then find every solution with an S3×S3

factor consistent with them. This follows the line of reasoning of the earlier works [33–37],

where many of the technical details exploited here were originally worked out. Here it

will be possible to give the explicit local form of every type II solution consistent with the

SO(4) spinor. Strictly speaking, as one is not imposing the entire superconformal alebra

d(2, 1, α), the solutions that follow could in fact preserve some other algebra with bosonic

sector containing sl(2)⊕so(4). One possibility is a larger R-symmetry but given the ansatz

for the internal space, the only possibilities for enhanced R-symmetries (other than SO(4)×
SO(4)) are SO(8) and Spin(7) [25] which require the internal space to become S7 [26].

However S7 is never realised by the solutions constructed here. The other possibility is

that the SO(4) R-symmetry of the geometry is realising an SU(2) R-symmetry of the

dual CFT and an additional SU(2) outer automorphism symmetry, as is the case with

AdS2 × S3 × T 4. Such solutions are degenerate cases of d(2, 1, α) with α→ 0 where small

N = (4, 0) is recover — we will find one such example in our analysis. That leaves the

question of how one calculates α — one could proceed as in [39] and carefully map bi-linears

of the spinors on AdS3 × S3 × S3 to the algebra and compute α directly. However, for the

examples with compact internal space (the only ones dual to well defined 2d CFTs), there

is an easier way. One simply computes the holographic central charge, and then read α off

from (1.1) — this will be the route followed here.

The outline of the paper is as follows: in section 2 we explicitly construct general spinors

that transform in the fundamental representation of one of the two available independent

SO(4) isometries on S3 × S3, that are also singlets under the action of the other — this

ensures we are consistent with N = (4, 0) supersymmetry and an SO(4) R-symmetry. In

2Solutions with a similar local foliation were recently constructed in [30, 31] by utilising Romans F(4)

gauged supergravity.
3We shall impose that this entire SO(4)×SO(4) is preserved by the remaining physical fields also.
4The same methods could also be used to probe the space of M theory solutions.
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section 3 we use G-structure techniques to extract geometric conditions from the SO(4)

spinors that all solutions should obey, and in sections 4 and 5 we find all local solutions that

follow. The most interesting of these are clearly those that can be used to construct global

solutions with compact internal space. We explicitly construct two such examples (though

in IIA infinitely many are possible): a new N = (4, 0) massive IIA solution with large

superconformal symmetry in section 4.1 and a new N = (4, 0) IIB solution in section 5.1

with small superconformal symmetry and SU(2) outer automorphism symmetry. The IIA

solution is constructed by gluing two locally non compact solutions together with a D8

brane defect. Further new local solutions preserving N = (4, 4) and N = (4, 0) can be

found in sections 4.2 and 5.2 respectively, but these are neither compact nor related to flows

across dimensions (at not least obviously). In section 4.2 we speculate that these might

also be used to construct globally compact solutions by using (this time) smeared Dp or

NS5 brane defects for p < 8 to glue them together, however a detailed study is beyond the

scope here. Finally appendix A details the conventions used throughout and B proves a

claim made in 2.

Given the results here and [26], where AdS3 solutions with exceptional R-symmetries

were studied, it has become clear that such R-symmetry based spinor constructions are a

powerful tool to study AdS3 solutions with extended supersymmetry.

2 Realising an SO(4) R-symmetry on S3 × S3

In this section we will construct Killing spinors that realise the bosonic sub-algebra of

d(2, 1, α), the conventions used and explicit representations of the of what follows can be

found in appendix A.

We are interested in large N = (4, 0) AdS3 solutions preserving an SO(4) R-symmetry.

Any AdS3 solution can be expressed in the form

ds2 = e2Ads2(AdS3) + ds2(M7),

F = f + e3AVol(AdS3) ∧ ?7λ(f), H = h0Vol(AdS3) +H3, (2.1)

where F is the RR polyform5 and H the NS 3-form fluxes. Both of these decompose

in terms of their magnetic components f , H3 which are defined on M7 only and electric

counterparts with legs on all AdS3 directions ensuring that fluxes respect the isometry of

AdS3. The Bianchi identity dH = 0 fixes h0 to be constant, while the electric component

of F is fixed such the lower and higher fluxes are correctly related under 10d hodge duality

— for this reason the operator λ is defined such that

λ(Xn) = (−)
n
2

(n−1)Xn (2.2)

when acting on an n-form. Finally the AdS warp factor e2A, and likewise the dilaton Φ

have support on M7 only and the RR polyform obeys

dF −H ∧ F = 0, (2.3)

away from localised sources.

5In IIA it is F = F0 + F2 + F4 + F6 + F8 + F10, in IIB it is F = F1 + F3 + F5 + F7 + F9.
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As we seek solutions preserving N = (4, 0) the 10 dimensional Majorana spinors may

be written as

ε1 =
4∑
I=1

ζI ⊗ v+ ⊗ χI1, ε2 =
4∑
I=1

ζI ⊗ v∓ ⊗ χI2 (2.4)

where ζI and χI1,2 are 4 independent spinors on AdS3 and M7 respectively and v± is an

auxiliary 2 vector, that is always required when decomposing an even dimensional spinor

in terms of 2 odd ones — ± refers to chirality, so the upper/lower signs are taken in IIA/B.

The spinors on AdS3 are Killing, so they obey the equation

∇AdS3
a ζI =

µ

2
γAdS3
a ζI (2.5)

where µ
|µ| = ±1 parametrise a spinor that is charged under the SL(2)L/R subgroup of

SO(2,2)∼=SL(2)L×SL(2)R and is a singlet under SL(2)R/L.

As we want an SO(4) R-symmetry, χI1,2 should transform in fundamental of this group

and solutions should admit a local description with SO(4) realised geometrically. There

are several ways to do this, but from the perspective of finding solutions, the simplest way

to realise this R-symmetry is to decompose the internal space as a foliation of S3
1 ×S3

2 over

an interval in which the physical fields have support only, i.e. we take the internal metric

to be

ds2(M7) = e2kdr2 + e2C1ds2(S3
1) + e2C2ds2(S3

2) (2.6)

where the functions e2k, e2C1 , e2C2 and also now eA and Φ depend on r only and we impose

that the fluxes depend on S3
1 and S3

2 through their respective volume forms only. This

gives us an SO(4)1×SO(4)2 isometry on M7 to work with allowing for enhancements to

N = (4, 4) supersymmetry with SO(4)×SO(4) R-symmetry whenever the physical fields

obey certain constraints we shall discuss at the end of the section. A Killing spinors on

S3
1,2, ξ, obeys the equations

∇S3

i ξ =
iν

2
γS

3

i ξ, ∇S3

i ξ
c =

iν

2
γS

3

i ξc (2.7)

for ξc the Majorana conjugate of ξ. This time ν
|ν| = ±1 parametrise a spinor charged

under the SU(2)L/R subgroup of SO(4) ∼= SU(2)L×SU(2)R that are singlets under the

SU(2)R/L. As shown in [34], in the Hopf fibration frame of S3 (A.7), the doublets of

SU(2)L/R are simply

ξa =

(
ξ

ξc

)a
, (2.8)

and obey the S3 Killing spinor equation (2.7) component by component. On S3 there

are two sets of one-forms that are charged under SU(2)L and SU(2)R that are dual to the

corresponding SU(2)L/R Killing vectors. We parametrise these in a unified language as Ki

such that

dKi +
ν

2
εijkKj ∧Kk = 0, (2.9)
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where the sign of ν determines the relevant SU(2) as before — these are of course the

SU(2)R/L invariant 1-forms. The spinoral Lie derivative6 of the SU(2)L/R doublet along

the SU(2)L/R Killing vectors is

LKiξa =
iν

2
(σi)

a
b ξ

b, (2.11)

where σi are the Pauli matrices, so it is the Lie algebra of SU(2) appearing on the right

hand side. Acting on the SU(2)L doublet with the SU(2)R Killing vector on the other

hand, or vice-versa, yields zero. One can exploit (2.11) to form a spinor transforming in

the fundamental of SO(4)L/R
∼=SO(3)1L/R× SO(3)2L/R and as a singlet under SO(4)R/L

depending on the sign of ν. When one couples such an SO(4) spinor to an AdS3 spinor as

in (2.4), the result will be a spinor realising the bosonic algebra

sl(2)⊕ s0(4) (2.12)

as required for large N = (4, 0) supersymmetry. Thus let us now construct such an

SO(4) spinor.

In [36] it was established how to form an SO(3) triplet from products of two SU(2)

doublets — when the doublets are both formed from S3 Killing spinors, there is only one

such triplet (for each sign of ν), namely

ηi = (σ2σi)abξ
a
1 ⊗ ξb2, (2.13)

it turns out that this is also Majorana. We define diagonal and anti-diagonal SO(3) Killing

vectors as

K+
i = K1

i +K2
i , K−i = K1

i −K2
i , (2.14)

then it is a simple exercise in Pauli matrix manipulations to establish that

LK+
i
ηj = νε k

ij ηk, LK−i ηj = 0, (2.15)

so that K+
i realises the Lie algebra of SO(3). We can parameterise a basis for the Lie

algebra of SO(4) in block form as

(T+
i )ij =

(
εijk 0

0T 0

)
, (T−i ) =

(
03×3 ci

−ciT 0

)
, (2.16)

where c1 = (1, 0, 0)T , c2 = (0, 1, 0)T , c3 = (0, 0, 1)T . It is then clear that 3 components of

the SO(4) spinor one wishes to construct are simply the SO(3) triplet as these give rise to

the top left blocks of (2.16) under K+
i and K−i . The 4th component should be a singlet

6In general, when taken along a Killing vector K, this is defined as

LKψ = Km∇mψ +
1

4
∇mKnΓmnψ (2.10)

for ψ an arbitrary spinor, Γm a basis curved gamma matrices, ∇m the covariant derivative.
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under the action of K+
i — such a spinor was also provided in [36], and for S3 is once more

unique and Majorana

η4 = −i(σ2)abξ
a
1 ⊗ ξb2. (2.17)

So there is exactly one SO(4) spinor (for each sign of ν) we can define on S3 × S3, namely

ηI = (MI)abξ
a
1 ⊗ ξb2, MI = (σ2σ1, σ2σ2, σ2σ3,−iσ2)I . (2.18)

It is not hard to confirm that

LK±i η
I = ν(T±i )IJη

J , ηI†ηJ = δIJ , (2.19)

where in the latter we fix an arbitrary normalisation. So the spinorial Lie derivative of

the SO(4) spinor along the SO(4) Killing vectors realise the associated Lie algebra. We

can now write the explicit form of the SO(4) spinors on M7 — given that they must be

Majorana, and satisfy |χI1,2||2 = eA component by component [26], the most general form

these can take may be parametrised as

χI1 = e
A
2

(
sin(β1 + β2)

i cos(β1 + β2)

)
⊗ ηI , χI2 = e

A
2

(
sin(β1 − β2)

i cos(β1 − β2)

)
⊗ ηI , (2.20)

where β1, β2 are functions of r only. Now since each component of χI1,2 can be mapped into

every other through the action of the R-symmetry (2.19), which we assume the physical

fields also respect, we need only explicitly solve the supersymmetry conditions of an N = 1

sub-sector to know that N = (4, 0) is preserved. There are several ways to see this but

perhaps the most easy argument to follow comes from considering the conditions on (2.4)

that follow from setting the gravitino and dilatino variations to zero directly — we defer

the proof of this claim to appendix B.

Having established that solving for an N = 1 sub-sector of our SO(4) spinor is sufficient

to know that N = (4, 0) is realised, we shall now take this sub-sector to be,

χ1 = χ4
1, χ2 = χ4

2, (2.21)

but we stress that as long as the SO(4) R-symmetry is preserved by a solution, this choice

is totally arbitrary.7

Finally, before moving on we should address the issue of a potential enhancement of

supersymmetry. If one finds a solution with metric, dilaton and fluxes that do not depend

on the signs of µ, ν then there exists a second independent 10 dimensional spinor of the

form (2.4) charged under the second copies of SO(4) and SL(2) at our disposal. This

enhances supersymmetry to large N = (4, 4) — as we shall see, this will indeed happen in

some instances.

7This would no longer be the case if we were to break the R symmetry to some subgroup by for instance

fibreing one S3 over the other as in [36] or with the fluxes — then different choices of χ1,2 would lead to

different amounts of supersymmetry preserved.
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3 Supersymmetric bi-spinors conditions

Historically one established whether a supergravity solution was supersymmetric by solving

spinoral conditions that follow from setting the gravitino and dilatino variations to zero. A

more modern approach is the bi-spinor formalism where one instead attempts to solve a set

of (generalised) geometric constraints that are necessary and sufficient for supersymmetry.

Geometric conditions for AdS3 solutions in type II, i.e. those of the form (2.1), to preserve

N = 1 supersymmetry were recently presented in [26], where it was additionally found

that a non trivial RR sector requires one to fix h0 = 0.8

The fundamental object in the construction of [26] is the 7 dimensional bi-spinor χ1⊗χ†2
that is defined in terms of two 7 dimensional Majorana spinors χ1,2 defined on the internal

space M7 as

χ1 ⊗ χ†2 =
1

8

7∑
n=0

1

n!
χ†2γan...a1χ1e

a1 ∧ . . . . ∧ ean , |χ1|2 = |χ2|2 = eA, (3.1)

with γa a basis of the flat space gamma matrices in 7 dimensions and ea is a vielbein on M7

(ie (A.4)), as such the bi-spinor is a polyform. It is a general feature (in odd dimensions)

that the bi-spinor can be decomposed as

e−Aχ1 ⊗ χ†2 = Ψ+ + iΨ−, (3.2)

for Ψ± two real polyforms containing only even/odd forms. An AdS3 solution in type II

supergravity of the form (2.1) is guaranteed9 to satisfy N = 1 supersymmetry if it obeys

(d−H∧)(eA−ΦΨ∓) = 0,

(d−H∧)(e2A−ΦΨ±)− 2µeA−ΦΨ∓ = ±e
3A

8
?7 λ(f),

e−Φ(f,Ψ±)− µ

2
Vol7 = 0, (3.3)

with the upper/lower signs taken in IIA/B and where (. , .) is the Mukai pairing in 7

dimensions defined as

(X,Y ) =

(
λ(X) ∧ Y

)
7

, (3.4)

with the operator λ defined in (2.2). The µ that appears is a constant defining the AdS

radius as in (2.5), it can in fact be set to µ = ±1 by rescaling eA without loss of generality,

but it will become useful to have kept track of it later.10

In the previous section an N = 1 spinor was constructed, (2.21), on M7 = R×S3×S3

that transforms under an SO(4) R-symmetry. When the physical fields respect this SO(4)

8One can make this assumption without loss of generality because, while solutions with f = 0 and h0 6= 0

do exist, they all lie in the common NS sector of type II supergravity. As such, when viewed as solutions

in IIB, they are all S-dual to solutions with f 6= 0 and h0 = 0.
9Strictly speaking the following statement is only true away from localised sources. When these are

present supersymmetry also requires some additional constraints that we shall discuss when this issue arises.
10The same applies for ν and the two 3-sphere warp factor e2C1,2 appearing in (2.7) and elsewhere in the

previous section.

– 8 –



J
H
E
P
0
5
(
2
0
1
9
)
0
8
9

the amount of supersymmetry preserved by any solution one can construct from this spinor

will be at least N = (4, 0), with the remaining independent spinors generated through the

action of the SO(4) R-symmetry. Specifically one has

χ1 =−ie
A
2 (σ2)ab

(
sin(β1+β2)

icos(β1+β2)

)
⊗ξa1⊗ξb2, χ2 =−ie

A
2 (σ2)ab

(
sin(β1−β2)

icos(β1−β2)

)
⊗ξa1⊗ξb2

as this is a tensor product of spinors in each factor of the foliated internal space (2.6) it

should be clear from its definition (3.1) that the 7 dimensional bi-spinor can be expressed

in terms of wedge products of bi-spinors on the interval and two 3-spheres — to this end

it is useful to know the bi-spinors on S3
1,2 as these are the only non trivial building blocks

one requires. One can show, [34], that the matrix spinor11 following from the two SU(2)

spinor doublets of the form (2.8) are

ξa1,2⊗ξ
b†
1,2 =

1

2

((
1−ie3C1,2Vol

(
S3

1,2

))
δab+

(
1

2
eC1,2K1,2

i −
i

8
e2C1,2εijkK

1,2
j ∧K

1,2
k

)(
σi
)ab)

(3.5)

where e2C1,2 are the warp factor appearing in (2.6), and K1,2
i are the SU(2) forms on the

two 3-spheres that each obey (2.9). Given (3.5) it is now a relatively simply exercise to

construct Ψ±. These can be most succinctly written in terms of an SU(3)-structure as

Ψ+ =
1

8
Re

[
eiβ2e−iJ − ekdr ∧ Ω

]
, Ψ− =

1

8
Im

[
− eiβ2ekdr ∧ e−iJ + Ω

]
(3.6)

where the specific SU(3)-forms are

J =
1

4
eC1+C2

(
K1

1 ∧K2
1 +K1

2 ∧K2
2 +K1

3 ∧K2
3

)
,

Ω =
1

8
eiβ1

(
eC1K1

1 + ieC2K2
1

)
∧
(
eC1K1

2 + ieC2K2
2

)
∧
(
eC1K1

3 + ieC2K2
3

)
. (3.7)

At this point, in principle, once could blindly plug (3.6) into (3.3) and find every solution

that is consistent with the metric and spinor — but one needs to take a little more care

if one wants to ensure that SO(4)× SO(4) symmetry and N = (4, 0) supersymmetry is

preserved. As long as the dilaton and warp factors of the metric only depend on the

interval the only remaining issue is the fluxes. Specifically (3.3) only assumes N = 1

supersymmetry is unbroken so the second condition will generically define flux components

that break some (super)symmetry. To mitigate this issue we demand that all fluxes must

decompose in a basis of the invariant forms of SO(4)×SO(4), namely

dr, Vol(S3
1), Vol(S3

2), (3.8)

and their wedge products, with functional support on the interval only — this greatly

increases the number of independent conditions in (3.3) that give rise to purely geometric

11Component by component this is defined as in (3.1), but with n = 0, . . . 3 and weighted by 1
2

rather

than 1
8

with the veilbein just the ei1,2 parts of (A.4).
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constraints and allows for the exact local form of all solutions consistent with an SO(4)×
SO(4) isometry to be found in the following sections. We study type IIA in section 4 and

type IIB in section 5, in both instances we fix the NS 3-form as

H = c1Vol(S3
1) + c2Vol(S3

2), (3.9)

for constants ci without loss of generality.

4 All local solutions in type IIA

In this section we find all N = (4, 0) solutions with an SO(4)× SO(4) isometry in type IIA

supergravity. There are two independent forms of local solution we study in sections 4.1

and 4.2 that (generically) preserve N = (4, 0) and N = (4, 4) respectively. We show how

the former can be used to construct new compact global solutions, and provide a hint as

to how one might do the same with the latter.

Upon plugging the bi linears of (3.6) into (3.3) one quickly realises two zero form

constraints

(cosβ1e
C1 − sinβ1e

C2) = (µ cosβ1e
C1 − νeA sinβ2) = 0 (4.1)

these are very useful as they cannot be solved when any of cos β1, sin β1 or sinβ2 are set

to zero, as this would require us to do the same to one of the warp factors. We can then

take (4.1) as general definitions for eCi in IIA and eliminate these factors from the rest of

the supersymmetry constraints, after some work we find the additional conditions

β′1 = F2 = F0 cosβ2 = 0, (4.2)

c1 cos4 β1 + c2 sin4 β1 = µ2c2 sin3 β1 + ν3 cosβ1e
2A sin(2β2) = 0, (4.3)

(e5A−Φ sin3 β2)′ − 2µe4A+k−Φ cosβ2 sin2 β2 = 0, (4.4)

(e3A sin3 β2)′ − 3µ

2
e2A+k cosβ2 +

3

4
e3A+k−Φ sin2 β2F0 = 0, (4.5)

where the last of these comes from imposing that F0 is constant — the rest of the Bianchi

identities then follow rather trivially. Clearly there are two cases, F0 = 0 and cos β2 = 0.

4.1 Case I: compact solutions from D8/O8s back reacted on AdS3×S3×S3×S1

For Case I we set

cosβ2 = 0, sinβ2 = s, s = ±1, (4.6)

then (4.3) implies also

c1 = c2 = 0, (4.7)

so there is no NS flux turned on. We can solve (4.4) by fixing

e5A−Φ = qL5, (4.8)

where L and q are constants and we use diffeomorphism invariance to fix

eA+k = qL. (4.9)
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We can use (4.1) to define eC1 , eC2 which leaves (4.5) to solve. This becomes simply

(L4e−4A)′ = νF0, which is solved by

L4e−4A = H8, H8 = F0νr + c (4.10)

for c another constant — i.e. the warp factor of a D8 brane or O8 hole depending on the

sign of F0 and ν. We then fix

s = µ = ν = ±1 (4.11)

and find the following general form for local solutions in massive IIA

ds2 =
1√
H8

(
L2ds2(AdS3) +

L2

cos2 β1
ds2(S3

1) +
L2

sin2 β1
ds2(S3

2)

)
+
√
H8q

2dr2,

F4 = 2q2H8

(
L2Vol(AdS3) +

L2

cos2 β1
Vol(S3

1) +
L2

sin2 β1
Vol(S3

2)

)
∧ dr,

e−Φ = qH
5
4
8 . (4.12)

Clearly when F0 = 0 we recover the standard solution on AdS3 × S3 × S3 × S1 which

preserves N = (4, 4) supersymmetry — in this limit none of the physical fields depend on

µ = ν = ±1 confirming the enhanced supersymmetry. The generic local solution is D8

branes or O8 planes or both12 back reacted on this. As the warp factor now depends on ν

supersymmetry is broken to N = (4, 0) in the presence of the back reacted D8/O8 system

— which is by no means a surprise.

When F0 6= 0 the internal space of (4.12) is non compact, if we assume F0 > 0 and

ν = 1, then the warp factor does bound the interval from below at r = − c
F0

where the

behaviour is consistent with a D8/O8 system wrapped on AdS3 × S3 × S3, however the

interval is not bounded from above and r →∞ is at infinite proper distance. Before giving

up though, one should remember that this is only a local solution — which is to say that

all coordinate patches of a global solution can be expressed in the form (4.12). One can

try to make a compact solution by gluing a second mirrored copy of (4.12) onto the first in

the spirit of [38]. At the point where the local patches connect there should be a D8 brane

defect where F0 jumps, but the metric and dilaton are continuous. The simplest way to

arrange for this is to glue the patches together at r = 0 and have F0 flip from positive to

negative as one crosses r = 0 from below, i.e. one takes the warp factor to be

H8 = c+ |F0|r, r < 0, H8 = c− |F0|r, r > 0, (4.13)

so that the metric and dilaton are continuous without the need to further tune constants,

and only F0 jumps. This does indeed bound r to the interval I between two D8/O8

systems at r = ± c
|F0| and one is now able to quantise the fluxes without issue. In units

where gs = α′ = 1 one requires that the following charges are integer valued

n0 = 2πF0, N2 = − 1

(2π)5

∫
S3

1×S3
2

?F4, N i
4 =

1

(2π)3

∫
S3
i

∫
r∈I

F4. (4.14)

12The near horizon geometry of a D8 brane is indistinguishable from the geometry near an O8 plane.
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This is not hard to achieve by tuning

2πF0

c2
1q

2L2
=

1

N1
4

+
1

N2
4

,
L5q

4π sin3 β1 cos3 β1
= N1, tanβ1 =

N2
4

N1
4

, (4.15)

and the curvature of the solution is under parametric control. A standard computation13

then leads to the finite central charge

c = 6c1N2
N1

4N
2
4

N1
4 +N2

4

+O(1) (4.17)

where O(1) parametrises sub leading terms that supergravity is insensitive to (at least with

the computation performed here). Note that this is independent of F0 and when c1 = 1

is actually the same central charge as that of AdS3 × S3 × S3 × S1. More generally it is

consistent with (1.1), i.e. what one expects from a CFT with large superconformal algebra

provided c1 is integer — indeed one can identify

k+ = c1N2N
1
4 , k− = c1N2N

2
4 , α = tanβ2

1 =
N4

2

N4
1

, (4.18)

with α the continuous parameter of d(2, 1, α).

This all sounds very positive, however to be sure this solution really exists, and pre-

serves supersymmetry, we need to check the Bianchi identities at the D8 brane defect are

satisfied and that the D8 brane is calibrated [42–44]. The Bianchi identities in the presence

of the defect require

df =
N8

2π
δ(r)e2πfg ∧ dr (4.19)

where fg is a gauge field on the world volume of the D8 brane. We find ourselves in a far

simpler scenario than [38], because there is no NS flux and the only RR flux that shifts

across the defect is F0 as

∆F0 = 2|F0|. (4.20)

Comparing this with the integrated form of (4.19), we find that the Bianchi identity re-

quires simply

N8 = 4π|F0| = 2|n0|, fg = 0. (4.21)

It is also not hard to confirm that the brane is supersymmetric — this is so whenever the

DBI action of a given brane satisfies a so called calibration condition. Here the DBI action

of the D8 should equal the integral of e3A−ΦVol(AdS3)∧Ψ6 — a quick computation shows

13The holographic central charge for a warped AdS3 solution in 10 dimensions at leading order is given

for instance in [20], converting this reference to string frame and setting α′ = gs = µ = 1 gives

c =
3

24π6

∫
M7

eA−2ΦVol(M7). (4.16)

Using this formula with F0 = 0 (ie the AdS3 × S3 × S3 × S1 limit) one finds c = 6N1
N1

4N
2
4

N1
4+N2

4
which implies

k+ = N1N
1
4 , k− = N1N

2
4 and α = tan2 β1 =

N4
2

N4
1

.
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this to indeed be the case. Thus we have constructed a bona fide N = (4, 0) solution in

massive IIA.

The result of gluing the two local solutions together is essentially a global solution

with an orientifold under which a circle parameterised by r becomes a segment. At the

two ends there are two O8-planes with different charges and tensions. One can interpret

this as two O8−s with k and 16− k D8s, or when k = 8 as an O8− and an O8+, the later

being similar to what appears in the recently constructed classical dS solutions in [40].

It would be interesting to find the local solution of (4.12) as a near horizon limit of

some intersecting brane set-up. This should be in some sense a trivial extension of the

realisation of AdS3×S3×S3×S1 in terms of D2 and D4 branes — however to the author’s

knowledge this first step is currently absent from the literature (see [4] for every near

horizon realisation of AdS3 × S3 × S3 × S1 except D2-D4), and finding it is beyond the

scope here.

Finally let us stress that there is not any particular need to place the D8 brane defect

at r = 0 and so there is no restriction to gluing together an arbitrary number of local

solutions of the form (4.12), with a D8 brane defect at each intersection in the vein of [41].

All one needs to ensure is that h8 is continuous across each defect by tuning c1, F0 and the

intersection points in each local patch, and that the interval has an upper and lower bound.

One can construct infinitely many globally distinct compact solutions in this fashion, so it

would be interesting to study this possibility in more detail. The dual CFT interpretation

of this infinite class will presumably be adding various amounts of conformal matter to the

CFT dual of AdS3 × S3 × S3 × S1 in such a way that N = (4, 4) is broken to N = (4, 0)

— but that remains to be seen.

4.2 Case II: a new local N = (4, 4) solution with O2 plane

For Case II we set

F0 = 0. (4.22)

To avoid falling into a sub-case of the previous section one must demand cos β2 6= 0 which

requires the same of c1, c2 without loss of generality. We can solve the first condition

of (4.3) with

c1 = c sin4 β1, c2 = −c cos4 β1 (4.23)

and take the second condition as the definition of eA. Using this, and by taking a linear

combination of (4.4) and (4.5) such that ek is eliminated one finds (tan β2e
−2Φ)′ = 0 which

is solved by

tanβ2e
−2Φ = q2 (4.24)

where q is a constant. At this point it is useful to use diffeomorphism invariance to fix ek

in terms of another arbitrary function f(r) such that

32ν3eA+k = cµ sin3 β1f
′ (4.25)

the remaining conditions (4.4)–(4.5) both then reduce to f ′ = (secβ2)′ which one can solve

without loss of generality with

cosβ2 =
1√
f
. (4.26)
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As the left hand side of this expression is bounded between 0 and 1, we must have that

1 < f <∞, a sensible choice is then

f =
1

cos2 r
, (4.27)

so that we simply have β2 = r. This leads to a completely determined local solution of

the form

ds2 = L2

[
1

cos r sin r
ds2(AdS3) +

sin3 r

cos5 r
dr2 +

sin r

cos r

(
1

cos2 β
ds2(S3

1) +
1

sin2 β
ds2(S3

2)

)]
,

H = 2L2

(
tanβ

cos2 β
Vol(S3

1)− cotβ

sin2 β
Vol(S3

2)

)
, qeΦ =

√
tan r, (4.28)

F4 = 2L3

[
4

sin 4r

sin2 2r
Vol(AdS3) + q

tan r

cos2 r

(
1

cos2 β
Vol(S3

1) +
1

sin2 β
Vol(S3

2)

)]
∧ dr,

where we have introduced

L2 =
c

2
cos3 β sin3 β, (4.29)

and fixed

sinβ1 = ν sinβ, µ = ν = ±1, (4.30)

to simplify expressions. Notice that none of the physical fields depend on ν = ±1 — so

this solution experiences an enhancement of supersymmetry to large N = (4, 4).

The internal radial coordinate is bounded as 0 < r < π
2 , with the lower bound a

singularity of the metric. The behaviour close to r = 0 is intriguing, indeed after redefining

r =
√
y the behaviour is that of O2 planes at the base of a cone over S3 × S3, which

is rather novel. More disappointing is the behaviour close to r = π
2 where the metric is

actually regular but the dilaton is infinite, which does not appear to be physical behaviour.

Worst still perhaps, is that r = π
2 is at infinite proper distance, so the internal space is

non-compact. One way to see this is with the central charge which goes like

c ∼ lim
r→π

2

tan4 r (4.31)

which is clearly divergent. Thus any putative CFT dual will have a continuous operator

spectrum, a sign that it is sick.

One might be able to cure this issue as before by gluing two copies of (4.28) together.

As F0 = 0, one can no longer achieve this with D8 branes. However, since this sort of

gluing does work with D8 branes, T-duality and S-duality informs us that at the very

least, it should be possible to glue solutions together with other types of branes when

they are smeared over all but one of their co-dimensions — the options here are D2 and

NS5 branes. As this may be a way of constructing new holographic duals to well defined

CFTs with large N = (4, 4) supersymmetry it would certainly be interesting to peruse this

possibility in future.

Finally, since this solution has no Romans mass turned on, it can be lifted to M-theory.

As such this solution fits within the classification of [10–12]. At first sight this sheds doubt
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on the possibility of constructing compact solutions by gluing copies of (4.28) together with

defects, as [12] claims that the only AdS3 solutions in M theory with compact internal space

are locally AdS3 × S3 × S3 × T 2. This follows from ruling out the possibility of compact

solutions with localised sources on the boundary of the Riemann surface orthogonal to

AdS3 × S3 × S3, however senarios with addtional defects on the interior do not appear

to have be considered in [12]. Thus if compact solutions can be realised from (4.28) it is

then possible that a broader class of N = (4, 4) solutions with defects may also exist in

M-theory — but at this point this is just speculation.

5 All local solution in type IIB

In this section we find the local form of all solutions preserving at least an SO(4) R-

symmetry on S3 × S3. In section 5.1 we find a new compact solution containing D5s and

O5s which actually preserves small N = (4, 0) supersymmetry, while in section 5.2 we find

a solution that back reacts D5s on AdS3 × S3 × S3 × S1, but is non compact.

Once again we begin by plugging the bi linears of (3.6) into (3.3). It is immediate to

establish the following zero form constraints

c1 cosβ2 = c2 cosβ2 = µ sinβ2 = 0 (5.1)

which means that for AdS3 solutions we must set

c1 = c2 = sinβ2 = 0 (5.2)

and so all flux components but f3 and f7 are set to zero. We will thus parametrise the

3-form in terms of two constants c3, c4 as

f3 = c3Vol
(
S3

1

)
+ c4Vol

(
S3

2

)
. (5.3)

Given this, and after some massaging of expressions, it is possible to extract the following

algebraic constraints

cosβ2 = s, (5.4)

νeA
(
cosβ1e

C1 − sinβ1e
C2
)
− sµeC1+C2 = 0, (5.5)

eA
(
c3 sinβ1e

3C2 − c4 cosβ1e
3C1
)

+ 2µe3C1+3C2−Φ = 0, (5.6)

where s = ±1. Using these we can simplify the differential constraints to

(β1)′ = cosβ1 sinβ1

(
eC1−C2

)′
= 0, (5.7)(

e2A+2C1+2C2−Φ
)′

= 2sνe2A+C1+C2+k−Φ
(
cosβ1e

C2 + sinβ1e
C1
)
, (5.8)(

e3A+2C1+C2−Φ cosβ1

)′
= 2e2A+C1+C2+k−Φ

(
sνeA + µ sinβ1e

C1
)
, (5.9)(

e3A+C1+2C2−Φ sinβ1

)′
= 2e2A+C1+C2+k−Φ

(
sνeA − µ cosβ1e

C2
)
, (5.10)(

e3A+3C2−Φ cosβ1

)′ − 2µe2A+3C2+k−Φ sinβ1 = c3e
3A−3C1+3C2+k, (5.11)(

e3A+3C1−Φ sinβ1

)′
+ 2µe2A+3C1+k−Φ cosβ1 = c4e

3A+3C1−3C2+k, (5.12)

which are not all independent, but this form makes finding a solution easier.

– 15 –



J
H
E
P
0
5
(
2
0
1
9
)
0
8
9

It appears that there are 3 cases, cos β1 = 0, sin β1 = 0 and (eC1−C2)′ = 0, however

there is no physical difference between the first two of these as one is mapped to the other

by relabelling the spheres — thus there are two physically distinct cases.

5.1 Case I: a new compact solution with D5s and O5s back reacted on AdS3×
S3 × R4

For Case I we set

cosβ1 = t = ±1 (5.13)

and take (5.5)–(5.6) to define the AdS warp factor and dilaton. Substituting this back

into (5.7)–(5.12) one is left with just two independent conditions

sνeC2+k − t
(
eC1+C2

)′
= 0, νc3e

k + c4ste
3C1
(
e−2C2

)′
= 0. (5.14)

We use diffeomorphism invariance to fix

νek+C2 = st, (5.15)

which trivialises the first ODE of (5.14), and so allows us to integrate both as

eC1+C2 = Lr, L2e−4C2 = h5 = a+
c3

c4r2
, (5.16)

for a an arbitrary constant and where we now fix s = t = µ = ν = ±1. The resulting

solution then takes the form

ds2 = L2

[
1√
h5

(
ds2(AdS3) + ds2(S3

2)

)
+
√
h5

(
dr2 + r2ds2(S3

1)

)]
, e−Φ =

c4

2L

√
h5,

F3 = c4

(
Vol(AdS3) + Vol(S3

2)

)
+ νc3Vol(S3

1). (5.17)

When a = 1 and c3
c4
> 0, h5 is the warp factor of a D5 brane so the solution is D5 branes

back reacted on AdS3 × S3 × R4, which is non compact. When c3 = 0 the solution no

longer depends on ν and so supersymmetry is enhanced to N = (4, 4), consistent with the

fact that the solution is locally AdS3 × S3 × T 4 in this limit.

It may be possible to construct a globally compact solution by gluing copies of (5.17)

together with D5 brane defects in a similar fashion to section 4.1, however for this case

there is an easier way to achieve this. The previous discussion depended on tuning a, c3, c4

in a certain fashion, but there is no requirement to do this — indeed if one assumes a < 1

then r becomes bounded to the interval [0,
√

c3
c4|a| ] and the solution is compact. To see

this more clearly one can perform the coordinate transformation and redefinition

r →
√

c3

|a|c4
cos r, L2 → |a|L2, (5.18)

which modifies the metric and dilaton as

ds2 = L2

[
cos r

sin r

(
ds2(AdS3) + ds2(S3

2)

)
+
c3 sin r

c4 cos r

(
sin2 rdr2 + cos2 rds2(S3

1)

)]
,

F3 = c4

(
Vol(AdS3) + Vol(S3

2)

)
+ νc3Vol(S3

1), e−Φ =
c4

2L2
tan r, (5.19)
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and leaves the flux unchanged. Clearly c3 can no longer be set to zero so the ν dependence

of the flux means that only N = (4, 0) supersymmetry is preserved in general. The internal

radius is now bounded as 0 < r < π
2 and at the end points there are singularities, however

these have an obvious physical origin. It should not be hard to see that close to r = 0 the

metric becomes that of O5 planes wrapped on AdS3×S3
2 , while at r = π

2 it behaves as D5s

wrapped on AdS3 and either of the two 3-spheres.

Flux quantisation requires that the following charges are integer

N i
5 =

1

(2π)2

∫
S3
i

F3, N1 = − 1

(2π)6

∫
R×S3

1×S3
2

?F3. (5.20)

This can be simply achieved by tuning

ci+2 = 2N i
5,

c2
3L

4

64c4π2
= N1, (5.21)

and the radius about the singularities for which the supergravity approximation does not

hold can be made arbitrarily small by making L (and so the D1 charge) large. We once

more compute the holographic central charge at leading order and find that it is finite with

the following form

c = 6N1N
2
5 +O(1). (5.22)

This behaviour is markedly different from that of AdS3×S3×S3×S1, indeed the form the

central charge takes is consistent with small N = (4, 0) superconformal algebra with level

k = N1N
2
5 . Since this solution is D5s and O5s back reacted on AdS3×S3×R4, which itself

preserves (two copies of) small N = (4, 0), this should not be surprising. It is of course

well known that small N = (4, 0) comes equipped with only an SU(2) R-symmetry which

at first sight may appear at conflict with the SO(4) R-symmetry preserving spinors from

which this solution is constructed. In fact this apparent conflict exists for AdS3×S3×T4 as

well and the resolution is the same for both cases. The SO(4) R symmetry of the geometry

is actually realising both the SU(2) R-symmetry of the dual CFT and an SU(2) outer

automorphism symmetry14 and the dual CFT indeed has small superconformal algebra.

Such solutions lie within the α → 0 limit of d(2, 1, α) superconformal symmetry which is

isomorphic to psu(2, 1, α)osu(2), so (5.19) lies within a degenerate limit of large N = (4, 0).

This solution is a well defined AdS dual to an as yet to be determined CFT2 with

small N = (4, 0) superconformal symmetry so is well deserving of further detailed study

— but this is beyond the scope here.

5.2 Case II: D5s back reacted on AdS3 × S3 × S3 × S1

In case II we assume

0 < sinβ1 < 1, s = µ = ν = ±1. (5.23)

Due to (5.7) this means that the two 3-sphere warp factors can only differ by a constant,

thus we introduce a new function, H and constants b1, b2 such that

eCi = biH. (5.24)

14I thank the reviewer for clarification on this point.

– 17 –



J
H
E
P
0
5
(
2
0
1
9
)
0
8
9

We again use (5.5)–(5.6) as definitions for eA, eΦ and substitute for these quantities in (5.7)–

(5.12) — they once more reduce to just two conditions that may be easily solved with

b1 = b
√
c3, b2 = b

√
c4, νeC+k = bq, H = c+ νλ1r, (5.25)

where we introduce

λ1 =
q cosβ1√

c3
− q sinβ1√

c4
, λ2 =

cosβ1√
c4

+
sinβ1√
c3

, (5.26)

to ease notation and b, c are constants. The general local form of solutions can then be

written as

ds2 = L2H

(
ds2(AdS3) + c3λ2ds

2(S3
1) + c4λ2ds

2(S3
2)

)
+
L2q2λ2

2

H
dr2,

F3 =
1

λ2
2

Vol(AdS3) + c3Vol(S3
1) + c4Vol(S3

2), eΦ = 2L2λ2
2H, b = Lλ2 (5.27)

The warp factor H depends on ν so this solution generically experiences no enhancement

beyond N = (4, 0). Similar to section 4.1 however, when one sets λ1 = 0, ν drops out

of all expressions and supersymmetry is enhanced to N = (4, 4) — this is because the

solution becomes AdS3 × S3 × S3 × S1 in this limit. The generic solution has D5 branes

back reacted on this. The attentive reader will note that H is not the warp factor of a D5

brane, however, if one assumes ν = 1, then the interval is bounded from below at

r = − c

λ1
, (5.28)

where the near horizon geometry of a D5 brane wrapped on either S3 is recovered. The

interval is not however bounded from above and r = ∞ is at infinite proper distance, so

the metric is non compact.

One might wonder about the possibility of making the solution compact by gluing two

copies of (5.27) together with D5 branes smeared on S3 — the issues are essentially the

same as for Case II in IIA.
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A Conventions for sections 2 and 3

In this section we detail a set of conventions that can be used to perform the calculations

in sections 2 and 3 — one should understand however that the result of these sections do

not strictly depend on this choice, which is why they do not appear in the main text.
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A.1 Spinors and gamma matrices on AdS3 ×M7

We decomposing the 10 dimensional gamma matrices as in [45]

Γµ = γAdS3
µ ⊗ σ3 ⊗ I, Γa = I⊗ σ1 ⊗ γa, B10 = I⊗ σ3 ⊗B, Γ̂ = −I⊗ σ2 ⊗ I, (A.1)

where γAdS3
µ are a real basis of flat space gamma matrices on AdS3, γa a 7 dimensional basis

such that B−1γaB = −γ∗a and BB∗ = I, σ1,2,3 are the Pauli matrices and Γ̂ is the chirality

matrix. A 10 dimensional spinor of ± chirality on AdS3 ×M7 can then be decomposed in

terms of this basis as

ε = ζ ⊗ v± ⊗ χ, v± =

(
1

∓i

)
, (A.2)

with ζ a real Killing spinor on AdS3, χ a spinor on M7 and v± an auxiliary 2 vector

which takes care of 10 dimensional chirality as −σ2v± = ±v± and is required to make

a representation of the gamma matrices on AdS3 × M7 32 dimensional. If ε is one of

the Killing spinor for type II supergravity it should be Majorana, here this just requires

imposing that χ is Majorana, ie

χc = Bχ∗ = χ, (A.3)

as ζ are real and v± = σ3v
∗
±. This is what leads to the form of the 10 dimensional Killing

spinors taken in (2.4).

A.2 Vielbein and gamma matrices in on M7

The internal space M7 is a foliation of S3 × S3 over an interval as in (2.6), we can define a

veilbein on this space as

er = ekdr, ei1,2 = eC1,2 êi1,2 , êi1,2 =
1

4
(dθ1,2, sin θ1,2dφ1,2, dψ1,2+cos θ1,2dφ1,2)i1,2 , (A.4)

where êi1,2 are in the Hopf fibration frame mentioned before (2.8) in the main text. A

suitable basis of 7 dimensional gamma matrices are then

γr = ekσ1⊗I⊗I, γi1 = eC1σ2⊗γ
S3

1
i1
⊗I, γi2 = eC2σ3⊗I⊗γS

3
2

i2
, B = σ1⊗σ2⊗σ2, (A.5)

where γ
S3

1,2

i1
are the unwarped gamma matrices of S3

1,2 that are flat with respect to êi1,2 .

Euclidean gamma matrices in 3 dimensions are always the Pauli matrices, up to signs and

ordering, so we can in fact take

γ
S3

1
i1

= σi1 , γ
S3

2
i2

= σi2 (A.6)

without loss of generality.

A.3 Conventions on S3

The SO(4) spinors we construct in (2.20) are a certain product of Killing spinors on S3
1,2

that transform as (2.19) along the sum and difference of the SU(2)L/R Killing vectors of

each 3-sphere. Here we will be more explicit about the form these Killing spinors/vectors
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in terms of (A.4)–(A.6). To this end, let us here label an objects dependence on SU(2)L/R

explicitly — we will focus on an arbitrary unwarped 3-sphere of unit radius in the Hopf

fibration frame

êi =
1

4
(dθ, sin θdφ, dψ + cos θdφ)i, (A.7)

which can be related to the main text by simply adding an index where appropriate. The

3-sphere Killing spinor equations (2.7) then becomes

∇iξL =
i

2
σiξ

L, ∇S3

i ξ
R = − i

2
σiξ

R, (A.8)

which are solved in general by

ξL = e
i
2
θσ1e

i
2
φσ3ξ0, ξR = e−

i
2
ψσ3ξ0, (A.9)

for ξ0 a constant spinor. We fix σ3ξ
0 = ξ0 without loss of generality. The SU(2)L/R Killing

vectors are given by

KR
1 + iKR

2 = eiψ(i∂θ + csc θ∂φ − cot θ∂ψ), KR
3 = ∂ψ, (A.10)

KL
1 + iKL

2 = e−iφ(i∂θ + cot θ∂φ − csc θ∂ψ), KL
3 = ∂φ. (A.11)

Viewed as one forms these obey

dKL
i +

1

2
εijkK

L
j ∧KL

k = dKR
i −

1

2
εijkK

R
j ∧KR

k = 0, (A.12)

and are given by

KR
1 + iKR

2 = eiψ(idθ + sin θdφ), KR
3 = dψ + cos θdφ, (A.13)

KL
1 + iKL

2 = e−iφ(idθ − sin θdψ), KL
3 = dφ+ cos θdψ. (A.14)

These expressions can be repackaged as

KL
i = −iTr

[
σidgg

−1
]
, KR

i = −iTr
[
σig
−1dg

]
, g = e

i
2
σ3φe

i
2
σ2θe

i
2
σ3ψ, (A.15)

which makes clear that the SU(2)L/R charged forms are SU(2)R/L invariant.

With these definitions it is not hard to confirm that (2.8) obeys (2.11), which is the

fundamental relations one needs to construct the SO(4) spinors.

B Proof that N = 1 implies N = 4 for SO(4) spinors

In section 2 it is claimed that if an N = 1 sub-sector of the 7 dimensional SO(4) spinors

of (2.20) solves the supersymmetry conditions, the entire N = 4 spinor also does. In

this appendix we prove this claim using an argument based on studying (in abstract) the

conditions (2.4) must satisfy to have vanishing gravition and dilaton variation — see for

example (2.10)-(2.14) of [15] for their explicit expressions in type IIA and IIB supergravity.

Since the solutions we consider respect the isometries of AdS3 the 10 supersymmetry

conditions that (2.4) must satisfy are implied by 7 dimensional conditions on χI1,2 only. For
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clarity let us assume that χI1 = χI2 = χI — the proof of the general case is in essence the

same, just more cumbersome to describe. Schematically the independent 7 dimensional

spinoral conditions for N = 4 then take one of two forms15

∆1χ
I = 0, (B.1a)

(∇µ + ∆2γµ)χI = 0, (B.1b)

for I = 1, . . . , 4, where ∆1,2 are 8×8 matrices containing combinations of the physical fields

(dilaton, metric and RR and NS fluxes) and their derivatives contracted with the 7 dimen-

sional gamma-matrices γµ and where ∇µ is the covariant derivative. If one now decomposes

χI =
(
χi, χ4

)
, i = 1, 2, 3 (B.2)

it follows from (2.19) that

χi =
1

2
LK1

i
χ4 =

1

2
LK2

i
χ4 = LK+

i
χ4. (B.3)

It should then be clear that if one assumes that just the 4th component of (B.1a)–(B.1b) is

solved then one generates the other 3 automatically by acting with the spinorial derivative

along the Killing vectors provided[
L
K1,2
i
, ∆1

]
χ4 =

[
L
K1,2
i
, (∇µ + ∆2γµ)

]
χ4 = 0. (B.4)

The first condition holds trivially whenever ∆1 is an SO(4) singlet, which is true whenever

one imposes this condition on the physical fields as we are. The second condition is a little

trickier — while ∆2 commutes with the spinoral Lie derivative for the same reason as ∆1

the individual µ indexed terms in (B.1b) do not in general commute by themselves. One

can proceed by rewriting the 4th component of (B.1b) in the equivalent form

(∇r + ∆2γr)χ
4 = 0 , (B.5a)(

∇K1
i

+ ∆2 /K
1
i

)
χ4 = 0 , (B.5b)(

∇K2
i

+ ∆2 /K
2
i

)
χ4 = 0 , (B.5c)

where ∇K = Kµ∇µ and /K = Kµγµ. The form of the metric (2.6) ensures that one can

always choose a frame where ∇r = ∂r so that (B.5a) commutes with L
K1,2
i

trivially. The

proofs that (B.5b) and (B.5c) commute are essentially the same so we focus on the former:

the 7 dimensional derivative term in (B.5b) decompose as

∇K1
i

= K1µ
i ∇

S3
1
µ −

1

2
/∂C1 /K

1
i (B.6)

15The 10 dimensional dilatino and gravitino conditions along AdS3 give rise to 7 dimensional conditions

of the from (B.1a), while the gravitino condition along the internal space give rise to a condition of the

from (B.1a).
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where ∇S
3
1
µ obeys the equation (2.7) when it acts on the components of the ξa1 factor of χ4

— as such we can bring (B.5b) into the form

∆3 /K
1
iχ

4 = 0, (B.7)

for ∆3 a new 8×8 matrix that is an SO(4) singlet. This is close to the required result,

which now follows if one can commute LK1
j

past /K
1
i . To achive this, one more piece of

information about the spinors on S3 is required, namely that

/K
1,2
i ξa1,2 =

1

2
(σi)

a
bξ
a
1,2, (B.8)

which is easy to verify, for instance one can read it off from (3.5). Given (B.8) and (2.11)

it is quick to establish that

L
K1,2
i

/K
1,2
j ξa1,2 = /K

1,2
i LK1,2

j
ξa1,2. (B.9)

Thus if one acts on (B.7) with LK1
j

one finds

LK1
j
(∆3 /K

1
iχ

4) = ∆3 /K
1
jLK1

i
χ4 = 2∆3 /K

1
jχ

i = 0, (B.10)

where the first equality follows from (B.9) and because ∆3 is an SO(4) singlet. Repeating

the same steps for (B.5c) one establishes that

(∇r + ∆2γr)χ
i = 0 , (B.11a)(

∇K1
j

+ ∆2 /K
1
i

)
χi = 0 , (B.11b)(

∇K2
j

+ ∆2 /K
2
i

)
χi = 0 , (B.11c)

are implied by (B.5), from which it follows that the 4th component of (B.1b) implies the

other 3, which completes the proof.

One can extend this argument to the case where χI1 6= χI2 without difficulty, so solving

the supersymmetry constraints for an N = 1 sub-sector of (2.20) implies that all compo-

nents of χI1,2 also solve these constraints, provided the physical fields are SO(4) singlets.

Thus solving an N = 1 sub-sector is sufficient to know that N = 4 supersymmetry and an

SO(4) R-symmetry is preserved by all solutions consistent with χI1,2.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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[40] C. Córdova, G.B. De Luca and A. Tomasiello, Classical de Sitter Solutions of 10-Dimensional

Supergravity, Phys. Rev. Lett. 122 (2019) 091601 [arXiv:1812.04147] [INSPIRE].

– 24 –

https://doi.org/10.1007/JHEP02(2018)087
https://doi.org/10.1007/JHEP02(2018)087
https://arxiv.org/abs/1710.09826
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.09826
https://doi.org/10.1007/JHEP01(2018)146
https://doi.org/10.1007/JHEP01(2018)146
https://arxiv.org/abs/1709.06393
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.06393
https://doi.org/10.1007/JHEP07(2018)143
https://doi.org/10.1007/JHEP07(2018)143
https://arxiv.org/abs/1805.09832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09832
https://doi.org/10.1007/JHEP12(2018)047
https://arxiv.org/abs/1710.03713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.03713
https://doi.org/10.1002/prop.201800060
https://arxiv.org/abs/1807.06602
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06602
https://doi.org/10.1016/0370-2693(88)90645-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B208,447%22
https://doi.org/10.1007/JHEP04(2014)193
https://arxiv.org/abs/1402.5135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5135
https://doi.org/10.1007/JHEP08(2017)111
https://arxiv.org/abs/1707.02705
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02705
https://doi.org/10.1007/JHEP01(2019)193
https://doi.org/10.1007/JHEP01(2019)193
https://arxiv.org/abs/1807.07768
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.07768
https://arxiv.org/abs/1811.11572
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.11572
https://doi.org/10.1007/JHEP07(2018)178
https://arxiv.org/abs/1803.08428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08428
https://doi.org/10.1007/JHEP09(2017)126
https://doi.org/10.1007/JHEP09(2017)126
https://arxiv.org/abs/1612.06885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06885
https://doi.org/10.1016/j.nuclphysb.2018.05.021
https://arxiv.org/abs/1712.00851
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.00851
https://doi.org/10.1002/prop.201800006
https://arxiv.org/abs/1801.00800
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.00800
https://doi.org/10.1007/JHEP08(2018)133
https://arxiv.org/abs/1805.04823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04823
https://arxiv.org/abs/1811.11224
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.11224
https://doi.org/10.1007/JHEP04(2014)064
https://arxiv.org/abs/1309.2949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2949
https://doi.org/10.1088/1126-6708/2008/12/047
https://arxiv.org/abs/0810.1484
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1484
https://doi.org/10.1103/PhysRevLett.122.091601
https://arxiv.org/abs/1812.04147
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.04147


J
H
E
P
0
5
(
2
0
1
9
)
0
8
9

[41] S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP

05 (2016) 031 [arXiv:1512.02225] [INSPIRE].

[42] L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1

backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].
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