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1 Introduction

Conformal field theories (CFTs) play a central role in physics. Deformations which drive

one fixed point to another also provide important insights into more general quantum

field theories.

Even so, it is often difficult to establish the existence of fixed points, let alone determine

deformations to new ones. Common techniques include combinations of methods from

supersymmetry, string compactification, holography, and / or the conformal bootstrap.
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Part of the issue with understanding relevant perturbations of CFTs is that (by defi-

nition) they grow deep in the infrared. From this perspective, it is perhaps not surprising

that comparatively short flows where there is only a small drop in the number of degrees

of freedom (as measured by various anomalies) are often easier to study.

One way to understand long flows is to break them up into a sequence of nearby

short flows. This strategy has recently been used to make surprisingly sharp statements in

the study of 6D supersymmetric RG flows [1–7]. In particular, the mathematical partial

ordering of nilpotent orbits in flavor symmetry algebras automatically defines a hierarchy of

6D RG flows [5–7]. For a recent review of 6D superconformal field theories, see reference [8].

In this paper we ask whether the same mathematical structure leads to an improved

understanding of RG flows in lower-dimensional systems. The specific class of theories

we study are N = 1 deformations of 4D N = 2 SCFTs. For the UV theories under

consideration, we assume the existence of a flavor symmetry algebra gflav, which a priori

could be composed of several simple factors:

gflav = g
(1)
flav × . . .× g

(n)
flav (1.1)

for g
(i)
flav a simple Lie algebra. Associated with this flavor symmetry are a collection of mass

parameters madj, and corresponding dimension two mesonic operators Oadj transforming

in the adjoint representation,1 which can be used to activate relevant deformations to new

conformal fixed points in the IR via superpotential deformations:

δW = Trgflav
(madj · Oadj) . (1.2)

Promoting the mass parameters to a chiral superfield Madj transforming in the adjoint

representation of gflav, we can consider the related deformations associated with expanding

around background vevs for these “flipper fields:”

δW = Trgflav
((madj +Madj) · Oadj) , (1.3)

where now, we interpret the mass deformation madj = 〈Madj〉 as a background vev.

The key point we shall be exploiting in this work is that given a flavor symmetry

Lie algebra gflav, there is a partial ordering available for nilpotent elements, as defined by

the orbit of an element under the adjoint action of the algebra. Given nilpotent elements

µ, ν ∈ gflav, we say that µ ≺ ν when Orbit(µ) ⊂ Orbit(ν). Since the mass parameters madj

transform in the adjoint, this sets up a conjectural relation between relevant deformations,

as in lines (1.2) and (1.3) and 4D RG flows. Intuitively, as the size of the orbit increases,

the number of degrees of freedom which pick up a mass also increases, leading to a longer

flow into the infrared.

Another quite interesting feature of nilpotent mass deformations is that at least in the

case where we have a plain mass deformation as in line (1.2), the Seiberg-Witten curve of

the UV N = 2 theory descends to an N = 1 curve of the deformed N = 1 theory which

fixes the relative scaling dimensions of various operators [9]. The fact that it is still singular

provides evidence of an N = 1 fixed point.

1More canonically, one can view the mass parameters as elements in the dual g∗flav.
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One of our aims in this work will be to provide substantial evidence that this network

of nilpotent orbits defines a corresponding hierarchy of 4D RG flows. For the most part,

this involves a mild generalization of the procedure proposed in [10], studied in detail in [9]

(see also [11]) and further extended in references [12–18], and applied in various model

building contexts in references [19–24].

The appearance of a nilpotent element µ implies the existence of an su(2) ⊂ gflav

subalgebra, with generators µ, µ† and [µ, µ†]. Labelling the associated generator of the

Cartan subalgebra for this su(2) subalgebra as T3, the infrared R-symmetry is given by a

linear combination of the form (see e.g. [9]):

RIR = RUV +

(
t

2
− 1

3

)
JN=2 − tT3 +

∑
i

tiFi, (1.4)

where RUV and RIR respectively denote the UV and IR R-symmetry (treated as an N = 1

theory), JN=2 is an additional U(1) symmetry which is always present in an N = 2 SCFT

when interpreted as an N = 1 theory. The last set of terms refers to the possibility of

additional U(1)’s, including those which emerge in the infrared. The IR R-symmetry is then

fixed via the procedure of a-maximization over the parameters t and ti, as in reference [25].2

In the absence of these emergent U(1)’s, we find strong evidence that the partially

ordered set defined by the nilpotent elements of a Lie algebra exactly aligns with the

corresponding hierarchy of 4D RG flows. For example, the conformal anomalies aIR and cIR

decrease along such trajectories, and anomalies involving flavor currents (with generators

suitably normalized) also decrease along such flows.

Far more non-trivial is that even in the presence of emergent U(1)’s, there is still such

a partial ordering of 4D theories, as dictated by the nilpotent cone of the Lie algebra. This

is considerably more subtle and requires a case by case analysis. For this reason, we focus

on explicit examples.

One class of theories already studied in [9] for plain mass deformations, and with some

masses promoted to chiral superfields in [16, 17] involves nilpotent mass deformations of

the N = 2 theories defined by a D3-brane probing an F-theory 7-brane with constant

axio-dilaton. This includes the H0, H1, H2 Argyres-Douglas theories [26, 27], the E6, E7,

E8 Minahan Nemeschansky theories [28, 29], and N = 2 SU(2) gauge theory with four

flavors and corresponding SO(8) flavor symmetry (namely D4) [30]. The string theory

interpretation of nilpotent deformations is also quite interesting, as they are associated

with T-brane configurations of 7-branes (see e.g. [11, 31–41]), namely they leave intact

the Weierstrass model of the associated F-theory geometry, but nevertheless deform the

physical theory.

Here, we systematically study all possible nilpotent deformations for the D- and E-

series theories, systematically sweeping out the corresponding network of 4D RG flows (we

do not consider the H-series in any detail since they have only a few nilpotent deforma-

tions). An interesting feature of these examples is that only the Coulomb branch operator

2In practice it is often necessary to make additional assumptions about these emergent symmetries to

actually carry out concrete calculations.
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sometimes appears to drop below the unitarity bound, and even this happens only for the

largest nilpotent orbits. In such cases, we see no evidence that the fixed point does not

exist (since the underlying geometry is still singular), and instead find it most plausible

that the Coulomb branch operator decouples as a free field, with a corresponding emergent

U(1) acting on only this operator, as per the procedure advocated in [42, 43].

We also study nilpotent mass deformations of 4D N = 2 conformal matter, namely the

compactification of 6D conformal matter [44, 45] on a T 2. Here, we consider the case where

there is a GL×GR flavor symmetry with GL = GR = G given by SO(8), E6, E7, or E8. The

4D anomaly polynomials for these theories were computed in [46, 47]. The Seiberg-Witten

and Gaiotto curves for these models are known, both via mirror symmetry [48], and via its

relation to compactifications of class S theories [46, 47].

Nilpotent mass deformations of 4D conformal matter involve specifying a pair of nilpo-

tent elements, one for each flavor symmetry factor. In this case, the string theory interpre-

tation involves a pair of 7-branes intersecting along the common T 2. Such nilpotent defor-

mations involve activating background values for gauge fields of the corresponding 7-branes.

This already leads to many new N = 1 fixed points and the partial ordering for the

product Lie algebra predicts a corresponding hierarchy of 4D fixed points. We present

strong evidence that this is the case, again sweeping over all pairs of nilpotent orbits, and

for each one computing the corresponding values of various IR anomalies, checking there

is a corresponding decrease along a given trajectory in the nilpotent cone.

One issue which shows up in these cases is that in sufficiently long flows, mesonic

operators often decouple. This in turn signals that such operators cannot be used to

trigger further flows. A priori, this could mean that the network of connections in the

nilpotent cone may have links which do not produce 4D RG flows. Even though we have

not found a single example where this actually occurs, we leave a systematic analysis of

this possibility for future work.

With this set of theories in hand, additional numerical studies are amenable to treat-

ment, though the list of theories is so large that we have chosen to collect the full dataset

in an accompanying Mathematica package available for download with our arXiv submis-

sion. For example, by sweeping over all theories, we find several examples of theories where

the conformal anomalies aIR and cIR are rational numbers. In some cases such as refer-

ence [16, 17], this was interpreted as evidence for an emergent N = 2 supersymmetry in the

infrared, and we find another example of this type for a deformation of the E7 Minahan-

Nemeschansky theory. It is not clear to us whether there is N = 2 enhancement in all

cases, but certainly the list of such rational theories we find suggests additional structure

is present. Another numerical curiosity we observe is that for a given choice of UV N = 2

SCFT, the value of the ratio:
aIR

cIR
' constant±O(1%− 5%) (1.5)

is nearly constant over all nilpotent deformations, in line with the observation made in

reference [49] for a different set of theories.

The rest of this paper is organized as follows. First, in section 2 we analyze for a general

N = 2 theory with flavor symmetries, the structure of the N = 1 theories obtained via both
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Figure 1. Depiction of the network of 4D RG flows generated by elements of the nilpotent

cone. Starting from a UV N = 2 fixed point, each nilpotent orbit in the flavor symmetry algebra

determines a candidate N = 1 fixed point. Additionally, the network of connections between

nilpotent orbits also motivates the existence of additional flows between these N = 1 fixed points.

plain mass deformations and their extension to flipper field deformations. In particular, we

analyze the network of 4D RG flows predicted by the nilpotent cone. Section 3 discusses

the structure of IR fixed points assuming no operators decouple, and section 4 discusses

the structure of theories in the presence of emergent IR symmetries. In section 5 we discuss

nilpotent deformations of D3-brane probes of D- and E-type 7-branes and in section 6 we

discuss nilpotent deformations of 4D N = 2 conformal matter. We conclude in section 7.

Some additional review material, as well as technical details and instructions on how to

use the companion Mathematica files are presented in the appendices.

2 Nilpotent deformations: generalities

In this section we discuss some general features of nilpotent mass deformations of N = 2

SCFTs. Throughout, we assume the existence of a continuous flavor symmetry algebra

which may consist of several simple factors:

gUV ≡ gflav = g
(1)
flav × . . .× g

(n)
flav. (2.1)

We assume either that there are no abelian factors in the UV, or more generally, that

the only non-vanishing anomalies involving flavor symmetry currents involve precisely two

insertions of the same kind (which is automatic in the traceless non-abelian case). Note

that we can then also allow the appearance of abelian symmetry factors, provided they

satisfy this condition.

We assume adjoint valued mass parameters madj, and corresponding dimension two

mesonic operators Oadj which serve as coordinates on the Higgs branch of moduli space.
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Oadj Zi

RUV 4/3 2/3 ∆UV(Zi)

JN=2 −2 2∆UV(Zi)

RN=2 0 2∆UV(Zi)

I3 1 0

Table 1. Charge assignments for the mesons Oadj and Coulomb branch parameters Zi in the

UV theory.

Note that there could be non-trivial chiral ring relations for these operators, as can often

happen when there is more than one simple Lie algebra factor for gUV. Since we will couch

our analysis in terms of basic properties of symmetry breaking patterns, our analysis will

not depend on such detailed knowledge of the UV theory.

It will prove useful to view our N = 2 SCFT as an N = 1 SCFT with additional

symmetries. Along these lines, we recall that the N = 2 SCFT has an SU(2) × U(1) R-

symmetry. Labelling the generator of the Cartan subalgebra for the SU(2) factor by I3

with eigenvalues ±1/2 in the fundamental representation, and RN=2 for the U(1) factor

normalized so that the complex scalar of a free N = 2 vector multiplet has charge +2, the

N = 1 R-symmetry is given by the linear combination (see e.g [9, 50]):

RUV =
1

3
RN=2 +

4

3
I3. (2.2)

There is another linear combination which we can form which is a global symmetry of the

UV theory. We label this as:

JN=2 = RN=2 − 2I3. (2.3)

See table 1 for the charge assignments of Coulomb branch operators and mesonic operators

which serve as coordinates on the Higgs branch.

The Higgs branch is parameterized by dimension two operators transforming in the

adjoint representation of gflav ≡ gUV, which we denote by Oadj. The mass parameters madj

which pair with these operators transform in the adjoint representation of gflav.

We consider both the case of a plain mass deformation:

δWplain = Trgflav
(madj · Oadj) , (2.4)

as well as the flipper field deformations associated with promoting the mass parameters to

a dynamical chiral superfield in the adjoint of the flavor symmetry which mixes with the

original interacting theory:

δWflip = Trgflav
((madj +Madj) · Oadj) . (2.5)

We shall often first deal with the case of plain mass deformations, since flipper field de-

formations are a mild extension of this case (though the resulting IR physics can be quite

different, see e.g. [12, 15–17]). An important feature of our analysis is that the general
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structure of symmetries and anomalies enables us to give a uniform analysis of RG flows

for many such relevant deformations.

Though it may be difficult to explicitly construct, we know that the IR physics on the

Coulomb branch is controlled by a Seiberg-Witten curve [30, 51], and mass deformations

enter as flavor symmetry neutral combinations constructed from the holomorphic Casimir

invariants of gflav. In the special case of an N = 2 SCFT, all mass deformations have been

switched off and this curve will exhibit singularities, as required to have massless degrees

of freedom at the origin of the Coulomb branch.

We will in particular be interested in nilpotent deformations. For the classical alge-

bras, these can always be presented in terms of an explicit nilpotent matrix, which upon

conjugation by a complexified symmetry generator can always be taken to be proportional

to a matrix in Jordan normal form. For example, in su(4) we have:
0 m12 0 0

0 0 m23 0

0 0 0 m34

0 0 0 0

 ∼ m×


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 . (2.6)

The labelling scheme for the classical su, sp and so algebras are dictated by its presentation

as a direct sum of nilpotent Jordan blocks. These blocks in turn define a partition of an

integer which we write as [µa1
1 , . . . , µ

ak
k ] with µ1 > . . . > µk > 0 and ai the multiplicity. In

the case of su(N), each partition of the integer N defines a nilpotent orbit. In the case of

so(2N), there are some additional restrictions on partitions of 2N , namely we require every

even number in a partition to appear an even number of times. Similar considerations hold

for sp(N) and so(2N + 1). In the case of the exceptional algebras, we instead label the

nilpotent orbit by its embedding in some subalgebra of the larger parent algebra, which is

known as the Bala-Carter label.

Now, one of the very interesting features of nilpotent mass deformations is that all

holomorphic Casimir invariants (by definition) must vanish, and so the presentation of the

singular geometry is exactly the same as the N = 2 theory. In contrast to the N = 2 case,

however, this does not mean it is possible to read absolute scaling dimensions of operators

from the curve (see reference [27] for the analysis of N = 2 theories), but instead only

the relative scaling dimensions of operators [9]. Nevertheless, the appearance of a singular

curve provides one indication that we are still dealing with a conformal field theory, albeit

one with reduced supersymmetry.

Assuming the existence of such a fixed point, there is a partial ordering of nilpotent

orbits which suggests a physical ordering of theories. Given a pair of nilpotent elements µ

and ν, we say that µ ≺ ν when Orbit(µ) ⊂ Orbit(ν), where the overline denotes the Zariski

closure of the orbit in gflav.

Physically, the bigger the orbit, the more degrees of freedom have picked up a mass.

So, it is natural to expect bigger orbits to be deeper in the infrared. Moreover, for each

of the simple Lie algebras, there is a classification of all possible nilpotent orbits, and

the associated containment relations for these choices. This partially ordered set and its

interconnections defines a directed graph, namely the Hasse diagram of the nilpotent cone.

– 7 –
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Figure 2. Depiction of the deformations from one nilpotent orbit to another. Here, we label a

theory by a choice of nilpotent orbit T [µ], and subsequent deformations deeper down in the nilpotent

cone to theories T [ν], T [ν′] and T [ν′′]. These physical paths to new orbits are parameterized by

the remnants of the original mesonic operators. An important subtlety with this picture is that

as we proceed from the UV to the IR, various mesonic operators may decouple, severing some of

the candidate links between theories. In explicit examples, however, we have not observed this

pathological behavior.

Returning to our example of explicit nilpotent matrices in su(4), for example, we can see

a clear hierarchy: 
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ≺


0 m12 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ≺


0 m12 0 0

0 0 m23 0

0 0 0 m34

0 0 0 0

 . (2.7)

It is tempting to also interpret this diagram as a collection of candidate RG flows

between N = 1 fixed points. Given a sequence of theories TUV → . . . → Ti → Ti+1 → . . .,

and associated nilpotent orbits ∅ ≺ . . . ≺ µi ≺ µi+1 ≺ . . ., we can ask whether there is a

flow directly from the intermediate N = 1 fixed point Ti to Ti+1. Indeed, we can subtract

the two deformations of the original parent theory:

δWi→i+1 = Trgflav
((µi+1 − µi) · Oadj) , (2.8)

which is itself a relevant deformation of the UV fixed point theory. Assuming that the

operators necessary to perform such a deformation do not decouple in theory Ti, this

strongly indicates that each link in the directed graph defined by the Hasse diagram also

defines a flow between N = 1 fixed points. Carrying out a systematic analysis of this is

somewhat subtle, especially when operators start to decouple in long flows, but this at

least shows that the structure of the nilpotent cone leads to a rich network of 4D RG flows.

See figure 2 for a depiction of the flows generated by these mesonic operators.

Let us now make more precise the sense in which operator deformations such as those of

line (2.8) lead to perturbations of one fixed point to another. Along these lines, we start in

some theory T [µ], as characterized by Orbit(µ). Given a nilpotent element, the Jacobson-

Morozov theorem guarantees the existence of a homomorphism su(2)→ gUV, and we label

– 8 –
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the generators of this algebra by T3, T+ and T− in the obvious notation. Decomposing the

adjoint representation into irreducible representations of this su(2) subalgebra, we get:

Vadj =
⊕
j

(j), (2.9)

where we allow each spin j to come with some multiplicity. The highest spin states of each

representation specify the deformations of the nilpotent orbit. Indeed, a convenient way

to compute the dimension of the orbit is via the formula:

dim Orbit(µ) = dimVadj − dimV0 − dimV1/2, (2.10)

where here, we have decomposed the states of the adjoint representation under the

T3 grading:

Vadj =
⊕
s

Vs. (2.11)

In the physical theory, these top spin states are distinguished by their role in the

breaking pattern of the flavor symmetry. More formally, we begin with the N = 1 current

supermultiplet for the flavor symmetry of the original theory JA, with A an index in the

adjoint representation. In the unbroken phase, we have the conservation rule:

D
2JA = 0. (2.12)

We can also track what becomes of this relation in the broken phase (after the mass

deformation has been switched on). Since JA transforms in the adjoint representation of

gUV, we can decompose it into representations of this su(2) subalgebra, so we label it by

a choice of spin j, and T3 charge s, namely Jj,s. In the broken phase, the current is not

conserved, since it is explicitly broken by our mass deformation. We can follow the standard

Noether procedure to see the source of the current non-conservation. Introducing a “pion”

chiral superfield Λ which parameterizes the flavor symmetry generators, we can send:

Oadj → eiΛOadje
−iΛ. (2.13)

Then, the superpotential deformation transforms as:

δW → TrgUV(madj · eiΛOadje
−iΛ), (2.14)

so since madj can, without loss of generality, be taken to be the raising operator of the

su(2)D subalgebra, we learn that we instead have (see e.g. [16, 52]):

− 1

4
D

2Jj,s = Oj,s−1. (2.15)

Note in particular the relative shift in the T3 charge s.

As explained in [16, 52], this relation tells us that in the perturbed chiral ring relations,

operators which are not the highest spin states can pair with components of the current

multiplet, forming a long multiplet. Said differently, in the chiral ring, the operators

appearing on the righthand side of equation (2.15) are automatically set to zero (since

– 9 –
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they appear as D
2

of something else), and do not parameterize vacua of the deformed

theory. This leaves us with just the highest spin states, namely Oj,j for the various spin j

representations. Indeed, all other mesons with Oj,s for s < j can be expressed in terms of

the Oj,j using the field equations [16, 17, 52, 53].

In particular, we see that any further deformations of the nilpotent orbit, namely a

candidate flow from theory Ti to a theory Ti+1, will involve precisely these directions.

Provided no such operators decouple as we flow from the UV to the IR, this shows that

the directed graph defined by the Hasse diagram is also a network of RG flows. The caveat

to this statement is that it could indeed happen that some operators decouple as we flow

from the UV to the IR. Indeed, as we will shortly explain, for a given su(2) representation,

the highest spin states have lowest scaling dimension.

To study this and related issues in more detail, it is of course helpful to have an explicit

example where the underlying theory is described by a Lagrangian. In subsequent sections

we will present a more general analysis which does not rely on the existence of a Lagrangian.

2.1 Illustrative Lagrangian example

We now illustrate some of the above considerations for a UV N = 2 SCFT which has a

Lagrangian description. Most of the other examples we consider do not admit a convenient

presentation of this sort, and so we will instead need to rely on more general abstract con-

siderations.

The example we consider is N = 2 SU(2) gauge theory with four flavors in the fun-

damental representation. Some nilpotent mass deformations for this theory were consid-

ered previously in [9], so we refer the interested reader there for additional background.

Our main interest here will be to characterize every possible nilpotent orbit of the parent

so(8) flavor symmetry algebra, and to discuss the explicit structure of the broken symme-

try generators.

From the definition of the theory, there is a manifest su(4) flavor symmetry which

rotates the fields. In N = 1 language, we specify four chiral superfields q in the (2,4)

of su(2)gauge × su(4)flav, and four chiral superfields q̃ in the (2,4) of su(2)gauge × su(4)flav.

There is also a coupling to the adjoint valued chiral superfield associated with the su(2)gauge

N = 2 vector multiplet:

WN=2 =
√

2q̃fϕq
f , (2.16)

where the sum on f = 1, . . . , 4 runs over the flavors of the model, and we suppress su(2)gauge

indices. This presentation allows us to explicitly track nilpotent mass deformations asso-

ciated with the su(4) symmetry algebra, as in reference [9].

Though convenient, this presentation obscures the fact that there is actually an so(8)

flavor symmetry. We can assemble the q and q̃ into an eight-dimensional representation

of SO(8), and instead treat our field content as a half hypermultiplet transforming in the

(2,8s) of su(2)gauge × so(8)flav. Labelling the associated holomorphic chiral superfield by

Qi with i = 1, . . . , 8, we introduce a conjugate spinor of SO(8) Qc
i which canonically pairs

with this field so that the superpotential can then be written as:

WN=2 =
√

2Qc
iϕQ

i, (2.17)
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[5, 13][42]I [42]II

[5, 3]

[7, 1]

IR

r = 0

r = 1

r = 2

r = 3

r = 4

r = 10

r = 12

r = 28

aIR = 23
24

aIR = 0.797

aIR = 0.710

aIR = 0.652

aIR = 0.608

aIR = 0.474

aIR = 0.451

aIR = 0.366

Figure 3. The network of RG flows induced by nilpotent plain mass deformations for N = 2 Super

Yang-Mills with SU(2) gauge group and four flavors. This theory has an SO(8) flavor symmetry in

the UV. This network is identical to the Hasse diagram of the Lie algebra so(8). The parameter

r = 2Trso(8)(T3T3) is the embedding index for the homomorphism su(2) → so(8) defined by a

nilpotent orbit. The value of the conformal anomaly aIR decreases, as expected. These flows are

determined using the method described in sections 3 and 4.

where again, we suppress the su(2)gauge indices. The associated mesons can be written as:

OA =
(
ρA
)i
j
Qc

iQ
j , (2.18)

with ρA the explicit matrix representatives acting on the 8s, and A an adjoint index of

SO(8). In this language, nilpotent mass deformations can be viewed as specific choices for

the ρA (upon complexification of the flavor symmetry algebra).

Figure 3 illustrates the resulting network of nilpotent orbits and RG flows in this

specific case. We also display the value of aIR as we pass from the UV to the IR. The
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specific method used to calculate the IR R-charges is essentially the same as in reference [9],

and we will discuss it in greater detail in sections 3 and 4.

Another important aspect of this example is that we can also explicitly track the

structure of the broken symmetry currents. To do so, we observe that the Lagrangian

density for the SO(8) theory is, in N = 1 language, given by:

LN=2 = Lgauge +

∫
d2θ d2θ̄ Q†ie

VQi +

∫
d2θ WN=2 + h.c. , (2.19)

with V the SU(2) N = 1 vector multiplet. Here, Lgauge includes the remaining contribu-

tions to the N = 2 vector multiplet, namely the kinetic terms for the vector multiplet and

adjoint valued chiral superfield.

By varying the action with respect to Qi, we obtain the following equation of motion:

− 1

4
D

2
Q†ie

V + 2
√

2(Qc)iϕ = 0. (2.20)

For the theory with no mass deformations, we have the on-shell F-term constraint:

(Qc)iϕ = 0. (2.21)

Using the on shell equations of motion, we observe that the flavor current in the UV:

JA = (ρA)j i(Q
c)†je

VQi , (2.22)

is actually conserved, namely D
2JA = 0.

Next, we add the superpotential deformation:

WD = mj
i(Q

c)jQ
i. (2.23)

The current JA is no longer conserved, because of this explicit breaking term. To see what

happens, consider following the Noether procedure with flavor transformation:

δflavQ
i = εA(ρA)ijQ

j . (2.24)

This yields:

− 1

4
D

2JA = (Qc)im
i
j(ρA)j lQ

l . (2.25)

mi
j is the raising operator of the su(2)D subalgebra and expressing the adjoint index A in

terms of spin j and T3 eigenvalue results exactly in equation (2.15). As already mentioned,

an analogous procedure also works for non-Lagrangian theories (see e.g. [16, 17, 52]).

3 Inherited infrared symmetries

In this section we turn to an analysis of the 4D N = 1 fixed points generated by nilpotent

mass deformations, focussing on the structure of the symmetries inherited from the original

UV N = 2 SCFT. Our aim will be to understand both the structure of the infrared

– 12 –
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R-symmetry, as well as global symmetries preserved by a nilpotent mass deformation.

Additionally, we compute the anomalies associated with these symmetries.

One technical assumption we make in this section is that there are no emergent abelian

symmetries. When emergent symmetries are present, as necessarily occurs when some

operators decouple, it is necessary to track which operators have dimension coming close

to the unitarity bound. This requires a more case by case treatment of the nilpotent

deformation in question, and is best handled by way of explicit cases.

We begin by treating the case of plain mass deformations and then turn to the case of

flipper field deformations. After this, we show that under mild assumptions on the values

of aUV and cUV that various numerical quantities are strictly monotonic along directed

paths through the Hasse diagram of nilpotent orbits.

3.1 Plain mass deformations

Suppose, then, that we introduce a nilpotent mass deformation of a 4D N = 2 SCFT. This

initiates an explicit breaking pattern of the SU(2) × U(1) R-symmetry of the UV theory,

as well as well as the flavor symmetries gUV. By definition, there is a generator T3 in the

Cartan subalgebra such that the operator TrgUV (µ · Oadj) has T3 charge −1. What this

means is that a linear combination of T3 and JN=2 will remain unbroken along the entire

flow to the infrared.

In addition to these symmetries, there are of course all the generators of gUV which

commute with our nilpotent orbit. This defines another flavor symmetry algebra gIR which

may also include various abelian symmetry factors.

Assuming that we indeed flow to a new fixed point in the infrared with N = 1

supersymmetry, the infrared R-symmetry will be a linear combination of all available

abelian symmetries:

RIR = RUV + tJJN=2 − tT3 + totherTother, (3.1)

where Tother is shorthand for all other abelian symmetries inherited from the UV.

Now, for our plain mass deformation to be a relevant perturbation, it follows that

the IR R-charge of this operator deformation is fixed to be +2. Since Trgflav
(µ · Oadj) has

charges RUV = +4/3, JN=2 = −2, T3 = −1 and is neutral under Tother, we learn that the

IR R-symmetry is actually constrained to be:

RIR = RUV +

(
t

2
− 1

3

)
JN=2 − tT3 + totherTother, (3.2)

where to fix the remaining parameters t and tother, we must resort to a-maximization [25],

namely we calculate the trial value of the conformal anomaly atrial(t, tother) as a function

of t and tother:

atrial(t, tother) =
3

32

(
3TrR3

IR(t, tother)− TrRIR(t, tother)
)
, (3.3)

and find the local maximum with respect to these parameters.
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Since we are assuming the absence of emergent symmetries in the infrared, we can use

anomaly matching to express various IR quantities in terms of UV data. In particular, we

shall have need to reference the anomalies:

aUV =
3

32

(
3TrR3

UV − TrRUV

)
(3.4)

cUV =
1

32

(
9TrR3

UV − 5TrRUV

)
(3.5)

kUV × δAB = −6Tr
(
RUVJ

A
flavJ

B
flav

)
, (3.6)

in the obvious notation.

Let us first establish that tother actually vanishes. To this end, we note that since

we have assumed below line (2.1) that the anomalies involving the UV flavor symmetries

always involve precisely two insertions of the same flavor symmetry,3 the only way for tother

to make an appearance in atrial is through a mixed anomaly with a symmetry generator of

the SU(2)×U(1) R-symmetry of the N = 2 SCFT. Since the dependence on tother has only

quadratic dependence, the local maximum necessarily has tother = 0. Hence, the infrared

R-symmetry is actually given by the linear combination:

RIR = RUV +

(
t

2
− 1

3

)
JN=2 − tT3, (3.7)

with t to be fixed by a-maximization.

This analysis was already carried out in reference [9] for a specific class of deformations,

but the generalization to our case follows formally the same steps. The only change is

that now, we need to pay attention to the appearance of possibly multiple UV symmetry

factors in:

gUV = g
(1)
UV × . . .× g

(n)
UV, (3.8)

so we need to label the RFF anomaly for each such factor:

Tr
(
RUVJ

(i)
Ai
J

(i)
Bi

)
= −

k
(i)
UV

6
δAiBi . (3.9)

Since we can decompose our T3 generator as a direct sum for each simple factor:

T3 = T
(1)
3 ⊕ . . .⊕ T (n)

3 . (3.10)

The value of atrial(t) is given by:

atrial(t) =
3

32

[(
36aUV − 27cUV −

9

4

n∑
i=1

k
(i)
UVr

(i)

)
t3

+ (−72aUV + 36cUV)t2 + (48aUV − 12cUV)t

]
, (3.11)

3Indeed, recall that the “other” in tother is shorthand for labelling possibly multiple abelian symmetry

factors. This means there could be mixed terms between these factors. If all these abelian factors descend

from a non-abelian symmetry, such mixed anomalies automatically vanish, but it could a priori still be

present for abelian symmetries inherited from the UV theory. This is the main reason the assumption

below line (2.1) is required.
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where in obtaining this formula we have used the structure of anomalies as dictated by the

UV N = 2 theory. Here, r(i) refers to the embedding index for the generator T
(i)
3 in g

(i)
UV:

r(i) ≡ 2Tr
g
(i)
UV

(
T

(i)
3 T

(i)
3

)
, (3.12)

see appendix A for details.

The local maximum of atrial(t) is then given by the critical point:

t∗ =
4

3
×

8aUV − 4cUV −
√

4c2
UV + (4aUV − cUV)

n∑
i=1
k

(i)
UVr

(i)

16aUV − 12cUV −
n∑

i=1
k

(i)
UVr

(i)

. (3.13)

With this in hand, we can evaluate the anomalies of our candidate infrared fixed point.

In the case of the flavor symmetry anomalies, the structure depends on the remaining

flavor symmetry generators associated with each semi-simple factor, and we denote these

unbroken symmetry currents by J
(i)
Ai

. In terms of the parameter t∗, the IR values of these

anomalies are:

aIR =
3

32

[(
36aUV − 27cUV −

9

4

n∑
i=1

k
(i)
UVr

(i)

)
t3∗

+ (−72aUV + 36cUV)t2∗ + (48aUV − 12cUV)t∗

]
(3.14)

cIR =
1

32

[(
108aUV − 81cUV −

27

4

n∑
i=1

k
(i)
UVr

(i)

)
t3∗

+ (−216aUV + 108cUV)t2∗ + (96aUV + 12cUV)t∗

]
(3.15)

and:

K
(i)
IR =

3

2
k

(i)
UV × t∗. (3.16)

In the above, we have introduced the anomaly coefficient K
(i)
IR :

Tr
(
RIRJ

(i)
Ai
J

(i)
Bi

)
= −

K
(i)
IR

6
δAiBi , (3.17)

where we take the same normalization of all Lie algebra generators as inherited from the

parent UV symmetry. In a given simple factor in the IR, there could be several subalgebras:

h
(i)
1 × . . .× h(i)

mi
⊂ g

(i)
IR ⊂ g

(i)
UV, (3.18)

each with a different embedding index. We can of course take generators normalized with

respect to these unbroken flavor symmetries to define the more standard quantity via the

embedding index:

k
(i)
li,IR

= Ind(h
(i)
li
→ g

(i)
UV)×K(i)

IR . (3.19)

The physically more meaningful quantity is k
(i)
IR , though it is often more straightforward to

evaluate K
(i)
IR .
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3.1.1 Operator scaling dimensions

Having determined the infrared R-symmetry, we can now extract the scaling dimensions for

a number of operators. It is helpful to organize this analysis according to the representation

content of the subalgebra gIR × su(2)D, where su(2)D is the subalgebra implicitly defined

by a choice of nilpotent orbit. For example, since the mesons transform in the adjoint

representation of gUV, there is a corresponding decomposition into representations:

gUV ⊃ gIR × su(2)D (3.20)

adj(gUV)→
⊕
a

(
R(a), j(a)

)
, (3.21)

where on the righthand side we implicitly sum over irreducible representations of gIR ×
su(2)D which appear in the decomposition of the adjoint. More generally, given operators

in some representation of gUV, we can always decompose into irreducible representations

of gIR × su(2)D.

Supposing then that we have a UV operator transforming in a spin j representation of

su(2)D, we get operators of T3 charge j, j − 1, . . . ,−j, and we can calculate their scaling

dimension in the IR theory using our infrared R-symmetry:

∆IR =
3

2

(
RUV +

(
t∗
2
− 1

3

)
JN=2 − t∗T3

)
. (3.22)

In the specific case of a Coulomb branch scalar Z, we know that since it has vanishing I3

charge, we have 3RUV(Z) = JN=2 (Z), and T3(Z) = 0 (as it is neutral under all of gUV),

so we immediately obtain:

∆IR(Z) =
3

2
t∗ ×∆UV(Z). (3.23)

In the case of a mesonic operator Oj,s transforming in a spin j representation of su (2)D,

with T3 charge s, the scaling dimension in the IR is:

∆IR (Oj,s) = 3− 3

2
t∗(1 + s). (3.24)

3.1.2 Monotonicity

With these results in place, we now show that various numerical quantities are indeed

monotonic as we proceed to larger orbits in the nilpotent cone. We will also establish this

numerically by “brute force” when we turn to an analysis of explicit N = 2 theories.

To begin, we recall from reference [54, 55] that there is the Hofman-Maldacena bound

on the ratio aUV/cUV for any N = 2 SCFT:

1

2
≤ aUV

cUV
≤ 5

4
. (3.25)

We now use this general bound to establish some monotonicity results for nilpotent mass

deformations.
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Now, as we proceed to larger orbits, the size of the corresponding embedding indices

necessarily increases. Introducing the parameter:

K ≡
n∑

i=1

k
(i)
UVr

(i), (3.26)

we observe that this quantity always increases as we proceed down a directed path in the

Hasse diagram. To establish various monotonicity results, it thus suffices to evaluate their

response as we vary K.

First of all, we can consider the parameter t∗ given by equation (3.13), treated as a

function of K. If we introduce the Hofman-Maldacena bounds, as well as the constraints

from unitarity aUV, cUV, k
(i)
UV > 0, we immediately find (as can be checked explicitly using

Mathematica) that the derivative:
∂t∗
∂K

< 0, (3.27)

so in particular, t∗ always decreases along a flow. Moreover, since the Coulomb branch

operators are all proportional to t∗, we also learn that these dimensions are also always

strictly decreasing.

One can also perform a similar analysis for the parameter aIR as a function of K. In

addition to the numerical bounds already introduced, we also require t∗ > 0, which in turn

requires 16aUV− 12cUV−K > 0. Curiously enough, we find that in order for this quantity

to decrease monotonically, we need to impose a slightly stronger condition than that of

line (3.25) for the lower bound:
3

4
≤ aUV

cUV
≤ 5

4
. (3.28)

The most conservative interpretation of this sharper requirement is that as we pass to

larger orbits, we should expect some operators to decouple, in which case the expressions

used for t∗ and aIR would need to be modified anyway. We will indeed see examples of

this type, though we hasten to add that in the explicit models we consider, the sharper

condition of line (3.28) is actually satisfied.

3.2 Flipper field deformations

Having dealt with the case of plain mass deformations, we now turn to flipper field defor-

mations of an N = 2 SCFT. Recall that this involves promoting the mass parameters of

the N = 2 theory to an adjoint valued chiral superfield, and switching on a background vev:

δW = Trgflav
((madj +Madj) · Oadj) . (3.29)

Again, we confine our analysis to the case where this vev is a nilpotent mass deformation.

Since we are activating a breaking pattern which is identical to the case of the plain

mass deformation, much of the analysis of the previous section will carry over unchanged.

The primary issue is that now, we need to track the additional modifications to the in-

frared R-symmetry which come from having these additional fields transforming in the

adjoint representation.
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From the perspective of the UV theory, we have two decoupled SCFTs, namely the

original N = 2 fixed point, and a decoupled free chiral multiplet. Consequently, there is a

U(1) flavor symmetry with generator Tflip which acts on each flipper field, so that it has

charge +1. The trial infrared R-symmetry is then a general linear combination of the form:

Rflip
IR (t) = Rplain

IR (t) + tflipTflip (3.30)

where we have also left implicit the sum over all flippers. Here, the trial infrared R-

symmetry in the case of a plain mass deformation is:

Rplain
IR (t) = RUV +

(
t

2
− 1

3

)
JN=2 − tT3. (3.31)

Now, upon decomposing into representations of su(2)D, we see that all flipper fields

will deform the theory via operators such as Mj,−sOj,s. If we first activate the plain mass

deformation, and then couple to the flipper fields, we see that since the operators Oj,j with

the highest spin have the lowest scaling dimension, then these are the operators which

actually drive a new flow [16, 17]. For this to be so, we require a constraint on the infrared

R-charge assignments (see e.g. [12, 53]):

RIR(Mj,−j) +RIR(Oj,j) = 2, (3.32)

so the new trial IR R-symmetry is:

Rflip
IR (t) = Rplain

IR (t) +

(
t− 2

3

)
Tflip. (3.33)

We can also calculate the new trial aflip
trial(t) by breaking up the trace over states into

those coming from the original N = 2 theory, and those coming from the flipper fields

which actually participate in the flow. Doing so, we get:

aflip
trial (t) = aplain

trial (t) +
∑
j(a)

[
3

32

(
3
(
Rflip

IR (Mj(a),−j(a)
)− 1

)3
−
(
Rflip

IR (Mj(a),−j(a)
)− 1)

))]
,

(3.34)

where in the first term, aplain
trial (t) is the same quantity as in line (3.11), and in the second

set of terms, we sum over all highest spin states which appear in the branching rules for

the su(2)D subalgebra. The R-charge for each such flipper field is evaluated with respect

to the original R-symmetry of the plain mass deformation case, namely:

Rplain
IR (Mj(a),−j(a)

) =
2

3
+ j(a) × t. (3.35)

Maximizing over the parameter t appearing in aflip
trial (t), we again obtain the infrared

R-symmetry, and can read off the scaling dimensions of operators, much as before. By a

similar token, we can also read off the new value of the conformal anomaly cflip
IR . Collecting

these expressions here, we have [56]:

aflip
IR = aplain

IR (t∗)+
∑
j(a)

[
3

32

(
3
(
Rflip

IR (Mj(a),−j(a)
)−1

)3
−
(
Rflip

IR (Mj(a),−j(a)
)−1)

))]
(3.36)

cflip
IR = aplain

IR (t∗)+
∑
j(a)

[
1

32

(
9
(
Rflip

IR (Mj(a),−j(a)
)−1

)3
−5
(
Rflip

IR (Mj(a),−j(a)
)−1)

))]
, (3.37)

in the obvious notation.
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With the infrared R-symmetry in hand, we can also evaluate the new anomalies in-

volving the flavor symmetry. Since the flipper fields also transform in irreducible represen-

tations of gIR, the IR flavor symmetry, we need to take into account the specific branching

rules associated with the decomposition of the adjoint representation. With notation as in

line (3.19), we have:

kIR(h
(i)
li

) = Ind(h
(i)
li
→ g

(i)
UV)×KIR(gUV) + 6

∑
j(a)

(1− (1− T3(Mj(a),−j(a)
))t∗)Ind(ρa(h

(i)
li

)).

(3.38)

Here, Ind(ρa(h
(i)
l )) indicates the index of the representation associated with a given flipper

field for the flavor symmetry algebra h
(i)
li

.

Much as in the case of the plain mass deformations, we can read off the scaling dimen-

sions of our operators. The operator scaling dimensions for the Coulomb branch scalars

and mesonic operators are basically the same as in lines (3.23) and (3.24) except that now

we use a modified value for t∗ due to the coupling to flipper fields. In the case of the flipper

fields, we can read off the scaling dimensions of those that actually participate in a flow

via equation (3.32). For those flipper fields which do not actually participate in a flow, we

instead have a collection of decoupled free fields. In what follows, we shall ignore these

contributions, focussing exclusively on the interacting fixed point.

4 Emergent symmetries and operator decoupling

In our analysis so far, we have assumed that there are no emergent symmetries in the

infrared. Our aim in this section will be to discuss some general features of when to expect

emergent symmetries in the case of nilpotent mass deformations. We turn to specific

UV theories in the following sections. Turning the discussion around, the mathematical

ordering of nilpotent orbits provides some helpful clues on the nature of these candidate

fixed points.

Now, one way such emergent symmetries can show up is when various operators start

to decouple. Assuming that a fixed point is really present, if we assume the absence of

emergent symmetries and find the pathological behavior that some operator has dimension

below the unitarity bound, then it is an indication that this operator has actually decoupled.

The minimal procedure of reference [42] prescribes that we introduce an additional U(1)

flavor symmetry which only acts on the offending operator. From our starting point of

an N = 2 theory, the main thing we will be able to check is the scaling dimension of the

Coulomb branch and mesonic operators of the UV parent theory.

Another related possibility is that the IR theory actually enhances to an N = 2 super-

symmetric theory in the infrared. This can occur, for example, in the case of flipper field

deformations [16, 17], and recently a set of general sufficient conditions for such behavior

to occur were proposed in [57]. A necessary (but insufficient) condition to have such an en-

hancement is that the various anomalies of the IR fixed point all become rational numbers

rather than the algebraic numbers present for a more general nilpotent mass deformation.

There are however known counter-examples that have rational anomalies but no SUSY

enhancement to N = 2 [58].
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Our plan in this section will be to setup some general diagnostics for symmetry en-

hancement in the case of nilpotent mass deformations. First, we consider the decoupling

of Coulomb branch operators, and then we turn to the decoupling of mesonic operators.

After this we discuss some special cases associated with rational values for the anomalies.

Finally, we discuss some preliminary aspects of how the partial ordering implied by a Hasse

diagram lines up with the physical RG flows.

4.1 Decoupling of Coulomb branch operators

Suppose then, that we perform our initial a-maximization procedure, and, assuming the

absence of any emergent U(1)’s, we calculate the scaling dimension of a Coulomb branch

operator Z. According to our general formula from line (3.23), we have:

∆IR(Z) =
3

2
t∗ ×∆UV(Z). (4.1)

If this yields a value less than one, but we still expect the presence of an IR fixed point,

this is a strong indication that this operator has actually decoupled (and so has dimension

exactly one). By inspection of our expression for the parameter t∗ we see that this occurs

whenever the embedding index becomes sufficiently large.

Assuming this is the only operator to decouple, it is also straightforward to calculate

the new infrared R-symmetry. Following appendix B of [43], we have:

anew
IR (t) = aold

IR (t) +
3

32

[ (
3 (Rold(Z) + tZ − 1)3 − 3 (Rold(Z)− 1)3

)
− ((Rold(Z) + tZ − 1)− (Rold(Z)− 1))

]
(4.2)

for a in the IR. Here, tZ denotes the charge of Z under the emergent U(1) which only acts

on this operator. Performing a-maximization with respect to tZ then yields

Rnew(Z) ≡ Rold(Z) + tZ =
2

3
. (4.3)

At this point, we see that adding the emergent U(1) indeed corrects the scaling dimension

of the offending operator to one, and it decouples. Substituting in this result, along with

the fact that Rold(Z) = t×∆UV(Z) implies

anew
IR (t) = aold

IR (t)− 3

32

[
3 (∆UV(Z)t− 1)3 − (∆UV(Z)t− 1)

]
+

1

48
. (4.4)

Now, we perform the second part of a-maximization by taking the partial derivative of

anew
IR (t) with respect to t and setting it equal to zero. For the new value

tnew
∗ =− 4

3
(
48aUV−36cUV−3kUVr−4∆3

UV

)(−24aUV+12cUV+3∆2
UV

+
{

36c2
UV+36aUVkUVr−6kUVr∆UV+48aUV (−2+∆UV)(−1+∆UV)∆UV+∆4

UV

−3cUV (3kUVr+4∆UV (6+(−6+∆UV)∆UV))
}1/2)

(4.5)
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we find a maximum of anew
IR . Note that we use the abbreviation ∆UV for ∆UV(Z) in this

equation to increase the brevity. One can check that the second derivative of the trial

anew
IR (t) is indeed negative definite at the critical point, so we do get a local maximum.

Let us summarize the central charges after decoupling the offending operator:

anew
IR = aold

IR (tnew
∗ )− 3

32

[
3 (∆UV(Z)tnew

∗ − 1)3 − (∆UV(Z)tnew
∗ − 1)

]
+

1

48
(4.6)

cnew
IR = cold

IR (tnew
∗ )− 1

32

[
9 (∆UV(Z)tnew

∗ − 1)3 − 5 (∆UV(Z)tnew
∗ − 1)

]
+

1

24
(4.7)

Knew
IR = Kold

IR (tnew
∗ ) , (4.8)

where aold
IR , cold

IR , and Kold
IR are the central charges which were computed without the emer-

gent U(1). We emphasize that KIR does not receive any additional contributions besides

Kold
IR (tnew

∗ ) due to the fact that Z is not charged under the flavor symmetry. Thus, remov-

ing the contribution from such operators does not directly affect the flavor central charge,

just indirectly by modifying the value of t∗.

4.2 Decoupling of mesonic operators

Let us now turn to the possible decoupling of mesonic operators. When we turn to specific

examples, we find that this does not occur for the probe D3-brane theories, but does occur

for 4D conformal matter theories.

We first treat the case of plain mass deformations, and then turn to the case of flipper

field deformations. Returning to our general formula for the operator scaling dimensions

(in the absence of emergent U(1)’s), we see from equation (3.24) that the scaling dimension

of an operator Oj,s is:

∆IR (Oj,s) = 3− 3

2
t∗(1 + s). (4.9)

So, the bigger the spin of the operator under the su(2)D subalgebra, the smaller the scaling

dimension. This is counteracted to some extent by the decreasing value of t∗, though in

practice, it is still true that as we descend to larger nilpotent orbits, more mesonic operators

start to decouple. For a given spin j representation of su(2)D, it is hopefully clear that

the highest spin state with s = j will have lowest candidate scaling dimension, so if this

operator has scaling dimension above the unitarity bound, the remaining operators in the

same su(2)D multiplet will also be above the bound.

On the other hand, if the highest spin operator falls below the unitarity bound, we can

again posit that it decouples, with a single emergent U(1) which acts only on this operator.

Now, in addition to the highest spin operator Oj,j , there are often other values of s in the

same multiplet which might also appear to violate the unitarity bound. Note, however,

that via our previous discussion of the broken flavor symmetry generators and the relation

of equation (2.15):

− 1

4
D

2Jj,s = Oj,s−1, (4.10)

we know that components of the flavor current and the mesons pair up in long multiplets.

As a result, we again only need to apply our procedure for the “top spin” operators of a

given su(2)D multiplet.
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Once again, reference [43] tells us that all we need to do is remove the contribution

from the offending operator Oi as follows:

anew
IR (t) = aold

IR (t) +
∑
i

3

32

[ (
3 (Rold(Oi) + tOi − 1)3 − 3 (Rold(Oi)− 1)3

)
− ((Rold(Oi) + tOi − 1)− (Rold(Oi)− 1))

]
. (4.11)

Naively, one would take the index i in this equation to run over all mesons which appear

to have dimension below the unitarity bound. However, our discussion of the deformed

symmetry current near line (2.15) shows that only the highest spin component of each

su(2)D multiplet actually participates in the chiral ring of the IR fixed point.

The procedure of a-maximization with respect to tOi then yields

Rnew(Oi) ≡ Rold(Oi) + tOi =
2

3
.

Again, we see that all bad Oi decouple. The value of t∗ is determined by a-maximization

of anew
IR (t) and the corresponding anomalies are:

anew
IR = aold

IR (t)−
∑
i

3

32

[
3 (Rold(Oi)− 1)3 − (Rold(Oi)− 1)

]
+

1

48
(4.12)

cnew
IR = cold

IR (t)−
∑
i

1

32

[
9 (Rold(Oi)− 1)3 − 5 (Rold(Oi)− 1)

]
+

1

24
. (4.13)

We can also give a general formula for the new kIR(h
(i)
li

) after we decouple all the offend-

ing mesons:

kIR(h
(i)
li

) = Ind(h
(i)
li
→ g

(i)
UV)×KIR(g

(i)
UV)− 6

∑
a

(1− (1 + T3(Oa))t∗)Ind(ρa(h
(i)
li

)), (4.14)

where Ind(ρa(h
(i)
l )) is the index of the irreducible representation under which Oi transforms,

and t∗ is the fixed value of the maximization parameter at the last step when there are no

unitarity bound violations anymore.

Consider next the case of mesonic operators which decouple in the flipper field defor-

mations. As noted in [53], when an operator decouples, one can introduce an additional

“flipping field” which couples to this field. Doing this is equivalent to the standard proce-

dure of introducing an additional U(1) anyway. Let us see how this works in detail.

With each M , there comes an additional U(1) symmetry in the UV theory. Coupling

the mesons to the M ’s protects them from dropping below the unitarity bound in the IR.

From another point of view, the process of removing one of the previously offending O’s

is equivalent to adding a coupling to M , as explained in [53]. Compared to the plain mass

deformation the new UV U(1) is equivalent to the emergent U(1) that we would have to

introduce by hand, once a meson drops below the unitarity bound. Hence, for all flipper

field deformations we do not need to worry about any of the mesons decoupling or how

it might affect the anomalies. This is automatically being taken care of by the M ’s. In

fact as explained in [53], the mesons O are zero in the chiral ring, and therefore there are
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no unitarity violations associated to them. In the following, we describe this intriguing

mechanism in more detail from another point of view.

The analysis involves essentially the same equations as already presented in section 3,

which we present here for convenience of the reader. Recall that with flipper field de-

formations, we have a free chiral superfield M in the adjoint of gUV coupled to Oadj via

δW = TrgUV(Madj ·Oadj), with a background value 〈Madj〉 = madj our nilpotent mass term.

There is automatically an extra U(1) symmetry for each Mj(a),−j(a)
in the UV. The first

part of the trial IR R-charge is fixed by the plain mass deformation term TrgUV(madj ·Oadj).

In the UV the Mj(a),−j(a)
are free multiplets and they are charged under an extra U(1). We

call the generator corresponding the this extra U(1) Tflip. The charge of the fluctuation

of M is normalized to Tflip(M) = 1, and nothing else is charged under it. Moreover we

know that T3(Mj(a),−j(a)
) = −T3(O(j(a),j(a))) = −j(a). Now, we have to take this additional

symmetry into account while computing the trial IR R-charge

RIR = RUV +

(
t

2
− 1

3

)
JN=2 − tT3 + tflipTflip . (4.15)

Applying this relation to the superpotential deformation δW , we find

Rnew
IR (δW ) = Rold

IR (Oj(a),j(a)
) + tflip +

2

3
− tT3(M(j(a),−j(a))) (4.16)

So, we have:

Rold
IR (O) + tflip +

2

3
− tT3(Mj(a),−j(a)

) = 2 (4.17)

=⇒ tflip =
4

3
−Rold

IR (O) + tT3(Mj(a),−j(a)
) = t− 2

3
(4.18)

This implies an additional contribution to aIR = aoldIR + δaIR as follows:

δaIR =
3

32

[
3(tflipTflip(M)−t∗T3(M)+RUV(M)−1)3−

(
tflipTflip−t∗T3(M)+RUV(M)−1

)]
=

3

32

[
3(tflipTflip(M)−t∗T3(M))3−3(tflipTflip(M)−t∗T3(M))2+

2

9

]
=

3

32

[
3

(
4

3
−RIR(O)

)3

−3

(
4

3
−RIR(O)

)2

+
2

9

]
=− 3

32

[
3(RIR(O)−1)3−(RIR(O)−1)

]
. (4.19)

As a result we can see that adding an additional U(1) through the above coupling is

equivalent to removing the contribution from the “bad” operators directly. This is why

the flipper fields automatically rescue the mesons whenever they would naively drop below

the unitarity bound had this coupling not been there. These additional coupling terms

are identical to the ones that we were forced to add whenever one of the mesons dropped

below the unitarity bound before adding flipper fields.
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Another quicker approach which builds upon equation (4.19) is to make use of the fact

that R(M) +R(O) = 2 so that we get:

δaIR = − 3

32

[
3 (2−RIR(M)− 1)3 − (2−RIR(M)− 1)

]
= − 3

32

[
3 (−RIR(M) + 1)3 − (−RIR(M) + 1)

]
=

3

32

[
3 (RIR(M)− 1)3 − (RIR(M)− 1)

]
. (4.20)

Therefore, adding directly the contribution from the M ’s is equivalent to removing the

contribution from the “bad” O’s. This recovers our expressions for aIR and cIR up to the

presence of free chiral multiplets that do not couple.

As a result, none of the mesons in the flipper deformed theories can drop below the

unitarity bound because they are all automatically rescued by the M ’s to which they couple.

4.3 Rational theories

One of the interesting features of the “brute force” sweeps we perform in later sections

reveals that in some cases, the anomalies are all rational numbers, even though a priori,

we should only expect algebraic numbers as per the procedure of a-maximization. We

refer to such IR fixed points as rational theories. Clearly, this suggests some additional

emergent structure in the infrared, and in some favorable circumstances, this can also be

identified with the appearance of enhanced N = 2 supersymmetry, as in the case of the

Maruyoshi-Song deformations [16, 17]. In the specific examples we consider, we find that

this can happen both with and without operators decoupling, and both for plain mass

deformations and flipper field deformations, see appendix C for details.

There has very recently been some progress in understanding some additional sufficient

criteria for N = 2 enhancements [57]. The main idea in this analysis is that whenever we

encounter a flavor singlet operator of the IR theory, we need to be able to interpret as a

scalar operator parameterizing a direction of the Coulomb branch. This is not the case in

our rational theories, but it is also unclear whether there is any additional supersymmetry

enhancement. We leave a full treatment of possible enhancements in these theories for

future work.

4.4 Ordering of RG flows

As we can see, there is no clean expression that describes aIR as a function of the embedding

index, once we take into account operators that decouple in the IR. One might rightfully

worry that aIR would not necessarily be a simple monotonically decreasing function of

r anymore. However, we observe empirically that the RG flows continue to follow the

trajectory of paths through the Hasse diagram, even after introducing emergent U(1)’s

and flipper field operators. This is explicitly shown in the explicit examples we consider.

We close this section with two important remarks:

1. If no operator drops below the unitarity bound, the theories are guaranteed to follow

the flow pattern specified by the Hasse diagrams.
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2. In all of the other cases studied in this paper, even when operators decouple, we still

observe that the RG flows respect the partial ordering of nilpotent orbits. So, while

the RG flows could have a weaker ordering than the mathematical ordering (if the

wrong mesons hit the unitarity bound) we see that they do not appear to violate the

partial ordering of nilpotent orbits.

5 D3-brane probe theories

In the previous sections we introduced a general procedure for treating nilpotent mass

deformations. In this section, we turn to a systematic analysis of all such deformations for

the N = 2 theories defined by a D3-brane probing a 7-brane with D4, E6, E7 or E8 flavor

symmetry. In what follows we do not include the contribution from the decoupled free

hypermultiplet with scalars parameterizing motion of the D3-brane parallel to the 7-brane.

Some examples of nilpotent mass deformations for these theories were analyzed in [9],

as well as [16]. In the F-theory interpretation where we wrap the 7-brane on a surface SGUT,

we have a partially twisted gauge theory with a (0, 1)-connection and an adjoint valued

(2, 0) form Φ(2,0) [59] (see also [60, 61]). In terms of the associated F-theory geometry,

deformations of Φ(2,0) with non-vanishing Casimir invariant translate to complex struc-

ture deformations of the associated elliptically fibered Calabi-Yau fourfold. The nilpotent

case is especially interesting because it is essentially “invisible” to the complex geome-

try of the model. We can then view the mass parameters madj as background values for

Φ(2,0) [9, 10], and the particular case of a nilpotent mass deformation defines a T-brane

configuration [11, 31–41].

From this perspective, it is also natural to view the flipper field deformation as pro-

moting the zero mode of Φ(2,0) to a dynamical field. This is actually somewhat subtle in the

context of a full F-theory compactification, because making Φ(2,0) dynamical requires us

to wrap the 7-brane on a compact Kähler surface, which also introduces dynamical gauge

fields (zero modes from the (0,1) connection can be eliminated by choosing a suitable sur-

face and background vector bundle). However, by introducing a sufficiently large number

of additional spectator fields which also interact with this gauge field, we can always take

a limit where this gauge theory is infrared free (in contrast to the case typically assumed

in decoupling limits from gravity).

In both the case of plain mass deformations as well as its extension to flipper field

deformations, we see that the IR fixed points defined by the D3-brane provide additional

insight into the structure of T-brane configurations in F-theory.

Let us now turn to an analysis of the fixed points in these theories. Much as in the

earlier sections of this paper, it is helpful to split our analysis up into the cases of plain

mass deformations and flipper field deformations. We also discuss in detail the special case

of rational theories, which suggest additional structure in the IR. This includes all the

previous N = 2 enhancement theories found in [16], as well as another one which comes

about from deformations of the E7 Minahan-Nemeschansky theory (see also [62]).
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G H0 H1 H2 D4 E6 E7 E8

∆UV(Z) 6
5

4
3

3
2 2 3 4 6

aUV
43
120

11
24

7
12

23
24

41
24

59
24

95
24

cUV
11
30

1
2

2
3

7
6

13
6

19
6

31
6

kUV
12
5

8
3 3 4 6 8 12

Table 2. Scaling dimensions and anomalies of rank 1 4D N = 2 SCFTs.

5.1 Summary of UV N = 2 fixed points

In this section we briefly summarize some aspects of the N = 2 theories. We first list the

anomalies and scaling dimensions of the Coulomb branch operator Z. These values can be

found in [63] and are summarized in table 2 for later convenience.4

From there the anomalies and scaling dimensions in the IR can directly be computed

from the previously derived equations. The only necessary information is the embedding

index of the su(2)D subalgebra defined by the nilpotent orbit. Since we only have one

flavor symmetry factor, the Cartan matrix is uniquely specified by the nilpotent orbit one

wants to consider. Then it is only a matter of evaluating the formulae of sections 3 and 4.

5.2 Plain mass deformations

It is noteworthy that for all of the rank one probe D3-brane theories, the mesons never ap-

pear to decouple. However, ∆IR(Z) sometimes does decouple when the value of r becomes

too large. In general the unitarity bound for the operator Z is violated whenever:

r ≥ 5 for SO(8)

r ≥ 19 for E6

r ≥ 40 for E7

r ≥ 107 for E8 . (5.1)

There are a large number of possible nilpotent deformations. Due to the size of the

resulting tables we only list our results for flavor symmetry D4 and all rational results

for the exceptional groups. Rational coefficients are of particular interest as they suggest

additional structure present in the IR. When comparing our results with the subset of

cases studied in [9] we find perfect agreement aside from the last column of table 5 which

contains the correct value of t∗ but a minor typo for the values of aIR and cIR.

The complete list of all the possible deformations can be accessed via a Mathematica

routine summarized in appendix C. Due to the very large amount of data we only list here

the rational results for the exceptional groups in appendix C.

The tables are organized as follows. For the top tables, first we list the Bala-Carter label

of the deformation, or simply the partition of the fundamental representation’s splitting

4While it is entirely possible to study nilpotent deformations of the Argyres-Douglas theories they are

too simple to be of interest. However, for convenience we do list their UV values in table 2.
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Figure 4. Plots of aIR (blue stars) and cIR (green triangles) vs embedding index r for the different

probe D3-brane theories. The red vertical dashed line denotes the largest value of r before the

Coulomb branch operator Z decouples. Anything to the right of this line has a single emergent

U(1) to rescue the Coulomb branch operator. The plots are log-scaled on the x-axis for presentation

purposes due to the fact that the region of deformed theories is denser around lower values of r and

becomes more sparse as r increases.

in the case of SO(8). The second column gives the value of the embedding index r. The

following three columns give the anomalies aIR and cIR, as well as the value of the parameter

t after re-doing any a-maximization if necessary. Whenever fields decouple (because they

first hit the unitarity bound and are rescued by emergent U(1)’s) then we can look at the

interacting part versus the complete contribution to aIR and cIR. Indeed, whenever an

operator decouples it contributes a factor of 1/48 or 1/24 to aIR and cIR respectively, and

we separately report these values in our tables. The first number in columns 3 and 4 is only

the interacting piece, while the second number also includes the contribution from any free

multiplets that decoupled. Thus those numbers only differ by an integer n times 1/48 (or

1/24), where n is equal to the number of multiplets generators that have decoupled and

become free. If there is no emergent U(1) introduced and no field decouples then there is

only an interacting piece and only the first number makes sense and is listed. Finally, the

last two columns give the scaling dimension of the Coulomb branch parameter Z and the

lowest scaling dimension of the mesons O’s.

For the bottom tables we first list the Bala-Carter label of the deformation, followed by

the residual flavor symmetry. The following four columns correspond to the flavor central
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Figure 5. Plots of cIR vs. aIR for plain nilpotent mass deformations of the different probe D3-brane

theories.

charges kIR taken with respect to the residual flavor symmetry. For each we list their value

with only the interacting part of the theory or including the free fields which decoupled in

seperate columns. Finally, we note that there are separate values for each of the subgroups

in the product decomposition of the residual flavor, hence the multiple values listed in each

column. For the theories with exceptional flavor symmetry we only list values that have

rational anomalies.

Furthermore, as it is impractical to list all the other values in a single table we provide

plots of aIR and cIR as functions of the embedding index r:

As we can see, as r increases, the anomalies decrease. Whenever an additional defor-

mation is introduced the embedding index increases. Physically, this translates in a flow to

a lower IR theory down the Hasse diagram of possible RG flows. As a result we expect the

degrees of freedom to decrease, that is aIR should decrease along this Hasse diagram. The

fact that aIR is a monotonically decreasing function of r is an easy consistency check. We

also note that the interacting piece of the anomaly (first value of columns 3) also decreases

the same way.

It is also interesting to note that for a given UV N = 2 fixed point, the ratio of anoma-

lies aIR/cIR remains roughly constant over the entire nilpotent network. Reference [49]

noticed a similar effect. We also determine the overall statistical spread in the value of the

ratio aIR/cIR for plain mass deformations of the probe D3-brane theories. By inspection of
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D4 E6 E7 E8

Mean 0.86 0.83 0.82 0.81

Std. Dev. 0.03 0.03 0.03 0.03

Max 0.94 0.94 0.94 0.94

Min 0.82 0.79 0.78 0.77

Table 3. Table of means and standard deviations for the ratio aIR/cIR across the entire nilpotent

network defined by plain mass deformations of probe D3-brane theories. We also display the

maximum and minimum values.

the plots in figure 4, we see that there is a roughly constant value for each theory. We also

calculate the mean and standard deviation by sweeping over all such theories, the results

of which are shown in table 3. Quite remarkably, the standard deviation is on the order of

1% to 5%, indicating a remarkably stable value across the entire network of flows. Another

curious feature is that the mean value of aIR/cIR decreases as we increase to larger flavor

symmetries. Precisely the opposite behavior is observed in the nilpotent networks of 4D

conformal matter.

5.3 Flipper field deformations

Consider next flipper field deformations of the probe D3-brane theories. As one would

expect, we recover the results from [18]. In appendix C we present all our results for

D4 flavor symmetry and only list the values with rational anomalies for the exceptional

flavors E6,7,8. Furthermore, we highlight cases where we obtain known enhancements to

N = 2 theories such as H0, H1, and H2 (as already pointed out in [18]), and we find

an enhancement of the E7 Minahan-Nemeschansky theory to the Argyres-Douglas theory

H1, in agreement with [56, 57, 62]. It is associated with the Bala-Carter label E6 which

has embedding index r = 156. In such cases we can compute the embedding index rF of

the residual flavor symmetry and see that not only aIR and cIR match the known values

but kIRrF also yields the proper value for the flavor central charge of these theories. It

is noteworthy that in those particular cases, the chiral multiplets, Mj(a),−j(a)
, that survive

transform trivially under the residual flavor symmetry and therefore do not introduce any

additional contributions to the flavor central charge. This is however not true in general.

We also again plot aIR and cIR as functions of the embedding index r for each of the

above cases.

This time we see that the central charges do not exactly decrease as the embedding

index r increases. However, they do decrease along the flows defined by the Hasse-diagrams,

as expected. Another interesting feature of these Hasse diagram flows is that the number

of flipper field deformations which actually participate in a flow can vary wildly from orbit

to orbit (since the number of su(2)D irreducible representations also jumps a fair amount).

Of course, such fields must be included in computing various anomalies, even if they serve

to decouple mesonic operators which drop below the unitarity bound. Doing so, we find

that aIR indeed decreases monotonically along a flow.
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Figure 6. Plots of aIR (blue stars) and cIR (green triangles) vs embedding index r for the different

flipper field deformations of probe D3-brane theories.

This raises the question of alternative numerical invariants instead of the embedding

index which might be used to order RG flows in this class of theories. We have chosen the

embedding index because this is the quantity which naturally appears in the construction

of the infrared R-symmetry (see equations (3.14)). Additionally, it is numerically simple

to obtain and often a useful proxy for the ordering of the RG flows. We are not aware

of any other quantity which could provide a better trade off between accuracy and the

complexity to compute it. Looking at the Hasse-diagram of the corresponding nilpotent

orbits, one would expect that a more accurate description requires more parameters than

just one. This would turn the presented plots into higher dimensional ones. For instance,

the x-axis would need to be replaced by a series of branches corresponding to the full

Hasse diagrams. The resulting plots would be much more complex than they need to be.

Especially given how closely the embedding index gets to properly ordering the RG flows.

Hence, we continue to rely on this physical parameter rather than try and introduce a less

natural quantity.

Finally, another interesting feature of our analysis is that the ratio aIR/cIR is roughly

constant for a fixed deformation, given a flavor symmetry gUV in the UV (see figure 7).

Much as for the plain nilpotent mass deformations, the overall statistical spread in the value

of the ratio aIR/cIR is also remarkably small, and is on the order of 1% to 5%, indicating a

remarkably stable value across the entire network of flows. Another curious feature is that

– 30 –



J
H
E
P
0
5
(
2
0
1
9
)
0
7
4

D4 E6 E7 E8

Mean 0.73 0.69 0.67 0.65

Std. Dev. 0.04 0.04 0.03 0.03

Max 0.83 0.78 0.77 0.75

Min 0.66 0.62 0.6 0.59

Table 4. Table of means and standard deviations for the ratio aIR/cIR across the entire nilpotent

network defined by flipper field deformations of probe D3-brane theories. We also display the

maximum and minimum values.
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Figure 7. Plots of cIR vs. aIR for the different flipper field deformations of probe D3-brane theories.

the mean value of aIR/cIR decreases as we increase to larger flavor symmetries. Precisely

the opposite behavior is observed in the nilpotent networks of 4D conformal matter. See

table 4 for the specific values.

6 4D conformal matter theories

In this section we turn to the case of 4D conformal matter theories. In F-theory terms,

these are obtained from a pair of intersecting 7-branes each with gauge group G which

intersect along a common T 2, namely we have the compactification of 6D conformal matter

to an N = 2 theory. Some properties of these theories such as the anomaly polynomial

were determined in [46, 47], and their role as building blocks in generalized quiver gauge

theories was studied in [64, 65].
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(GL, GR) (Dk, Dk) (E6, E6) (E7, E7) (E8, E8)

aUV
1
24 (k(14k − 19)− 53) 613

24
817
12

1745
8

cUV
1
6 (k(4k − 5)− 13) 173

6
442
6

457
2

kflavL , kflavR 4k − 4 24 36 60

∆(Zi) {61, . . . , (2k − 2)1}
{61, 81, 91,

122}
{61, 81, 101,

122, 142, 183}
{61, 81, 122, 142,

183, 203, 244, 305}

Table 5. Anomalies and scaling dimensions for 4D N = 2 (G,G) conformal matter. In the last

row, the subscripts are the multiplicities, i.e. the number of Coulomb branch operators with that

specific scaling dimension.

Now, in this case, the interpretation of the mass parameters is somewhat different

from the D3-brane case. The reason is that the 4D conformal matter defines a current

which couples to the gauge fields of the 7-brane. More precisely, from the (0, 1) connection

and the adjoint valued (2, 0)-form, it is now the pullback of the (0, 1) connection A(0,1)

onto the T 2 which actually couples to the 4D conformal matter. A mass deformation

then corresponds to switching on a zero mode for this connection along the curve. Now

in the case where the associated Wilson loop is not unipotent (so that the zero mode is

not nilpotent), this would be an element of the Deligne cohomology D2,2(CY4) for the

associated elliptically fibered Calabi-Yau fourfold of the F-theory model (see [31] as well

as [33]). This can also be viewed as a T-brane deformation of sorts, because in the limit

where the mass parameter is nilpotent, this deformation is “invisible” in the associated

moduli space problem.5 Clearly, it is also natural to promote these background parameters

to a dynamical field, as will happen if we wrap these 7-branes on compact Kähler surfaces,

and some examples of weakly gauging flavor symmetries in this way were studied in [65].

To get a stringy embedding of the flipper fields, however, we must take a suitable limit

where the gauge fields become IR free, but the chiral superfields remain dynamical.

Our plan in the remainder of this section will be to discuss some further aspects of

these conformal matter theories. We begin by reviewing some aspects of the original N = 2

theories, and then turn to an analysis of the resulting nilpotent network of N = 1 fixed

points. When we turn to the plots and statistics for these networks, we treat the nilpotent

orbit with GL ↔ GR interchanged as distinct.

6.1 Summary of UV N = 2 fixed points

We now review some aspects of N = 2 (G,G) 4D conformal matter obtained from com-

pactification of (G,G) 6D conformal matter on a T 2. We present in table 5 the values for

the central charges and flavor symmetries, together with the dimensions and multiplicities

of the Coulomb branch operators. We give further details on how those results are obtained

in appendix B.

5More precisely, the moduli space can develop singularities, and as explained in [33], the gauge theory

on the 7-brane serves to complete the moduli space in these singular limits.
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The dimension of the Coulomb branch for the different conformal matter theories on

T 2 are

dimC (Coul [(Dk, Dk)]) = k − 3, (6.1)

dimC (Coul [(E6, E6)]) = 5, (6.2)

dimC (Coul [(E7, E7)]) = 10, (6.3)

dimC (Coul [(E8, E8)]) = 21, (6.4)

which matches the expectation from 6D [44]:

dimC (Coul [G])) = h∨G − rG − 1 , (6.5)

where rG is the rank of G and h∨G is the dual Coxeter number of G. In order to extract the

dimensions of the Coulomb branch operators for the different conformal matter theories,

we read off the scaling dimension of the deformations from the mirror geometries of the

elliptic threefold of the F-theory geometry. The mirror geometries for (En, En) theories

were provided in [48] and the (Dk, Dk) case can be obtained from the curve in equation

(5.4) of reference [46].

6.2 Plain mass deformations

The computations for conformal matter follow the general procedure outlined in previous

sections. We now have two flavor groups, so two nilpotent orbits labelled by corresponding

Bala-Carter labels. Each one comes with an embedding index rL and rR.

We have actually already encountered the (D4, D4) 4D conformal matter theory: it is

simply the rank one E8 Minahan-Nemeschansky theory (it can still be accessed with the

code described in appendix C). It mainly serves as a cross-check on the general procedure,

and we find perfect agreement for those deformations which live in an so(8) × so(8) sub-

algebra. Thus, we simply list in appendix C the rational theories in the case where the

parent 4D conformal matter theory has exceptional flavor symmetry. Due to their large

size the tables are also split in their length. The top half contains the Bala-Carter labels,

embedding indices, anomalies and t∗. The bottom half repeats the Bala-Carter labels and

t∗ before providing scaling dimensions. Finally, the tables for the flavor central charges are

too large to include here. So, we refer the reader to the companion Mathematica code for

those results.

We also provide contour plots of aIR vs. the embedding indices of the right and left

flavors. We hasten to add that while the partial ordering of nilpotent orbits enforces a

corresponding ordering for the associated embedding indices, the converse is not true (the

Hasse diagram has more fine structure). This is an unfortunate artifact of displaying all

of our data with respect to a two-dimensional contour plot. Of course, the plots (just like

the tables) are symmetric under the interchange of rL with rR. We also see that for any

fixed value of rL the value of aIR decreases as the deformation on the right increases (along

the Hasse diagram) when the interacting piece plus free decoupled fields are considered, as

well as when central charges of only the interacting piece are analyzed (the plots for only

the interacting piece would look very similar).
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Figure 8. Plots of aIR vs left and right embedding indices for the different plain mass nilpotent

deformations of 4D conformal matter theories. The contour plots are obtained by extrapolating

between the actual data points which are labelled in green diamonds and red circles. The green

diamonds correspond to deformations where all operators remain above the unitarity bound and no

emergent U(1) appears. The red circles correspond to deformations where some operators hit the

unitarity bound and emergent U(1)’s are present. We emphasize that sometimes different nilpotent

orbits can have the same embedding index. A log-scale is used to spread the dense region at low

values of the embedding indices.

Furthermore, if we simultaneously increase both rL and rR while keeping rL = rR
(along the Hasse diagram), then aIR monotonically decreases. This is again consistent with

the expectation that the number of degrees of freedom should decrease as the deformations

becomes larger along the RG flows.

Another interesting feature of our numerical sweep is that we sometimes encounter

theories where an operator decouples, but further down the Hasse diagram, we see no

apparent unitarity bound violations. This does not contradict the general structure implied

by the nilpotent cone, since deeper down in the Hasse diagram it often happens that the

top spin operator of su(2)D may not be a top-spin operator deeper down in the nilpotent

cone. As we have already explained, the lower spin operators are trivial in the chiral ring of

the IR fixed point, so it is neither here nor there to see a jump in the number of emergent

U(1)’s as we proceed deeper into the IR.
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(D4, D4) (E6, E6) (E7, E7) (E8, E8)

Mean 0.80 0.91 0.94 0.97

Std. Dev. 0.01 0.01 0.004 0.003

Max 0.81 0.91 0.95 0.98

Min 0.77 0.89 0.92 0.96

Table 6. Table of means and standard deviations for the ratio aIR/cIR across the entire nilpotent

network defined by plain mass deformations of 4D conformal matter. We also display the maximum

and minimum values.
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Figure 9. Plots of cIR vs aIR for the different plain mass nilpotent deformations of 4D conformal

matter theories.

We also determine the overall statistical spread in the value of the ratio aIR/cIR for

plain mass deformations of the probe D3-brane theories. By inspection of the plots in

figure 9, we see that there is a roughly constant value for each theory. We also calculate

the mean and standard deviation by sweeping over all such theories. Just as in the case

of the probe D3-brane theories, we find that the standard deviation is on the order of

1% to 5%, indicating a remarkably stable value across the entire network of flows. The

specific values are displayed in table 6. Another curious feature is that the mean value of

aIR/cIR increases as we go to larger UV flavor symmetries. Precisely the opposite behavior

is observed in the nilpotent networks of probe D3-brane theories.
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(D4, D4) (E6, E6) (E7, E7) (E8, E8)

Mean 0.73 0.87 0.92 0.96

Std. Dev. 0.01 0.02 0.01 0.01

Max 0.80 0.91 0.95 0.98

Min 0.68 0.81 0.86 0.91

Table 7. Table of means and standard deviations for the ratio aIR/cIR across the entire nilpotent

network defined by flipper field deformations of 4D conformal matter. We also display the maximum

and minimum values.

6.3 Flipper field deformations

Finally, we come to flipper field deformations of conformal matter. The analysis is sim-

plified by the fact that we do not need to worry about mesons decoupling since they are

automatically rescued (if they drop below the unitarity bound) by the flipper fields M to

which they couple.

As before, the results with rational values are tabulated in appendix C, and more

general deformations can be accessed via the Mathematica code.

Finally, we provide contour plots of aIR vs. the left and right embedding indices rL and

rR. Again, we emphasize that what really needs to be monotonic is the flow down the Hasse

diagram, which in most cases (though not all) aligns with the increase of the embedding

indices rL and rR. Quite remarkably, even this coarse data based on the embedding indices

(though there are a few exceptions) usually is enough to establish monotonicity.

We also determine the overall statistical spread in the value of the ratio aIR/cIR for

flipper field deformations of 4D conformal matter. By inspection of the plots in figure 11,

we see that there is a roughly constant value for each theory. We also calculate the mean

and standard deviation by sweeping over all such theories, displaying the results in table 7.

As in all the other cases we have considered, the standard deviation is on the order of 1%

to 5%, indicating a remarkably stable value across the entire network of flows. Another

curious feature is that the mean value of aIR/cIR increases as we increase to larger flavor

symmetries. Precisely the opposite behavior is observed in the nilpotent networks of probe

D3-brane theories.

7 Conclusions

One of the important open issues in the study of conformal field theories is to better

understand the totality of fixed points, and their network of flows under deformations. In

this paper we have shown that a great deal of information on the structure of RG flows for

4D SCFTs can be extracted in the special case of nilpotent mass deformations. Starting

from a UV N = 2 SCFT, we have presented a general analysis of the resulting N = 1 fixed

points, both in the case of plain mass deformations, as well as in the generalization to flipper

field deformations, where these parameters are treated as background vevs for a dynamical

adjoint valued N = 1 chiral superfield of the parent theory. In addition to presenting a

general analysis of the resulting fixed points, we have performed an explicit sweep over all
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Figure 10. Plots of aIR vs left and right embedding indices for the different conformal matter

theories, with flipper field deformations. The contour plots are obtain by extrapolating between

the actual data points which are labelled in green.

possible nilpotent deformations for the N = 2 theories defined by D3-branes probing a D-

or E-type 7-brane, as well as the nilpotent deformations of 4D (G,G) conformal matter. In

both cases, we have found strong evidence that the mathematical partial ordering defined

by the nilpotent cone of the associated Lie algebras is obeyed in the physical theories as

well. Moreover, the directed graph of this partially ordered set also lines up with the

possible relevant deformations of the physical theory, providing a very detailed picture of

the possible RG flows from one fixed point to another. The structure of the Hasse diagrams

obtained provides a partially ordered set, which cleanly matches to physical 4D RG flows.

We can then take advantage of this fact (even in a more general setting) whenever there is a

flavor symmetry present and we activate a breaking pattern generated by a nilpotent orbit.
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Figure 11. Plots of cIR vs. aIR for flipper field deformations of 4D conformal matter.

In addition to presenting the full sweep over theories in a companion Mathematica program,

we have also observed a number of intriguing “phenomenological” features, including the

appearance of several theories with rational anomalies. We have also seen that for a given

UV N = 2 fixed point, the ratio aIR/cIR is roughly constant over the entire nilpotent

network. In the remainder of this section we discuss some avenues of further investigation.

One item left open by our analysis is a full treatment of the full network of RG

flows in cases where mesonic operators decouple from the new IR fixed point. As we

have already explained, such mesonic operators are often necessary to perform further

perturbations deeper down in the Hasse diagram, so the absence of these operators could

a priori pose some issues in the context of matching the full network defined by the Hasse

diagram to corresponding RG flows. Even so, we have not found an explicit example which

demonstrates that any links are in fact “broken.” It would be most illuminating to further

understand this class of theories.

Even within the class of theories considered here, there are some additional relevant

deformations we could contemplate switching on. This includes the possibility of mass

deformations which are semi-simple, namely their matrix representatives are diagonalizable.

Since such diagonal elements can also be presented as the sum of two nilpotent elements,

it is quite likely that the analysis presented here may implicitly cover such cases as well,

and may actually help to “explain” the appearance of our rational theories. It would be

interesting to analyze this issue further.
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The bulk of this paper has focussed on determining various properties of the new

infrared fixed points generated by nilpotent mass deformations, including the operator

scaling dimensions of various operators. Another tractable quantity to potentially extract

is the superconformal index. This could shed additional light on the IR properties of these

theories. Additionally, it would be quite interesting to see whether there is a corresponding

partial ordering for these indices, as induced by the partial ordering on nilpotent orbits.

Much of our analysis has focussed on the case of a single D3-brane probing an F-theory

7-brane, as well as the case of “rank one 6D conformal matter,” namely (in M-theory terms)

a single M5-brane probing an ADE singularity. It would be quite natural to extend the

analysis presented here to the case of additional branes. While the anomalies for the case

of multiple D3-branes have already been determined [63], the corresponding statements for

multiple M5-branes probing an ADE singularity, and the resulting 4D anomaly polynomial

are apparently unknown. With this result in hand, it would then be possible to study

nilpotent mass deformations for this class of theories as well.

Another natural class of theories involves the compactification of 6D conformal matter

on more general Riemann surfaces in the presence of background fluxes and punctures. In

this case, even before switching on nilpotent mass deformations, we expect from the general

procedure outlined in [66] to get a 4D N = 1 SCFT, as in references [46–48, 64, 65, 67–

77]. Many of these theories admit a weakly coupled Lagrangian description [77, 78], so

studying the possible nilpotent deformation and comparing the central charges with the

class of theories studied here might lead to Lagrangian descriptions for some of the resulting

IR fixed points.

Finally, we have also seen a number of numerical coincidences, including the appearance

of rational theories, as well as a relatively constant value for aIR/cIR over an entire nilpotent

network. It would be very interesting to understand whether these coincidences have a

simple top down interpretation.
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A The embedding index

The embedding index r here refers to that of a splitting of the group G = D4, or E6,7,8 into

irreducible representations (irreps) of SU(2). There are two equivalent ways of computing

this embedding index r. The first method is by computing the sum of the indices of the

SU(2) irreps divided by the index of the representation of the group G being split. That

is, given a representation ρ(G) of G and the branching ρ(G)→ m1n1 +m2n2 + . . . where
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m(a) are multiplicities and n(a) are SU(2) irreps, the embedding index is given by:

r =

∑
(a)m(a) · ind(n(a))

ind(ρ(G))
. (A.1)

For instance the splitting of D4 according to the partition [5, 3] gives: 28→ 3(3)+(5)+2(7)

so that

r =
3× 4 + 20 + 2× 56

12
= 12 (A.2)

As we can see, this definition of the embedding index is representation independent.

However it requires that we know the branching rule of splitting of G to SU(2) caused by

the deformation of interest.

For this reason, we turn to the second method which makes use of the decorated Dynkin

diagrams provided in [79] for the exceptional groups. Their labels specify a vector v in the

Cartan subalgebra which then yields the projection matrix P = v · C−1
g . Cg is the Cartan

matrix of the Lie algebra g, and P is the projection matrix of the weights of g into the

SU(2)D nilpotent subalgebra. As a result the decorated Dynkin diagrams can be directly

used to obtain the branching rules and the embedding indices,

r =
1

2
Tr
(
v · C−1

g · vT
)

(A.3)

where the 1
2 coefficient is simply a normalization factor.

Now, for D4 we do not have the decorated Dynkin diagrams readily available to us,

so we need to compute them. We start with the 12 possible partitions of SO(8) provided

by [80]. Following this procedure along with [81] one can obtain the vectors v for SO(2k)

in the same form as the ones provided by [79] for the exceptional groups. In summary the

procedure is as follows:

We begin by listing the possible partitions of SO(2k): pi = {nl} where i runs over the

number of possible nilpotent deformations of SO(2k) and nl are integers summing to 2k.

The nilpotent deformation defines an SU(2) subalgebra [H,X] = 2X, [H,X†] = −2X†,

[X,X†] = H where X is the nilpotent orbit/deformation. X is directly constructed from

the partitions: X is a 2k× 2k matrix filled on the first superdiagonal by the Jordan blocks

corresponding to the SU(2) irreps defined by the partitions. Namely
√
j(j + 1)−m(m+ 1)

where −j ≤ m ≤ j − 1. For instance, the SO(10) partition {7, 3} yields two Jordan

blocks. X is zero everywhere except on the first super diagonal which is given by the list

(
√

6,
√

10,
√

12,
√

12,
√

10,
√

6, 0,
√

2,
√

2) where for the first block (which defines the first

6 entries) we have j = 3 and for the second block (which defines the last 2 entries) we

have j = 1.

Then the corresponding Cartan matrix H is given by [X,X†] = H, which is a diagonal

matrix whose entries are then sorted in increasing order. Furthermore, SO(2k) has k Cartan

matrices Hq with q = 1, · · · , k. The projection matrix (or just vector here) is α = {αi}
given by solving the linear equations:

k∑
i=1

αiHi = H (A.4)
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and the decorated Dynkin diagrams are given by the vector v = α ·CSO(2k). Each partition

yields a different H and therefore a different set of equations (A.4) and Dynkin labels v.

We should note that this analysis makes extensive use of the LieArt package of refer-

ence [82].

SO(8) example. To illustrate we work out an example with SO(8) in detail:

One partition of SO(8) is given by [5, 3]. So the raising operator matrix is:

X =



0 2 0 0 0 0 0 0

0 0
√

6 0 0 0 0 0

0 0 0
√

6 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

2 0

0 0 0 0 0 0 0
√

2

0 0 0 0 0 0 0 0


(A.5)

and the corresponding Cartan matrix H = [X,X†] = diag(4, 2, 2, 0, 0,−2,−2,−4) after

sorting out the entries.

The 4 Cartans of SO(8) are given by:

H1 = diag(1,−1, 0, 0, 0, 0, 1,−1) (A.6)

H2 = diag(0, 1,−1, 0, 0, 1,−1, 0) (A.7)

H3 = diag(0, 0, 1,−1, 1,−1, 0, 0) (A.8)

H4 = diag(0, 0, 1, 1,−1,−1, 0, 0) (A.9)

where we are using the mathematician’s conventions to be consistent with the use of the

LieArt package.

The projection matrix α = (α1, α2, α3, α4) is then obtained by solving the equation:

α1H1 + α2H2 + α3H3 + α4H4 = H (A.10)

which yields:

α = (4, 6, 4, 4). (A.11)

Thus given the Cartan matrix:

CSO(8) =


2 −1 0 0

−1 2 −1 −1

0 −1 2 0

0 −1 0 2

 (A.12)

the decorated Dynkin diagram specifies a vector v = α · CSO(8) given by:

v = (2, 0, 2, 2) (A.13)

This procedure is repeated for every partition of SO(2k) so as to obtain all of the

necessary decorated Dynkin diagrams and projection matrices.
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2 0

2

2

Figure 12. Decorated Dynkin diagram for the [5, 3] partition of SO(8).

B From 6D to 4D conformal matter

In this appendix we collect some features of 6D conformal matter and its compactification

on a T 2. At long distances, this yields a 4D N = 2 SCFT. Here, we review both the scaling

dimensions of Coulomb branch operators and the anomalies of these theories.

Coulomb branch operators. In this subsection we calculate the scaling dimension

of the operators parameterizing the Coulomb branch. This data follows directly from

the analysis of references [46–48]. Our main task here is to extract from this analysis

the corresponding scaling dimensions. References [46, 47] implicitly give this information

by showing that 4D N = 2 (G,G) conformal matter is actually a compactification of a

class S theory, specifying the corresponding Gaiotto curve as well. In reference [48] the

corresponding Seiberg-Witten curve is obtained via the mirror to the elliptically fibered

Calabi-Yau threefold of the F-theory background used to produce the 6D SCFT. Observe

that F-theory compactified on a T 2 yields IIA on the same elliptic threefold, and mirror

symmetry takes us to type IIB. The advantage of the IIB presentation is that now the

Coulomb branch is parameterized in terms of the complex structure of this mirror geometry.

We opt to use the explicit Calabi-Yau geometries presented in reference [48]. To

aid comparison with the results of this reference, we refer to the theory of 6D conformal

matter with (G,G) flavor symmetry given by N M5-branes probing an ADE singularity as

T (G,N). In this paper we focus exclusively on the case N = 1.

We now use the results of reference [48] on the associated mirror geometries to compute

the scaling dimensions of the Coulomb branch for the theories T (E6,7,8, 1), on T 2. This

method has been used before for N = 2 SCFTs, and is essentially adapted from the

technique presented in reference [27].

The IIB mirror geometry for T (E6, 1) on T 2 is given by the following local Calabi-Yau

threefold:
f =w2+x3

1+x2
2ρ+ρ2+(m1+m

′
1y1)x1x

2
2+(m2+m

′
2y1)x1x2+(m3+u1y1+m

′
3y

2
1)x2

2

+(m4+u2y1+m
′
4y

2
1)x1+(m5+u3y1+m

′
5y

2
1)x2+(m6+u4y1+u5y

2
1 +m

′
6y

3
1) = 0

ρ= (1+y1+y2),

x2
2 = ρ.

where y1 is a C∗ coordinate, x1, x2, w, ρ are complex coordinates, mi are general mass
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parameters and ui are the coulomb branch operator vevs,

ui ≡ 〈Zi〉, (B.1)

f is a homogeneous polynomial in the complex coordinates and it scales as follows:

f(λax1, λ
bx2, λ

cρ, λdw, y1) = λef(x1, x2, ρ, w, y1). (B.2)

The holomorphic three-form is defined as follows

Ω =
dx1 ∧ dx2

w
∧ dy1

y1
(B.3)

By fixing the scale of Ω(λax1, λ
bx2, λ

cρ, λdw, y1) = λΩ(x1, x2, ρ, w, y1) to the unity, i.e.

[Ω] = 1, the first four monomials of f uniquely fix the other scalings

[x1] = a = 4, [x2] = b = 3, [ρ] = c = [w] = d = 6, [f ] = e = 12. (B.4)

Recalling that y1 does not scale since it is just a phase, we obtain the scaling dimension of

the Coulomb branch parameters,

[u1] = 6, [u2] = 8, [u3] = 9, [u4] = [u5] = 12. (B.5)

This agrees with the scaling dimensions of the Coulomb branch operators for the class S
trinions with two minimal and one maximal puncture in [83].

The IIB mirror Calabi-Yau for T (E7, 1) on T 2 is described by

f = x2
1 + x3

2ρ+ ρ3 + (m1 +m
′
1y1)x2ρ

2 + (m2 + u1y1 +m
′
2y

2
1)ρ2

+ (m3 + u2y1 +m
′
3y

2
1)x2ρ+ (m4 + u3y1 +m

′
4y

2
1)x2

2 + (m7 + u4y1 + u5y
2
1 +m

′
4y

3
1)ρ

+ (m6 + u6y1 + u7y
2
1 +m

′
5y

3
1)x2 + (m7 + u8y1 + u9y

2
1 + u10y

3
1 +m

′
7y

4
1) = 0.

ρ = (1 + y1 + y2).

where again y1 is a C∗ coordinate, and x1, x2, ρ are complex coordinates. The homogeneous

polynomial f scales as follows:

f(λax1, λ
bx2, λ

cρ, y1) = λef(x1, x2, y1). (B.6)

The holomorphic three-form reads

Ω =
dx2 ∧ dρ

x1
∧ dy1

y1
(B.7)

and we impose that it scales like [Ω] = 1. The first three monomials again fix the scaling

of the complex coordinates and of f :

[x1] = a = 9, [x2] = b = 4, [ρ] = c = 6, [f ] = e = 18. (B.8)
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By looking at the scaling of the other monomials involving the Coulomb branch vevs, the

scaling dimensions of the Coulomb branch parameters are assigned

[u1] = 6, [u2] = 8,

[u3] = 10, [u4] = [u5] = 12,

[u6] = [u7] = 14, [u8] = [u9] = [u10] = 18. (B.9)

This agrees with the scaling dimensions of the Coulomb branch operators for the class S
trinions with two minimal and one maximal puncture in [84].

The IIB mirror Calabi-Yau for T (E8, 1) on T 2 is described by

f = x2
1 + x3

2 + ρ5 + (m1 +m
′
1y1)x2ρ

3 + (uy2
1)ρ4 + (m2 + u1y1 +m

′
2y

2
1)x2ρ

2

+ (m3 + u2y1 + u3y
2
1 +m

′
3y

3
1)ρ3 + (m4 + u4y1 + u5y

2
1 +m

′
4y

3
1)x2ρ

+ (m5 + u6y1 + u7y
2
1 + u8y

3
1 +m

′
5y

4
1)ρ2 + (m6 + u9y1 + u10y

2
1 + u11y

3
1 +m

′
6y

4
1)x2

+ (m7 + u12y1 + u13y
2
1 + u14y

3
1 + u15y

4
1 +m

′
7y

5
1)ρ

+ (m8 + u16y1 + u17y
2
1 + u18y

3
1 + u19y

4
1 + u20y

5
1 +m

′
8y

6
1) = 0;

ρ = (1 + y1 + y2).

where again y1 is a C∗ coordinate, and the x1, x2, ρ are complex coordinates. The homoge-

neous polynomial f scales as in equation (B.6). The holomorphic three-form is analogous

to the E7 case, (B.7). By imposing [Ω] = 1, the first three monomials of f fix the scaling

of the coordinates,

[x1] = a = 15, [x2] = b = 10, [ρ] = c = 6, [f ] = e = 30. (B.10)

The other monomials involving the Coulomb branch vevs automatically assign the following

scaling dimensions

[u] = 6, [u1] = 8,

[u2] = [u3] = 12, [u4] = [u5] = 14,

[u6] = [u7] = [u8] = 18, [u9] = [u10] = [u11] = 20,

[u12] = [u13] = [u14] = [u15] = 24, [u16] = [u17] = [u18] = [u19] = [u20] = 30. (B.11)

This agrees with the scaling dimensions of the Coulomb branch operators for the class S
trinions with two minimal and one maximal puncture in [85].

Finally, for the Dk conformal matter theories T (SO(2k), 1) with k > 2 on T 2 the

scaling dimensions of the Coulomb branch operators can be read off in a similar way from

the curve (5.4) in [46].

Anomaly polynomials. Given the importance of the UV anomalies we now review

how they were obtained in table 5. When studying an M5-brane probing D- and E-

type singularities we obtain 6D SCFTs also called (G,G) 6D conformal matter with
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(G,G) (Dk, Dk) (E6, E6) (E7, E7) (E8, E8)

24α 10k2 − 57k + 81 319 1670 12489

48β −(2k2 − 3k − 9) −89 −250 −831

5760
7 γ k(2k − 1) + 1 79 134 249

5760
4 δ − (k(2k − 1) + 1) −79 −134 −249

24κL = 24κR 2k − 2 12 18 30

Table 8. Coefficients of 6D anomaly polynomial (B.12).

anomaly polynomial:

I8 = αc2(R6D)2 + βc2(R6D)p1(T ) + γp1(T )2 + δp2(T ) + κLp1(T )
Tr(F 2

L)

4

+ κRp1(T )
Tr(F 2

R)

4
+ . . . (B.12)

where the explicit expression for the 6D anomaly polynomial coefficients were computed

in [86], and are listed in table 8.

In order to obtain a 4D N = 2 SCFT, we compactify these theories on T 2 and consider

the general anomaly polynomial for a 4D theory

I6 =
kRRR

6
c1(R)3 − kR

24
p1(T )c1(R) + kRGLGL

Tr(F 2
GL

)

4
c1(R)

+ kRGRGR

Tr(F 2
GR

)

4
c1(R) + . . . , (B.13)

where R = RUV is the R-symmetry of the UV N = 2 SCFT, viewed as an N = 1 SCFT,

T is the formal tangent bundle, F is the field strength of GL or GR flavor symmetries, and

the dots indicate possible abelian flavor symmetries and mixed contributions. Moreover

we have the following relations

Tr(R3) = kRRR, Tr(R) = kR, Tr(RFA
GL,R

FB
GL,R

) = −
kRGL,RGL,R

2
δAB . (B.14)

From them, the definition of R, and

Tr
(
RN=2F

A
GL,R

FB
GL,R

)
= −

kL,R
2

δAB (B.15)

we read off the anomalies

aUV =
9

32
kRRR −

3

32
kR (B.16)

cUV =
9

32
kRRR −

5

32
kR (B.17)

kL = 3kRGLGL
(B.18)

kR = 3kRGRGR
. (B.19)

– 45 –



J
H
E
P
0
5
(
2
0
1
9
)
0
7
4

In terms of the 6D anomaly polynomial coefficients [46, 47], we finally identify

aUV = 24γ − 12β − 18δ (B.20)

cUV = 64γ − 12β − 8δ (B.21)

kL = 48κL (B.22)

kR = 48κR . (B.23)

Once evaluated at the values of table 8 the above equations yield exactly the UV values of

table 5, as expected.

C Accessing the complete tables

Included with the arXiv submission is a set of Mathematica scripts which can be used to

access the full set of theories generated by nilpotent deformations of the N = 2 theories

considered in this paper. Indeed, due to the rather large size of the dataset it is impractical

to list all of our results in the format of a paper.

Instead we have written a Mathematica script which outputs the complete list of all

possible nilpotent deformations for the theories described above. The necessary files are

attached to this paper (see the online ”Supplementary Material” section) and on the arXiv

page (to access them there, first proceed to the arXiv abstract page for this paper. On the

righthand side, there is a box with the title “Download.” Click on “Other formats” and

then download the source files for the arXiv submission).

To access the full database, one simply needs to download the following six

files and store them in the same folder: “ProbeD3brane.m”, “ConformalMatter.m”,

“ProbeD3braneFlavorK.m”, “ConformalMatterFlavorK.m”, “NilpotentDeformations.m”,

“Results.nb”. Essentially, the first file contains all of the information for nilpotent de-

formations of the probe D3-brane theories (with and without flipper field deformations),

except for the flavor central charge. The second file stores all of the information for the

nilpotent deformations of 4D conformal matter (with and without flipper field deforma-

tions), except for the flavor central charge. The next two files contain all of the information

about the flavor central charges for the Minahan-Nemeshansky and conformal matter the-

ories respectively. The file “NilpotentDeformations.m” does all of the formatting, and

finally the code “Results.nb” loads the previous three packages and outputs the results.

Thus the only file the user needs to run and worry about is the last one: “Results.nb”.

When running this file the user is provided with a list of options:

1. First one can choose between the four kinds of deformations: probe D3-brane theories

with plain mass deformations, probe D3-brane theories with flipper field deforma-

tions, 4D conformal matter with plain mass deformations, and 4D conformal matter

with flipper field deformations.

2. Secondly one can choose between the aIR, cIR anomalies and operator scaling dimen-

sions or the tables with the flavor central charges.
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3. Then the user should select the flavor groups: D4, E6, E7, or E8 for deformations

of the probe D3-brane theories, and (D4, D4), (E6, E6), (E7, E7), or (E8, E8) for

deformations of 4D conformal matter.

4. If a probe D3-brane theory is selected then the user can choose from two options:

(a) select a single deformation by choosing the Bala-Carter label (or partition of

D4) of the flavor group from the provided popup menu below.

(b) select the whole table.

5. If instead a 4D conformal matter theory is selected the user has three options:

(a) select a single deformation chosen by selecting the left and right Bala-Carter

labels (or partitions of D4) for the breaking of the left and right flavors.

(b) select all of the deformations with a given left (or right) deformation, by selecting

a single Bala-Carter label (or partition of D4).

(c) select the whole table.

6. The resulting table is then outputted. We also provide for the probe D3-brane the-

ories the branching rules from the adjoint of G to the SU(2) irreps for the selected

deformations.

Finally, due to the form of the general equations used to compute the central charges

it is clear that all of our results are algebraic numbers. However not all are rational. To dif-

ferentiate the two in the tables we list the rational values exactly (by keeping their rational

form) while we only give numerical values for the ones with irrational central charges.

For the convenience of the reader, in the following subsections we list the explicit

tables for all of the nilpotent deformations of the probe D3-brane theory with SO(8) flavor

symmetry, but only the rational theories for the other nilpotent networks.

As a point of notation, here we make reference to KIR as well as kIR.
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Nilpotent network for SU(2) with four flavors

[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))[
18
]

0 23
24

7
6

2
3 2.000 2.000[

22, 14
]

1 0.797 0.955 0.507 1.521 1.479

[3,15
]

2 0.710 0.846 0.435 1.305 1.695[
24]II 2 0.710 0.846 0.435 1.305 1.695[
24]I 2 0.710 0.846 0.435 1.305 1.695

[3,22,1] 3 0.652 0.773 0.390 1.170 1.538[
32, 12

]
4 0.608 0.719 0.358 1.074 1.390[

42]I 10 {0.453, 0.474} {0.499, 0.540} 0.248 1.000 1.513[
42]II 10 {0.453, 0.474} {0.499, 0.540} 0.248 1.000 1.513

[5,13
]

10 {0.453, 0.474} {0.499, 0.540} 0.248 1.000 1.513

[5,3] 12 {0.430, 0.451} {0.467, 0.509} 0.228 1.000 1.633

[7,1] 28 {0.345, 0.366} {0.349, 0.390} 0.151 1.000 1.639

[B-C] SU(2)D×Residual kIR interact kIR+free

[18] SO(8) 4 4

[22, 14] SU(2)× SO(4)× SU(2) {3.042, 3.042} {3.042, 3.042}
[3, 15] SU(2)× SO(5) {2.610} {2.610}
[24]II SU(2)× Sp(4) {2.610} {2.610}
[24]I SU(2)× Sp(4) {2.610} {2.610}

[3, 22, 1] SU(2)× SU(2) {2.339} {2.339}
[32, 12] SU(2)×U(1)×U(1) {3.221, 1.074} {3.221, 1.074}
[5, 13] SU(2)× SU(2) {2.975} {2.975}
[42]II SU(2)× SU(2) {2.975} {2.975}
[42]I SU(2)× SU(2) {2.975} {2.975}
[5, 3] SU(2) {} {}
[7, 1] SU(2) {} {}

Table 9. Plain nilpotent deformations of the probe D3-brane theory with D4 flavor symmetry.

The top table has the central charges aIR and cIR as well as scaling dimensions while the table

below contains the information about the flavor central charges.

– 48 –



J
H
E
P
0
5
(
2
0
1
9
)
0
7
4

[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))[
18
]

0
{

23
24 ,

37
24

} {
7
6 ,

7
3

}
2
3 2.000 2.000[

22, 14
]

1 {0.962, 1.358} {1.267, 2.058} 0.459 1.377 1.623

[3,15
]

2 {0.809, 1.267} {1.020, 1.936} 0.376 1.128 1.872[
24]II 2 {0.809, 1.267} {1.020, 1.936} 0.376 1.128 1.872[
24]I 2 {0.809, 1.267} {1.020, 1.936} 0.376 1.128 1.872

[3,22,1] 3 {0.728, 1.207} {0.911, 1.869} 0.344 1.033 1.709[
32, 12

]
4

{
7
12 ,

7
6

} {
2
3 ,

11
6

}
1
3 1.000 1.500

[5,13
]

10
{

11
24 ,

25
24

} {
1
2 ,

5
3

}
2
9 1.000 1.667[

42]II 10
{

11
24 ,

25
24

} {
1
2 ,

5
3

}
2
9 1.000 1.667[

42]I 10
{

11
24 ,

25
24

} {
1
2 ,

5
3

}
2
9 1.000 1.667

[5,3] 12
{

6349
13872 ,

1769
1734

} {
3523
6936 ,

5663
3468

}
10
51 1.000 1.824

[7,1] 28
{

43
120 ,

113
120

} {
11
30 ,

23
15

}
2
15 1.000 1.800

[B-C] SU(2)D×Residual kIR interact kIR+free

[18] SO(8) 4 16

[22, 14] SU(2)× SO(4)× SU(2) {6.490, 6.490} {10.491, 10.491}
[3, 15] SU(2)× SO(5) {3.745} {9.745}
[24]II SU(2)× Sp(4) {3.745} {9.745}
[24]I SU(2)× Sp(4) {3.745} {9.745}

[3, 22, 1] SU(2)× SU(2) {2.484} {8.484}
[32, 12] SU(2)×U(1)×U(1) {3, 1} {9, 3}
[5, 13] SU(2)× SU(2)

{
8
3

} {
32
3

}
[42]II SU(2)× SU(2)

{
8
3

} {
32
3

}
[42]I SU(2)× SU(2)

{
8
3

} {
32
3

}
[5, 3] SU(2) {} {}
[7, 1] SU(2) {} {}

Table 10. Flipper field deformations of the probe D3-brane theory with D4 flavor. The top table

has the central charges aIR and cIR as well as scaling dimensions while the table below contains the

information about the flavor central charges. The cyan highlighted entries align with the H0, H1

and H2 Argyres-Douglas theories, as first noted in [16, 17]. The other rational entry with partition

[5,3] also aligns with [18].
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Tables of rational theories: Minahan-Nemeschansky theories

[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))

0 0 41
24

13
6

2
3 3.000 2.000

A2 + 2A1 6 97
96

119
96

1
3 1.500 1.500

[B-C] SU(2)D×Residual kIR interact kIR+free

0 E6 6 6

A2 + 2A1 SU(2)× SU(2)×U(1) {18, 18} {18, 18}

Table 11. Plain nilpotent mass deformations of the Minahan-Nemeschansky theory with E6 flavor.

The top table has the central charges aIR and cIR as well as scaling dimensions while the table below

contains the information about the flavor central charges.

[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))

0 0 59
24

19
6

2
3 4.000 2.000

A1 1 158
75

401
150

8
15 3.200 1.400

A2 + 3A1 7 7150
5043

17785
10086

40
123 1.951 1.537

A4 +A2 24 478
507

1177
1014

8
39 1.231 1.462

(A5)’ 35 7075
8664

4345
4332

10
57 1.053 1.421

(A5)" 35 7075
8664

4345
4332

10
57 1.053 1.421

A6 56
{

3803
5776 ,

5885
8664

} {
2253
2888 ,

890
1083

}
8
57 1.000 1.526

D6(a1) 62
{

253
400 ,

49
75

} {
149
200 ,

59
75

}
2
15 1.000 1.400

E7(a3) 111
{

659
1296 ,

343
648

} {
373
648 ,

50
81

}
8
81 1.000 1.519

[B-C] SU(2)D×Residual kIR interact kIR+free

0 E7 8 8

A1 SU(2)× SO(12)
{

32
5

} {
32
5

}
A2 + 3A1 SU(2)×G2

{
320
41

} {
320
41

}
A4 +A2 SU(2)× SU(2)

{
480
13

} {
480
13

}
A′5 SU(2)× SU(2)× SU(2)

{
40
19 ,

120
19

} {
40
19 ,

120
19

}
A′′5 SU(2)×G2

{
40
19

} {
40
19

}
A6 SU(2)× SU(2)

{
224
19

} {
224
19

}
D6(a1) SU(2)× SU(2)

{
8
5

} {
8
5

}
Table 12. Plain nilpotent mass deformations of the Minahan-Nemeschansky theory with E7 flavor,

only rational values. The top table has the central charges aIR and cIR as well as scaling dimensions

while the table below contains the information about the flavor central charges.
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[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))

0 0 95
24

31
6

2
3 6. 2.

A2 + 3A1 7 223
96

281
96

1
3 3. 1.5

E8(a1) 760
{

5471
13872 ,

120
289

} {
2897
6936 ,

531
1156

}
2
51 1. 1.58824

[B-C] SU(2)D×Residual kIR interact kIR+free

0 E8 12 12

A2 + 3A1 SU(2)×G2 × SU(2) {12, 6} {12, 6}

Table 13. Plain nilpotent mass deformations of the Minahan-Nemeschansky theory with E8 flavor,

only rational values. The top table has the central charges aIR and cIR as well as scaling dimensions

while the table below contains the information about the flavor central charges.

[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))

0 0
{

41
24 ,

10
3

} {
13
6 ,

65
12

}
2
3 3.000 2.000

D4 28
{

7
12 ,

53
24

} {
2
3 ,

47
12

}
1
6 1.000 1.500

D5 60
{

11
24 ,

25
12

} {
1
2 ,

15
4

}
1
9 1.000 1.667

E6 156
{

43
120 ,

119
60

} {
11
30 ,

217
60

}
1
15 1.000 1.800

[B-C] SU(2)D×Residual kIR interact kIR+free

0 E6 6 30

D4 SU(2)× SU(3) {3} {15}
D5 SU(2)×U(1) {6} {24}

Table 14. Flipper field deformations of the Minahan-Nemeschansky theory with E6 flavor, only

rational values. The top table has the central charges aIR and cIR as well as scaling dimensions while

the table below contains the information about the flavor central charges. The cyan highlighted

entries align with the H0, H1 and H2 Argyres-Douglas theories, as first noted in [17, 18].
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[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))

0 0
{

59
24 ,

251
48

} {
19
6 ,

209
24

}
2
3 4.000 2.000

A2 + 3A1 7
{

12163
8214 ,

134899
32856

} {
121465
65712 ,

466453
65712

}
31
111 1.676 1.743

E6 156
{

11
24 ,

155
48

} {
1
2 ,

145
24

}
2
27 1.000 1.667

E7 399
{

43
120 ,

751
240

} {
11
30 ,

709
120

}
2
45 1.000 1.800

[B-C] SU(2)D×Residual kIR interact kIR+free

0 E7 8 44

A2 + 3A1 SU(2)×G2

{
284
37

} {
1246
37

}
E6 SU(2)× SU(2)

{
8
3

} {
44
3

}
Table 15. Flipper field deformations of the Minahan-Nemeschansky theory with E7 flavor, only

rational values. The top table has the central charges aIR and cIR as well as scaling dimensions while

the table below contains the information about the flavor central charges. The cyan highlighted

entries align with the H0 and H1 Argyres-Douglas theories, as first noted in [17]. Compared with

reference [17], we also find an additional flipper field deformation which yields the H1 theory for

the E6 Bala-Carter label, with embedding index r = 156. The other rational central charges are

also in agreement with [87].

[B-C] r aIR cIR t∗ ∆IR(Z) Min(∆IR(O’s))

0 0
{

95
24 ,

73
8

} {
31
6 ,

31
2

}
2
3 6.000 2.000

A3 10
{

497803
221952 ,

529689
73984

} {
635435
221952 ,

939321
73984

}
53
204 2.338 1.441

A3 +A1 11
{

139189
60552 ,

214667
30276

} {
91127
30276 ,

95318
7569

}
64
261 2.207 1.529

E7 (a5) 39
{

445
324 ,

2065
324

} {
281
162 ,

1901
162

}
4
27 1.333 1.667

E7 (a4) 63
{

1691
1452 ,

8951
1452

} {
541
363 ,

4171
363

}
4
33 1.091 1.545

E8 1240
{

43
120 ,

221
40

} {
11
30 ,

107
10

}
2
75 1.000 1.800

[B-C] SU(2)D×Residual kIR interact kIR+free

0 E8 12 72

A3 SU(2)× SO(11) {6} {32}
A3 +A1 SU(2)× SO(7)× SU(2)

{
220
29 ,

421
87

} {
800
29 ,

2161
87

}
E7(a5) SU(2)× SU(2)

{
29
9

} {
137
9

}
E7(a4) SU(2)× SU(2)

{
31
11

} {
152
11

}
Table 16. Flipper field deformations of the Minahan-Nemeschansky theory with E8 flavor, only

rational values. The top table has the central charges aIR and cIR as well as scaling dimensions while

the table below contains the information about the flavor central charges. The cyan highlighted

entry aligns with the H0 Argyres-Douglas theory, as first noted in [17]. The other rational central

charges are also in agreement with [87].
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Tables of rational theories: conformal matter

[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗

0 0 0 0 0 613
24

173
6

2
3

2A2 +A1 2A2 9 8 17 68050
4107

150715
8214

40
111

A5 2A2 +A1 35 9 44
{

316
25 ,

3817
300

} {
346
25 ,

2101
150

}
4
15

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))

0 0 2
3 6.000 2.000 2.000

2A2 +A1 2A2
40
111 3.243 1.108 1.378

A5 2A2 +A1
4
15 2.400 1.000 1.600

Table 17. Plain nilpotent mass deformations of (E6, E6) conformal matter, only rational values.

[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗

0 0 0 0 0 817
12

221
3

2
3

D4 +A1 D4 +A1 29 29 58
{

314941
8400 , 105097

2800

} {
47843
1200 ,

15981
400

}
31
105

D5 (3A1)” 60 3 63
{

233959
6272 , 235135

6272

} {
247315
6272 , 249667

6272

}
13
42

D5 (3A1)’ 60 3 63
{

233959
6272 , 235135

6272

} {
247315
6272 , 249667

6272

}
13
42

D5 +A1 0 61 0 61
{

63612
1681 ,

1022835
26896

} {
538047
13448 ,

271545
6724

}
13
41

D5 +A1 D4 (a1) 61 12 73
{

27729
784 , 6969

196

} {
3663
98 , 14799

392

}
2
7

D5 +A1 A3 + 2A1 61 12 73
{

27729
784 , 6969

196

} {
3663
98 , 14799

392

}
2
7

E6 (a1) A3 84 10 94
{

1583
48 , 199

6

} {
4177
120 ,

2111
60

}
4
15

E6 A3 156 10 166
{

995
36 ,

1999
72

} {
1049
36 , 529

18

}
2
9

E7 (a1) A2 231 4 235
{

2992009
121104 ,

187789
7569

} {
1576001
60552 , 198577

7569

}
52
261

E7 (a1) 4A1 231 4 235
{

2992009
121104 ,

187789
7569

} {
1576001
60552 , 198577

7569

}
52
261

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))

0 0 2
3 6.000 2.000 2.000

D4 +A1 D4 +A1
31
105 2.657 1.000 1.000

D5 (3A1)” 13
42 2.786 1.000 2.071

D5 (3A1)’ 13
42 2.786 1.000 1.839

D5 +A1 0 13
41 2.854 1.000 2.5249

D5 +A1 D4 (a1) 2
7 2.571 1.000 1.286

D5 +A1 A3 + 2A1
2
7 2.571 1.000 1.286

E6 (a1) A3
4
15 2.400 1.000 1.400

E6 A3
2
9 2.000 1.000 1.667

E7 (a1) A2
52
261 1.793 1.000 2.103

E7 (a1) 4A1
52
261 1.793 1.000 2.253

Table 18. Plain nilpotent mass deformations of (E7, E7) conformal matter, only rational values.
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[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗

0 0 0 0 0 1745
8

457
2

2
3

A3 +A2 3A1 14 3 17
{

2594465245
14362032 , 325018777

1795254

} {
1347452419

7181016 , 676568695
3590508

}
824
1641

D5 0 60 0 60
{

88198105
591576 , 44209973

295788

} {
11389690

73947 , 45780601
295788

}
194
471

E7 (a3) 2A2 +A1 111 9 120
{

12055
96 , 12091

96

} {
12425

96 , 12497
96

}
1
3

E8 (b5) D6 (a1) 160 62 222
{

823817
8112 , 103463

1014

} {
422939
4056 , 213413

2028

}
10
39

D7 E6 (a1)+A1 182 85 267
{

187823116685
1971613488 , 47191962037

492903372

} {
96328408265
985806744 , 12159142466

123225843

}
4588
19227

E8 (b4) A2 +A1 232 5 237
{

1832579
17328 , 76553

722

} {
943241
8664 , 157989

1444

}
16
57

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))

0 0 2
3 6.000 2.000 2.000

A3 +A2 3A1
824
1641 4.519 1.000 1.117

D5 0 194
471 3.707 1.000 2.382

E7 (a3) 2A2 +A1
1
3 3.000 1.000 1.250

E8 (b5) D6 (a1) 10
39 2.308 1.000 1.000

D7 E6 (a1)+A1
4588
19227 2.148 1.000 1.000

E8 (b4) A2 +A1
16
57 2.526 1.000 1.737

Table 19. Plain nilpotent mass deformations of (E8, E8) conformal matter, only rational values.

[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗[
18
] [

18
]

0 0 0
{

95
24 ,

41
8

} {
31
6 ,

15
2

}
2
3

[7,1]
[
42]I 28 10 38

{
245399
107736 ,

87785
35912

} {
95905
26934 ,

34961
8978

}
34
201

[7,1]
[
42]II 28 10 38

{
245399
107736 ,

87785
35912

} {
95905
26934 ,

34961
8978

}
34
201

[7,1] [5,13
]

28 10 38
{

245399
107736 ,

87785
35912

} {
95905
26934 ,

34961
8978

}
34
201

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))[
18
] [

18
]

2
3 6.000 2.000 2.000

[7,1]
[
42]I 34

201 1.522 1.478 1.985

[7,1]
[
42]II 34

201 1.522 1.478 1.985

[7,1] [5,13
]

34
201 1.522 1.478 1.985

Table 20. Flipper field deformations of (D4, D4) conformal matter, only rational values.
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[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗

0 0 0 0 0
{

613
24 ,

691
24

} {
173
6 , 106

3

}
2
3

A3 +A1 A1 11 1 12
{

248983
13872 ,

144577
6936

} {
137641
6936 , 44453

1734

}
20
51

D4 A3 +A1 28 11 39
{

5271
400 ,

3223
200

} {
2893
200 ,

1017
50

}
4
15

D5 (a1) A3 30 10 40
{

15737
1200 ,

9631
600

} {
8651
600 ,

1522
75

}
4
15

D5 (a1) A3 +A1 30 11 41
{

1364659
104976 ,

836513
52488

} {
749681
52488 ,

132256
6561

}
64
243

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))

0 0 2
3 6.000 2.000 2.000

A3 +A1 A1
20
51 3.529 1.000 1.824

D4 A3 +A1
4
15 2.400 1.000 1.400

D5 (a1) A3
4
15 2.400 1.000 1.400

D5 (a1) A3 +A1
64
243 2.370 1.000 1.420

Table 21. Flipper field deformations of (E6, E6) conformal matter, only rational values.

[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗

0 0 0 0 0
{

817
12 ,

589
8

} {
221
3 , 339

4

}
2
3

A3 +A2 +A1 0 15 0 15
{

1241
24 , 453

8

} {
661
12 ,

779
12

}
4
9

A5 +A1 A2 + 3A1 36 7 43
{

3931
96 , 4417

96

} {
4163
96 , 5135

96

}
1
3

E6 (a1) A2 +A1 84 5 89
{

235499
6936 , 270757

6936

} {
62449
1734 ,

40039
867

}
14
51

E6 A4 +A1 156 21 177
{

44180297
1642800 ,

1096539
34225

} {
23344541
821400 , 2649843

68450

}
116
555

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))

0 0 2
3 6.000 2.000 2.000

A3 +A2 +A1 0 4
9 4.000 1.000 2.333

A5 +A1 A2 + 3A1
1
3 3.000 1.000 1.500

E6 (a1) A2 +A1
14
51 2.471 1.000 1.765

E6 A4 +A1
116
555 1.881 1.000 1.432

Table 22. Flipper field deformations of (E7, E7) conformal matter, only rational values.
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[B-C]L [B-C]R rL rR rL + rR aIR cIR t∗

0 0 0 0 0
{

1745
8 , 5483

24

} {
457
2 , 1495

6

}
2
3

A4 +A2 +A1 A4 + 2A1 25 22 47
{

122989
816 , 21657

136

} {
63463
408 , 2934

17

}
20
51

D5 (a1) A2 + 3A1 30 7 37
{

1200211
7500 , 632293

3750

} {
620893
3750 , 342634

1875

}
32
75

D5 (a1)+A2 A3 +A2 +A1 34 15 49
{

122683
816 , 64801

408

} {
63361
408 , 8785

51

}
20
51

E6 (a3)+A1 A2 + 3A1 37 7 44
{

237476949
1527752 , 187894873

1145814

} {
30711077
190969 , 407681569

2291628

}
180
437

D5 +A1 D5 61 60 121
{

1760291
14700 , 948133

7350

} {
903893
7350 , 519934

3675

}
32
105

D6 (a1) D5 (a1) 62 30 92
{

1553
12 , 6655

48

} {
6385
48 , 7271

48

}
1
3

D6 D4 +A1 110 29 139
{

25707707
218886 , 27750643

218886

} {
52819073
437772 , 60990817

437772

}
172
573

E8 (b5) D4 (a1)+A1 160 13 173
{

49357
432 , 26681

216

} {
25463
216 , 7367

54

}
8
27

· · ·

[B-C]L [B-C]R t∗ Min(∆IR(Z’s)) Min(∆IR (OL’s)) Min(∆IR (OR’s))

0 0 2
3 6.000 2.000 2.000

A4 +A2 +A1 A4 + 2A1
20
51 3.529 1.000 1.000

D5 (a1) A2 + 3A1
32
75 3.840 1.000 1.080

D5 (a1)+A2 A3 +A2 +A1
20
51 3.529 1.000 1.000

E6 (a3)+A1 A2 + 3A1
180
437 3.707 1.000 1.146

D5 +A1 D5
32
105 2.743 1.000 1.000

D6 (a1) D5 (a1) 1
3 3.000 1.000 1.000

D6 D4 +A1
172
573 2.702 1.000 1.000

E8 (b5) D4 (a1)+A1
8
27 2.667 1.000 1.222

Table 23. Flipper field deformations of (E8, E8) conformal matter, only rational values.
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