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1 Introduction

The existence of multiquark exotic hadrons is now a well-established feature of strong-

interaction physics. At least 35 such states in the heavy quark-antiquark (Q=c or b) sector

have been experimentally established at various levels of statistical significance. Many

have been observed beyond the 5σ level at either multiple facilities, or through multiple

production or decay channels, or both. A number of reviews in the recent literature [1–9]

summarize both experimental and theoretical developments.

Yet, even after many years of intensive study, no single theoretical model has emerged

to provide a successful, unified picture for understanding the spectroscopy, decay patterns,

and structure of these novel states. The most heavily studied alternatives in this re-

gard, including hadronic molecules, diquarks, hadroquarkonium, hybrids, and kinematical

threshold effects, both their benefits and drawbacks, are amply discussed in the aforemen-

tioned reviews. The complete spectrum might turn out to rely upon a delicate interplay

of several of these physical frameworks, meaning that each one must be fully understood

before a global model of the exotics can be confidently constructed.
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In this work we employ a model in which the exotics are constructed from quasi-bound

heavy-light diquarks δ, δ̄, which are formed via the attractive channels 3⊗3→ 3̄ [δ≡(Qq)3̄]

and 3̄⊗ 3̄→ 3 [δ̄ ≡ (Q̄q̄′)3] between the color-triplet quarks. The most influential early

application of diquarks to the problem of heavy exotics [10] treats tetraquarks as bound

(δδ̄) molecules in a Hamiltonian formalism, using as interaction operators the spin-spin

couplings between the various component quarks. A later variant of this approach [11]

restricted the interactions to spin-spin couplings between quarks within either the δ or

the δ̄. Reference [12] provides a detailed review of diquark phenomenology prior to the

discovery of the heavy exotics.

Such an approach inspired the development of the dynamical diquark picture [13], in

which some of the light quarks created in the production process of the QQ̄ pair coalesce

with these heavy quarks to form a δ-δ̄ pair. Due to the large energies available in either

b→c or collider processes in which exotics are produced, the δ-δ̄ pair can achieve through

recoil a large spatial separation (> 1 fm) before being forced by confinement either to

form a single tetraquark state, or if the energy is sufficiently high, for the color flux tube

between the δ-δ̄ pair to fragment to create a baryon-antibaryon pair. The key feature of

this picture is a mechanism for producing multiquark states that are spatially large yet

strongly bound. Indeed, the successive accretion of additional quarks through the color-

triplet binding mechanism [14] can be used to interpret pentaquark states as triquark -

diquark states, θ̄δ≡ [Q̄(q1q2)3̄]3(Qq3)3̄ [15]. The effectiveness of this mechanism is clearly

limited by competition from the attractive Q̄Q and Q̄q channels, and a full theory of

multiquark hadrons would allow for including all possible configurations simultaneously.

One important step in this much larger project is to uncover the predictions of the δ-δ̄

mechanism and see if the current data provides support for the existence of such states.

The means by which the dynamical diquark picture may be realized as a fully predictive

model, including spectroscopy and decay selection rules, is the subject of ref. [16]. In the

original proposal of the picture [13], the estimated size of the Z−c (4430) resonance appearing

in B0→ (ψ(2S)π−)K+ follows from taking a δ-δ̄ pair (of known masses) produced in the

decay to recoil against the K+. Since the diquarks, like quarks, are color triplets, a Cornell

Coulomb-plus-linear potential [17, 18] was assumed. The final separation of the δ-δ̄ pair

upon coming relatively to rest was calculated to be 1.16 fm.

The significance of this classical turning point in forming the exotic state from the δ-δ̄

pair was tied in refs. [13, 16] to the Wentzel-Kramers-Brillouin (WKB) approximation. The

WKB transition wave function scales as 1/
√
p, where p is the classical relative momentum

of the constituents. One therefore expects the color flux tube between the δ-δ̄ pair to stretch

nearly to its classical limit. Such a state is spatially large but still exhibits unscreened strong

interactions between all of its components. It also possesses two heavy, slow-moving sources

(δ and δ̄) connected by a lighter (mostly gluonic) field susceptible to more rapid changes.

Analogous comments apply to θ̄-δ states. These properties indicate that the system can

be characterized well by use of the Born-Oppenheimer (BO) approximation [19].

Although more familiar from its applications to atomic and molecular systems, the

BO approximation has also been implemented in particle physics. In fact, its use as a

fundamental tool in lattice-QCD calculations was initiated decades ago [20]. The relevant
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physical observables are the energies of the light degrees of freedom (d.o.f.) that connect a

heavy, and hence static, QQ̄ pair; such energies as a function of QQ̄ separation and orienta-

tion are called BO potentials. While multiple aspects of this problem in strong-interaction

physics have been studied in the intervening years, the ones most relevant to the present

work involve the calculation of the BO potentials and its eigenvalues, which in turn give

the masses of heavy-quark hybrid mesons; short overviews of the key lattice papers in this

regard appear in refs. [21, 22]. For many years, the most accurate lattice results of hybrid

static potentials for substantial QQ̄ separation have been those of Juge, Kuti, and Morn-

ingstar [23–26]. Very recently, however, a new collaboration [27] has begun to improve upon

these results. In addition, high-quality simulations focusing upon small QQ̄ separations

have been performed [28]. Also of note are lattice simulations of two heavy quark-antiquark

pairs, which study the crossover between hadron molecule and δ-δ̄ configurations [29].

A prototype of the approach underlying the present work is provided by ref. [21], which

supposes the known (neutral) exotics to be hybrid mesons, and then develops an effective

field-theory formalism for computing their spectrum, using the BO potentials as input to

the Schrödinger equations. The first treatment of multiquark exotic hadrons using the

BO formalism appeared in refs. [30–32]. In these works, the valence light qq̄ pair (for

tetraquarks) is treated as belonging to the light d.o.f. In contrast, the light quarks in the

dynamical diquark model belong to the diquarks, which in turn are treated as the heavy,

pointlike sources, while the light d.o.f. are purely gluonic (or include sea quarks).

This paper carries out one of the central proposals of ref. [16]: a numerical calculation

of the spectrum of δ-δ̄ and θ̄-δ hidden-charm states, under the assumption that their basic

structure — at least in the last moments of their evolution prior to decay — consists of

heavy, slow-moving compact diquarks interacting through the same hybrid BO potentials as

those appearing in the QQ̄ sector. We solve the resulting Schrödinger equations numerically

and identify known exotic states with the eigenstates of the lowest-lying BO potentials. One

can already identify a number of assumptions implicit in this strategy; these and several

others of equal significance are discussed below. Nevertheless, the initial results are quite

encouraging: choosing to fix to either X(3872) or Zc(4430) as a reference δ-δ̄ state, one

obtains a spectrum broadly consistent with the pattern of the known tetraquark states,

and for which the excited states above the ground-state band [Σ+
g (1S)] naturally have

substantial spatial extent. In the pentaquark case, fixing to, e.g., Pc(4312) and Pc(4457)

predicts the masses of numerous unseen states.

In carrying out calculations in this scheme, one must keep in mind the central difficulty

with diquark models (as discussed in any of the reviews [1–9]): the proliferation of many

more potential multiquark states than have been observed to date. For example, the

JPC =1++ X(3872) appears to lack an isospin partner [33] that would arise from replacing

its u→ d quarks. On the other hand, the isotriplet 1+− Zc(3900) lies so close in mass to

X(3872) as to suggest some sort of multiplet structure. A truly complete diquark model

must explain both the absence of the former and the presence of the latter. While we

indicate how the details of this fine structure might be resolved in section 5, for the present

work we seek only to establish the broader pattern of multiplets, in particular, as collections

of states sorted in mass by their parity eigenvalue.

– 3 –



J
H
E
P
0
5
(
2
0
1
9
)
0
6
1

The organization of this paper is as follows: in section 2 we reprise the notation

for dynamical diquark-model states developed in ref. [16]; the reader unfamiliar with BO

notation appropriate to the “diatomic” system is referred to appendix A. Section 3 discusses

the relevant Schrödinger equations, both uncoupled and coupled versions, as introduced in

ref. [21]. Details of our numerical approach to solving these equations appear in appendix B.

In section 4 we present our results, and outline the approximations used to obtain them in

section 5, describing how these simplifications can be lifted one by one. Finally, section 6

presents our conclusions and directions for subsequent development of the model.

2 Spectrum of the dynamical diquark model

2.1 Tetraquarks

The notation adopted in ref. [16] for states in the dynamical diquark model begins with

the notation introduced in ref. [11] for diquark-antidiquark (δ-δ̄) states of good total JPC

with zero orbital angular momentum:

JPC = 0++ : X0 ≡
∣∣0δ, 0δ̄〉0

, X ′0 ≡
∣∣1δ, 1δ̄〉0

,

JPC = 1++ : X1 ≡
1√
2

(∣∣1δ, 0δ̄〉1
+
∣∣0δ, 1δ̄〉1

)
,

JPC = 1+− : Z ≡ 1√
2

(∣∣1δ, 0δ̄〉1
−
∣∣0δ, 1δ̄〉1

)
,

Z ′ ≡
∣∣1δ, 1δ̄〉1

,

JPC = 2++ : X2 ≡
∣∣1δ, 1δ̄〉2

. (2.1)

The number before each δ(δ̄) subscript is the diquark (antidiquark) spin, and the outer

subscript on each ket is the total quark spin J . By straightforward use of 9j symbols, these

states can also be expressed in terms of states of good heavy-quark (QQ̄) and light-quark

(qq̄) spins [from which eigenvalues of the charge-conjugation parity C given in eq. (2.1)

are immediately determined]. The states in eq. (2.1) represent the tetraquark analogues to

heavy S-wave quark-model states such as ηQ and ψ (Υ).

One then allows for nonzero relative orbital angular momentum L between the δ-δ̄

pair. Using the generic symbol Y for X0, X1, Z, Z
′, X2 in eq. (2.1), and J = L+S, where

now S is the total quark spin, one obtains the states Y
(J)
L . In terms of CY , the C-parity

of the underlying S-wave state Y , these states have P = (−1)L and C = (−1)LCY . Such

states include the analogues of the P -wave quark-model states χQ, hQ, as well as the D-

wave, F -wave, etc. states. All of these states also possess radial excitations, labeled by the

quantum number n.

Lastly, one appends the quantum numbers from the Born-Oppenheimer (BO) exci-

tation of the gluon field with respect to the quark state. Given the BO potential with

quantum numbers Γ ≡ Λεη as defined in appendix A, states receive multiplicative factors

to their P and C quantum numbers of ρ≡ ε(−1)Λ and κ≡ ηε(−1)Λ = ηρ, respectively. In

total, and suppressing the radial quantum number n, the physical tetraquark eigenstates
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BO states State notation

State JPC

Σ+
g (1S) X

(0)++
0S Z

(1)++
S , Z

′ (1)++
S X

′ (0)++
0S , X

(1)++
1S , X

(2)++
2S

0++ 2× 1+− [0, 1, 2]++

Σ+
g (1P ) X

(1)++
0P [Z

(0),(1),(2)
P ]++, [Z

′ (0),(1),(2)
P ]++ X

′ (1)++
0P , [X

(0),(1),(2)
1P ]++, [X

(1),(2),(3)
2P ]++

1−− 2× (0,1, 2)−+ [1, (0, 1, 2), (1, 2, 3)]−−

Σ+
g (1D) X

(2)++
0D [Z

(1),(2),(3)
D ]++, [Z

′ (1),(2),(3)
D ]++ X

′ (2)++
0D , [X

(1),(2),(3)
1D ]++, [X

(0),(1),(2),(3),(4)
2D ]++

2++ 2× (1,2, 3)+− [2, (1, 2, 3), (0, 1, 2, 3, 4)]++

Π+
u (1P ) & X

(1)−+
0P [Z

(0),(1),(2)
P ]−+, [Z

′ (0),(1),(2)
P ]−+ X

′ (1)−+
0P , [X

(0),(1),(2)
1P ]−+, [X

(1),(2),(3)
2P ]−+

Σ−u (1P ) 1+− 2× (0, 1, 2)++ [1, (0, 1,2), (1,2, 3)]+−

Π−u (1P ) X
(1)+−
0P [Z

(0),(1),(2)
P ]+−, [Z

′ (0),(1),(2)
P ]+− X

′ (1)+−
0P , [X

(0),(1),(2)
1P ]+−, [X

(1),(2),(3)
2P ]+−

1−+ 2× (0, 1, 2)−− [1, (0,1, 2), (1, 2,3)]−+

Σ−u (1S) X
(0)−+
0S Z

(1)−+
S , Z

′ (1)−+
S X

′ (0)−+
0S , X

(1)−+
1S , X

(2)−+
2S

0−+ 2× 1−− [0,1, 2]−+

Π+
u (1D) & X

(2)−+
0D [Z

(1),(2),(3)
D ]−+, [Z

′ (1),(2),(3)
D ]−+ X

′ (2)−+
0D , [X

(1),(2),(3)
1D ]−+, [X

(0),(1),(2),(3),(4)
2D ]−+

Σ−u (1D) 2−+ 2× (1, 2, 3)−− [2, (1, 2,3), (0,1, 2,3, 4)]−+

Table 1. Quantum numbers of the lowest tetraquark states expected in the dynamical diquark pic-

ture. For each of the expected lowest Born-Oppenheimer potentials, the full multiplet for given nL

eigenvalues is presented, using both the state notation developed in ref. [16] and the corresponding

JPC eigenvalues. States with JPC not allowed for conventional qq̄ mesons are indicated in boldface.

may be labeled Y
(J)ρκ
L , where

P = ρ (−1)L , C = κ (−1)LCY . (2.2)

The resulting states associated with the lowest BO potentials (as calculated on the lattice)

are listed in table 1. If the light d.o.f. carry nonzero isospin I [e.g., (cu)(c̄d̄)], then the

C-parity eigenvalue of the state is replaced by the G-parity eigenvalue, G≡C(−1)I , where

the C eigenvalue is that of the neutral member of the isospin multiplet.

2.2 Pentaquarks

Much of the same construction holds for the θ̄-δ pentaquarks. In that case, the states

analogous to those in eq. (2.1) are denoted by [16]:

JP =
1

2

−
: P 1

2
≡
∣∣∣∣12 θ̄, 0δ

〉
1
2

, P ′1
2

≡
∣∣∣∣12 θ̄, 1δ

〉
1
2

,

JP =
3

2

−
: P 3

2
≡
∣∣∣∣12 θ̄, 1δ

〉
3
2

. (2.3)

The number before each θ̄(δ) subscript is the triquark (diquark) spin, and the outer sub-

script on each ket is the total quark spin J . In this list, the light diquark internal to θ̄ is

restricted to carry spin 0 (as well ud flavor content with isospin 0), since all the known

– 5 –
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BO states State notation

State JP

Σ+(1S) P
( 1

2
)+

1
2
S

, P
′ ( 1

2
)+

1
2
S

P
( 3

2
)+

3
2
S

2× 1
2

− 3
2

−

Σ+(1P )
[
P

( 1
2

),( 3
2

)
1
2
P

]+
,
[
P
′ ( 1

2
),( 3

2
)

1
2
P

]+ [
P

( 1
2

),( 3
2

),( 5
2

)
3
2
P

]+

2×
(

1
2 ,

3
2

)+ (
1
2 ,

3
2 ,

5
2

)+
Σ+(1D)

[
P

( 3
2

),( 5
2

)
1
2
D

]+
,
[
P
′ ( 3

2
),( 5

2
)

1
2
D

]+ [
P

( 1
2

),( 3
2

),( 5
2

),( 7
2

)
3
2
D

]+

2×
(

3
2 ,

5
2

)− (
1
2 ,

3
2 ,

5
2 ,

7
2

)−
Π+(1P ) &

[
P

( 1
2

),( 3
2

)
1
2
P

]−
,
[
P
′ ( 1

2
),( 3

2
)

1
2
P

]− [
P

( 1
2

),( 3
2

),( 5
2

)
3
2
P

]−
Σ−(1P ) 2×

(
1
2 ,

3
2

)− (
1
2 ,

3
2 ,

5
2

)−
Π−(1P ) Same as Σ+(1P )

Σ−(1S) P
( 1

2
)−

1
2
S

, P
′ ( 1

2
)−

1
2
S

P
( 3

2
)−

3
2
S

2× 1
2

+ 3
2

+

Π+(1D) &
[
P

( 3
2

),( 5
2

)
1
2
D

]−
,
[
P
′ ( 3

2
),( 5

2
)

1
2
D

]− [
P

( 1
2

),( 3
2

),( 5
2

),( 7
2

)
3
2
D

]−
Σ−(1D) 2×

(
3
2 ,

5
2

)+ (
1
2 ,

3
2 ,

5
2 ,

7
2

)+
Table 2. Quantum numbers of the lowest pentaquark states expected in the dynamical triquark-

diquark picture. For each of the expected lowest Born-Oppenheimer potentials, the full multiplet

for given nL eigenvalues is presented, using both the state notation developed in ref. [16] and the

corresponding JP eigenvalues.

heavy pentaquark candidates [34], Pc(4312), Pc(4380), Pc(4440), and Pc(4457), appear

in the decay of Λb, whose light ud valence quarks carry these attributes. In general, 6

additional states, for which the light diquark in θ̄ carries spin 1, can be defined.

The relative orbital angular momentum L and the BO potential quantum numbers

Γ ≡ Λε are then incorporated. Since the θ̄ and δ components cannot form a charge-

conjugate pair, the core states of eq. (2.3) are not C eigenstates, and the BO potentials Λε

are not η eigenstates (see appendix A). Defining ρ≡ε(−1)Λ as before, one obtains

P = ρ (−1)L+1 . (2.4)

Suppressing the radial quantum number n, the physical pentaquark eigenstates may be

labeled P
(J)ρ
SL , where S now denotes the total quark spin. The resulting states associated

with the lowest BO potentials (as calculated on the lattice) are listed in table 2.

– 6 –
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3 Schrödinger equations for the Born-Oppenheimer potentials

At its core, the calculation of the spectrum of hybrids in ref. [21] amounts to the use of

the BO potentials calculated on the lattice in refs. [25, 28] to find the energy eigenvalues

of Schrödinger equations between a static QQ̄ pair (cc̄, cb̄, and bb̄ are all considered).

The relevant Schrödinger equations actually arise directly from QCD through a systematic

1/mQ expansion by the application of effective field theories: first NRQCD [35, 36] (in

which the hard scale mQ is integrated out), and then pNRQCD [37, 38] (in which the

softer scale of momentum transfer between the QQ̄ pair is integrated out). The gluonic

pNRQCD static energies between the QQ̄ pair are then none other than the BO potentials,

which are obtained numerically on the lattice.

Since the fundamental quark mass mQ appears directly in the analysis of ref. [21],

the authors take care to identify the details of their renormalization scheme for both mQ

and the perturbative short-distance behavior of the potential between the fundamental QQ̄

pair. In our case, the corresponding mass mδ is that of the diquark (or mθ̄ for the triquark),

which is of course not a fundamental Lagrangian parameter, and therefore in this analysis

mδ, mθ̄, and the δ-δ̄ and θ̄-δ potentials are treated purely phenomenologically.

More central to the current calculation is that the full Schrödinger equations for the

“diatomic” system contain not one, but two special points, corresponding to the two heavy-

constituent positions, separated by a distance r. One expects additional symmetries be-

tween the static energies to arise in the limit r→0, where the cylindrical D∞h symmetry

for the “homonuclear” δ-δ̄ case or the conical C∞v symmetry for the “heteronuclear” θ̄-δ

case (see appendix A and figure 1) is supplanted by the higher spherical O(3) symmetry.

These r→ 0 static energy configurations, transforming as color adjoints in the light d.o.f.

and corresponding to degenerate BO potentials in the limit r→ 0, are called gluelumps.

One finds, for instance, that the δ-δ̄ Σ−u and Π+
u BO potentials approach a single gluelump

with JPC =1+−. Additionally, the loss of the single (spherical) symmetry center for r>0

means that the angular part of the Laplacian in the Schrödinger equation is no longer

solved by familiar spherical harmonics, but by slightly more complicated forms [39].

All δ-δ̄ BO potentials arising from a particular gluelump appear together in a coupled

system of Schrödinger equations. The ground-state BO potential Σ+
g does not mix with

others, and therefore appears in an uncoupled equation. While the degenerate BO poten-

tials Π+
u and Π−u carry opposite ε parities, only Π+

u (nL) produces states with the same JPC

quantum numbers as Σ−u (nL) for L>0 [Π+
u (nS) is forbidden by eq. (A.2)]. Indeed, Π+

u is

found in lattice simulations to approach Σ−u as r→0, to form the 1+− gluelump [38]. The

Schrödinger equations for Π+
u (nL) and Σ−u (nL) with L> 0 therefore must be solved as a

coupled system, while those for Σ+
g (nL), Π−u (nL) (with L>0), or Σ−u (nS) remain uncou-

pled. One finds different mass eigenvalues emerging from Π±u (1P ), a lifting of the parity

symmetry called Λ-doubling [39]. Higher-mass gluelumps have been found to split into

even more BO potentials [38]. For example, the 2−− gluelump supports the BO potentials

Σ−g , Π+′
g , and ∆−g ; its Schrödinger equations for D-wave solutions would couple all three

of them. Analogous comments apply to the θ̄-δ BO potentials, once the η=g, u subscript

is removed.

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
0
6
1

The radial Schrödinger equations for the uncoupled BO potentials VΓ assume the

conventional form (with ~=1):[
− 1

2µr2
∂rr

2∂r+
`(`+ 1)

2µr2
+ VΓ(r)

]
ψ

(n)
Γ (r) = Enψ

(n)
Γ (r) , (3.1)

and for the coupled potentials Π+
u ,Σ

−
u , they read:[

− 1

2µr2
∂rr

2∂r+
1

2µr2

(
`(`+ 1) + 2 2

√
`(`+ 1)

2
√
`(`+ 1) `(`+ 1)

)

+

(
V

Σ−
u

(r) 0

0 V
Π+
u

(r)

)]ψ
(n)

Σ−
u

(r)

ψ
(n)

Π+
u

(r)

= En

ψ
(n)

Σ−
u

(r)

ψ
(n)

Π+
u

(r)

 . (3.2)

The details of the numerical methods for solving these coupled Schrödinger equations, using

the state-of-the-art techniques of refs. [40] and [41], are discussed in appendix B.

4 Results

Using the techniques of section 3, one predicts the full spectrum of states in the dynamical

diquark model with only two further inputs: the diquark masses mδ and mδ̄ (or triquark

mass mθ̄) and specific functional forms V (r) for the BO potentials Γ. The potentials are

intrinsically nonperturbative in nature and can only be computed from first principles by

using lattice QCD simulations. In this regard we apply the results of refs. [23–26], especially

the online summary of results in ref. [26], to which we refer as JKM; and separately, we

apply the results of the very recent calculations of ref. [27], to which we refer as CPRRW.

Furthermore, since the corresponding calculation for the ground-state (Σ+
g ) BO potential

for the cc̄ system with both component masses given by mc would generate the conven-

tional charmonium spectrum, we also include for Σ+
g cases the phenomenological Cornell

potential used in the fit of ref. [42] (but suppressing spin-dependent couplings), to which

we refer as BGS.

The numerical results are summarized in tables 3, 4, and 5 for hidden-charm tetraquarks

and table 7 for hidden-charm pentaquarks. We take mδ̄ =mδ in each case. Fine-structure

spin-dependent mass splittings among the states of each level Γ(nL) (as enumerated in

tables 1 and 2) are neglected in the present calculation, and the approach to include them

in future calculations is discussed in detail in section 5.

The tables are organized by identifying particular exotic states of known mass and

JPC eigenvalues [43] as reference states for particular levels Γ(nL) that contain a state of

the given JPC . For charged states, the C value used is that of its neutral isospin partner.

Our reference states are:

X(3872) : M = 3871.69± 0.17 MeV, JPC = 1++ ,

Z−c (4430) : M = 4478+15
−18 MeV, JPC = 1+− .

(4.1)

In tables 3, 4, and 5, the fits in the left-hand columns correspond to choosing X(3872) to

be the unique Σ+
g (1S) 1++ state, one of the two 1++ states in Σ+

g (1D), and one of the two
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X(3872) Zc(4430)

BO states Potential M mδ 〈1/r〉−1 〈r〉 M mδ 〈1/r〉−1 〈r〉

Σ+
g (1S) JKM 3.8711 1.8747 0.27202 0.36485 3.9077 1.8946 0.27075 0.36322

CPRRW 3.8721 1.8535 0.27519 0.36904 3.9108 1.8745 0.27384 0.36694

BGS 3.8718 1.9402 0.21347 0.30268 3.8824 1.9462 0.21301 0.30221

Σ+
g (2S) JKM 4.4430 1.8747 0.42698 0.69081 4.4782 1.8946 0.42524 0.68825

CPRRW 4.4410 1.8535 0.43057 0.69640 4.4781 1.8745 0.42877 0.69360

BGS 4.4674 1.9402 0.42621 0.69756 4.4781 1.9462 0.42562 0.69640

Σ+
g (1P ) JKM 4.2457 1.8747 0.48968 0.56601 4.2816 1.8946 0.48773 0.56392

CPRRW 4.2435 1.8535 0.49379 0.57067 4.2814 1.8745 0.49170 0.56834

BGS 4.3471 1.9402 0.48361 0.56787 4.3580 1.9462 0.48285 0.56718

Σ+
g (2P ) JKM 4.7128 1.8747 0.62445 0.84285 4.7473 1.8946 0.62201 0.83982

CPRRW 4.7092 1.8535 0.62911 0.84913 4.7456 1.8745 0.62664 0.84564

BGS 4.7416 1.9402 0.65333 0.89663 4.7523 1.9462 0.65243 0.89547

Σ+
g (1D) JKM 4.5318 1.8747 0.66414 0.73132 4.5669 1.8946 0.66168 0.72853

CPRRW 4.5282 1.8535 0.66921 0.73668 4.5653 1.8745 0.66651 0.73365

BGS 4.6151 1.9402 0.69780 0.77323 4.6259 1.9462 0.69690 0.77230

Σ+
g (2D) JKM 4.9476 1.8747 0.78634 0.98022 4.9813 1.8946 0.78332 0.97672

CPRRW 4.9431 1.8535 0.79199 0.98697 4.9787 1.8745 0.78879 0.98348

BGS 4.9486 1.9402 0.84597 1.0645 4.9592 1.9462 0.84497 1.0633

Π+
u (1P ) & JKM 4.9156 1.8747 0.44931 0.56950 4.9539 1.8946 0.44833 0.56834

Σ−u (1P ) CPRRW 4.8786 1.8535 0.44614 0.56438 4.9190 1.8745 0.44512 0.56298

Π+
u (2P ) & JKM 5.2281 1.8747 0.54325 0.84052 5.2648 1.8946 0.54181 0.83819

Σ−u (2P ) CPRRW 5.2066 1.8535 0.52965 0.81887 5.2450 1.8745 0.52816 0.81677

Π−u (1P ) JKM 5.0291 1.8747 0.66230 0.74739 5.0667 1.8946 0.66066 0.74552

CPRRW 4.9949 1.8535 0.65075 0.73435 5.0344 1.8745 0.64908 0.73225

Π−u (2P ) JKM 5.3701 1.8747 0.74501 0.98068 5.4060 1.8946 0.74307 0.97789

CPRRW 5.3564 1.8535 0.71810 0.94716 5.3939 1.8745 0.71619 0.94436

Σ−u (1S) JKM 5.3139 1.8747 0.58948 0.63819 5.3507 1.8946 0.58803 0.63609

CPRRW 5.2897 1.8535 0.56550 0.64448 5.3285 1.8745 0.56357 0.64238

Σ−u (2S) JKM 5.7375 1.8747 0.74128 0.88755 5.7725 1.8946 0.73975 0.88452

CPRRW 5.7105 1.8535 0.66424 0.88336 5.7473 1.8745 0.66209 0.88080

Π+
u (1D) & JKM 5.1028 1.8747 0.66444 0.75321 5.1401 1.8946 0.66280 0.75134

Σ−u (1D) CPRRW 5.0718 1.8535 0.65632 0.74296 5.1110 1.8745 0.65472 0.74110

Π+
u (2D) & JKM 5.4114 1.8747 0.74038 0.97253 5.4471 1.8946 0.73835 0.96974

Σ−u (2D) CPRRW 5.4012 1.8535 0.71834 0.94157 5.4386 1.8745 0.71631 0.93901

Table 3. Mass eigenvalues M (in GeV) for hidden-charm dynamical diquark states that are eigen-

states of the indicated BO potentials corresponding to quantum numbers nL, for given diquark

masses mδ (in GeV). The particular form of the BO potential used is that given by lattice sim-

ulations JKM [26] or CPRRW [27], or (for the Σ+
g potential) by the Cornell potential obtained

from a fit BGS [42] to conventional charmonium. Also predicted are the corresponding expectation

values for the length scales 〈1/r〉−1
and 〈r〉 (in fm). Fixing to the experimental mass of X(3872)

or Z−
c (4430) predicts mδ and the whole spectrum, either under the assumption that X(3872) is a

Σ+
g (1S) state or that Zc(4430) is a Σ+

g (2S) state (as indicated by boldface).
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X(3872) Zc(4430)

BO states Potential M mδ 〈1/r〉−1 〈r〉 M mδ 〈1/r〉−1 〈r〉

Σ+
g (1S) JKM 3.1759 1.4925 0.30043 0.40140 3.3552 1.5921 0.29221 0.39116

CPRRW 3.1809 1.4734 0.30392 0.40559 3.3604 1.5731 0.29555 0.39488

BGS 3.1373 1.5208 0.25111 0.35251 3.3948 1.6690 0.23635 0.33295

Σ+
g (2S) JKM 3.7824 1.4925 0.46502 0.75111 3.9515 1.5921 0.45401 0.73342

CPRRW 3.7848 1.4734 0.46919 0.75717 3.9539 1.5731 0.45789 0.73947

BGS 3.7323 1.5208 0.47448 0.77765 3.9888 1.6690 0.45565 0.74646

Σ+
g (1P ) JKM 3.5670 1.4925 0.53301 0.61560 3.7414 1.5921 0.52048 0.60117

CPRRW 3.5692 1.4734 0.53754 0.62073 3.7436 1.5731 0.52480 0.60629

BGS 3.5953 1.5208 0.54134 0.63377 3.8582 1.6690 0.51884 0.60815

Σ+
g (2P ) JKM 4.0675 1.4925 0.67744 0.91316 4.2322 1.5921 0.66199 0.89267

CPRRW 4.0686 1.4734 0.68282 0.92015 4.2330 1.5731 0.66713 0.89919

BGS 4.0111 1.5208 0.72160 0.98674 4.2655 1.6690 0.69475 0.95181

Σ+
g (1D) JKM 3.8714 1.4925 0.72015 0.79256 4.0404 1.5921 0.70409 0.77486

CPRRW 3.8724 1.4734 0.72575 0.79907 4.0413 1.5731 0.70921 0.78091

BGS 3.8716 1.5208 0.77026 0.85216 4.1311 1.6690 0.74205 0.82189

Σ+
g (2D) JKM 4.3181 1.4925 0.85150 1.0608 4.4781 1.5921 0.83268 1.0370

CPRRW 4.3184 1.4734 0.85796 1.0687 4.4782 1.5731 0.83853 1.0449

BGS 4.2276 1.5208 0.92844 1.1664 4.4782 1.6690 0.89628 1.1269

Π+
u (1P ) & JKM 4.1850 1.4925 0.47177 0.59931 4.3742 1.5921 0.46523 0.59046

Σ−u (1P ) CPRRW 4.1537 1.4734 0.46796 0.59325 4.3426 1.5731 0.46163 0.58440

Π+
u (2P ) & JKM 4.5358 1.4925 0.57713 0.89221 4.7137 1.5921 0.56736 0.87731

Σ−u (2P ) CPRRW 4.5237 1.4734 0.56085 0.86660 4.7001 1.5731 0.55191 0.85263

Π−u (1P ) JKM 4.3156 1.4925 0.69973 0.79023 4.4998 1.5921 0.68874 0.77765

CPRRW 4.2886 1.4734 0.68719 0.77579 4.4719 1.5731 0.67659 0.76368

Π−u (2P ) JKM 4.6956 1.4925 0.78923 1.0408 4.8683 1.5921 0.77667 1.0231

CPRRW 4.6945 1.4734 0.75910 1.0016 4.8647 1.5731 0.74721 0.98580

Σ−u (1S) JKM 4.6183 1.4925 0.62318 0.68173 4.7631 1.5921 0.61497 0.67148

CPRRW 4.5982 1.4734 0.60441 0.68871 4.7773 1.5731 0.59306 0.67567

Σ−u (2S) JKM 5.0816 1.4925 0.77807 0.95134 5.2169 1.5921 0.76916 0.93644

CPRRW 5.0626 1.4734 0.70757 0.94110 5.2288 1.5731 .69475 0.92434

Π+
u (1D) & JKM 4.3956 1.4925 0.70133 0.79582 4.5780 1.5921 0.69051 0.78324

Σ−u (1D) CPRRW 4.3715 1.4734 0.69184 0.78324 4.5531 1.5731 0.68131 0.77160

Π+
u (2D) & JKM 4.7404 1.4925 0.78720 1.0333 4.9121 1.5921 0.77359 1.0156

Σ−u (2D) CPRRW 4.7424 1.4734 0.76152 0.99698 4.9117 1.5731 0.74877 0.98068

Table 4. As in table 3, except now assuming that X(3872) is a Σ+
g (1D) state or that Zc(4430) is

a Σ+
g (2D) state (as indicated by boldface) in order to fix the full spectrum.
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X(3872) Zc(4430)

BO states Potential M mδ 〈1/r〉−1 〈r〉 M mδ 〈1/r〉−1 〈r〉

Σ+
g (1S) JKM 2.8809 1.3266 0.31585 0.42096 3.1177 1.4600 0.30327 0.40513

CPRRW 2.9148 1.3238 0.31791 0.42375 3.1345 1.4475 0.30621 0.40838

Σ+
g (2S) JKM 3.5068 1.3266 0.48586 0.78324 3.7277 1.4600 0.46888 0.75670

CPRRW 3.5364 1.3238 0.48818 0.78697 3.7413 1.4475 0.47229 0.76182

Σ+
g (1P ) JKM 3.2817 1.3266 0.55663 0.64261 3.5106 1.4600 0.53727 0.62026

CPRRW 3.3120 1.3238 0.55909 0.64541 3.5243 1.4475 0.54106 0.62492

Σ+
g (2P ) JKM 3.8005 1.3266 0.70618 0.95181 4.0145 1.4600 0.68261 0.92061

CPRRW 3.8280 1.3238 0.70897 0.95554 4.0264 1.4475 0.68719 0.92573

Σ+
g (1D) JKM 3.5962 1.3266 0.75087 0.82608 3.8168 1.4600 0.72575 0.79907

CPRRW 3.6244 1.3238 0.75377 0.82934 3.8290 1.4475 0.73044 0.80373

Σ+
g (2D) JKM 4.0599 1.3266 0.88702 1.1050 4.2667 1.4600 0.85796 1.0687

CPRRW 4.0858 1.3238 0.89033 1.1087 4.2775 1.4475 0.86314 1.0752

Π+
u (1P ) & JKM 3.8722 1.3266 0.48410 0.61514 4.1234 1.4600 0.47395 0.60210

Σ−u (1P ) CPRRW 3.8723 1.3238 0.47881 0.60722 4.1048 1.4475 0.46970 0.59558

Π+
u (2P ) & JKM 4.2444 1.3266 0.59570 0.92015 4.4782 1.4600 0.58056 0.89733

Σ−u (2P ) CPRRW 4.2637 1.3238 0.57635 0.88988 4.4782 1.4475 0.56350 0.87032

Π−u (1P ) JKM 4.0125 1.3266 0.72015 0.81398 4.2559 1.4600 0.70340 0.79442

CPRRW 4.0168 1.3238 0.70479 0.79628 4.2412 1.4475 0.69007 0.77905

Π−u (2P ) JKM 4.4142 1.3266 0.81375 1.0729 4.6398 1.4600 0.79389 1.0463

CPRRW 4.4453 1.3238 0.77892 1.0286 4.6508 1.4475 0.76233 1.0058

Σ−u (1S) JKM 4.3383 1.3266 0.62300 0.71013 4.5743 1.4600 0.60595 0.69104

CPRRW 4.3334 1.3238 0.62354 0.71060 4.5520 1.4475 0.60766 0.69197

Σ−u (2S) JKM 4.8243 1.3266 0.72821 0.96858 5.0405 1.4600 0.70921 0.94390

CPRRW 4.8198 1.3238 0.72845 0.96951 5.0199 1.4475 0.71085 0.94576

Π+
u (1D) & JKM 4.1075 1.3266 0.70874 0.80233 4.3472 1.4600 0.69318 0.78510

Σ−u (1D) CPRRW 4.1025 1.3238 0.70897 0.80326 4.3246 1.4475 0.69453 0.78650

Π+
u (2D) & JKM 4.4991 1.3266 0.78232 1.0231 4.7199 1.4600 0.76341 0.99931

Σ−u (2D) CPRRW 4.4946 1.3238 0.78261 1.0235 4.6989 1.4475 0.76505 1.0012

Table 5. As in table 3, except now assuming that X(3872) is a Π+
u (1P )-Σ−

u (1P ) state or that

Zc(4430) is a Π+
u (2P )-Σ−

u (2P ) state (as indicated by boldface) in order to fix the full spectrum.

Since the Σ+
g potential is not used here to fix to the mass of a physical state, no BGS [42] fit

is included.

1++ states in Π+
u (1P )-Σ−u (1P ), respectively (these being the only n=1, JPC =1++ states

in table 1). The fits in the right-hand columns correspond to choosing Zc(4430) to be one

of the two 1+− states in Σ+
g (2S), one of the two 1+− states in Σ+

g (2D), and one of the

three 1+− states in Π+
u (2P )-Σ−u (2P ), respectively (these being the only n= 2, JPC = 1+−

states in table 1). The value of mδ is obtained from these fits, and is used for all other

states in the spectrum of tables 3, 4, and 5. Also calculated in the tables are values of

the typical length scales 〈1/r〉−1 and 〈r〉 for the states; as described in ref. [41] and in

appendix B, expectation values can be calculated using the same procedure as one uses to

compute eigenvalues, without the need to generate explicit eigenfunctions.
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The choice of X(3872) as an n=1 state and Zc(4430) as an n=2 state is not logically

necessary. However, if X(3872) is chosen as the lowest n=2 state [Σ+
g (2S)], then the mass

of the Σ+
g (1S) state is about 3270 MeV, which lies squarely in the region of conventional

charmonium between J/ψ and χc0(1P ). Such a state with any of the Σ+
g (1S) quantum

numbers given in table 1 would certainly have been discovered decades ago, thus rendering

the n= 2 assignment untenable. Similar comments apply to the Σ+
g (1S) states predicted

in tables 4 and 5; indeed, the fit of table 4 fixing X(3872) to Σ+
g (1D) and the fit of table 5

fixing Zc(4430) to Π+
u (2P )-Σ−u (2P ) produce values mδ'1.5 GeV' mc, which means that

these portions of the tables effectively reproduce the conventional charmonium spectrum

plus its lowest hybrids, once δδ̄ are replaced with c̄c. The other fits in tables 4 and 5 predict

exotic Σ+
g (1S) states that lie below the open-charm threshold at some distance from the

conventional charmonium states that are known to be the only ones populating this region,

and hence again produce conflicts with observation.

As for the Zc(4430) as an n = 1 state, the assignments Σ+
g (1D) or Π+

u (1P )-Σ−u (1P )

(not tabulated) are logically possible, but they again lead to a mass for Σ+
g (1S) that is too

small (3815 and 3450 MeV, respectively) compared to data, and also a Σ+
g (2S) mass (4390

and 4045 MeV, respectively) that, combined with the Σ+
g (1S) states, would generate a total

of at least four 1+− states lying below the Zc(4430). Experimentally, only two candidates

[Zc(3900) and Zc(4200)] have confirmed JPC =1+−, but even the existence of the Zc(4200)

remains unconfirmed. In contrast, the existence of the Zc(4020) is confirmed, and it is

widely expected to be 1+−, but only its C=− quantum number has been confirmed. As

discussed previously, the assignment of Zc(4430) to an n= 1 state is problematic due to

the prediction of numerous unseen light exotic states, although the choice of Zc(4430) as

Σ+
g (1D) is not yet definitively excluded, particularly if a pair of 1+− exotics near 4390 MeV

[from Σ+
g (2S)] is observed.

One unique level assignment appears to work particularly well with observation: in

table 3, X(3872) and Zc(4430) are identified as states in the multiplets Σ+
g (1S) and Σ+

g (2S),

respectively. Table 3 exhibits the prominent feature that its left- and right-hand fits give

almost identical results, supporting the mutual consistency of the chosen assignments. The

diquark mass obtained is mδ=1874.7 MeV (JKM), 1853.5 MeV (CPRRW), or 1904.2 MeV

(BGS), comparing well with the estimate 1860 MeV used in ref. [13]. The lowest levels

in order of increasing mass are Σ+
g (1S), Σ+

g (1P ), Σ+
g (2S), Σ+

g (1D), Σ+
g (2P ), Σ+

g (3S) (not

tabulated, ≈ 4890 MeV), Π+
u (1P )-Σ−u (1P ), and Σ+

g (2D). In particular, only one of the BO

potentials beyond Σ+
g is represented among the lowest states, and even then, it is in the

6th excited level. What one might call the “hybrid” exotic levels begin ∼ 1 GeV above

the Σ+
g (1S) states, just as for hybrid charmonium [21]. The lowest observed states in

this assignment are therefore “quark-model” δ-δ̄ states, in that the gluonic field does not

contribute to the valence spin-parity quantum number. The states enumerated in ref. [11]

are included in this list, although their order and spacing as determined here depends

intrinsically upon the calculated BO potential Σ+
g (r).

The particular mass eigenvalues calculated here apply to all states in each multiplet

Γ(nL) listed in table 1, which are degenerate at this level of the calculation: fine-structure

spin- (and isospin-) dependent corrections are therefore neglected here. However, one may
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estimate the magnitude of these mass splittings by examining those for conventional char-

monium. Note first that mJ/ψ−mηc = 113 MeV and m
χc2(1P )

−m
χc0(1P )

= 141 MeV, and

the charmonium fine-structure splittings tend to decrease somewhat with higher excita-

tion number. These splittings arise from spin-spin, spin-orbit, and tensor cc̄ operators all

proportional to 1/m2
c . The corresponding coefficient in the dynamical diquark model is

slightly smaller (1/m2
δ ), but the diquark spins can be as large as 1 (compared with 1

2 for c

or c̄), so that the spin-operator expectation values in the numerator can be substantially

larger. Based upon this reasoning, we crudely (but conservatively) estimate the largest

fine-structure splittings in each exotic multiplets to be ∼ 150 MeV; the true value might

turn out to be even larger, but then one runs the risk of producing multiple overlapping

bands of exotic states, resulting in diminished model predictivity. Since the X(3872) ap-

pears to be the lowest exotic candidate, table 1 then predicts bands of exotic states in

the ranges of approximately 3900–4050 MeV [Σ+
g (1S)], 4220–4370 MeV [Σ+

g (1P )], overlap-

ping bands 4480–4630 MeV [Σ+
g (2S)] and 4570–4720 MeV [Σ+

g (1D)], and 4750–4900 MeV

[Σ+
g (2P )]. Since the heaviest charmoniumlike state currently observed is X(4700), we do

not analyze the higher levels in any further detail.

In fact, X(4700) and several of the other exotic candidates [Y (4140), Y (4274), X(4350),

X(4500)] have only been observed as resonances decaying to J/ψ φ, which makes them good

candidates for cc̄ss̄ states [44], and if so, then they do not belong to the current analysis;

instead, they would appear as part of an identical analysis using heavier (cs), rather than

(cu) or (cd), diquarks.

Perhaps the most evident pattern among the spectrum of charmoniumlike exotic

bosons [1], once the five states listed above are removed, is the appearance of fairly well-

separated clusters: one between the X(3872) and at least as high as Zc(4020) [and possibly

as high as the less well-characterized states Zc(4050) and Zc(4055)]; another from Zc(4200)

to Y (4390) [and possibly as low as the less well-characterized X(4160)]; the Zc(4430) by

itself; and the 1−− states X(4630) and Y (4660). Even among the five cc̄ss̄ candidates, only

Y (4140) appears to lie starkly outside this band structure. The recently observed [45] (at

>3σ) ηcπ
− resonance Zc(4100) also appears to fall into this gap.

Based upon these observations, our central hypothesis is that the states in the mass

range 3872–4055 MeV are Σ+
g (1S) states, those in 4160–4390 MeV are Σ+

g (1P ) states,

Zc(4430) is a Σ+
g (2S) state, and X(4630) and Y (4660) are Σ+

g (2P ) states. Note that

these bands consist of states with a single parity: +, −, +, and −, respectively. No known

states need to be assigned to Σ+
g (1D) (P =+).

We now confront this hypothesis with the full data set. The charmoniumlike states

for which the JPC quantum numbers are either unambiguously determined or “favored”

experimentally [43] are listed in table 6. In addition, some dispute remains that the X(3915)

could be a 2++ state [46] [possibly the same as the conventional charmonium χc2(2P )], and

the recently observed χc0(3860) [47] has properties consistent with being the conventional

0++ χc0(2P ), but the existence of this state has not yet been confirmed. Charged [48] and

neutral [49] 1+ structures from 4032–4038 MeV are not included because of their uncertain

nature. Lastly, several states (confirmed and unconfirmed) have unknown JP but known

C eigenvalues [43]: Z0
c (4020) (noted above) and Z0

c (4055) are C = −, while Z0
c (4050),

Z0
c (4250), X(4350) are C=+.
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0++ X(3915), X(4500), X(4700)

0−− Z0
c (4240)

1−− Y (4008), Y (4220), Y (4260), Y (4360), Y (4390),

X(4630), Y (4660)

1++ X(3872), Y (4140), Y (4274)

1+− Z0
c (3900), Z0

c (4200), Z0
c (4430)

0+ or 1− Z0
c (4100)

3
2

±
, 5

2

∓
Pc(4380), Pc(4440)-Pc(4457)

Table 6. Charmoniumlike exotic candidates with experimentally determined JPC quantum num-

bers (both unambiguous and “favored”).

Under our hypothesis, in Σ+
g (1S) the X(3872) is the sole 1++ state, and X(3915)

is one of two 0++ states (although it could instead be the cc̄ss̄ ground state [44]), with

the other 0++ state possibly being χc0(3860) [instead of the cc̄ χc0(2P ) assignment], or

even possibly (if fine-structure splittings turn out to be large in this case and JP = 0+ is

confirmed) Z0
c (4100). The two 1+− states are Z0

c (3900) and Z0
c (4020). As for 2++, the state

χc2(3930) has still not been confirmed as the cc̄ χc2(2P ), making it a potential candidate

to complete the Σ+
g (1S) multiplet. The states X(3940), Z0

c (4050), and Z0
c (4055) are also

potential members (noting the known C=+,− eigenvalues, respectively, of the latter two).

The existence of the only other state claimed in this range, the 1−− Y (4008) [50], is being

challenged by increasingly adverse evidence, and the state may disappear completely with

newer data and analysis. In fact, Y (4008) has P =− and thus would not fit into Σ+
g (1S),

which represents a success of the model: all hidden-charm exotics below 4100 MeV are

predicted to have positive parity.

The Σ+
g (1P ) states all have P =−, and indeed, Y (4220), Y (4360), and (with a small

stretch of the band mass range) Y (4390) fit into this multiplet. The multiplet actually

contains a fourth 1−− state, but note that the famous 1−− Y (4260) may actually be a

composite of the other 1−− states [51]. The 0−− Z0
c (4240) is especially notable because,

if confirmed, it is the lightest state with exotic JPC (i.e., not allowed for conventional qq̄

mesons). The Σ+
g (1P ) also allows for a pair of 1−+ (JPC-exotic) states. The remaining

unassigned states of Σ+
g (1P ) are two each of 0−+, 2−+, and 2−−, and one 3−−. The

unassigned observed states in this mass range are X(4160), Y (4274) and X(4350) (both

identified with cc̄ss̄ above), Z0
c (4200), and Z0

c (4250). Of these, Z0
c (4200) is problematic

because it is a 1+− (P =+) state, but again, its existence remains unconfirmed.

The only clear candidate in the Σ+
g (2S) multiplet is Z0

c (4430), although X(4500) [and

possibly X(4700), if the allowed mass range for the band is stretched] are the two potential

0++ members; but again, they have been suggested as cc̄ss̄ states. X(4700) can also fit

naturally into Σ+
g (1D).

Finally, the 1−− X(4630) and Y (4660) states fit into Σ+
g (2P ), assuming the lower

bound of the mass range (given above as 4750–4900 MeV) can be stretched downward
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slightly. In fact, the greatest difficulty of our full level assignment is the tension between

the Y (4390)-X(4630) mass difference (∼240 MeV) and the multiplet Σ+
g (2P )-Σ+

g (1P ) mass

difference (∼ 460 MeV). If one supposes that the Y (4390) lies at the top of the Σ+
g (1P )

multiplet and X(4630) lies at the bottom of the Σ+
g (2P ) multiplet, then the assignment

remains sensible. Clearly a full analysis of fine-structure splittings will be necessary to

assess the fate of this assumption.

We now turn to the hidden-charm pentaquarks, where until recently only the two states

Pc(4380) and Pc(4450) were observed. Since they have opposite parities, these states must

belong to distinct BO potential multiplets. The most recent LHCb measurements [34] now

resolve the Pc(4450) as two states, Pc(4440) and Pc(4457), of which presumably at least

one carries opposite parity to the Pc(4380). In addition, an entirely new state Pc(4312) has

been observed. While one expects the diquark mass mδ to assume the same value as that

appearing in the best fits to the hidden-charm tetraquarks (table 3), the triquark mass

mθ̄ may be freely adjusted to fix one of the masses.1 Such a fit, assuming that Pc(4450)

(using the old value [43]) is either the JP = 5
2

+
or 3

2

+
state in Σ+(1P ), is presented in

table 7. However, then the Pc(4380) must have JP = 3
2

−
or 5

2

−
. The latter assignment

places it in the higher-mass Σ+(1D) level (therefore excluded), while the former assign-

ment places it in the Σ+(1S) level, 370 MeV lower (in contrast with the observed mass

splitting 4450−4380=70 MeV). Such a huge mass difference appears to be impossible to

accommodate simply by using fine-structure effects of a natural size that place Pc(4380)

at the top of its band and Pc(4450) at the bottom of its band.

Much more natural for matching with the known spectroscopy, since the Σ+(2S)-

Σ+(1P ) multiplet-average mass difference is calculated to be only '200 MeV, is to identify

Pc(4380) as the 5
2

+
state in Σ+(1P ), fix to the mass of the Pc(4312) as the bottom of the

Σ+(1P ), and identify Pc(4440), Pc(4457) as belonging to Σ+(2S), one of them being its

JP = 3
2

−
state. Table 8 presents this rather satisfactory fit. Clearly, measuring P for any of

the observed states would distinguish these scenarios. In fits with this level assignment, we

notably find mθ̄≈1.93 GeV, which is only slightly larger than mδ. We also predict Σ+(1S)

hidden-charm pentaquark ground states in this fit to lie near 3940 MeV; such states would

be stable against decay to J/ψN and possibly even to ηcN . They would decay through

annihilation of the cc̄ pair to light hadrons plus a nucleon, and would have narrow widths,

comparable to that of ηc(1S) [O(10) rather than O(100) MeV].

It should be noted that the fits in tables 7, 8 discussed in the previous paragraph use

the full “homonuclear” BO potentials determined on the lattice, including the reflection

quantum number η. However, this reflection symmetry disappears for the “heteronuclear”

system. Nevertheless, the ground-state potential Σ+
g in the “homonuclear” case is well

separated from any other BO potential (in particular, from Σ+
u ), so that nothing is lost

by using it as the “heteronuclear” ground-state Σ+ potential. For the higher potentials

(which we did not use in the phenomenological analysis), the “homonuclear” BO poten-

tials represent the interactions of a system with two equal masses 2µ but with the same

separation parameter r.

1In comparison, the naive calculation of ref. [15] assumed mθ̄=mΛc =2.286 MeV.
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BO states Potential M mδ mθ̄ 〈1/r〉−1 〈r〉
Σ+
g (1S) JKM 4.0788 1.8747 2.0987 0.26545 0.35646

CPRRW 4.0821 1.8535 2.0800 0.26847 0.36019

BGS 3.9718 1.9402 2.0527 0.20939 0.29732

Σ+
g (2S) JKM 4.6430 1.8747 2.0987 0.41816 0.67707

CPRRW 4.6431 1.8535 2.0800 0.42161 0.68219

BGS 4.5682 1.9402 2.0527 0.42091 0.68871

Σ+
g (1P ) JKM 4.4498 1.8747 2.0987 0.47967 0.55484

CPRRW 4.4498 1.8535 2.0800 0.48356 0.55903

BGS 4.4498 1.9402 2.0527 0.47727 0.56066

Σ+
g (2P ) JKM 4.9094 1.8747 2.0987 0.61225 0.82655

CPRRW 4.9078 1.8535 2.0800 0.61665 0.83237

BGS 4.8421 1.9402 2.0527 0.64586 0.88662

Σ+
g (1D) JKM 4.7317 1.8747 2.0987 0.65125 0.71735

CPRRW 4.7303 1.8535 2.0800 0.65592 0.72224

BGS 4.7170 1.9402 2.0527 0.68984 0.76462

Σ+
g (2D) JKM 5.1405 1.8747 2.0987 0.77137 0.96182

CPRRW 5.1379 1.8535 2.0800 0.77667 0.96811

BGS 5.0481 1.9402 2.0527 0.83674 1.0533

Π+
u (1P ) & JKM 5.1320 1.8747 2.0987 0.44420 0.56275

Σ−u (1P ) CPRRW 5.0971 1.8535 2.0800 0.44110 0.55763

Π−u (1P ) JKM 5.2092 1.8747 2.0987 0.64219 0.72457

CPRRW 5.2417 1.8535 2.0800 0.65372 0.73737

Σ−u (1S) JKM 5.5224 1.8747 2.0987 0.58197 0.62794

CPRRW 5.5005 1.8535 2.0800 0.55634 0.63400

Π+
u (1D) & JKM 5.3139 1.8747 2.0987 0.65592 0.74366

Σ−u (1D) CPRRW 5.2847 1.8535 2.0800 0.64810 0.73365

Table 7. Mass eigenvalues M (in GeV) for hidden-charm dynamical diquark-triquark states that

are eigenstates of the indicated BO potentials corresponding to quantum numbers nL, for given

diquark mδ and triquark mθ̄ masses (in GeV). The particular form of the BO potential used

is that given by lattice simulations JKM [26] or CPRRW [27], or (for the Σ+
g potential) by the

Cornell potential fit to conventional charmonium BGS [42]. Also predicted are the corresponding

expectation values for the length scales 〈1/r〉−1
and 〈r〉 (in fm). Fixing mδ from the corresponding

simulation in table 3 and fixing to the experimental mass of Pc(4450) (as indicated by boldface)

predicts mθ̄ and the whole spectrum.
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BO states Potential M mδ mθ̄ 〈1/r〉−1 〈r〉
Σ+
g (1S) JKM 3.9385 1.8747 1.9478 0.26975 0.36205

CPRRW 3.9419 1.8535 1.9291 0.27282 0.36578

BGS 3.8375 1.9402 1.9014 0.21497 0.30478

Σ+
g (2S) JKM 4.5078 1.8747 1.9478 0.42390 0.68615

CPRRW 4.5080 1.8535 1.9291 0.42740 0.69151

BGS 4.4329 1.9402 1.9014 0.42813 0.70082

Σ+
g (1P ) JKM 4.3119 1.8747 1.9478 0.48619 0.56229

CPRRW 4.3119 1.8535 1.9291 0.49013 0.56671

BGS 4.3119 1.9402 1.9014 0.48591 0.57067

Σ+
g (2P ) JKM 4.7764 1.8747 1.9478 0.62012 0.83726

CPRRW 4.7749 1.8535 1.9291 0.62463 0.84331

BGS 4.7073 1.9402 1.9014 0.65602 0.90036

Σ+
g (1D) JKM 4.5965 1.8747 1.9478 0.65975 0.72643

CPRRW 4.5952 1.8535 1.9291 0.66444 0.73155

BGS 4.5802 1.9402 1.9014 0.70076 0.77649

Σ+
g (2D) JKM 5.0099 1.8747 1.9478 0.78105 0.97393

CPRRW 5.0074 1.8535 1.9291 0.78648 0.98045

BGS 4.9146 1.9402 1.9014 0.84914 1.0687

Π+
u (1P ) & JKM 4.9860 1.8747 1.9478 0.44758 0.56718

Σ−u (1P ) CPRRW 4.9514 1.8535 1.9291 0.44434 0.56205

Π−u (1P ) JKM 5.0982 1.8747 1.9478 0.65924 0.74413

CPRRW 5.0661 1.8535 1.9291 0.64771 0.73109

Σ−u (1S) JKM 5.3816 1.8747 1.9478 0.58690 0.63446

CPRRW 5.3597 1.8535 1.9291 0.56217 0.64075

Π+
u (1D) & JKM 5.1714 1.8747 1.9478 0.66148 0.74995

Σ−u (1D) CPRRW 5.1426 1.8535 1.9291 0.65333 0.73970

Table 8. As in table 7, except now assuming that Pc(4312) is a Σ+
g (1P ) state (as indicated by

boldface) in order to fix the full spectrum.

The final results involve the BO decay selection rules first discussed for exotics in

refs. [31, 32] and obtained for this model in ref. [16]. These rules assume not only that

the light d.o.f. decouple from the heavy QQ̄ pair, and that they adjust more rapidly in

a physical process than the QQ̄, but also that the quantum numbers of the QQ̄ and the

light d.o.f. are separately conserved in the decay. As noted in ref. [16], the strictest tests

of the BO decay selection rules occur for single light-hadron decays (π, ρ, ω, φ) of exotics
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to conventional charmonium (Σ+
g ) states. Since Zc(3900) has JP =1+, the observed decay

Z+
c (3900)→J/ψ π+ requires π+ to be in an even partial wave, and furthermore requiring

conservation of heavy-quark spin [sQQ̄=1 for J/ψ, and hence also for Z+
c (3900)], ref. [16]

found Π+
u (1P )-Σ−u (1P ) to be the most likely home for Zc(3900). However, as we have

seen, the Π+
u (1P )-Σ−u (1P ) level lies ∼ 1 GeV above the ground-state level Σ+

g (1S), which

is untenable for phenomenology.

The situation with the vector-meson decays is even worse, as the decay selection rules,

when strictly applied as above, require the introduction of BO potentials beyond those listed

in table 1. Lattice simulations predict these levels to lie even higher in mass (>1 GeV) above

Σ+
g (1S). And in the pentaquark decays, either Π+(1D) or Σ−(1S), which are highly excited

levels, is given as the favored home for the P = + candidate. The strictest application of

the BO decay selection rules appears to conflict with the known spectroscopy.

The simplest way to resolve such issues is to note that the evidence for the conser-

vation of QQ̄ spin in exotics (as discussed in ref. [16]) is imperfect, meaning that the

requirement of separate conservation of QQ̄ spin and light d.o.f. quantum numbers, which

forced unacceptably high BO potentials to appear, may also be called into question. More

precisely, in contrast to conventional quarkonium states, the exotics do not obviously oc-

cur in eigenstates of heavy-quark spin-symmetry. A better approach, as suggested by this

work, appears to be that of obtaining the spectroscopy in a robust calculation, and then

from the observed decays identifying the behavior of the states’ internal quantum numbers

— as is done for conventional quarkonium transitions.

5 Approximations of the model

We have modeled mass eigenstates formed from a δ-δ̄ (or θ̄-δ) pair of sufficient relative

momentum to create between them a color flux tube of substantial spatial extent, but not

so large as to induce immediate fragmentation of the flux tube. In this section, almost all

the comments applied to δ-δ̄ systems also apply to θ̄-δ systems.

The first and most obvious question is whether the quantized states of such a configu-

ration of dynamical origin are best described in terms of the static configuration provided

by lattice simulations. We have argued that the transition from the former to the latter

paradigm is facilitated by the WKB approximation, specifically by the enhancement of the

amplitude when the δ-δ̄ system approaches its classical turning point.

The original result [13] r=1.16 fm for the Z−c (4430) spatial extent, at which point the

δ-δ̄ pair in the process B0→(ψ(2S)π−)K+ comes completely to rest, is only slightly smaller

than the 1.224(15) fm lattice calculation of the string-breaking distance very recently pre-

sented in ref. [52]. However, the result of ref. [13] explicitly depends upon available phase

space for the δ-δ̄ pair, and hence upon mB0 and mK+ (in addition to mδ ). Of course, the

mass eigenvalue of a cc̄dū bound state should depend only upon its internal dynamics, and

not upon the details of the process through which it is produced; therefore, 1.16 fm should

be viewed as a theoretical maximum for the possible size of the exotic state Z−c (4430),

in contrast to the smaller values of 〈r〉 computed above. In particular, the constituents

of the actual bound state should carry nonzero internal kinetic energy, which the naive
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calculation ignores. Since lattice-calculated static potentials provide the best available ab

initio information on the nature of gluonic fields of finite spatial extent, they provide the

most natural framework for modeling δ-δ̄ bound states, even ones of dynamical origin.

The next obvious approximation is that this model assumes (effectively) structureless,

pointlike δ quasiparticles. A true diquark quasiparticle — setting aside the fact that (like a

quark) it carries nonzero color charge and therefore is a gauge-dependent object — should

have a finite size, comparable to that of a heavy meson (a few tenths of a fm). But then, the

states obtained above have a natural size only 2–4 times larger, meaning that the notion

of a tetraquark state with well-separated components comes into question. Corrections

that probe the robustness of the present results by including the finite size of diquarks as

a perturbation are planned for subsequent work [53].

Another consequence of the assumption of structureless diquarks is the absence of both

spin- and isospin-dependent effects. Each row of tables 1 and 2 lists all the eigenstates of

specific quantum numbers n and L for a particular BO potential Γ, which are degenerate at

this stage of the calculation. Inclusion of the requisite fine-structure corrections is necessary

to lift the degeneracies and to produce a full spectrum of states. At this juncture, the

present numerical results are identical to those one would obtain by using the methods of

ref. [21] for hybrid mesons, except with the heavy-quark mass replaced by the somewhat

heavier diquark/triquark mass, and with the full quantum numbers for the states obtained

only after including the light-quark spins and isospins.

The most important fine-structure corrections identified here fall into two categories:

first are the spin-spin interactions within each of δ and δ̄ (or θ̄); their importance in

understanding the fine structure of the exotics spectrum was first emphasized in ref. [11].

Second, since each of δ and δ̄ contains a light quark (or two for θ̄), one expects in general

long-distance spin- and isospin-dependent corrections to modify the spectrum; without

the latter, the δ-δ̄ states would fall into degenerate uū, ud̄, dū, dd̄ quartets rather than

into the experimentally observed I = 0 singlets and I = 1 triplets. Were the exotic states

instead composed of molecules of two isospin-carrying hadrons, a natural differentiation in

the spectrum based upon isospin would arise [54], e.g., through distinct couplings of the

hadrons via (long-distance) π exchange vs. η exchange.

In contrast, the dominant interaction in the dynamical diquark model between δ and

δ̄ (or θ̄) occurs through the color-adjoint flux tube. However, even in this case one can

identify isospin-dependent interactions through the exchange of colored π-like quasipar-

ticles, owing to a variant of the Nambu-Goldstone theorem of chiral-symmetry breaking

originally discussed in the context of color-flavor locking [55]. Thus, one expects modifica-

tions to the spectrum arising from long-distance spin- and isospin-dependent interactions.

As suggested in ref. [16], lattice simulations in which the heavy, static sources are assigned

quantum numbers of not only color and spin but also isospin would have excellent investiga-

tive value for this scenario. Incorporation of both the diquark-internal and long-distance

δ-δ̄ fine-structure corrections is planned for the next refinement of model calculations [53].

Absent in the discussion up to this point is perhaps the most consequential of all

corrections for the meson sector: for most JPC quantum numbers, the physical heavy

hidden-flavor meson spectrum likely contains not only possible δ-δ̄ states, but also ordinary
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QQ̄ quarkonium, as well as Q̄Qg hybrids, in addition to molecules of heavy-meson pairs.

Coupled-channel mixing effects to include all of these states can have a profound effect

on the observed spectrum. For example, a commonly held view in the field [1–9] is that

the peculiar properties of the X(3872) — particularly, its extreme closeness to the D0-D̄∗0

threshold, its small width, and its substantial collider prompt-production rate — can be

explained by X(3872) being an admixture of a D0-D̄∗0 molecule and the yet-unseen χc1(2P )

charmonium state. The addition of δ-δ̄ states clearly makes the complete spectrum all the

more rich and complex. At this stage of the dynamical diquark study, we do not attempt

to address this intricate and deeply interesting problem.

6 Discussion and conclusions

We have produced the first numerical predictions of the dynamical diquark model, which

is the application of the Born-Oppenheimer (BO) approximation to the dynamical diquark

picture. In turn, this picture describes a multiquark exotic state as a system of a compact

diquark δ and antidiquark δ̄ for a tetraquark (or triquark θ̄ for a pentaquark) interacting

through a gluonic field of finite extent. Using the results of lattice simulations for the lowest

BO potentials, we have obtained the mass eigenvalues of the corresponding Schrödinger

equations (both uncoupled and coupled), and found that all known hidden-charm mul-

tiquark exotic states can be accommodated by the lowest (Σ+
g ) potential, for which the

gluonic quantum numbers are JP = 0+. In this sense, our explicit calculations support a

type of “quark-model” classification of the lowest multiquark exotics, in which one obtains

the tetraquark or pentaquark quantum numbers by combining δ and δ̄ (or θ̄) quantum

numbers and their relative orbital angular momentum, exactly as one does for qq̄ mesons.

Each level Γ(nL) for each BO potential Γ produces a distinct mass eigenvalue, but

differences due to the spin (and isospin) quantum numbers of the δ , δ̄(θ̄) are ignored in

this calculation, meaning that each mass eigenvalue corresponds to a degenerate multiplet

of states with various IG, JPC quantum numbers. We estimated the maximum size of the

neglected fine-structure splittings (∼150 MeV), and found that the spectrum of tetraquarks

should consist of a lowest [Σ+
g (1S)] band, all members of which have P = +, followed by

a gap of about 100 MeV, and then a Σ+
g (1P ) band of P =− states, then another gap and

overlapping Σ+
g (2S) and Σ+

g (1D) bands of P = + states, and finally a band of Σ+
g (2P ),

P = − states. The order for pentaquark states is the same, except that the reflection

quantum number “g” is no longer present, and the P eigenvalues are opposite those for

tetraquarks. Many higher levels are predicted, but are not yet needed to accommodate

currently observed exotics.

As of the present, the computed band structure with alternating P is supported by

the known states, such that X(3872) [Z−c (4430)] is a member of the Σ+
g (1S) [Σ+

g (2S)]

multiplet. The exceptions are the 1++ Y (4140), which lies in the first band gap, but may

be a cc̄ss̄ state and thus fall outside the current analysis; and the 1+− Z0
c (4200) (if its

existence is confirmed), since it lies in the region of the Σ+
g (1P ), P = − band. For the

pentaquarks, the small Pc(4457)-Pc(4380) mass difference is most easily accommodated by

assigning the heavier state to the 2S band and the lighter one to the 1P band, leading
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to the prediction of 1S-band hidden-charm pentaquarks that may be stable against decay

into charmed particles.

However, the BO decay selection rules, based upon separate conservation of heavy

quark-antiquark and light degree-of-freedom quantum numbers in observed decay processes,

mandate that known, low-lying exotics must appear in highly excited BO potentials, and

thus contradict observation. We propose that the selection rules fail badly because they

are based in part upon assigning the exotics to heavy-quark spin eigenstates, for which the

experimental evidence appears to be quite mixed.

To develop the model further, one must perform a detailed analysis of the fine-structure

corrections (both spin and isospin dependence) to determine whether the specific level

structure suggested by data is supported by experiment. One must also include effects

arising from finite diquark (triquark) sizes. These refinements will be implemented in

subsequent work to be carried out by this collaboration.

Additional improvements rely upon, first of all, a reassessment of lattice simulations:

how much does the spin of the heavy sources ( 1
2 for c and c̄, 0 or 1 for δ , δ̄), or the

light-flavor content in the diquark/triquark case, modify the BO potentials? Finally, this

work assumes that every exotic state in the charmoniumlike system is a δ-δ̄ or δ-θ̄ state.

Ignored completely in this analysis are the possibilities that some of these states are high

conventional cc̄, or that some are genuinely hadronic molecules, or threshold effects, or

even mixtures of these types. Only a global analysis including observables such as detailed

branching fractions and production lineshapes can truly disentangle the full spectrum.
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A Born-Oppenheimer potential quantum numbers for a “diatomic” QQ̄

system

We define here the conventional notation for BO potentials used in the classic ref. [39]. A

system with two heavy sources has a relative separation r and a characteristic unit vector

r̂ connecting them, as depicted in figure 1. In the QQ̄ (δδ̄, δθ̄) case, r̂ points from Q̄ to

Q (δ̄ to δ or θ̄ to δ). The system may be “homonuclear” (when Q and Q̄, or δ and δ̄,

are antiparticles of each other), or “heteronuclear” otherwise, such as for Bc multiquark

exotics or the triquark -diquark pentaquark configuration described in refs. [15, 16]. The

“homonuclear” (“heteronuclear”) system possesses the same symmetry group D∞h (C∞v)

as a cylinder (cone) with axis r̂.
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Figure 1. Symmetry directions and quantum numbers relevant to a “diatomic” QQ̄ system.

The system is “homonuclear” when Q and Q̄, or δ and δ̄, are antiparticles of each other, and

“heteronuclear” otherwise.

Since the BO potentials in the two-heavy-source case depend only upon r, the po-

tentials connecting the δ-δ̄ pair can be labeled by the irreducible representations of D∞h.

The conventional quantum numbers used [39] are Γ ≡ Λεη. Λ is an angular momentum

projection, and ε and η are inversion parities. With reference to figure 1, one defines a

plane containing the axis r̂ and a unit normal n̂ to the plane. Denoting the total angular

momentum of the light d.o.f. — a conserved quantity, thanks to the decoupling in the BO

approximation — as Jlight, and the orbital angular momentum of the heavy d.o.f. as LQQ̄,

one obtains the total orbital angular momentum of the system,

L ≡ LQQ̄ + Jlight . (A.1)

Since r̂ ·LQQ̄ = 0, the axial angular momentum r̂ ·Jlight = r̂ ·L of the light d.o.f. is a

good quantum number for the whole system, and its eigenvalues are denoted by λ =

0,±1,±2, . . .. One further notes that

L ≥ |r̂ ·L| = |r̂ · Jlight| = |λ| ≡ Λ . (A.2)

Analogous to the use of labels S, P,D, . . . for the quantum numbers L = 0, 1, 2, . . ., one

denotes potentials with the eigenvalues Λ = 0, 1, 2, . . . by Σ,Π,∆, . . ..

Reflection Rlight of the light d.o.f. through the plane with unit normal n̂ (which is

spatial inversion Plight of the light d.o.f., combined with a rotation by π radians about n̂

originating from the δ-δ̄ midpoint) transforms λ→−λ. Since a glance at figure 1 reveals

that the physical system (and hence its energy) must be invariant under Rlight, one finds

that the energy eigenvalues must be a function only of Λ≡|λ|.
The eigenvalues of Rlight itself are denoted ε=±1. Strictly speaking, specifying ε is

essential only for Σ potentials, for which the ε = ±1 states may have distinct energies;
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however, one may also form ε eigenstates for (degenerate) Λ > 0 BO potentials in the

same way as one uses linear combinations of f(+x) and f(−x) to form both even and

odd functions from an arbitrary function f . Following this procedure [16], one obtains

BO potentials for all values of Λε, in which case one also finds Plight = ε(−1)Λ in the

“homonuclear” case.

Even for the “homonuclear” system, a complete inversion of coordinates of the light

d.o.f. through the midpoint of the QQ̄ pair does not by itself produce an equivalent state

to the original; rather, one must also exchange the QQ̄ pair, or instead, perform charge

conjugation Clight upon the light d.o.f. Thus, the full system in the “homonuclear” case is

physically invariant under the combination (CP )light, and its eigenvalues η = +1,−1 are

labeled as g, u, respectively.

In total, the three eigenvalues Λε
η completely specify the irreducible representation

of D∞h for any “homonuclear diatomic” system.2 In the “heteronuclear diatomic” case

(such as Bc tetraquarks or the triquark-diquark pentaquark), the (CP )light symmetry is

lost (leaving the symmetry group C∞v), but the good quantum numbers Γ≡Λε remain.

B Computational methods

For both n-fold coupled and uncoupled reduced radial Schrödinger equations, one must

solve a Sturm-Liouville problem of the form[
I

d2

dr2
+ Q(r)

]
u(r) = 0 , (B.1)

such that

Q(r) ≡ 2µ

~2

(
E I− L̂2

2µr2
−V(r)

)
and u(0) = 0 , (B.2)

where u is an n-dimensional column vector, I is an n × n identity matrix, L̂2 is a matrix

representing the angular momentum operator of the coupled system, V(r) is the interaction

potential matrix, and E is the energy eigenvalue of the Hamiltonian. One now takes the n

linearly independent column-vector solutions to eq. (B.1) and concatenates them into an

n × n matrix U(r). One can then numerically integrate each um(r) for m ∈ {1, 2, . . . , n}
simultaneously, via the equivalent problem:[

I
d2

dr2
+ Q(r)

]
U(r) = 0 . (B.3)

The Sturm-Liouville problem of eqs. (B.1)–(B.2) has a solution for any E ∈ R. Since

the probabilistic interpretation of quantum mechanics requires that solutions to eq. (B.3)

must be well-behaved as well as normalizable, one must have that the solution asymptoti-

cally approaches zero in the r →∞ limit:

lim
r→∞

U(r)→ 0 . (B.4)

2In a true atomic system, the total electron spin s in the light d.o.f. is appended as a superscript, as in
2s+1Λεη [39].
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The values of E for which eq. (B.4) is satisfied exist in a countable set. These are the

physical eigenvalues of E.

In the case that n = 1, numerically finding the value of E for which eq. (B.4) holds is

accomplished via the use of the nodal theorem of Sturm-Liouville systems. This theorem

has been generalized to systems for which n ≥ 1 [56]. The generalized nodal theorem allows

one to find the physical eigenvalues of E in eq. (B.3) by using det U(r), without explicitly

monitoring the functional solution U(r), to check that eq. (B.4) is satisfied.

If n = 1, one is assured that all of the nodes of U(r) → u(r) are located in the

classically allowed region. Hence, it is important to know where the classical turning

points are located. For n > 1, one has multiple potentials, and hence regions for which

some potentials may be in their classically allowed regions, while others may be in their

classically forbidden regions.

To make the notion of a “classical turning point” well defined in the coupled case, one

can solve for the roots of the eigenvalues of −Q(r) as functions of r. For the case where

each potential has only one classically allowed region, the inner classical turning point is

defined as the innermost root of any of the eigenvalues of −Q(r), and the outer classical

turning point is defined as the outermost root of any of the eigenvalues of −Q(r). This

definition of the classical turning points ensures that no nodes are missed in the counting

procedure due to having skipped over a portion of the classically allowed region of one of the

potentials. Moreover, such a definition is established through multichannel generalizations

of the WKB approximation [57].

To find the desired value energy eigenvalue EN for which the solution UN has N nodes,

one first chooses a window of E values that is bounded below by Elow, bounded above

by Ehigh, and that contains EN . One then counts the number of nodes N of det U(r)

in the classically allowed region by numerically integrating eq. (B.3) at E = Emid =

(Elow + Ehigh)/2. Once the outer bound has been reached, one then sets Elow = Emid if

N ≤ N , or sets Ehigh = Emid if N > N . This procedure is repeated until Ehigh − Elow

meets a pre-specified tolerance.

B.1 Renormalized numerov integration procedure

We now derive the renormalized Numerov method of ref. [40]. Discretize the radial coor-

dinate r such that the initial value r0 is located to the left of the inner classical turning

point and is sufficiently close to the origin, while the final value rf is located sufficiently

to the right of the outer classical turning point. Moreover, choose the grid to be uniformly

spaced, with ri+1 − ri = h for all i ∈ {0, 1, 2, . . . , f}, and h some arbitrarily small real

number. Moreover, let U(ri) ≡ Ui.

Numerical integration of eq. (B.3) can be accomplished by a coupled generalization of

the Numerov recurrence relation:

(I−Ti+2) Ui+2 − (2I + 10Ti+1) Ui+1 + (I−Ti) Ui = 0 , (B.5)

where

Ti ≡ −
h2

12
Q(ri) . (B.6)
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The recurrence relation of the renormalized Numerov scheme results from three

substitutions:

Fi ≡ (I−Ti) Ui ,

Hi ≡ (2I + 10Ti) (I−Ti)
−1 ,

Ri ≡ Fi+1F
−1
i . (B.7)

The first two substitutions turn eq. (B.5) into

Fi+2 −Hi+1Fi+1 + Fi = 0 , (B.8)

and the last substitution renormalizes eq. (B.8) as

Ri+1 = Hi+1 −R−1
i . (B.9)

Equation (B.9) provides a stable and efficient method for propagating Ui in regions

where the entries of Q diverge to ±∞, since Ri ∼ Qi+1Q
−1
i . In most situations, one can

choose R−1
0 = 0; however, this choice can present complications [40]. We instead set R−1

0

to be

R−1
0 = (I−T0) (2I + 10T0)−1 = H−1

0 . (B.10)

If r0 = h, then this choice is equivalent to supposing that R−1
−1 = 0 precisely at the origin,

r = r−1 = 0.

We now describe a method for counting the number of nodes along the integration

without explicitly monitoring det Ui at each integration step. First suppose that there is

only one node of det U between ri+1 and ri. From the last of eq. (B.7), one has that

det Ri+1 =
det(I−Ti+1)

det(I−Ti)
× det Ui+1

det Ui
. (B.11)

Since det(I−Ti+1)>0 for any ri in the classically allowed region, one has that det Ri+1<0,

since det U encountering one node between ri+1 and ri implies that det Ui and det Ui+1

have opposite signs. It follows that one may monitor det Ri at each integration step to

count the number of nodes. Such a method is effective if only one node exists between each

pair of grid points, as the existence of even numbers of nodes between any two grid points

(due to degeneracies, for example) implies that det Ui+1 and det Ui have the same sign,

and hence det Ri+1 > 0.

One can avoid missing nodes by instead monitoring the individual eigenvalues of Ri at

each integration point. If det Ri < 0, then there is an odd number of negative eigenvalues.

However, if det Ri > 0, there is an even number of negative eigenvalues, and an incorrect

node count occurs. Therefore, if one instead monitors each time one of the eigenvalues of

Ri changes sign, there is no danger of missing a node. This procedure is equivalent to mon-

itoring the signature of Ri, and one can therefore equivalently count the number of times

one of the diagonal entries of the U matrix in an LU -decomposition of Ri changes sign.
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B.2 Calculation of expectation values

From nondegenerate perturbation theory, one learns that if the Hamiltonian H splits into

some reference Hamiltonian H(0) and a small perturbation εH ′, then the energy eigenvalues

can be calculated perturbatively. To first order in ε, this perturbative expansion is:

E′N = E
(0)
N + ε〈N |H ′|N〉+O

(
ε2
)
. (B.12)

The expectation value of H ′ is then found as the limit

〈N |H ′|N〉 = lim
ε→0

E′N − E
(0)
N

ε
. (B.13)

While this result when H ′ is specifically a Hamiltonian perturbation is the conventional

Feynman-Hellmann theorem, it remains true for any Hermitian operator H ′. Therefore,

eq. (B.13) provides a method [41] for numerically calculating the expectation values of

arbitrary operators using just the energy eigenvalues of the original problem and the energy

eigenvalues of eq. (B.12), so long as these energies are non-degenerate. This observation is

very powerful, because it means that one does not need to numerically compute the wave

functions of eq. (B.3) in the calculation of expectation values.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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