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1 Introduction

Measurements of anisotropies of Cosmic Microwave Background (CMB) provide important

clues to the early Universe after Big Bang, such as inflation, dark matter and dark energy.

In particular, it has been shown that the observed CMB spectrum [1, 2] is consistent

with the predictions from the slow-roll inflation with a single canonical scalar field, the

so called inflaton. However, what causes the inflation is unknown, although some of the
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early proposed inflation models including quartic or quadratic inflaton potentials have been

now disfavored.

Higgs inflation [3] has been proposed as an economic implementation of inflation in

particle physics, just with a single non-minimal coupling of Higgs field to gravity, so it has

drawn a lot of attention from both particle physics and cosmology communities. Some

time after the proposal, it was also noticed that a large non-minimal coupling necessary

for a successful Higgs inflation causes unitarity problem much below the Planck scale [4–7].

However, Higgs inflation can be saved under the assumption that new physics entering

at unitarity scale respects the approximate scale symmetry [8] or due to extra degrees of

freedom fully recovering the unitarity up to the Planck scale [9–15].

Recently, a new proposal for unitarizing Higgs inflation with a light inflaton, dubbed

the sigma field σ, has been made by one of the authors [16]. In this case, the inflaton

carries both quadratic and linear non-minimal couplings. As a result, we can keep the flat

direction for inflation due to a large quadratic non-minimal coupling and, at the same time,

unitarity scale is restored up to the Planck scale due to the field-independent rescaling of

the inflaton field due to the linear non-minimal coupling. In this framework, the sigma

field mass can take any value below the unitarity scale of the original Higgs inflation such

that we can recover the Higgs inflation in the effective theory, but with a sizable correction

to the tensor-to-scalar ratio at tree level.

In this article, we investigate the impacts of the linear non-minimal coupling on various

dynamics from inflation to low energy phenomena such as reheating and inflaton couplings,

in connection to unitarity scale and inflationary predictions. The Z2 symmetry for σ is

respected by the inflaton potential in Jordan frame but it is broken explicitly by the linear

non-minimal coupling. Then, the inflaton has novel couplings to the SM through the trace

of the energy-momentum tensor with a suppression of the Planck scale in Einstein frame.

In this case, we pursue the possibility that the inflaton can be a decaying dark matter

(DM). To this, we consider the non-thermal production mechanisms for dark matter from

the decays of the SM Higgs boson and the inflaton condensate. As a result, we show the

parameter space for a decaying dark matter that is consistent with the correct relic density

and cosmological constraints. There has been a recent proposal of axion-like inflation where

the inflaton makes a decaying dark matter too [17, 18].

The paper is organized as follows. We begin with a model description for the sigma

field inflation and discuss the inflationary dynamics along the flat direction in the system

with sigma and Higgs fields. Then, we continue to consider the reheating dynamics with a

novel quartic potential and identify the possible reheating temperature depending on the

mixing quartic coupling. Next we show how the unitarity is restored up to the Planck scale

due to a sizable linear non-minimal coupling and identify the low energy parameters in the

potential and inflation couplings to the SM through the trace of the energy-momentum

tensor. As a result, the decay branching ratios of the inflaton are shown for heavy or

light inflaton cases. Then, we show the parameter space for inflaton dark matter that

is consistent with the correct relic density and the Big Bang Nucleosynthesis (BBN) and

CMB bounds. Finally, conclusions are drawn. There is one appendix dealing with the

details on inflaton decay rates.
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2 Model

We consider the inflation model with a real scalar field σ as a simple extension of the

Standard Model (SM), with the corresponding Lagrangian [16] being

L√
−g

= −1

2
Ω(σ,H)R+

1

2
(∂µσ)2 + |DµH|2 − V (σ,H)

− 1

4g2
VµνV

µν + ψ̄iγµ
(
Dµ +

1

2
ωabµ σab

)
ψ − (yHψ̄LψR + h.c.) (2.1)

where the frame function and the scalar potential are given by

Ω(σ,H) = 1 + ξ1σ + ξ2σ
2 + 2ξH |H|2, (2.2)

V (σ,H) = V0 +
1

2
m2
σσ

2 +
1

4
λσσ

4 +
1

2
λσHσ

2|H|2 +m2
H |H|2 + λH |H|4. (2.3)

We note that H is the SM Higgs doublet, Vµν is to collectively describe the field strength

tensors for the SM gauge bosons, and ψ are the SM fermions, and DµH and Dµψ are

covariant derivatives, σab = 1
4 [γa, γb], and V0 is a constant term which is chosen to set the

cosmological constant in the vacuum to zero. Here, we assume that the sigma field is odd

under a Z2 symmetry, i.e. σ → −σ, that is respected by the scalar potential but broken

only due to the linear non-minimal coupling ξ1 in quantum gravity. As will be discussed

later, it is still possible to make the inflaton as a decaying dark matter if light enough, even

in the presence of the violation of the Z2 symmetry.

We note that the Z2 symmetry gets restored in the limit of a vanishing ξ1, so it is

natural to introduce the approximate Z2 symmetry in the low energy. As will be shown in

sections 5 and 6, the Z2 breaking is communicated to the SM via gravitational interactions,

thus it appears as higher dimensional interactions with suppression scales larger than or

equal to the Planck scale in Einstein frame. Then, we can regarding our setup as an

effective theory below the Planck scale. Therefore, as far as higher dimensional operators

are suppressed by the Planck scale at least, our later discussion based on the Z2 breaking

non-minimal coupling holds.

When the sigma field is heavier than electroweak scale, it is too short-lived to be a dark

matter candidate. In this case, after integrating out a heavy sigma field with λσH < 0, we

obtain a Higgs effective theory with the effective frame function and scalar potential [16],

given by

Ωeff = 1− ξ2m
2
σ

λσ
+ ξ1

√
−m2

σ − λσH |H|2
λσ

+ 2ξH,eff |H|2, (2.4)

Veff = V0,eff +m2
H,eff |H|2 + λH,eff |H|4 (2.5)
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with

V0,eff = V0 −
m4
σ

4λσ
, (2.6)

m2
H,eff = m2

H −
λσH
2λσ

m2
σ, (2.7)

ξH,eff ≡ ξH −
λσHξ2

2λσ
, (2.8)

λH,eff ≡ λH −
λ2
σH

4λσ
. (2.9)

Therefore, the effective Higgs quartic coupling λH,eff gets a tree-level shift due to the scalar

threshold, curing the vacuum instability problem in the SM [19, 20]. Moreover, a large

positive effective non-minimal coupling ξH,eff for the Higgs field can be obtained and the

effective frame function also contains a non-analytic form of the non-minimal coupling to

gravity for the Higgs field, being proportional to the linear non-minimal coupling for the

sigma field. However, we will fully take into account the sigma field in our later discussion

and focus on the case with a light sigma field.

For ξ2, ξH > 0, in order to maintain the effective Planck mass squared in Jordan

frame to be positive during the cosmological evolution, we impose the condition for stable

gravity [16] as

ξ2
1 < 4(ξ2 + ξHτ

2) (2.10)

with τ2 = 2|H|2
σ2 . Then, eq. (2.10) leads to the upper bound on the linear non-minimal

coupling ξ1 for stable gravity in the entire field space. We will take this into account in

the later discussion on inflationary dynamics.

Choosing the Higgs doublet in unitary gauge as HT = (0, φ)/
√

2 and performing the

metric rescaling by gµν = gEµν/Ω with Ω = 1+ ξ1σ+ξ2σ
2 +ξHφ

2, we get the Einstein frame

Lagrangian of our model as

LE√
−gE

= −1

2
R(gE) +

1

2Ω
(∂µσ)2 +

3

4
(∂µ ln Ω)2 +

1

2Ω

(
(∂µφ)2 + δV m

2
V,0

φ2

v2
VµV

µ

)
−VE(σ, φ)− 1

4g2
VµνV

µν + f̄ iγµ
(
Dµ +

1

2
ωabµ σab

)
f − Ω−1/2 mf,0

v
φf̄f (2.11)

where mf,0,mV,0 are SM fermion and electroweak gauge boson masses, independent of

the sigma field, and δV = 1(2) for V =Z(W ) bosons, and the Einstein frame potential is

given by

VE(σ, φ) =
1

Ω2
V (σ, φ) (2.12)

with

V (σ, φ) = V0 +
1

2
m2
σσ

2 +
1

4
λσσ

4 +
1

4
λσHσ

2φ2 +
1

2
m2
Hφ

2 +
1

4
λHφ

4. (2.13)

Here, we note that the SM fermions are rescaled by f = Ω−3/4ψ for canonical kinetic terms

in eq. (2.11) and the form of covariant kinetic terms for fermions is unchanged under the

Weyl transformations of the metric and fermions.
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From the following,

∂µ ln Ω =
1

Ω

[
(ξ1 + 2ξ2σ)∂µσ + 2ξHφ∂µφ

]
, (2.14)

and the Einstein frame Lagrangian given in eq. (2.11), the scalar kinetic terms in Einstein

frame can be rewritten as

Lkin√
−gE

=
1

2Ω2

(
1 +

3

2
ξ2

1 + (1 + 6ξ2)(ξ1σ + ξ2σ
2) + ξHφ

2

)
(∂µσ)2

+
1

2Ω2

(
1 + ξ1σ + ξ2σ

2 + ξH(1 + 6ξH)φ2
)

(∂µφ)2

+
3

Ω2
ξH(ξ1 + 2ξ2σ)φ∂µσ∂

µφ. (2.15)

We will make use of the above form of the kinetic terms for our later discussion on infla-

tionary dynamics and unitarity scales in the true vacuum.

Furthermore, from eq. (2.11), we also note that the inflaton couplings to the SM in

Einstein frame can be read from

Lint√
−gE

=
1

2Ω
(∂µφ)2 − 1

Ω2
V −

mf,0

Ω1/2

φ

v
f̄f +

1

2Ω
δV m

2
V,0

φ2

v2
VµV

µ. (2.16)

The above interaction Lagrangian will be useful for discussing the reheating dynamics and

inflation couplings at low energy in the later sections.

3 Inflationary dynamics

We consider the inflationary dynamics in our model with sigma and Higgs fields along

the flat direction and discuss the details of the vacuum structure during inflation. After

obtaining the effective potential for a single inflaton, we show the differences from the usual

inflation with quadratic non-minimal couplings only.

3.1 Inflaton dynamics along the flat direction

Taking ξ1σ+ξ2σ
2 +ξHφ

2 � 1 during inflation, we get Ω ≈ ξ1σ+ξ2σ
2 +ξHφ

2 and introduce

a new set of fields [16] by

e
2√
6
χ

= ξ1σ + ξ2σ
2 + ξHφ

2, (3.1)

τ =
φ

σ
. (3.2)

Then, from the approximate relation between σ and redefined fields, χ and τ , given by

σ ≈ e
1√
6
χ

(ξ2 + ξHτ2)1/2

(
1− R̂

2
e
− 1√

6
χ

+
R̂2

8
e
− 2√

6
χ

)
(3.3)

with

R̂ ≡ ξ1

(ξ2 + ξHτ2)1/2
, (3.4)
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the scalar potential in Einstein frame1 becomes

VE(χ, τ) ≈ 1

4
(λHτ

4 + λσHτ
2 + λσ)

(
1 + e

2√
6
χ
)−2

σ4

≈ VI(τ)
(

1− 2R̂ e
− 1√

6
χ − 2(1− R̂2) e

− 2√
6
χ
)

(3.5)

with

VI(τ) ≡ λHτ
4 + λσHτ

2 + λσ
4(ξ2 + ξHτ2)2

. (3.6)

Thus, the ratio of the fields is determined dominantly by the minimization of VI with

respect to τ . We note that for τ = 0, i.e. for zero φ during inflation, R̂ is identical to

R, that will appear in the unitarity scales in section 5. We note that the value of R̂ is

constrained to 0 ≤ R̂ < 2 for stable gravity [16], as discussed for eq. (2.10).

Now we discuss the scalar kinetic terms in Einstein frame and check the consistency of

the inflaton identification in the above discussion. First, we can rewrite eq. (2.15) in terms

of the shifted sigma field, σ̄ = σ + ξ1/(2ξ2), as

Lkin√
−gE

=
1

2Ω2

(
1− ξ2

1

4ξ2
+ ξ2(1 + 6ξ2)σ̄2 + ξHφ

2

)
(∂µσ̄)2

+
1

2Ω2

(
1− ξ2

1

4ξ2
+ ξ2σ̄

2 + ξH(1 + 6ξH)φ2

)
(∂µφ)2

+
6

Ω2
ξHξ2 σ̄ φ ∂µσ̄∂

µφ. (3.7)

Here, during inflation, we can ignore 1− ξ2
1

4ξ2
in eq. (3.7) so the kinetic terms are essentially

the same as in the sigma field inflation without the linear non-minimal coupling, although

there is a significant difference in the vacuum as will be shown in the later sections.

In the basis of χ and τ , the Einstein-frame kinetic terms in eq. (3.7) are generically

non-diagonal [16, 21, 22]. Thus, we have to choose another basis with ρ, instead of χ, as

follows,

ρ2 = (1 + 6ξ2)σ̄2 + (1 + 6ξH)φ2. (3.8)

This is the Noether current of scale symmetry [23–25], which is approximately respected

during inflation because ρ is close to a constant value up to small slow-roll parameters.

Redefining the scalar fields in terms of ρ and θ [25, 26] as

σ̄ =
1√

1 + 6ξ2
ρ cos θ, (3.9)

φ =
1√

1 + 6ξH
ρ sin θ, (3.10)

1We have corrected the typo in the last term of the scalar potential in ref. [16]: (2 + R̂2)→ 2(1− R̂2).
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we find that the above Einstein-frame kinetic terms in eq. (3.7) become diagonal,

Lkin√
−gE

≈
(
ξ2 cos2 θ

1 + 6ξ2
+
ξH sin2 θ

1 + 6ξH

)−1
(∂µρ)2

2ρ2

+
1

2

(
ξ2

√
1 + 6ξH
1 + 6ξ2

cos2 θ + ξH

√
1 + 6ξ2

1 + 6ξH
sin2 θ

)−2

(ξ2 cos2 θ + ξH sin2 θ)(∂µθ)
2

=
1 + 6ξ2 + (1 + 6ξH)τ2

ξ2 + ξHτ2

(∂µρ)2

2ρ2

+
ξ2(1 + 6ξ2)ξH(1 + 6ξH)τ2

1 + 6ξ2 + (1 + 6ξH)τ2

(∂µτ)2

2(ξ2 + ξHτ2)2
. (3.11)

This is a more convenient form for discussing the inflaton effective potential with the τ

field decoupled in the next section.

3.2 Effective action for inflaton

After stabilization of τ from the scalar potential VI(τ) in eq. (3.6), we get four differ-

ent vacua for τ during inflation and the corresponding minimum conditions [21], in the

following,

(1) : τ =

√
λσξH − λσHξ2/2

λHξ2 − λσHξH/2
: λHξ2 − λσHξH/2 > 0 , λσξH − λσHξ2/2 > 0 ,

(2) : τ = 0 : λHξ2 − λσHξH/2 > 0 , λσξH − λσHξ2/2 < 0 ,

(3) : τ =∞ : λHξ2 − λσHξH/2 < 0 , λσξH − λσHξ2/2 > 0 ,

(4) : τ = 0,∞ : λHξ2 − λσHξH/2 < 0 , λσξH − λσHξ2/2 < 0 . (3.12)

Then, there is a unique vacuum for τ in the first three cases, and the vacuum energy in

each case given [21] by

(1) : VI =
1

4

λHλσ − λ2
σH/4

λσξ2
H + λHξ2

2 − λσHξHξ2
,

(2) : VI =
λσ
4ξ2

2

,

(3) : VI =
λH
4ξ2
H

,

(4) : VI =
λσ
4ξ2

2

or
λH
4ξ2
H

, (3.13)

whereas there are two local minima in the last case (4), with the same vacuum energy as

given in the cases (2) and (3), respectively.

– 7 –
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In the case with ξ2 � ξH = O(1) and quartic couplings of order unity, the conditions

for the inflation vacua (3.12) become

(1) : τ =

√
−λσH

2λH
: λH > 0 , λσH < 0 ,

(2) : τ = 0 : λH > 0 , λσH > 0 ,

(3) : τ =∞ : λH < 0 , λσH < 0 ,

(4) : τ = 0,∞ : λH < 0 , λσH > 0 . (3.14)

In the first two cases, we need the Higgs quartic coupling to be positive during inflation:

the former is the sigma-Higgs mixed inflation and the latter is the pure sigma inflation. In

the third case, as the Higgs quartic coupling is required to be negative as λH < 0, VI < 0,

so it is not possible to get a dS vacuum for inflation. Finally, in the fourth case, even for

λH < 0, the inflation could be driven by the sigma field at the metastable vacuum with

τ = 0 so it could lead to a viable cosmology with correct electroweak symmetry breaking at

low energy. But, τ = ∞ is not a valid option because the vacuum energy during inflation

is negative, i.e. VI = λH
4ξ2
H
< 0. The vacuum energy (3.13) for the viable inflation is given by

(1) : VI =
1

4ξ2
2

(
λσ −

λ2
σH

4λH

)
,

(2), (4) : VI =
λσ
4ξ2

2

. (3.15)

Therefore, for ξ2 � 1 and θ (or τ) stabilized at θ0 (or τ0), the Einstein-frame kinetic

terms in eq. (3.11) become simplified to

Lkin√
−gE

≈ 1 + 6ξ2 + (1 + 6ξH)τ2
0

ξ2 + ξHτ2
0

(∂µρ)2

2ρ2
+

(∂µτ)2

2ξ2

=
1

2
(∂µχ)2 +

(∂µτ)2

2ξ2
. (3.16)

Here, we note that since

Ω ≈ (ξ2σ̄
2 + ξHφ

2)

∣∣∣∣
θ=θ0

=

(
ξ2 cos2 θ0

1 + 6ξ2
+
ξH sin2 θ0

1 + 6ξH

)
ρ2 = e

2√
6
cχ
, (3.17)

where

c2 =
6(ξ2 + ξHτ

2
0 )

1 + 6ξ2 + (1 + 6ξH)τ2
0

≈ 1, ξ2 � 1. (3.18)

the above result with the canonical inflaton field χ is consistent with eq. (3.1).

In summary, from eqs. (3.16) and (3.5), the approximate Einstein-frame Lagrangian

for inflation is given [16] by

LE√
−gE

= −1

2
R(gE) +

1

2
(∂µχ)2 +

(∂µτ)2

2ξ2
− VE(χ, τ) (3.19)

– 8 –
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with

VE(χ, τ) = VI(τ)
(

1− 2R̂ e
− 1√

6
χ − 2(1− R̂2) e

− 2√
6
χ
)
. (3.20)

We note that the physical mass for the τ field is rescaled by the non-minimal coupling ξ2

to ∼
√
ξ2VI ∼

√
ξ2HI , which is much larger than the Hubble scale HI during inflation, so

we can safely ignore the dynamics of the τ field for the inflationary dynamics.

3.3 Inflationary predictions

From the effective inflaton Lagrangian in eq. (3.19), the slow-roll parameters during infla-

tion are given approximately by

ε =
1

3
e
− 2√

6
χ
(
R̂2 + 4R̂ e

− 1√
6
χ

+ 4(1 + 3R̂2 − R̂4) e
− 2√

6
χ
)
, (3.21)

η = −1

3
e
− 1√

6
χ
(
R̂+ 2(2− R̂2) e

− 1√
6
χ

+ R̂(10− 6R̂2) e
− 2√

6
χ
)
. (3.22)

As a result, the spectral index is given by

ns = 1− 6ε∗ + 2η∗

= 1− 2

3
e
− 1√

6
χ∗
(
R̂+ (4 + R̂2)e

− 1√
6
χ∗
)

(3.23)

where ∗ denotes the evaluation of the slow-roll parameters, (3.21) and (3.22), at horizon

exit. The tensor-to-scalar ratio is also given by r = 16ε∗ with eq. (3.21) at horizon exit. We

note that the measured spectral index and the bound on the tensor-to-scalar ratio are given

by ns = 0.9670 ± 0.0037 and r < 0.07 at 95% C.L., respectively, from Planck 2018 (TT,

TE, EE + low E + lensing + BK14 + BAO) [2], as compared to ns = 0.9652± 0.0047 and

r < 0.10 at 95% C.L. in Planck 2015 (TT, TE, EE + low P) [1]. Thus, the experimental

errors in the spectral index from Planck 2018 combination are reduced a bit but the central

value of the spectral index is consistent with the one from Planck 2015.

Moreover, with eq. (3.21), the number of efoldings required to solve the horizon problem

can be calculated as follows,

N =

∫ χi

χf

sign(V ′E)dχ√
2ε

≈ 3A(χ)
(
A(χ)− 2 ln

[
2 + R̂ e

1√
6
χ

+A(χ)
])
/(R̂2A(χ))

∣∣∣χi
χf

(3.24)

with

A(χ) =

√
4 + 12R̂2 − 4R̂4 + 4R̂ e

1√
6
χ

+ R̂2 e

√
2
3
χ

(3.25)

where χi,f are the inflaton values at the beginning and end of inflation and we can take

χi = χ∗. Then, we can solve eq. (3.24) for χ∗ to express the slow-roll parameters at horizon

exit in terms of the number of efoldings N and R̂.

In figure 1, we show the slow-roll parameters as a function of R̂ for N = 50 and 60

in solid and dashed lines, respectively. The ε parameter is sensitive to the value of R̂,
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10-1

R

-
η
*,
ϵ
*

N = 50 (Solid), 60 (Dashed)

Figure 1. Slow-roll parameters as a function of R̂ ≡ ξ1/(ξ2 +ξHτ
2)1/2. We have chosen the number

of efoldings to N = 50, 60 in solid and dashed lines, respectively. Star points correspond to the case

with R̂ = 0.

N = 50

N = 60

Planck 1σ
( 2018 )

★

★

R = 0

R = 0

0.955 0.960 0.965 0.970 0.975
0.000

0.005

0.010

0.015

0.020

ns

r

N = 50, 60

Figure 2. Spectral index ns vs tensor-to-scalar ratio r between R̂ = −0.5 and 1.5. We have chosen

N = 50, 60 in blue and black lines, respectively. Planck 1σ band is shown in green. Star points

correspond to the case with R̂ = 0.

increasing as R̂ gets larger. Moreover, in figure 2, we depict the predictions for the spectral

index ns and the tensor-to-scalar ratio r in our model for N = 50 and 60 in blue and black

lines, respectively. The values of R̂ are taken between −0.5 and 1.5. In the presence of a

sizable R̂, the region compatible with Planck 2018 data is enlarged and the tensor-to-scalar

ratio is as large as 0.014, which is at the detectable level in future CMB experiments.
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For R̂ � e
− 1√

6
χ∗ , i.e. ξ1 � 1, the results with quadratic non-minimal couplings only

are recovered, namely, N ≈ 3
4 e

2√
6
χ∗ , ε∗ ≈ 4

3 e
− 4√

6
χ∗ and η∗ ≈ −4

3 e
− 2√

6
χ∗ . Then, we

get ε∗ ≈ 3
4N2 and η∗ ≈ − 1

N , so the spectral index and the tensor-to-scalar ratio become

ns ≈ 1− 2
N and r ≈ 12

N2 , respectively [3].

Finally, from the normalization for CMB anisotropies, the vacuum energy during in-

flation is constrained by As = 1
24π2

VI
ε∗
' 2.1 × 10−9 at the Planck pivot scale of k =

0.05 Mpc−1 [2]. Then, for ξ2 � 1 and ξH = O(1), depending on the viable inflation

vacua given in (3.15), we need the combination of quartic couplings and the quadratic

non-minimal coupling to satisfy the following conditions,

(1) :
1

ξ2
2

(
λσ −

λ2
σH

4λH

)
= 1.2× 10−9

(
r

0.01

)
,

(2), (4) :
λσ
ξ2

2

= 1.2× 10−9

(
r

0.01

)
. (3.26)

Therefore, in the case with sigma-Higgs mixed inflation (1), there is a cancellation between

quartic couplings, so the CMB normalization can be satisfied for a relatively smaller ξ2.

On the other hand, in the case with sigma inflation (2), (4), the non-minimal coupling ξ2

must be very large unless λσ is small.

4 Reheating

In order to discuss the reheating process, we need to identify the form of the inflaton

potential at the onset of inflaton oscillation near the minimum. We show that the sigma-

field potential becomes quartic already at the end of inflation due to a sizable linear non-

minimal coupling, so the reheating dynamics becomes different from the usual inflation

without a linear non-minimal coupling. We also obtain the reheating temperature of our

model, depending on the mixing quartic coupling between sigma and Higgs fields. Then,

we discuss the relevance of preheating and the instability regions for quartic couplings in

our model.

4.1 Inflaton potential during reheating

For simplicity, we focus on the reheating process of the pure sigma-field inflation but a

similar discussion applies for the mixed inflation. With 〈φ〉 = v during inflation, from

eq. (2.11) or (2.15), the canonical inflaton field χ is related to the original sigma field by

dχ

dσ
=

√
1

Ω
+

3Ω′2

2Ω2
=

1

Ω

√
1 + ξ1σ + ξ2σ2 +

3

2
(ξ1 + 2ξ2σ)2

=
1

Ω

√
1− ξ2

1

4ξ2
+ ξ2(1 + 6ξ2)σ̄2 (4.1)

with σ̄ = σ + ξ1
2ξ2

. Therefore, as far as 1 . ξ1 < 2
√
ξ2, we always get σ̄ & 1

ξ2
, so the above

equation becomes simplified, independent of σ field values, to

dχ

dσ
≈
√

3

2

Ω′

Ω
. (4.2)
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Thus, we obtain the canonical inflaton field as

χ ≈
√

3

2
ln Ω =

√
3

2
ln(1 + ξ1σ + ξ2σ

2) (4.3)

or

σ̄2 ≈ 1

ξ2

(
e

2√
6
χ −

(
1− R2

4

))
(4.4)

with R = ξ1/
√
ξ2.

As a result, we obtain the inflaton potential in Einstein frame, as follows,

VE =
λσ

4Ω2
σ4

≈ λσ
4ξ2

2

[(
1−

(
1− R2

4

)
e
− 2√

6
χ
)1/2

− R

2
e
− 1√

6
χ

]4

. (4.5)

Then, we can recover the approximate inflaton potential (3.5) with τ = 0 during inflation

for σ̄ & 1√
ξ2

or χ & 1. On the other hand, after the end of inflation, i.e. χ . 1, we can

expand eq. (4.5) to get the inflaton potential during reheating as follows,

VE ≈
λσ
9ξ4

1

χ4. (4.6)

Consequently, we find that the inflaton potential becomes quartic during reheating, due to

a sizable linear non-minimal coupling. In this case, the effective quartic coupling for the

inflaton becomes suppressed by ξ4
1 . The suppressed quartic coupling is due to the redefined

sigma field with χ ≈
√

3
2ξ1σ near the true vacuum, as will be discussed in more detail in

the next section.

For comparison, when ξ1 = 0 or R = 0 as in Higgs inflation [27, 28], the inflaton

potential (4.5) becomes

VE ≈
λσ
4ξ2

2

(
1− e−

2√
6
χ
)2
. (4.7)

The above potential is valid for σ & 1
ξ2

, so the inflaton potential becomes quadratic as

VE ≈ λσ
6ξ2

2
χ2 during reheating [27, 28], unlike the case with ξ1 & 1. Moreover, from

eq. (4.1), when ξ1 = 0, eq. (4.1) with σ . 1
ξ2

leads to χ ≈ σ, thus the sigma-field potential

becomes the same as the one in Jordan frame as VE ≈ 1
4λσχ

4, without a suppression of

the quartic coupling.

4.2 Decays of inflaton condensate and reheating temperature

In the presence of the quartic inflaton potential during reheating, the inflaton background

field (or condensate) χc evolves in time [30, 32–34], as follows,

χc(t) = χ0(t) cn

(
ω(t) t,

1√
2

)
. (4.8)
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Here, cn
(
ω(t) t, 1√

2

)
≈ cos(0.85ω(t)) with ω(t) = 2λ

1/2
χ χ0(t) being the oscillation frequency

of the inflaton with ω(t)� H, and the amplitude of oscillation is given by χ0 = χend

√
tend/t

with χend = (12/λχ)1/4
√
HendMP . We note that cn(u,m) = cosϕ is the Jacobi cosine for

u =
∫ ϕ

0 dθ/
√

1−m sin2 θ.

From eq. (2.16), we consider the relevant Lagrangian for reheating, composed of the

inflaton quartic potential and the inflaton interactions in Einstein frame, as follows,

LRH = −1

4
λχχ

4 − 1

4
λχH χ

2h2 + Lint,Ω (4.9)

where λχ ≡ 4λσ/(9ξ
4
1) and λχH ≡ 2λσH/(3ξ

2
1) is used, and Lint,Ω is the gravitational infla-

ton interaction from eq. (2.16) during reheating, due to the frame function with eq. (4.3),

given by

Lint,Ω =
2χ√
6MP

[
−1

2
(∂µφ)2 + 2V +

1

2
mf,0

φ

v
f̄f − 1

2
δV m

2
V,0

φ2

v2
VµV

µ

]
≈ 2χ√

6MP

[
−1

2
(∂µh)2 +m2

h,0h
2 +

1

2
mf,0f̄f −

1

2
δV m

2
V,0 VµV

µ

]
+ · · · (4.10)

Then, from the quartic terms in the potential in eq. (4.9), the inflaton and Higgs boson

particles have background-dependent masses due to the inflaton condensate as

m2
χ(t) = 3λχχ

2
c(t) +m2

χ,0 , (4.11)

m2
h(t) =

1

2
λχHχ

2
c(t) +m2

h,0 (4.12)

where m2
χ,0,m

2
h,0 are inflaton-independent scalar masses. As a result, the decay width of

the inflaton condensate [32–34] is determined to be

Γχc = Γχc→χχ + Γχc→hh (4.13)

with

Γχc→χχ = 0.023λ3/2
χ χ0, (4.14)

Γχc→hh = 0.002λ2
χHλ

−1/2
χ χ0. (4.15)

We note that the gravitational contributions to Γχc→hh and additional decay modes can be

ignored as far as λχH/λχ & 3
4
√

6
χend/MP or λχH/λ

3/4
χ & 1.8×10−3(r/0.01)1/4. Henceforth,

we assume that this is the case, as will be shown in the later section.

Then, from the condition for the inflaton decoupling at tdec, for which

Γχc = Γχc→hh ·
(

1

1− BR

)
' Hdec =

√
λχ
12

χ2
0(tdec)

MP
(4.16)

with

BR =
Γχc→χχ

Γχc→χχ + Γχc→hh
, (4.17)
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we obtain the amplitude of the inflaton condenstate as

χ0(tdec) = 0.007λ2
χHλ

−1
χ

(
1

1− BR

)
MP . (4.18)

Therefore, under the condition of instantaneous reheating,

π2g∗(TRH)

30
T 4

RH = (1− BR) · ρχc(tdec) = (1− BR) · λχ
4
χ4

0(tdec), (4.19)

with eq. (4.18), we get the reheating temperature as

TRH = 0.002

(
100

g∗(TRH)

)1/4

λ2
χHλ

−3/4
χ (1− BR)−3/4MP

= (4.4× 106 GeV)

(
100

g∗(TRH)

)1/4( λχH
10−8

)2

R3 (1− BR)−3/4

(
r

0.01

)−3/4

(4.20)

with

BR =
11.5λ2

χ

11.5λ2
χ + λ2

χH

=

0.032R−8

(
r

0.01

)2

0.032R−8

(
r

0.01

)2

+

(
λχH
10−8

)2 . (4.21)

Here, we used λχ = 5.3 × 10−10R−4(r/0.01) from the CMB normalization in eq. (3.26).

Therefore, for R = O(1) and r = 0.01, choosing λχH ∼ 10−8, we get BR � 1 and

TRH ∼ 106 GeV.

4.3 Preheating from Higgs portal coupling

Preheating is a non-perturbative process for reheating and it becomes sometimes domi-

nant. In our case, since the effective mass of Higgs boson depends on the time-dependent

inflaton condensate, this leads to the non-adiabatic excitation of the Higgs perturbation

by parametric resonance [29–31].

As discussed in the previous subsection, the inflaton potential becomes quartic during

reheating, so the inflaton condensate follows eq. (4.8). Then, the Fourier mode hk of the

Higgs perturbation with comoving momentum k satisfies the following modified Klein-

Gordon equation [30],

ḧk + 3Hḣk +

(
k2

a2
+m2

h(t)

)
hk = 0. (4.22)

Then, redefining the Higgs perturbation by Hk(t) = a(t)hk(t) and introducing the confor-

mal time by η =
∫
dt/a(t), we can write eq. (4.22) [30] as the Lamé equation,

H ′′k +

(
κ2 +

λχH
2λχ

cn2

(
x,

1√
2

))
Hk = 0 (4.23)
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where the prime denotes the derivative with respect to the conformal time η, and x ≡
ω(t)t = (48λχ)1/4

√
t, and the comoving momentum k in units of the initial effective mass

of the inflaton is given by

κ2 ≡ k2

λχχ2
0 a(t)2

. (4.24)

Here, we ignored the inflation-independent Higgs mass, m2
h,0, in eq. (4.12). Then, the

number of Higgs particles created during preheating grows exponentially as nk ∼ |Hk|2 ∼
e2µkx with a Floquet index µk > 0. When ṅk

nk
∼ 2µkẋ & Γh, with Γh being the Higgs

decay rate, preheating works for Higgs production. From Γh ∼
y2
b

16π 〈mh〉 with yb being the

bottom Yukawa coupling, the condition for preheating to work for Higgs production is

µk & 8.3× 10−5

(
λχH
10−7

)1/2(10−10

λχ

)1/2

. (4.25)

Here, we note that both µkẋ and mh are proportional to χ0, unlike the case with the

quadratic inflaton potential where µkẋ is replaced by the inflaton mass, so preheating rate

exceeds the Higgs decay rate only if eq. (4.25) is fulfilled. On the other hand, if µk < 0,

i.e. outside the instability bands, preheating can be ignored.

Furthermore, preheating can be dominant over perturbative reheating, provided that
ṅk
nk
∼ 2µkẋ & Γχc ≈ Γχc→hh with eq. (4.13), that is,

µk & 2× 10−7

(
λχH
10−7

)2(10−10

λχ

)
. (4.26)

Therefore, as far as preheating is efficient according to eq. (4.25), it would become a

dominant process for reheating. We note that from µkẋ ∼ mχ, eq. (4.26) is equivalent

to µkmχ & Γχc . If eq. (4.26) is satisfied, the reheating temperature can be determined

approximately by the condition, 2µkẋ ∼ 3H, where H is the Hubble parameter during

reheating. In this case, the resulting reheating temperature can be much larger than the

one determined by perturbative decay in the previous subsection.

In the case of λχH & λχ, which is our interest for the later discussion on decaying dark

matter, we expand cn
(
x, 1√

2

)
≈ x near x = 0. Then, it can be shown that the equation

for the Floquet index µk is given [30] by

eµk
T
2 = | cosαk|

√
1 + e−πγ2 +

√
(1 + e−πγ2) cos2 αk − 1 (4.27)

where T = 7.416 is the period of the oscillations in units of x, and γ2 ≡
√

4λχ
λχH

κ2, and the

phase αk is approximated to

αk ≈ π

√
λχH
4λχ

+ κ2

√
λχ

4λχH
ln
λχH
2λχ

. (4.28)

Then, there exists a solution to eq. (4.27), i.e. the exponential growth of created particles

is possible, only if

| tanαk| < e−πγ
2/2. (4.29)
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Figure 3. (Left) Instability bands for preheating in the parameter space, λχH/λχ vs κ2 ≡
k2/(λχχ

2
0(t)a(t)2). (Right) Floquet index µ0 for zero momentum as a function of λχH/λχ.

On the left in figure 3, we show the instability bands for preheating in the parameter

space for λχH/λχ and the comoving momentum κ2 ≡ k2/(λχχ
2
0(t)a(t)2). On the right in

figure 3, for zero momentum mode, we draw the Floquet index as a function of λχH/λχ,

with its maximum being given by µk,max ≈ 0.2377. As a consequence, in the region where

eq. (4.29) is satisfied, preheating is efficient enough to determine the reheating temperature

at a higher value as compared to the case with perturbative decays.

Preheating process becomes important for broad resonances near the zero momentum

mode on the left in figure 3. However, in the narrow resonances close to cuspy ends of

each instability band in the same plot, the redshift of momenta k away from the resonance

band can prevent parametric resonance from being efficient [29]. Then, we can estimate

the condition for preheating into the Higgs perturbation to be dominant as µk(∆κ
2)mχ &

Γχc where ∆κ2 is the width of the narrow resonance. Therefore, the original condition

with broad resonances in eq. (4.26) is generalized to µk & 10−7/(∆κ2). Therefore, for a

sufficiently small ∆κ2, we can ignore preheating safely but instead rely on the perturbative

decays of the inflaton for reheating, as discussed in the previous subsection. We assume

that this is the case for our later discussion for the calculation of dark matter abundance

from the inflaton.

Before ending this subsection, we comment on the inflaton perturbation and preheat-

ing. The corresponding Lamé equation for Xk(t) = a(t)δχk(t) with the inflaton perturba-

tion δχk is

X ′′k +

(
κ2 + 3 cn2

(
x,

1√
2

))
Xk = 0. (4.30)

Here, we also ignored the bare inflaton mass, m2
χ,0, in eq. (4.11). In this case, the inflaton

perturbation grows for the momenta in the range, 3
2 < κ2 <

√
3 [30]. However, the

modes of the inflaton perturbations which are amplified are at sub-Hubble scales during
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reheating [31], so there is no effect of the inflaton perturbations produced from preheating

at large scales such as CMB [31]. The maximum growth for δχk is µk,max ≈ 0.03598

at κ2 ≈ 1.615 [30]. If the inflaton perturbation is decoupled from the SM due to small

couplings, i.e. |λχH | . 10−7, the produced inflaton would not thermalize the SM particles.

5 Non-minimal couplings and unitarity scales

We discuss the impacts of the linear non-minimal coupling in identifying the physical

parameters of the scalar potential in the vacuum and show how the unitarity problem

with a large quadratic non-minimal coupling can be eliminated by an appropriate linear

non-minimal coupling.

5.1 Physical parameters in the vacuum

Taking σ, h � 1 near the vacuum, we get the approximate quadratic kinetic terms in

eq. (2.15) as

Lkin,0 =
1

2

(
1 +

3

2
ξ2

1

)
(∂µσ)2 +

1

2
(∂µφ)2. (5.1)

Then, from the canonical sigma field,

χ =

(
1 +

3

2
ξ2

1

)1/2

σ, (5.2)

the frame function becomes

Ω = 1 +
ξ1√

1 + 3
2ξ

2
1

χ+
ξ2

1 + 3
2ξ

2
1

χ2 + ξHφ
2. (5.3)

Moreover, we get the Einstein-frame potential (2.12) for the canonical sigma field σ̃, as

follows,

VE(σ, φ) ≈ V = V0 +
1

2
m2
χχ

2 +
1

4
λχχ

4 +
1

4
λχHχ

2φ2 +
1

2
m2
Hφ

2 +
1

4
λHφ

4 (5.4)

with

m2
χ =

(
1 +

3

2
ξ2

1

)−1

m2
σ ≈

2

3

m2
σ

ξ2
1

, (5.5)

λχ =

(
1 +

3

2
ξ2

1

)−2

λσ ≈
(

2

3

)2 λσ
ξ4

1

, (5.6)

λχH =

(
1 +

3

2
ξ2

1

)−1

λσH ≈
2

3

λσH
ξ2

1

. (5.7)

On the other hand, the interaction terms containing φ only do not rescale. Therefore,

if dimensionful and dimensionless parameters are of common origin in Jordan frame, we

can get a natural hierarchy of masses and couplings for ξ1 � 1: |mχ| � |mH |, and

λχ, |λχH | � λH .
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After electroweak symmetry breaking, the effective mass of the inflaton has a tree-

level shift as m2
χ,eff = m2

χ + 1
2λχHv

2, due to the mixing Higgs quartic coupling. Higgs loop

corrections to the inflaton mass is ∆m2
χ ∼

λχH
16π2 m

2
H , so they are subdominant as compared

to the tree-level shift. The mass shift of the inflaton is much smaller than the Higgs mass

for |λχH | � 1,. In a later discussion for light inflaton dark matter, however, we need to

tune the bare inflaton mass m2
χ against λχH for a phenomenologically desirable mass, such

as for the relic density. For simplicity, henceforth we use the same notation for the effective

inflaton mass as m2
χ.

5.2 Unitarity scales

In terms of the canonical sigma field, we obtain the leading derivative interaction terms [16]

from eq. (2.15),

Lint = − 1

Λ1
χ(∂µχ)2 +

1

Λ2
2

χ2(∂µχ)2 − 1

Λ2
3

φ2(∂µχ)2 − 1

Λ4
χ(∂µφ)2 − 1

Λ2
5

χ2(∂µφ)2

− 1

Λ2
6

φ2(∂µφ)2 +
1

Λ7
φ(∂µχ)(∂µφ)− 1

Λ2
8

χφ(∂µχ)(∂µφ) + · · · (5.8)

where the ellipses are higher dimensional terms and the cutoff scales in the leading terms read

Λ1 ≡
2
(

1 + 3
2ξ

2
1

)3/2

ξ1(1 + 3ξ2
1 − 6ξ2)

≈
√

3

2

R2

R2 − 2
, (5.9)

|Λ2| ≡

√
2
(

1 + 3
2ξ

2
1

)
∣∣∣ξ2

1

(
1 + 9

2ξ
2
1

)
− ξ2(1 + 15ξ2

1 − 6ξ2)
∣∣∣1/2 ≈

R2∣∣∣R4 − 2
3

(
5R2 − 2

)∣∣∣1/2 , (5.10)

Λ3 ≡

√√√√ 2
(

1 + 3
2ξ

2
1

)
ξH(1 + 3ξ2

1)
≈ 1√

ξH
, (5.11)

Λ4 =
2
√

1 + 3
2ξ

2
1

ξ1
≈
√

6 , (5.12)

|Λ5| =

√√√√2
(

1 + 3
2ξ

2
1

)
|ξ2 − ξ2

1 |
≈

√
3R2

|1−R2|
, (5.13)

|Λ6| =

√
2

|ξH(1− 6ξH)|
, (5.14)

Λ7 =

√
1 + 3

2ξ
2
1

3ξHξ1
≈ 1√

6 ξH
, (5.15)

|Λ8| =

√
1 + 3

2ξ
2
1

6ξH |ξ2 − ξ2
1 |
≈ 1

2

√
R2

ξH |1−R2|
. (5.16)

with

R ≡ ξ1√
ξ2
. (5.17)
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Figure 4. Contours of |Λ2| in units of MP in the plane of ξ2 and ξ1 in solid lines. We overlaid in

blue dashed lines the contours of R = ξ1/
√
ξ2.

Here, we assumed ξ1 � 1 in the above approximations. For ξH = O(1) and ξ1 � 1, the

unitarity scales depend only on the ratio of the non-minimal couplings, R. In figure 4,

as a representative example, we draw the contour plot for the unitarity scale |Λ2| in the

parameters space for ξ1 and ξ2, showing that ξ1 is saturated to
√
ξ2 in order to maintain

|Λ2| of order the Planck scale for a large ξ2.

6 Inflaton couplings to the SM at low energies

The sigma field also has dilaton-like couplings to the SM through the trace of the energy-

momentum tensor, due to the linear non-minimal coupling. In this section, we consider all

the linear couplings of the sigma field to the SM in the low energy in Einstein frame.

From Ω = 1 + ξ1σ + ξ2σ
2 + ξHφ

2 and eq. (5.4), we expand the inflaton interaction

Lagrangian (2.16) in Einstein frame to identify the linear coupling of the canonical sigma

field as follows,

Lint,ξ1 = ξ1σ

[
−1

2
(∂µφ)2 + 2V +

1

2
mf,0

φ

v
f̄f − 1

2
δV m

2
V,0

φ2

v2
VµV

µ

]
=

1

2
ξ1σ T

µ
0,µ

=
1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP
Tµ0,µ (6.1)

where Tµ0,µ is the trace of the energy-momentum tensor at tree level on the equations of

motion and use is made of the canonical sigma field (5.2) in the true vacuum. Here, we

have recovered the Planck scale MP , and ξ1 is given in units of MP .
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We remark that the minimal couplings of gauge bosons to SM fermions do not depend

on the frame function Ω, so there is no coupling between the sigma field and one SM gauge

boson. Since the covariant derivative terms of fermions do not contribute to the trace of the

energy-momentum tensor, our results confirm that minimal couplings between the sigma

field and one SM gauge boson are absent, unlike the approach of refs. [41–43] where these

couplings however arise at higher orders in perturbation theory.

6.1 Inflaton couplings to massive particles

From eq. (6.1), we consider the linear couplings of the sigma field to the Higgs field,

Lh =
1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP

[
−(∂µφ)2 + 4V (χ, φ)

]
. (6.2)

The tadpole term for χ vanishes in the vacuum with a vanishingly small cosmological

constant, 〈V (χ, φ)〉 ≈ 0, leading to an extremely tiny VEV of the sigma field, thus the

Higgs-sigma mixing is negligible. Thus, this is different from the case where a light inflaton

carries a sizable Higgs mixing due to a sizable inflaton VEV so it has Higgs-like couplings

to the SM [35]. Moreover, the mass mixing vanishes in the minimum of the potential

U(χ, φ). We note that the effective mass of the sigma field is shifted to m2
χ + 1

2λχHv
2 after

electroweak symmetry breaking, but we keep the same notation for the sigma field mass

as mχ for simplicity.

As a consequence, expanding the Higgs field about the vacuum as φ = v+h, the linear

couplings of the sigma-like field (6.2) become

Lh =
1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP

[
− (∂µh)2 + 2m2

χ χ
2 + 2m2

hh
2 + λχχ

4 + 4λHv h
3

+λHh
4 + 2λχHv χ

2h+ λχHχ
2h2
]
. (6.3)

Then, the sigma field decays into a pair of Higgs bosons, on-shell or off-shell, through the

Higgs kinetic term and mass term. We note that the Feynman rule for the vertex with one

sigma field and two Higgs bosons with outgoing momenta, p1 and p2, is given by

Vχhh =
i

MP

ξ1√
1 + 3

2ξ
2
1

(
2m2

h + p1 · p2

)
. (6.4)

From eq. (6.1), with φ = v+h, we get the linear couplings of the sigma field to massive

fermions and electroweak gauge bosons as

Lf =
1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP

(
mf,0f̄f +

mf,0

v
hf̄f

)
≡ gχff χf̄f + · · · , (6.5)

LV = −1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP

(
δV m

2
V,0VµV

µ + 2
δV m

2
V,0

v
h VµV

µ +
δV m

2
V,0

v2
h2 VµV

µ

)
≡ gχV V χVµV

µ + · · · . (6.6)
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Then, the sigma field can decay into a pair of SM fermions or gauge bosons. If the sigma

field is lighter than pions, it can decay dominantly into a pair of muons for mχ > 2mµ or

a pair of electrons for mχ < 2mµ.

6.2 Inflaton couplings to massless gauge bosons

We now consider the sigma field couplings to massless gauge bosons. In this case, there are

two contributions coming from trace anomalies and threshold effects due to heavy particles.

First we note that the trace of the energy-momentum tensor is corrected due to scale

anomalies at loop order to the following,

Tµµ = Tµ0,µ +
βS(αS)

4αS
GaµνG

aµν +
βEM(α)

4α
FµνF

µν (6.7)

where βS(αS) and βEM(α) are the beta functions for αS =
g2
S

4π and α = e2

4π , respectively,

and they are given at one loop by βS = −α2
Sb3
2π and βEM = −α2bγ

2π where b3, bγ are beta

function coefficients in the SM, given by b3 = 7 and bγ = −11
3 , respectively. Therefore,

with Tµ0,µ in eq. (6.1) being replaced Tµµ , there are sigma field couplings to two photons and

two gluons.

Furthermore, the sigma field couples to massive particles through the energy-

momentum tensor in Tµ0,µ. Since all the SM particle have sigma-field dependent masses,

m2 = Ω−1m2
0, where m2

0 being independent of the sigma field, they contribute to the

effective QED gauge coupling at the threshold, q2 = m2, as

1

e2(m)
=

1

e2(Λ)
− Bγ

16π2
ln

(
Λ2

Ω−1m2
0

)
(6.8)

with Λ is the cutoff scale and e(Λ) is the QED gauge coupling at the cutoff scale. Therefore,

from the gauge kinetic term, − 1
4e2(m)

FµνF
µν , after absorbing the gauge coupling by the

gauge field with Aµ → eAµ, we obtain the additional contributions to the effective sigma

field coupling to photons, as follows,

∆Lγ =
Bγ α

16π

ξ1√
1 + 3

2ξ
2
1

χ

MP
FµνF

µν (6.9)

where the beta function coefficient for EM gauge coupling is given by

Bγ =
∑
f

bf + bW (6.10)

with bW = 7 and bf = −4
3NcQ

2
f . Here, the sum

∑
f is performed over all the SM charged

fermions heavier than the typical energy scale, for instance, the inflaton mass, in case of the

inflaton decay process. For example, for mµ . mχ . mc, Bγ =
∑

f=c,τ,b,t bf + bW = 5
3 ; for

me . mχ . mµ, Bγ = −7
3 ; for mχ . me, Bγ = −11

3 . For mχ < 2me, it decays dominantly

into a photon pair.
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Consequently, including the sigma field coupling due to trace anomalies in eq. (6.7),

we obtain the full effective sigma field coupling to photons as

Lγ = Lγ,trace + ∆Lγ

= −
bγ,L α

16π

ξ1√
1 + 3

2ξ
2
1

χ

MP
FµνF

µν ≡ gχγγ χ FµνFµν (6.11)

with bγ,L ≡ bγ − Bγ being the beta function coefficient for EM gauge coupling due to

light charged particles. Thus, the contributions from heavy charged particles cancel the

counterpart of scale anomalies, leaving the scale anomalies from light charged particles.

Similarly, the threshold corrections to the running QCD gauge coupling due to heavy

quarks lead to the additional contribution to the sigma field couplings to gluons, as follows,

∆Lg =
B3 αS
16π

ξ1√
1 + 3

2ξ
2
1

χ

MP
GaµνG

aµν (6.12)

where B3 is the QCD beta function coefficient due to nH heavy quarks, given by B3 =

−2
3nH . Consequently, including the sigma field coupling due to trace anomalies in eq. (6.7),

we obtain the full effective sigma field coupling to photons as

Lg = Lg,trace + ∆Lg

= −
b3,L αS

16π

ξ1√
1 + 3

2ξ
2
1

χ

MP
GaµνG

aµν ≡ gχgg χ GaµνGaµν (6.13)

with b3,L ≡ b3 − B3 being the beta function coefficient for strong gauge coupling due to

light quarks and gluons. Thus, similarly to the case with photon couplings, there is a

cancellation between the contributions from heavy colored quarks and the counterpart of

scale anomalies, so the scale anomalies from light quarks and gluons remain.

If the sigma field is heavier than 1.5 GeV, we can consider the sigma field decays

into a gluon pair. But, for 1.5 GeV < mχ < 2.5 GeV, either descriptions in terms of

mesons or quarks/gluons are not quite correct [36]. For mχ > 2.5 GeV, we can use the

description of quarks/gluons and the coefficient of the QCD beta function, which is given

by b3,L = 11− 2
3nL from nL light quarks only.

We note that the effects of heavy particle masses in the effective inflaton couplings to

photons and gluons, gχγγ and gχgg, can be taken into account through the loop functions

as shown in eqs. (A.4) and (A.5) of the appendix.

6.3 Inflaton couplings to mesons

When the sigma field is lighter than 1.5 GeV, we need to include the sigma field decays

into a pair of mesons in chiral perturbation theory, instead of quarks or gluons. In this

case, we need to take the beta function coefficient of strong gauge coupling as b3,L = 29
3 (9)

for mχ > 2mπ(2mK) for u, d(u, d, s) light quarks in chiral perturbation theory [45, 46].
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Figure 5. Decay branching ratios of the inflaton as a function of mχ. Inflaton masses are taken

to 10−4 GeV < mχ < mc on left and 2.5 GeV < mχ < 105 GeV on right. On left, dashed and

solid lines in blue or brown are for charged and neutral mesons, respectively. Branching ratios are

independent of ξ1.

From eqs. (6.1) and (6.13), we consider the relevant interactions of the sigma field to

nL light quarks and gluons in the low energy as

LQCD =
1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP

(
nL∑
i=1

miq̄iqi −
b3,LαS

8π
GµνG

µν

)

≡ 1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP
Θµ
µ (6.14)

with b3,L = 11 − 2
3nL. Then, using PCAC relation, 〈π+(p1)π−(p2)|Θµ

µ|0〉 = (p1 + p2)2 +

2m2
π = 2p1 · p2 + 4m2

π, we obtain the linear couplings of the sigma field to mesons as

LChPT =
1

2

ξ1√
1 + 3

2ξ
2
1

χ

MP

(
− (∂µπ)2 + 2m2

ππ
2

)
, (6.15)

which is nothing but the coupling to the trace of energy-momentum tensor for mesons.

Thus, the Feynman rule for the vertex with one sigma field and two pions with outgoing

momenta, p1 and p2, is given by

Vχππ =
i

MP

ξ1√
1 + 3

2ξ
2
1

(
p1 · p2 + 2m2

π

)
. (6.16)

For instance, for the decay of the sigma field into a pair of pions, we get p1 ·p2 = 1
2m

2
χ−m2

π.

In figure 5, we show the decay branching ratios of the inflaton in the cases of light infla-

ton below mχ = mc on left and heavy inflaton above mχ = 2.5 GeV on right. Formulas for

inflaton decay rates are collected in the appendix. In the case of light inflaton, the inflaton

decays into muons, pions or kaons above the muon threshold while it decays dominantly
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Figure 6. Left: parameter space for long-lived inflaton in the plane of mχ and ξ1. The lifetime

of the sigma field inflaton is shorter than the age of the Universe in gray region. Right: lifetime of

the inflaton as a function of mχ for ξ1 = 100, 0.01 in black solid and dashed lines, respectively. Red

and blue dashed lines correspond to τχ = τU and 1 sec.

into an electron pair below the muon threshold but above the electron threshold. On the

other hand, in the case of heavy inflaton, the inflaton decays dominantly into gluons or

fermion pairs below the WW threshold, while it decays dominantly into the electroweak

sector, hh, ZZ,WW , above the WW threshold.

7 Long-lived inflaton as dark matter

We consider the sigma field or inflaton as a decaying dark matter and show the parameter

space for the correct relic density of the long-lived dark matter, based on Feebly Interact-

ing Massive Particle (FIMP) process after reheating as well as the decays of the inflaton

condensate during reheating.

7.1 Long-lived inflaton

As soon as the decay of the sigma field into a pion pair opens up, the lifetime of the sigma

field would be less than the age of the Universe, independent of ξ1 for ξ1 & 1. Therefore,

in most of the parameter space, the sigma field can be a candidate for dark matter only for

mχ . 270 MeV [41–43]. This fact is shown on the left of figure 6, in the gray region of the

parameter space for mχ vs ξ1 where the inflaton does not survive until the present Universe.

On the right of figure 6, we also draw the contours of the inflaton lifetime as a function of

mχ for ξ1 = 100, 0.01 in black solid and dashed lines, respectively. We find that the inflaton

lifetime ranges between the age of the Universe and 1 sec for mχ ≈ 270 MeV − 105 GeV

with ξ1 = 100, as shown from the lines with τχ = τU and 1 sec.

Dark matter can be in thermal equilibrium, as far as λχH & 10−7 or λσH ∼ ξ2
1λχH &

10−3 for ξ1 ∼
√
ξ2 ∼ 102. But, dark matter can annihilate into a pair of muons or electrons

for mχ . 270 MeV. For instance, the cross section for the 2→ 2 annihilation, χχ→ µµ̄, is
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suppressed by the SM Higgs mass and the muon Yukawa coupling, as follows,

〈σv〉χχ→µµ̄ =
λ2
χHm

2
µ

4π(4m2
χ −m2

h)2

(
1−

m2
µ

m2
χ

)3/2

. (7.1)

On the other hand, the necessary annihilation cross section for thermal freeze-out is 〈σv〉 =
α2

eff
m2
χ

with the effective DM coupling being given by αeff ∼ 5 × 10−6 for mχ ∼ 100 MeV.

However, this condition is not satisfied in our model, so we need to rely on non-thermal

production mechanisms.

7.2 Relic density from FIMP inflaton

For a small mixing quartic coupling between the sigma field and Higgs boson, i.e. λχH .
10−7, the sigma field could never be in thermal equilibrium. Thus, the total relic density

of inflaton dark matter is determined by two non-thermal mechanisms, as follows,

Ωχh
2 = (Ωχh

2)FIMP + (Ωχh
2)RH. (7.2)

One is the FIMP contribution (Ωh2)FIMP [37, 38], generated by Higgs decay at the tem-

perature T & mh. The other is the contribution (Ωh2)RH from the decay of the inflaton

condensate during reheating [32–34].

First, in the presence of a nonzero λχH , the Higgs decay into a pair of sigma fields

governs the DM relic density dominantly below the reheating temperature, as follows,

ṅχ + 3Hnχ = 2
(

Γh→χχ n
eq
h − Γχχ→h n

2
χ

)
(7.3)

where the Higgs decay rate is given by

Γh→χχ =
λ2
χHv

2

32πmh

√
1−

4m2
χ

m2
h

, (7.4)

the equilibrium number density of Higgs is neq
h =

m3
h

(2π)3/2 x
−3/2 e−x with x = mh/T in the

non-relativistic limit, and the second term on right is the inverse decay term, which can be

neglected for a small initial abundance of dark matter. Then, for TRH > mh, eq. (7.3) can

be solved for Yχ ≡ nχ
s as

Yχ =
2Γh→χχ

H(mh)s(mh)

∫ x

xRH

dxx4neq
h

≈
0.88Γh→χχMP

g
1/2
∗ g∗sm2

h

∫ ∞
0

dxx5/2e−x

=
C Γh→χχMP

g
1/2
∗ g∗sm2

h

(7.5)

with xRH = mh/TRH and C = 2.9, which agrees well with the result C = 3.3 from the

exact thermal average [37, 38]. Therefore, the relic density coming from the FIMP process
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is given by

(Ωχh
2)FIMP = 2.7× 108 Yχ

(
mχ

1 GeV

)
= 0.12

(
100

g∗(mh)

)3/2( λχH
4.4× 10−7

)2 ( mχ

1 eV

)
. (7.6)

Next we consider the relic density of inflaton dark matter produced from the decay

of the inflaton condensate during reheating. The energy density of dark matter at the

decoupling is given by

ρχ(adec) = BR · ρχc(adec) (7.7)

where BR is the branching ratio of the inflaton condensate decaying into a pair of in-

flatons in eq. (4.17). Then, at the decoupling, dark matter has the peak energy at

k =
√

3λχχ0(tdec) and it becomes non-relativistic when k(adec
aNR

) ∼ mχ at a = aNR due

to the redshift of the momentum. Assuming that dark matter becomes non-relativistic

before matter-radiation equality for structure formation, the energy density of dark matter

at matter-radiation equality is given by

ρχ(aeq) = ρχ(adec)

(
adec

aNR

)4(aNR

aeq

)3

= ρχ(adec)

(
adec

aNR

)(
adec

aeq

)3

. (7.8)

First, using eq. (4.16), we obtain the red-shift factor at the time when dark matter

becomes non-relativistic as

adec

aNR
∼ mχ

k
=

mχ√
3λχχ0(tdec)

=
(

108λχ

)−1/4
(HdecMP )−1/2mχ. (7.9)

Then, assuming that there is no entropy change between decoupling and matter-radiation

equality, we also get(
adec

aeq

)3

= g∗s(aeq)(g∗(adec))
−1/4(g∗(aeq))−3/4

(
Heq

Hdec

)3/2

(7.10)

where g∗(aeq) = 3.363, g∗s(aeq) = 3.909, g∗(adec) = 106.75, and Heq = 1.15 × 10−37 GeV.

Therefore, using the above results and ρχc(adec) = 3H2
decM

2
P , we obtain eq. (7.8) with

eq. (7.7) explicitly as

ρχ(aeq) =
(

6.75× 10−38 GeV4
)
λ−1/4
χ · BR ·

(
mχ

1 eV

)
. (7.11)

Consequently, we get the general formula for the relic density coming from the reheating

process as

(Ωχh
2)RH =

ρχ(aeq)

ρc/h2

(
aeq

a0

)3

= 0.035λ−1/4
χ · BR ·

(
mχ

1 eV

)
= 7.3R

(
r

0.01

)−1/4

· BR ·
(
mχ

1 eV

)
(7.12)
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where the critical density at present is given by ρc = 8.05× 10−47h2 GeV4, a0/aeq = 2890,

and in the last line, we used eq. (3.26) and λχ ≡ 4λσ/(9ξ
4
1) = 4λσ/(9ξ

2
2R

4). In the case

that inflation reheats the SM particles dominantly, i.e. BR ≈ 11.5λ2
χ/λ

2
χH � 1, the above

relic density becomes

(Ωχh
2)RH ≈ 0.40λ7/4

χ λ−2
χH

( mχ

1 eV

)
= 0.12

(
1.4× 10−8

λχH

)2

R−7

(
r

0.01

)7/4 ( mχ

1 eV

)
. (7.13)

Furthermore, from eqs. (7.9) and (7.10), we obtain the temperature ratios of Teq at

matter-radiation equality to TNR at which dark matter becomes non-relativistic, as follows,

aeq

aNR
=
TNR

Teq
= 0.77λ−1/4

χ

(
mχ

1 eV

)
= 160R

(
r

0.01

)−1/4( mχ

1 eV

)
. (7.14)

Here, for R = O(1) and r = 0.01, we find that TNR is greater than TBBN for mχ > 7.8 keV,

which is not favored by the correct relic density, as will be discussed shortly.

In the case with TNR < TBBN, dark matter is still relativistic during BBN, so we

need to check the contribution of dark matter to the number of relativistic species, ∆Neff .

Assuming that dark matter is still relativistic during BBN and using eq. (7.8), we get the

DM relic density for a > aBBN as

ρχ(a) = ρχ(adec)
(adec

a

)4

= ρχ(aeq)

(
aNR

aeq

)(aeq

a

)4

=
ρχ(aeq)

ρR(aeq)

(
aNR

aeq

)
ρR(a). (7.15)

Then, from ρR(a) = π2

30 g∗T
4 and ∆ρ = π2

30 ·
7
4

(
4
11

)4/3
(∆Neff)T 4, we obtain ∆Neff from

dark matter during BBN as follows,

∆Neff =
4

7

(
11

4

)4/3

g∗ ·
ρχ(aeq)

ρR(aeq)
·
(
aNR

aeq

)
≤ 0.0944R−1

(
r

0.01

)1/4(1 eV

mχ

)
(7.16)

where the inequality comes from ρχ(aeq) ≤ ρDM(aeq) = ρR(aeq), and we took g∗ = 6.863

for 0.5 MeV < T < 1 MeV. The combined results of primordial abundance measurements

of helium and deuterium and the CMB measurement by Planck constrain ∆Neff to be

−0.116 ± 0.23 in case a), −0.006 ± 0.22 in case b), or 0.014 ± 0.22 in case c), depending

on the computed deuterium fraction [2]. Therefore, our inflaton dark matter is consistent

with such BBN constraints, as far as mχ & 0.208(0.139) eV within 2σ in case c), for

ρχ(aeq) = ρDM(aeq), R = 1(1.5) and r = 0.01.
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Figure 7. Parameter space for the DM relic density produced by non-thermal mechanisms in the

plane of mχ and λχH . The relic density satisfies Ωχh
2 < 0.12 in light blue region while dark matter

becomes non-relativistic after matter-radiation equality in light orange region. In purple region,

dark matter contributes to ∆Neff > 0.454 during BBN. Contours with reheating temperature,

TRH = 106, 105, 104, 103.6(103.2) GeV, are shown on left(right) in red dashed, dotted, dot-dashed,

and solid lines, respectively. R = ξ1/
√
ξ2 = 1, 1.5 is chosen on left and right plots, respectively, and

r = 0.01 is taken for both plots.

In figure 7, we show the parameter space for the DM relic density due to non-

thermal production mechanisms in light blue region for mχ and λχH , for R = ξ1/
√
ξ2 =

1, 1.5, on left and right plots, respectively. Using the reheating temperature ob-

tained in eq. (4.20), we also indicate the contours with reheating temperature, TRH =

106, 105, 104, 103.6(103.2) GeV, on left(right), in red dashed, dotted, dot-dashed and solid

lines, respectively. Moreover, in light orange region, we obtain TNR < Teq, which is dis-

favored for the successes of CMB recombination and structure formation. Finally, purple

region is with ∆Neff > 0.454, which is beyond the 2σ limit of the BBN constraint in case c).

As a result, we find that light dark matter with 0.1 eV . mχ . 100 eV is favored for

the correct relic density, being compatible with BBN and CMB constraints. As the decay

branching fraction BR of the inflaton condensate into an inflaton pair gets larger, the relic

density becomes almost independent of the inflaton-Higgs quartic coupling, λχH , and the

reheating temperature gets smaller. But, the region with a large BR is disfavored by BBN

constraints. On the other hand, for λχH & 10−9(5 × 10−10) for R = 1(1.5), the inflaton

condensate decays dominantly into a Higgs pair, so the relic density is saturated along the

line with constant mχ/λ
2
χH , as expected from the approximate formula in eq. (7.13).

We remark briefly on other potential constraints on the inflaton dark matter. We

note that there is no mixing between Higgs and sigma fields in our model so there is no

direct constraint on the mixing quartic coupling, λχH , in the relevant parameter space for

the correct relic density, and indirect constraint from Higgs invisible decays into a pair of

sigma fields is not sensitive enough to bound such a tiny coupling. Furthermore, there are

couplings of the sigma field to photons through the trace of the energy-momentum tensor
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in eq. (6.11) but such couplings are suppressed by the Planck scale, so there is no constraint

from SN1987A or horizontal branch cooling [47–49] or fifth-force experiments [50]. On the

other hand, the bounds from isotropic diffuse gamma-ray spectrum and CMB measure-

ments [41–43] can constrain the parameter space for a decaying dark matter heavier than

mχ ∼ 2 MeV, but there is no constraint in the parameter space for FIMP dark matter in our

model. There are also interesting constraints by electron absorption from XENON10 [51]

on the detection of a light dark matter below 10 eV or proposed experiments with super-

conductors or semi-conductors [52–54], but the sensitivity has not reached yet to probe our

inflaton dark matter.

8 Conclusions

We have studied the dynamics of inflation models of a singlet scalar field with both

quadratic and linear non-minimal couplings. Although the quadratic non-minimal cou-

pling determines the flat direction for inflation, the linear non-minimal coupling starts to

dominate already during reheating and rescales the effective quartic couplings and mass

of the inflaton to small values. We identified the reheating temperature in this model and

obtained the correct abundance of the inflaton dark matter by non-thermal production

mechanisms with the decay of the inflaton condensate during reheating and the decay of

Higgs after reheating.

It is intriguing that the inflaton couples to the trace of the energy-momentum tensor

so does it to the full Jordan frame potential. As a result, there is no mixing between the

inflaton and the SM Higgs boson in the vacuum, allowing for a definite prediction for the

inflaton decay rates in terms of the linear non-minimal coupling and the inflaton mass. We

showed that the effective quartic coupling of the inflaton is fixed by the CMB normalization

while a tiny mixing quartic coupling between the inflaton and the SM Higgs boson can be

varied to saturate the relic density for DM masses between mχ ∼ 0.1 eV and 100 eV, being

compatible with BBN and CMB constraints.
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A Inflaton decay rates

The sigma inflaton field has couplings to the SM particles through the trace of the energy-

momentum tensor. Here, we list formulas for the most relevant two-body decay rates of

the inflaton, as follows [36, 44–46],

Γ(hh) =
|Vχhh|2

32πmχ

√
1−

4m2
h

m2
χ

=
(2m2

h +m2
χ)2

128πmχM2
P

(
ξ2

1

1 + 3
2ξ

2
1

)√
1−

4m2
h

m2
χ

, (A.1)

Γ(f̄f) =
g2
χffmχ

8π

(
1−

4m2
f

m2
χ

)3/2

=
m2
fmχ

32πM2
P

(
ξ2

1

1 + 3
2ξ

2
1

)(
1−

4m2
f

m2
χ

)3/2

, (A.2)

Γ(V V ) =
δV g

2
χV Vm

3
χ

32πm4
V

(
1− 4

m2
V

m2
χ

+ 12
m4
V

m4
χ

)√
1−

4m2
V

m2
χ

=
δVm

3
χ

128πM2
P

(
ξ2

1

1 + 3
2ξ

2
1

)(
1− 4

m2
V

m2
χ

+ 12
m4
V

m4
χ

)√
1−

4m2
V

m2
χ

, (A.3)

Γ(γγ) =
g2
χγγ

4π
m3
χ

=
α2

1024π2

m3
χ

M2
P

(
ξ2

1

1 + 3
2ξ

2
1

)∣∣∣∣b2 + bY +AW (xW ) + 2
∑
f=q,l

NcQ
2
fAF (xf )

∣∣∣∣2, (A.4)

Γ(gg) =
2g2
χgg

π
m3
χ

=
α2
S

128π2

m3
χ

M2
P

(
ξ2

1

1 + 3
2ξ

2
1

)∣∣∣∣b3 +
∑
f=q

AF (xf )

∣∣∣∣2. (A.5)

Here, δV = 1(2) for V = Z(W ) bosons, bY , b2, b3 are the beta function coefficients of

U(1)Y , SU(2)L and SU(3)C gauge couplings, given by (bY , b2, b3) = (−41
6 ,

19
6 , 7) in the SM,

leading to bγ = b2 + bY = −11
3 for the beta function of EM gauge coupling, xf = 4m2

f/m
2
χ,

xW = 4m2
W /m

2
χ, and the loop functions are given by

AF (x) = x
(

1 + (1− x)f(x)
)

(A.6)

AW (x) = −
(

2 + 3x+ 3x(2− x)f(x)
)

(A.7)

where

f(x) =


arcsin2

(
1√
x

)
, x ≥ 1

−1
4

[
log 1+

√
1−x

1−
√

1−x − iπ
]2

, x < 1.
(A.8)
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In the limit of decoupled particles, the loop functions are approximated to AF (x) → 2
3

and AW (x) → −7 for x � 1, thus recovering the low energy couplings coming from trace

anomalies due to light particles only: b2 + bY + AW (xW ) + 2
∑

f=q,lNcQ
2
fAF (xf ) → bγ,L

in eq. (6.11) and b3 +
∑

f=q AF (xf )→ b3,L in eq. (6.13).

For simplicity, we took the notations, mf ,mV ,mh, for the SM particle masses that are

independent of the inflaton field value.

For mχ < 1.5 GeV, we need to rely on chiral perturbation theory to obtain the decay

rates of the inflaton into a meson pair, as follows [36],

Γ(πaπa) =
|Vχππ|2

32πmχ

√
1− 4m2

π

m2
χ

=
(2m2

π +m2
χ)2

128πmχM2
P

(
ξ2

1

1 + 3
2ξ

2
1

)√
1− 4m2

π

m2
χ

. (A.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.

594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

[2] Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211

[INSPIRE].

[3] F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys.

Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

[4] C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical

Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

[5] J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79

(2009) 081302 [arXiv:0903.0355] [INSPIRE].

[6] C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP

07 (2010) 007 [arXiv:1002.2730] [INSPIRE].

[7] M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023

[arXiv:1002.2995] [INSPIRE].

[8] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency

and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

[9] G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett. B 694 (2011) 294

[arXiv:1010.1417] [INSPIRE].

[10] H.M. Lee, Running inflation with unitary Higgs, Phys. Lett. B 722 (2013) 198

[arXiv:1301.1787] [INSPIRE].

[11] J.L.F. Barbon, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage,

JHEP 09 (2015) 027 [arXiv:1501.02231] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://arxiv.org/abs/1502.02114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02114
https://arxiv.org/abs/1807.06211
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06211
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://arxiv.org/abs/0710.3755
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3755
https://doi.org/10.1088/1126-6708/2009/09/103
https://arxiv.org/abs/0902.4465
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4465
https://doi.org/10.1103/PhysRevD.79.081302
https://doi.org/10.1103/PhysRevD.79.081302
https://arxiv.org/abs/0903.0355
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0355
https://doi.org/10.1007/JHEP07(2010)007
https://doi.org/10.1007/JHEP07(2010)007
https://arxiv.org/abs/1002.2730
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2730
https://doi.org/10.1007/JHEP11(2010)023
https://arxiv.org/abs/1002.2995
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2995
https://doi.org/10.1007/JHEP01(2011)016
https://arxiv.org/abs/1008.5157
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5157
https://doi.org/10.1016/j.physletb.2010.10.035
https://arxiv.org/abs/1010.1417
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1417
https://doi.org/10.1016/j.physletb.2013.04.024
https://arxiv.org/abs/1301.1787
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1787
https://doi.org/10.1007/JHEP09(2015)027
https://arxiv.org/abs/1501.02231
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.02231


J
H
E
P
0
5
(
2
0
1
9
)
0
6
0

[12] G.F. Giudice and H.M. Lee, Starobinsky-like inflation from induced gravity, Phys. Lett. B

733 (2014) 58 [arXiv:1402.2129] [INSPIRE].

[13] Y. Ema, Higgs Scalaron Mixed Inflation, Phys. Lett. B 770 (2017) 403 [arXiv:1701.07665]

[INSPIRE].

[14] D. Gorbunov and A. Tokareva, Scalaron the healer: removing the strong-coupling in the

Higgs- and Higgs-dilaton inflations, Phys. Lett. B 788 (2019) 37 [arXiv:1807.02392]

[INSPIRE].

[15] M. He, R. Jinno, K. Kamada, S.C. Park, A.A. Starobinsky and J. Yokoyama, On the violent

preheating in the mixed Higgs-R2 inflationary model, Phys. Lett. B 791 (2019) 36

[arXiv:1812.10099] [INSPIRE].

[16] H.M. Lee, Light inflaton completing Higgs inflation, Phys. Rev. D 98 (2018) 015020

[arXiv:1802.06174] [INSPIRE].

[17] R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter,

JCAP 05 (2017) 044 [arXiv:1702.03284] [INSPIRE].

[18] R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, JHEP 02 (2018) 104

[arXiv:1710.11107] [INSPIRE].

[19] O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J. C

72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

[20] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the

Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237]

[INSPIRE].

[21] O. Lebedev and H.M. Lee, Higgs Portal Inflation, Eur. Phys. J. C 71 (2011) 1821

[arXiv:1105.2284] [INSPIRE].

[22] J.-O. Gong, H.M. Lee and S.K. Kang, Inflation and dark matter in two Higgs doublet models,

JHEP 04 (2012) 128 [arXiv:1202.0288] [INSPIRE].

[23] P.G. Ferreira, C.T. Hill and G.G. Ross, Inertial Spontaneous Symmetry Breaking and

Quantum Scale Invariance, Phys. Rev. D 98 (2018) 116012 [arXiv:1801.07676] [INSPIRE].

[24] P.G. Ferreira, C.T. Hill and G.G. Ross, Weyl Current, Scale-Invariant Inflation and Planck

Scale Generation, Phys. Rev. D 95 (2017) 043507 [arXiv:1610.09243] [INSPIRE].

[25] D.M. Ghilencea and H.M. Lee, Weyl gauge symmetry and its spontaneous breaking in

Standard Model and inflation, arXiv:1809.09174 [INSPIRE].

[26] F. Bezrukov, G.K. Karananas, J. Rubio and M. Shaposhnikov, Higgs-Dilaton Cosmology: an

effective field theory approach, Phys. Rev. D 87 (2013) 096001 [arXiv:1212.4148] [INSPIRE].

[27] F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang,

JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].
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