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Abstract: Neutrino oscillations in matter can be fully described by six effective parame-

ters, namely, three neutrino mixing angles {θ̃12, θ̃13, θ̃23}, one Dirac-type CP-violating phase

δ̃, and two neutrino mass-squared differences ∆̃21 ≡ m̃2
2−m̃2

1 and ∆̃31 ≡ m̃2
3−m̃2

1. Recently,

a complete set of differential equations for these effective parameters have been derived to

characterize their evolution with respect to the ordinary matter term a ≡ 2
√

2GFNeE, in

analogy with the renormalization-group equations (RGEs) for running parameters. Via se-

ries expansion in terms of the small ratio αc ≡ ∆21/∆c with ∆c ≡ ∆31 cos2 θ12+∆32 sin2 θ12,

we obtain approximate analytical solutions to the RGEs of the effective neutrino param-

eters and make several interesting observations. First, at the leading order, θ̃12 and θ̃13

are given by the simple formulas in the two-flavor mixing limit, while θ̃23 ≈ θ23 and δ̃ ≈ δ

are not changed by matter effects. Second, the ratio of the matter-corrected Jarlskog in-

variant J̃ to its counterpart in vacuum J approximates to J̃ /J ≈ 1/(Ĉ12Ĉ13), where

Ĉ12 ≡
√

1− 2A∗ cos 2θ12 +A2
∗ with A∗ ≡ a/∆21 and Ĉ13 ≡

√
1− 2Ac cos 2θ13 +A2

c with

Ac ≡ a/∆c have been defined. Finally, after taking higher-order corrections into account,

we find compact and simple expressions of all the effective parameters, which turn out to

be in perfect agreement with the exact numerical results.
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1 Introduction

The matter effects on neutrino oscillations have been playing an important role in under-

standing various neutrino oscillation data, in particular those from the solar, accelerator

and atmospheric neutrino experiments [1–4]. In the framework of three-flavor neutrino

mixing, neutrino oscillations in ordinary matter are governed by the effective Hamiltonian

Heff =
1

2E

U
m2

1 0 0

0 m2
2 0

0 0 m2
3

U † +

 a 0 0

0 0 0

0 0 0


 , (1.1)

where E is the neutrino beam energy, and a ≡ 2
√

2GFNeE is the matter parameter with

GF and Ne being the Fermi constant and the net electron number density, respectively. In

eq. (1.1), mi (for i = 1, 2, 3) stand for neutrino masses in vacuum, and U is the unitary

lepton flavor mixing matrix in vacuum. After diagonalizing the effective Hamiltonian via

the unitary transformation

Heff =
1

2E

V
m̃2

1 0 0

0 m̃2
2 0

0 0 m̃2
3

V †

 , (1.2)

where m̃i (for i = 1, 2, 3) denote the effective neutrino masses and V is the effective

neutrino mixing matrix in matter, one can easily calculate the oscillation probabilities

by using the effective mixing parameters in the same way as in the case of neutrino

oscillations in vacuum.

Recently, it has been shown in refs. [5–7] that the elements of the effective neutrino

mixing matrix Vαi (for α = e, µ, τ and i = 1, 2, 3) and the effective neutrino mass-squared

differences ∆̃ij ≡ m̃2
i−m̃2

j (for ij = 21, 31, 32) satisfy a complete set of differential equations
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with respect to the matter parameter a. Making an analogy with the renormalization-

group equations (RGEs) and adopting the standard parametrization for the effective mixing

matrix V in matter, the authors of ref. [7] have derived the RGEs for the effective mixing

angles {θ̃12, θ̃13, θ̃23} and the effective CP-violating phase δ̃, namely,

dθ̃12

da
=

1

2
sin 2θ̃12

(
cos2 θ̃13∆̃−1

21 − sin2 θ̃13∆̃21∆̃−1
31 ∆̃−1

32

)
, (1.3)

dθ̃13

da
=

1

2
sin 2θ̃13

(
cos2 θ̃12∆̃−1

31 + sin2 θ̃12∆̃−1
32

)
, (1.4)

dθ̃23

da
=

1

2
sin 2θ̃12 sin θ̃13 cos δ̃∆̃21∆̃−1

31 ∆̃−1
32 , (1.5)

dδ̃

da
= − sin 2θ̃12 sin θ̃13 sin δ̃ cot 2θ̃23∆̃21∆̃−1

31 ∆̃−1
32 ; (1.6)

as well as the RGEs for the effective neutrino mass-squared differences {∆̃21, ∆̃31, ∆̃32}, i.e.,

d∆̃21

da
= − cos2 θ̃13 cos 2θ̃12 , (1.7)

d∆̃31

da
= sin2 θ̃13 − cos2 θ̃13 cos2 θ̃12 , (1.8)

d∆̃32

da
= sin2 θ̃13 − cos2 θ̃13 sin2 θ̃12 , (1.9)

where it is evident that only two of the above three equations are independent. These

RGEs have been exactly solved in ref. [7] in a numerical way, which however obscures how

exactly the matter effects modify the effective neutrino masses and mixing parameters.

In this paper, we present the first analytical solutions to those RGEs with some rea-

sonable approximations and compare them with the exact numerical results. Such a com-

parison is very helpful for us to understand how the matter effects change the effective

parameters and thus the oscillation probabilities. Very interestingly, it has been observed

in refs. [8–11] that the effective mixing angles θ̃12 and θ̃13 are approximately given by the

simple formulas in the two-flavor mixing limit. As we shall see shortly, this observation

follows naturally as the leading-order analytical solutions to the RGEs of the effective mix-

ing angles. Moreover, we derive the approximate analytical expressions for all the effective

neutrino mass-squared differences and mixing angles.

The remaining part of this paper is structured as follows. In section 2, we briefly

summarize the series expansion of effective neutrino mass-squared differences in terms of

the perturbation parameter α ≡ ∆21/∆31, where ∆21 ≡ m2
2 −m2

1 ≈ 7.5 × 10−5 eV2 and

|∆31| ≡ |m2
3 −m2

1| ≈ 2.5× 10−3 eV2 are the neutrino mass-squared differences in vacuum.

The relevant results serve as the starting point for the analytical solutions to the RGEs.

Then, the analytical results are derived in section 3, and compared with the exact numerical

solutions. Finally, we make some concluding remarks in section 4.

2 Series expansion

In fact, the eigenvalues and eigenvectors of the effective Hamiltonian in eq. (1.1) can be

exactly calculated and expressed in terms of neutrino masses {m1,m2,m3} and the mix-
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ing parameters {θ12, θ13, θ23, δ} in vacuum, if the standard parametrization of the mixing

matrix is adopted, and the matter parameter a [12–14]. Therefore, the oscillation probabil-

ities can be computed by using the effective neutrino mass eigenvalues and mixing matrix.

Nevertheless, it is difficult to directly confront the exact oscillation probabilities with neu-

trino oscillation data in order to figure out how the matter effects change the oscillation

behavior. In refs. [15–17], the analytical formulas of effective neutrino masses and mixing

parameters have been derived via series expansion with respect to α = ∆21/∆31 ≈ 0.03 or

sin2 θ13 ≈ 0.02 or both. Then neutrino oscillation probabilities can be computed and im-

plemented to understand those neutrino oscillation experiments where matter effects play

a significant role.

For our purpose, we follow the same formalism in the seminal paper by Freund [16]

and quote the results of the effective neutrino mass-squared differences to the first order of

α as below

∆̃21 ≈ ∆31

[
1

2
(1 +A− C13) + α

(
C13 + 1−A cos 2θ13

2C13

sin2 θ12 − cos2 θ12

)]
, (2.1)

∆̃31 ≈ ∆31

[
1

2
(1 +A+ C13) + α

(
C13 − 1 +A cos 2θ13

2C13

sin2 θ12 − cos2 θ12

)]
, (2.2)

∆̃32 ≈ ∆31

[
C13 + α sin2 θ12

(
A cos 2θ13 − 1

C13

)]
, (2.3)

where A ≡ a/∆31 and C13 ≡
√

1− 2A cos 2θ13 +A2 have been defined, and the higher-

order terms O(α2) have been safely omitted for A > α. It has been pointed out in ref. [18]

that the effective Hamiltonian for neutrino oscillations in matter is intrinsically invariant

under the transformations θ12 → θ12−π/2 for the mixing angle and m1 ↔ m2 for neutrino

masses when one takes the standard parametrization of the mixing matrix in vacuum. To

preserve such a symmetry of the effective Hamiltonian in the series expansion at each order,

we can introduce a special neutrino mass-squared difference ∆c ≡ ∆31 cos2 θ12+∆32 sin2 θ12,

which has been demonstrated to be the most favorable choice to achieve compact expres-

sions for the effective mixing parameters as well as neutrino oscillation probabilities in

matter [19–21]. After converting into such a symmetric formalism and carrying out the

series expansion in terms of αc ≡ ∆21/∆c, one can find that the effective neutrino mass-

squared differences in matter in eqs. (2.1)–(2.3) can be greatly simplified

∆̃21 ≈ ∆c

[
1

2

(
1 +Ac − Ĉ13

)
− αc cos 2θ12

]
, (2.4)

∆̃31 ≈ ∆c

[
1

2

(
1 +Ac + Ĉ13

)
− αc cos 2θ12

]
, (2.5)

∆̃32 ≈ ∆cĈ13 , (2.6)

where Ac ≡ a/∆c and Ĉ13 ≡
√

1− 2Ac cos 2θ13 +A2
c =

√
(Ac − cos 2θ13)2 + sin2 2θ13 are

defined. It is straightforward to verify that the expressions on the right-hand sides of

eqs. (2.4)–(2.6) are invariant under the replacements cos 2θ12 → − cos 2θ12 and αc → −αc,

which are implied by the transformations θ12 → θ12 − π/2 and m1 ↔ m2. Moreover,
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the first-order terms in eqs. (2.4)–(2.6) become much simper than those in eqs. (2.1)–

(2.3). In particular, only the zeroth-order term in eq. (2.6) survives. Such a considerable

simplification will help us a lot to find the analytical solutions to the RGEs. For this reason,

we shall use the notations and results in eqs. (2.4)–(2.6) in the following discussions. As

the expressions of effective neutrino mass-squared differences in eqs. (2.4)–(2.6) are much

simpler than those in eqs. (2.1)–(2.3), it is also natural to expect that more compact

formulas of neutrino oscillation probabilities in the former case can be derived. For instance,

in the series expansion of neutrino oscillation probabilities in terms of αc, all the terms

proportional to sin2 θ12 or cos2 θ12 will disappear. This observation has been demonstrated

by explicit calculations of neutrino oscillation probabilities [22].

Some comments on the series expansion of ∆̃ij (for ij = 21, 31, 32) and the mixing

parameters should be useful. As has been already stated in ref. [16], the series expansion

with respect to αc = ∆21/∆c cannot be valid for an arbitrary value of the matter parameter

a. First of all, the results are no longer correct in the vacuum limit with a = 0, as Ac = a/∆c

is always assumed to be nonzero in ref. [16].1 Second, the series expansion works well only

for a relatively large Ac, e.g., Ac > αc, corresponding to E & 0.4 GeV in the case of

∆21 = 7.5 × 10−5 eV2 and the matter density ρ = 2.8 g cm−3. This is why one gets the

divergence θ̃12 → ∞ in the limit of Ac → 0. For a small value Ac . αc, one can certainly

find another suitable form of series expansion [23, 24], which is however invalid for a larger

value of Ac. The main reason is that there may exist two resonances at Ac = αc cos 2θ12 and

Ac = cos 2θ13, and the level crossing of two relevant eigenvalues occurs at each resonance.

The series expansion has to focus on one resonance, and thus cannot be utilized to fully and

correctly describe the effective neutrino masses and mixing parameters the whole range of

a or equivalently Ac.

In the next section, starting with the series expansion of ∆̃ij (for ij = 21, 31, 32) in

eqs. (2.4)–(2.6), we try to solve the RGEs for effective neutrino mixing angles {θ̃12, θ̃13, θ̃23}
and the CP violating phase δ̃. In order to find out a meaningful solution to θ̃12, we are

forced to generalize the expansion in eqs. (2.4)–(2.6) by modifying the first-order terms.

As will be shown later, such a modification is not arbitrary but will be regularized by the

RGEs, which should be fulfilled strictly no matter whether Ac is large or small.

3 Analytical solutions

Now we are ready to analytically solve the RGEs. It is worthwhile to stress that the RGEs

for {θ̃12, θ̃13} and {∆̃21, ∆̃31, ∆̃32} form a closed set of differential equations [7], so one can

first look for the solutions to those parameters and then go further to solve θ̃23 and δ̃. For

clarity, let us first concentrate on neutrino oscillations in the case of normal neutrino mass

ordering (NO), namely, m2
3 > m2

2 > m2
1 or ∆c > 0, and then turn to the case of inverted

neutrino mass ordering (IO), namely, m2
3 < m2

1 < m2
2 or ∆c < 0 later.

1Although the notations in the present work are slightly different from those in ref. [16], one can easily

identify that the relevant quantities {a,∆c, αc, Ac} correspond to {A,∆, α, Â} therein, respectively. Here

we just quote the statements from ref. [16] and translate them into our own notations.
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3.1 θ̃13 and θ̃12

The first step is to take the series expansion in eqs. (2.4)–(2.6) as the approximate solutions

to ∆̃ij (for ij = 21, 31, 32) and insert these solutions into their RGEs in eqs. (1.7)–(1.9).

After doing so, one can observe from eqs. (1.8) and (1.9) that

1

2

(
1 +

Ac − cos 2θ13

Ĉ13

)
= sin2 θ̃13 − cos2 θ̃13 cos2 θ̃12 , (3.1)

Ac − cos 2θ13

Ĉ13

= sin2 θ̃13 − cos2 θ̃13 sin2 θ̃12 , (3.2)

where the derivative dĈ13/dAc = (Ac − cos 2θ13)/Ĉ13 has been used. It is straightforward

to solve θ̃13 by adding eq. (3.1) to eq. (3.2) on both left-hand and right-hand sides, i.e.,

cos2 θ̃13 =
1

2

(
1− Ac − cos 2θ13

Ĉ13

)
, (3.3)

which is the well-known effective mixing angle in the limit of two-flavor neutrino mixing

with θ13 being the mixing angle in vacuum and ∆c being the neutrino mass-squared differ-

ence in vacuum. To see this point clearly, we can recast eq. (3.3) into a more familiar form

sin2 2θ̃13 = 1− (Ac − cos 2θ13)2

Ĉ2
13

=
sin2 2θ13

(Ac − cos 2θ13)2 + sin2 2θ13

, (3.4)

implying the maximal effective mixing angle θ̃13 = 45◦ at the resonance Ac = cos 2θ13.

For antineutrino oscillations, the solution to θ̃13 can be obtained by setting Ac → −Ac

in eq. (3.3). In addition, one can immediately verify that eq. (3.3) or eq. (3.4) leads to

θ̃13 → θ13 in the vacuum limit Ac → 0, indicating the correct asymptotic behavior even

though the series expansion is in principle valid only for Ac > αc. This observation can be

understood as follows. As was previously noticed in refs. [21, 23, 24], it is inappropriate

to expand the functions like
√
A2

c + α2
c with respect to αc in the presence of a comparable

or even smaller Ac. It has also been demonstrated in ref. [24] that such a problem can be

avoided when one makes use of the series expansion of m̃2
2 + m̃2

1 but not that of m̃2
2 − m̃2

1.

This is obviously the case for the solution to θ̃13 in eq. (3.3), which has been derived from

eqs. (3.1) and (3.2).

In figure 1, the analytical solution to θ̃13 in eq. (3.3) has been plotted and com-

pared with the exact numerical one. In the left panel, the solid curves stand for the

analytical solutions, while the dashed curves for the numerical ones. In addition, the

red and orange curves are for neutrinos, while the blue and green ones for antineutri-

nos. In our numerical calculations, the best-fit values of neutrino mixing parameters

{θ12 = 33.82◦, θ13 = 8.61◦, θ23 = 49.6◦, δ = 215◦} and neutrino mass-squared differences

{∆m2
21 = 7.39 × 10−5 eV2,∆m2

31 = +2.525 × 10−3 eV2} from ref. [25] have been used.

Amazingly, the analytical results are in perfect agreement with the exact numerical ones,

indicating that the simple result in eq. (3.3) is very accurate over a wide range of Ac. The

difference between analytical and numerical results is shown in the right panel of figure 1,

– 5 –
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θ˜
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]

Figure 1. Left panel : analytical and numerical solutions to θ̃13 in the case of normal neutrino mass

ordering, where the best-fit values of neutrino mixing parameters from ref. [25] have been used in the

numerical calculations. The solid curves stand for the analytical solutions, while the dashed ones for

the numerical solutions. In addition, the red and orange curves are for neutrinos while the blue and

green ones for antineutrinos. Right panel : the difference ∆θ̃13 ≡ θ̃13(analytical) − θ̃13(numerical)

between the analytical and numerical results has been plotted as the red curve for neutrinos while

the blue curve for antineutrinos.

where one can see that the largest deviation located around Ac = cos 2θ13 in the neutrino

case is no more than 0.08◦. The evolution of θ̃13 with respect to Ac can be well understood

with the help of the analytical formula, resembling the main features in the two-flavor neu-

trino mixing in matter. For antineutrinos, there is no resonance and the effective mixing

angle θ̃13 will be monotonically decreasing to zero, as it should be suppressed by matter

effects. Note that the analytical and numerical results for antineutrinos have been obtained

by replacing Ac with −Ac, so the value Ac remains to be positive for both neutrinos and

antineutrinos, as shown in figure 1.

Then, we proceed with the solution to θ̃12. As one could expect, it is impossible to get

any meaningful results based on the series expansion in eqs. (2.4)–(2.6). For instance, if we

insert eq. (2.4) into eq. (1.7), then it turns out that cos 2θ̃12 = −1, given cos2 θ̃13 in eq. (3.3).

Obviously this solution to θ̃12 cannot be correct, as it gives the wrong value of the mixing

angle θ12 in vacuum. As we have explained, the series expansion in eqs. (2.4)–(2.6) is unable

to account for the resonance at Ac = αc cos 2θ12, which is however important for θ̃12. To

this end, we propose a modified version of the effective neutrino mass-squared differences

∆̃21 = ∆c

[
1

2
(1 +Ac − Ĉ13) + αc(F − G)

]
, (3.5)

∆̃31 = ∆c

[
1

2
(1 +Ac + Ĉ13) + αcF

]
, (3.6)

∆̃32 = ∆c

(
Ĉ13 + αcG

)
, (3.7)

where F(Ac) and G(Ac) are two functions of Ac that need to be determined. It is worth

mentioning that all the terms proportional to αc on the right-hand sides of eqs. (3.5)–(3.7)

are not necessarily regarded as the first-order expansion, since F and G themselves may

depend on αc. The reason why we write them in this way is to reproduce the results in

eqs. (2.4)–(2.6) in the limit of large Ac. On the other hand, we attempt to regularize the
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effective parameters in the limit of small Ac by using the RGEs. Now we explain how to

determine these two new functions, which is the central problem to deal with in this work.

• First, as we have mentioned before, it is safe to implement the series expansion of

m̃2
2 +m̃2

1 even for small Ac. Therefore, it is reasonable to demand F+G = − cos 2θ12,

similar to the situation for eqs. (2.4)–(2.6). Such a requirement reduces the number of

independent new functions from two to one. Moreover, the solution to θ̃13 in eq. (3.3)

agrees excellently with the exact result. In order not to spoil this result, we follow the

same procedure leading to eq. (3.3) and find that dF/dAc + dG/dAc = 0 has to be

satisfied. Finally, if Ac is set to zero, the effective neutrino mass-squared differences

∆̃ij in eqs. (3.5)–(3.7) have to recover the neutrino mass-squared differences ∆ij in

vacuum. This gives rise to F(0) = sin2 θ12 and G(0) = − cos2 θ12, which are the

initial conditions necessary for us to determine F and G.

• Plugging eq. (3.5) into eq. (1.7) and noticing dG/dAc = −dF/dAc, we arrive at

cos2 θ̃12 =
2Ĉ13αc

Ac − Ĉ13 − cos 2θ13

dF
dAc

, (3.8)

where the expression of cos2 θ̃13 in eq. (3.3) has been used. On the other hand, with

the help of eqs. (3.3), (3.6) and (3.7), one can derive from eq. (1.4) that

cos2 θ̃12 =
(1 +Ac + Ĉ13)(cos 2θ12 + F)αc

Ĉ13

[
2(cos 2θ12 + 2F)αc + (1 + Ac − Ĉ13)

] , (3.9)

where the term proportional to α2
c in the numerator has been neglected. By iden-

tifying the right-hand side of eq. (3.8) with that of eq. (3.9), we can establish the

differential equation

dF
dAc

=
(Ac − Ĉ13 − 1)(cos 2θ12 + F) cos2 θ13

Ĉ2
13

[
2(cos 2θ12 + 2F)αc + (1 + Ac − Ĉ13)

] . (3.10)

Usually it is difficult to solve eq. (3.10) in the most general case. For simplicity, we

look for the solution in the limit of Ac → 0. In this limit, one can easily check that

(Ac − Ĉ13 − 1)/Ĉ2
13 ≈ −2 and (1 + Ac − Ĉ13)/2 ≈ Ac cos2 θ13. As a consequence,

eq. (3.10) will be considerably simplified to

dF
dAc

= − (cos 2θ12 + F) cos2 θ13

(cos 2θ12 + 2F)αc +Ac

, (3.11)

where the terms proportional to Ac sin2 θ13 have been safely ignored. The exact

solution to eq. (3.11) can then be found if cos2 θ13 ≈ 1 is further assumed, i.e.,

F(Ac) =
1

2αc

[√
(Ac − αc cos 2θ12)2 + α2

c sin2 2θ12 − (Ac + αc cos 2θ12)

]
. (3.12)

It should be noticed that although eq. (3.12) is simple, it correctly reproduces F →
sin2 θ12 in the limit Ac → 0 and F → − cos 2θ12 in the limit Ac → ∞. Without the
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Figure 2. Left panel : analytical and numerical solutions to θ̃12 in the case of normal neutrino

mass ordering, where the input parameters are the same as in figure 1. For the analytical solutions,

the approximate result in eq. (3.14) has been plotted as the red dotted-dashed curve, while the full

result in eq. (3.13) as the red solid curve. Right panel : the difference ∆θ̃12 between the full result

in eq. (3.13) and the numerical result is plotted as the red curve for neutrinos while the blue one

for antineutrinos.

assumption of cos2 θ13 ≈ 1, one can still analytically solve the differential equation

in eq. (3.11), but the final solution will be more complicated and less useful. The

other function is then given by G(Ac) = − cos 2θ12 −F(Ac), implying G(Ac)|Ac→0 →
− cos2 θ12 and G(Ac)|Ac→∞ → 0.

With the function F(Ac) in eq. (3.12), we can substitute it into the right-hand side of

eq. (3.11) and then insert the expression of dF/dAc into eq. (3.8), leading to the ultimate

solution of θ̃12

cos2 θ̃12 =
1

2

(
1− A∗ − cos 2θ12

Ĉ12

)
2Ĉ13 cos2 θ13

Ĉ13 −Ac + cos 2θ13

, (3.13)

where

A∗ ≡ Ac/αc = a/∆21

and Ĉ12 ≡
√

1− 2A∗ cos 2θ12 +A2
∗ =

√
(A∗ − cos 2θ12)2 + sin2 2θ12

have been introduced. In eq. (3.13), the last term on the right-hand side can also be written

as cos2 θ13/ cos2 θ̃13, which deserves further discussions. As we have seen from figure 1, θ̃13

in the neutrino case increases very slowly until the resonance at Ac = cos 2θ13 is reached,

then it will be resonantly enhanced to 90◦. Since the width of the resonance is extremely

narrow, as it is characterized by the smallest mixing angle θ13 ≈ 8◦, one can simply take

cos2 θ13/ cos2 θ̃13 ≈ 1 for Ac < cos 2θ13 and then get

cos2 θ̃12 =
1

2

(
1− A∗ − cos 2θ12

Ĉ12

)
. (3.14)

Making a comparison between eq. (3.14) and eq. (3.3), we realize that θ̃12 can also be

described by the effective mixing angle in matter in the limit of two-flavor mixing with θ12

– 8 –
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being the mixing angle and ∆21 being the relevant mass-squared difference in vacuum [17].

However, the correction factor cos2 θ13/ cos2 θ̃13 becomes significant when approaching the

resonance at Ac = cos 2θ13.

In figure 2, the analytical and numerical solutions to θ̃12 have been shown and com-

pared with each other. In the left panel, the approximate analytical result in eq. (3.14) and

the full analytical result in eq. (3.13) are plotted as the red dotted-dashed and solid curve,

respectively. In the right panel, the difference between the full analytical result and the

numerical result has been shown, where the largest deviation appearing in the resonance

region at Ac = αc cos 2θ12 is about ∆θ̃12 ≈ 0.5◦ for neutrinos and ∆θ̃12 ≈ 0.2◦ for antineu-

trinos. As has been pointed out before, the difference between eq. (3.13) and eq. (3.14)

is the inclusion of the correction factor cos2 θ13/ cos2 θ̃13 in the former equation, which

changes the asymptotic behavior of θ̃12 in the limit Ac → ∞. To be explicit, eq. (3.14)

implies cos2 θ̃12 → 0 or equivalently θ̃12 → 90◦ for Ac →∞. However, eq. (3.13) gives rise

to cos2 θ̃12 → α2
c csc2 θ13 sin2 θ12 cos2 θ12 or equivalently θ̃12 → 84.6◦ in the limit Ac →∞.

In addition, θ̃12 in the antineutrino case has also been presented in figure 2, where

the analytical results in both left and right panels have been obtained from eq. (3.14) by

setting A∗ → −A∗. Since there is no resonance for antineutrino oscillations in matter in

the NO case, the analytical solution derived from eq. (3.14) works pretty well. As one can

observe from the left panel of figure 2, the matter effects tend to suppress the effective

mixing angle θ̃12. This is expected in general if the resonance is absent.

Now that the functions F(Ac) and G(Ac) have been determined, it is straightforward

to rewrite the expressions of effective neutrino mass-squared differences as

∆̃21 = ∆c

[
1

2
(1 +Ac − Ĉ13) + (Ĉ12 −A∗)αc

]
, (3.15)

∆̃31 = ∆c

[
1

2
(1 +Ac + Ĉ13) +

1

2
(Ĉ12 −A∗ − cos 2θ12)αc

]
, (3.16)

∆̃32 = ∆c

[
Ĉ13 +

1

2
(A∗ − Ĉ12 − cos 2θ12)αc

]
. (3.17)

For completeness, two independent effective neutrino mass-squared differences ∆̃21/∆c

and ∆̃31/∆c are shown against the normalized matter parameter Ac = a/∆c in figure 3,

where the analytical results in eqs. (3.15) and (3.16) have been compared with their exact

values. An excellent agreement between analytical and numerical results can be observed

for the whole range of 10−4 . Ac . 102. The evolution of ∆̃21/∆c and ∆̃31/∆c can be well

understood from their RGEs in eq. (1.7) and eq. (1.8), respectively, given the solutions of θ̃13

and θ̃12. For neutrino oscillations in matter, we have d(∆̃21/∆c)/dAc = − cos2 θ̃13 cos 2θ̃12,

so ∆̃21/∆c first decreases slowly until the resonance at Ac = αc cos 2θ12 when cos 2θ̃12

changes its sign. Later on, when another resonance Ac = cos 2θ13 is reached, cos2 θ̃13

approaches zero and thus ∆̃21/∆c arrives at its maximum and becomes stable at this

point. In a similar way, one can investigate the evolution of ∆̃31/∆c with respect to Ac.

For antineutrino oscillations in matter, in addition to the absence of resonances, the

overall sign change on the left-hand sides of the RGEs should be noticed when Ac → −Ac

is set. It can be observed from figure 1 and figure 2 that the evolution of θ̃13 and θ̃12 is very

– 9 –
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Figure 3. Analytical and numerical solutions to ∆̃21/∆c (left panel) and ∆̃31/∆c (right panel) in

the case of normal neutrino mass ordering, where the input parameters and the conventions for the

curves are the same as in the previous figures.

simple, namely, decreasing monotonically for increasing Ac. For ∆̃21/∆c and ∆̃31/∆c in

figure 3, they turn out to be linearly proportional to Ac after the corresponding resonance

is passed.

3.2 θ̃23 and δ̃

Since the analytical solutions to two neutrino effective mixing angles {θ̃12, θ̃13} and three

effective neutrino mass-squared differences {∆̃21, ∆̃31, ∆̃32} have been found, it is time

to solve the remaining two parameters θ̃23 and δ̃. However, if we simply substitute the

analytical expressions into the RGEs of θ̃23 and δ̃ in eqs. (1.5) and (1.6), it will be too

complicated to find any analytical and useful results. For this reason, we have to make

some reasonable approximations.

From eqs. (1.5) and (1.6), one can observe that the evolution of θ̃23 and δ̃ will be

suppressed by both sin θ13 and ∆21/∆31, at least in the region of small Ac. Therefore, θ̃23 ≈
θ23 and δ̃ ≈ δ can serve as the zeroth-order solutions. It is worthwhile to emphasize that

such approximations hardly affect the previous results for the other effective parameters,

since their RGEs are independent of θ̃23 and δ̃. Therefore, it is reasonable to take δ̃ = δ

on the right-hand side of eq. (1.5), namely,

dθ̃23

da
=

sin 2θ̃12 sin θ̃13∆̃21

2∆̃31∆̃32

cos δ . (3.18)

Once Ac becomes larger, ∆̃21 and sin2 θ̃13 start to increase. In this case, the approximate

result θ̃23 ≈ θ23 is no longer valid. To explore the evolution of θ̃23 in the region of large Ac,

we expand the analytical solutions to sin 2θ̃12, sin θ̃13 and ∆̃ij (for ij = 21, 31, 32) on the

right-hand side of eq. (3.18) as a series of 1/Ac and retain only the leading-order terms.

As a consequence, eq. (3.18) turns out to be

dθ̃23

dAc

=
αc sin 2θ12(cos2 θ13 − αc cos 2θ12)

2A2
c sin θ13

cos δ . (3.19)
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Figure 5. Analytical and numerical solutions to J̃ /J in the case of normal neutrino mass ordering,

where the input parameters and conventions for the curves are the same as in the previous figures.

It is easy to solve eq. (3.19) with the initial condition θ̃23(Ac)|Ac=cos 2θ13
= θ23. Therefore,

we obtain the final solution θ̃23 = θ23 for Ac ≤ cos 2θ13; and

θ̃23 = θ23 +
αc sin 2θ12(cos2 θ13 − αc cos 2θ12)

2Ac cos 2θ13 sin θ13

(Ac − cos 2θ13) cos δ , (3.20)

for Ac > cos 2θ13. In the case of antineutrino oscillations, sin θ̃13 is always small such that

θ̃23 = θ23 holds excellently for the whole range of Ac. After getting the analytical result

for θ̃23, we can calculate δ̃ by using the well-known Toshev relation [26]

sin δ̃ =
sin 2θ23

sin 2θ̃23

sin δ , (3.21)

which is applicable for both neutrinos and antineutrinos. The analytical and numerical

solutions to θ̃23 and δ̃ are given in figure 4 in the left and right panel, respectively, where

one can observe an excellent agreement. We have also checked that the differences between

analytical and numerical results are on the level of O(10−2) degrees.

As an intriguing byproduct, the approximate formula of the Jarlskog invariant for CP

violation in the lepton sector [27, 28] has been found to be very simple. In the standard
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parametrization of the effective mixing matrix, the Jarlskog invariant J̃ in matter can be

written as

J̃ = sin θ̃12 cos θ̃12 sin θ̃13 cos2 θ̃13 sin θ̃23 cos θ̃23 sin δ̃ . (3.22)

The Jarlskog invariant J in vacuum can be obtained by replacing the effective mixing

parameters in eq. (3.22) with their counterparts in vacuum. Given the Toshev relation in

eq. (3.21) and the analytical solutions to the effective mixing parameters, the ratio J̃ /J
is found to be

J̃
J

=
sin θ̃12 cos θ̃12 sin θ̃13 cos2 θ̃13

sin θ12 cos θ12 sin θ13 cos2 θ13

≈ 1

Ĉ12Ĉ13

, (3.23)

where the Toshev relation has been used in the derivation of the first identity. For antineu-

trinos, one can make the transformation Ac → −Ac in Ĉ13 and A∗ → −A∗ in Ĉ12. If the

exact Naumov relation J∆21∆31∆32 = J̃ ∆̃21∆̃31∆̃32 is implemented [29–31], one can get

∆̃21∆̃31∆̃32

∆21∆31∆32

≈ Ĉ12Ĉ13 , (3.24)

which is not obtainable directly from the expressions of ∆ij in eqs. (3.15)–(3.17). From

eq. (3.23), it is then evident that the Jarlskog invariant in matter in J̃ is determined

by Ĉ12Ĉ13, which will be dramatically modified by the resonances at Ac = αc cos 2θ12

and Ac = cos 2θ13 in addition to the overall suppression for increasing Ac. In figure 5,

the analytical result in eq. (3.23) has been plotted along with the exact numerical result,

showing an excellent agreement.

Finally, let us make some comments on the analytical formulas of the absolute square

of the effective mixing matrix element |Vαi|2 for α = e, µ, τ and i = 1, 2, 3. Given three

mixing angles and the CP-violating phase in matter, it is in principle straightforward to

reconstruct |Vαi|2. For example, we have |Ve1|2 = cos2 θ̃13 cos2 θ̃12, where the approximate

formulas of cos2 θ̃13 and cos2 θ̃12 have been given in eq. (3.3) and eq. (3.13), respectively.

With the help of these two equations, one then arrives at

|Ve1|2 =
cos2 θ13

2

(
1− A∗ − cos 2θ12

Ĉ12

)
. (3.25)

In the limit that the matter effects are negligible (i.e., Ac � αc or A∗ = a/∆21 � 1), one

can observe that ∆̃21 ≈ ∆cĈ12αc is a good approximation. Using the measured values of

neutrino mixing angles cos2 θ13 ≈ 1 and cos2 θ12 ≈ 2/3, we can verify that eq. (3.25) can

be reduced to

|Ve1|2 ≈
1

2

(
1− a−∆21/3

∆̃21

)
, (3.26)

which is just eq. (39) in ref. [6]. The results of other matrix elements |Ve2|2, |Ve3|2, |Vµ3|2

and |Vτ3|2 can be computed in a similar way.

However, as is well known, the explicit expressions of |Vµ1|2, |Vµ2|2, |Vτ1|2 and |Vτ2|2

should be very complicated in the standard parametrization. With the help of eq. (3.23),
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Figure 6. Analytical and numerical solutions to θ̃13 (left panel) and θ̃12 (right panel) in the case

of inverted neutrino mass ordering, where the best-fit values of neutrino mixing parameters from

ref. [25] have been input and the conventions for the curves are the same as in the previous figures.

we find that the final results can be simplified to a large extent. For illustration, we obtain

|Vµ1|2 ≈ cos2 θ23 −

(
sin2 θ23 +

cos 2θ23

cos2 θ̃13

)
|Ve1|2 −

2Ĉ13J cot δ

Ĉ12 cos2 θ̃13

, (3.27)

where the zeroth-order relations θ̃23 ≈ θ23 and δ̃ ≈ δ have been used. The other three ele-

ments can be examined similarly. It is worthwhile to notice that the formulas in eqs. (3.25)

and (3.27) are more complicated but valid in a broader range of Ac, compared to their

counterparts in ref. [6].

3.3 Further discussions

In this subsection, we discuss the analytical solutions to the effective neutrino masses

and mixing parameters in the IO case. As in the NO case, we define Ac ≡ a/∆c and

αc ≡ ∆21/∆c < 0.

It is convenient to start with the effective neutrino mass-squared differences for neu-

trinos to the first order of αc, namely,

∆̃21 ≈ −∆c

[
1

2

(
1 +Ac − Ĉ13

)
− αc cos 2θ12

]
, (3.28)

∆̃31 ≈ +∆cĈ13 , (3.29)

∆̃32 ≈ +∆c

[
1

2

(
1 +Ac + Ĉ13

)
− αc cos 2θ12

]
, (3.30)

which in comparison with eqs. (2.4)–(2.6) reveal that the expressions of m̃2
1 and m̃2

2 have

been exchanged. Such an arrangement of three effective neutrino mass eigenvalues in

matter guarantees m̃2
3 < m̃2

1 < m̃2
2 for |Ac| → ∞. This is also in accordance with the con-

vention for eqs. (2.4)–(2.6), where m̃2
1 < m̃2

2 < m̃2
3 for Ac →∞ is satisfied in the NO case.

With the help of eqs. (3.28)–(3.30), we can follow the same procedure leading to eqs. (3.1)

and (3.2) and then obtain that the solution to cos2 θ̃13 is still given by eq. (3.3). For an-

tineutrinos, the result can be derived by replacing Ac in eq. (3.3) with −Ac. It should
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be noticed that Ac ≡ a/∆c is negative for neutrinos in the IO case, and the analytical

results for antineutrinos in the same case have been derived by using the same definition

of Ac. Therefore, it is convenient to plot all the effective mixing parameters and neutrino

mass-squared differences with respect to the absolute value |Ac|. In the left panel of fig-

ure 6, the analytical and numerical solutions to θ̃13 have been presented for both neutrinos

and antineutrinos. In our numerical calculations, the best-fit values of neutrino mixing

parameters {θ12 = 33.82◦, θ13 = 8.65◦, θ23 = 49.8◦, δ = 284◦} and neutrino mass-squared

differences {∆m2
21 = 7.39×10−5 eV2,∆m2

32 = −2.512×10−3 eV2} from ref. [25] have been

used. Comparing the left panels of figure 6 and figure 1, one can realize that the evolution

of θ̃13 for antineutrinos in the IO case is exactly the same as that for neutrinos in the NO

case. This can be easily understood in the two-flavor neutrino mixing limit, for which the

relevant mixing angle in vacuum is θ13 and the mass-squared difference in vacuum is ∆c.

When Ac is positive, which is true for neutrinos in the NO case and for antineutrinos in the

IO case, the resonance condition Ac = cos 2θ13 can be fulfilled. In other cases, where Ac

turns out to be negative, there will be no resonance and the matter effects tend to suppress

the effective mixing angle θ̃13. For comparison, we have listed the analytical results of the

effective parameters for neutrinos and antineutrinos in both NO and IO cases in table 1.

Next, we will continue with the solution to θ̃12. As in the NO case, two auxiliary

functions F(Ac) and G(Ac) are also introduced to modify the effective neutrino mass-

squared differences, namely,

∆̃21 ≈ −∆c

[
1

2

(
1 +Ac − Ĉ13

)
+ αc(F − G)

]
, (3.31)

∆̃31 ≈ +∆c

(
Ĉ13 + αcG

)
, (3.32)

∆̃32 ≈ +∆c

[
1

2

(
1 +Ac + Ĉ13

)
+ αcF

]
. (3.33)

To correctly reproduce the neutrino mass-squared differences at Ac = 0 and maintain the

result of θ̃13, we require that the conditions F + G = − cos 2θ12, F(0) = sin2 θ12 and

dF/dAc + dG/dAc = 0 should be satisfied. In the same way as in the NO case, it is

straightforward to get

sin2 θ̃12 =
1

2

(
1 +

A∗ − cos 2θ12

Ĉ12

)
, (3.34)

where A∗ ≡ Ac/αc = a/∆21 and Ĉ12 ≡
√

1− 2A∗ cos 2θ12 +A2
∗ have been defined as before.

For antineutrinos, since the resonance at Ac = cos 2θ13 will greatly change θ̃13, a correction

factor should be included to take account of the resonant enhancement. Consequently,

we have

sin2 θ̃12 =
1

2

(
1− A∗ + cos 2θ12

Ĉ ′12

)
cos2 θ13

cos2 θ̃13

, (3.35)

where Ĉ ′12 ≡
√

1 + 2A∗ cos 2θ12 +A2
∗ is just Ĉ12 with A∗ replaced by −A∗. The analytical

result in eq. (3.34) for neutrinos and that in eq. (3.35) for antineutrinos have been depicted

in the right panel of figure 6, together with the exact numerical results. The analytical
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Figure 7. Analytical and numerical solutions to {∆̃21/|∆c|, ∆̃31/∆c} are shown in the first row

while those to {θ̃23, δ̃} in the second row, where the inverted neutrino mass ordering is assumed

and the input parameters and conventions for the curves are the same as in the previous figures.

results agree well with the numerical ones, and the differences between these two results

should be on the same order as those in the NO case. For θ̃12, the main difference between

the results in the NO and IO cases is that the resonance at Ac = cos 2θ13 occurs in the

neutrino and antineutrino sector, respectively.

As the auxiliary functions F(Ac) and G(Ac) have been fixed, three effective neutrino

mass-squared differences are then found to be

∆̃21 = −∆c

[
1

2
(1 +Ac − Ĉ13)− (Ĉ12 +A∗)αc

]
, (3.36)

∆̃31 = +∆c

[
Ĉ13 +

1

2

(
Ĉ12 +A∗ − cos 2θ12

)
αc

]
, (3.37)

∆̃32 = +∆c

[
1

2
(1 +Ac + Ĉ13)− 1

2

(
Ĉ12 +A∗ + cos 2θ12

)
αc

]
, (3.38)

for neutrinos. The results for antineutrinos can be derived by replacing Ac with −Ac and

A∗ with −A∗ in the above equations. In addition, θ̃23 ≈ θ23 and δ̃ ≈ δ hold excellently

for neutrinos. However, for antineutrinos, we have θ̃23 = θ23 if Ac ≤ cos 2θ13, otherwise

θ̃23 is given by the same formula in eq. (3.20). The effective CP-violating phase δ̃ can be

calculated by using the Toshev relation sin δ̃ = sin 2θ23 sin δ/ sin 2θ̃23. Finally, the ratio of

the effective Jarlskog invariant to its counterpart in vacuum is J̃ /J = 1/(Ĉ12Ĉ13) in the

neutrino case. Although the formulas in the IO case take the same form as in the NO case,
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Figure 8. Analytical and numerical solutions to J̃ /J in the inverted mass ordering case, where

the input parameters and conventions for the curves are the same as before.

it is worthwhile to mention that the structure of resonances can be very different. The

analytical and numerical solutions to ∆̃21/|∆c| and ∆̃31/∆c, as well as those to δ̃23 and δ̃,

are plotted in figure 7. Meanwhile, the result for J̃ /J in the IO case is shown in figure 8,

where one can easily recognize the single resonance at Ac = αc cos 2θ12 for neutrinos, and

that at Ac = cos 2θ13 for antineutrinos. This observation should be compared with the

resonance structure in the NO case, where two resonances appear in the neutrino sector

while no resonance in the antineutrino sector.

4 Concluding remarks

In light of the ongoing and forthcoming long-baseline accelerator neutrino experiments

and huge atmospheric neutrino observatories, it will be very helpful to have a better

understanding of matter effects on neutrino oscillations. Adopting the language of the

renormalization-group equations (RGEs) for the effective neutrino masses and mixing pa-

rameters [7], we show in this paper that analytical solutions to the RGEs can be derived

with the help of series expansion of neutrino mass eigenvalues in matter [16, 17]. The

essential idea is to regularize the series expansion in the region where it is invalid by the

exact RGEs. Some interesting observations have been made and summarized as follows.

We take neutrino oscillations in matter in the NO case for example. First, the effective

mixing angle θ̃13 can be excellently described by the formula in eq. (3.3) in the limit

of two-flavor neutrino mixing [16]. This is also true for the effective mixing angle θ̃12

except in the region of large matter effects (e.g., Ac & cos 2θ13), where a correction factor

cos2 θ13/ cos2 θ̃13 should be included. Second, it is widely known that the matter effects

can hardly modify θ̃23 and δ̃, so θ̃23 ≈ θ23 and δ̃ ≈ δ are very good approximations until

the resonance at Ac = cos 2θ13 is met. The deviations of θ̃23 and δ̃ from θ23 and δ become

significant for Ac & cos 2θ13 and can be accounted for by the analytical formula in eq. (3.20).

Finally, the Jarlskog invariant in matter is found to be J̃ ≈ J /(Ĉ12Ĉ13), where Ĉ12 ≡√
(A∗ − cos 2θ12)2 + sin2 2θ12 with A∗ = a/∆21 and Ĉ13 ≡

√
(Ac − cos 2θ13)2 + sin2 2θ13

well capture the main features of two resonances relevant for neutrino oscillations in matter.

The analytical formulas for neutrinos and antineutrinos in both NO and IO cases are

compared and listed in table 1.
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Ĉ

1
3

2
+

(Ĉ
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(Ĉ

1
2

+
A
∗)
α

c
−

1
+
A

c
−
Ĉ
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Ĉ
′ 1
2
−
A
∗
−

co
s

2
θ 1

2

2
α

c

J̃
/
J

1/
(Ĉ
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The analytical formulas for the effective neutrino mass-squared differences ∆̃ij for ij =

21, 31, 32 and mixing parameters {θ̃12, θ̃13, θ̃23, δ̃} can be further used to calculate neutrino

oscillation probabilities in matter. Since the agreement between these formulas and the

exact numerical results has been found to be excellent, the implementation of analytical

formulas in the phenomenological studies of neutrino oscillations will greatly increase the

efficiency of numerical simulations. The investigation of neutrino oscillation probabilities

in matter along this line deserves more attention and will be left for future works.
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