
J
H
E
P
0
5
(
2
0
1
9
)
0
3
3

Published for SISSA by Springer

Received: February 6, 2019

Accepted: April 28, 2019

Published: May 6, 2019

Kerr-de Sitter quasinormal modes via accessory

parameter expansion
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Abstract: Quasinormal modes are characteristic oscillatory modes that control the re-

laxation of a perturbed physical system back to its equilibrium state. In this work, we

calculate QNM frequencies and angular eigenvalues of Kerr-de Sitter black holes using a

novel method based on conformal field theory. The spin-field perturbation equations of this

background spacetime essentially reduce to two Heun’s equations, one for the radial part

and one for the angular part. We use the accessory parameter expansion of Heun’s equa-

tion, obtained via the isomonodromic τ -function, in order to find analytic expansions for

the QNM frequencies and angular eigenvalues. The expansion for the frequencies is given as

a double series in the rotation parameter a and the extremality parameter ε = (rC−r+)/L,

where L is the de Sitter radius and rC and r+ are the radii of, respectively, the cosmological

and event horizons. Specifically, we give the frequency expansion up to order ε2 for general

a, and up to order ε3 with the coefficients expanded up to (a/L)3. Similarly, the expansion

for the angular eigenvalues is given as a series up to (aω)3 with coefficients expanded for

small a/L. We verify the new expansion for the frequencies via a numerical analysis and

that the expansion for the angular eigenvalues agrees with results in the literature.
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1 Introduction

Quasinormal Modes (QNMs) are free oscillatory modes of an open physical system. Con-

trary to normal modes, QNMs oscillate but also decay exponentially in time. The exponen-

tial ringdown of these modes is thus characterized by complex frequencies ωQNM = ωR+i ωI ,

where ωR ∈ R corresponds to the frequency of the oscillation and ωI < 0 sets the timescale

of the decay. The study of QNMs and their exponentially-growing counterparts (ωI > 0)

is important for, e.g., the linear stability analysis of background spacetimes (e.g., [1]), to

characterize the ringdown stage of a waveform from a black hole binary inspiral [2] and for

setting the thermalization scale in holographic gauge theories [3]. For reviews on QNMs,

see, e.g., [4, 5].
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Black holes are compact objects characterized by the existence of an event horizon.

Among the class of stationary and axisymmetric solutions of General Relativity, we can

find exact black hole spacetimes. They are classified by their mass M , angular momentum

J , charge Q and by the cosmological constant Λ. In the following, we use the more con-

venient angular momentum parameter per unit mass, a ≡ J/M , and the de Sitter radius

L ≡
√

3/Λ (Λ > 0).

In this paper, we obtain QNMs and angular eigenvalues for the spin-s perturbation

equations of four-dimensional Kerr-de Sitter black holes (Λ > 0). These black holes contain

four horizons and we focus on the QNMs obtained from solutions which are valid between

the outer event horizon (at radius r+) and the cosmological horizon (at radius rC ≥ r+).

A standard approach for studying massless spin-field perturbations of black hole space-

times is to write the spin-s field equations using the Newman-Penrose formalism. This for-

malism enables the decoupling and simplification of the linear field perturbation equations

into one single (“master”) partial differential equation for any Petrov type D spacetime.

In the absence of sources, this master equation is separable into two ordinary differential

equations (ODEs) for modes with fixed frequency ω and azimuthal angular number m.

This approach was first pursued by Teukolsky for a Kerr black hole [6]. More generally,

one can find a master equation for spin s = 0,±1/2,±1,±3/2,±2 massless field pertur-

bations of any Petrov type D spacetime [7–10], including Kerr-de Sitter black holes. The

associated ODEs are all reducible to Heun equations [10, 11]. In this work, we exploit an

integrable structure behind Heun equations, deeply related to 2D conformal field theory

(CFT), to find QNMs and angular eigenvalues of Kerr-de Sitter black holes.

Heun equations are ODEs with four regular singular points [12]. We can fix these

points to be at the values z = 0, 1, x,∞ of the independent variable, without loss of

generality. These equations can then be characterized by the moduli parameter x, its local

monodromy data and the so-called accessory parameter. The monodromy data governs

the behaviour of the analytically continued solutions around the singular points, while the

accessory parameter contains global information of the solutions. Heun equations can be

formally extended to have an extra apparent singularity, with trivial monodromy. The

position of the apparent singularity can then be continuously changed in a precise way

to leave unaffected the monodromy data. This is called the isomonodromic deformation

of the Heun equation [13, 14]. Perhaps surprisingly, this deformation is Hamiltonian and

integrable. One can use this structure to construct an expansion of the accessory parameter

in x with coefficients given in terms of the local and global monodromy data [15, 16]. We call

this the Accessory Parameter Expansion (APE), revised in section 4.1. This approach was

successfully applied in the context of 2D conformal field theory in relation to the classical

limit of conformal blocks [16] and for 2D conformal mappings from a simply connected

planar region to the interior of a circular arc quadrilateral [17]. For other approaches to

obtaining the APE, we refer the reader to [15, 18, 19].

In this work, we use the APE to calculate Kerr-de Sitter QNMs and angular eigenvalues

for the first time. In particular, we apply the APE to the case of Kerr-de Sitter black holes

near the extremal limit rC → r+, also called the rotating Nariai limit, about both the upper
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and lower superradiant bounds.1 More specifically, we obtain an analytical expansion for

the QNM frequencies of the form:

sω`m = mΩ+ + ε
[
ω̄0(a) + ω̄1(a)ε1 + ω̄2(a)ε2 +O(ε3)

]
, (1.1)

in the extremality parameter ε ≡ (rC − r+)/L, where ω̄0,1,2 are coefficients we determine.

Here and in what follows Ωk, k = +, C denotes the angular velocity of the horizon rk,

k = +, C. We provide this expansion: (i) up to third order in ε with the coefficients

expanded up to third order in a/L; (ii) up to second order in ε for general a. The expansion

in eq. (1.1) is about mΩ+ (unexpanded in ε). The expansion about mΩC can be obtained

by letting Ω+ → ΩC , ε → −ε and taking the complex conjugate of the right hand side

of eq. (1.1). We thus show, and check numerically, that the lower superradiant bound

ω = mΩC is an accumulation point of QNMs, similarly to the upper bound ω = mΩ+.

To the best of our knowledge, only the term ω̄0 in eq. (1.1) for the specific case of

s = 0 and coupling constant with the Ricci scalar ξ = 0 had so far been obtained in the

literature. It was obtained in [20] by calculating QNMs directly on the rotating Nariai

geometry, which is found by a near horizon limit of the Kerr-de Sitter spacetime. Apart

from the APE derivation of eq. (1.1), we also calculate QNMs directly in the rotating Nariai

geometry in the case of s = 0 and general ξ, thus obtaining an alternative derivation of ω̄0

for this case. Overall, we believe that the expressions we derive for ω̄0 for non-zero spin

(as well as for s = 0 and ξ 6= 0) and for ω̄1,2 for any spin are new. We have checked our

high-order general-spin eq. (1.1) against a numerical analysis that we have carried out using

Leaver’s method to high accuracy. This method was first used in [21] to obtain Kerr-de

Sitter QNMs and angular eigenvalues and our results are consistent with that work.

Using the same APE method, we derive an analytical expansion for the angular eigen-

value

sλ`m =
3∑

n,k=0
n+k=3

λn,k α
n(aω)k +

4∑
n,k=0
n+k=4

O(αn(aω)k), (1.2)

where λn,k are the coefficients, obtained as a small α ≡ a/L expansion from the APE. For

convenience, we will reorganize the explicit coefficients of eq. (1.2) as a finite series

sλ`m =

3∑
k=0

λω,k (aω)k +O((aω)4), (1.3)

where the coefficients λω,k ≡
∑3−k

n=0 λn,kα
n+O(α4−k), k = 0, . . . , 3, are given in appendix E.

In the rest of this paper, we will only refer to the coefficients in eq. (1.3).

Kerr-de Sitter angular eigenvalues were first obtained numerically in [9]. Our expansion

for the eigenvalues for small α and aω agrees with that already obtained in [11] using

a completely different method (and with that in [22] in the Kerr limit L → ∞). Our

1Superradiance is a scattering phenomenon whereby a field wave extracts rotational energy from a

rotating black hole.
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eigenvalue derivation here is a proof of principle of the APE, which is extendable to higher

orders than what we present here.

Summing up, with our method, we obtain: (i) an angular eigenvalue expansion for small

aω and a/L consistent with [11, 22], and (ii) a new expansion for the QNM frequencies

near the rotating Nariai limit. For the reader who is only interested in the final result,

the coefficients in the QNM expansion (1.1) are given in eqs. (4.15) and (4.18) and in

appendix D, and the coefficients in the eigenvalue expansion (1.3) are given in appendix E.

There exist various other methods for calculating QNM frequencies, from asymptotic

analyses to numerical techniques. Ref. [21] provides a numerical calculation of QNMs

of Kerr-de Sitter black holes, for modes between rC and r+, by using a method originally

developed by Leaver [23, 24]. Their analysis suggests that the QNM frequencies accumulate

towards ω = mΩ+ in each of the extremal limits r+ → r− and r+ → rC , where Ω+ is the

angular velocity of the event horizon r+. The frequency ω = mΩ+ is the upper bound

of the superradiant regime. For non-extremal (i.e., r+ 6= rC) Kerr-de Sitter black holes,

the superradiant regime is |m|ΩC < |ω|< |m|Ω+, where ΩC is the angular velocity of the

cosmological horizon rC . Other works we found in the literature on QNMs in Kerr-de Sitter

are the following: [25] provides an analytic expansion of the QNM with the lowest overtone

(N = 0) in the double approximation of small a (to linear order) and large-(` + 1/2) (up

to order (` + 1/2)−6), where ` is the multipolar number; similarly, [26] provides a Bohr-

Sommerfeld type of condition which QNMs for small a must satisfy and which could be

solved numerically, being better suited for larger `; within the context of the so-called

strong cosmic censorship conjecture, [27] obtained an analytic expression for the QNMs for

` = |m|� 1 and complement it with a numerical study.

We finish the introduction by outlining the contents of this paper. We describe the

geometry and configuration space of the Kerr-de Sitter black hole in section 2. In section 3,

we review the spin-field master equation in Kerr-de Sitter and the scattering problem. We

express the product of scattering coefficients, the so-called greybody factor, in terms of the

monodromies of the radial ODE. We then describe the monodromy conditions for angular

eigenvalues and QNMs. We finish section 3 by obtaining QNMs directly in the rotating

Nariai geometry [20] and obtaining the same result from the full Heun equation in Kerr-

de Sitter under the appropriate limits. In section 4, we review how to obtain the APE

via the isomonodromic τ -function, first proposed in [28]. In subsections 4.2 and 4.3, we

apply the APE around ε = 0 to obtain expansions for the angular eigenvalues and QNMs.

In section 5, we compare our analytic results with a numerical calculation using Leaver’s

method. In section 6 we present our conclusions and potential future developments.

We also include complementary sections with more details on our results. In ap-

pendix A, we introduce the gauge transformations of Fuchsian equations used to reduce

the master equations to Heun equations. In appendix B, we present an alternative deriva-

tion of the leading order QNM equation. In appendix C, we review how to obtain the APE

from the isomonodromic τ -function as in [16], with the crucial modification of expanding

the monodromies in ε. Finally, in appendices D and E we display the coefficients of the

QNM expansion and angular eigenvalues respectively.

In this paper, we choose Planck units h̄ = c = G = 1.
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2 Kerr-de Sitter black holes

The Kerr-de Sitter metric [29] can be written in Chambers-Moss coordinates [9] as

ds2 =− ∆r

ρ2χ4

(
dt−asin2 θdφ

)2
+

∆θ sin2 θ

ρ2χ4

(
adt−(r2+a2)dφ

)2
+ρ2

(
dθ2

∆θ
+
dr2

∆r

)
, (2.1)

where

χ2 ≡ 1 + α2, ρ2 ≡ r2 + a2 cos2 θ,

∆θ ≡ 1 + α2 cos2 θ, ∆r ≡ (r2 + a2)

(
1− r2

L2

)
− 2Mr

(2.2)

and α ≡ a/L. The coordinate ranges are t, r ∈ R, θ ∈ [0, π], φ ∈ [0, 2π). The solutions

are labeled by the parameters (a,M,L), where M is the mass, J = Ma is the angular

momentum and L ≡
√

3/Λ is the de Sitter radius, where Λ is the cosmological constant.

In particular, the Ricci scalar is equal to R = 12/L2. When L → ∞, we recover the Kerr

metric in Boyer-Lindquist coordinates and when a = 0 we recover the Schwarzschild-de

Sitter metric.

The polynomial ∆r has four roots: ri, i ∈ I, where I = {C,−,+,−−}, with r−− =

−(r−+r++rC). It is easy to check that, in order to have a black hole in a de Sitter Universe,

i.e, for the two largest roots to be positive, 0 < r+ ≤ rC , then the other two roots must be

real and must satisfy r−− < 0 ≤ r− ≤ r+ < rC , and thus r− is the inner Cauchy horizon.

This implies that rC , r+ and r− are the radii of, respectively, the cosmological horizon,

the (outer) event horizon and the (inner) Cauchy horizon. The negative horizon r−− is

reachable if one goes inside the inner horizon and, avoiding the ring-like singularity (located

at r = 0, θ = π/2), goes to negative values of r, thus reaching another asymptotically de

Sitter region. The global extension of the Kerr-de Sitter black hole is described in [9, 29–31]

and is shown in figure 1.

The limit r+ → r− corresponds to an extremal black hole (r+ = r− is an event horizon),

whereas r+ → rC corresponds to an extreme naked singularity (r+ = rC is a cosmological

horizon) [31] and it is called the rotating Nariai limit [20, 32].2 The extremal black hole

is a maximally-rotating black hole, and it is interesting to note that it can have a > M

(a = M being the maximal rotating limit in Kerr).

Two or more roots of ∆r coincide if and only if the discriminant D=L−12
∏
i 6=j∈I(ri−rj)

is zero. It is possible to write the discriminant in terms of only M/L and a/L. One can

show that D ≥ 0 and M,a ≥ 0 if and only if all the roots of ∆r are real and rC ≥ r+ ≥
r− ≥ 0 > r−−. This condition thus defines the region in green in figure 2, corresponding

to the parameter space where black hole solutions exist [9].

The QNM expansion that we calculate later in this paper is most easily organized as

a series in a and in the extremality parameter ε ≡ (rC − r+)/L, instead of a and M . The

2We note, however, that ref. [31] mentions that “there is no clear, universally-agreed-upon definition

for naked singularities when the cosmological constant is non-zero”. An observer outside the cosmological

horizon rC would call the extremal r+ = rC solution an extremal black hole, for instance.
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Figure 1. Kerr-de Sitter causal diagram for θ = 0. The ring-like singularity at r = 0, θ = π/2 is

denoted by the orange dashed lines.
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r+ = r−
r+ = rC

Figure 2. The green region correspond to values of (M,a) (with L = 1) representing black hole

solutions. The blue line corresponds to r+ = r− and the orange line to r+ = rC .
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r+ = r−
TC = T+ (r+ 6= rC)

Figure 3. Kerr-de Sitter configuration space in terms of (ε, a) with L = 1. The green region corre-

sponds to the same one in figure 2 of Kerr-de Sitter black holes. The ε = 0 line corresponds to the

rotating Nariai limit r+ = rC and the point ε = 1, a = 0 corresponds to empty de Sitter spacetime.

The blue line corresponds to the extremal limit r+ = r−, while the orange line corresponds to the

equal temperature condition TC = T+ for r+ 6= rC (lukewarm solutions).

horizons are given by

r+ = rC − εL, r−− = −r+ − rC − r−,

rC =
εL

2
+

L

2
√

3

√
2

√
(α2 + ε2 − 1)2 − 12α2 − 2α2 + ε2 + 2,

r− =
L

2
√

3

(√
−4

√
(α2 + ε2 − 1)2 − 12α2 − 8α2 − 5ε2 + 8

−
√

2

√
(α2 + ε2 − 1)2 − 12α2 − 2α2 + ε2 + 2

)
.

(2.3)

Each horizon rk, k ∈ I, has an associated temperature Tk and an angular velocity Ωk

given by

Tk =
|∆′r(rk)|

4πχ2(r2
k + a2)

, Ωk =
a

r2
k + a2

, (2.4)

where the prime denotes derivative with respect to the argument of ∆r(r). The configu-

ration space in terms of (ε, a) is given in figure 3. The extremal limit corresponds to the

blue line, while the rotating Nariai limit is clearly the ε = 0 line. Given the temperatures

of the event and cosmological horizons, respectively, T+ and TC , the orange line in figure 3

corresponds to the condition T+ = TC for r+ 6= rC , called lukewarm solutions in [20].

As noted in [20], these solutions are not in thermal equilibrium, as the two horizons can

still exchange angular momentum while keeping the temperature fixed. Finally, it is worth

mentioning that, recently, it was shown that the region between the event and cosmological

horizons of Kerr-de Sitter is non-linearly stable for small angular momentum [33].
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3 Scattering on Kerr-de Sitter black holes

3.1 Linear field perturbations

The analysis of linear field perturbations is important in order to address, for example,

the linear stability of the spacetime and wave scattering around black holes. The standard

formalism describing spin-field perturbations of the Kerr black hole was set up by Teukol-

sky [6]. Teukolsky used the so-called Newman-Penrose formalism, whereby the various field

components are projected onto a null tetrad. Teukolsky decoupled the equations for the

spin-field perturbations in Kerr, obtaining one single master equation which is obeyed by

all possible spins of the field. Furthermore, in Boyer-Lindquist coordinates, the Teukolsky

master equation essentially separates into two ODEs, one for the radial coordinate and

the other one for the polar angular coordinate. This approach was later generalized to a

Kerr-de Sitter background spacetime in [8, 9, 11]. The two ODEs are actually of Heun

type [12] for any Petrov type D spacetime with a cosmological constant [10].

We note that there are different tetrad normalization choices in the literature, but the

resulting equations are easily obtained by simple transformations that do not change the

linear analysis. Here we follow the conventions of [11, 21], which are different from those

in [7, 9]. We next review the radial and angular equations for linear spin-field perturbations

of Kerr-de Sitter.

Let ψs,ω,m(t, φ, r, θ) = e−iωteimφRs,ω,m(r)Ss,ω,m(θ) be a mode solution of the master

equation for the Kerr-de Sitter metric in Chambers-Moss coordinates (2.1).3 Here, ω ∈ C
is the mode frequency and m ∈ Z its azimuthal number. The spin-s master equation

separates into the following angular and radial ODEs [8, 9, 11]:[
∂u∆u∂u −

1

∆u

(
H +

s

2
∆′u
)2

+ 2sH ′ −Xs

]
Ss,ω,m(u) = 0, (3.1a)[

∆−sr ∂r∆
s+1
r ∂r +

1

∆r

(
W 2 − isW∆′r

)
+ 2isW ′ − Ys

]
Rs,ω,m(r) = 0, (3.1b)

where

W (r) ≡ χ2[ω(r2 + a2)− am], H(u) ≡ χ2[aω(1− u2)−m], (3.2)

and

Ys(r)≡
2

L2
(s+1)(2s+1)r2+sλ`m−s

(
1−α2

)
, Xs(u)≡ 2(2s2+1)α2u2−sλ`m, (3.3)

u≡ cosθ, ∆u(u)≡ (1−u2)(1+α2u2), (3.4)

with sλ`m = sλ`m(aω, α) being the angular eigenvalue.4 The prime in ∆′r denotes derivative

with respect to r and in ∆′u with respect to u. Notice that the s = 0 radial equation above

3The mode solutions, as well as various other quantities throughout the paper, depend on the value of

the angular eigenvalue, which is usually labeled by the multipolar index `. In this paper, we omit this label

unless strictly necessary, in order to avoid index cluttering.
4Our angular eigenvalue sλ`m, when evaluated in Kerr (i.e, for L→∞), is equal to λ+ s, where λ is in

Teukolsky’s [6].
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corresponds to the Klein-Gordon equation with conformal coupling [21], i.e., with Ricci

scalar coupling parameter ξ = 1/6.

The solutions of the angular equation (3.1a), assuming regularity at u = −1 and +1,

are usually called (Anti-)de Sitter spheroidal harmonics [7] and its eigenvalues sλ`m =

sλ`m(aω, α) are only known numerically [21] or as an expansion to order O(α2, (aω)2), as

derived in [11].

The radial and angular ODEs have certain symmetries. In particular, eq. (3.1a) is sym-

metric under (s, ω,m)→ (−s,−ω,−m). This implies that −sλ`,−m(aω, α) = sλ`m(−aω, α)

and a similar symmetry for the angular eigenfunction. Moreover, one can also show that

∆−sr R−s,−ω,−m is a solution of (3.1b) if Rs,ω,m is a solution.

3.2 Reduction of radial and angular equations to Heun equations

In the following, we want to analyze the connection problem for the angular and radial

equations (3.1). By the connection problem we mean rewriting the solution near a certain

singular point of the differential equation in terms of a linear combination of solutions

near another singular point. The tasks of finding the eigenvalues of the angular equation

and the QNMs of the radial equation can both be described in terms of the connection

problem [28, 34, 35], as we show in the next subsection. It is thus helpful to reduce the

radial and angular equations to some known special form, so that we can understand the

structure of the solutions. In this section, we are going to apply Möbius transformations

to the radial and angular variables r and u. This will map the roots of the polynomials

∆r(r) and ∆u(u) to (zk)k∈J ≡ (0, 1, x,∞), with J ≡ {0, 1, x,∞}.
Equations (3.1a) and (3.1b) naively possess five singular points each. In the radial

case, these points are the four roots of ∆r(r), i.e., rk, k ∈ I = {C,−,+,−−}, together

with the point r =∞. In the angular case, the singular points are the four roots of ∆u(u),

i.e. u = ±1,± i
α , together with the point u =∞. For Λ 6= 0, all singular points of the radial

and angular equations are regular and thus both equations are Fuchsian. Surprisingly, as

firstly shown in [11], both equations can be reduced to Heun equations [12], i.e., Fuchsian

equations with four regular singular points. After a series of transformations, the points

r = ∞ and u = ∞ cease to be singular points of the corresponding ODEs, thus being

characterized as removable singularities [36]. We rederive this result in a systematic way

in appendix A. On the other hand, for Λ = 0 there is a confluence of singular points,

producing irregular singular points at r = ∞ and at u = ∞. Both radial and angular

equations then become confluent Heun equations [34, 37]. In the following, we derive the

Heun equations from the angular (3.1a) and radial (3.1b) equations.

Generic Heun equation. The basis of our method is to classify the Heun equation in

terms of its monodromy data. For a function y = y(z), the Heun equation can be written

in the canonical form (see appendix A or [12, 36])

d2y

dz2
+

(
1−2θ0

z
+

1−2θ1

z−1
+

1−2θx
z−x

)
dy

dz
+

(
b1b2

z(z−1)
− x(x−1)Kx

z(z−1)(z−x)

)
y(z) = 0, (3.5)

where the singular points are (zk)k∈J ≡ (0, 1, x,∞), with x ∈ C. The coefficients

θ ≡ (θ0, θ1, θx, θ∞), also known as the local monodromy coefficients (to which we shall
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simply refer as monodromies), correspond to half of the difference of Frobenius exponents

of Frobenius series solutions y
(j)
k , j = 1, 2 close to the singular points. That is,

y
(1)
k (z) = (z − zk)2θk(1 +O(z − zk)), y

(2)
k (z) = (1 +O(z − zk)), k = 0, 1, x. (3.6)

In their turn, b1 and b2 are the Frobenius exponents at z =∞:

y(1)
∞ (z) = z−b1(1 +O(z−1)), y(2)

∞ (z) = z−b2(1 +O(z−1)), (3.7)

with

2θ∞ ≡ b1 − b2. (3.8)

The regularity of z =∞ in (3.5) implies the Fuchs condition

b1 + b2 +
∑
k∈J

2θk = 2. (3.9)

The two relations in eqs. (3.8) and (3.9) can be used to write the Frobenius exponents b1,2
in terms of the θ’s as

b1 = −
∑
k∈J

θk + 1 + θ∞, b2 = −
∑
k∈J

θk + 1− θ∞. (3.10)

The accessory parameter Kx is the only parameter which, for generic monodromy data,

cannot be written only in terms of θ’s, as it also depends on global information of the

solutions. Therefore, the Heun equation is completely determined by five parameters for

fixed moduli parameter x: MHeun ≡ (θ0, θ1, θx, θ∞;Kx).

Angular equation. The Frobenius exponents of local solutions of (3.1a) around

(uk)k∈J ≡
(
−1, iα , 1,− i

α

)
are given by

θk = − resu=uk

H(u)

∆u(u)
− s

2
, k ∈ J . (3.11)

Explicitly, the difference of Frobenius exponents is given by

2θ0 = m− s, 2θ1 =
i
(
α2 + 1

)
aω

α
− iαm− s,

2θx = −m− s, 2θ∞ = − i
(
α2 + 1

)
aω

α
+ iαm− s.

(3.12)

Starting with eq. (3.1a), we make the coordinate transformation

z(u) = ζ∞
u+ 1

u+ i/α
, ζ∞ =

2i

(i+ α)
, (3.13)

whereby

(uk)k∈J =

(
−1,

i

α
, 1,− i

α

)
7→ (zk)k∈J = (0, 1, x,∞), (3.14)

and

x =
4iα

(i+ α)2
. (3.15)
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We also make the s-homotopic transformation [36]

Ss,ω,m(u) = z−θ0(z − 1)−θ1(z − x)−θx(z − ζ∞)f(z), (3.16)

which, as proven in appendix A.2, reduces (3.1a) to the Heun equation

d2f

dz2
+

(
1− 2θ0

z
+

1− 2θ1

z − 1
+

1− 2θx
z − x

)
df

dz
+

+

(
(1 + 2s)(1 + 2s+ 2θ∞)

z(z − 1)
− x(x− 1)Kx

z(z − 1)(z − x)

)
f = 0. (3.17)

The accessory parameter is

Kx =
(2s+ 1)(θ0 + θx + s)− s

x
+

(2s+ 1)(θ1 + θx + s)− s
x− 1

+
2s2 + 1

ζ∞ − x
− 1

4ζ2∞

2(2s2 + 1)x2 + sλ`mζ
4
∞

x(x− 1)
, (3.18)

where we used the fact that α2 = −x2/ζ4
∞. Notice that∑

k∈J
θk = −2s−

∑
k∈J

Hk = −2s, (3.19)

as the sum of residues
∑

kHk =
∑

k resu=uk(H(u)/∆u(u)) is zero from the Cauchy theorem.

It should be clear that the extra property (3.19) is not generally true for an arbitrary

Heun equation; it is a special condition for the black hole case and reduces the number of

parameters from five to four, as one of the monodromies is determined in terms of the others.

The x → 0 (α = a/L → 0) limit of (3.17) is regular for L fixed, as neither the θk’s

nor “x(x− 1)Kx” diverge, whereas the coefficients diverge when taking the same limit but

with a fixed, instead of L. The first limit is the Schwarzschild-de Sitter limit, whereas the

second one corresponds to the Kerr limit. In the limit a→ 0, we have sλ`m → `(`+1)−s2.

Radial equation. The Frobenius exponents of the radial solutions are θk = iWk + s/2,

where Wk ≡ resr=rk
W (r)
∆r(r)

, k ∈ J , are residues (see appendix A.1). Explicitly,

θk = iχ2

(
ω(r2

k + a2)− am
∆′r(rk)

)
+
s

2
= ± i

4π

(
ω − Ωkm

Tk

)
+
s

2
, k ∈ J . (3.20)

The plus or minus sign in (3.20) arises from the sign of ∆′r(rk), chosen in such a way that

the temperatures Tk are positive [9, 38]. From the residue theorem, we have that∑
k∈J

θk = 2s, (3.21)

which implies, from eq. (3.10), that b2 = 1− 2s and b1 = 1− 2s+ θ∞. In order to obtain

the Heun equation from eq. (3.1b), we apply the coordinate transformation

z(r) = ζ∞
r − rC
r − r−−

, ζ∞ =
r− − r−−
r− − rC

, x = ζ∞
r+ − rC
r+ − r−−

, (3.22)
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corresponding to the mapping

r = (r−−, r−, r+, rC ,∞) 7→ z = (∞, 1, x, 0, ζ∞), 0 < x < 1, (3.23)

and the s-homotopic transformation

f(z) = z
s
2

+θ0(z − 1)
s
2

+θ1(z − x)
s
2

+θx(z − ζ∞)−1−2sRs,ω,m(r). (3.24)

The transformations (3.22) and (3.24) result in the Heun equation

d2f

dz2
+

(
1− 2θ0

z
+

1− 2θ1

z − 1
+

1− 2θx
z − x

)
df

dz
+

+

(
(1− 2s)(1− 2s+ 2θ∞)

z(z − 1)
− x(x− 1)Kx

z(z − 1)(z − x)

)
f = 0. (3.25)

According to (A.40), the accessory parameter in (3.25) is given by

Kx =
(1−2s)(θx+θ0−s)+2s

x
+

(1−2s)(θx+θ1−s)+2s

x−1
−

− (1+s)(1+2s)

x−ζ∞
+

L2

x(x−1)

2(2s+1)(s+1)r2
+/L

2+sλ`m−s(1−a2/L2)

(rC−r−)(r+−r−−)
. (3.26)

Notice that we use some of the same symbols in the radial and in the angular equations,

but it should be clear from the context whether such symbol corresponds to the radial or

to the angular case.

The limits x→ 0 and x→ 1 correspond to the two possible extremal limits: r+ → rC
and r+ → r−, respectively. If we do not make any assumptions on ω, two of the θk’s diverge

in each of these limits and so the resulting confluence yields an irregular singular point

(confluent Heun equation). However, if we expand ω = mΩ+ +xω̃+O(x2) (or starting the

series with mΩC), with some coefficient ω̃, and take the limit x→ 0 in eq. (3.25), then the

θk’s are all finite and we obtain a regular singularity from the coalescence of singularities.

We can also expand ω = mΩ+ + (1− x)ω̃ +O((x− 1)2) (or starting with mΩ−), take the

limit x → 1 to reach the same conclusion.5 As we show below, this procedure for x → 0

gives the near-horizon, near-extremal limit associated to the rotating Nariai limit.

3.3 Kerr-de Sitter connection coefficients and greybody factor

A standard approach for analytically calculating (approximations to) scattering coefficients

is to match series expansions near each singular point of the radial ODE in an intermediate

region. In many cases, the radial ODE can be solved exactly in the asymptotic regions in

terms of known special functions (such as hypergeometric functions) — see, e.g., [39–41] for

QNMs in near-extremal Kerr. However, when trying that approach for the Kerr–(Anti-)de

Sitter family of solutions, one obtains a Heun or confluent Heun equation in the simplest

of the cases. Therefore, in order to reduce the ODEs in these cases to the hypergeometric

5These observations are compatible with the definition of confluence in [36]: a coalescence of singularities

only increases the rank of the resulting singularity if some of the parameters of the equation diverge as x→ 0

(or, similarly, as x→ 1 or x→∞).
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equation, one needs to make some extra assumption, such as low frequency [42] or large

(Anti)-de Sitter radius [43].

Another approach for calculating scattering coefficients in the case of Heun equations

is the so-called Mano-Suzuki-Takasugi (MST) method [12, 44–46]. This method consists

of expressing the solutions as infinite series of hypergeometric functions, and it was used

in [11, 47, 48] in Kerr-de Sitter. Given a certain augmented convergence condition, these

series solutions converge in an ellipsis with two singular points as foci.

Here we take another path and use the monodromy approach to scattering amplitudes,

first discussed in [34] and later generalized in [28, 35, 37]. It is worth mentioning that a

monodromy approach for calculating QNMs with large imaginary part has been developed

in, e.g., [49, 50].

Ingoing and outgoing solutions. Let us first focus on the radial equation (3.1b) sup-

posing that we know the angular eigenvalue sλ`m. For definiteness, we consider the problem

of connecting a local solution near the black hole horizon r+ to a local solution near the

cosmological horizon rC . Let us define two linearly independent solutions R
(j)
± (r) by their

local behaviour near r = rj , for j = +, C, as

R
(+)
± (r) = (r − r+)−

s
2
±θ+(1 +O(r − r+)), θ+ = i

ω̃+

2κ+
+
s

2
,

R
(C)
± (r) = (r − rC)−

s
2
±θC (1 +O(r − rC)), θC = −i ω̃C

2κC
+
s

2
,

(3.27)

where

ω̃j ≡ ω −mΩj , κj ≡ 2πTj (3.28)

and κj is the surface gravity (see eq. (2.4) for the angular velocity and temperature defini-

tions and eq. (3.20) for the θ’s).

The notion of ingoing and outgoing solutions is essential to define a scattering problem.

Here these notions should match the ingoing and outgoing null coordinates in Kerr-de

Sitter, (v, u) respectively:

dt = dv − χ2(r2 + a2)

∆r
dr, dt = du+

χ2(r2 + a2)

∆r
dr, (3.29)

which in turn motivate the definition of the radial tortoise coordinate r∗ as

dr∗ =
χ2(r2 + a2)

∆r
dr. (3.30)

This implies that r∗ → +∞ as r → rC and r∗ → −∞ as r → r+. Partly in terms of r∗, the

above local solutions may be written as

R
(j)
± (r) ∝ (r − rj)−

1
2

(s∓s)e±iω̃jr∗(1 +O(r − rj)), j = C,+. (3.31)

Therefore, travelling waves have the form exp(−i(ωt±ω̃jr∗)) and the phase velocity depends

on the relative sign of the real part of the frequencies, i.e.,

<(ω)<(ω̃j) > 0 ⇒ R
(j)
+ is outgoing andR

(j)
− is ingoing at r = rj ,

<(ω)<(ω̃j) < 0 ⇒ R
(j)
+ is ingoing andR

(j)
− is outgoing at r = rj .

(3.32)
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In our case, as rC ≥ r+ > 0, we have that Ω+ ≥ ΩC . This allows for the possibility

|m|Ω+ > |<(ω)|> |m|ΩC , which for ω ∈ R corresponds to the superradiant regime, valid

only for bosons [48, 51]. The physical definition of superradiance is that the net flux of

radiation with respect to each horizon should have alternate signs. Given that the notion

of ingoing and outgoing is equivalent to the sign of the radiation flux, for ω ∈ R, we have

ω̃C ω̃+ ≥ 0 ⇒ no superradiance,

ω̃C ω̃+ < 0 ⇒ superradiance.
(3.33)

For further details, we refer the reader to [48]. Notice that definitions (3.32) and (3.33) are

invariant under (ω,m)→ (−ω,−m).

Connection coefficients for radial solutions. We now wish to obtain formulas re-

lating the local solutions R
(j)
± , j = +, C. This means writing a set of local solutions at a

singular point as a linear combination of a set of local solutions at another singular point

in terms of certain connection coefficients : transmission coefficients Ts and reflection co-

efficients Rs. These coefficients become scattering coefficients if the frequency is real, in

which case we can consistently define the radiation flux at each one of the horizons. We

classify the scattering problem between r+ and rC into two possibilities with respect to the

boundary conditions: purely ingoing or purely outgoing solutions at one of the horizons.

We define the IN mode by imposing the boundary conditions [40],

R
(+)
in; s ∼


1

Ts
R

(C)
− − RsTs

R
(C)
+ , r → rC ,

R
(+)
− , r → r+,

(3.34)

where Ts=Ts(ω,m) andRs=Rs(ω,m) are complex connection coefficients. If <(ω)<(ω̃j)>0,

this corresponds to a purely ingoing solution at r+. We can obtain another linearly inde-

pendent solution from (3.34) via the discrete transformation

? : fs(ω,m) 7→ f?s (ω,m) ≡ f−s(−ω,−m), (3.35)

and multiplying the solution by ∆−sr , i.e.,

R
(+)
out; s ≡ ∆−sr (R

(+)
in; s)

? ∼


(
∆′r(rC)

)−s( 1

T ?s
R

(C)
+ − R

?
s

T ?s
R

(C)
−

)
, r → rC ,

(
∆′r(r+)

)−s
R

(+)
+ , r → r+.

(3.36)

If ω ∈ R, then (ω,m)→ (−ω,−m) is equivalent to taking the complex conjugate solution,

and so

R
(+)
out; s = ∆−sr (R

(+)
in;−s)

∗. (3.37)

This implies that R?s = R∗−s and T ?s = T ∗−s when ω ∈ R.

The “Wronskian” between two solutions is

Ws[u1;u2] ≡ −i∆s+1
r (r)

(
u1
du2

dr
− u2

du1

dr

)
. (3.38)
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It is a simple fact that this current is constant in r, as long as u1 and u2 obey the same radial

equation (3.1b). Evaluating the quantities at r = r+, we obtain the following expression:

W(+)
hor ≡ Ws[R

(+)
in; s;R

(+)
out; s]

∣∣∣
r=r+

= −2iθ+∆′r(r+), (3.39)

whose real part represents the flux of radiation transmitted into the black hole when ω ∈ R.

Evaluating the quantities at r = rC , yields for the total flux,

W(+)
cosm ≡ Ws[R

(+)
in; s;R

(+)
out; s]

∣∣∣
r=rC

= 2iθC∆′r(rC)
(RsR?s − 1)

TsT ?s
=W(+)

ref +W(+)
in , (3.40)

where

W(+)
in ≡ −2iθC∆′r(rC)

1

TsT ?s
, W(+)

ref ≡ 2iθC∆′r(rC)
RsR?s
TsT ?s

. (3.41)

Because the flux is conserved, W(+)
cosm =W(+)

hor and thus

RsR?s + τsTsT ?s = 1, τs(ω,m) ≡ θ+∆′r(r+)

θC∆′r(rC)
=

2χ2(r2
+ + a2)ω̃+ − is∆′r(r+)

2χ2(r2
C + a2)ω̃C − is∆′r(rC)

. (3.42)

The greybody factor Gs(ω,m) is defined to be the ratio between the horizon flux and the

incoming flux

Gs(ω,m) =
W(+)

hor

W(+)
in

= τs(ω,m) Ts(ω,m)T ?s (ω,m). (3.43)

For ω ∈ R and outside the superradiant regime, the greybody factor must be real and

positive. This has been proven in [48] using the Teukolsky-Starobinsky identities, which

relate T−s with Ts. This procedure also makes the superradiance regime explicit. We refer

the reader to [48] for details.

We can do the same exercise for the UP mode, defined via the following boundary

condition at the cosmological horizon:

R
(C)
out; s ∼


R

(C)
+ , r → rC ,

1

T̃s
R

(+)
+ − R̃s

T̃s
R

(+)
− , r → r+,

(3.44)

and the reflected mode, which is defined via the boundary condition:

R
(C)
in; s ∼


(
∆′r(rC)

)−s
R

(C)
− , r → rC ,(

∆′r(r+)
)−s ( 1

T̃s
?R

(+)
− − R̃

?
s

T̃s
? R

(+)
+

)
, r → r+,

(3.45)

where T̃s
? ≡ T̃−s(−ω,−m) and R̃?s ≡ R̃−s(−ω,−m). We then obtain similar results for

the flux as above for the purely in/outgoing solutions on the event horizon:

W(C)
cosm ≡ Ws[R

(C)
in; s;R

(C)
out; s]

∣∣∣
r=rC

= −2iθC∆′r(rC), (3.46)

W(C)
hor ≡ Ws[R

(C)
in; s;R

(C)
out; s]

∣∣∣
r=r+

= 2iθ+∆′r(r+)
(R̃sR̃?s − 1)

T̃sT̃ ?s
=W(+)

ref +W(+)
in . (3.47)
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Then, W(C)
cosm =W(C)

hor implies that

R̃sR̃?s + τ−1
s T̃sT̃ ?s = 1. (3.48)

Now, writing τs = |τs|eiφ, φ = arg(τs), we define the vectors

Φ+(r) ≡ |τs|−1/2e−iφ/2 (R
(+)
in; s(r) R

(+)
out; s(r)),

ΦC(r) ≡ (R
(C)
in; s(r) R

(C)
out; s(r))

(3.49)

from the above linearly independent solutions. Then it is straightforward to show

that [34, 40]

Φ+M+C = ΦC (3.50)

with the connection matrix given by

M+C =

(
(T̄ ?s )−1 R̄s(T̄s)−1

R̄?s(T̄ ?s )−1 (T̄s)−1

)
(3.51)

with
T̄s ≡ |τs|1/2eiφ/2

(
∆′r(rC)

)−s Ts, R̄s ≡ (∆′r(rC)
)−sRs,

T̄ ?s ≡ |τs|1/2eiφ/2
(
∆′r(rC)

)s T ?s , R̄?s ≡
(
∆′r(rC)

)sR?s. (3.52)

The condition of unit determinant forM+C is equivalent to the current conservation (3.42)

R̄sR̄?s + T̄s T̄ ?s = 1. (3.53)

3.4 Monodromy approach to angular eigenvalues and quasinormal modes

Let us start by reviewing how we can write greybody factors in terms of monodromies [28,

34, 35, 37]. They informed reader eager to skip this technical discussion can find the

main results for the Kerr-de Sitter greybody factor in (3.61), the quasinormal mode con-

dition (3.63) and the angular eigenvalue condition (3.71).

A general solution of a second order linear ODE can be written as a linear combination

of local solutions, such as those in (3.27) for the radial equation. Thus, we can define a

vector of two general solutions by

Φ(r) = Φk(r)gk, (3.54)

with gk ∈ SL(2,C) constant matrices and Φk denotes a vector of local Frobenius solutions,

with k = 1, . . . , n referring to any of the n singular points r = rk of the ODE. If we

go around a positively-oriented loop γk in the complex-r plane enclosing only one of the

singularities (rk)k=1,...,n (see figure 4), then Φ transforms to

Φγk(r) = Φ(r)Mk, (3.55)

where the initial value Φ of the solution at the loop is multiplied by a constant monodromy

matrix Mk ∈ SL(2,C).
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Figure 4. Example of local (γ+) and composite (γ+C) monodromy paths in the complex-r plane

around the singular points r = r+ and rC .

The matrices gk diagonalize the monodromy matrix Mk if 2θk /∈ Z, i.e.

Mk = g−1
k

(
e2πiθk 0

0 e−2πiθk

)
gk. (3.56)

In principle, there should be an overall phase eiπs in (3.56), obtained from the common

factor (r − rk)−s/2 in the definition (3.27), but we absorb it, as a common overall factor,

in the solution Φ to obtain SL(2,C) representations of the monodromy group. Notice that

TrMk = 2 cos(2πθk). (3.57)

Given two singular points rk and rj with j, k = 1, . . . , n and j 6= k, we wish to study the

connection matrix

Mjk = gj g
−1
k , (3.58)

where the last equality follows from eq. (3.54). Thus, the connection matrix is constant

and determined by the gk, k = 1, . . . , n. Choosing a proper normalization for the local

solutions, in terms of the gk, such that detMjk = 1, we can write this connection matrix

in the form (3.51).

Let us now choose a path γjk which encloses two singular points rj and rk, as in

figure 4, in such a way that the general solution changes to Φγjk(z) = Φ(z)MjMk. We

define the composite monodromy coefficient σjk by

Tr (MjMk) = −2 cos (2πσjk) . (3.59)

The reason for the extra minus sign here, in comparison with the definition of the single

traces, is explained in appendix B. Applying eqs. (3.56), (3.58) and (3.59) to the case

of (3.51), we find

Gs = T̄s T̄ ?s =
2 sin(2πθj) sin(2πθk)

cos(2π(θj − θk)) + cos(2πσjk)
. (3.60)

This is the greybody factor for a connection matrix normalized as per eq. (3.51).

Quasinormal modes. For the radial equation (3.1b), according to (3.27) and (3.49), we

can rewrite (3.60) as

Gs(ω,m) = τsTs(ω,m)T−s(−ω,−m) =
sin(π(2θ+−s))sin(π(2θC−s))

cos(π(σ+θ+−θC))cos(π(σ−θ++θC))
, (3.61)
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where σ ≡ σ+C . We wish to calculate QNM frequencies in Kerr-de Sitter. These frequencies

are defined by the condition that the modes are purely ingoing at the black hole horizon and

purely outgoing at the cosmological horizon.6 According to eq. (3.34), the QNM condition

corresponds to (Ts)−1 = 0, i.e., poles of Ts, which appears in eq. (3.61). The poles ω = ωp
on the right hand side of eq. (3.61) are

σ(±)(ωp) = ±(θC − θ+) +N +
1

2
, N ∈ Z. (3.62)

However, these poles may correspond to poles of τs or T ?s = T−s(−ω,−m) as well. Not

being able to distinguish between poles of Ts and those of T ?s or τs is a shortcoming of

the monodromy formula above, as it only gives information about the product of these

coefficients. However, below we recover the exact greybody factor in the rotating Nariai

limit rC → r+ by using eq. (3.62). This will also allow us to identify the poles of Ts(ω,m)

with N ∈ Z+, and the poles of T−s(−ω,−m) with N ∈ Z−. While the former corresponds

to the actual QNMs, the later corresponds to the reflected QNMs, and thus, in principle,

they are not QNMs. In order to assess the possible poles coming from τs, one needs to

generalize the Teukolsky-Starobinsky identities obtained in ref. [47] for complex ω. We

leave this for future work.

In section 4, we are going to apply the APE derived in ref. [16] to find QNMs. Because

the APE has the symmetry σ → −σ, which is also compatible with eq. (3.60), changing

the sign in front of (θC − θ+) in eq. (3.62) is equivalent to letting N → −N − 1. Therefore,

from the APE point of view, there is no distinction between the positive and negative N

possible poles in (3.62) and, from here on, we choose the QNM condition to be

σ(+)(sω`m) = θC − θ+ +N +
1

2
, N ∈ Z+. (3.63)

As mentioned above, the condition N ≥ 0 will be justified in the rotating Nariai limit in the

next subsection. Finally, it is worth mentioning that, in this paper, we focus on the radial

equation for which 2θk /∈ Z, and so we do not cater for any potential QNM frequencies that

could correspond to 2θk ∈ Z. This can introduce logarithm singularities in the solutions

and thus change the QNM condition above.

Accumulation points of quasinormal modes. As a function of complex frequency,

the transmission coefficient may have not only poles (QNMs) but also branch cuts. Apart

from spurious (unphysical) branch cuts arising from the angular eigenvalue [52, 53], the

transmission coefficient may also have cuts arising from the behaviour of the radial potential

which may have physical consequences. Let us first write the radial equation (3.1b) as(
∂2
r∗ + V(r)

)
R(r) = 0, where R(r) ≡ ∆

s/2
r (r2 + a2)1/2Rs,ω,m(r) and the radial potential

V(r) is straightforwardly read-off from eq. (3.1b). It is easy to check that, if rC 6= r+, then

V(r)→ V+,C +O(eα+,C r∗), as r → r+,C , for some constants V+,C and α+ > 0 and αC < 0.

Based on the arguments of [54] (see also [55]), this asymptotic behaviour does not lead to

branch points in the complex ω-plane for the radial solutions which obey purely-outgoing

(or purely-ingoing) boundary conditions at either r+ or rC . On the other hand, in the case

6This is in contrast with Kerr, where the QNMs are purely outgoing at r =∞.
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r+ = rC , this singular point becomes an irregular singular point and it is easy to show that,

then, V(r)→ V̄C+O(1/r∗) as r → r+ = rC , for some constant V̄C . This is essentially due to

the fact that r∗ = O(1/(r−r+)) as r → r+ when r+ = rC , as opposed to r∗ = O (ln(r − r+))

as r → r+,C when r+ 6= rC . Furthermore, <
(√
V̄C
)

possesses a zero at the superradiant

bound frequency (namely, at the frequency such that ω̃C = 0; recall that, in this extremal

case, it is ω̃+ = ω̃C). According to ref. [54], this asymptotic behaviour means that radial

solutions obeying purely-outgoing (or purely-ingoing) boundary conditions at r → r+ (see

eq. (3.31)) possess a branch point at ω̃C = (ω̃+ =)0 when r+ = rC .7 Such branch point is

carried over to the corresponding transmission coefficient (Ts , T ?s , T̃s , T̃ ?s ).

The above relationship between asymptotic behaviour of the radial potential and

branch points in the complex ω-plane is already well-known in Kerr. Indeed, the trans-

mission coefficient in Kerr possesses a branch point at ω = 0, associated with the irregular

singular point at r = ∞. This branch point gives rise to a power-law tail decay at late-

times [52, 56, 57]. More relevantly to the study here, in extremal (r+ = r−) Kerr, the

transmission coefficient has an extra branch point at ω̃+ = 0, which gives rise [58, 59] to

the so-called Aretakis phenomenon at the horizon [60]. It has been shown [39, 41, 58, 61]

that, in near-extremal Kerr, QNMs accumulate near ω̃+ = 0, effectively leading to a branch

cut originating at ω̃+ = 0 in (exactly) extremal Kerr spacetime. We expect that a similar

accumulation of QNMs occurs in Kerr-de Sitter both near ω̃+ = 0 and near ω̃C = 0 as the

extremal limit r+ → rC is approached. In section 4.3, we show that this is indeed the case.

Renormalized angular momentum parameter. In ref. [11], the authors use a series

of hypergeometric functions to express the solution of Heun equations. The hypergeomet-

ric functions depend on the so-called renormalized angular momentum parameter ν. As

discussed in [35], ν parametrizes the monodromy at infinity of the hypergeometric func-

tions. Because the hypergeometric differential equation possesses only three regular singu-

lar points, we see that its monodromy at infinity is equivalent to its composite monodromy.

In its turn, this composite monodromy of the hypergeometric differential equation is equal

to the composite monodromy σ01 of the full Heun equation modulo 2n, where n ∈ Z. That

results in the following relationship: σ01 = 2(ν − θ0 + θ1) + 1 (mod 2n), where n ∈ Z.

Angular eigenvalues. In order to find the angular eigenvalues sλ`m, we need to impose a

boundary condition on the solutions of the spin-s angular equation (3.1a). We are interested

in solutions which are regular in the domain u ∈ [−1, 1], corresponding to z ∈ [0, x] in the

Heun equation (3.17). It is well-known in the literature [11] that (s, `,m) are either all

integers or half-integers and that

` ≥ max(|s|, |m|). (3.64)

Therefore, 2θ0 = m − s and 2θx = −m − s are integers and so the difference between

Frobenius exponents for solutions at either z = 0 or z = x is an integer. This opens up the

7We note that the mentioned asymptotic behaviours of the radial potential are independent of the

‘centrifugal’ barrier.
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possibility of a logarithmic singularity in one of the local solutions at each singular point.

According to standard Frobenius analysis [14, 36], the local solutions in this case areS
(k)
reg ∼ (u− uk)|θk|,

S
(k)
irr ∼ (u− uk)−|θk| +Ak(u− 1)|θk| log(u− uk),

u→ uk, (k = 0, x), (3.65)

for some coefficients Ak. If we define the vectors S(k) ≡ (S
(k)
reg S

(k)
irr ), we find the following

form for their monodromy matrices (recall eq. (3.55)) at, respectively, z = 0 and x:

J0 ≡ e2πi|θ0|
(

1 1

0 1

)
, Jx ≡ e2πi|θx|

(
1 1

0 1

)
. (3.66)

We thus define a general solution of the master angular equation (3.1a) as

S
(reg)
s,`,m ∼

AregS
(x)
reg −AirrS

(x)
irr , u→ 1,

S(0)
reg, u→ −1,

(3.67)

and

S
(irr)
s,`,m ∼

ÃirrS
(x)
irr − ÃregS

(x)
reg , u→ 1,

S
(0)
irr , u→ −1,

(3.68)

for some coefficients Areg = Areg(ω,m) and Airr = Airr(ω,m), and similarly for the tilde

connection coefficients. Therefore, in this angular case, we have a connection problem

similar to the QNM one above. Given that the monodromy matrices of the general so-

lution (S
(reg)
s,`,m S

(irr)
s,`,m) = S(k)gk are given by Mk = g−1

k Jkgk, with k = 0, x, we calculate

Tr (M0Mx) = 2 cos(2πσ) using eqs. (3.51), (3.58), (3.59) and (3.66) to obtain

Airr = ±
√

2(1 + (−1)|m−s|+|m+s| cos(2πσ)). (3.69)

The regularity condition corresponds to choosing Airr =0 in eq. (3.67), which is equivalent to

σ = `+
1

2
, ` ∈ Z, if max(|s|, |m|) ∈ Z; ` ∈ Z +

1

2
, if max(|s|, |m|) ∈ Z +

1

2
. (3.70)

As we are going to see in section 4, the parameter ` introduced in eq. (3.70) is the same `

that labels the angular eigenvalues sλ`m and so the same as in eq. (3.64). Taking this into

account, the condition eq. (3.70) together with the constraint (3.64) yield

σ = `+
1

2
, ` ≥ max(|s|, |m|). (3.71)

In the next section, we shall use the constraints (3.63) and (3.71) on the composite

monodromy parameter σ0x in order to find, respectively QNM frequencies and angular

eigenvalues.
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3.5 Quasinormal modes in the rotating Nariai limit

In this subsection, we focus on the region between r+ and rC (thus discarding the other

horizons) and study the extremal limit r+ → rC , which is also called the rotating Nariai

limit [20, 32, 62]. The rotating Nariai limit is applied directly on the metric and it yields

a new geometry which is topologically equivalent to dS2 n S2.8 Here we review this limit

by finding the QNM frequencies of a scalar field which possesses general coupling with the

curvature of this new extremal-limit geometry. This slightly extends the results in ref. [20]

for minimal coupling to general coupling. We also show how to obtain the scalar radial

equation of the rotating Nariai metric directly from the spin-s master radial equation (3.1b)

of Kerr-de Sitter. The result for QNMs that we obtain in this limit here will be used as a

check of the leading-order term in the higher-order expansion in the extremality parameter

ε = (rC − r+)/L that we obtain in the next section.

The metric in the rotating Nariai limit can be obtained from the Kerr-de Sitter metric

in eq. (2.1) via the following coordinate transformation:9

t̄ ≡ κ̄ εt, ȳ ≡ r − r̄+

εL
, φ̄ ≡ φ− Ω+t, (3.72)

where

κ̄ ≡ (r̄+ − r̄−)(3r̄+ + r̄−)

χ2L(a2 + r̄2
+)

, (3.73)

where r̄± ≡ r±|ε=0. The location of the cosmological horizon is ȳ = 1. If we now take

ε→ 0 in the metric (2.1) after the coordinate change (3.72), we find [20]

ds2 = Γ(θ)

(
−ȳ(1− ȳ)dt̄2 +

dȳ2

ȳ(1− ȳ)
+ α(θ)dθ2

)
+ γ(θ)(dφ̄+ ȳ Ω̄dt̄)2, (3.74)

where ȳ ∈ (0, 1), φ̄ ∼ φ̄+ 2π and

Γ(θ) ≡ ρ2
+L

χ2κ̄(a2 + r̄2
+)
, α(θ) ≡ χ2κ̄(a2 + r̄2

+)

L∆θ
, γ(θ) ≡ ∆θ(r̄

2
+ + a2)2 sin2 θ

ρ2
+χ

4
, (3.75)

Ω̄ ≡ 2ar̄+L

κ̄(a2 + r̄2
+)2

, ρ2
+ ≡ r̄2

+ + a2 cos2 θ. (3.76)

Let us now consider a scalar field, with general coupling parameter ξ, propagating

on the rotating Nariai geometry of eq. (3.74). The corresponding Klein-Gordon equation

separates by variables and, for a field mode e−iω̄t̄+imφ̄Sm(θ)Rωm(ȳ), with ω̄ ∈ C and m ∈ Z,

the resulting angular and radial equations are, respectively,[
d

dθ
(∆θ sin θ)

d

dθ
+

m2χ4ρ4
+

(r̄2
+ + a2)∆θ sin θ

+

(
12ξ

L2
a2 cos2 θ − λ`m

)
sin θ

]
Sm(θ) = 0, (3.77)[

d

dȳ
ȳ(ȳ − 1)

d

dȳ
+

(
ω̄ +mΩ̄y

)2
ȳ(ȳ − 1)

+ λ̄`m

]
Rωm(ȳ) = 0, (3.78)

8The semi-direct product n here means that the isometries of dS2 must be accompanied by S2 isometries

so that they are isometries of the full spacetime.
9The definitions used in [20] can be recovered by letting ε→ rC

L
ε and κ̄→ L

χ2rC
κ̄.
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where

λ̄`m ≡
L2

(3r̄+ + r̄−)(r̄+ − r̄−)

(
λ`m +

12ξ

L2
r̄2

+

)
, (3.79)

and λ`m is the eigenvalue of the angular equation (3.77). Notice that (3.77) does not depend

on the frequency ω̄. Therefore, the angular eigenvalue λ`m does not depend on ω̄ either.

The radial equation (3.78) has three regular singular points at ȳ = 0, 1 and∞ and can

be transformed to the hypergeometric equation [20][
d2

dȳ2
+

(
C

ȳ
+
A+B + 1− C

ȳ − 1

)
d

dȳ
+

AB

ȳ(ȳ − 1)

]
f̄ωm = 0, (3.80)

where f̄ωm(ȳ) ≡ ȳ(1−C)/2(ȳ − 1)(C−A−B)/2Rωm(ȳ), with parameters

A ≡ 1 + iβ

2
+ imΩ̄, B ≡ 1− iβ

2
+ imΩ̄, C ≡ 1− 2iω̄, (3.81)

and

β ≡
√

4(m2Ω̄2 + λ̄`m)− 1. (3.82)

The Frobenius exponents of (3.78) θ0,1,∞ at, respectively, ȳ = 0, 1 and ∞ can be found

from these parameters to be given via

2θ1 = C −A−B = −2i
(
ω̄ +mΩ̄

)
, 2θ0 = 1− C = 2iω̄, 2θ∞ = A−B = iβ. (3.83)

Let Rin be a solution of (3.78) defined via the boundary condition

Rin ∼
{

(ȳ)−θ0 as ȳ → 0,

A
(out)
`m (1− ȳ)−θ1 +A

(in)
`m (1− ȳ)θ1 as ȳ → 1,

(3.84)

for some coefficients A
(out)
`m and A

(in)
`m . Assuming that <ω̄ ≥ 0, eq. (3.84) represents scat-

tering in the region ȳ ∈ (0, 1) with a purely ingoing condition at ȳ = 0, while the notion

of ingoing and outgoing at ȳ = 1 depends on the sign of <
(
ω̄ +mΩ̄

)
. According to the

asymptotic behaviour of hypergeometric functions [63], we have

A
(in)
`m =

Γ(1− 2iω̄)Γ
(
−2i

(
ω̄ +mΩ̄

))
Γ((1 + iβ)/2− imΩ̄− 2iω̄)Γ((1− iβ)/2− imΩ̄− 2iω̄)

, (3.85)

A
(out)
`m =

Γ(1− 2iω̄)Γ
(
2i
(
ω̄ +mΩ̄

))
Γ((1− iβ)/2 + imΩ̄)Γ((1 + iβ)/2 + imΩ̄)

. (3.86)

We find the QNM frequencies by requiring that A
(in)
`m = 0 in the case <

(
ω̄ +mΩ̄

)
> 0.10

This condition straightforwardly yields that the QNM frequencies ω̄ = ω̄±N`m are given by

2ω̄±N`m = −i
(
N +

1

2

)
−mΩ̄±

√
λ̄`m +m2Ω̄2 − 1

4
, N = 0, 1, 2, . . . (3.87)

10For <
(
ω̄ +mΩ̄

)
< 0, we should instead look for zeros of A

(out)
`m , but it does not possess any non-trivial

zeros.
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The greybody factor for real frequencies follows readily from eq. (3.85):

G(ω̄,m) = 1−
∣∣∣∣∣A

(out)
`m

A
(in)
`m

∣∣∣∣∣
2

=
2 sinh(2πω̄) sinh(2π(ω̄ +mΩ̄))

cosh(2π(2ω̄ +mΩ̄)) + cosh(πβ)
. (3.88)

Eqs. (3.87) and (3.88) agree with [20] for ξ = 0 (eq. (3.87) also agrees with the QNM fre-

quencies of the geometry resulting from the extremal Nariai limit rC → r+ of Schwarzschild-

de Sitter spacetime [64] by setting a = 0, ξ = 0, r− = 0 and λ`m = `(`+ 1)).11 Eqs. (3.87)

and (3.88) are new results for the nonminimal coupling case (ξ 6= 0).

Alternatively, the result (3.88) can be derived easily if we use the monodromy tech-

nique [34, 35] reviewed in the previous section. The greybody factor is given by eq. (3.60)

with σ replaced by θ∞ (as explained below):

G(ω̄,m) =
2 sin(2πθ0) sin(2πθ1)

cos (2π(θ0 − θ1)) + cos(2πθ∞)

=
2 sinh(2πω̄) sinh

(
2π(ω̄ +mΩ̄)

)
cosh

(
2π(2ω̄ +mΩ̄)

)
+ cosh(πβ)

, (3.89)

which is exactly the same result as eq. (3.88). Therefore, we can avoid the calculation of

the exact connection coefficients using the general formula (3.60).

The poles of the greybody factor eq. (3.89) are given by (3.87) but with N ∈ Z instead

of N = 0, 1, 2, . . . . This is an intrinsic limitation of finding QNMs from the greybody

factor, as the two possibilities of N ∈ Z+ and N ∈ Z− appear here because we take the

ratio of connection coefficients in (3.88). From the exact connection coefficients (3.85), we

see that positive N corresponds to ω̄,m > 0 and negative N corresponds to ω̄,m < 0.

The transformation {ω̄,m} → {−ω̄,−m} is a symmetry of the radial equation (3.78) but

changes the notion of ingoing and outgoing solutions. We can decide which branch to take

by going back to the solutions (3.84).

Spin-s quasinormal modes from the Kerr-de Sitter master equation. The for-

mula (3.89) deserves further explanation. Firstly, notice that (3.60) is valid for a generic

connection problem between two singular points of a Fuchsian equation which possesses any

number of singular points, as long as the monodromy matrices are diagonalizable. Secondly,

as the hypergeometric equation is a Fuchsian equation with three regular singular points,

the composite monodromy around ȳ = 0 and ȳ = 1 must be equal to the monodromy

θ∞ at ȳ = ∞. This can be made even more precise by noticing that we can recover the

rotating Nariai radial equation (3.78) for ξ = 1/6 in canonical form directly from the full

Heun equation in Kerr-de Sitter (3.25). Instead of the coordinate choice (3.22), we choose

z(r) = ζ∞
r − r+

r − r−−
, ζ∞ =

2rC + r+ + r−
rC − r+

, x = ζ∞
r− − r+

2r− + rC + r−
,

r = (r+, rC , r−, r−−,∞) 7→ z = (0, 1, x,∞, ζ∞).

(3.90)

11When comparing, one should taking into account the different coordinate times.
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This means that, with respect to the monodromies in eq. (3.20), we make the replacement

(θ0, θ1, θx, θ∞) 7→ (θ1, θx, θ0, θ∞). (3.91)

Both ζ∞ and x diverge in the extremal limit r+ → rC as ε−1, and this implies that θ0 and

θ1 diverge as x→∞. We can regularize the monodromies in eq. (3.20) by defining

ω̄ ≡ ω −mΩ+

κ̄ε
, (3.92)

which gives, for small ε and fixed ω̄,

θ0 = θ̄0 +O(ε), θ1 = θ̄1 +O(ε),

θx = imΩ̄
(3r̄+ + r̄−)

4r̄+
+
s

2
+O(ε), θ∞ = imΩ̄

(r̄+ − r̄−)

4r̄+
+
s

2
+O(ε),

(3.93)

with

θ̄0 ≡ iω̄ +
s

2
, θ̄1 ≡ −i

(
ω̄ +mΩ̄

)
+
s

2
, (3.94)

where the leading order terms should be calculated at ε = 0. The accessory parameter

Kx in (A.40), with the appropriate identifications of eqs. (3.90) and (3.91), goes to zero

as x → ∞, but x(x − 1)Kx/(z − x) is finite. Applying this limit (i.e., x → ∞ — or,

equivalently, ε→ 0 — with z finite) to the Kerr-de Sitter eq. (3.25) yields[
d2

dz2
+

(
1− 2θ̄0

z
+

1− 2θ̄1

z − 1

)
d

dz
+

sλ̄`m − 2s+ im(1− 2s)Ω̄

z(z − 1)

]
f = 0, (3.95)

and

sλ̄`m ≡
L2

(3r̄+ + r̄−)(r̄+ − r̄−)

(
sλ`m|ε→0 − s

(
1− a2

L2

)
+

2

L2
(2s+ 1)(s+ 1)r̄2

+

)
, (3.96)

where we remind the reader that sλ`m is the Kerr-de Sitter angular eigenvalue. One can

check that by taking the rotating Nariai limit on the master angular equation (3.77) in

Kerr-de Sitter then, for s = 0 and ξ = 1/6, one recovers eq. (3.77) with 0λ`m|ε→0 in the

place of λ`m (and so they are equal when imposing the eigenvalue condition). Therefore,

eq. (3.96) matches eq. (3.79) for s = 0 and ξ = 1/6. The reason for this relationship

is that eq. (3.95) is equivalent to eq. (3.78) with z = ȳ after an appropriate homotopic

transformation (see appendix A for the general discussion). If we go to the next order in

ε in the full master radial equation, we can start to calculate corrections to the extremal

QNM result in eq. (3.87). That is what we achieve in the next section.

4 Accessory parameter expansion

In the previous section, we considered an arbitrary second order Fuchsian ODE and we

expressed the greybody factor (written as a product of connection coefficients) in terms of

the monodromies of local solutions — see eq. (3.60). By looking for poles of this formula we

found condition (3.62) for σ+C , which sets the boundary condition for QNMs (3.63)of the
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Kerr-dS master radial equation for N ∈ Z+. We also similarly discussed the monodromy

condition (3.71) for angular eigenvalues. We thus mapped special boundary conditions for

a solution of the radial or angular equation to constraints on its monodromy exponents.

This approach was proposed for the confluent Heun equation in [34, 37] and for the Heun

equation in [28, 35]. We have in fact shown above that this method works in the particular

case of the rotating Nariai limit. This limit yields a simpler case since the composite mon-

odromy then reduces to a local monodromy of the hypergeometric equation. In this section,

we apply the composite monodromy constraints to solutions of the Heun equation (3.5)

obtained from the Kerr-de Sitter master equation. Below we present our results using the

APE and the numerical checks done using Leaver’s method.

4.1 How to obtain the APE

Here we review the mathematical background behind the APE and its derivation done

in [16]. The monodromy group of functions on the complex plane with four regular

singular points are labeled by six parameters [16]. Apart from the four monodromies

θ = (θ0, θ1, θx, θ∞) at the singular points, there are two extra composite monodromies,

(σ0x, σ1x). We thus define the monodromy data of the four-punctured sphere as the six

parameters MSL(2,C) ≡ (θ0, θ1, θx, θ∞;σ0x, σ1x). This means that the Heun equation is

not the most general Fuchsian equation with four regular singular points, as it has only 5

parameters MHeun = (θ0, θ1, θx, θ∞;Kx) (see below eq. (3.10)). Instead, we can say that

MHeun corresponds to a reduced case of MSL(2,C) with only one composite monodromy,

say,Mred ≡ (θ0, θ1, θx, θ∞;σ0x, σ1x = σ1x(σ0x)). Then,Mred can be mapped toMHeun via

the relation Kx = Kx(θ, σ0x, x). For fixed x, the APE provides the Riemann-Hilbert map

between Mred and MHeun. The small-x expansion of this relation is called the accessory

parameter expansion (APE). In ref. [16], the APE was obtained using isomonodromic de-

formations, as we review below. For other approaches to obtaining the APE, we refer the

reader to, for example, [15, 18, 19]. For recent numerical results on finding 2D conformal

maps from the APE using the approach of [16, 28], see [17].

The APE obtained in [16] depends on monodromy data Mred which is independent of

x. This is contrary to what happens in the case of the ODEs satisfied by perturbations

of Kerr-de Sitter black holes. In the case of the radial ODE in Kerr-de Sitter, x ∝ ε and

the monodromies diverge for small ε. However, as discussed in section 3, if we fix the

frequency ω̄ defined in eq. (3.92), the monodromies converge as an expansion in ε and the

accessory parameter is analytic for small ε. Therefore, by setting σ ≡ σ0x and expanding

all parameters (x(ε),θ(ε), σ(ε)) in terms of ε as

x = ε(x0 + εx1 + . . .), σ = σ0 + εσ1 + . . . , (4.1a)

θk = θk,0 + εθk,1 + . . . , k ∈ J , (4.1b)

we obtain the APE

Kx =
Kx,−1

ε
+

∞∑
n=0

Kx,nε
n, (4.2)

for some coefficients xj and θk,j and functions Kx,n = Kx,n(xj , θk,j , σj), j ≥ 0, n ≥ −1,

k = 0, 1, x,∞.
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In the case of the angular ODE, we have x ∝ α and we set ε = α. The monodromies

in eq. (3.12) converge for small α and fixed L and we obtain the APE for the angular

eigenvalue from eq. (4.2). In the case of QNMs, we instead set ε = (rC − r+)/L and use

the frequency definition in eq. (3.92), which gives a regular expansion for the monodromies

as ε → 0 for fixed ω̄. Given the APE expansions in both cases, we can equate it with the

exact accessory parameters coming from the angular and radial ODEs (see, respectively,

eqs. (3.18) and (3.26)), using the exact monodromies θ and the QNM condition eq. (3.63)

and the angular eigenvalue condition eq. (3.71). This procedure, which we shall present in

more detail below, will give the expansions in eqs. (1.1) and (1.3). First, however, we shall

show how to obtain the APE from a technique called isomonodromic deformation [65–67].

The most general monodromy data MSL(2,C) for an ODE with four singular points

includes two composite monodromies, (σ0x, σ1x). However, as we commented above, the

Heun equation (3.5) has only one extra parameter Kx. To account for these two composite

monodromies, we write the most general Fuchsian equation as

y′′ +
(

1− 2θ0

z
+

1− 2θ1

z − 1
+

2− 2θx
z − t −

1

z − λ(t)

)
y′+

+

(
b1b2

z(z − 1)
− t(t− 1)K(θ0, θ1, θx − 1

2 , θ∞;λ(t), µ(t), t)

z(z − 1)(z − t) +
λ(t)(λ(t)− 1)µ(t)

z(z − 1)(z − λ(t))

)
y = 0,

(4.3)

where θ∞ = b1 − b2, λ(t) and µ(t) are some t-dependent functions with t ∈ C and12

K(θ0, θ1, θx − 1
2 , θ∞;λ, µ, t)

≡ λ(λ− 1)(λ− t)
t(t− 1)

[
µ2 −

(
2θ0

λ
+

2θ1

λ− 1
+

2θx − 2

λ− t

)
µ+

b1b2
λ(λ− 1)

]
. (4.4)

The form of (4.4) follows by the requirement that λ(t) is an apparent singularity, i.e., the

solution has no branch cut at this point. The ODE parameters can be mapped to (σ0x, σ1x)

via initial conditions for the isomonodromic flow (λ(t), µ(t)), whose Hamiltonian is given

by eq. (4.4). However, there is a special set of initial conditions at t = x [28, 35] that reduce

the general eq. (4.3) to the canonical Heun equation (3.5) with the same monodromy data

MHeun. These initial conditions are given by

t = x, λ(x) = x, µ(x) = − Kx

2θx − 1
. (4.5)

In this case, we reduce the number of parameters of the ODE from two (λ, µ) to only one

(Kx), and similarly for the composite monodromies, since we have σ1x = σ1x(σ0x, x). This

is explained in full detail in ref. [16]. Here we just report on the solution for the accessory

parameter.

The main difference between the current work and [16] is that here we want Kx as an

expansion in ε using the expansion of the monodromy data in (4.1), as described above.

12The parameter λ here is unrelated to the angular eigenvalue sλ`m; these are the symbols typically used

in the literature of isomonodromic deformations.
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This changes the expansion obtained in [16], which becomes more complicated. It is more

convenient to carry out the expansion for the accessory parameter of the ODE in the normal

form (see appendix A for definitions)

Hx ≡ Kx +
(1− 2θ0)(1− 2θx)

2x
+

(1− 2θ1)(1− 2θx)

2(x− 1)
. (4.6)

This is the form most straightforwardly connected to 2D CFT. Using the procedure out-

lined in appendix C, we find

Hx =
−4θ2

0,0 − 4θ2
x,0 + 4σ2

0 + 1

4x0ε
+

(
−4θ2

∞,0 + 4θ2
1,0 + 4σ2

0 − 1
) (
−4θ2

0,0 + 4θ2
x,0 + 4σ2

0 − 1
)

32σ2
0 − 8

+
x1

(
4θ2

0,0 + 4θ2
x,0 − 4σ2

0 − 1
)

+ 8x0 (−θ0,0θ0,1 − θx,0θx,1 + σ0σ1)

4x2
0

+O(ε), (4.7)

where we made use of the expansions in eqs. (4.1). We have calculated this series up to

order ε3 in order to compare with the numerical results, but the higher-order terms are

particularly long so we do not display them here.

The key point is that now we can equate two small-ε expansions for Hx. One is the

APE (4.7). The other expansion is obtained from eq. (4.6) with the accessory parameter

given by eq. (3.26) or (3.18) in, respectively, the radial or angular cases, and expanded

for small ε. We call the equality between these two small-ε expansions for Hx the “APE

equation”. We shall next proceed to do this, first for the angular case and then for the

radial case.

4.2 Angular eigenvalues

Here we wish to apply the APE in eq. (4.7) to find the angular eigenvalues sλ`m in eq. (3.1a).

The expansion parameter in APE here is ε = α = a/L and we expand in α only after

replacing a by αL in the monodromies in eq. (3.12). Since a in eq. (3.12) only appears in

the combination aω/α, the mentioned expansion procedure is equivalent to expanding for

both small α and small aω (without the replacement of a by αL), both quantities being

of the same order in smallness. From the APE point of view, we expand it up to order

α3, which, from the previous observation, gives all powers αn(aω)m for n + m = 0, . . . , 3

of sλ`m(aω, α), as in (1.2).

The monodromies (3.12) are polynomial in α (after replacing a by αL) and we expand

x to one order higher in α

x =
4iα

(i+ α)2
= −4iα+ 8α2 + 12iα3 − 16α4 +O(α5). (4.8)

Using eqs. (3.18), (4.6) and (4.8) we obtain the following expansion for the accessory

parameter:

x(x−1)Hx =
(
4iα3+3α2−2iα−1

)
sλ`m+α3

(
4Lω(m−s)−2im2−10ims+6i

)
+2α2(−2iLω(m−s)−m(m+3s)+2)+2α(Lω(s−m)+i(m(m+s)−1))+

+
m2−s2−1

2
+O(α4). (4.9)
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Equating this with the APE (4.7), using the monodromies (3.12) and the angular eigenvalue

condition (3.71) yields the APE equation in the angular case. We then use this APE

equation to isolate for sλ`m, thus yielding an expression which we expand for small α. We

thus obtain eq. (1.3), where the explicit form of the coefficients λω,k expanded for small α is

given in appendix E. We have checked that this result matches (in the orders contained in

both expansions) the angular eigenvalue expansion up to order (α2, ω2) calculated in [11].

We have also checked that, in the Kerr limit L → ∞, all the orders that we give agree

with the small-aω expansion given in [22]. Thus, the eigenvalue expansion that we have

obtained already exists in the literature (split between [11] and [22]) — the derivation here

serves to validate the APE and provides a way of extending the expansion to higher orders.

4.3 Quasinormal mode frequencies

Let us now calculate the QNM frequencies in Kerr-de Sitter around the rotating Nariai

limit using the APE. This calculation is more complicated than in the angular eigenvalue

case, as both sides of the APE equation depend explicitly on powers of the frequency ω.

Therefore, we cannot just isolate ω as we did for the angular eigenvalue in the angular case.

However, as mentioned above, the QNM frequency can still be calculated order-by-order in

ε as displayed in eq. (1.1). We show here the explicit calculation near the rotating Nariai

limit and just display the result up to order ε. We, in fact, obtained the expansion up

to order (ε3, a3) and provide it in appendix D. We numerically-checked the higher order

expansion, which is discussed in the next section.

In this section, we will use the change of coordinates given by eq. (3.22), where, in

particular, r = rC is mapped to z = 0 and r = r+ is mapped to z = x. The expansion

parameter here is ε = (rC − r+)/L. Therefore,

x =

(
2r− + r+ + rC
2r+ + rC + r−

)
rC − r+

rC − r−
∼ 2(r̄+ + r̄−)

(3r̄+ + r̄−)(r̄+ − r̄−)
Lε as rC → r+. (4.10)

So the extremal limit rC → r+ corresponds to x→ 0. We expand the monodromies (3.20)

by expressing ω = mΩ+ + εκ̄ω̄ and expanding for small ε with ω̄ fixed:

θ0 = −i
(
ω̄ +mΩ̄

)
+
s

2
+O(ε), θ1 = imΩ̄

(3r̄+ + r̄−)

4r̄+
+
s

2
+O(ε),

θx = iω̄ +
s

2
+O(ε), θ∞ = imΩ̄

(r̄+ − r̄−)

4r̄+
+
s

2
+O(ε),

(4.11)

where Ω̄ is defined in eq. (3.76) and κ̄ in eq. (3.73).

We now set out to obtain the APE equation. First, we expand

κ̄ω̄ = ω̄0 + ω̄1ε+ ω̄2ε
2 +O

(
ε3
)
, (4.12)

for some coefficients ω̄0,1,2 which we set out to determine. In order to obtain one of the

sides of the APE equation, we use eq. (4.6) for Hx with the accessory parameter given by

eq. (3.26) consistently expanded for small ε. For this expansion, we use eq. (4.11) for the

monodromies and eq. (4.12) for the frequency, which in its turn is also used for expanding

the angular eigenvalue in ε.
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The other side of the APE equation is the APE (4.7). This expression depends on

the coefficients of the expansion of the monodromies as well as on σ, for which we use the

QNM condition given by eq. (3.63). In order to obtain the final expansion for Hx from the

APE, because of the replacement in eq. (3.63), the monodromies need to be expanded as

per eq. (4.11) and the frequency needs to be expanded as per eq. (4.12).

We have now explained how to obtain the two sides of the radial APE equation. This

APE equation gives polynomial equations for the coefficients of ω̄ at each order in ε. The

first coefficient ω̄0 obeys a quadratic equation and the other ω1,2,... obey linear equations,

depending on the previously obtained ones in a recursive way. We next proceed to give

the explicit expression for ω̄ to leading order in ε, which coincides with the rotating Nariai

limit result.

The first side of the APE equation, which is obtained from eqs. (3.26), (4.6), (4.11)

and (4.12), reads, to leading order in ε,

x(x− 1)Hx = sλ̄`m − 2s2 + 2sθx + 2θ0 (s− θx)− s− 1

2
+O(ε)

= −2 (ω̄0)2 − 2mΩ̄ω̄0 + sλ̄`m − s(1 + imΩ̄)− s2 + 1

2
+O(ε), (4.13)

where sλ̄`m is given in eq. (3.96). Equating the expansion for Hx coming from (4.13)

with the one coming from the APE (4.7) as explained above, yields, to leading order, the

following quadratic equation for ω̄0:( ω̄0

κ̄

)2

+
(
mΩ̄ + i (N + 1/2)

) ω̄0

κ̄
+

1

4

(
sλ̄`m − 2imΩ̄(N + 1/2) +N(N + 1)− s(s+ 1)

)
= 0,

(4.14)

with N ∈ Z (which comes from the QNM condition in eq. (3.63)). The two solutions of

this equation are

2ω̄0

κ̄
= −i

(
N +

1

2

)
−mΩ̄±

√
sλ̄`m +m2Ω̄2 − s(s+ 1)− 1

4
. (4.15)

This expression agrees with eq. (3.87) for s = 0 and ξ = 1/6. As dictated by eq. (3.87),

from now on N is restricted to be a non-negative integer — we note that the APE method

does not determine the sign of N , this is just imposed via an independent calculation

(namely, the one that led to eq. (3.87)).13

Putting together eqs. (3.92), (4.12) and (4.15), we have that the near-extremality

expansion for the QNM frequencies in Kerr-de Sitter is:

sω`m =mΩ++
κ̄ε

2

[
−i
(
N+

1

2

)
−mΩ̄±

√
sλ̄`m+m2Ω̄2−s(s+1)− 1

4

]
+O

(
ε2
)
, (4.16)

where N = 0, 1, 2, . . . . We remind the reader that Ω+, Ω̄, κ̄ and sλ̄`m are given in,

respectively, eqs. (2.4), (3.76), (3.73) and (3.96). To the best of our knowledge, this result

13Even though eq. (3.87) is only valid for s = 0, we assume that the condition N = 0, 1, 2, . . . also holds

for the other spins.
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is new in the literature. We emphasize that, even though we write eq. (4.16) as a small-

ε expansion, Ω+ in it is exact and so not expanded for small ε (the reason being that

Ω+ became buried within ω̄ in eq. (3.92), which we kept fixed when carrying out the

expansions).

We remind the reader that, up to this point, all of our expressions in this subsection

were considering the limit r → r+ (together with the small-ε expansion). By doing this,

we obtained the modes that approach mΩ+ in eq. (4.16). In order to obtain the modes

that, instead, approach mΩC , all we have to do is, in the quantities in eq. (4.16), swap

r+ ↔ rC (which, in particular, implies ε → −ε) and take the complex conjugate. Under

this transformation, we obtain:

sω`m =mΩC+
κ̄ε

2

[
−i
(
N+

1

2

)
+mΩ̄±

√
sλ̄`m+m2Ω̄2−s(s+1)− 1

4

]
+O

(
ε2
)
, (4.17)

Eqs. (4.16) and (4.17) show that, as advanced in section 3.4, both the lower and

the upper superradiant bound limits (i.e., mΩC and mΩC , respectively) are accumulation

points of QNMs as the extremal limit rC → r+ is approached. In order to obtain the next

order correction ω̄1, we need to expand all quantities in eqs. (4.10), (4.11) and (4.13) to

one order higher in ε. We then obtain:

ω̄1 =
Lκ̄ [(r̄+ − r̄−)(r̄− + 3r̄+)]−1

4
(
2ω̄0/κ̄+mΩ̄ + i(N + 1/2)

) [imΩ̄(2N + 1)r̄+

(
2− Lχ2κ̄

)
+ L

d

dε
sλ`m

∣∣∣∣
ε=0

+

+
mΩ̄ (r̄+ + r̄−)2 (2s2 + s− sλ̄`m

) (
mΩ̄ + 2ω̄0/κ̄

)
2r̄+

(
sλ̄`m +m2Ω̄2 − s2 − s

) ]
. (4.18)

The ε-derivative of sλ`m at ε = 0 can be written as

d

dε
sλ`m

∣∣∣∣
ε=0

= κ̄
(
mΩ̄ + 2ω̄0/κ̄

) 1

2

d

dω
sλ`m

(
ω =

ma

a2 + r̄2
+

)
. (4.19)

To the best of our knowledge, no orders higher than leading-order in eq. (4.12) have

been previously obtained in the literature for any spin. Above we have given explicit

expressions for general a for the two leading-order terms in eq. (4.12). Although one could,

in principle, obtain higher order terms, we found it difficult to obtain them if keeping

α = a/L general. On the other hand, by expanding the various quantities for small α, we

managed to reach up to one higher order in ε. Specifically, what we did is the following.

We obtained both eqs. (4.7) and (4.13) up to including O
(
ε3
)
. We then expanded the

coefficient of each ε-order (including the ω̄0, ω̄1, . . . which appear within these coefficients,

as well as the eigenvalue as given by (1.3) with eqs. (E.1)–(E.4)) for small α up to including

O
(
α3
)
. We then equated the left- and right-hand-sides at each order in this double series

in α and ε, thus obtaining an expansion for the QNM frequencies sω`m valid up to order

(ε3, α3). This expansion is the one in eq. (1.1), where the explicit form of the coefficients

is given in appendix D.
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5 Comparison with numerical calculation

We have verified our expansions of the QNM frequencies and the angular eigenvalues with

a numerical calculation. In this section, we first briefly sketch the approach used — we

note that the method will be described in detail in [68]. We then present the numerical

results as a check of the previous analyical expansions: eq. (1.1) (with the coefficients given

in appendix D) for the QNM frequencies and eq. (1.3) for the angular eigenvalues.

The method we used for the numerical calculation is a direct implementation of the one

described in [21], which, in its turn, is a generalization to Kerr-de Sitter of the technique

introduced by Leaver in Kerr spacetime [23, 24]. Essentially, the method consists of ex-

pressing a solution of the radial ODE (3.1b) as a powers series in “(rC−r−−)(r−r+)/((r−
r−−)(rC − r+))”. By construction, this series satisfies the QNM boundary condition at the

event horizon (which is the same as the ingoing boundary condition (3.34) there). However,

this infinite series only satisfies the QNM boundary condition at the cosmological horizon

(which is the same as the upgoing boundary condition (3.44) there) if it converges at that

horizon. This convergence condition leads to an equation in terms of a ‘radial’ continued

fraction which a frequency must satisfy for it to be a QNM frequency.

The method for calculating the angular eigenvalue is similar. One essentially expands

a solution of the angular ODE (3.1a) about θ = π, thus obeying the regularity condition

there by construction. The regularity condition at the other endpoint, θ = 0, is only obeyed

if sλ`m satisfies a certain equation in terms of an ‘angular’ continued fraction.

We numerically solve simultaneously for both the ‘radial’ continued fraction equation

and the ‘angular’ continued fraction equation. The solution of this system of equations is

then a QNM frequency ω = sω`m and an angular eigenvalue sλ`m.

In figures 5 and 6 we plot token results of our numerical check. The plots show that

each order in our small-ε expansion of the QNM frequencies consistently improves the

expansion relative to the numerical results. The plots are for s = −2, but we also carried

out numerical checks for s = 0,−1/2 and −1 and found similarly good agreement with our

analytical expansions.

6 Conclusions

Quasinormal Modes are an interesting topic of research from theoretical as well as obser-

vational points of view. In this work, we provided a new method for calculating QNMs

frequencies and angular eigenvalues for Kerr-de Sitter black holes. This method consists

of using the accessory parameter expansion, given in terms of monodromies of the asso-

ciated Fuchsian ODE. In particular, we have extended the APE described in ref. [16] to

the case where the monodromies are expanded in a small parameter ε. This allowed us to

obtain analytical expansions for both the angular eigenvalues and the QNM frequencies.

Our expansion for the eigenvalues agrees with results in the literature, whereas, to the

best of our knowledge, our high-order expansion for the frequencies is new. Finally, we

provided numerical evidence that these analytical formulas are a very good approximation

for reasonably small ε.
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Figure 5. Relative error in the QNM frequencies when comparing our analytic expansion in

eq. (1.1) with a numerical calculation. It is plotted as a function of ε and for the mode s = −2,

` = m = 2 and a = 5 · 10−3L. The top graph is for the real part of the QNM frequency and the

bottom graph for the imaginary part. Within each plot, the curve which is at the top corresponds

to the relative error with the analytic expansion truncated to O(ε). The subsequent two lower

curves correspond to truncation at O(ε2) and O(ε3), respectively.
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Figure 6. Similar to figure 5 but here it refers to the QNM frequency expansion about mΩC

instead of mΩ+ (i.e., the right hand side of eq. (1.1) after taking Ω+ → ΩC , ε→ −ε and complex

conjugating).
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There are a couple of directions for improving or extending our results. Firstly, as

the τ -function used here has a complete expansion, there is a possibility that a deeper

study of its properties and symmetries can provide even more compact formulas or with

faster convergence than the ones used here. Our implementation of the algorithm provided

in [16] is limited as the expressions of order higher than ε3 are too cumbersome to be

simplified with our available computing power. We are confident that simplification of

these expressions is possible, but we leave this optimization for future work. Another

possibility is to implement the APE numerically, as it was done in [17]. There are also

other approaches to obtain the APE, like the ones in [18, 19, 34, 69] or the direct application

of CFT operator product expansions, as a variation of what was done in [15, 16]. Secondly,

although our method works very well for a large region of configuration space (ε, a), we

were limited to study the APE expansion close to the extremal limit ε → 0. We need the

other extremal limit ε→ 1 (r+ → r−) in order to try to cover the full configuration space

for Kerr-de Sitter black holes. This could in principle be implemented with an expansion

of the τ -function as t→ 1, but, in this case, the expansion would be in terms of the other

composite monodromy σ1x. One would therefore need to study the relationship between

σ1x and σ0x [15, 70], which sets the relevant boundary conditions on the modes.

There are also other possible generalizations and applications of the APE method itself.

For example, in [71], the scalar-field perturbation equations of a 5-dimensional Kerr-anti-de

Sitter black hole were written as Heun equations and the eigenvalue and QNM conditions

were written in terms of the monodromies (similarly to section 3.4 here in the case of Kerr-

de Sitter). The APE method applied to this black hole setting, verified numerically, is avail-

able in [72]. Moreover, the connection between the AdS/CFT approach to QNMs and the

CFT structure behind isomonodromic method still remains to be completely understood.

One could also try to extend the APE to the case of an ODE with either less or

more singular points. In particular, the APE could be used to study confluent cases of

the Heun equation, corresponding to two regular and one irregular singular points. The

linear perturbations of Kerr and Schwarzschild black holes are described by confluent Heun

equations and the monodromy setup for these cases has been studied in [37]. However, this

example still lacks a systematic expansion using the Painlevé V τ -function [73, 74], like

in [16] for the Painlevé VI case. The same principle of finding the APE could also be used for

an ODE possessing more than four singular points, using the respective τ -function [75, 76].

It is known that linear perturbation equations for Kerr-NUT-(Anti-)de Sitter black holes

are also reducible to separable ODEs for dimensions higher than four [77]. In particular,

the number of singular points of these equations increases as the dimension increases.

Another potentially interesting, but speculative, line of investigation is to try to relate

the isomonodromic approach with the Kerr/CFT correspondence [78], which so far only

deals with the (near-)extremal (r+ = r−) case [79]. The near-extremality expansion used

here might be helpful to understand whether the CFT picture in the extremal case could

in some sense be deformed to cater for the non-extremal case. In this sense, it is curious

that the τ -function can be understood as a c = 1 CFT chiral correlator (even in the

non-extremal case). However, the connection with the Kerr/CFT description, if any, still

remains to be understood. Discussions along these lines can be found in [28, 71, 80]. In
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particular, there is also room to explore the Kerr-dS/CFT correspondence [62], which has

been less explored than Kerr/CFT. The approach of [81] to obtain the full solutions of

Heun’s equation from CFT is also an interesting related direction.

Finally, the APE can also be used outside the realm of black hole physics. Particular

examples are the Rabi model in quantum optics and its extensions [82, 83] and finding

conformal mappings in 2-dimensions [17], as well as potential applications in condensed

matter systems.

The APE method has opened new directions for studying spectral problems of Fuchsian

ODEs — here, in particular, within the realm of black hole physics and Heun equations.

We hope that the study presented here may be helpful for a better understanding of the

integrable structure behind black holes, their QNMs and their connections to CFT.
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A Gauge transformations of Fuchsian equations

Gauge transformations of Fuchsian equations are transformations that preserve the mon-

odromy coefficients and the character of its singular points.14 There are two main gauge

transformations in this sense: homographic transformations of the independent variable

(also known as Möbius transformations) and s-homotopic transformations of the solu-

tion (i.e., multiplication by a solution of certain first order ODEs with polynomial co-

efficients) [36]. Here we apply these two transformations to reduce the master radial and

angular equations (3.1) to its canonical and normal forms.

A faster route for obtaining the canonical form of eqs. (3.1a) and (3.1b) is to work

directly with the corresponding linear system. Consider the following equation in self-

adjoint form15

∂r(U(r)∂rψ(r))− V (r)ψ(r) = 0. (A.1)

We consider the case that U and V are rational functions of r and (A.1) has n regular

singular points at r = rk, k = 1, . . . , n, with rn =∞. This equation can be rewritten as

(∂r −A(r))Ψ(r) = 0 , A ≡
(

0 U−1

V 0

)
, Ψ ≡

(
ψ

U∂rψ

)
.

As in electromagnetism, we shall call A(r) the gauge connection of these Fuchsian equa-

tions. What happens to this system after performing a homographic transformation and a

14Except when these are apparent or removable singularities, which can be made explicit after a series of

gauge transformations.
15We call the equation (A.1) self-adjoint even if its coefficients are complex.
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s-homotopic transformation? First, let us apply the following homographic transformation

z ≡ d1r + d2

d3r + d4
⇒ ∂r = F−1(r)∂z ≡

d1d4 − d2d3

(d3r + d4)2
∂z ,

where d1,2,3,4 are complex constants. This maps the points r = rk to new points z = zk,

k = 1, . . . , n, and leads to a new gauge connection

(∂z − Ã(z))Ψ(z) = 0, Ã =

(
0 Ũ−1

Ṽ 0

)
≡
(

0 FU−1

FV 0

)
(A.2)

with Ψ = (ψ(z), Ũ(z)∂zψ(z))T . Now, let us apply the following s-homotopic transforma-

tion to the solution

ψ = G(z)ψ̃ =

n∏
i=1

(z − zi)−ρi/2 ψ̃, ⇒ ∂zψ = G∂zψ̃ + (∂zG) ψ̃ = G(∂z +B)ψ̃,

for some ρi ∈ C, where

B ≡ −
n∑
i=1

ρi/2

z − zi
. (A.3)

Thus,

Ψ = (Gψ̃, ŨG(∂z +B)ψ̃)T = Û(z)Ψ̃,

∂zΨ = Û∂zΨ̃ + ∂zÛΨ̃,

where

Û(z) ≡
(

G 0

ŨGB G

)
, Ψ̃ ≡ (ψ̃, Ũ∂zψ̃)T ,

and the new gauge potential is ¯̃A = Û−1ÃÛ− Û−1∂zÛ . Calculating all terms, we have that

¯̃A =

(
0 Ũ−1

Ṽ − Ũ(B2 + ∂zB)− ∂zŨB −2B

)
. (A.4)

This can be simplified further by writing the linear system in terms of (ψ̃, ∂zψ̃)T , removing

Ũ by making

Ψ̃ =

(
1 0

0 Ũ

)
(ψ̃, ∂zψ̃)T . (A.5)

Removing the tildes and primes in the new gauge connection and linear system solution

(i.e., relabel ¯̃A by A, Ψ̃ by Ψ and ψ̃ by ψ), we are left with a system of the form

∂zΨ = A(z)Ψ, A =

(
0 1

Ṽ Ũ−1 − (B2 + ∂zB −B∂z log Ũ) −2B − ∂z log Ũ

)
, (A.6)

where Ψ = (ψ, ∂zψ)T . This results in the following ODE for the transformed ψ

∂2
zψ + P (z)∂zψ +Q(z)ψ = 0, (A.7a)

P (z) ≡ ∂z log Ũ + 2B, Q(z) ≡ B2 + ∂zB +B∂z log Ũ − Ṽ Ũ−1. (A.7b)
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A.1 Radial master equation

The master radial equation (3.1b) is of the form

∂r(U(r)∂rRs,ω,m(r))− V (r)Rs,ω,m(r) = 0, (A.8)

with

U = ∆s+1
r , (A.9)

V = U

[
−
(
W

∆r

)2

− is
(

2
W ′

∆r
− W∆′r

∆2
r

)
+
Ys
∆r

]
. (A.10)

We now apply the Möbius transformation

z = ζ∞
(r − r1)

(r − r4)
≡ (r2 − r4)

(r2 − r1)

(r − r1)

(r − r4)
, x ≡ ζ∞

r31

r34
, rij ≡ ri − rj , (A.11)

with i, j = 1, 2, 3, 4, and the inverse transformation

r =
r4z − r1ζ∞
z − ζ∞

⇒ r − ri =
r4iz + ri1ζ∞
z − ζ∞

, i = 1, . . . , 4. (A.12)

Then

∂r =
r14ζ∞

(r − r4)2
∂z = −(z − ζ∞)2

r41ζ∞
∂z ⇒ F (z) = − r41ζ∞

(z − ζ∞)2
,

and

∆r = −∆′r(r4)F (z)
f(z)

(z − ζ∞)2
, f(z) ≡ z(z − 1)(z − x). (A.13)

We also apply the homotopic transformation

Rs,ω,m(r) = G(z)ψ(z), G(z) = (z − ζ∞)β
3∏
i=1

(z − zi)−ρi/2, (A.14)

for some constant β, which generates a new ODE of the form (A.7). Notice that we

omitted the indices s, ω,m in the solution, as they do not play any role in this appendix.

To make (A.7) more explicit, first, we have

∆̃r ≡ F−1∆r ⇒ Ũ = F−1∆s+1
r = F s∆̃s+1

r (A.15)

and

Ṽ

Ũ
= F 2V

U

=

[
−
(
W

∆̃r

)2

− is
(

2
∂zW

∆̃r

− W∂z(F ∆̃r)

F ∆̃2
r

)
+ F

Ys

∆̃r

]

=

[
−
(
W

∆̃r

)2

− is
(

2∂z

(
W

∆̃r

)
+
W

∆̃r

∂z log

(
∆̃r

F

))
+ F

Ys

∆̃r

]
. (A.16)
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Then, we can find that

P (z) =
2 (β − (2s+ 1))

z − ζ∞
+

3∑
i=1

1 + s− ρi
z − zi

, (A.17)

and

Q(z) = − Ṽ
Ũ

+
β2 − β(4s+ 3)

(z − ζ∞)2
+

q∞
z − ζ∞

+
3∑
i=1

(
ρi(ρi − 2s)/4

(z − zi)2
+

qi
z − zi

)
, (A.18)

with

q∞ = −
3∑
i=1

(1 + s)β + (1 + 2s− β)ρi
zi − ζ∞

, (A.19)

qi =
(1 + s)β + (1 + 2s− β)ρi

zi − ζ∞
+

3∑
j=1,j 6=i

ρiρj − (1 + s)(ρi + ρj)

2(zi − zj)
, i = 1, . . . , 3. (A.20)

It is helpful to expand eq. (A.16) into partial fractions. Essentially, we have the

following two types of terms:

Ar2 +B

∆̃r

,

(
Cr2 +D

∆̃r

)
F (z), (A.21)

for some constants A,B,C,D. The main difference between these two terms is that the

first one has no pole at z = ζ∞, whereas the second one has a pole there due to the F (z)

factor. Thus, we have

W

∆̃r

=
∑

k=0,1,x

Wk

z − zk
, Wk ≡ resr=rk

W (r)

∆r(r)
=
χ2(ω(r2

k + a2)− am)

∆′r(rk)
, (A.22)

and

F
Ys

∆̃r

=
2(s+ 1)(2s+ 1)(

∑3
i=1 ri − r4)/(r14ζ∞)

z − ζ∞
− 2(s+ 1)(2s+ 1)

(z − ζ∞)2
+
∑

i=0,1,x

F (zi)
Ys,i
z − zi

,

(A.23)

with

Ys,i ≡
2(s+ 1)(2s+ 1)r2

i /L
2 − s(1− a2/L2) + sλ`m

∆′r(ri)
. (A.24)

Then, going back to eq. (A.16), we get

− Ṽ
Ũ

=
2(s+ 1)(2s+ 1)

(z − ζ∞)2
− 2(s+ 1)(2s+ 1)(

∑3
i=1 ri − r4)/(r14ζ∞)

z − ζ∞
+

+

3∑
k=1

(
Wk(Wk − is)

(z − zk)2
+

vk
z − zk

)
, (A.25)

with

vk ≡ −F (zk)Ys,k +
3∑

j=1,j 6=k

2WkWj + is(Wk +Wj)

zk − zj
, k = 1, 2, 3. (A.26)
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Let us first check that the singularity z = ζ∞ is removable. We start by demanding that

resz=zk P (z) = 2 (β − (2s+ 1)) = 0, (A.27)

resz=zk(z − zk)Q(z) = β2 − (4s+ 3)β + (2s+ 1)(2s+ 2) = 0. (A.28)

Both equations have a solution for β = 2s + 1 and we will assume this value for β from

now on in this subsection. Now, quite surprisingly, substituting β in eq. (A.18), we obtain

resz=zk Q(z) = −(2s+ 2)(2s+ 1)(
∑3

i=1 ri − r4)

r14ζ∞
−

3∑
i=1

(1 + s)(2s+ 1)

zi∞
(A.29)

=
(2s+ 1)(2s+ 2)

r14ζ∞

(
r4 +

3∑
i=1

(ri − r4)

2
−

3∑
i=1

ri

)
(A.30)

= −(2s+ 1)(2s+ 2)

2r14ζ∞

(
r4 +

3∑
i=1

ri

)
= 0, (A.31)

where in the second line we used zi∞ = −r14ζ∞/ri4, coming from eq. (A.12), and in the last

line we used the fact that there is no third order term in the polynomial ∆r(r). Therefore,

the singularity z = ζ∞ is completely removable from the ODE. This fact has been proved

for any type D vacuum solution with cosmological constant in [10]. Our derivation is an

improvement to that work, as it gives the explicit dependence on the ρi and a more compact

and suggestive final result in terms of the monodromies.

At this stage, we have

P (z) =

3∑
k=1

1 + s− ρk
z − zk

, (A.32a)

Q(z) =
3∑

k=1

(
ρk(ρk − 2s)/4 +Wk(Wk − is)

(z − zk)2
+
qk + vk
z − zk

)
, (A.32b)

qk =
(1 + s)(1 + 2s)

zk − ζ∞
+

3∑
j=1,j 6=k

ρkρj − (1 + s)(ρk + ρj)

2(zk − zj)
, (A.32c)

vk =
r41ζ∞

(zk − ζ∞)2
Ys,k +

3∑
j=1,j 6=k

2WkWj + is(Wk +Wj)

zk − zj
, k = 1, 2, 3. (A.32d)

We now have two possibilities to simplify the Heun equation (A.7): the canonical form and

the normal form.

Canonical form. In order to find the canonical form of the Heun equation, we choose

ρk so as to cancel the (z − zk)−2 term in Q(z) in (A.18). In order to find the Frobenius

exponents ρk, we take

resz=zk(z − zk)Q(z) =
1

4
ρk(ρk − 2s) +Wk(Wk − is) = 0. (A.33)

Its roots are given by

ρ
(−)
k = −2iWk, ρ

(+)
k = 2iWk + 2s ⇒ ρ

(±)
k = s± (2iWk + s), k = 1, 2, 3. (A.34)
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Then, if we define θk = iWk + s/2 and choose ρk = ρ
(+)
k = s+ 2θk we obtain

P (z) =

3∑
k=1

1− 2θk
z − zk

, Q(z) =

3∑
k=1

Qk
z − zk

, (A.35)

Qk =
(1 + s)(1 + 2s)

zk − ζ∞
− F (zk)Ys,k +

3∑
j=1,j 6=k

(2s− 1)(θk + θj − s)− 2s

zk − zj
. (A.36)

We can rewrite the last term in two convenient ways

−F (zk)Ys,k = − L2

zk − ζ∞
(2(2s+ 1)(s+ 1)r2

k/L
2 + sλ`m − s(1− a2/L2))∏3

j=1,j 6=k(rk − rj)
(A.37)

=
(r1 − r4)ζ∞

∆′r(r4)

2(2s+ 1)(s+ 1)r2
k/L

2 + sλ`m − s(1− a2/L2)

f ′(zk)

= − L2

(r1 − r2)(r3 − r4)

(2(2s+ 1)(s+ 1)r2
k/L

2 + sλ`m − s(1− a2/L2))

f ′(zk)
.

(A.38)

Comparing with the radial Heun equation (3.17), we can extract Heun’s accessory param-

eter in (A.35) by Kx = − resz=xQ(z) = −Q3 and this gives

Kx =
(1−2s)(θx+θ0−s)+2s

x
+

(1−2s)(θx+θ1−s)+2s

x−1
−

− 1

x−ζ∞

[
(1+s)(1+2s)− (2(2s+1)(s+1)r2

k+sλ`mL
2−sL2(1−a2/L2))

(r3−r1)(r3−r2)

]
(A.39)

or

Kx =
(1−2s)(θx+θ0−s)+2s

x
+

(1−2s)(θx+θ1−s)+2s

x−1
−

− (1+s)(1+2s)

x−ζ∞
+

1

(r1−r2)(r3−r4)

(2(2s+1)(s+1)r2
k+sλ`mL

2−sL2(1−a2/L2))

x(x−1)
,

(A.40)

which is the best form to multiply it by x(x− 1).

Normal form. In the APE, we actually use the normal form of the accessory parameter,

since our formulas for the τ -function are adapted to this form. The normal form is obtained

by making ρk = 1 + s, k = 1, 2, 3 in eq. (A.32), which yields

P (z) = 0, Q(z) =

3∑
k=1

(
1
4−θ2

k

(z−zk)2
+

Q̃k
z−zk

)
, (A.41)

Q̃k =
(1+s)(1+2s)

zk−ζ∞
−F (zk)Ys,k+

3∑
j=1,j 6=k

−1
2(1+2s+4θjθk)+2s(θj+θk−s)

zk−zj
. (A.42)

Then, Hx = − resz=xQ(z) = −Q̃3, which is related to (A.40) by (4.6).
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A.2 Angular master equation

Most of the expressions in this angular subsection readily follow from those in the previous

radial case presented in subsection A.1. Since they are separate subsections, we shall use

some of the same symbols to denote quantities here defined as the quantities with the

same symbol in section A.1 merely under the change r → u, and so we will not give the

definitions of those symbols explicitly here.

The angular master equation (3.1a) is of the form

∂u(U(u)∂uS(u))− V (u)S(u) = 0 , (A.43)

with

U = ∆u, (A.44)

V = −U
[
−
(
H + s

2∆′u
∆u

)2

+ 2s
H ′

∆u
− Xs

∆u

]
. (A.45)

Applying similar transformations as in section A.1, we find

P (z) =
2(β − 1)

z − ζ∞
+

3∑
k=1

1− ρk
z − zk

, (A.46)

Q(z) = − Ṽ
Ũ

+
β2 − 3β

(z − ζ∞)2
+

q∞
z − ζ∞

+

3∑
k=1

(
ρ2
k/4

(z − zk)2
+

qk
z − zk

)
, (A.47)

qk =
β + (1− β)ρk
zk − ζ∞

+

3∑
j=1,j 6=k

ρkρj − (ρk + ρj)

2(zk − zj)
, (A.48)

q∞ = −
3∑

k=1

β + (1− β)ρk
zk − ζ∞

. (A.49)

We also have

− Ṽ
Ũ

= −
[
H

∆̃u

+
s

2
∂z log(F ∆̃u)

]2

+ 2s

[
∂z

(
H

∆̃u

)
+

H

∆̃u

∂z log ∆̃u

]
− F Xs

∆̃u

=
2

(z − ζ∞)2
+

v∞
z − ζ∞

+
3∑

k=1

(−(Hk + s
2)2

(z − zk)2
+

vk
z − zk

)
, (A.50a)

vk =
2s2

zk − ζ∞
− F (zk)Xs,k −

3∑
j=1,j 6=k

2(Hk − s/2)(Hj − s/2)

zk − zj
, (A.50b)

v∞ = −
3∑

k=1

2s2

zk − ζ∞
−

2(2s2 + 1)
(
−u4 +

∑3
j=1 uj

)
u14ζ∞

, (A.50c)

Xs,k =
2(2s2 + 1)α2u2

k − sλ`m
∆′u(uk)

, (A.50d)
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with k = 1, 2, 3, where we used that

H

∆̃u

=
3∑

k=1

Hk

z − zk
, ∆̃u = −∆′u(u4)

f(z)

(z − ζ∞)2
, F (zk) =

u41ζ∞
(zk − ζ∞)2

. (A.51)

Using eq. (A.50a) in eq. (A.46), we find

Q(z) =
3∑

k=1

(
ρ2
k/4− (Hk + s/2)2

(z − zk)2
+
qk + vk
z − zk

)
+
β2 − 3β + 2

(z − ζ∞)2
+
q∞ + v∞
z − ζ∞

. (A.52)

For β = 1, the two terms with poles at z = ζ∞ vanish identically, as in the radial case.

Canonical form. If we substitute ρk = 2θk = −2(Hk + s/2) in (A.52), we find

P (z) =
3∑

k=1

1−2θk
z−zk

, Q(z) =
3∑

k=1

Qk
z−zk

,

Qk =
2s2+1

zk−ζ∞
− 1

u12u34

2(2s2+1)u2
k−sλ`mα−2

x(x−1)
+

3∑
j=1,j 6=k

−(2s+1)(θk+θj+s)+s

zk−zj
,

(A.53)

with k = 1, 2, 3.

Normal form. Substituting ρk = 1 in (A.52), we get

P (z) = 0, Q(z) =

3∑
k=1

(
1
4−θ2

k

(z−zk)2
+

Q̃k
z−zk

)
,

Q̃k =
2s2+1

zk−ζ∞
− 1

u12u34

2(2s2+1)u2
k−sλ`mα−2

x(x−1)
−

3∑
j=1,j 6=k

1+4(θk−s)(θj−s)
2(zk−zj)

.

(A.54)

B Alternative derivation of quasinormal mode equation

In this appendix, we show how to obtain eq. (4.15) using a path-multiplicative solution [12]

to leading order in x→ 0. First, let us rewrite eq. (3.5) in Euler form

{(z − x)DHG[b1, b2; 1− 2θ0] + (1− 2θx)zDz − x(x− 1)Kxz} y(z) = 0, (B.1)

where Dz ≡ z∂z is the Euler derivative and we define the hypergeometric differential oper-

ator as

DHG[A,B;C] ≡ z(Dz +A)(Dz +B)−Dz(Dz + C − 1), (B.2)

with A,B,C arbitrary constants. The operator DHG is the operator in the Euler form of

the hypergeometric equation, i.e., DHG[A,B;C] 2F1(A,B;C; z) = 0.

Now, let us assume that y(z) = zνhν(z) + O(x), with ν a constant. For x = 0, the

monodromy of this solution around z = 0 must be equal to the composite monodromy of

the full solution around z = 0 and z = x to leading order in x [16]. This type of solution is
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called a path-multiplicative solution by [12]. If we plug the small-x expansion of y(z) into

eq. (B.1), we obtain(
DHG[b1,0 + ν, b2,0 + ν; 2(1− θ0,0 − θx,0 + ν)]− ν(ν + 1− 2θ0,0 − 2θx,0) + K̃x

)
hν(z) = 0,

(B.3)

where K̃x ≡ − limx→0 x(x− 1)Kx. Here, θ0,0, θx,0 and bk,0 denote the Frobenius exponents

θ0, θx and bk of (B.1), respectively, calculated at x = 0. Therefore, if we make the choice

ν (ν + 1− 2θ0,0 − 2θx,0)− K̃x = 0, (B.4)

we have that hν(z) is a solution of the hypergeometric equation

DHG[b1,0 + ν, b2,0 + ν; 2(1− θ0,0 − θx,0 + ν)]hν(z) = 0. (B.5)

Now, we use the two solutions of the quadratic equation (B.4) for ν, which we denote by

ν±, to obtain the composite monodromy as x→ 0

σ0 =
1

2
(ν+ − ν−) =

1

2

√
(2θ0,0 + 2θx,0 − 1)2 + 4K̃x, (B.6)

where σ0 ≡ limx→0 σ0x (see eq. (4.1a)). Finally, by equating the QNM condition in

eq. (3.62)

σ0 = ±(θ0,0 − θx,0) +N +
1

2
(B.7)

and the appropriate monodromies (4.11) onto eq. (B.6), we obtain the correct eq. (4.14)

and the corresponding QNMs. Finally, we see that, since ν± = θ0,0 + θx,0 − 1
2 ± σ0, the

monodromy matrix of the solution zνhν(z) is given by

M0x =

(
e2πiν+ 0

0 e2πiν−

)
∼
(
−e2πiσ0 0

0 −e−2πiσ0

)
. (B.8)

This is the origin of the minus sign in the composite trace definition in eq. (3.59).

C Accessory parameter expansion from isomonodromic τ -function

Here we adapt the approach of [16] for the APE to the case of monodromies that de-

pend on x. The accessory parameter Kx of the Heun equation can be obtained via the

isomonodromic τ -function by

Kx =
d

dt
log
(
t−4θ0θt(1− t)−4θ1θtτ(θ0,+; t)

)∣∣∣∣
t=x,λ(x)=x

, (C.1)

where

θs1,s2 ≡
(
θ0, θ1, θt + s11

2 , θ∞ + s21
2

)
, s1, s2 = 0,±. (C.2)
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The general definition of the τ -function can be found in [16, 84], for example. The τ -

function satisfies a second-order non-linear ODE which is related to the Painlevé VI equa-

tion. This second-order ODE has two integration constants (σ, s).16 The integration con-

stant σ is in fact the composite monodromy of Heun solutions as discussed in this paper

and s is related to the other composite monodromies in a precise way.

The usefulness of the approach via eq. (C.1) relies on the complete expansion of the

τ -function in terms of monodromy data, first obtained in [84]. Such expansion is

τ(θ; t) ≡ t2θ0θt(1− t)4θ1θt tσ
2−θ20−θ2t

∑
n∈Z

C(θ, σ + n)sntn(n+2σ)B(θ, σ + n; t), (C.3)

where the structure constants C(θ, σ) are given in terms of Barnes functions G as17

C(θ, σ) =

∏
ε,ε̃=±G(1 + θt + εθ0 + ε̃σ)G(1 + θ1 + εθ∞ + ε̃σ)∏

ε=±G(1 + ε2σ)
. (C.4)

The B’s in eq. (C.3) are the conformal blocks for central charge c = 1, given by the Alday-

Gaiotto-Tachikawa (AGT) [85] combinatorial series

B(θ, σ; t) =
∑
n,m∈Y

Bn,m(θ, σ)t|n|+|m|, (C.5)

summing over pairs of Young diagrams n,m with

Bn,m(θ, σ) =
∏

(i,j)∈n

((θt + σ + i− j)2 − θ2
0)((θ1 + σ + i− j)2 − θ2

∞)

h2
n(i, j)(n′j +mi − i− j + 1 + 2σ)2

×
∏

(i,j)∈m

((θt − σ + i− j)2 − θ2
0)((θ1 − σ + i− j)2 − θ2

∞)

h2
m(i, j)(ni +m′j − i− j + 1− 2σ)2

, (C.6)

where (i, j) denotes the respective box in a Young diagram n, ni the number of boxes in

row i, n′j the number of boxes in column j and hn(i, j) = ni+n′j− i− j+1 its hook length.

As mentioned, the two integration constants of the τ -function are (σ, s) and, as shown

in [16], the condition λ(x) = x introduces a constraint s = s(θ, σ, x) = s0 + s1x + O(x2),

with si = si(θk, σ). In order to find the APE, we just need to plug this constraint into

eq. (C.1) and consistently expand the result for small x.

The main difference between the APE used in the present paper and the one in [16]

is that here the monodromies depend on the moduli x = x(ε) via the parameter ε. As ex-

plained in the main text, we assume the monodromies and moduli have regular expansions

in ε given by (4.1). If we solve the condition λ(x) = x for s as an expansion in ε using the

expanded monodromies and moduli, we get s = s̃0 + s̃1ε+O(ε2), with s̃i = s̃i(θk,j , σj), and

this result can be used in (C.1) to obtain our main result (4.7).

16Note that this integration constant is denoted by a sans-serif letter s in order to distinguish it from the

spin s. Similarly, we use ε in eq. (C.4) in order to distinguish it from the extremality parameter ε elsewhere

in the paper.
17Barnes functions are defined by the functional relation G(z + 1) = Γ(z)G(z), with G(1) = 1 and Γ(z)

being the Euler gamma function.
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D Coefficients of the quasinormal mode expansion

In this appendix, we provide expressions below are the coefficients in eq. (1.1) expanded

up to O(a3). For simplicity, in this appendix we take L = 1 and we define δσ ≡ `(` + 1)

and ζ ≡
√

12δσ − 8s2 + 5.

General-spin expressions for the first two coefficients are the following:

ω̄0 =
1

4

√
3
(
1−14a2

)
ζ+

3

4
i
(

7a2(2N+1)+4i
√

3am−2N−1
)

+

√
3a2

4ζδσ (4δσ−3)

×
{

516δ3
σ+4δ2

σ

(
45m2−74s2−46

)
+36m2s2

(
s2+2

)
−3δσ

[
m2(40s2+44)+4s4−76s2+51

]}
+O(a4),

(D.1)

ω̄1 =−3am− 9ams2
(
ζ−i
√

3(2N+1)
(
δσ−s2+1

))
2ζδσ (3δσ−2s2+2)

+
9i
√

3a3m(2N+1)

2ζ3(δσ−2)δ3
σ(4δσ−3)(3δσ−2s2+2)2

[
3240δ8

σ−18δ7
σ

(
60m2+518s2+177

)
+6δ6

σ

(
3m2

(
178s2+83

)
+1862s4+2044s2−1251

)
−24m2s4(s2−1)2

(
8s4+11s2−10

)
+δ5

σ

(
−6m2

(
922s4+574s2−263

)
−7564s6−16162s4+15359s2+60

)
+δ4

σ

(
m2
(
6580s6+510s4−2472s2−352

)
+3460s8+8476s6−9133s4−4781s2+3112

)
+4s2δ2

σ

(
m2(394s8−655s6−1101s4+1538s2−257)+(s2−1)2(40s6+75s4+126s2−133)

)
−4m2s4

(
56s8−287s6−222s4+919s2−466

)
δσ

−2δ3
σ

(
m2
(
2262s8−1412s6−2328s4+879s2+140

)
+540s10+706s8−577s6−2817s4

+2588s2−440
)]

+
3a3m

2(δσ−2)δ3
σ(4δσ−3)(3δσ−2s2+2)2

[
126δ7

σ+6δ6
σ

(
45m2+68s2−32

)
−72m2s4

(
s6−3s2+2

)
−δ5

σ

(
54m2

(
14s2+9

)
+994s4+301s2+208

)
+δ4

σ

(
6m2

(
199s4+166s2−32

)
+780s6+1127s4−901s2+128

)
+12s2δ2

σ

(
m2(41s6−3s4−90s2+25)+(s2−1)2(5s4+14s2+17)

)
−12m2s4

(
7s6−18s4−39s2+50

)
δσ

−6δ3
σ

(
m2
(
186s6+80s4−67s2−28

)
+54s8+89s6−107s4−20s2−16

)]
+O(a4).

(D.2)

We give the coefficient ω̄2 separately for each different value of the spin s. For s = 0:

ω̄2 =
9

8

√
3a
(
8a2−5

)
m+

1

32
i
(
465a2−19

)
(2N+1)−3i(2N+1)

(
−24

(
63a2+2

)
δ2
σ

+8
(
21a2

(
69m2−25

)
−4
)
δσ+3a2

(
5216m2−695

)
+51

)
/
[
32(4δσ−3)(12δσ+17)2

]
+

27(2N+1)2

16
√

3ζ3 (4δσ−3)(12δσ+17)2

{
720

(
75a2−4

)
δ4
σ+12

(
3a2
(
300m2+3767

)
−596

)
δ3
σ

+2
(
3a2
(
1818m2+7267

)
−1054

)
δ2
σ+
(
4439−3a2

(
7122m2+26665

))
δσ

−a2
(
22228m2+31937

)
+1785

}
+
{
−10368

(
765a2−76

)
δ5
σ

+432
(
3a2
(
8760m2−18341

)
+5236

)
δ4
σ+108

(
3a2
(
91484m2−49331

)
+12268

)
δ3
σ

+6
(
9a2
(
212862m2+163295

)
−166930

)
δ2
σ+
(
−3a2

(
5249298m2−3509465

)
−951175

)
δσ

−15
(
a2
(
459664m2−155035

)
+12325

)}
/
[
16
√

3ζ3 (4δσ−3)(12δσ+17)2
]
+O(a4).

(D.3)
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For s = ±1/2:

ω̄2 = 9
√

3a3m− 45

8

√
3am+

1

32
i
(
465a2−19

)
(2N+1)

− i(2N+1)

256δ3
σ (2δσ+1)3 (4δσ+5)

{
32
(
135a2−14

)
δ6
σ+48

(
a2
(
214m2+203

)
−21

)
δ5
σ

+
(
a2
(
6336m2+6954

)
−672

)
δ4
σ+
(
a2
(
2121−8238m2

)
−140

)
δ3
σ+27a2

(
10−317m2

)
δ2
σ

−2646a2m2δσ−270a2m2
}

+
3
√

3(2N+1)2

256ζ3δ3
σ (2δσ+1)3 (4δσ+5)

{
1920

(
75a2−4

)
δ8
σ

+32
(
75a2

(
12m2+175

)
−692

)
δ7
σ+8

(
a2
(
6372m2+55869

)
−2900

)
δ6
σ

+6
(
a2
(
6604m2+36965

)
−1892

)
δ5
σ+
(
a2
(
31158m2+50721

)
−2624

)
δ4
σ

+
(
3a2
(
7927m2+1254

)
−230

)
δ3
σ+135a2

(
78m2−1

)
δ2
σ+2133a2m2δσ+135a2m2

}
+

√
3

256ζδ3
σ (2δσ+1)3 (4δσ+5)

{
−256

(
765a2−76

)
δ8
σ+32

(
15a2

(
584m2−1213

)
+1796

)
δ7
σ

+48
(
a2
(
15494m2−13239

)
+1296

)
δ6
σ+
(
30a2

(
21096m2−10825

)
+31592

)
δ5
σ

+
(
9a2
(
19754m2−8579

)
+7592

)
δ4
σ−3

(
a2
(
5485m2+2104

)
−230

)
δ3
σ

−9a2
(
1552m2−15

)
δ2
σ−1593a2m2δσ−135a2m2

}
+O(a4).

(D.4)

For s = ±1:

ω̄2 = 9
√

3a3m− 45

8

√
3am+

1

32
i
(
465a2−19

)
(2N+1)

+
81
√

3
[
(2N+1)2+1

]((
1−41a2

)
δ2
σ+18a2m2

)
16ζ3δ3

σ (4δσ−3)(4δσ+3)2

− i(2N+1)

32δ3
σ (4δσ−3)(4δσ+3)2

{
−8
(
729a2−50

)
δ5
σ+24

(
a2
(
55m2−41

)
+8
)
δ4
σ

+9
(
a2
(
464m2+799

)
−25

)
δ3
σ−108

(
a2
(
112m2−41

)
+1
)
δ2
σ−11664a2m2δσ−1944a2m2

}
+

3
√

3(2N+1)2

16ζ3δσ (4δσ−3)(4δσ+3)2

{
240

(
75a2−4

)
δ5
σ

+4
(
a2
(
900m2+597

)
−20

)
δ4
σ+2

(
9a2
(
10m2−737

)
+406

)
δ3
σ

+3
(
a2
(
754m2+901

)
−1
)
δ2
σ−9

(
a2
(
1160m2−509

)
+17

)
δσ−8640a2m2

}
+

3
√

3

16ζ3δσ (4δσ−3)(4δσ+3)2

{
−128

(
765a2−76

)
δ6
σ+16

(
a2
(
8760m2+603

)
+124

)
δ5
σ

−4
(
3a2
(
2572m2−6911

)
+2012

)
δ4
σ−2

(
3a2
(
23474m2+5205

)
+278

)
δ3
σ

+3
(
a2
(
31222m2−7631

)
+467

)
δ2
σ+9

(
a2
(
5572m2+1265

)
−35

)
δσ−25164a2m2

}
+O(a4).

(D.5)
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For s = ±2:

ω̄2 = 9
√

3a3m− 45

8

√
3am+

1

32
i
(
465a2−19

)
(2N+1)

+
i(2N+1)

32(5−4δσ)2 (δσ−2)3δ3
σ (4δσ−3)

{
−8
(
3105a2−194

)
δ8
σ

+8
(
3a2
(
703m2+11631

)
−1744

)
δ7
σ−3

(
a2
(
105136m2+432723

)
−15973

)
δ6
σ

+2
(
3a2
(
292720m2+532233

)
−39133

)
δ5
σ

+
(
60340−36a2

(
117968m2+122227

))
δ4
σ+24

(
a2
(
192848m2+135795

)
−725

)
δ3
σ

−1152a2
(
1139m2+900

)
δ2
σ−1486080a2m2δσ+1036800a2m2

}
+

3
√

3(2N+1)2

16ζ3 (5−4δσ)2 (δσ−2)3 δ3
σ (4δσ−3)

{
240

(
75a2−4

)
δ10
σ +4

(
15a2

(
60m2−3901

)
+3148

)
δ9
σ

−2
(
3a2
(
5298m2−226909

)
+35482

)
δ8
σ−3

(
a2
(
12302m2+1554911

)
−73607

)
δ7
σ

+
(
3a2
(
395920m2+3455569

)
−405995

)
δ6
σ−2

(
15a2

(
161384m2+512431

)
−218393

)
δ5
σ

+12
(
a2
(
717768m2+1242091

)
−20995

)
δ4
σ−24

(
a2
(
261416m2+361395

)
−2475

)
δ3
σ

−288a2
(
4489m2−8100

)
δ2
σ+4898880a2m2δσ−2332800a2m2

}
+

3
√

3

16ζ3 (5−4δσ)2 (δσ−2)3 δ3
σ (4δσ−3)

{
−128

(
765a2−76

)
δ11
σ

+48
(
5a2
(
584m2+6277

)
−2796

)
δ10
σ −4

(
3a2
(
171852m2+857513

)
−201988

)
δ9
σ

+2
(
3a2
(
2349982m2+6875683

)
−1385222

)
δ8
σ−3

(
5a2
(
3918450m2+7190207

)
−1969787

)
δ7
σ

+
(
3a2
(
54007292m2+64065961

)
−8007761

)
δ6
σ

−6
(
a2
(
49556268m2+39151043

)
−1117417

)
δ5
σ

+12
(
a2
(
28901884m2+15878979

)
−262665

)
δ4
σ−72

(
a2
(
3095108m2+1294785

)
−8775

)
δ3
σ

+69984a2
(
493m2+300

)
δ2
σ+44089920a2m2δσ−20995200a2m2

}
+O(a4).

(D.6)

E Coefficients of the angular eigenvalue expansion

In this appendix we give the explicit form of the coefficients in the expansion for the eigen-

value in eq. (1.3), expanded for small α. As in the previous appendix, we define δσ ≡ `(`+1)

λω,0≡ δσ−s2+
α2

δσ(4δσ−3)

[
−2s4

(
δσ−3m2

)
+s2

(
δσ
(
4m2+1

)
−6m2

)
+δσ

(
δσ
(
2δσ+6m2+1

)
−4m2−2

)]
+O

(
α4
)
,

(E.1)

λω,1≡−2m

(
1+

s2

δσ

)
− 2α2m

δ3
σ (δσ−2)(4δσ−3)

[
−2s6

(
5δ2
σ−(7δσ+6)m2

)
+δσ)2s2×(

3δσ
(
2δσ−2m2−7

)
+22m2+8

)
+δ3

σ (δσ−2)
(
6δσ+2m2−5

)
+2s4

(
δσ
(
δσ
(
3δσ−5m2+4

)
−7m2

)
−6m2

)]
+O

(
α4
)
,

(E.2)

λω,2≡
2

δ3
σ(4δσ−3)

{
s4
[
(5δσ+3)m2−3δ2

σ

]
+2δ2

σs
2
(
δσ−3m2

)
+δ3

σ

(
δσ+m2−1

)}
+O

(
α2
)
,

(E.3)

λω,3≡−
4ms2

δ5
σ (δσ−2)(4δσ−3)

(
−δ4

σ

(
3δσ−5m2−1

)
+2δ2

σs
2
(
5δ2
σ−(7δσ+6)m2

)
+s4

(
δσ
(
19m2−δσ

(
7δσ−9m2+6

))
+6m2

))
+O

(
α2
)
.

(E.4)
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The expressions for λω,0 and λω,1 which we provide agree with [11] (which also provide

the O
(
α2
)

term in λω,2). The leading-order terms in the expansions for λω,2 and λω,3
(which are not provided in [11]) are, in fact, just the same as in Kerr, and agree with [22].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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c = 1 conformal blocks, JHEP 12 (2013) 029 [arXiv:1308.4092] [INSPIRE].

[71] J.B. Amado, B. Carneiro da Cunha and E. Pallante, On the Kerr-AdS/CFT correspondence,

JHEP 08 (2017) 094 [arXiv:1702.01016] [INSPIRE].

– 51 –

https://dx.doi.org/10.1111/j.0022-2526.2004.01526.x
https://dx.doi.org/10.1111/j.0022-2526.2004.01526.x
https://doi.org/10.1103/PhysRevD.52.2118
https://arxiv.org/abs/gr-qc/9507035
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9507035
https://doi.org/10.1103/PhysRevD.64.104021
https://doi.org/10.1103/PhysRevD.64.104021
https://arxiv.org/abs/gr-qc/0103054
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D64,104021%22
https://doi.org/10.1103/PhysRevLett.82.4388
https://arxiv.org/abs/gr-qc/9902082
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,82,4388%22
https://doi.org/10.1103/PhysRevLett.84.10
https://arxiv.org/abs/gr-qc/9907096
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,84,10%22
https://doi.org/10.1103/PhysRevD.94.064003
https://arxiv.org/abs/1606.08505
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D94,064003%22
https://doi.org/10.1088/1361-6382/aab140
https://doi.org/10.1088/1361-6382/aab140
https://arxiv.org/abs/1711.00855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00855
https://doi.org/10.4310/ATMP.2015.v19.n3.a1
https://doi.org/10.4310/ATMP.2015.v19.n3.a1
https://arxiv.org/abs/1206.6598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6598
https://doi.org/10.1103/PhysRevD.78.084035
https://arxiv.org/abs/0811.3806
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D78,084035%22
https://doi.org/10.1007/JHEP03(2010)096
https://doi.org/10.1007/JHEP03(2010)096
https://arxiv.org/abs/0910.4587
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4587
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevD.67.084020
https://arxiv.org/abs/gr-qc/0301078
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0301078
https://doi.org/10.1016/0167-2789(81)90013-0
https://doi.org/10.1016/0167-2789(81)90021-X
https://doi.org/10.1016/0167-2789(81)90003-8
https://doi.org/10.1142/S0217732316501595
https://arxiv.org/abs/1601.04457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.04457
https://doi.org/10.1007/JHEP12(2013)029
https://arxiv.org/abs/1308.4092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4092
https://doi.org/10.1007/JHEP08(2017)094
https://arxiv.org/abs/1702.01016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.01016


J
H
E
P
0
5
(
2
0
1
9
)
0
3
3

[72] J. Barragán-Amado, B. Carneiro Da Cunha and E. Pallante, Scalar quasinormal modes of

Kerr-AdS5, arXiv:1812.08921 [INSPIRE].

[73] O. Gamayun, N. Iorgov and O. Lisovyy, How instanton combinatorics solves Painlevé VI, V
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