
J
H
E
P
0
5
(
2
0
1
8
)
2
0
6

Published for SISSA by Springer

Received: April 4, 2018

Accepted: May 21, 2018

Published: May 31, 2018

Holographic anisotropic background with

confinement-deconfinement phase transition

Irina Aref’evaa and Kristina Rannua,b

aSteklov Mathematical Institute, Russian Academy of Sciences,

Gubkina str. 8, 119991, Moscow, Russia
bPeoples’ Friendship University of Russia,

Miklukho-Maklaya str. 6, 117198, Moscow, Russia

E-mail: arefeva@mi.ras.ru, rannukristina@gmail.com

Abstract: We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-

Maxwell system. The anisotropic background is specified by an arbitrary dynamical expo-

nent ν, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the

first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell

field. The blackening function supports the Van der Waals-like phase transition between

small and large black holes for a suitable first Maxwell field charge. The isotropic case

corresponding to ν = 1 and zero magnetic field reproduces previously known solutions. We

investigate the anisotropy influence on the thermodynamic properties of our background,

in particular, on the small/large black holes phase transition diagram.

We discuss applications of the model to the bottom-up holographic QCD. The RG

flow interpolates between the UV section with two suppressed transversal coordinates and

the IR section with the suppressed time and longitudinal coordinates due to anisotropic

character of our solution. We study the temporal Wilson loops, extended in longitudinal

and transversal directions, by calculating the minimal surfaces of the corresponding probing

open string world-sheet in anisotropic backgrounds with various temperatures and chemical

potentials. We find that dynamical wall locations depend on the orientation of the quark

pairs, that gives a crossover transition line between confinement/deconfinement phases in

the dual gauge theory. Instability of the background leads to the appearance of the critical

points (µϑ,b, Tϑ,b) depending on the orientation ϑ of quark-antiquark pairs in respect to the

heavy ions collision line.

Keywords: Holography and quark-gluon plasmas, AdS-CFT Correspondence, Gauge-

gravity correspondence

ArXiv ePrint: 1802.05652

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2018)206

mailto:arefeva@mi.ras.ru
mailto:rannukristina@gmail.com
https://arxiv.org/abs/1802.05652
https://doi.org/10.1007/JHEP05(2018)206


J
H
E
P
0
5
(
2
0
1
8
)
2
0
6

Contents

1 Introduction 1

2 Black brane anisotropic solutions 3

2.1 The equations of motion and boundary conditions 3

2.2 Solutions with factor b(z) = expP (z) and spatial anisotropy 4

2.3 Solutions with factor b(z) = exp(cz2/2) and spatial anisotropy 7

2.3.1 Blackening function 7

2.3.2 Coupling function f2 10

2.3.3 Scalar field 12

2.3.4 Scalar potential 15

2.4 Scalar invariants 16

2.5 RG flow 17

3 Thermodynamics of the background 22

3.1 Temperature 22

3.2 Entropy 26

3.3 Free energy 30

4 Confinement-deconfinement phase transition 33

4.1 Equation for the dynamical wall 33

4.2 P (z) = cz2/2 36

4.2.1 Zero temperature 36

4.2.2 Non-zero temperature, zero chemical potential 37

4.2.3 Non-zero chemical potential 39

4.2.4 The dynamical wall position 40

4.2.5 Phase transition lines and critical points 41

5 Conclusion and discussion 43

A Equations of motion 48

B Simplest solutions to system (2.5)–(2.10) 50

B.1 Solutions for anisotropic metric ν 6= 1 and c = 0, At 6= 0 50

B.2 Solutions for anisotropic metric ν 6= 1 and c = 0, At = 0 51

B.3 Vacuum solutions 52

– i –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
6

1 Introduction

Study of the phase diagram of QCD, as a function of temperature T and chemical po-

tential µ, corresponding to baryon density or some other conserved charge, is one of the

great modern challenge. The diagram of QCD displays a rich structure [1, 2]. Particu-

larly interesting and important features of the phase diagram are the nature of the chiral

phase transition, the location of the chiral critical point and its properties. There are

well known obstacles to study this problem by usual tools, such as perturbative theory or

lattice calculations.

The gravity/gauge duality provides an alternative tool for understanding dynamics of

the strong coupling system, where standard methods are not enough. One such system

is the quark-gluon plasma (QGP) produced in the heavy-ions-collisions (HIC) [3–5]. It

is believed that the QGP is created in a very short time after the collision (τtherm ≈
few 0.1 fm/c) and there are indications that during this time the QGP is anisotropic [6].

In [7] we have considered a special anisotropic backgrounds, parametrized by the dynamical

exponent ν, and found out that the shock wave model of HIC for ν = 4.45 reproduces the

experimental energy dependence of the total multiplicity, M ∼ s0.155 [8]. Note that all

attempts to reproduce this dependence in isotropic models failed [9–21].

On the other hand, static holographic models perfectly reproduce main properties of

QCD [3–5, 22]. Therefore, it would be interesting to know how these properties are changed

in anisotropic backgrounds. Some of these questions have been already addressed in [23–36]

and refs therein. In particular, in [35] the confinement-deconfinement crossover transition

in the temperature-chemical potential plane has been observed. However, in this paper,

analogous to [37] and many others [38–43], it was not assumed that the metric is supported

by some Lagrangian. Let us remind, that for the isotropic case, ν = 1, the background used

in [37] was constructed in [44] as a solution of equations of motion in the Einstein-dilaton

theory. Later, this background has been generalized for non-zero electro-field [45, 46] in

the Einstein-dilaton-Maxwell theory in order to describe the confinement-deconfinement

phase transition holographically, (see also [42, 43, 47–49] and early papers [50–52]). The

anisotropic ν 6= 1 black brane background with a trivial warp factor and a non-zero electro-

magnetic field has been constructed in [33]. As it already has been mentioned, the collision

of shock waves in this 5-dimensional dual vacuum background gives the total multiplic-

ity dependence on energy in the form M ∼ s0.155, which reproduces the experimental

dependence [8].

This paper is devoted to the construction of the anisotropic 5-dimensional background

specified by an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero time

component of the first Maxwell field and a non-zero longitudinal magnetic component

of the second Maxwell field. To see clearly possible new effects caused by anisotropy,

it is useful to deal with an explicit analytical solution. For this purpose we take the

particular case of the simplest warp factor b(z) = e
cz2

2 . We find the dilaton potential by

the potential reconstruction method similar to the isotropic case [46] (and refs therein). We

show that only c ≤ 0 guarantees real solutions for the dilaton (compare with [19] and refs

therein). We construct the blackening function that supports the Van der Waals-like phase
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transition between small and large black holes for a suitable first Maxwell field charge.

The isotropic case corresponding to ν = 1 and zero magnetic field reproduces previously

known solutions [45, 46]. We investigate the anisotropy influence on the thermodynamic

properties of our background, in particular, on the small/large black holes phase transition

diagram. We find that the anisotropy changes the location of the domain of instability.

We also discuss applications of the model to the bottom-up holographic QCD. We note

that the RG flow interpolates between the UV section with two transversal suppressed co-

ordinates and the IR section with the suppressed time and longitudinal coordinates due

to anisotropic character of our solution. We study the temporal Wilson loops extended

in longitudinal and transversal directions by calculating the minimal surfaces of the corre-

sponding probing open string world-sheet for various values of temperature and chemical

potential. We find that for particular sets of the model parameters the dynamical wall

appears. The appearance of dynamical walls also depends on the orientation of the tempo-

ral Wilson loop, that gives a crossover transition line between confinement-deconfinement

phases in the dual gauge theory. This effect has been also observed in the anisotropic

model considered in [35]. In the background, investigated in the present paper, there are

two more anisotropic effects. Namely, the instability of the background restricts leads to

the appearance of critical points (µϑ,b, Tϑ,b). Each critical point is located at intersection

of the confinement/deconfinement open string phase transition line and the small/large

black holes phase transition line of our background. The lines of the first type depend on

orientation of the quark-antiquark pairs and the lines of the second type are fixed for the

given anisotropy parameter ν. In other words, positions of the critical points (µϑ,b, Tϑ,b)

depend on the orientation of quark-antiquark pair in respect to the heavy ions collision

line. Averaging on all possible orientations on the quark-antiquark pairs, one gets a family

of the critical points. In our model it also happens, that the confinement/deconfinement

transition line, oriented along the transversal direction, is below the small/large black holes

phase transition line. This means that near the small chemical potential the small/large

black hole transition line is hidden by the confinement/deconfinement transition line for

the pair of quarks oriented in the transverse direction. Recall that a small/large black holes

transition line near the top of the holographic phase diagram is treated as a problem, since

this behavior is not supported neither by experimental data nor by calculations performed

in the framework of effective theories. Let us also remind, that most of the effective models

suggest the existence of a QCD critical point (µCEP , TCEP ) somewhere in the middle of

the phase diagram, where the crossover line becomes a first order transition line. There

were attempts to relate (µCEP , TCEP ) with the small/large black holes background tran-

sition [51, 52], but here there is a problem with the first order phase transition in the top

of the QCD phase diagram, that is not present at the QCD phase diagram [1, 2]. The

isotropic holographic model improving this has been proposed in [49] just by removing the

small/large black holes background transition, see also [53, 54]. We note, that the presence

of the small/large black holes background transition endows our anisotropic model by a

rich phase structure.

The paper is organized as follows. In section 2 we construct the anisotropic 5-dimen-

sional solution with an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero
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time component of the first Maxwell field and a non-zero longitudinal magnetic component

of the second Maxwell field. In section 2.3 we consider exponential warp factors with

quadratic exponent and show that only negative definite quadratic form guarantees the real

solutions for the dilaton. In section 3 we discuss the thermodynamics of the constructed

background and find out the small/large black holes transition line in the (µ, T )-plane.

Sections 2.5 and 4 are devoted to applications to QCD. In section 2.5 we shortly discuss

the RG flows corresponding to constructed solutions. In section 4.1 we find dynamical walls

corresponding to the temporal Wilson loops extended in the longitudinal and transversal

directions. In section 4.2.5 we determine the relative position of the background and the

confinement-deconfinement phase transition lines and discuss the corresponding critical

points. In appendix A we derive E.O.M. and in appendix B we present simplest solutions,

the black hole solutions for c = 0, with zero and non-zero chemical potential, and the

vacuum solution for c < 0 for completeness.

2 Black brane anisotropic solutions

2.1 The equations of motion and boundary conditions

We consider a 5-dimensional Einstein-dilaton-two-Maxwell system. In the Einstein frame

the action of the system is specified as

S =

∫
d5x

16πG5

√
− det(gµν)

[
R− f1(φ)

4
F 2
(1) −

f2(φ)

4
F 2
(2) −

1

2
∂µφ∂

µφ− V (φ)

]
, (2.1)

where F 2
(1) and F 2

(2) are the squares of the Maxwell fields F
(1)
µν = ∂µAν − ∂νAµ and

F
(2)
µν = q dy1 ∧ dy2, f1(φ) and f2(φ) are the gauge kinetic functions associated with the

corresponding Maxwell fields, V (φ) is the potential of the scalar field φ.

We search the black brane solution in the anisotropic background. For this purpose

we use the metric ansatz in the following form:

ds2 =
L2 b(z)

z2

[
− g(z)dt2 + dx2 + z2−

2
ν
(
dy21 + dy22

)
+
dz2

g(z)

]
, (2.2)

φ = φ(z), A(1)
µ = At(z)δ0µ, (2.3)

F (2)
µν = q dy1 ∧ dy2, (2.4)

where b(z) is the warp factor and g(z) is the blackening function; we set the AdS radius

L = 1 and all the quantities in formulas and figures are presented in dimensionless units.

The variation of the action (2.1) over metric components gµν gives 4 independent

equations, corresponding to 00-, 11-, 22- and 44-components of the Einstein tensor, that
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are presented in the appendix A. These equations can be transformed to the following ones:

g′′ + g′
(

3b′

2b
− 1

z
− 2

νz

)
− z2

b
f1A

′ 2
t = 0, (2.5)

b′′ − 3(b′)2

2b
+

2b′

z
− 4b

3νz2

(
1− 1

ν

)
+
b

3
(φ′)2 = 0, (2.6)

2g′
(

1− 1

ν

)
+ g

(
1− 1

ν

)(
3b′

b
− 4

z
− 4

νz

)
+
q2z−1+

4
ν

b
f2 = 0, (2.7)

−V − z4

2b2
A′ 2t f1 −

3z2b′g′

2b2
− 3z2gb′ 2

b3
+

9zgb′

2νb2
+

15zgb′

2b2
+
zg′

νb
+

2zg′

b
+

+
z2gφ′ 2

2b
− 8g

νb
− 4g

b
= 0. (2.8)

Here and below ′ = d/dz. The variation of the action (2.1) over the scalar field φ and the

components A
(1)
µ of the first Maxwell field leads to the following EOM:

φ′′ + φ′
(
g′

g
+

3b′

2b
− ν + 2

νz

)
+
z2A′ 2t
2bg

∂f1
∂φ
− q2z−2+

4
ν

2bg

∂f2
∂φ
− b

z2g

∂V

∂φ
= 0, (2.9)

A′′t +A′t

(
b′

2b
+
f ′1
f1
− 2− ν

νz

)
= 0 (2.10)

The EOM for the second Maxwell field doesn’t give any contribution into system (2.5)–

(2.10) as its left-hand side is identically zero:

∂µ

(√
−g f2(φ)Fµν(2)

)
= ∂4

(√
−g f2(φ)F 4ν

(2)

)
≡ 0.

We also impose the boundary conditions in the form:

b(0) = 1 (2.11)

g(0) = 1 and g(zh) = 0, (2.12)

At(0) = µ and At(zh) = 0, (2.13)

where zh is the horizon. As to the scalar field, it is natural to require that φ(z) is real for

0 < z ≤ zh and that

φ(zh) = 0. (2.14)

2.2 Solutions with factor b(z) = expP (z) and spatial anisotropy

One can use the following strategy to find particular solutions of the system of equa-

tions (2.5)–(2.10).

• Choose the form of functions b(z) and f1(z).

• Using these b(z) and f1(z), find the time component of the electric field At(z)

from (2.10).

• Using f1(z), b(z) and A′t(z), get the blackening function g(z) from (2.5).
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• Using b(z), find the derivative of the scalar field φ′(z) from (2.6). To have a solution

one has to be sure that

b′′ − 3b′ 2

2b
+

2b′

z
− 4b(ν − 1)

3ν2z2
≤ 0. (2.15)

• Using g(z) and b(z), get f2(z) from (2.7).

• Finally, get V = V (z) from (2.8).

Let us express the warp factor b(z) via a polynomial P (z):1

b(z) = eP (z), (2.16)

and take the coupling factor f1(z):

f1(z) = z−2+
2
ν . (2.17)

In this case the equation (2.10) becomes

A′′t +A′t

(
P ′(z)

2
− 1

z

)
= 0 (2.18)

and it’s solution has the form

At = C1

∫ z

0
e−

P (ξ)
2 ξdξ + C2. (2.19)

If we take into account the boundary conditions (2.13), the integration constants equal to

C1 = − µ∫ zH
0 e−

P (ξ)
2 ξdξ

= − µ̃, C2 = µ (2.20)

and the solution (2.19) becomes

At = µ

1−
∫ z
0 e
−P (ξ)

2 ξdξ∫ zH
0 e−

P (ξ)
2 ξdξ

 = µ̃

∫ zH

z
e−

P (ξ)
2 ξdξ. (2.21)

In a similar way equation (2.5) takes the form

g′′ + g′
(

3

2
P ′(z)− 1

z
− 2

νz

)
− µ̃ e−2P (z)z2+

2
ν = 0, (2.22)

and its solution is:

g = C4 +

∫ z

0
e−

3P (ξ)
2

(
C3 + µ̃2

∫ ξ

0
e−

P (χ)
2 χdχ

)
ξ1+

2
ν dξ. (2.23)

1For the isotropic case this form of factor b has been considered, in particular, in [45, 46], other form of

this factor has been also considered in [55].
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Using the first boundary condition in (2.12) we can determine the integration constant

C4 = 1, and taking into account the boundary condition on the horizon we find C3

C3 = −
1 + µ̃2

∫ zH
0 e−

3P (ξ)
2

(∫ ξ
0 e
−P (χ)

2 χdχ
)
ξ1+

2
ν dξ∫ zH

0 e−
3P (ξ)

2 ξ1+
2
ν dξ

, (2.24)

therefore the solution (2.23) becomes:

g = 1 + µ̃2
∫ z

0
e−

3P (ξ)
2

(∫ ξ

0
e−

P (χ)
2 χdχ

)
ξ1+

2
ν dξ (2.25)

−
1 + µ̃2

∫ zH
0 e−

3P (ξ)
2

(∫ ξ
0 e
−P (χ)

2 χdχ
)
ξ1+

2
ν dξ∫ zH

0 e−
3P (ξ)

2 ξ1+
2
ν dξ

∫ z

0
e−

3P (ξ)
2 ξ1+

2
ν dξ.

Equation (2.7) gives the following expression for the coupling function f2(z):

f2(z) =−ν−1

q2ν
eP (z)z1−

4
ν

[
2e−

3P (z)
2 z1+

2
ν

(
C3+µ̃2

∫ z

0
e−

P (ξ)
2 ξdξ

)
(2.26)

+
3zνP ′(z)−4(ν+1)

zν

(
1+C3

∫ z

0
e−

3P (ξ)
2 ξ1+

2
ν dξ+µ̃2

∫ z

0
e−

3P (ξ)
2

(∫ ξ

0
e−

P (χ)
2 χdχ

)
ξ1+

2
ν dξ

)]
.

Equation (2.6) allows to find the scalar field φ(z):

φ(z) = C5 +

∫ z

0

√
− 3P ′′(ξ) +

3

2
P ′2(ξ)− 6

ξ
P ′(ξ) + 4

ν − 1

ξ2ν2
dξ. (2.27)

Using the boundary condition (2.14), we get

C5 = −
∫ zh

0

√
− 3P ′′(ξ) +

3

2
P ′2(ξ)− 6

ξ
P ′(ξ) + 4

ν − 1

ξ2ν2
dξ (2.28)

and therefore

φ(z) =

∫ z

zh

√
− 3P ′′(ξ) +

3

2
P ′2(ξ)− 6

ξ
P ′(ξ) + 4

ν − 1

ξ2ν2
dξ. (2.29)

Finally, equation (2.8) gives the scalar potential V (φ(z)):

V (φ(z)) =
9

2
P ′(z)e−P (z)z

[
1+

1

ν
−C3

(
e−

3P (z)
2

2
z2+

2
ν −
(

1+
1

ν

)∫ z

0
e−

3P (ξ)
2 ξ1+

2
ν dξ

)

+ µ̃2

(
e−

3P (z)
2

2
z2+

2
ν

∫ z

0
e−

P (ξ)
2 ξdξ−

(
1+

1

ν

)∫ z

0
e−

3P (ξ)
2

(∫ ξ

0
e−

P (χ)
2 χdχ

)
ξ1+

2
ν dξ

)]

+
3

2
e−P (z)z2

(
P ′′(z)+

3

2
P ′2(z)+4

1+3ν+2ν2

2z2ν2

)
(2.30)

×
[
1+C3

∫ z

0
e−

3P (ξ)
2 ξ1+

2
ν dξ+µ̃2

∫ z

0
e−

3P (ξ)
2

(∫ ξ

0
e−

P (χ)
2 χdχ

)
ξ1+

2
ν dξ

]
+e−

5P (z)
2 z2+

2
ν

[(
3

4
P ′(z)z+2+

1

ν

)(
C3+µ̃2

∫ z

0
e−

P (ξ)
2 ξdξ

)
−µ̃2 e−

P (z)
2
z2

2

]
.
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If we substitute the expressions (2.16), (2.17), (2.21) and (2.25)–(2.30) into the con-

straint (2.9) and take into account that ∂V/∂φ = V ′/φ′, we can make certain that the

left-hand side of (2.9) disappears. Therefore the system (2.5)–(2.10) is self-consistent and

satisfied by the general solution (2.16), (2.17), (2.21) and (2.25)–(2.30).

2.3 Solutions with factor b(z) = exp(cz2/2) and spatial anisotropy

As we are interested in effects that can be caused by the anisotropy of the chosen metric

ansatz, it is needed to find some particular solution of the system (2.5)–(2.10) and inves-

tigate it’s properties explicitly. For this purpose we preferred to start from the simplest

form of the warp-factor, the same as in [37]:

b(z) = e
cz2

2 , (2.31)

and take the factor f1(z):

f1 = z−2+
2
ν . (2.32)

In this case the equation (2.5) becomes

A′′t +A′t

(
cz

2
− 1

z

)
= 0, (2.33)

and together with the boundary conditions

At(0) = µ, At(zh) = 0 (2.34)

this gives

At(z) = µ
e−

cz2

4 − e−
cz2h
4

1− e−
cz2
h
4

. (2.35)

2.3.1 Blackening function

Using the solution (2.35) and f1 given by (2.17), we rewrite equation (2.5) for the blackening

function:

g′′ + g′
(

3cz

2
− 1

z
− 2

νz

)
− µ2c2 z2+

2
ν e−cz

2

4

(
1− e−

cz2
H
4

)2 = 0. (2.36)

Taking into account the boundary conditions (2.12), we get

g(z) = 1−
γ(1 + 1

ν ; 3
4cz

2)

γ(1 + 1
ν ; 3

4cz
2
h)
− µ2e

1
2
cz2h

4c1/ν
γ(1 + 1

ν ; cz2)

(1− e
1
4
cz2h)2

+
µ2e

1
2
cz2h

4c1/ν
γ(1 + 1

ν ; cz2h)

(1− e
1
4
cz2h)2

γ
(
1 + 1

ν ; 3
4cz

2
)

γ(1 + 1
ν ; 3

4cz
2
h)
, (2.37)

where γ(1 + 1
ν , x) is the incomplete gamma function.
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There is no problem with solution in such a form for c > 0, but for c < 0 some

ingredients of this presentation seem to fail. Indeed, c1/ν is ill-defined for c < 0. By this

reason we rewrite the above formula as

g(z) = 1− z
2+ 2

ν

z
2+ 2

ν
h

G(34cz
2)

G(34cz
2
h)
− µ2cz2+

2
ν e

cz2h
2

4

(
1−e

cz2
h
4

)2 G(cz2)+
µ2cz2+

2
ν e

cz2h
2

4

(
1−e

cz2
h
4

)2

G(34cz
2)

G(34cz
2
h)

G(cz2h), (2.38)

where

G(x) = x−1−
1
ν γ

(
1 +

1

ν
, x

)
(2.39)

and the function G(x) has the following expansion (see [56], p. 1377):

G(x) =
∞∑
n=0

(−1)n xn

n!(1 + n+ 1
ν )
. (2.40)

Taking into account the first two terms of the expansion (2.40), we get

gappr(z) = 1− z2+
2
ν

z
2+ 2

ν
h

(
ρ+Qz2h −Qz2

)
, (2.41)

where

ρ =
4(1 + 2ν)− 3cz2(1 + ν)

4(1 + 2ν)− 3cz2h(1 + ν)
, (2.42)

Q =
µ2c2ν z

2+ 2
ν

h e
cz2h
2

4

(
1− e

cz2
h
4

)2 (
4(1 + 2ν)− 3cz2h(1 + ν)

) . (2.43)

This expression can be recast into a form

gappr(z) = 1− z2+
2
ν

((
ρ

zh

)2+ 2
ν

+
Q

z
2/ν
h

)
+Q

z4+
2
ν

z
2+ 2

ν
h

, (2.44)

and after the redefinition zh = z̃hρ, Q = Q̃z
2+ 2

ν
h it becomes

gappr(z) = 1− z2+
2
ν

 1

z̃
2+ 2

ν
h

+ Q̃ρ2z̃2h

+ Q̃ z4+
2
ν . (2.45)

The blackening function used in [4]

g[2](z) = 1− z2+
2
ν

 1

z
2+ 2

ν
h

+Qz2h

 z2+
2
ν +Qz4+

2
ν (2.46)
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Figure 1. Blackening functions g(z) (solid lines), gapprox(z) (same thickness dashed lines) and

gapprox,[2](z) (same thickness dotted lines) for zh = 1, ν = 4.5, c = −1 (blue lines), ν = 4.5,

c = −0.5 (magenta lines), ν = 1, c = −1 (green lines) and different µ = 0, . . . , 3.

is different by the factor ρ2 in the second coefficient in front of z2+
2
ν . Near the horizon this

factor is approximately equal to 1:

ρ ≈ 1− 6czh(1 + ν)

4(1 + 2ν)− 3cz2h(1 + ν)
(z − zh) +O((z − zh)2). (2.47)

The behavior of the blackening function from the holographic coordinate z till horizon

is depicted on figure 1. The main feature is that the blackening function values decrease

faster for larger chemical potential µ (figure 1.A) and for smaller warp factor coefficient

c (figure 1.B). The difference between the approximations (2.45) and (2.46) and the ex-

act expression (2.37) is irregular and depends on the model parameters (figure 1.C). In

the isotropic case the blackening function values are larger than in the anisotropic ones

(figure 1.C and D). For µ close to zero it is the desreasing function of z till the horizon,
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but for growing µ the local minimums and the second horizons small than the original ones

appear. Changing the values of c almost does not influence on the horizon position.

2.3.2 Coupling function f2

We can substitute the expression for the blackening function (2.38) into (2.7), take into

account

g′(z) = − 2
z1+

2
ν

z
2+ 2

ν
h

e−
3cz2

4

G(34cz
2
h)
− µ2c z1+

2
ν e−cz

2+
cz2h
2

2
(

1− e
cz2
h
4

)2
(

1− e
cz2

4
G(cz2h)

G(34cz
2
h)

)
(2.48)

and get

f2(z) =
ν−1

q2ν2
z−

4
ν e

cz2

2

4(1+ν)−3cν z2+4
z2+

2
ν

z
2+ 2

ν
h

 ν e−
3cz2

4

G
(
3
4cz

2
h

)−(1+ν)
G
(
3
4cz

2
)

G
(
3
4cz

2
h

) F

+
µ2cν z

2+ 2
ν

h e−cz
2+

cz2h
2

4
(

1−e
cz2
h
4

)2
(

1−e
cz2

4
G
(
cz2h
)

G
(
3
4cz

2
h

))
+3cν

z4+
2
ν

z
2+ 2

ν
h

G
(
3
4cz

2
)

G
(
3
4cz

2
h

) F

 , (2.49)

where

F = 1−
µ2c z

2+ 2
ν

h e
cz2h
2

4
(

1− e
cz2
h
4

)2
(
G
(
cz2h
)
−G

(
cz2
) G

(
3
4cz

2
h

)
G
(
3
4cz

2
)) . (2.50)

At the horizon

f2(zh) = 4
ν − 1

q2ν
z−

4
ν

 e−
cz2h
4

G
(
3
4cz

2
h

) +
µ2c z

2+ 2
ν

h

4
(

1− e
cz2
h
4

)2
(

1− e
cz2h
4

G
(
cz2h
)

G
(
3
4cz

2
h

))
 . (2.51)

Using the first two terms of the expansion (2.40) on z and zh

G(cz2(h)) =
ν

ν + 1
−
c ν z2(h)

2ν + 1
, (2.52)

G

(
3

4
cz2(h)

)
=

(
3

4

)1+ 1
ν

(
ν

ν + 1
− 3

4

cνz2(h)

2ν + 1

)
, (2.53)
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Figure 2. Coupling function f2(z) (solid lines) and f2 approx (same thickness dashed lines) for

zh = 1, ν = 4.5, c = −1, q = 1, µ = 0, 1, 5 (A) and µ = 1, q = 0.7, 1, 5 (B).

we have the following expansion of coupling factor f2:

f2 approx(z) =
ν−1

q2ν2
z−

4
ν e

cz2

2

4(1+ν)−3cνz2 (2.54)

+
z2+

2
ν

z
2+ 2

ν
h

{
16(1+ν)(1+2ν)

3cz2h(1+ν)−4(1+2ν)

(
1− 41+

1
ν

31+
1
ν

e−
3cz2

4

)

−
µ2cνz

2+ 2
ν

h e
cz2h
2(

1−e
cz2
h
4

)2
(

1−e−cz2−4
cz2h(1+ν)−(1+2ν)

3cz2h(1+ν)−4(1+2ν)

(
1− 41+

1
ν

31+
1
ν

e−
3cz2

4

))}

− z
4+ 2

ν

z
2+ 2

ν
h

{
12c(1+3ν(1+ν))

3cz2h(1+ν)−4(1+2ν)
+
µ2c2νz

2+ 2
ν

h e
cz2h
2

4

(
1−e

cz2
h
4

)2

3cνz2h+4(1+2ν)

3cz2h(1+ν)−4(1+2ν)

}

+
z6+

2
ν

z
2+ 2

ν
h

9c2ν(1+ν)

3cz2h(1+ν)−4(1+2ν)

1+
µ2cνz

2+ 2
ν

h e
cz2h
2

12
(

1−e
cz2
h
4

)2
(1+ν)




and at the horizon

f2 approx(zh) =
1− ν
q2ν2

z
− 4
ν

h e−
cz2h
4

43+
1
ν

31+
1
ν

(1 + ν)(1 + 2ν)

3cz2h(1 + ν)− 4(1 + 2ν)
(2.55)

−
µ2cνz

2+ 2
ν

h e
cz2h
4(

1− e
cz2
h
4

)2
(

1− 42+
1
ν

31+
1
ν

cz2h(1 + ν)− (1 + 2ν)

3cz2h(1 + ν)− 4(1 + 2ν)
e
cz2

4

) .

If we substitute gappr(z) into f2, the result coincides with (2.54) (figure 2).
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Figure 3. Scalar field φ(z) for ν = 4.5, c = −1 (solid lines), c = −2 (dashed lines) and c = −3

(dotted lines) and different zh.

2.3.3 Scalar field

Substitution of (2.31) into (2.6) leads to

φ′ =
1

νz

√
3

2
ν2c2z4 − 9ν2cz2 + 4ν − 4. (2.56)

Here we should take into account, that the radicand in (2.56) shouldn’t be negative. There-

fore we have different cases of parameter c value.

• c < 0. For c < 0 this requirement is fullfiled without any restrictions and for the scalar

field we have (figure 3)

φ=
1

2
√

2ν

√3c2ν2z4−18cν2z2+8(ν−1)−
√

3c2ν2z4h−18cν2z2h+8(ν−1) (2.57)

+ 2
√

2(ν−1) ln

(
z2

z2h

)
−3
√

3ν ln

√3c2ν2z4−18cν2z2+8(ν−1)−
√

3ν (3−cz2)√
3c2ν2z4h−18cν2z2h+8(ν−1)−

√
3ν (3−cz2h)


− 2
√

2(ν−1) ln

9cν2z2−8(ν−1)−
√

2(ν−1)
√

3c2ν2z4−18cν2z2+8(ν−1)

9cν2z2h−8(ν−1)−
√

2(ν−1)
√

3c2ν2z4h−18cν2z2h+8(ν−1)

 .
For small z the scalar field can be approximated as

φ ∼ − k(zh, ν, c) +
2
√
ν − 1

ν
log

(
z

zh

)
(2.58)

and for large z

φ ∼ |c|
2

√
3

2
z2. (2.59)
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• c > 0. For c > 0 expression (2.56) can be parametrized as

φ′ =
c

z

√
3

2
(α2 − z2)(β2 − z2), (2.60)

where

α2β2 =
8(ν − 1)

3ν2c2
, α2 + β2 =

6

c
, (2.61)

and

α =

√
3

c
− 1

c

√
9− 8(ν − 1)

3ν2
, β =

√
3

c
+

1

c

√
9− 8(ν − 1)

3ν2
. (2.62)

Note, that we can get a real solution only for

i) α2 − z2 > 0, β2 − z2 > 0, (2.63)

ii) α2 − z2 < 0, β2 − z2 < 0. (2.64)

Integrating (2.60) we obtain

φ(z) =

√
3

8
c

√(α2 − z2)(β2 − z2)−
√

(α2 − z2h)(β2 − z2h) + αβ ln

(
z2

z2h

)

− α2 + β2

2
ln

√(α2 − z2)(β2 − z2) + z2 − α2+β2

2√
(α2 − z2h)(β2 − z2h) + z2h −

α2+β2

2

 (2.65)

− αβ ln

α2β2 − α2+β2

2 z2 + αβ
√

(α2 − z2)(β2 − z2)

α2β2 − α2+β2

2 z2h + αβ
√

(α2 − z2h)(β2 − z2h)


We see that the solution (B.21) becomes complex for α < z < β. It leads to an instability

region for the scalar field (figure 4).

• c = 0. For c = 0 we get (figure 5)

φ′ =
2
√
ν − 1

νz
, (2.66)

φ =
2
√
ν − 1

ν
ln

(
z

zh

)
. (2.67)
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A

B

Figure 4. Scalar field φ(z, zh, ν, c) and its imaginary part for ν = 4.5, different positive c, zh = 0.2

(A) and zh = 2 (B).

Figure 5. Scalar field φ(z, zh, ν, c) for ν = 4.5, c = 0 and different zh.
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2.3.4 Scalar potential

From equation (2.8) we get the expression for the scalar potential V as a function of z:

V (z) =
e−

cz2

2

8ν2

− 16
(
2ν2 + 3ν + 1

)
+ 12c ν z2 (2ν + 3) + 16

(
2ν2 + 3ν + 1

)
z2+

2
ν V

− 16ν (2ν + 1)
z2+

2
ν

z
2+ 2

ν
h

e−cz
2

 e
cz2

4

G(34cz
2
h)

+
µ2c z

2+ 2
ν

h e
cz2h
2

4
(

1− e
cz2
h
4

)2
(

1− e
cz2

4
G(cz2h)

G(34cz
2
h)

)
− 18c2ν2z4 − 12cν (2ν + 3) z4+

2
ν V

− ν
z4+

2
ν

z
2+ 2

ν
h

e−cz
2

−24c ν e
cz2

4

G(34cz
2
h)
−

5µ2c2ν z
2+ 2

ν
h e

cz2h
2(

1− e
cz2
h
4

)2
(

1− 6

5
e
cz2

4
G(cz2h)

G(34cz
2
h)

)
+ 18c2ν2z6+

2
ν V

 , (2.68)

where

V =
1

z
2+ 2

ν
h

G(34cz
2)

G(34cz
2
h)

+
µ2c e

cz2h
2

4

(
1− e

cz2
h
4

)2

(
G(cz2)−G(cz2h)

G(34cz
2)

G(34cz
2
h)

)
. (2.69)

The dependence V (φ) can’t be expressed explicitly due to nontrivial behavior of

φ(z) (2.57), but it can be displayed graphically (figure 6). For c = −1 it can be ap-

proximated by a sum of two exponents and a negative constant:

V2EA(φ, µ, ν) = V0(ν)− C7(µ, ν)eK1(ν)φ + C8(µ, ν)eK2(ν)φ. (2.70)

The best fit is given by

V0(4.5) = − 0.5778, K1(4.5) = 0.7897, K2(4.5) = 2.0995 (2.71)

with the coefficients depending on the chemical potential µ (figure 6.A and B):

C7(µ, 4.5) = 23.0779 + 2.4236µ2, C8(µ, 4.5) = 0.0575 + 4.9919µ2. (2.72)

In isotropic case (figure 6.C and D) the approximation constants are:

V0(1) = − 10.8689, K1(1) = 1.0852, K2(1) = 2.4103, (2.73)

C7(µ, 1) = 27.2825 + 4.3749µ2, C8(µ, 1) = 0.0031 + 5.03093µ2. (2.74)

Note, that in [57] an explicit isotropic solution for the dilaton potential as a sum of

two exponents and zero chemical potential has been constructed. It would be interesting

to generalize this construction to the anisotropic and non-zero chemical potential cases.
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C D

Figure 6. Scalar field potential V (φ) (solid lines) and its approximation (dashed lines) as a sum

of two exponents and a constant for zh = 1, c = −1 and different µ in anisotropic, ν = 4.5, (A) and

isotropic (C) cases. The right plots (B) and (D) are zoom of the corresponding left ones.

The behavior of V (φ) for positive warp factor coefficient is quite different. Let us recall

that for c > 0 the scalar field φ becomes complex under horizon (figure 7). The function

V (Re(φ)) doesn’t display visible dependence on chemical potential (figure 8.A) and the

function V (|φ|) stops to depend on µ rather soon (figure 8.B).

2.4 Scalar invariants

For completeness we present here the dependence of the scalar invariants R, R2 = RµνR
µν

and K = RµνρσR
µνρσ on the parameter µ for the unit horizon and negative warp factor co-

efficient c. All the invariants are smooth inside the black hole and start to diverge for z > zh
(figure 9, 10). In isotropic case it happens earlier, means for smaller z, than is anisotropic

one. Thus the horizons of the blackening function, depicted on figure 1, are regular.
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Figure 7. Module, real and imaginary parts of the scalar field φ for ν = 4.5, zh = 1, c = 1.

A B

Figure 8. Scalar potential V
(
Re(φ)

)
(A) and V (|φ|) (B) for ν = 4.5, zh = 1, c = 1 and different

µ under horizon, i.e. 0 < z < 1.

2.5 RG flow

Our background is an anisotropic analog of the background used in the improved holo-

graphic QCD model [22]. The holographic coordinate z corresponds to the 4D RG scale.

According to holographic dictionary one identifies the 4D energy scale E with the metric

scalar factor, i.e. E = E0 L
√
b(z)/z ≡ E0LB(z), in what follows we put E0L = 1. The

running ’t Hooft coupling λt is identified with the string coupling λ = eφ up to a factor,
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Figure 9. Ricci scalar R(z) for zh = 1, c = −1 in isotropic, ν = 1, and anisotropic, ν = 4.5, cases

for different µ.

A B

Figure 10. Ricci R2(z) and Riemann K(z) invariants for zh = 1, c = −1 in isotropic, ν = 1, and

anisotropic, ν = 4.5, cases for different µ.

λ = κλt. In figure 11.A we show the dependence of coupling constant on the energy parame-

ter for isotropic and anisotpopic cases. We see that the running coupling constant decreases

from the IR region to the UV region. This behavior reproduces our expectations of the

running coupling view in a nonperturbative QCD. Note, that the anisotropic case does not

differ much from the isotropic one. The difference becomes more essential for small zh.

The β-function in terms of the background is defined as [5, 58]

β(λ) =
dλ

d logE
= λ

dφ

d logB
, B =

√
b(z)

z
. (2.75)

Introducing the function X, related with the β-function as

X(φ) =
β(λ)

3λ
=
B

B′
φ′

3
, (2.76)
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A B

Figure 11. The running coupling as function of the energy scale (A) and the RG flow (B) in

isotropic and anisotropic ν = 4.5 case; the plot legends are the same for both panels.

the function Y , related with the blackening function as

Y (φ) =
1

4

g′

g

B

B′
, (2.77)

and the function H, related with the vector field provided by non-zero chemical potential as

H(φ) =
A′t
B
, (2.78)

one can check that in the isotropic case due to E.O.M. these quantities satisfy the first

order differential equations

dX

dφ
= − 4

3

(
1− 3

8
X2 + Y

)(
1 +

1

X

2∂φV −H2 ∂φf1
2V +H2f1

)
, (2.79)

dY

dφ
= − 4Y

3X

(
1− 3

8
X2 + Y

)(
1 +

3

2Y

H2f1
2V +H2f1

)
, (2.80)

dH

dφ
= −

(
1

X
+
∂φf1
f1

)
H, (2.81)

where ∂φ = ∂/∂φ. The anisotropic case is more subtle and will be the subject of a forth-

coming paper.

Figure 12 shows the X-flow in the anisotropic case for ν = 4.5 and different zh in the

(φ,X)- and in the (λ,X)-planes. The function X(φ) decreases starting from a constant

value up to a local minimum as the argument grows and is shifted to the right for larger

horizon. The function X(λ) for zh < 4 smoothly decreases with increasing λ and for zh > 4

the dependence is more complicated.

In figure 13 the behavior of functions β(λ) in anisotropic, ν = 4.5, (figure 13.A) and

isotropic (figure 13.C) cases and the corresponding potentials V (φ) (figure 13.B and D) for
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Figure 12. The RG flows for anisotropic case ν = 4.5 and different zh in the (φ,X)-plane (A), in

the (λ,X)-plane (B) and in a small part of (B) near the origin (C).

the same horizon values are shown. We see, that for both cases β(λ) < 0 in an agreement

with the asymptotical freedom. For larger zh both functions display more non-linearity and

decrease faster with the argument grow. This tendency is peculiar either for the isotropic

or the anisotropic case. The only special difference is the non-zero value of β(0) for ν = 1.

We expect that changing the form of P (z) we can, as in the isotropic case [5, 40, 58], to

recover the first orders expression of the perturbative β-function.

In figure 14 we show the dependence of the β-function on H for the isotropic and

anisotropic (ν = 4.5) cases. We see that β is the increasing function of H, approximately

linear for large negative argument values and displaying its non-linearity near zero. The

function values are visibly larger for larger chemical potential, while the anisotropy does

not change this picture much.
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Figure 13. The function β(λ) in anisotropic, ν = 4.5, (A) and isotropic, ν = 1, (C) cases near

small λ; scalar potentials V (φ) for µ = 0 in anisotropic, ν = 4.5, (B) and isotropic, ν = 1, (D) cases.

In figure 15 the Y -flow is shown for anisotropic case with zero and non-zero chemical

potential. The function grows rapidly and this growth does not essentially depend on the

size of the horizon.

In figure 16 we display the RG flows in the (X,Y )-plane for anisotropic case ν = 4.5

and zero and non-zero chemical potential. The X and Y have the inverse ratio dependence

and does not change much for different zh.

Figure 17 shows the RG flows in the (X,Y,H)-space. We see that our anisotropy

essentially changes the character of the flow.

– 21 –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
6

Figure 14. The function β(H) in isotropic and anisotropic ν = 4.5 cases.

A B

Figure 15. Y flows in anisotropic case ν = 4.5 for different zh, µ = 0 (A) and µ = 0.5 (B).

3 Thermodynamics of the background

3.1 Temperature

Calculating the derivative of the blackening function (2.48) at the horizon we get the

temperature

T (zh, µ, c, ν) =
g′(zh)

4π
=
e−

3cz2h
4

2πzh

∣∣∣∣∣∣∣∣∣
1

G(34cz
2
h)

+
µ2cz

2+ 2
ν

h e
cz2h
4

4

(
1− e

cz2
h
4

)2

(
1− e

cz2h
4

G(cz2h)

G(34cz
2
h)

)∣∣∣∣∣∣∣∣∣ . (3.1)
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A B

Figure 16. RG flows in the (X,Y )-plane in anisotropic case ν = 4.5 for µ = 0 (A) and µ = 0.5

(B); the plot legends are the same as in figure 15.

Here the dependence on ν is caused by the function G (2.39) in the right-hand side of (3.1).

In particular, for the zero chemical potential, µ = 0,

T (zh, c, ν) ≡ T (zh, 0, c, ν) =
e−

3cz2h
4

2πzhG(34cz
2
h)
. (3.2)

For c = 0 it reproduces the result from [33]:

T (zh, 0, ν) = lim
c→0

e−
3cz2h
4

2πzhG(34cz
2
h)

=
1

2πzh

ν + 1

ν
. (3.3)

From (3.1) we get the dependence of temperature on zh, µ, c and ν. In figure 18.A

and figure 18.B we present the dependence of T on zh for different µ and fixed c = −1 for

isotropic (figure 18.A) and anisotropic (figure 18.B) cases, respectively. In figure 18.C we

compare the plots, presented in figure 18.A and figure 18.B. Plot in figure 18.D is a zoom

of figure 18.B. In figure 19 we present the dependence of temperature on zh for different

µ = 0 and c < 0, and in figure 20 the dependence of temperature on µ keeping zh = 1 for

different c < 0 is shown. Figure 21 displays contour plots for the temperature dependence

on the horizon position and chemical potential for the isotropic (A) and anisotropic (B)

cases at fixed c = −1.

These plots show the following behavior of the temperature:

• For µ = 0 (dashed lines) there is one extremal point (minimum) for the temperature

as a function of the horizon position; we denote the corresponding horizon zh as

zh,min(0) = zh,min(0, c, ν), and we get the following picture:

– for 0 < zh < zh,min(0) (large black holes) the temperature drops as zh grows and

for zh,min(0) < zh (small black holes) the temperature increases with the growth

of zh;
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Figure 17. RG flows in the (X,Y,H)-space in anisotropic case ν = 4.5 for zh = 2 (light red),

zh = 1.5 (light blue) and zh = 1 (lightgreen) (A); RG flows in the (X,Y,H)-space in anisotropic,

ν = 4.5, (meshed lines) and isotropic cases (not meshed lines) for zh = 1 (lightgreen) and zh = 2

(lightred) (B).
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– the minimal isotropic horizon z
(iso)
min (c) ≡ zh,min(0, c, 1) is larger than the min-

imal anisotropic horizon z
(ν)
min(c) ≡ zmin(0, c, ν), i.e. z

(iso)
min (c) > z

(ν)
min(c) and the

corresponding critical temperature Tmin(0) is higher for the isotropic case, i.e.

T (z
(iso)
min (c), c, 1) ≡ T

(iso)
min > T

(ν)
min ≡ T (z

(ν)
min(c), c, ν); one can read these inequali-

ties from the plot in figure 18.C and D;

– for negative c with decreasing |c| the temperature T
(iso)
min (the brown dashed line)

is below the green one and its minimum is shifted to the right from the minimum

of the green one (figure 19.A); T
(ν)
min (the cyan dashed line) is below the blue one

and its minimum is shifted to the right from that of the blue one figure 18.B);

– for c = −1 the values of the minimal horizons zmin(ν) are z
(iso)
min = 1.547 and

z
(4.5)
min = 1.168 for the isotropic and anisotropic cases; the corresponding temper-

atures are T
(iso)
min = 0.355 and T

(4.5)
min = 0.245 (figure 19.A and B).

• For 0 < µ < µcr there are two extremal points zh,min(µ) = zh,min(µ, c, ν) and zh,max =

zh,max(µ, c, ν); corresponding Tmin(µ) and Tmax(µ) are shown in figure 18:

– for 0 < z < zh,min the temperature drops with the growth of zh;

– for zh,min < z < zh,max the temperature increases with the growth of zh;

– for zh,max < z < zh0 the temperature decreases again with the growth of zh;

here zh0 is the position of the new horizon, T (zh0) = 0, zh0 = zh0(µ, c, ν);

– µcr, zh,min and zh,max depend on the warp factor coefficient c and the anisotropic

parameter ν;

– the anisotropy increases the size of the new horizon, zh0(µ, c, 1) < zh0(µ, c, ν).

• For µ = µcr (dotted lines in figure 18) there is no extremal point, but there is an

inflection point (zh,cr, Tcr), zh,cr = zh,cr(µcr), Tcr = Tcr(µcr), therefore

– for all values of zh with its growth the temperature decreases;

– the temperature becomes equal to zero at a new horizon.

• For µ > µcr increasing zh we decrease the temperature and there is a point zh0 =

zh0(µ, c, ν) where T (zh0) = 0, i.e. a new horizon appears;

– for negative c with the growth of |c| the values of zh0(µ, ν)(c) decrease,

zh0(µ, ν)(c1) < zh0(µ, ν)(c2) for |c1| > |c2| and all ν ≥ 1 (figure 19).

We can also investigate the behavior of T (µ) using expression (3.1) and taking some

fixed values of the horizon. In figure 20 we plot the curves for different negative values

of the warp factor coefficient c in isotropic (A) and anisotropic (B) cases for zh = 1. In

figure 20.C we compare these cases plotting them together. Figure 20.D and E display T (µ)

for large black holes with zh = 0.5 and small black holes with zh = 1.5. The function T (µ)

decreases faster for smaller c. The isotropic case curves lie higher than the anisotropic ones

and reach zero temperature at larger chemical potential values (figure 20.C). For smaller

horizons we have the same picture (figure 20.D and E).
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Figure 18. The dependence of temperature T (zh, µ, c, ν) on zh for c = −1 and different µ for

isotropic (A) and anisotropic, ν = 4.5, (B) cases, their comparison with the same line labels (C);

anisotropic case for c = −1 and different µ in details (D); the horizontal orange and red lines show

locations of the global minima in isotropic and anisotropic cases, respectively.

To summarize, note that the Van der Waals type of the temperature-horizon depen-

dence T (zh) observed in [45, 46] for isotropic case, also takes place in the anisotropic one

(see figure 21). In both cases this behavior becomes more pronounced with decreasing of

negative c, see figure 19. The approximate solution considered in [35] does not inherit

this property.

3.2 Entropy

The entropy is given by formula

s(zh, c, ν) =
e

3
4
cz2h

4
z
− (ν+2)

ν
h (3.4)

and is plotted in figure 22.
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Figure 19. File: Termo-mu-c-zh-original.nb+. The dependence of temperature T (zh, µ, c, ν) on zh
for different c and µ in isotropic (A) and anisotropic, ν = 4.5, (B) cases.

A B C

D E

Figure 20. The dependence of temperature T (zh, µ, c, ν) on µ for zh = 1 and different c in isotropic

(A) and anisotropic, ν = 4.5, (B) cases, their the comparison with the same line labels (C); for

small black holes with zh = 1.5 and large black holes with zh = 0.5 and different c in the isotropic

(D) and anisotropic, ν = 4.5, (E) cases.

Figure 22.A shows that the entropy is a monotonously decreasing function of the

horizon zh both for the isotropic and the anisotropic cases, in other words the entropy values

are bigger for larger black holes, whose horizons are smaller. As we see from figure 22.B,

the velocity of the entropy decreasing depends on parameters c and ν. It is interesting to

note that absolute value of this velocity for the same c is bigger in the isotropic case for
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Figure 21. Contour lines of the temperature T = T (zh, µ, c, ν) for c = −1 in the isotropic (A) and

anisotropic ν = 4.5 (B) cases.

A B

Figure 22. The black hole entropy s(zh) for µ = 0 and different c in isotropic (green lines) and

anisotropic (blue lines) (A) cases; the velocity of the entropy decreasing ∂s(zh)/∂zh (B); the plot

legends are the same for both panels.

large black holes and is smaller for small black holes. More precisely, for c = −1

s′zh(zh,−1, 1) < s′zh(zh,−1, 4.5) < 0 for zh < 1.248, (3.5)

s′zh(zh,−1, 4.5) < s′zh(zh,−1, 1) < 0 for zh > 1.248 (3.6)

and for c = −0.5

s′zh(zh,−0.5, 1) < s′zh(zh,−0.5, 4.5) < 0 for zh < 1.331, (3.7)

s′zh(zh,−0.5, 4.5) < s′zh(zh,−0.5, 1) < 0 for zh > 1.331. (3.8)

Here s′zh(zh, c, ν) = ∂s(zh, c, ν)/∂zh.

In figure 23 we present the entropy dependence on temperature T for µ = 0 and

different c for isotropic (green lines) and anisotropic (blue lines) cases. The plots in figure 23

show that in both cases there are minimal temperatures for which the black holes exist.
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Figure 23. The black hole entropy s(T ) for µ = 0 and different c in isotropic (green lines) and

anisotropic (blue lines) cases (A); regions located near the minimum temperatures Tmin(c, ν) with

an increased scale on the right (B); the red vertical lines indicate Tmin(c, 4.5) and the orange ones

indicate Tmin(c, 1) for c = −0.5 and c = −1.

The minimal temperature in the isotropic case is higher then in the anisotropic one for the

same value of c < 0, Tmin(c, 4.5) < Tmin(c, 1), that agrees with the plots in figure 18. In

both cases the entropy is a double-valued function and has a large black holes branches and

a small black holes one. For the small black holes the entropy increases with decreasing

T thus leading to the negativity of the specific heat cv = Tds/dT . Therefore small black

holes are thermodynamically unstable, whereas entropy of the large black holes grows while

temperature increases and therefore large black holes are thermodynamically stable.

In figure 24 we present the entropy dependence on temperature T for c = −1 and

different µ ≥ 0 for isotropic (green lines) and anisotropic (blue lines) cases. The plots in

figure 24 show that in both cases for fixed µ, 0 ≤ µ ≤ µcr(c, ν), there are minimal Tmin(µ, ν)

and maximal Tmax(µ, ν) temperatures, between which the entropy is a multivalued function

of T with three branches. We see well only two braches in figure 24.A, to see the third

one has to draw the picture figure 24.B for small values of s(T ). The schematic picture of

three branches is presented in figure 24.C. When we decrease the temperature, the entropy

decreases along the first branch (Tmin(µ, ν) < T < ∞). Then the entropy decreases along

the second branch with an increase of temperature from Tmin(µ, ν) to Tmax(µ, ν), i.e. here

the black holes are unstable. Finally the entropy increases along the third branch with an

increase of temperature for 0 ≤ T < Tmax(µ, ν), see also figure 18.D. In plots figure 25.A

and figure 25.B we show the unstable second branches as well as the transition of the three-

branch solution to the unified one-branch solutions at µ = µcr(−1, ν) (dotted green and blue

lines for the isotropic and anisotropic cases). The entropy dependence on the temperature

at unified branches corresponding to µ ≥ µcr(c, ν) is presented in plots figure 25 by lines

for µ ≥ 0.119 in isotropic case and µ ≥ 0.3 in anisotropic case.
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Figure 24. The black hole entropy s(T ) for different µ and c = −1 in isotropic (green lines) and

anisotropic case (blue lines) (A); a region of (A), located near the minimum temperatures Tmin(c, ν),

in increased scale (B), where the red vertical line indicates Tmin(−1, 4.5) = 0.245 and the orange one

indicates Tmin(−1, 1) = 0.355 for µ = 0; the schematic view of s(T ) three-branches behavior (C).

3.3 Free energy

To study transitions between different branches in more detail it is reasonable to consider

the free energy behavior of the corresponding solutions. The free energy for a given chemical

potential and fixed volume is related to the entropy as

dF = −s dT (3.9)

and can be found by integration of (3.9) that gives

F (zh, c, ν) =

∫
s dT =

∫ ∞
zh

s(zh, c, ν)T ′(zh, c, ν) dzh. (3.10)

The dependence of the free energy on the horizon position zh is presented in figure 26, the

dependence on T is presented in figure 27 and figure 28. In figure 26.A, which corresponds

– 30 –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
6

A B

Figure 25. Unstable second branches of s(T ) in isotropic (A) and anisotropic case (B) cases for

c = −1 and different µ.

A B

Figure 26. The black hole free energy F (zh) in isotropic (green lines) and anisotropic (blue lines)

cases for different c, µ = 0 (A) and different µ ≥ 0, c = −1 (B). The intersections with the horizontal

axis give the values of the Hawking-Page horizons zh,HP (µ, c, ν).

to µ = 0, we can see that the free energy as the function of zh is equal to zero at zh =

zh,HP (0, c, ν), and at this point the Hawking-Page phase transition takes place. The value

zh,HP (0, c, ν) depends on c and ν, and zh,HP (0, c1, ν) < zh,HP (0, c2, ν) for c1 < c2 < 0.

For the anisotropic background the Hawking-Page horizon is less than for the isotropic one

with the same c < 0. In particular,

1.138 = zh,HP (0,−1, 4.5) < zh,HP (0,−1, 1) = 1.505. (3.11)

Note that the position of horizon, where the temperature gets its local minimum,

exceed the position of the Hawking-Page horizon zh,HP (0,−1, ν) < zh,min(0,−1, ν).

As we can see from the plots in figure 26.B, for 0 < µ < µcr,HP (c, ν) the free energy

as the function of the horizon position keeps the same behavior as for µ = 0. At µ =

µcr,HP (c, ν) the free energy becomes non-positive and for µ > µcr,HP (c, ν) the Hawking-
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Figure 27. The black hole free energy F (T ) for c = −1 and different µ in isotropic case (A) and

its zoom near F = 0 (B).

Page horizon disappears. But for the chemical potential values in the interval µcr,HP (c, ν) <

µ < µcr(c, ν), the free energy still is double-valued what causes the black hole to black hole

phase transition (see below).

In figure 27 and figure 28 we show the behavior of the free energy as function of the

temperature. At µ = 0, as we can see in figure 27.B and figure 28.D, the free energy plots

intersect the horizontal axis at THP (c, ν), where the Hawking-Page phase transitions take

place, THP (0,−1, 1) = 0.347 and THP (0,−1, 4.5) = 0.256. At THP black holes dissolve

to thermal gas states with Fgas = 0. We note that THP (0,−1, 4.5) < THP (0,−1, 1), and

comparing to Tmin(0,−1, 4.5) = 0.255 and Tmin(0,−1, 1) = 0.345 we conclude that in both

isotropic and anisotropic cases,

0.347 = THP (0,−1, 1) > Tmin(0,−1, 1) = 0.345 (3.12)

0.256 = THP (0,−1, 4.5) > Tmin(0,−1, 4.5) = 0.255. (3.13)

From figure 26 we see that for zero chemical potential the free energy increases with

zh growth for large black holes, i.e. for zh < zhcr(c, ν), and decreases for small black holes.

For 0 < µ < µcr(c, ν) the dependence of the free energy from the temperature looks

like the swallow-tailed shape both in isotropic and anisotropic cases. When we decrease the

temperature from very large values up to Tmin(µ) (Tmin(µ) = Tmin(µ, c, ν), see figure 18),

the free energy riches its maximum value, then goes down to its local minimum at Tmax(c, ν)

and turns back to increase. It intersects itself at T = TBB (µ), where a large black hole

transits to a small one. Since both free energy values at T = TBB are equal and negative,

meanwhile the free energy of the thermal gas is zero, the system undergoes the phase

transition not to a thermal gaz, but to small black hole background. When we increase

the chemical potential µ from zero to µcr, the loop of the swallow-tailed shape shrinks
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Figure 28. The black hole free energy F (T ) for c = −1 and different µ in anisotropic case, ν = 4.5,

(A) and its zoom near F = 0 (B).

to disappear at µ = µcr(c, ν). For µ > µcr(c, ν), the curve of the free energy increases

smoothly from higher to lower values of temperature.

It is interesting to compare the phase diagrams corresponding to isotropic and

anisotropic backgrounds, see figure 29. We see that the first order phase transitions start

at (0, THP (0, 1)) and (0, THP (0, 4.5)), so that THP (0, 4.5) < THP (0, 1) and the transition

lines describing transitions from large black holes to small ones stop at points (µ
(iso)
cr , T

(iso)
cr )

and (µ
(aniso)
cr , T

(aniso)
cr ), herewith µ

(iso)
cr < µ

(aniso)
cr and T

(iso)
cr > T

(aniso)
cr .

It is also important for us to know the position of the large black holes to small black

holes transition points at (zh, T )-plane, see figure 30. In these plots the horizontal arrows

show transitions from the large black holes to small black holes for the anisotropic ν = 4.5

and isotropic cases. The shaded by these arrow areas define the instability zones.

Figure 31 summarizes our discussion of the phase transitions of our black hole isotropic

and anisotropic backgrounds. In the next section we put probe strings in these backgrounds

to find out information about the confinement/deconfinement phase transition.

4 Confinement-deconfinement phase transition

4.1 Equation for the dynamical wall

To guarantee the confinement-deconfinement phase transition one has to check the existence

of the dynamical wall (DW). The dynamical wall position zDW is defined by the minimal
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Figure 29. The phase diagrams in the (T, µ)-plane for the isotropic background (green line) and

for anisotropic ν = 4.5 background (blue line). LIBH and SIBH (LABH and SABH) indicate the

regions of small and large isotropic (anisotropic) black holes.

A B

C D

Figure 30. The arrows show transitions large/small black holes for the isotropic (A) and anisotropic

ν = 4.5 (C) cases in the (zh, T )-plane; the large/small holes transitions in the (zh, µ)-plane are shown

by arrows for isotropic (B) and anisotropic (D) cases.
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Figure 31. Stability zones at the (zh, µ)-plane of the blackhole isotropic (A) and anisotropic (B)

backgrounds. Here SBH indicates the regions of small black holes, LBH indicates the regions of

large black holes, and UnBH indicates the regions of parameters where is no separation on the small

and large black holes.

extremal point of the effective potential, that depends on the orientation [35] and is related

to the warp factor power P (z) and the scalar field φ:

Vx =
e
P (z)+

√
2
3
φ(z)

z2

√
g(z), (4.1)

Vy =
e
P (z)+

√
2
3
φ(z)

z1/ν+1

√
g(z). (4.2)

Here the subscribte indexes show the orientation of the Wilson loop. Therefore the dy-

namical wall position is given by equations:

V ′x(zDWx) = 0⇒ P ′(z) +

√
2

3
φ′(z)− 2

z
+
g′(z)

2g(z)

∣∣∣
z=zDWx

= 0, (4.3)

V ′y(zDWy) = 0⇒ P ′(z) +

√
2

3
φ′(z)− ν + 1

νz
+
g′(z)

2g(z)

∣∣∣
z=zDWy

= 0. (4.4)

For zero temperature we have

P ′(z) +

√
2

3
φ′(z)− 2

z

∣∣∣
z=zDWx

= 0, (4.5)

P ′(z) +

√
2

3
φ′(z)− ν + 1

νz

∣∣∣
z=zDWy

= 0. (4.6)

Substituting φ′(z) from (2.6) we get the following equations for the positions of the dy-

namical wall corresponding to x- and y-directions of the quark orientations:[
P ′(z) +

√
2

3

√
− 3P ′′(z) +

3

2
P ′2(z)− 6

z
P ′(z) +

4

z2
ν − 1

ν2
− 2

z

]∣∣∣∣∣
z=zDWx

= 0,[
P ′(z) +

√
2

3

√
− 3P ′′(z) +

3

2
P ′2(ξ)− 6

z
P ′(ξ) +

4

z2
ν − 1

ν2
− ν + 1

νz

]∣∣∣∣∣
z=zDWy

= 0.
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4.2 P (z) = cz2/2

We take the simplest case (2.31) again. Therefore we choose the expression with positive

sign in (2.56), and equations (4.3) and (4.4) become:

DWx ≡ cz +
1

νz

√
2

3

√
3c ν2z2

(
cz2

2
− 3

)
+ 4ν − 4− 2

z
+
g′

2g

∣∣∣
z=zDWx

= 0, (4.7)

DWy ≡ cz +
1

νz

√
2

3

√
3c ν2z2

(
cz2

2
− 3

)
+ 4ν − 4− ν + 1

νz
+
g′

2g

∣∣∣
z=zDWy

= 0. (4.8)

Note that in both equations there is also a dependence of the corresponding blackening

functions on ν. The phase transition from confinement to deconfinement occurs when the

corresponding equations loss solutions.

To see the dependence of the dynamical wall position on the parameters of the metric,

it is useful to study the details of dependence of the different terms defined DWx, DWy

and DW iso on these parameters. Here DW iso denotes the left-hand side of the equation,

similar to (4.8), in the isotropic case.

4.2.1 Zero temperature

Let us first consider the case of the zero temperature, i.e. g = 1. In this case we deal with

equations

z = zDWx : σ(z, ν, c) =
2

z
or σx(z, ν, c) = 0, (4.9)

z = zDWy : σ(z, ν, c) =
ν + 1

νz
or σy(z, ν, c) = 0, (4.10)

where

σ(z, c, ν) ≡ cz +
1

νz

√
2

3

√
3c ν2z2

(
cz2

2
− 3

)
+ 4ν − 4. (4.11)

We also use notations:

σx(z, c, ν) ≡ cz +
1

νz

√
2

3

√
3c ν2z2

(
cz2

2
− 3

)
+ 4ν − 4− 2

z
, (4.12)

σy(z, c, ν) ≡ cz +
1

νz

√
2

3

√
3c ν2z2

(
cz2

2
− 3

)
+ 4ν − 4− ν + 1

νz
. (4.13)

Behavior of σx(z, c, ν) and σy(z, c, ν) as functions of z are shown in figure 32. The

positions of the dynamical walls are defined by the intersections of the solid blue and

magenta lines representing σx(z, c, ν) and σy(z, c, ν) with the horizontal line σ = 0.

To show that the presence of the dilaton field supports the appearance of the DW, we

display parts of the expressions σx(z, c, ν) and σy(z, c, ν) without the square roots, that

are originated from the dilaton fields, by the dashed lines in figure 32.B and C. We see

that these dashed lines never intersect horizontal axis, therefore in these cases there are no

DW solutions.
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Figure 32. Functions σx(z, c, ν) (blue lines) and σy(z, c, ν) (magenta lines) for different c with

dilaton contributions (solid lines) and without them (dashed lines) together (A) and separately

(B, C); solutions to (4.9) (boundary of blue and white areas), to (4.10) (boundary of magenta and

white areas) and for the isotropic case (boundary of green and white areas) (D).

Solutions to equations (4.9) and (4.10) can also be represented as the boundary between

positive and negative values of functions σx(z, c, ν) and σy(z, c, ν). Taking ν = 1 provides

us with the isotropic case result (figure 32.D). We see that the critical c = ccr, above which

there are no solutions in all cases, is ccr = 0. For c > 0 our consideration is not valued,

since the scalar field becomes complex.

4.2.2 Non-zero temperature, zero chemical potential

Let us take the nontrivial blackening function. The blackening function modifies the DW

equations. It is convenient to present these equations in the form

z = zDWx : Σ(z, zh, ν, c) =
2

z
, (4.14)

z = zDWy : Σ(z, zh, ν, c) =
ν + 1

νz
, (4.15)

where

Σ(z, zh, c, ν) ≡ σ(z, c, ν) +G(z, zh, c, ν). (4.16)

Function σ(z, ν, c) is given by (4.11) and

G(z, zh, c, ν) ≡ g′

2g
. (4.17)
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Figure 33. A) Dynamical walls’ positions in isotropic case are given by the intersections of green

lines representing Σiso(z) and the grey line representing 2/z; B) dynamical walls’ positions, cor-

responding to the Wilson loop Wx in the anisotropic case ν = 4.5, are given by intersections of

blue lines representing Σ(z) and the brown line representing 2/z; C) dynamical walls’ positions,

corresponding to the Wilson loop Wy in the anisotropic case ν = 4.5 are given by the intersections

of magenta lines representing Σ(z) and the grey line representing (ν + 1)/(νz). Here we vary zh
and c. In all cases to get the DW position we take the minimal intersection point.

We find the solutions of equations (4.14) and (4.15) numerically. To visualize the

location of these solutions we plot Σ(z, zh, c, ν) as a function of z for different values of

parameters zh, ν, c and find its intersection with 2/z for the Wilson loop Wx and with

(ν + 1)/(νz) for the Wilson loop Wy in figure 33. If there are two intersection points, we

take the minimal one and we call it the minimal intersection point. In all cases to get the

corresponding DW position we take the minimal intersection point. From figure 33.A we

see that for zh > zh,cr the dynamical wall always appears, as there are intersections of the

grey and dark green lines. At the critical horizon (the thick dark green line) there is a

touch of these two lines and for z < zh,cr (lighter green lines) there is no intersection at all,

therefore confinement disappears.

The light blue curves in figure 33.B do not cross the grey line and for these cases there

are no dynamical walls. The dark blue lines cross the brown one and for the correspond-

ing temperature there is the quark confinement, meanwhile the thick dark blue line just

touches the grey line and at this temperature the phase transition occurs. The similar

picture can be seen at figure 33.C, corresponding to different orientation of quark pairs.

Therefore the dynamical wall always appears for zh > zh,cr. The particular values

of zh,cr are different for isotropic (A) and anisotropic (B, C) cases and depend on the

quark orientations. This appearance/disappearance of dynamical walls corresponds to

confinement and deconfinement phases. The phase transition between these two regimes

occurs at z = zh,cr.

In figure 34 solutions to equations (4.14), (4.15) are located on the boundary of the

colored and white areas. Since to find the dynamical walls’ positions we have to take the

minimal solutions, the dynamical walls’ positions are located on the left parts of boundaries

between the colored and white areas.
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Figure 34. A) Dynamical walls’ positions in isotropic case are located on the left part of the

boundary of the green and white areas. We see that for given zh > 2.304 there are two solutions

and for zh = 2.304 there is only one zDWiso = 1.455. B) Dynamical walls’ positions corresponding

to the Wilson loop Wx are located on the left part of the boundary of the blue and white ares. We

see that for given zh > 2.376 there are two solutions and for zh = 2.376 only one zDWx = 1.503.

C) Dynamical walls’ positions corresponding to the Wilson loop Wy are located on the left part

of the boundary of the magenta and white ares. We see that for given zh > 1.326 there are two

solutions and for zh = 1.326 only one zDWiso = 0.6871. Here ν = 4.5 and c = −1. Dashed

orange and red lines show positions of the critical zh,min(0) in the corresponding isotropic and

anisotropic backgrounds, and point-dashed lines show positions of the horizons zh,HP (0), where the

HP transitions take place at zero chemical potential in the isotropic and anisotropic cases. The

dark grey lines show zh,cr = zh,cr(µcr) the value of the horison at the inflection points. These plots

show that all dynamical walls appear below the corresponding horizons, i.e. zDW (zh, ν) < zh and

these horizons zh are larger than zh,min(0) and zh,cr for the isotropic case and for Wx case, but they

can be smaller than zh,min(0) and zh,cr in the anisotropic Wy case. The positions of minimal zh
admitted the DW, zh,DW are indicated by dark green, dark blue and dark magenta lines.

4.2.3 Non-zero chemical potential

We can also study how these plots look for non-zero chemical potential. The positions of

the dynamical walls for non-zero temperature and non-zero chemical potential in isotropic

and anisotropic cases are presented in figure 35.A and figure 35.B correspondingly.

It is convenient to write equations (4.9) and (4.10) in the form

z = zDWx : Σ(z, zh, µ, c, ν) =
2

z
, (4.18)

z = zDWy : Σ(z, zh, µ, c, ν) =
ν + 1

νz
, (4.19)

where

Σ(z, zh, µ, c, ν) ≡ σ(z, c, ν) +G(z, zh, µ, c, ν), (4.20)

G(z, zh, µ, c, ν) ≡ g′

2g
(4.21)

and σ(z, c, ν) is defined by (4.11).

The light blue and dark blue curves in figure 35.A represent the function G(z, zh, µ, c, ν)

for ν = 4.5, c = −1, zh = 1.5 and different µ. The light magenta and dark magenta
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Figure 35. The positions of the dynamical walls G = −σx for zh = 1.5 and G = −σy for zh = 3

in anisotropic ν = 4.5 (A) and isotropic G = −σiso(z) (B) cases, c = −1.

lines correspond to G(z, zh, µ, c, ν) for the same set of parameters and zh = 3. The thick

lines, that touch σx (grey line) and σy (brown line), depict the critical values of chemical

potential µ. Thus the presence and the particular position of the horizon modifies the

position of dynamical walls as compare with the zero temperature case (g = 1) presented

in figure 32. Anisotropy also influences on the dynamical walls’ position. This can be seen

from comparing of figure 35.A and figure 35.B, where the isotropic case is pictured.

To find the phase transition line we have to determine µ(zh, c, ν,Wi), here Wi in-

dicates the orientation of the Wilson line, Wx or Wy, for given zh such that for any

µ > µ(zh, c, ν,Wi) there is no real solution of equations (4.7) and (4.19). To find these

points, it is convenient to draw the contour plots for functions DWx and DWy near zero.

They are presented in figure 36 and figure 37 correspondingly. For comparison we present

in figure 38 the contour plots for DW iso near 0.

4.2.4 The dynamical wall position

All previous considerations can be summarized in contour plots. Namely, we can draw the

contours for the locations of the effective potentials’ derivatives V ′xy = 0 in the (z, zh)-plane,

keeping c = −1 and considering two cases ν = 1 (figure 39) and ν = 4.5 (figure 40). Dif-

ferent contours correspond to different values of µ. Dynamical walls’ positions correspond

to the minimal z for fixed horizon zh and chemical potential µ (figure 39.A). The positions

of the dynamical walls in the anisotropic case differ for longitudinal x and transversal y1,2
quark pair orientation (figure 40.A and C, correspondingly). Transversal case is character-

ized by smaller values of zh and minimal z for the same chemical potential µ.

On figure 39.B and figure 40.B and D the instability regions of the background for

µ = 0 are indicated by black arrows. For fixed 0 < µ < µcr they are shown as domains

between corresponding brown solid and dashed lines of the same thickness. The thick

magenta line on figure 40.D shows the value of zh, at which the transition between large

and small black holes disappears and the “removed zone” shrinks to zh,cr for the curve

µ = µcr. For isotropic case µ
(iso)
cr = 0.119 and for anisotropic one at µ

(ν)
cr = 0.34 and it
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Figure 36. Contour plots for DWx near zero for different zh (labels above).

Figure 37. Contour plots for DWy near zero for different zh (labels above).

Figure 38. Contour plots for DW iso near zero value.

happens at zh = z
(iso)
h,cr = 1.97 and at zh = z

(aniso)
h,cr = 1.70 in the isotropic and anisotropic

cases, respectively. Note, the line zh = z
(iso)
h,cr is below z

(iso)
h,DW , the value of horizon for which

the DW can appear in the isotropic case. In the anisotropic case the line zh = z
(aniso)
h,cr is

below values of zh,DWx, for which the DW for Wx can appear, z
(aniso)
h,cr < zh,DWx, but above

the values of horizons, for which the DW can appear for Wy, i.e. z
(aniso)
h,cr > zh,DWy (see

figure 41 and discussion below).

4.2.5 Phase transition lines and critical points

Confinement/deconfinement phase transition for the isotropic case ν = 1 is shown on

figure 42. Note that for zero chemical potential the Hawking-Page temperature is less

than the temperature of the confinement/deconfinement transition temperatute, THP (0) <

TCD(0). The temperature of the black hole to black hole transition TBB(µ) is less than the

temperature of the confinement/deconfinement transition TCD(µ) for 0 < µ < µ
(iso)
b , i.e.
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Figure 39. A) The location of extreme points of the effective potential in the isotropic case ν = 1,

c = −1 for different zh and µ are shown by green lines with different thickness, depending on the

values of the chemical potential. Dynamical walls’ positions are located on the left parts of these

curves. B) Locations of instability zones corresponding to different µ are shown by the black lines

with arrows.

TBB(µ) < TCD(µ), and TBB(µ) > TCD(µ) for µ
(iso)
b < µ < µ

(iso)
cr (let us remind that the

background transition line stops at (µ
(iso)
cr , T

(iso)
cr )). Therefore, the phase transition line for

0 < µ < µ
(iso)
b is determined by the background transition line (the orange lines at figure 42)

and for µ ≥ µ
(iso)
b by the isotropic confinement/deconfinement transition line (the green

lines at figure 42). This is in agreement with results of the previous studies [46] and refs.

therein, where it has been argued that the transition for µ < µ
(iso)
b is the first-order phase

transition (FOPT) and for µ > µ
(iso)
b is a smooth one.

The plots in figure 41 explain the difference between phase diagrams of Wilson lines

Wx and Wy for ν = 4.5. In this plot we see that for µ = 0 the minimal value of the horizon

zh,DWx, for which the DW can appears for Wx, corresponds to small black hole, meanwhile

the same horizon for Wy, zh,DWy, corresponds to large black hole. By this reason we have

TDWy(0) < THP (0) < TDWx(0). (4.22)

Explicit numerical calculations show that

TCDy(µ) < TBB(µ) < TCDx(µ) for 0 < µ < µxb. (4.23)

The confinement/deconfinement transition for the anisotropic case ν = 4.5 is shown on

figure 43.A and B. The phase diagram for the longitudinal Wilson line Wx is depicted by the

blue lines, for transversal lines Wy by the magenta lines and for the anisotropic background

by the cyan lines. Wilson lines can also have arbitrary orientations, that corresponds to a

modification of blue and magenta lines to some intermediate configuration.

The case ν = 2 can be considered as intermediate between the isotropic one and our

main case ν = 4.5 (figure 43.C and D). Figure 44 combines all the three cases ν = 1, 2, 4.5

thus showing isotropization.
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C D

Figure 40. The location of extreme points of effective potential in the anisotropic case ν = 4.5,

c = −1 for different zh, µ and different orientations of quark pairs are shown by lines of different

thickness depending on the values of the chemical potential, and colors, for the Wilson longitudinal

line Wx (A and B) with dark blue and for the Wilson transverse line Wy with dark purple lines (B

and D). B) and D). The location of the instability zones corresponding to different µ is shown by

black lines with arrows.

5 Conclusion and discussion

We have considered 5-dimensional Einstein-dilaton-two-Maxwell-scalar system. We have

found anisotropic solutions for this system by using the potential reconstruction method,

i.e. choosing the corresponding dilaton and Maxwell potentials for the given background.

This method has been used for isotropic cases in [45, 46, 49] and refs therein.

Our anisotropic background is the deformed AdS5 that has the UV boundary with

two suppressed transversal coordinates and the IR boundary with the suppressed time and

longitudinal coordinates. One can say that in this background two different 3-dimensional

reductions, one in the UV domain and the other in the IR domain, are realized. The UV

reduction is realized by the suppression of the original transversal coordinates, meanwhile
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Figure 41. The plot explains the difference between phase diagrams for Wilson lines Wx and Wy

for ν = 4.5. The coordinates of points X,Y and P are (zh,DWx(0), TDWx(0)), (zh,HP (0), THP (0))

and (zh,DWx(0), TDWx(0)). We see that P is in the SBH region, and X in the LBH region. The red

dashed and point-dashed lines, and the magenta line are the same as at figure 34.

A B

Figure 42. Confinement-deconfinement phase transition in the isotropic case, ν = 1, c = −1 for

the Wilson line Wiso (green) and the background (orange) (A). Plot (B) is a zoom of (A) near the

intersection point (µ
(iso)
b , T

(iso)
b ) and critical point (µ

(iso)
cr , T

(iso)
cr ).

the IR reduction is obtained by the suppression of the longitudinal and temporal coordi-

nates. For the corresponding isotropic solution there is no 3-dim reduction neither in UV

nor in IR regions.

In our calculations the warped factor is chosen in such a way that the explicit analytical

calculations can be performed. This solution can be generalized to provide a more realistic

model. In this case, similar to the isotropic case, the solution can be given only in terms

of quadratures. We solved the equations of motion to obtain a family of the black hole

solutions by modifying the initial potential corresponding to zero temperature. In this

construction the special boundary conditions for the dilaton field are chosen, namely we

have required that the dilaton field is zero at the horizon.

We have also studied the thermodynamical properties of the constructed black hole

background and found the large/small black hole phase transitions at the temperature
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Figure 43. Confinement-deconfinement phase transition in the anisotropic case, ν = 4.5, c = −1,

for the Wilson line Wx (blue), the Wilson line Wy (magenta) and the background (cyan) (A). Plot

(B) is a zoom of (A) near the critical points (µxb, Txb), (µyb, Tyb) and FOPT (µb, Tb) → (µb, T
′
b).

Plots (C) and (D) are the analogues of (A) and (B) for ν = 2.

magenta TBB(µ). This result is presented in figure 29. At µ = 0 and for T < THP (0),

the black hole dissolves to thermal gas which is thermodynamically stable for T < THP (0).

When the system cools down with the chemical potential less than the critical value µcr,

the background undergoes the phase transition from a large to a small black hole. This is

a generalization of the corresponding effect in the isotropic case [45, 46, 50–52]. We have

found that T
(aniso)
BB (µ) < T

(iso)
BB (µ) and the value of the critical chemical potential, value up

to which this phase transition exists, is bigger in the anisotropic case as the compare to the

isotropic one, µ
(ν)
cr > µ

(iso)
cr , see figure 44. Also, we have found that the point (µ

(ν)
cr , T

(ν)
cr )

for ν → 1 goes smoothly to (µ
(iso)
cr , T

(iso)
cr ).
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Figure 44. Confinement-deconfinement phase transitions of Wilson lines Wiso for ν = 1 (green), Wx

and Wy for ν = 2 (blue and magenta) and ν = 4.5 (dark blue and dark magenta); the background

transition lines for ν = 1 (orange), ν = 2 (cyan) and ν = 4.5 (dark cyan).

We have studied the behavior of the temporal Wilson loops in the constructed back-

ground. For this purpose we have considered open strings in these backgrounds and iden-

tified the two ends of an open string as a quark and antiquark pair in the dual holographic

QCD. As in the isotropic case, the equations of motion for this open string support two

configurations — U-shape and straight-shape of the open strings. The U-shape for large

distances between quarks provides the quark confinement and is realized in the presence

of the dynamical wall (DW). We have found the domains in the (zh, µ) planes, where the

DW can appear for the longitudinal and transversal orientation of the temporal Wilson

loops. In these regions the open strings cannot exceed the DW, even the separation of

the quark and antiquark goes to infinite and the quark confinement takes place. We have

found that the phase diagram depends on the orientation, cf. [35]. Taking into account the

instability zones of the anisotropic background, we have found more complicated confine-

ment/deconfinement phase diagrams for different oriented temporal Wilson loops and the

details are the following:

• In the case of the longitudinal orientation, WTx, parts of regions near zero values of

the chemical potential, µ < µxb, enter to the instability regions of our background,

where the small black holes collapse to large ones. Here the horizon suddenly blows up

to pass the critical value zh,DWx(µ) (see figure 18 and figure 40, at the last plots these

jumps are indicated by the arrows), so that the confinement phase transforms to the

deconfinement one by a phase transition. While the chemical potential is greater than
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the critical value µ > µxb, the black hole horizon grows gradually and continuously

passes the critical horizon, corresponding to (µcr, Tcr), so that the confinement phase

transforms to the deconfinement phase smoothly. In other words, the confinement-

deconfinement line is determined by the probe string behavior itself. It is worth to

notice that the similar situation takes place in the isotropic case.

• In the case of the transversal orientation, Wy, situation is more interesting. It hap-

pens, that the background phase transition line for small µ, µ < µyb, is located

above the phase transition line for the Wilson line, and for small µ we have a smooth

confinement-deconfinement phase transition. For µyb < µ < µcr we fall in the zone

of instability of the background and the first order phase transition takes place.

As to the future investigations, the following natural questions to static and non-static

properties of our model are worth noting. As to static properties, it is natural to

• investigate the opportunity to fix our holographic QCD model by a suitable choice

of the function P (z) in (2.16), so that in the isotropic limit it would fit the Cornell

potential known by lattice QCD; it would be interesting to perform calculations on

an anisotropic lattice and compare these future results with our model;

• consider more general anisotropic backgrounds and derive the corresponding aniso-

tropic RG flows;

• study the Regge spectrum for mesons, adding the probe gauge fields to the back-

grounds; we expect that similarly to the isotropic case, the gauge potential can be

fixed requiring the linear Regge spectrum for mesons;

• consider estimations for direct photons;

• evaluate transport coefficients and their dependence on the anisotropy.

As to the thermalization processes, which are the main motivations of our considered

of the anisotropic background, we suppose to reexamine

• the shock wave collisions in the anisotropic background with the warped factor;

• thermalization times for 2-point correlators; for the no-dilaton case this question has

been addressed in [31, 34];

• time dependence of the transport coefficients, for the no-dilaton model see [35].

In this paper we have studied a particular anisotropic model specified by the anisotropy

parameter ν and in all plots we take ν = 4.5, since just this case reproduces the total mul-

tiplicity dependence on energy, M ∼ s0.155. It would be interesting to find isotropization

of our solution and it is natural to expect that in this case the both phase transition lines,

the large/small black hole transition and the string confinement/deconfinement transition,

will smoothly move to their isotropic parters. We leave these matters to future works.
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A Equations of motion
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where ′ = ∂/∂z.

These equations can be transformed to the following equations

g′′+g′
(

3b′

2b
− 1

z
− 2

νz

)
− z

2

b
f1(A

′
t)
2 = 0, (A.2)
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(
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+g

(
1− 1

ν
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3b′

b
− 4

z
− 4
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4
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b
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z
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b

3
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b′′

b
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3b′
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g′
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− 1

z
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ν
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+

2bV

3z2g
= 0.

(A.5)
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Substituting expressions for g′′ from (A.2) and b′′ from (A.4) into (A.5) we get the expres-

sion for V without g′′ and b′′

V = − z
4A′ 2t f1
2b2

− 3z2b′g′

2b2
− 3z2gb′ 2

b3
+

9zgb′

2νb2
+

15zgb′

2b2
+
zg′

νb
+

2zg′

b
+
z2gφ′ 2

2b
− 8g

νb
− 4g

b
,

(A.6)

that is nothing but the constraint equation.

One can check explicitly, that from eqs. (A.2)–(A.4) and (A.6) follows the field equation

for the scalar field (2.9). Indeed, differentiating (A.6) we get

b

z2g

∂V

∂φ
=

1

2νz2b3gφ′
(A.7){

2zbb′
(
νz3A′2t f1−3g

(
2νzb′′+(7ν+3)b′

))
−

− b2
[
z(νz(z2A′2t φ

′f ′1+3b′′g′)+b′(3νzg′′+(−5ν−7)g′))+

+ 2νz3A′tf1(φ)
(
zA′′t +2A′t

)
+g
(
b′
(
−23ν+νz2φ′2−25

)
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)]
+

+ 18νz2gb′3+b3
[
2z
(
(2ν+1)g′′+νgφ′

(
zφ′′+φ′

))
+g′

(
−4ν+νz2φ′2−14

)]}
.

Substituting in the R.H.S. of (A.7) g′′ and b′′ from (A.2) and (A.4), respectively, we

get the following expression for ∂V
∂φ without g′′ and b′′:

b

z2g

∂V

∂φ
=

1

4ν3z3b2gφ′

{
2νzb

[
νz
(
νz3A′2t φ
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)

+ (A.8)
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(
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)
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(
4
(
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)
+2ν3z3φ′φ′′−3(ν+1)ν2z2φ′2

)]}
.

In a similar way we get the expression for f ′2 without g′′ and b′′. Indeed, we differenti-

ate (A.3) and obtain

q2z
4
ν
−2

2bg

∂f2
∂φ

=
q2z

4
ν
−2f ′2

2bgφ′
= − (ν − 1)
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)
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] }
. (A.9)

Then we substitute there (A.2) and (A.4) and get

q2z
4
ν
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{
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From (A.8) and (A.10) we get

q2z−2+
4
ν

8bg

∂f2
∂φ

+
b

z2g

∂V

∂φ
= φ′′ + φ′

(
g′

g
+

3b′

2b
− ν + 2

νz

)
+
z2(A′t)

2

2bg

∂f1
∂φ

. (A.11)

This is nothing but E.O.M. for the scalar field.
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B Simplest solutions to system (2.5)–(2.10)

B.1 Solutions for anisotropic metric ν 6= 1 and c = 0, At 6= 0

The system (2.5)–(2.10) for anisotropic metric ν 6= 1 and b(z) = 1, At 6= 0 has the form

g′′ + g′
(
−1

z
− 2

νz

)
− z2 f1A′ 2t = 0, (B.1)

− 4

νz2

(
1− 1

ν

)
+ φ′ 2 = 0, (B.2)

2g′
(

1− 1

ν

)
+ g

(
1− 1

ν

)(
−4

z
− 4

νz

)
+ q2z−1+

4
ν f2 = 0, (B.3)

− V − z4

2
A′ 2t f1 +

zg′

ν
+ 2zg′ +

z2g φ′ 2

2
− 8g

ν
− 4g = 0. (B.4)

Substituting φ′ 2 from (B.2) into (B.4) we get

− V − z4

2
A′ 2t f1 +

zg′

ν
+ 2zg′ − 2g

ν2
− 6g

ν
− 4g = 0. (B.5)

The variation of the action (2.1) over scalar field φ and components A
(1)
µ of the first Maxwell

fields’ leads to the following EOM:

φ′′ + φ′
(
g′

g
− ν + 2

νz

)
+
z2A′ 2t

2g

∂f1
∂φ
− q2z−2+

4
ν

2g

∂f2
∂φ
− b

z2g

∂V

∂φ
= 0, (B.6)

A′′t +A′t

(
f ′1
f1
− 2− ν

νz

)
= 0. (B.7)

The last equation (B.7) gives

logA′t = − log f1 +
2− ν
ν

log z + logC1 ⇒ A′t = C1
z

2−ν
ν

f1
. (B.8)

If we take f1 as in (2.17) we get

A′t = C1
z

2−ν
ν

z−2+
2
ν

= C1z, (B.9)

At(z) =
C1

2
z2 + C2. (B.10)

Taking into account

At(0) = C2 = µ, (B.11)

At(zh) =
C1

2
z2h + µ = 0, (B.12)

we get

At(z) = µ (1− z2/z2h). (B.13)
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Substituting this to the blacking function equation (B.1) we get

g′′ + g′
(
−1

z
− 2

νz

)
− 4µ2

z2+
2
ν

z4h
= 0. (B.14)

From (B.2) we get for the scalar field

φ′ = ±

√
4

νz2

(
1− 1

ν

)
=

2

ν z

√
ν − 1 (B.15)

and

φ =
2

ν

√
ν − 1 log z + C5. (B.16)

From (B.3) we get f2

f2 = − q2z−1+
4
ν

[
2g′
(

1− 1

ν

)
+ g

(
1− 1

ν

)(
−4

z
− 4

νz

)]
(B.17)

and from (B.4) we get

V = − z4

2
A′ 2t f1 +

zg′

ν
+ 2zg′ +

z2gφ′ 2

2
− 8g

ν
− 4g (B.18)

B.2 Solutions for anisotropic metric ν 6= 1 and c = 0, At = 0

From the previous consideration it is easy to reproduce the solution has been found in [33].

From (2.5) we find

g(z) = 1− z2+
2
ν

z
2+ 2

ν
h

, (B.19)

Second, we substitute (B.19) into (2.6) and get

f2(z) =
4z−4/ν

q2
(ν − 1)(1 + 3ν + 2ν2)

ν2 (1 + 2ν)
, (B.20)

Then we solve (2.6):

φ(z) = C5 ± 2

√
ν − 1

ν
log(z), (B.21)

Finally, we have to find V from (2.8) and check the scalar equation (2.9). Substitut-

ing (B.19) into (2.8) we obtain

V (z) = − 2
(1 + ν)(1 + 2ν)

ν2
. (B.22)

Hence we get the solution given by (B.19), (B.20), (B.21) and (B.22), that coincides

with [33].
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B.3 Vacuum solutions

Without black brane, i.e. for g = 1 the EOM (2.5)–(2.10) transform to:

z2

b
f1A

′ 2
t = 0, (B.23)

b′′ − 3(b′)2

2b
+

2b′

z
− 4b

3νz2

(
1− 1

ν

)
+
b

3
(φ′)2 = 0, (B.24)(

1− 1

ν

)(
3b′

b
− 4

z
− 4

νz

)
+
q2z−1+

4
ν

b
f2 = 0, (B.25)

−V − z4

2b2
A′ 2t f1 −

3z2b′ 2

b3
+

9zb′

2νb2
+

15zb′

2b2
+
z2φ′ 2

2b
− 8

νb
− 4

b
= 0, (B.26)

φ′′ + φ′
(

3b′

2b
− ν + 2

νz

)
+
z2A′ 2t

2b

∂f1
∂φ
− q2z−2+

4
ν

2b

∂f2
∂φ
− b

z2
∂V

∂φ
= 0, (B.27)

A′′t +A′t

(
b′

2b
+
f ′1
f1
− 2− ν

νz

)
= 0. (B.28)

For b = e
cz2

2 :

z2 e−
cz2

2 f1A
′2
t = 0, (B.29)

c2z2

2
−3c+

4

3

ν−1

ν2z2
− (φ′)2

3
= 0, (B.30)(

1− 1

ν

)(
3cz− 4(ν+1)

νz

)
+z−1+

4
ν e−

cz2

2 f2 q
2 = 0, (B.31)

3c2z2

2
−c
(

2+
3

ν

)
+

4

3z2

(
2+

3

ν
+

1

ν2

)
+

2e
cz2

2

3z2
V = 0, (B.32)

φ′′+φ′
(

3cz

2
− ν+2

νz

)
+
z2 e−

cz2

2

2

∂f1
∂φ

A′2t −
z−2+

4
ν e−

cz2

2

2

∂f2
∂φ

q2− e
cz2

2

z2
∂V

∂φ
= 0, (B.33)

A′′t +A′t

(
cz

2
− 2−ν

νz
+
f ′1
f1

)
= 0 (B.34)

The system (B.29)–(B.34) has the solution:

At =µ, (B.35)

f2 = z−
4
ν

1−ν
ν2q2

(
3cz2−4(ν+1)

)
e
cz2

2 , (B.36)

φ=
1

2
√

2ν

{√
3c2ν2z4−18cν2z2+8(ν−1)−

√
3c2ν2z4∗−18cν2z2∗+8(ν−1) + (B.37)

+ 2
√

2(ν−1) ln

(
z2

z2∗

)
−3
√

3ν ln

(√
3c2ν2z4−18cν2z2+8(ν−1)−

√
3ν (3−cz2)√

3c2ν2z4∗−18cν2z2∗+8(ν−1)−
√

3ν (3−cz2∗)

)
−

− 2
√

2(ν−1) ln

(
9cν2z2−8(ν−1)−

√
2(ν−1)

√
3c2ν2z4−18cν2z2+8(ν−1)

9cν2z2∗−8(ν−1)−
√

2(ν−1)
√

3c2ν2z4∗−18cν2z2∗+8(ν−1)

)}
,

V =− 1

4

[
9c2z4−6cz2

(
2+

3

ν

)
+8

(
2+

3

ν
+

1

ν2

)]
e−

cz2

2 . (B.38)
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A B

Figure 45. Dilaton potentials that support vacuum solutions corresponding to isotropic and

anisotropic cases ν = 4.5 with c = −1 and initial conditions φ(1) = 0 as function of z A) and φ B).

The particular form of factor f1 doesn’t matter as it is coupled with the constant function

At, so all the terms containing f1 also include A′t ≡ 0. The scalar field φ isn’t influenced

by the assumption g = 1 and coincides with (2.57). The only difference is that zh loses its

sense as without the black brane there is no horizon any more. Therefore we should replace

zh by some z∗, whose main property is φ(z∗) = 0. The behavior of the scalar potential

V (z) and V (φ) in isotropic and anisotropic cases are compared on figure 45.

If we substitute (B.36)–(B.38) into the equation (B.33) its left-hand side disappears

proving that the system (B.29)–(B.34) still remains a self-consistent one.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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