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1 Introduction

Higher spin fields and their interactions are the subjects of extensive study. Despite the

various no-go theorems [1, 3–5, 7–18]1 and great efforts it is not clear yet whether higher

spin fields play a role in the description of fundamental physical phenomena. Neverthe-

less, higher spin fields attract much attention due to many remarkable features, e.g. their

contribution in the softness of string interactions by regularizing the ultraviolet with an

infinite tower of massive states and providing a framework for studying and understanding

the AdS/CFT correspondence. Furthermore, studying higher spin fields allows us to better

understand the structure of interactions in general gauge theory. In many cases, interac-

tion terms for higher spins were successfully constructed for flat spacetime at first order in

coupling constant g by using a variety of techniques, such as light-cone approach [19–28],

1Pedagogical review in refs. [2, 6].
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Noether’s procedure [10, 29–32] (some of these results were later generalized in [33–36])

and BRST [37–44]. In an intriguing manner, most of the previously mentioned results

together with some new interaction vertices have been obtained by analyzing tree level

amplitudes of (super)strings [45–47], thus enhancing the connection between string theory

and higher spin fields. For (A)dS backgrounds similar results have been obtained [48–52]

which eventually led to the fully interacting equations of motion for higher spin fields [53].

Among these interactions, the simplest class is provided by the cubic coupling of higher

spin fields with low spin matter fields, such as scalar and spinor fields [31, 43, 54, 55]

(and [56–60] for supersymmetric generalizations) which are of the type higher spin gauge

field × conserved current, where the conserved current is quadratic in the derivatives of

the matter fields. The cubic nature of these interactions is a consequence of the fact that

we couple non-interacting (free) matter fields to higher spins. It is natural to take the next

step and consider the coupling of interacting low spin fields to external higher spin gauge

field. In this paper we ask this question and investigate the possibility of such interactions.

In order to include both scalar and spinorial matter fields in our discussion and sim-

plify the technical details imposed by supersymmetry we will consider a theory of the chiral

supermultiplet described by a chiral superfield Φ. For its dynamics we will assume a nonlin-

ear supersymmetric sigma model described by an arbitrary Kähler potential K(Φ, Φ̄) with

the addition of an arbitrary chiral superpotential W(Φ) (see e.g. [62]). Such a model is a

good parametrization of many interacting matter theories and a good candidate for explor-

ing the possible interactions with higher spins by constructing a higher spin supercurrent

multiplet.

It is known that any N = 1 supersymmetric matter theory can be consistently coupled

to supergravity with the help of the gravitational superfield. For that case the calculation

of the conserved supercurrent is straightforward. One has to take the functional derivative

of the interacting action with respect the gravitational superfield (see e.g. [62]). However,

this procedure is not applicable for higher spin theory because we do not know the fully

interacting theory at present. The only alternative option we have is to follow Noether’s

method in order to construct directly the higher spin supercurrent multiplet of the theory.

However, in the case of coupling to supergravity we should be sure that the Noether

procedure leads to the same supercurrent as the supergravity procedure.

In this paper, we are following a Noether-type approach and we search for the higher

spin supercurrent multiplet that generates the first order coupling of the interacting matter

theory with the higher spin supermultiplets of type (s+1, s+1/2). We find that interactions

with higher spin supermultiplets beyond supergravity (s ≥ 2) are not possible for any K

and W and thus extending the results of the no-go Coleman-Mandula theorem.2 However,

we find three exceptions to this rule and these are (i) a free massless chiral superfield, (ii) a

free massive chiral superfield and (iii) a free chiral superfield with a linear superpotential.

For the first two, the higher spin supercurrents and supertraces have been constructed

in [56–58, 60]. We add to this list the expressions for the supercurrent and supertrace for

the third theory.

2Examples of bypassing the Coleman-Mandula theorem are discussed in [61].
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We also consider lower spin supercurrents. As mentioned previously, unlike the higher

spin case, coupling of the theory under consideration with non-minimal supergravity can

always be found for any K and W. Indeed, this follows from our analysis and we get

expression compatible with the results of [63]. On the other hand, interactions with the

vector supermultiplet do not always exist. We find the necessary and sufficient conditions

are the existence of a redefinition of the chiral superfield Φ → ϕ such that the chiral

superpotential vanishes (W = 0) and the Kähler potential depends only in the product of

ϕ̄ϕ (K = K(ϕ̄ϕ)). These conditions can be understood as the requirements for the presence

of a global U(1) symmetry which is usually associated with the vector supermultiplet.

The paper is organized as follows. In section two, we review Noether’s method and

its application for the construction of first order in g interaction vertices. In addition, we

review the description of free 4D, N = 1 higher spin supermultiplets and the conservation

equation of the supercurrent multiplet. In section three, we focus on the vector supermul-

tiplet and go through the requirements in order to construct a conserved current out of

the chiral theory. In section four, we repeat the procedure for supergravity and similarly

in section five for higher spin supermultiplets. In previous sections we had the chiral su-

perpotential W turned of. In section six, we turn it back on and consider its contribution

to the supercurrent multiplets. Finally, in section seven we review and discuss our results.

2 Noether’s method for supersymmetric nonlinear sigma model and

higher spins

The fundamental principles that govern higher spin interactions are still not understood.

Hence, the only guiding principle one has, is the physical requirement of preserving the

propagating degrees of freedom. This is manifested through gauge invariance. Noether’s

method is the framework where one organizes the invariance requirement order by order in

a perturbative expansion around a starting point S0. In this approach the full action S[φ, h]

and transformation of fields φ, h are expanded in a power series of a coupling constant g:

S[φ, h] = S0[φ] + gS1[φ, h] + g2S2[φ, h] + . . . , (2.1)

δφ = δ0[ξ] + gδ1[φ, ξ] + g2δ2[φ, ξ] + . . . , (2.2)

δh = δ0[ζ] + gδ1[h, ζ] + g2δ2[h, ζ] + . . . . (2.3)

The first order in g interaction terms are given by S1 and the requirement of invariance for

this order gives:
δS0

δφ
δ1φ+

δS1

δh
δ0h = 0 . (2.4)

In [57] we demonstrated that for the case of a single chiral superfield, most of the structure

of δ1Φ is fixed by the chiral requirement (D̄α̇ δ1Φ = 0) and we explored the consequences

of (2.4) for the choice of S0 corresponding to the free theory of a chiral superfield. In this

paper we want to explore if there are interaction terms S1 that correspond to a different

starting action S0.
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In order to be as general as possible, we will consider as our starting point a super-

symmetric nonlinear sigma model described by an arbitrary Kähler potential K(Φ, Φ̄) and

a chiral superpotential W(Φ)

S0 =

∫

d8z K(Φ, Φ̄) +

∫

d6z W(Φ) +

∫

d6z̄ W̄(Φ̄) (2.5)

where the Kähler potential and the chiral superpotential are defined modulo the relations

K(Φ, Φ̄) ∼ K(Φ, Φ̄) + Λ(Φ) + Λ̄(Φ̄) , (2.6)

W(Φ) ∼ W(Φ) + constant . (2.7)

The on-shell equation of motion for this system is3

D̄2KΦ = WΦ (2.8)

and the invariance requirement (2.4) becomes:

∫

d8z

{

KΦ δ1Φ+ J δ0h

}

+

∫

d6z WΦ δ1Φ = 0 . (2.9)

The above expression is symbolic in the sense that h corresponds to the set of superfields

that participate in the description of the 4D, N = 1 free, massless, higher spin supermul-

tiplets and also we have assumed that the interaction terms can be written as higher spin

gauge superfields times corresponding elements of the conserved supercurrent multiplet J .

The massless, higher spin irreducible representations of the super-Poincaré group in

four dimensions were first described in [65]. Later, a superfield formulation was introduced

in [66–68] and further developments can be found in [69–73]. A quick synopsis of the

description of higher spin supermultiplets is the following:

1. The integer superspin Y = s (s ≥ 1) supermultiplets (s+ 1/2, s)4 are described by a

pair of superfields Ψα(s)α̇(s−1)
5 and Vα(s−1)α̇(s−1) with the following zero order gauge

transformations

δ0Ψα(s)α̇(s−1) = −D2Lα(s)α̇(s−1) +
1

(s− 1)!
D̄(α̇s−1

Λα(s)α̇(s−2)) , (2.10a)

δ0Vα(s−1)α̇(s−1) = DαsLα(s)α̇(s−1) + D̄α̇sL̄α(s−1)α̇(s) . (2.10b)

2. The half-integer superspin Y = s+ 1/2 supermultiplets (s+ 1, s+ 1/2) have two de-

scriptions. The first is called the transverse formulation (s ≥ 1) and it uses the pair of

superfields Hα(s)α̇(s), χα(s)α̇(s−1) with the following zero order gauge transformations

δ0Hα(s)α̇(s) =
1

s!
D(αs

L̄α(s−1))α̇(s) −
1

s!
D̄(α̇s

Lα(s)α̇(s−1)) , (2.11a)

δ0χα(s)α̇(s−1) = D̄2Lα(s)α̇(s−1) +Dαs+1Λα(s+1)α̇(s−1) . (2.11b)

3We follow the conventions of Superspace [64].
4On-shell they describe the propagation of degrees of freedom with helicity ±(s+ 1/2) and ±s.
5The notation α(k) is a shorthand for k undotted symmetric indices α1α2 . . . αk. The same notation is

used for the dotted indices.
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The second one is the longitudinal formulation (s ≥ 2) and it includes the superfields

Hα(s)α̇(s), χα(s−1)α̇(s−2) with

δ0Hα(s)α̇(s) =
1

s!
D(αs

L̄α(s−1))α̇(s) −
1

s!
D̄(α̇s

Lα(s)α̇(s−1)) , (2.12a)

δ0χα(s−1)α̇(s−2) = D̄α̇s−1DαsLα(s)α̇(s−1) +
s− 1

s
DαsD̄α̇s−1Lα(s)α̇(s−1) (2.12b)

+
1

(s− 2)!
D̄(α̇s−2

Jα(s−1)α̇(s−3)) .

The s = 0 case corresponds to the well known vector supermultiplet (1, 1/2) which is being

described by a real scalar superfield V with the gauge transformation δ0V = D̄2L + D2L̄.

The invariance of the action up to first order in g as expressed in (2.4) makes obvious that

if we go on-shell ( δS0
δΦ = 0 ) we get a conservation condition on the supercurrent multiplet J

which is controlled by the zeroth order gauge transformation of the higher spin superfields.

Using the expressions above, we find the precise conservation conditions:

1. For integer superspin Y = s (s+ 1/2, s) we must have

D2D̄α̇sJα(s)α̇(s) =
1

s!
D(αs

Tα(s−1))α̇(s−1) , Tα(s−1)α̇(s−1) = T̄α(s−1)α̇(s−1) . (2.13)

2. For transverse half-integer superspin Y = s+ 1/2 (s+ 1, s+ 1/2)

D̄α̇sJα(s)α̇(s) =
1

s!
D̄2D(αs

Tα(s−1))α̇(s−1) , Jα(s)α̇(s) = J̄α(s)α̇(s) . (2.14)

3. For longitudinal half-integer superspin Y = s+ 1/2 (s+ 1, s+ 1/2)

D̄α̇sJα(s)α̇(s) =
1

s!
D(αs

D̄2Tα(s−1))α̇(s−1) −
s− 1

s!s!
D̄(α̇s−1

D(αs
D̄β̇Tα(s−1))β̇α̇(s−2)) ,

Jα(s)α̇(s) = J̄α(s)α̇(s) . (2.15)

The superfields J and T (with appropriate index structures) are the higher spin supercur-

rent and higher spin supertrace respectively and together they define the supercurrent mul-

tiplet which generate the first order interaction terms with the higher spin gauge superfields:

1. For integer superspin Y = s (s+ 1/2, s)

S1 ∼

∫

d8z

{

Ψα(s)α̇(s−1)Jα(s)α̇(s−1) + Ψ̄α(s−1)α̇(s)J̄α(s−1)α̇(s)

+V α(s−1)α̇(s−1)Tα(s−1)α̇(s−1)

}

. (2.16)

2. For transverse half-integer superspin Y = s+ 1/2 (s+ 1, s+ 1/2)

S1 ∼

∫

d8z

{

Hα(s)α̇(s)Jα(s)α̇(s) + χα(s)α̇(s−1)DαsTα(s−1)α̇(s−1)

+χ̄α(s−1)α̇(s)D̄α̇s T̄α(s−1)α̇(s−1)

}

. (2.17)
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3. For longitudinal half-integer superspin Y = s+ 1/2 (s+ 1, s+ 1/2)

S1 ∼

∫

d8z

{

Hα(s)α̇(s)Jα(s)α̇(s) + χα(s−1)α̇(s−2)D̄α̇s−1Tα(s−1)α̇(s−1)

+χ̄α(s−2)α̇(s−1)Dαs−1 T̄α(s−1)α̇(s−1)

}

. (2.18)

Furthermore, conservation equations (2.14) and (2.15) are not independent. They are

related via an improvement term Xα(s−1)α̇(s−1). It is straight forward to show that if

the superfields Jα(s)α̇(s), T
⊥
α(s−1)α̇(s−1) and T

‖
α(s−1)α̇(s−1) satisfy the following conservation

equation

D̄α̇sJα(s)α̇(s) =
1

s!
D̄2D(αs

T ⊥
α(s−1))α̇(s−1) (2.19)

+
1

s!
D(αs

D̄2T
‖
α(s−1))α̇(s−1) −

s− 1

s!s!
D̄(α̇s−1

D(αs
D̄β̇T

‖

α(s−1))β̇α̇(s−2))

then the hatted superfields

Ĵα(s)α̇(s) = Jα(s)α̇(s) +
1

s!s!
D̄(α̇s

D(αs
Xα(s−1))α̇(s−1))

−
1

s!s!
D(αs

D̄(α̇s
X̄α(s−1))α̇(s−1)) , (2.20a)

T̂ ⊥
α(s−1)α̇(s−1) = T ⊥

α(s−1)α̇(s−1) +
s+ 1

s
Xα(s−1)α̇(s−1) + X̄α(s−1)α̇(s−1) , (2.20b)

T̂
‖
α(s−1)α̇(s−1) = T

‖
α(s−1)α̇(s−1) + X̄α(s−1)α̇(s−1) , (2.20c)

satisfy exactly the same conservation equation. So, there is a choice of Xα(s−1)α̇(s−1) that

will convert (2.14) [T
‖
α(s−1)α̇(s−1) = 0] to (2.15) [T̂ ⊥

α(s−1)α̇(s−1) = 0] and another one to go

from (2.15) [T ⊥
α(s−1)α̇(s−1) = 0] to (2.14) [T̂

‖
α(s−1)α̇(s−1) = 0]. This is a manifestation of the

fact that the two formulations of half-integer superspin supermultiplets are dual to each

other.

Based on the results of [57] we know that if δ1Φ is linear in derivatives of Φ1 then

interactions with integer superspin supermultiplets require more than one chiral supefields.

Therefore, in this paper we will focus our efforts in constructing interactions with half inte-

ger superspin supermultiplets (s+1, s+1/2) of the (2.17) kind via higher spin supercurrent

multiplets that satisfy conservation equation (2.14). This will be done in the following sec-

tions. However, in order to get some intuition and understand all the contributing factors

we will not start with the arbitrary spin case but from s = 0 (vector supermultiplet) to

s = 1 (supergravity) and then to higher spin supermultiplets (s ≥ 2). Furthermore, in

order to avoid unnecessary complexity we will turn off W for the next three sections and

consider only the effects of K. The contributions of W will be examined in section six.

3 Coupling to vector supermultiplet

In this case, the conservation equation (2.14) gets simplified to

D̄2J = 0 (3.1)

– 6 –
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and the supercurrent multiplet has only one element, the real, scalar supercurrent J . Due

to (2.9) and the structure of δ1Φ as found in [57], the supercurrent J must depend on Φ, Φ̄

but crucially not in their derivatives. Hence we should be able to express J as a power series

J =
∑

p

∑

q

ΦpΦ̄qAp,q (3.2)

where Ap,q are a set of constants. The conservation equation (3.1) gives:

D̄2J =
∑

p

Φp D̄2

[

∑

q

Φ̄qAp,q

]

= 0 . (3.3)

Furthermore, because it must hold on-shell (D̄2KΦ = 0), we must have

D̄2

[

∑

q

Φ̄qAp,q

]
∣

∣

∣

∣

∣

D̄2KΦ=0

= 0 ⇒
∑

q

Φ̄qAp,q = fp(Φ)KΦ (3.4)

where fp(Φ) is a function of Φ. Hence, we conclude that J must be of the form

J =
∑

p

Φpfp(Φ) KΦ = F (Φ)KΦ (3.5)

where F (Φ) =
∑

p

Φpfp(Φ). However, J by definition has to be real therefore we must have

F (Φ)KΦ = F̄ (Φ̄)K̄Φ̄ . (3.6)

For F (Φ) 6= 0 which is the non-trivial case we are being interested, we can define a new

chiral superfield ϕ as follows:

ϕ = exp

[
∫

dΦ F−1(Φ)

]

. (3.7)

For this new variable the on-shell equation of motion has the same form as before (D̄2Kϕ =

0), the supercurrent J takes the form

J = ϕKϕ (3.8)

and the reality condition takes the simpler expression

ϕKϕ = ϕ̄Kϕ̄ . (3.9)

This can be satisfied only if K is a function of the product ϕ̄ϕ,6 K = K(ϕ̄ϕ). This con-

straint in K can be understood as the demand for the Kähler potential to have a global

U(1) symmetry expressed by the phase shift of ϕ7

ϕ → eiλϕ (3.10)

which can be gauged in order to generate interactions with the vector supermultiplet.

6Equivalently, one can define another chiral superfield φ = ln(ϕ) =
∫
dΦ F−1(Φ) under which the

Kähler potential is a function of the sum φ+ φ̄, K = K(φ+ φ̄) and the supercurrent is J = Kφ. A detailed

discussion of this can be found in [64] where the connection between the action of a real linear G = φ+ φ̄

and the action of a chiral ϕ in presented.
7For the variable φ the global U(1) is realized as a shift symmetry φ → φ+ iλ.
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4 Coupling to (non-minimal) supergravity

Next, we attempt the construction of the supercurrent multiplet that generates interactions

with non-minimal supergravity [transverse formulation of supermultiplet (2, 3/2)] which

satisfies the conservation equation

D̄α̇Jαα̇ = D̄2DαT . (4.1)

For the supercurrent and supertrace we consider the following ansatz:

Jαα̇ = δ ∂αα̇Φ KΦ + d ∂αα̇Φ̄ KΦ̄ (4.2)

+α DαΦ D̄α̇KΦ − a D̄α̇Φ̄ DαKΦ̄

+β Φ DαD̄α̇KΦ − b Φ̄ D̄α̇DαKΦ̄

+γ Φ D̄α̇DαKΦ − c Φ̄ DαD̄α̇KΦ̄

T = e K + κ Φ KΦ + h Φ̄ KΦ̄ . (4.3)

4.1 Improvement terms

The definition of the supercurrent multiplet (Jαα̇, T ) via conservation equation (4.1) is not

unique. There are improvement terms that one should consider. In this case, there is an

arbitrary superfield Uα such that the supercurrent multiplet (Ĵαα̇, T̂ ) defined by:

Ĵαα̇ = Jαα̇ +DαD̄
2Ūα̇ − D̄α̇D

2Uα , (4.4a)

T̂ = T + 2DαUα + D̄α̇Ūα̇ (4.4b)

satisfies the same conservation equation (4.1). This can also be extracted from (2.19),

(2.20a) and the demand that the hat supercurrent and supertrace stay in the transverse

formulation. If we select

Uα = r DαΛ̄ KΦ̄ (4.5)

where Λ is the prepotential of chiral superfield Φ = D̄2Λ, then the r parameter can be used

to eliminate b in (4.2). Hence the ansatz for Jαα̇ becomes

Jαα̇ = δ ∂αα̇Φ KΦ + d ∂αα̇Φ̄ KΦ̄ (4.6)

+α DαΦ D̄α̇KΦ − a D̄α̇Φ̄ DαKΦ̄

+β Φ DαD̄α̇KΦ

+γ Φ D̄α̇DαKΦ − c Φ̄ DαD̄α̇KΦ̄ .

4.2 Conservation equation

Now we use (4.6) and (4.3) to determine the consequences of conservation equation (4.1).

The result is:

0= D̄α̇Jαα̇−D̄2DαT = (iδ+α+κ+e) D̄α̇DαΦ D̄α̇KΦ +(2γ−β−κ) Φ D̄2DαKΦ (4.7)

+id DαD̄
2Φ̄ KΦ̄ + id DαD̄

α̇Φ̄ D̄α̇KΦ̄

−(2a+h) D̄2Φ̄ DαKΦ̄ −(a+h) D̄α̇Φ̄ D̄α̇DαKΦ̄

−c D̄α̇Φ̄ DαD̄α̇KΦ̄ −(h−c) Φ̄ D̄2DαKΦ̄

+c Φ̄ DαD̄
2KΦ̄ .
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Assuming that the Kähler potential K is arbitrary, meaning it does not have special prop-

erties that relate some of the terms above with each other and they are independent, we

conclude that the coefficient of each term must vanish:

e = −iδ − α− 2γ + β , (4.8)

κ = 2γ − β ,

a = 0 ,

c = 0 ,

d = 0 ,

h = 0

and the expressions for the conserved Jαα̇ and T are:

Jαα̇ = δ ∂αα̇Φ KΦ + α DαΦ D̄α̇KΦ + β Φ DαD̄α̇KΦ + γ Φ D̄α̇DαKΦ , (4.9)

T = (−iδ − α− 2γ + β) K + (2γ − β) Φ KΦ . (4.10)

4.3 Reality condition

The last condition we must impose is the reality of Jαα̇. For this it will be useful to take

into account the following expressions

D̄α̇KΦ = D̄α̇Φ̄ KΦΦ̄ ,

DαD̄α̇KΦ = i∂αα̇Φ̄ KΦΦ̄ +DαΦ D̄α̇Φ̄ KΦΦΦ̄ , (4.11)

D̄α̇DαKΦ = i∂αα̇Φ KΦΦ −DαΦ D̄α̇Φ̄ KΦΦΦ̄

which can be used to re-write (4.9) in the following manner

Jαα̇ = ∂αα̇Φ [δ KΦ + iγ Φ KΦΦ] (4.12)

+∂αα̇Φ̄ [iβ Φ KΦΦ̄]

+DαΦ D̄α̇Φ̄ [α KΦΦ̄ + (β − γ) Φ KΦΦΦ̄] .

The reality of Jαα̇ as expressed above demands:

1.) δ KΦ + iγ Φ KΦΦ + iβ∗ Φ̄ KΦΦ̄ = 0 , (4.13)

2.) (α∗ − α) KΦΦ̄ − (β − γ) Φ KΦΦΦ̄ + (β − γ)∗ Φ̄ KΦΦ̄Φ̄ = 0 . (4.14)

For an arbitrary Kähler potential, the above constraints can be satisfied only if

α = α∗ , β = γ = δ = 0 . (4.15)

Therefore, we conclude that for an arbitrary Kähler potential K there exist a supercurrent

multiplet

Jαα̇ = DαΦ D̄α̇KΦ , (4.16)

T = − K . (4.17)
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Conceptually, this result was to be expected because we know that any theory can be cou-

pled to supergravity. Expressions, (4.16) and (4.17) give the supercurrent multiplet that

generates the linearized interaction (first order in g) between a supersymmetric nonlinear

model of a single chiral superfield described by Kähler potential K and non-minimal super-

gravity. Additionally, we observe that for arbitrary K the supertrace T is not zero and for

that case the supercurrent multiplet defined by {Jαα̇, T } is canonical [57, 63]. However, it

is straight forward to see that if the Kähler potential has the property

K ∼ ΦKΦ (4.18)

then there is an improvement term of type (4.5) such that the improved supertrace T̂ (4.4a)

will be zero

T̂ = 0

and the new supercurrent multiplet {Ĵαα̇, 0} is a minimal one. This is possible only if

the Kähler potential is a function of the product Φ̄Φ, K = K(Φ̄Φ), which includes the

free theory. Furthermore, by converting (4.16) and (4.17) via (2.20a) to the longitudinal

formulation of supergravity (minimal supergravity) we recover the results of [63].

5 Coupling to higher spin supermultiplets

Based on the two previous lower spin examples we build confidence on the workings of our

method and it is time to generalize it to higher spin supermultiplet (s + 1, s + 1/2) with

s ≥ 2. For this case the conservation equation we must satisfy is (2.14) and we write the

following ansatz for the supercurrent and the supertrace:8

Jα(s)α̇(s) = δ ∂(s)Φ KΦ + d ∂(s)Φ̄ KΦ̄ (5.1)

+
s−1
∑

p=0

αp ∂(p)DΦ ∂(s−p−1)D̄KΦ −
s−1
∑

p=0

ap ∂(p)D̄Φ̄ ∂(s−p−1)DKΦ̄

+
s−1
∑

p=0

βp ∂(p)Φ ∂(s−p−1)DD̄KΦ −
s−1
∑

p=0

bp ∂(p)Φ̄ ∂(s−p−1)D̄DKΦ̄

+

s−1
∑

p=0

γp ∂(p)Φ ∂(s−p−1)D̄DKΦ −
s−1
∑

p=0

cp ∂(p)Φ̄ ∂(s−p−1)DD̄KΦ̄ ,

Tα(s−1)α̇(s−1) = e ∂(s−1)K + κ ∂(s−1)Φ KΦ + h ∂(s−1)Φ̄ KΦ̄ (5.2)

+
s−2
∑

p=0

ℓp ∂(p)DΦ ∂(s−p−2)D̄KΦ +
s−2
∑

p=0

fp ∂(p)D̄Φ̄ ∂(s−p−2)DKΦ̄

+
s−2
∑

p=0

ζp ∂(p)Φ ∂(s−p−2)D̄DKΦ +
s−2
∑

p=0

gp ∂(p)Φ̄ ∂(s−p−2)D̄DKΦ̄

+
s−2
∑

p=0

ξp ∂(p)Φ ∂(s−p−2)DD̄KΦ +
s−2
∑

p=0

sp ∂(p)Φ̄ ∂(s−p−2)DD̄KΦ̄ .

8For simplicity, we omit to write explicitly the free indices and their symmetrization when necessary.

Also the symbol ∂(p) is an abbreviation for a string of p spacetime derivatives.
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However, because s ≥ 2, the first term of Tα(s−1)α̇(s−1) can be expanded in the following

manner:

∂(s−1)K = ∂(s−2)
(

∂Φ KΦ + ∂Φ̄ KΦ̄

)

= ∂(s−1)Φ KΦ + ∂(s−1)Φ̄ KΦ̄ (5.3)

−i
s−2
∑

p=1

(

s−2
p−1

)

∂(p)Φ ∂(s−p−2)
(

DD̄ + D̄D
)

KΦ

−i
s−2
∑

p=1

(

s−2
p−1

)

∂(p)Φ̄ ∂(s−p−2)
(

DD̄ + D̄D
)

KΦ̄ .

Hence, this term is not independent any more, as in the supergravity case, and all it

does is to redefine the κ, h, ζp, gp, ξp and sp coefficients. Therefore, we can ignore it

(e = 0). Moreover, both Jα(s)α̇(s) and Tα(s−1)α̇(s−1) are not uniquely defined but up to

an equivalence class. This is due to the presence of terms that identically vanish in both

left and right hand sides of (2.14) due to the D algebra. For Tα(s−1)α̇(s−1) this equivalence

relation is the following:

Tα(s−1)α̇(s−1) ∼ Tα(s−1)α̇(s−1) +
1

(s− 1)!
D(αs−1

P
(1)
α(s−2))α̇(s−1)

+D2P
(2)
α(s−1)α̇(s−1) + D̄2P

(3)
α(s−1)α̇(s−1) (5.4)

for arbitrary superfields P
(1)
α(s−2)α̇(s−1), P

(2)
α(s−1)α̇(s−1), P

(3)
α(s−1)α̇(s−1). This means that we

can immediately ignore the ℓp terms because they can be converted to ξp terms. Also, the

fp terms can be ignored because they can be converted to gp and sp terms and additionally

all the sp terms can be disregarded. Therefore, the ansatz for the higher spin supertrace

takes the form:

Tα(s−1)α̇(s−1) = κ ∂(s−1)Φ KΦ + h ∂(s−1)Φ̄ KΦ̄ (5.5)

+

s−2
∑

p=0

ζp ∂(p)Φ ∂(s−p−2)D̄DKΦ +

s−2
∑

p=0

gp ∂(p)Φ̄ ∂(s−p−2)D̄DKΦ̄

+
s−2
∑

p=0

ξp ∂(p)Φ ∂(s−p−2)DD̄KΦ .

5.1 Improvement terms

Now we consider various improvement terms that will further reduce the unknown param-

eters in the above expressions. The arguments that led to (4.4a) also hold for s ≥ 2 as well.

Thus, the improvement terms we have are parametrized by an unconstrained superfield

Uα(s)α̇(s−1) and define the improved supercurrent and supertrace as follows:

Ĵα(s)α̇(s) = Jα(s)α̇(s) +
1

s!
D(αs

D̄2Ūα(s−1))α̇(s) −
1

s!
D̄(α̇s

D2Uα(s)α̇(s−1)) , (5.6a)

T̂α(s−1)α̇(s−1) = Tα(s−1)α̇(s−1) +
s+ 1

s
DαsUα(s)α̇(s−1) + D̄α̇sŪα(s−1)α̇(s) . (5.6b)
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One can show that if we select Uα(s)α̇(s−1) in the following way

Uα(s)α̇(s−1) = r ∂(s−1)DΛ̄ KΦ̄ (5.7)

+
s−2
∑

p=0

ρp ∂(p)DΛ̄ ∂(s−p−2)D̄DKΦ̄

+
s−2
∑

p=0

σp ∂(p)DΛ̄ ∂(s−p−2)DD̄KΦ̄ ,

for some parameters r, ρp, σp, then
9

Ĵα(s)α̇(s) − Jα(s)α̇(s) = r ∂(s−1)Φ̄ D̄DKΦ̄ − r∗ ∂(s−1)Φ DD̄KΦ (5.8)

+
s−2
∑

p=0

iρp ∂(p)Φ̄ ∂(s−p−1)D̄DKΦ̄ +
s−2
∑

p=0

iρ∗p ∂(p)Φ ∂(s−p−1)DD̄KΦ

+r ∂(s−1)D̄Φ̄ DKΦ̄ − r∗ ∂(s−1)DΦ D̄KΦ

+
s−2
∑

p=0

iρp ∂(p)D̄Φ̄ ∂(s−p−1)DKΦ̄ +
s−2
∑

p=0

iρ∗p ∂(p)DΦ ∂(s−p−1)D̄KΦ .

As a result, we can select parameters r and ρp in order to eliminate the bp terms in (5.1).

Thus we get

Jα(s)α̇(s) = δ ∂(s)Φ KΦ + d ∂(s)Φ̄ KΦ̄ (5.9)

+
s−1
∑

p=0

αp ∂(p)DΦ ∂(s−p−1)D̄KΦ −
s−1
∑

p=0

ap ∂(p)D̄Φ̄ ∂(s−p−1)DKΦ̄

+
s−1
∑

p=0

βp ∂(p)Φ ∂(s−p−1)DD̄KΦ

+
s−1
∑

p=0

γp ∂(p)Φ ∂(s−p−1)D̄DKΦ −
s−1
∑

p=0

cp ∂(p)Φ̄ ∂(s−p−1)DD̄KΦ̄ .

5.2 Additional freedom

For s ≥ 2 there is some additional freedom in defining the higher spin supercurrent and

supertrace. Let us consider the following quantity:

Zα(s−1)α̇(s−1) = ∂(s−2)

(

∂Φ̄KΦ̄ + i ΦDD̄KΦ

)

. (5.10)

It is straight forward to prove that

D(αs
Zα(s−1))α̇(s−1) = i∂(s−2)

(

DΦ DΦ D̄Φ̄ KΦΦΦ̄

)

= 0 . (5.11)

9Notice that the σp terms do not participate in the result. That is because they describe the freedom in

the definition of Uα(s)α̇(s−1).
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It vanishes due to the symmetrization of the two DΦ terms. Hence, we can enhance the

equivalence class in the definition of Jα(s)α̇(s) and Tα(s−1)α̇(s−1) by adding the following

terms

Tα(s−1)α̇(s−1) ∼ Tα(s−1)α̇(s−1) + c1 Zα(s−1)α̇(s−1) , (5.12)

Jα(s)α̇(s) ∼ Jα(s)α̇(s) + c2 D̄(α̇s
D(αs

Zα(s−1))α̇(s−1) + c3 D(αs
D̄(α̇s

Z̄α(s−1))α̇(s−1) . (5.13)

Because the c2 and c3 terms are identically zero they do not change Jα(s)α̇(s), whereas the

c1 term is not zero but does not contribute in the conservation equation. If we expand these

terms in a manner similar to (5.3) we get that the h term in (5.5) can be set to zero by c1,

the αs−1 term in (5.9) can be set to zero by c3 and similarly the as−1 term by c2. Hence,

we should consider the following expressions for the higher spin supercurrent multiplet:

Jα(s)α̇(s) = δ ∂(s)Φ KΦ + d ∂(s)Φ̄ KΦ̄ (5.14)

+
s−2
∑

p=0

αp ∂(p)DΦ ∂(s−p−1)D̄KΦ −
s−2
∑

p=0

ap ∂(p)D̄Φ̄ ∂(s−p−1)DKΦ̄

+
s−1
∑

p=0

βp ∂(p)Φ ∂(s−p−1)DD̄KΦ

+
s−1
∑

p=0

γp ∂(p)Φ ∂(s−p−1)D̄DKΦ −
s−1
∑

p=0

cp ∂(p)Φ̄ ∂(s−p−1)DD̄KΦ̄ ,

Tα(s−1)α̇(s−1) = κ ∂(s−1)Φ KΦ (5.15)

+
s−2
∑

p=0

ζp ∂(p)Φ ∂(s−p−2)D̄DKΦ +
s−2
∑

p=0

gp ∂(p)Φ̄ ∂(s−p−2)D̄DKΦ̄

+
s−2
∑

p=0

ξp ∂(p)Φ ∂(s−p−2)DD̄KΦ .

5.3 Conservation equation

The above streamlined expressions do not include any trivial parts for the higher spin

supercurrent and supertrace and are the ones we should use with the conservation equation.

After a lengthy calculation and assuming once again that the Kähler potential is arbitrary,

we obtain the following system of conditions:

1.) iδ + κ = 0 ,

2.) αp

[

s− p

p

]

− βp+1

[

p+ 1

s

]

+ iξp = 0 , p = 0, 1, . . . , s− 2 ,

3.) αs−2

[

1

s

]

− βs−1 + γs−1

[

s+ 1

s

]

− κ+ iξs−2 − iζs−2 = 0 ,

4.) αp−1

[

s− p

s

]

− βp

[

p+ 1

s

]

+ γp

[

s+ 1

s

]

+ iξp−1 − iζp−1 − iζp = 0 ,

p = 1, . . . , s− 2 ,
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5.) β0

[

1

s

]

− γ0

[

s+ 1

s

]

+ iζ0 = 0 ,

6.) ap

[

s+ 1

s

]

+ igp = 0 , p = 0, . . . , s− 2 , (5.16)

7.) ap

[

p+ 1

s

]

+ igp = 0 , p = 0, . . . , s− 2 ,

8.) cs−1 = 0 ,

9.) cp

[

p+ 1

s

]

− igp = 0 , p = 0, . . . , s− 2 ,

10.) d = 0 ,

11.) cp = 0 , p = 0, . . . , s− 1 ,

12.) ap + cp = 0 , p = 0, . . . , s− 1 .

These uniquely fix all parameters except αp, βp and γp. Specifically we get the following

solutions:

d = 0 ,

ap = cp = 0 , p = 0, . . . , s− 1 ,

δ =
i(−1)s−1

s

{

s−2
∑

i=0

(−1)iαi −
s−1
∑

i=0

(−1)iβi + (s+ 1)
s−1
∑

i=0

(−1)iγi

}

, (5.17)

κ =
(−1)s−1

s

{

s−2
∑

i=0

(−1)iαi −
s−1
∑

i=0

(−1)iβi + (s+ 1)
s−1
∑

i=0

(−1)iγi

}

,

ξp =
i

s

{

αp (s− p)− βp+1 (p+ 1)

}

, p = 0, . . . , s− 2 ,

ζp =
i(−1)p−1

s

{

p−1
∑

i=0

(−1)iαi −

p
∑

i=0

(−1)iαi + (s+ 1)

p
∑

i=0

(−1)iγi

}

, p = 0, . . . , s− 2 ,

gp = 0 , p = 0, . . . , s− 2 ,

and the conserved supercurrent multiplet we get is:

Jα(s)α̇(s) = δ ∂(s)Φ KΦ +
s−2
∑

p=0

αp ∂(p)DΦ ∂(s−p−1)D̄KΦ (5.18)

+
s−1
∑

p=0

βp ∂(p)Φ ∂(s−p−1)DD̄KΦ +
s−1
∑

p=0

γp ∂(p)Φ ∂(s−p−1)D̄DKΦ ,

Tα(s−1)α̇(s−1) = κ ∂(s−1)Φ KΦ +
s−2
∑

p=0

ζp ∂(p)Φ ∂(s−p−2)D̄DKΦ (5.19)

+
s−2
∑

p=0

ξp ∂(p)Φ ∂(s−p−2)DD̄KΦ .

If we compare (5.18) with the corresponding expression for the s = 1 case (4.9) we realize

that there is a qualitative difference between the two supercurrents. In (4.9), the δ coef-
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ficient was not fixed, whereas for s ≥ 2 the same coefficient is fixed and given by (5.17)

which was the outcome of the third (3) condition in (5.16). The reason for that is exactly

what was mentioned in (5.3). The eK term was independent in s = 1, whereas it could be

ignored in s ≥ 2. However, if the Kähler potential was not arbitrary, but had the special

property to remove the third condition in (5.16) by making the corresponding term vanish,

then by accident we will be in the same situation as supergravity, where all coefficients

in (5.18) are unconstrained. The corresponding term in the conservation equation that

controls this is ∂(s−1)Φ D̄2DKΦ. It will be interesting to consider potentials K that make

this term vanish identically. Notice that the free theory K = Φ̄Φ does that.

5.4 Reality condition

The last step in order to complete our construction is to search for real supercurrents of

type (5.18). Using (4.11), we can write

Jα(s)α̇(s) = δ ∂(s)Φ KΦ +
s−2
∑

p=0

αp ∂(p)DΦ ∂(s−p−1)

(

D̄Φ̄ KΦΦ̄

)

(5.20)

+
s−1
∑

p=0

βp ∂(p)Φ ∂(s−p−1)

(

i∂Φ̄ KΦΦ̄ +DΦ D̄Φ̄ KΦΦΦ̄

)

+
s−1
∑

p=0

γp ∂(p)Φ ∂(s−p−1)

(

i∂Φ KΦΦ −DΦ D̄Φ̄ KΦΦΦ̄

)

.

After distributing the derivatives and collecting similar terms, as we did in (4.12), we find

the conditions imposed on coefficients αp, βp, γp. To simplify this step we split Jα(s)α̇(s)

into two pieces

Jα(s)α̇(s) = J
(✚D)
α(s)α̇(s) + J

(D)
α(s)α̇(s) (5.21)

where J
(✚D)
α(s)α̇(s) are the contributions to Jα(s)α̇(s) without spinorial derivatives and J

(D)
α(s)α̇(s)

are the terms which include spinorial derivatives. This distinction is useful because terms

from one piece can not contribute to the reality of the other, thus we can examine them

separately. Therefore, if we ignore for the moment all the terms in (5.20) with spinorial

derivatives we get:

J
(✚D)
α(s)α̇(s) = ∂(s)Φ

{

δ KΦ+ iγ0 ΦKΦΦ

}

+∂(s)Φ̄

{

iβ0 ΦKΦΦ̄

}

+
s−1
∑

p=1

∂(p)Φ ∂(s−p)Φ

{

iγp KΦΦ

}

+
s−1
∑

p=1

∂(p)Φ ∂(s−p)Φ̄

{

iβp KΦΦ̄

}

(5.22)

+
s−1
∑

p=1

∂(s−p)Φ ∂(p)KΦΦ

{

iγ0

(

s−1

p

)}

+
s−1
∑

p=1

∂(s−p)Φ̄ ∂(p)KΦΦ̄

{

iβ0

(

s−1

p

)}
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+
s−2
∑

p=1

s−p−1
∑

q=1

∂(p)Φ ∂(s−p−q)Φ ∂(q)KΦΦ

{

iγp

(

s−p−1

q

)}

+

s−2
∑

p=1

s−p−1
∑

q=1

∂(p)Φ ∂(s−p−q)Φ̄ ∂(q)KΦΦ̄

{

iβp

(

s−p−1

q

)}

.

The reality of (5.22) for an arbitrary K gives the following conditions:10

δ = γ0 = β0 = 0 , (5.23)

γp = 0 , p = 1, 2, . . . , s− 1 ,

βp = −β∗
s−p , p = 1, 2, . . . , s− 1 ,

βp

(

s− p− 1

q

)

= −β∗
s−p−q

(

p+ q − 1

q

)

.

Doing the same for the reality of the terms with spinorial derivatives we get the constraints:

α0 = 0 ,

βs−1 = 0 ,

βp = 0 , p = 1, 2, . . . , s− 2 , (5.24)

αp = 0 , p = 1, 2, . . . , s− 2 .

This is because by using β0 = γp = 0, the terms in J
(D)
α(s)α̇(s) can be written in the following

manner:

J
(D)
α(s)α̇(s) = DΦ ∂(s−1)D̄Φ̄

{

α0 KΦΦ̄

}

+
s−2
∑

p=1

∂(p)DΦ ∂(s−p−1)D̄Φ̄

{

αp KΦΦ̄

}

+

s−2
∑

p=1

DΦ ∂(s−p−1)D̄Φ̄ ∂(p)KΦΦ̄

{

α0

(

s− 1

p

)}

+
s−2
∑

p=1

∂(p)Φ DΦ ∂(s−p−1)D̄Φ̄

{

βp KΦΦΦ̄

}

+
s−2
∑

p=1

s−p−2
∑

q=1

∂(p)Φ DΦ ∂(s−p−q−1)D̄Φ̄ ∂(q)KΦΦΦ̄

{

βp

(

s− p− 1

q

)}

+
s−2
∑

p=1

∂(s−p−1)DΦ D̄Φ̄ ∂(p)KΦΦ̄

{

αs−p−1

}

+
s−2
∑

p=1

∂(p)Φ ∂(s−p−1)DΦ D̄Φ̄

{

βp KΦΦΦ̄

}

10We have underlined the relevant terms in order for the reader to track the origin of these conditions.
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+
s−2
∑

p=1

s−p−2
∑

q=1

∂(p)Φ ∂(s−p−q−1)DΦ D̄Φ̄ ∂(q)KΦΦΦ̄

{

βp

(

s− p− 1

q

)}

(5.25)

+DΦ D̄Φ̄ ∂(s−1)KΦΦ̄

{

α0

}

+ ∂(s−1)Φ DΦ D̄Φ̄

{

βs−1 KΦΦΦ̄

}

+
s−2
∑

p=1

∂(p)Φ DΦ D̄Φ̄ ∂(s−p−1)KΦΦΦ̄

{

βp

}

+
s−2
∑

p=1

s−p−2
∑

q=1

∂(p)DΦ ∂(s−p−q−1)D̄Φ̄ ∂(q)KΦΦ̄

{

αp

(

s− p− 1

q

)}

+
s−2
∑

p=1

s−p−2
∑

q=1

∂(p)Φ ∂(q)DΦ ∂(s−p−q−1)D̄Φ̄

{

βp

(

s− p− 1

q

)

KΦΦΦ̄

}

+
s−2
∑

p=1

s−p−2
∑

q=1

s−p−q−2
∑

r=1

∂(p)Φ ∂(r)DΦ ∂(s−p−q−r−1)D̄Φ̄ ∂(q)

×KΦΦΦ̄

{

βp

(

s− p− 1

q

)(

s− p− q − 1

r

)}

.

The conclusion is that, in order to get a real, higher spin supercurrent all coefficients

αp, βp, γp must vanish. Therefore, there is no non-trivial solution for arbitrary Kähler

potential K.

However, an interesting question one can ask is whether there is a special Kähler

potential Ks such that we can construct non-trivial real, higher spin supercurrents. After

all, we have seen this behavior in the coupling with the vector supermultiplet, where the

Kähler potential must have a U(1) symmetry. Therefore, one can imagine that if the

special property of Ks is a realization of higher spin symmetry then maybe the higher

spin supercurrent exist. Going back to (5.25) and examining the terms responsible for the

vanishing of βp and αp we find that a necessary condition for Ks is:

Ks
ΦΦΦ̄ = 0 . (5.26)

This is equivalent to Ks
ΦΦ̄

= constant which holds true only for the free theory Ks =

Φ̄Φ. Furthermore, this condition is consistent because for the free theory the term

∂(s−1)Φ D̄2DKΦ leading to the fixing of δ in (5.17) vanishes, hence there is no incom-

patibility between the non-trivial values of the parameters and conservation equation. Ad-

ditionally, the quantity Zα(s−1)α̇(s−1) (5.10) becomes identically zero for the free theory. So

the parameters we removed, such as αs−1 become relevant now. All these accidents take

place only if (5.26) is true and for that case we recover the results of [56, 57].

6 Turn on the chiral superpotential W

In this section, we turn back on the chiral superpotential W(Φ) in order to study its

contribution to the higher spin supercurrent multiplet, when that is possible. We must

keep in mind that W is a chiral superfield (D̄α̇W = 0) and the on-shell equation of motion

now becomes D̄2KΦ = WΦ.
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6.1 For vector supermultiplet

We start with supercurrent (3.8) and we modify it in order to include the chiral superpo-

tential information while preserving its reality:

J = ΦKΦ + c ΛWΦ + c∗ Λ̄W̄Φ̄ (6.1)

where Λ is the prepotential of the chiral superfield, Φ = D̄2Λ. It is straight forward to

prove that the conservation equation of J

D̄2J = (1 + c) ΦWΦ + c∗ D̄2Λ̄W̄Φ̄ + c∗ D̄β̇Λ̄D̄β̇W̄Φ̄ + c∗ Λ̄D̄2W̄Φ̄ = 0 (6.2)

can not be satisfied for any value of c. Hence, the conclusion is that in the presence of

any chiral superpotential W, there can be no conserved supercurrent no matter what the

Kähler potential is, even for the free theory. This can be understood as the fact that the

presence of W breaks the global U(1) symmetry of section 3.

6.2 For supergravity

For the supercurrent multiplet (4.16), (4.17) that generates interactions with the super-

gravity supermultiplet we consider the following modification terms

Jαα̇ = DαΦ D̄α̇KΦ + c1 DαD̄α̇Λ F + c2 D̄α̇Λ DαF + c3 Λ D̄α̇DαF + c4 D̄α̇DαΛ F

−c∗1 D̄α̇DαΛ̄ F̄ − c∗2 DαΛ̄ D̄α̇F̄ − c∗3 Λ̄ DαD̄α̇F̄ − c∗4 DαD̄α̇Λ̄ F̄ , (6.3)

T = −K + d1 ΛF + d2 Λ̄F̄ . (6.4)

In the above terms, F = F(Φ) is a chiral superfield and a holomorphic function of Φ defined

as

W(Φ) = ΦF(Φ) . (6.5)

This definition holds for any chiral superpotential because its Taylor expansion does not

include the constant term due to (2.7). Additionally, it relates WΦ which appears in the

equation of motion with F in the following manner:

WΦ = F +ΦFΦ . (6.6)

Imposing the conservation equation (4.1) we get a non-trivial solution

c1 = −1 , d1 = 1 ,

c2 = 1 , d2 = 2 , (6.7)

c3 = 0 , c4 = 0 .

Thus, the supercurrent multiplet (4.16), (4.17) can be generalized to include an arbitrary

chiral superpotential

Jαα̇ = DαΦ D̄α̇KΦ −DαD̄α̇(ΛF) + D̄α̇Dα(Λ̄F̄) , (6.8)

T = −K + ΛF + 2Λ̄F̄ . (6.9)
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6.3 For higher spin supermultiplet

In section 5 we showed that the construction of the higher spin supercurrent multiplet is

possible only for the free theory, K = Φ̄Φ. For that case [56, 57], there is the minimal

multiplet

J free
α(s)α̇(s) = c(−i)s

s
∑

p=0

(−1)p
(

s

p

)2

∂(p)Φ ∂(s−p)Φ̄ (6.10a)

+ic(−i)s
s−1
∑

p=0

(−1)p
(

s

p

)2 s− p

p+ 1
∂(p)DΦ ∂(s−p−1)D̄Φ̄ ,

T free
α(s−1)α̇(s−1) = 0 , (6.10b)

where c is a real proportionality constant (it may depend on the value of s). Hence, the

consideration of contributions due to the presence of a chiral superpotential W must take

place in the same configuration. The most general ansatz for the W generated terms are:

JW
α(s)α̇(s) =

s−1
∑

p=0

γp ∂(p)DD̄Λ ∂(s−p−1)WΦ +
s−1
∑

p=0

δp ∂(p)D̄Λ ∂(s−p−1)DWΦ

−
s−1
∑

p=0

γ∗p ∂(p)D̄DΛ̄ ∂(s−p−1)W̄Φ̄ −
s−1
∑

p=0

δ∗p ∂(p)DΛ̄ ∂(s−p−1)D̄W̄Φ̄ , (6.11)

T W
α(s−1)α̇(s−1) =

s−1
∑

p=0

ζp ∂(p)Λ ∂(s−p−1)WΦ +
s−2
∑

p=0

σp ∂(p)D̄DΛ ∂(s−p−2)WΦ

+
s−1
∑

p=0

ξp ∂(p)Λ̄ ∂(s−p−1)W̄Φ̄ , (6.12)

and the conservation equation they must satisfy is

D̄α̇sJ free
α(s)α̇(s) + D̄α̇sJW

α(s)α̇(s) −
1

s!
D̄2D(αs

T W
α(s−1))α̇(s−1) = 0 . (6.13)

Substituting (6.11), (6.12) in (6.13), the cancellation of the Λ and Λ̄ dependent terms gives:

δp = −γp , p = 0, 1, . . . , s− 1 , (6.14a)

ξp = −
s+ 1

s
γ∗p , p = 0, 1, . . . , s− 1 , (6.14b)

ζ0 = −
1

s
γ0 , (6.14c)

ζp = −
p+ 1

s
γp +

s− p

s
γp−1 , p = 1, . . . , s− 1 , (6.14d)

iσ0 =
1

s
γ1 −

s− 1

s
γ0 , (6.14e)

iσs−2 =
s− 1

s
γs−1 −

1

s
γs−2 , (6.14f)

iσp + iσp−1 =
p+ 1

s
γp+1 −

s− 2p− 1

s
γp −

s− p

s
γp−1 , p = 0, 1, . . . , s− 1 . (6.14g)
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These are exactly the conditions found in [57]. The cancellation of the Φ dependent terms

gives:

0 =

{

c(i)s+1(s+ 1)− γs−1

}

∂(s−1)DΦ WΦ +

{

c(−i)s−1 − γ0

}

Φ ∂(s−1)DWΦ

+
s−2
∑

p=0

{

c(−i)s+1(−1)p
s+ 1

s

(

s

p

)2 s− p

p+ 1
−

p+ 1

s

(

γp+1 + γp

)

}

∂(p)DΦ ∂(s−p−1)WΦ

+
s−2
∑

p=0

s− p− 1

p+ 1

{

c(−i)s+1(−1)p
s+ 1

s

(

s

p

)2 s− p

p+ 1
−

p+ 1

s

(

γp+1 + γp

)

}

×∂(p+1)Φ ∂(s−p−2)DWΦ . (6.15)

Therefore, for an arbitrary chiral superpotential we get the constraints

γs−1 = c(i)s+1(s+ 1) , (6.16a)

γ0 = c(−i)s−1 , (6.16b)

γp+1 + γp = c(−i)s+1(−1)p(s+ 1)

(

s

p

)2 s− p

(p+ 1)2
, p = 0, 1, . . . , s− 2 . (6.16c)

One can easily check that the above equations are not consistent with each other. For

example, starting with γ0 and using the recursive equation (6.16c) we reach to a differ-

ent value of γs−1 than the one required. The conclusion is that for an arbitrary chiral

superpotential W, there is no higher spin supercurrent multiplet.

Nevertheless, careful examination of (6.15) reveals two exceptions exist for some special

superpotential Ws. The first one is for

Ws ∼ Φ2. (6.17)

In this case, the various terms of (6.15) are no longer independent and they can be com-

bined, resulting to a different set of constraints for the γp parameters. Of course, (6.17)

corresponds to the mass term of the chiral superfield and equation (6.15) will lead to the

analysis of [57] were the mass term contributions to the higher spin supercurrent and su-

pertrace were calculated. The main result was that only the odd values of s (s = 2l + 1)

will lead to consistent, interactions. Additionally, a second exception exist and corresponds

to a linear superpotential

Ws = fΦ . (6.18)

In that case all the terms of (6.15) with derivatives acting on WΦ will vanish and we get

only condition (6.16a). The corresponding supercurrent multiplet is:

Jα(s)α̇(s) = J free
α(s)α̇(s)+fc(s+1)(i)s+1∂(s−1)DD̄Λ− f̄ c(s+1)(−i)s+1∂(s−1)D̄DΛ̄ , (6.19)

Tα(s−1)α̇(s−1) = −fc(s+1)(i)s+1∂(s−1)Λ+fc
s2−1

s
(i)s∂(s−2)D̄DΛ

−f̄ c
(s+1)2

s
(−i)s+1∂(s−1)Λ̄ . (6.20)

and it exists for all values of s.
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7 Summary and discussion

In this paper, we have investigated the interactions of higher spin gauge fields with matter

theory fields independently from the ability to have a properly define S-matrix. We consid-

ered an interacting matter theory described by a chiral superfield Φ with its dynamics been

described an arbitrary Kähler potential K(Φ, Φ̄) and a chiral superpotential W(Φ). The

arbitrariness of both K and W allows us to parametrize some very complicated, strong

interactions which can disrupt the conventional definition of free in and out states and

thus evading the consequences of the Coleman-Mandula theorem. We have also assumed

that the first order interactions of the matter theory with higher spin supermultiplets of

type (s + 1, s + 1/2), if they exist, are generated by a higher spin supercurrent multiplet

(Jα(s)α̇(s), Tα(s−1)α̇(s−1)) defined by a real higher spin supercurrent Jα(s)α̇(s) and a higher

spin supertrace Tα(s−1)α̇(s−1)

S1∼

∫

d8z

{

Hα(s)α̇(s)Jα(s)α̇(s)+χα(s)α̇(s−1)DαsTα(s−1)α̇(s−1)+ χ̄α(s−1)α̇(s)D̄α̇s T̄α(s−1)α̇(s−1)

}

and on-shell satisfy the conservation equation

D̄α̇sJα(s)α̇(s) =
1

s!
D̄2D(αs

Tα(s−1))α̇(s−1) .

The results we find are:

(i) For s = 0 (vector supermultiplet) there are no interactions unless the Kähler poten-

tial can be written as a function of the product Φ̄Φ [K = K(Φ̄Φ)] and the chiral

superpotential vanishes [W(Φ) = 0]. For these cases, the supercurrent is

J = ΦKΦ

and satisfies the conservation equation D̄2J = 0. The constraints in K and W can

be understood as the global U(1) symmetry requirement for the gauging procedure

which will generate the interactions with the vector supermultiplet.

(ii) For s = 1 (non-minimal supergravity supermultiplet) the expectation is that we

should always be able to find interactions. This was verified by our approach because

for any K and W we can construct the following supercurrent multiplet

Jαα̇ = DαΦ D̄α̇KΦ −DαD̄α̇(ΛF) + D̄α̇Dα(Λ̄F̄) ,

T = −K + ΛF + 2Λ̄F̄ ,

where Φ = D̄2Λ and W = ΦF . Furthermore, this result is consistent with the results

of [63].

(iii) For s ≥ 2 (higher spin supermultiplets) there is a severe constraining of both K

and W. For almost any Kähler potential and chiral superpotential there are no

interactions with higher spin supermultiplets. In other words, one can not construct
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a non-trivial higher spin supercurrent Jα(s)α̇(s) and supertrace Tα(s−1)α̇(s−1). However

there are three exceptions:

1.) K = Φ̄Φ , W = 0 : free, massless, chiral superfield

2.) K = Φ̄Φ , W = fΦ : free, chiral superfield with linear superpotential

3.) K = Φ̄Φ , W = mΦ2 : free, massive, chiral superfield

These exceptions are consistent with various known no-go theorems such as the

Coleman-Mandula theorem [4] and its extensions to supersymmetry [5, 6]. For ex-

ceptions (1) and (3) the corresponding supercurrent multiplet have been constructed

in [56–58]. To this list we add the supercurrent multiplet for exception (2)

Jα(s)α̇(s) = J free
α(s)α̇(s) + fc(s+ 1)(i)s+1 ∂(s−1)DD̄Λ− f̄ c(s+ 1)(−i)s+1 ∂(s−1)D̄DΛ̄ ,

Tα(s−1)α̇(s−1) = −fc (s+ 1)(i)s+1 ∂(s−1)Λ + fc
s2 − 1

s
(i)s ∂(s−2)D̄DΛ

− f̄ c
(s+ 1)2

s
(−i)s+1 ∂(s−1)Λ̄ .
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