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Abstract: Traditional quantum field theory can lead to enormous zero-point energy,

which markedly disagrees with experiment. Unfortunately, this situation is built into con-

ventional canonical quantization procedures. For identical classical theories, an alternative

quantization procedure, called affine field quantization, leads to the desirable feature of

having a vanishing zero-point energy. This procedure has been applied to renormalizable
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1 Introduction

The source of zero-point energy for a free scalar field is readily canceled by normal order-

ing of the Hamiltonian operator, which leaves every term with an annihilation operator.

Unfortunately, for a non-free scalar field, say with a quartic potential term, normal order-

ing cannot eliminate the zero-point energy since there is always a term composed only of

creation operators.

This situation is inevitable with canonical quantization (CQ) when a classical field

φ(x) → φ̂(x) = [A(x)† + A(x)]/
√
2, where x ∈ R

s, s ∈ {1, 2, 3, . . .}, and its momentum

field π(x) → π̂(x) = i~[A(x)† − A(x)]/
√
2, [A(x), A(y)†] = δ(x − y)11, and [φ̂(x), π̂(y)] =

i~δ(x − y)11. As usual, the ground state of the Hamiltonian, designated by |0〉, ideally is

the unique, normalized, ‘no particle’ state for which A(x)|0〉 ≡ 0 for all x, and Hilbert

space is given by suitable combinations of terms such as A(x1)
†A(x2)

† · · · A(xN )† |0〉 for

all N < ∞ when smeared with suitable elements f(x1, . . . , xN ) ∈ L2(RsN ).

However, there is also a different approach. In place of the momentum, we substitute

the dilation field κ(x) ≡ π(x)φ(x) — a field that is featured in the enhanced quantization

(EQ) program [1] — which leads to the Poisson bracket {φ(x), κ(y)} = δ(x−y)φ(x), a for-

mal Lie algebra for the affine group. As the analog of a current commutation relation [2],

an affine quantization of these variables leads to φ(x) → φ̂(x) ≡
∫

B(x, λ)†λB(x, λ) dλ

and κ(x) → κ̂(x) ≡
∫

B(x, λ)†τ(λ)B(x, λ) dλ, where τ(λ) ≡ −1
2 i~[λ(∂/∂λ) + (∂/∂λ)λ].

Here B(x, λ) ≡ A(x, λ) + c(λ)11, where λ ∈ R, A(x, λ)|0〉 = 0 for all (x, λ), and c(λ) is

the real ‘model function’; for the example offered in section 3 c(λ) = |λ|−1/2W (λ), where

0 < W (λ) = W (−λ) < ∞ with 0 < ǫ < W (0). Local operator products are given

by an operator product expansion [2], which leads to renormalized (R) products such as

φ̂(x)2R = b
∫

B(x, λ)†λ2B(x, λ) dλ, etc.; here, the fixed factor b ∝ (length)−s serves to main-

tain proper dimensions. Such local products become terms in the quantum Hamiltonian,

which is given by

H ≡
∫

B(x, λ)†h(∂/∂λ, λ)B(x, λ) dλ dsx

=

∫

A(x, λ)†h(∂/∂λ, λ)A(x, λ) dλ dsx , (1.1)

– 1 –
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which requires that h(∂/∂λ, λ)c(λ) = 0. For the example of section 3, which has a classical

Hamiltonian density of 1
2π(x)

2 + V (φ(x)), for some V with no spatial derivatives, then,

with ~ = 1,

h(∂/∂λ, λ) = −c(λ)−1∂/∂λc(λ)2∂/∂λc(λ)−1

= −∂2/∂λ2 + c(λ)−1∂2c(λ)/∂λ2 . (1.2)

We require that
∫

[λ2/(1 + λ2)]c(λ)2 dλ < ∞, and, to obtain a unique ground state, we

insist that
∫

c(λ)2 dλ = ∞, which ensures that h > 0, as normalized expectations of the

top line of (1.2) would confirm.

Hence: (i) H ≥ 0, (ii) H has a unique ground state |0〉 (because c(λ) 6∈ L2(R) implies

that all eigenvalues of h with normalizable eigenfunctions are positive), and (iii) H has

no zero-point energy (because all terms in H lead with an annihilation operator). The

Hilbert space has combinations of A(x1, λ1)
†A(x2, λ2)

† · · ·A(xN , λN )† |0〉 for all N < ∞
when smeared with suitable elements f(x1, λ1, . . . , xN , λN ) ∈ L2(R(s+1)N ).

2 Nonrenormalizable models exposed

A simple ‘toy’ example can help understand nonrenormalizable models. Consider the one-

variable problem with a classical action functional given by Ig =
∫ T
0 [

1
2 q̇(t)

2 − 1
2q(t)

2 −
gq(t)−4 ] dt, where the coupling constant g ≥ 0. The free model, with g = 0, has a domain

of functions Dg=0 = {q :
∫ T
0 [q̇

2+ q2]dt < ∞}, while the interacting theory, with any g > 0,

has a domain of functions Dg>0 = {q :
∫ T
0 [q̇

2 + q2 + q−4]dt < ∞}. Clearly, Dg>0 ⊂ Dg=0,

and, in particular, while solutions to the equations of motion within Dg=0 cross back and

forth over q = 0, solutions to the equations of motion within Dg>0 never cross q = 0 and

are always positive or always negative. In fact, solutions to the equations of motion when

g > 0 find that the limiting behavior of such solutions as g → 0 is continuously connected

to a solution that belongs to Dg>0 and does not belong to Dg=0. Specifically, a free model

solution is given by q(t) = B cos(t + β), for any B and β, while a g → 0 solution is given

by q(t) = ±|B cos(t + β)| 6= 0. In brief, as g → 0, an interacting model is continuously

connected with the free action functional but with the constraint that its associated domain

is Dg>0. Thus, the ‘interacting models’ are not continuously connected to the ‘free model’ !

We say that the g → 0 solutions belong to a pseudofree model rather than the free model.

Quantum mechanically, the propagator for the free model is given by

Kf (q
′′, T ; q′, 0) = Σn=0,1,2,3,... hn(q

′′)hn(q
′) e−i(n+1/2)T/~ , (2.1)

where {hn(q)}∞n=0 are Hermite functions. On the other hand, the propagator for the

pseudofree model [3] is given by

Kpf (q
′′, T ; q′, 0) = lim

g→0
Ng

∫ q(T )=q′′

q(0)=q′
e(i/~)

∫
T

0
[(q̇2−q2)/2−gq−4] dtDq

= 2θ(q′′q′)Σn=1,3,5,7... hn(q
′′)hn(q

′) e−i(n+1/2)T/~ , (2.2)

– 2 –
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where θ(u) ≡ 1 if u > 0 and θ(u) ≡ 0 if u < 0. Clearly, the interaction term has changed

the paths that contribute to the path integral. This result implies that any attempt at a

perturbation series must be taken about the pseudofree theory because if it is taken about

the free theory every term will diverge! Domains matter!

3 Ultralocal scalar model: a nonrenormalizable example

The classical Hamiltonian for this model is given by

H(π, φ) =

∫
{

1

2

[

π(x)2 +m2
0φ(x)

2
]

+ g0φ(x)
4

}

dsx , (3.1)

with the Poisson bracket {φ(x), π(x′)} = δ(x − x′). This model has also been discussed

before, e.g., [4–6], and we will offer just an overview of its quantization.

Let us first introduce an s-dimensional spatial lattice for (3.1) of step a > 0 to ap-

proximate the spatial integral, which leads to the expression for a regularized classical

Hamiltonian given by

HK(π, φ) =
∑

k

[

1

2
(π2

k +m2
0φ

2
k ) + g0φ

4
k

]

as , (3.2)

where k = {k1, k2, . . . , ks} ∈ K, kj ∈ Z ≡ {0,±1,±2, . . .}, where K is large but finite and

as represents a cell volume. Clearly, a suitable limit of K → ∞ and a → 0 is understood

such that Kas → V , where V ≤ ∞ is the spatial volume implicit in (3.1).

Next we discuss a quantization based on CQ for the lattice Hamiltonian prior to

taking a spatial limit with a → 0. Since there is no connection of the dynamics be-

tween spatial points, it follows that at each lattice site πk → a−sPk and φk → Qk and

Hk(πk, φk) → Hk(Pk, Qk). Moreover, at each site Hk(Pk, Qk) = { 1
2 [a

−2sP 2
k + m2

0Q
2
k] +

g0Q
4
k +O(~;Pk, Qk; a) } as, where we assume the last term is polynomial in P and Q and

vanishes if ~ → 0. Here the ground state |ψ0;k〉 fulfills the relation Hk(Pk, Qk) |ψ0;k〉 = 0.

The normalized Schrödinger representation 〈φk|ψ0;k〉 has the form exp[−Y (φk; ~, a)a
s/2],

where −∞ < Y (φk; ~, a) = Y (−φk; ~, a) < ∞, and the characteristic function of the regu-

larized overall ground-state distribution is given by

CK(f) = Πk

∫

eifkφk a
s/~ e−Y (φk;~,a)a

s

dφk/

∫

e−Y (φk;~,a)a
s

dφk

= Πk

∫

eifkφk e−Y (φk~/a
s;~,a)as dφk/

∫

e−Y (φk~/a
s;~,a)as dφk . (3.3)

The final issue involves taking the continuum limit as a → 0. To ensure a reasonable limit

it is helpful to expand the term involving fk in a power series, which leads to

CK(f) = Πk

{

1− 1

2!
f2
k 〈φ2

k〉a +
1

4!
f4
k 〈φ4

k〉a −
1

6!
f6
k 〈φ6

k〉a − . . .

}

. (3.4)

In order to achieve a meaningful continuum limit, it is necessary that 〈φ2
k〉a ∝ as, which, in

the present case, means that 〈φ2j
k 〉a ∝ asj (since the distribution is ‘tall and narrow’ about

– 3 –
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φk = 0), leading to the result that the continuum limit becomes C(f) = exp[−R
∫

f(x)2 dsx]

for some R, 0 < R < ∞. This result is a standard result of the Central Limit Theorem [7],

which implies a Gaussian (= free) ground state for CQ.

Next we introduce classical affine fields φ(x) and κ(x), and the classical Hamiltonian

becomes

H ′(κ, φ) =

∫
{

1

2

[

κ(x)φ(x)−2κ(x) +m2
0φ(x)

2
]

+ g0φ(x)
4

}

dsx . (3.5)

A quantum study begins by promoting the classical affine fields to operators κ(x) → κ̂(x)

and φ(x) → φ̂(x), and it formally follows that

κ̂(x)φ̂(x)−2 κ̂(x) = π̂(x)2 +
3

4
~
2δ(0)2 φ̂(x)−2 . (3.6)

On the same spatial lattice as before, the quantum Hamiltonian is chosen as

H′
K(κ̂, φ̂) =

∑

k

{

1

2

[

− a−2s
~
2∂2/∂φ2

k + a−2sF ~
2φ−2

k +m2
0φ

2
k

]

+ g0φ
4
k

}

as , (3.7)

where F ≡ (12 − bas)(32 − bas) is a regularized version of 3
4 , and b is a fixed constant so

that bas is dimensionless. The ground state ψ0(φ) satisfies H′
K(κ̂, φ̂)ψ0(φ) = 0 and, for

bas ≪ 1, has a form such that

ψ0(φ)
2 = Πk (ba

s) e−Z(φk;~,a)a
s |φk|−(1−2bas) . (3.8)

The exponent Z prevents divergence of an integral of the ground-state distribution when

|φk| ≫ 1, but when |φk| ≪ 1 an integral of the ground-state distribution is proportional

to (bas)−1 +O(1), in which case the pre-factor (bas), when very tiny, provides the overall

normalization. Once again we study the characteristic function

C(f) = lim
a→0

Πk

∫

{

eifkφk a
s/~ (bas) e−Z(φk;~,a)a

s |φk|−(1−2bas) dφk

}

= lim
a→0

Πk

{

1− (bas)

∫

[

1− eifkφk a
s/~

]

e−Z(φk;~,a)a
s |φk|−(1−2bas) dφk

}

= exp

{

−b

∫

dsx

∫

[

1− eif(x)λ/~
]

e−z(λ;~) dλ/|λ|
}

, (3.9)

where λ = φka
s, and suitable factors in Z undergo an operator product expansion renor-

malization which leads to z. Besides a Gaussian distribution found by CQ, the resultant

form (3.9) is the only other result of the Central Limit Theorem, namely, a (generalized)

Poisson distribution (based on the new moments 〈φ2j
k 〉a ∝ as for all j ∈ {1, 2, 3, . . .}).

Moreover, the classical limit as ~ → 0 for this solution has been shown [1] to yield the

starting classical Hamiltonian.

As an example, suppose we take the limit g0 → 0. In this case, c(λ) = |λ|−1/2e−bmλ2/2~,

and thus

h(∂/∂λ, λ) =
1

2
b−1

[

−~
2∂2/∂λ2 +

3

4
~
2λ−2 + b2m2λ2

]

. (3.10)
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The resultant characteristic function is given by

C0(f) = exp

{

−b

∫

dsx

∫

[

1− eif(x)λ/~
]

e−bmλ2/~ dλ/|λ|
}

, (3.11)

which does not represent a traditional free model. However, the ground state implicitly

described here reflects the fact that the domain of the classical free action functional is

strictly larger than the domain of the classical interacting action functional and which is

unchanged in the limit of the coupling constant g0 → 0. Just as with the ‘toy’ example

in section 2, and from a path integral viewpoint, this domain modification leads to a

different set of paths than in the free-model path integral. Moreover, the spectrum of

the relevant quantum Hamiltonian associated with (3.11) has a uniform spacing (2~m)j,

where j ∈ {0, 1, 2, 3, · · · }, and which, as promised, correctly reflects a vanishing zero-point

energy [4].

This last reference also discusses different singular terms that are O(~2), which may

be relevant in alternative applications.

4 Additional studies using affine variables

Enhanced quantization and affine variables have also been applied to other problems. The

use of affine variables to discuss idealized cosmological models [8, 9] has led to gravitational

bounces rather than an initial singularity of the universe. Further use of affine variables

applied to idealized gravitational models has been given in seveal papers, e.g., [10–13], and

references therein. More complex applications include covariant scalar fields [1, 14–17],

and quantum gravity [1, 18–20], for which confirmation requires multiple selected computer

simulations.
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