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1 Introduction

Almost since its inception it was recognized that supersymmetry and geometry go hand

in hand [1]. Supersymmetric non-linear σ-models in two dimensions (NLSM) are a class

of field theories where the geometric aspects are under control and can be studied both at

the classical and the quantum mechanical level. They are interesting in their own right,

and have many applications, including as the building blocks for type II string theories, as

the description of certain moduli spaces, condensed matter physics, etc.

A non-supersymmetric NLSM is fully characterized by its target manifold, which is en-

dowed with a metric and a closed 3-form. These models can always be supersymmetrized as

long as the number of supersymmetries is bounded by (N+, N−) ≤ (1, 1) where N+ (N−) is

the number of right-handed (left-handed) supersymmetries. No further geometric structure

arises at the classical level. However, any additional supersymmetry past the first intro-

duces a covariantly constant complex structure,1 with respect to which the metric is her-

mitian. In addition, if (N+, N−) ≥ (2, 2), there are complex structures of each handedness.

In the current paper we will mostly focus on the (N+, N−) = (2, 2) case, which requires

besides the metric and the closed 3-form, two covariantly constant complex structures that

both preserve metric, hence the name “bihermitian geometry”. A simple dimensional argu-

ment shows that the Lagrange density in (2, 2) superspace can only be a function of a num-

ber of (constrained) scalar superfields. The Lagrange density encodes the full local geom-

etry. In the simplest case where only chiral superfields appear, the two complex structures

coincide, the 3-form vanishes and the geometry is Kähler. The Lagrange density is then

precisely the Kähler potential. This suggests that the generic case describes a far reaching

generalization of Kähler manifolds where the Lagrange density gets the interpretation of a

1In general, covariantly constant with respect to a connection with torsion related to the closed 3-form.
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generalized Kähler potential. This was understood to be the case in the bihermitian lan-

guage of [2] in a series of papers from the NLSM perspective [3–6]. This was reinterpreted by

Hitchin when he introduced the concept of generalized Kähler geometry [7], a natural gen-

eralization of Kähler geometry acting non-trivially on the sum of the tangent and cotangent

bundle, and which was shown by Gualtieri [8] to coincide with bihermitian geometry. A sub-

class of generalized Kähler manifolds, generalized Calabi-Yau manifolds, are conformally in-

variant at the quantum level and provide an important class of supergravity solutions [9, 10].

The off-shell completion of a (2, 2) NLSM depends on the precise choice of the right and

left complex structures J+ and J−; when different choices are possible, they correspond to

different bihermitian structures and thus to different generalized Kähler structures. This

is reflected in the supersymmetry algebra: one finds it closes off-shell modulo terms pro-

portional to the commutator of the two complex structures [J+, J−]. As a consequence one

expects that ker[J+, J−] = ker(J+ − J−) ⊕ ker(J+ + J−) can be described in a manifestly

supersymmetric way without introducing any further off-shell degrees of freedom. This is

indeed achieved by means of chiral and twisted chiral superfields [2]. To close the super-

symmetry algebra off-shell when the image [J+, J−] is nonvanishing, one must introduce

additional (1, 1) auxiliary fields; in (2, 2), they arise from semi-chiral superfields [3]. Any

(2, 2) NLSM can be described in terms of these three classes of superfields: chiral, twisted

chiral and semi-chiral [6]. However, as the off-shell completion of a (2, 2) NLSM fully de-

pends on the choice made for J+ and J− and as this choice is not always unique, one finds

that a given target manifold often admits different generalized Kähler structures.

If the generalized Kähler manifold possesses an isometry, one can T-dualize the model

along that isometry [11]. Generically one ends up with a different manifold. T-duality

not only affects the metric and closed 3-form, but also acts non-trivially on the complex

structures [12]. Hence, T-duality alters the superfield content of a (2, 2) NLSM. Two cases

appear: a chiral superfield can be interchanged for a twisted chiral superfield (and vice-

versa) [2] or a pair of chiral and twisted chiral superfields gets exchanged for a semi-chiral

multiplet (and vice-versa) [5]. A particularly interesting case arises when the isometry is

actually a Kac-Moody symmetry — then the metric and closed 3-form remain unchanged,

but the complex structures still transform [13]. This is precisely the case we investigate in

this paper.

A simple but non-trivial class of generalized Kähler manifolds where many of the issues

discussed above can be studied quite explicitly are even-dimensional reductive Lie group

manifolds [14]. The resulting σ-models are (2, 2) supersymmetric Wess-Zumino-Witten

(WZW) models. A complex structure on a reductive group manifold is fully determined

by its action on the Lie algebra where it is almost equivalent to a Cartan decomposition of

the Lie algebra: it has eigenvalue +i (−i) on positive (negative) roots. The only freedom

remains in its action on the Cartan subalgebra where the only restriction is the requirement

that the Cartan-Killing metric should be hermitian. Given a choice for J+ there is still a

considerable freedom in choosing J−, giving rise to various generalized Kähler structures

on reductive even-dimensional Lie groups. For groups of low rank this can be studied

systematically.
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In the current paper we explore and elucidate the relation between various generalized

Kähler structures on the same Lie group. We start with the well-known example of SU(2)×
U(1), which allows for two generalized Kähler structures: one in terms of a chiral and a

twisted chiral field [15] and one in terms of semi-chiral multiplet [4]. We show that the

two generalized Kähler structures are related through T-duality transformation along an

affine isometry. This can be understood as follows. Only the maximal abelian subgroup of

the left and right-handed affine group acts trivially on the complex structures and thus are

manifest in (2, 2) superspace. T-dualizing along an affine isometry does not alter the metric

or the closed 3-form [13] but it does alter the complex structures, mapping one generalized

Kähler structure on SU(2) × U(1) into the other one! As a far more difficult example,

we study the hitherto unexplored case of SU(3); this also has (at least) two inequivalent

generalized Kähler structures: one in terms of two semi-chiral multiplets and one in terms

of a single semi-chiral multiplet, one chiral and one twisted chiral superfield.2

The outline of the rest of the paper is as follows. Section 2 reviews supersymmetric

WZW models, which form an important class of generalized Kähler manifolds. Section 3

comprises a review of the generalized Kähler structures carried by SU(2)×U(1), in particu-

lar concentrating on relating generalized Kähler structures of different types via T-duality.

Section 4 studies the generalized Kähler structures on SU(3). Generalized Kähler poten-

tials for both types of generalized Kähler structures on SU(3) are derived. Section 5 has a

brief summary of our results and discusses possibilities for further research. Appendix A re-

views sigma models and their supersymmetric extensions to (1, 1) superspace. Appendix B

gives details of the (2, 2) superspace description of bihermitian geometry, including explicit

formulae for the complex structures J± in terms of the generalized Kähler potential K.

Appendix C discusses isometries, T-duality, and generalized (2, 2) supersymmetric vector

multiplets. Appendix D attempts to give insight into the art of finding holomorphic co-

ordinates on WZW-models. Appendix E presents some particular choices of holomorphic

coordinates for SU(2)×U(1) that we found but are not discussed in section 3. Appendix F

describes the T-duality transformation from type (1, 1) to (0, 0) using the Large Vector Mul-

tiplet discussed in appendix C. Appendix G discusses another rank 2 group, SU(2)×SU(2),

which admits only type (1, 0) and type (0, 1) generalized Kähler structures.

2 Generalized Kähler geometry on group manifolds

2.1 (2, 2) sigma model description of bihermitian geometry

We briefly recap the (2, 2) superspace formulation of a two-dimensional sigma model with

bihermitian target space and establish the notation used in the rest of this paper.3

As always, (2, 2) superspace has two commuting coordinates σ++ = τ + σ, σ= = τ −
σ and four anticommuting coordinates θ+, θ̄+, θ−, θ̄−. There are two complex spinorial

2Actually, both SU(2) × U(1) and SU(3) have (4, 4) supersymmetry, so in principle there are S2 × S2

generalized Kähler structures. We expect these to fall into two deformation classes, so that our examples

should be generic, but further investigation might be worthwhile.
3For background and more details about sigma models in general, see appendix A.
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covariant derivatives D± which satisfy the algebra

{D±, D̄±} = 2i∂++
=
, D

2
± = D̄

2
± = 0. (2.1)

The three types of (2, 2) superfields required to describe a generic generalized Kähler man-

ifold are the following:

• chiral superfields φ, φ̄ satisfying

D̄+φ = 0, D̄−φ = 0,

D+φ̄ = 0, D−φ̄ = 0,
(2.2)

• twisted chiral superfields χ, χ̄ satisfying

D̄+χ = 0, D−χ = 0,

D+χ̄ = 0, D̄−χ̄ = 0,
(2.3)

• left and right semi-chiral superfields ℓ, ℓ̄, r, r̄ satisfying

D̄+ℓ = 0, D̄−r = 0,

D+ℓ̄ = 0, D−r̄ = 0.
(2.4)

The action in (2, 2) superspace has the form

I =

∫

d2σ d4θK =

∫

d2xD2
D̄
2K, (2.5)

where K is a real local function, the generalized Kähler potential, of the superfields

ℓ, ℓ̄, r, r̄, φ, φ̄, χ, χ̄. The potential is defined modulo generalized Kähler transformations

K 7→ K + f(ℓ, φ, χ) + f̄(ℓ̄, φ̄, χ̄) + g(r, φ, χ̄) + ḡ(r̄, φ̄, χ), (2.6)

which give rise to total derivatives in the component sigma model Lagrangian density.

This single function K fully encodes the local geometry of the target manifold M
which must be even-dimensional and has geometric structures (g,H, J+, J−) where4

• J+ and J− are two integrable complex structures on M compatible with the metric g

J2
+ = J2

− = −1,

[X,Y ] + J±[J±X,Y ] + J±[X, J±Y ]− [J±X, J±Y ] = 0,

g(J±X, J±Y ) = g(X,Y ),

(2.7)

where X,Y are arbitrary vector fields, and

• H = dc+ω+ = −dc−ω− is a closed 3-form, where dc± are the dc operators with respect

to J±, and ω± = gJ± are the hermitian forms of the respective complex structures.

4See appendix B for the formulas expressing these structures in terms of the generalized potential.
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A manifold carrying such a structure is known as bihermitian [2], and has been shown to be

equivalent to generalized Kähler geometry [8]. Note that the second condition is equivalent

to the covariant constancy

∇(±)J± = 0 (2.8)

of the complex structures J± with respect to the Bismut connections ∇(±), which are

metric connections with torsions ±g−1H (first introduced by Yano — see [16], pp. 150-

151). Explicitly,

Γ(±)µ

νρ = Γ(0)µ

νρ ±
1

2
gµσHσνρ, (2.9)

where Γ(0) is the Levi-Civita connection. The torsion 3-form H enters the sigma model

description via a local 2-form potential b known as the Kalb-Ramond field, with H = db.

A bihermitian manifold is equipped with three Poisson structures

π± = (J+ ± J−)g
−1, (2.10)

σ = [J+, J−]g
−1. (2.11)

The superfields (2.2)–(2.4) arising from the (2, 2) superspace description may be inter-

preted as coordinates adapted to these Poisson structures. More specifically, near a regular

point,5 chiral superfields are complex coordinates along kerπ−, twisted chiral superfields

are complex coordinates along kerπ+, and semi-chiral coordinates are holomorphic Dar-

boux coordinates along the symplectic leaves of the foliation defined by σ [6]. The type

of the generalized Kähler geometry at a point is (dimC kerπ−, dimC kerπ+); equivalently,

a geometry of type (Nc, Nt) at a point admits a (2, 2) sigma model description with Nc

chiral superfields and Nt twisted chiral superfields near that point. In general, the type is

not constant on the manifold: there may be subvarieties, known as type-change loci, on

which the type increases; these must have strictly positive codimension.

2.2 (1, 1) WZW models

A Wess-Zumino-Witten (WZW) model is a theory of maps from a Riemann surface Σ to a

Lie group G equipped with an invariant metric and a normalized torsion form. The (1, 1)

WZW model is a theory of maps from a (1, 1) super-Riemann surface to G, and has action6

kI[g] = −k

π

∫

Σ
d2σ d2θ tr(g−1∇+gg

−1∇−g)−
k

π

∫

B
d3σ̃ d2θ tr(g̃−1∂tg̃{g̃−1∇+g̃, g̃

−1∇−g̃}),
(2.12)

where k is an integer (the level),7 “tr” is a normalized invariant bilinear form on the Lie

algebra g := Lie(G), B is a 3-dimensional manifold with boundary ∂B = Σ with local

coordinates σ̃ = (t, σ), and g̃ is an extension of g to B. Modulo multiples of 2πi, I[g] is

independent of the choice of B and extension g̃.

5At a regular point on a manifold with a Poisson structure, the rank of the structure is constant in a

sufficiently small neighborhood of the point. Here we consider a point that is regular with respect to all

three Poisson structures.
6See appendix A for a review of (1, 1) superspace.
7Nonconformal models with separate normalizations of the two terms can also be studied; their extensions

to (2, 2) superspace are not understood.
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The Maurer-Cartan forms eaL, e
a
R, defined by

g−1 dg = eaLTa, dg g−1 = eaRTa, (2.13)

where Ta is a basis for the Lie algebra g, allow one to push forward tensors on the Lie

algebra to the group.

The (1, 1) WZW model has symmetry group GL × GR, acting as g 7→ hLgh
−1
R (only

the subgroup (GL × GR)/Z(G) acts nontrivially, where Z(G) is the center of the group).

The model also has superconformal symmetry, so the parameters hL and hR are allowed

to be semilocal, satisfying

∇+hL = 0, ∇−hR = 0. (2.14)

2.3 (2, 2) WZW models

All even dimensional reductive Lie groups admit (2, 2) extensions [14]. The complex struc-

tures corresponding to the extended supersymmetries (2.7) may be pulled back to the Lie

algebra

(J+)
a
b = (eL)

a
µ(J+)

µ
ν(e

−1
L )νb, (J−)

a
b = (eR)

a
µ(J−)

µ
ν(e

−1
R )νb, (2.15)

and in terms of the Lie algebra complex structures J±, the conditions for (2, 2) supersym-

metry may be reformulated as [14]

• J± are constant and satisfy J2± = −1 as well as η(J±X, J±Y ) = η(X,Y ) where η is

the Killing form and X,Y are arbitrary Lie algebra elements.

• Further, they obey f(X, J±Y, J±Z)+f(J±X,Y, J±Z)+f(J±X, J±Y, Z) = f(X,Y, Z),

where f(X,Y, Z) = η([X,Y ], Z) is the alternating form constructed from the struc-

ture constants and η.

These conditions were solved in [14] where it was shown that J± may be characterized by

a choice of Cartan subalgebra and positive direction. The complex structures are diagonal

on the positive and negative roots with eigenvalue +i and −i respectively, and map the

Cartan subalgebra to itself in a way that makes the Killing form hermitian. Since any two

Cartan decompositions of a Lie algebra are related by group conjugation, the only freedom

lies in the choice of the action on the Cartan subalgebra.

Let us now turn to the superfield content, or type, allowed for a particular WZW

model. A choice of J+ and J− on the Lie algebra fixes the superfield content. The numbers

of chiral (2.2) and twisted chiral superfields (2.3)

Nc = dimC ker(J+ − J−), Nt = dimC ker(J+ + J−) (2.16)

can be computed by noting that ker(J+ ± J−) = ker(J+ ± eLe
−1
R (J−)eRe

−1
L ) and that

eLe
−1
R is a transformation in the adjoint representation. The number of sets of semi-chiral

superfields (2.4) is then (N−Nc−Nt)/2, where 2N is the (real) dimension of the Lie group.

This can be easily analyzed for rank two groups. Here, one has essentially two choices

for the Lie algebra complex structures: either they are equal J+ = J−, or they are opposite

on the Cartan subalgebra J+|CSA = −J−|CSA. For the former case, Nt = dimC ker(J+ +

– 6 –
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J+ = J− J+ 6= J−

Group N Ns Nc Nt Ns Nc Nt

SU(2)×U(1) 2 1 0 0 0 1 1

SU(2)× SU(2) 3 1 1 0 1 0 1

SU(3) 4 2 0 0 1 1 1

SO(5) 5 2 1 0 1 2 1

G2 7 3 1 0 2 2 1

Table 1. The coordinate content for the rank 2 non-abelian reductive Lie groups either taking the

complex structures to be equal on the Lie algebra (J+ = J
−
) or having the opposite sign on the

CSA (J+ 6= J
−
). The number of semi-chiral, chiral and twisted chiral coordinates are denoted Ns,

Nc and Nt respectively.

eLe
−1
R (J−)eRe

−1
L ) = 0 always, while Nc = ker(J+ − eLe

−1
R (J−)eRe

−1
L ) can be analyzed by

writing eLe
−1
R = exp(α) and expanding through first nontrivial order in α. A similar

analysis can be done for the latter choice. The results are given in table 1. Notice that

each of the rank two groups admit generalized Kähler structures of two different types.

2.4 Isometries

Of the GL×GR symmetry of the (2, 2) WZW model, only the subgroup GL×HR preserves

the left complex structure J+, where HR ⊂ GR is the maximal torus corresponding to the

action of J+ on the Lie algebra as described in section 2.3. A similar statement holds for

J−, so the group of isometries preserving both complex structures of the (2, 2) extended

WZW is HL ×HR.
8 Due to the superconformal invariance of the WZW model, these are

in fact Kac-Moody symmetries.

2.5 T-duality along Kac-Moody isometries

Consider the T-dual sigma model of a (2, 2) supersymmetric WZW model along some

isometry U(1) ⊂ HL × HR. Since the isometry preserves the bihermitian structure, the

T-duality can be performed in (2, 2) superspace, and the dual model also exhibits (2, 2)

supersymmetry.9

If, furthermore, the T-duality is along a left (right) Kac-Moody isometry U(1) ⊂ HL,

then in fact the metric, torsion and left (right) complex structure of the sigma model is

unchanged [12, 13]. Indeed, for a left Kac-Moody isometry with Killing field kµ, normalized

so that it has unit norm, the chiral component of the Noether current (see (3.1) of [13])

J = (kµ(gµν − bµν) + ων) ∂Φ
ν (2.17)

vanishes, where ω is a one-form defined by Lkb = dω. We assume that the b field is chosen

to be invariant under k, so that ω = dα is locally exact, so

kµ(gµν − bµν) + ∂να = 0. (2.18)

8As before, the group which acts faithfully is actually (HL ×HR)/Z(G).
9See appendix C below for a review of T-duality in (2, 2) superspace.
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Choose a coordinate system ΦI such that Φ0 = −α and the other Φi are k-invariant. Con-

tracting (2.18) with kν shows that in this coordinate system, the Killing field is k = ∂/∂Φ0.

Taking ν = I in (2.18) then shows that the metric and b field satisfy e00 = g00 = 1 and

ei0 = (g−b)0i = 0. Substituting e00 = 1 and ei0 = 0 into the formulas (12), (15), (16) of [12]

then shows that the metric, torsion and left complex structure are unchanged by T-duality.

For a right Kac-Moody isometry, the antichiral component of the Noether current

J̄ = (kµ(gµν + bµν)− ων) ∂̄Φ
ν (2.19)

vanishes. The discussion proceeds analogously: assuming that b is invariant, ω = dα is

exact, and in a coordinate system Φ0 = α and Φi such that LkΦ
i = 0, we have e00 = 1

and e0i = 0. The formulas (13), (15) and (16) of [12] then show that the metric, torsion

and right complex structure are unchanged by T-duality (after a change of coordinates

Φ̃0 7→ −Φ̃0 of the dual model).

However, T-duality along a left (right) isometry does change the right (left) complex

structure. In particular, the structures J+ ± J− and [J+, J−] are changed. Therefore,

T-duality along a Kac-Moody isometry changes the type of the generalized geometry and

relates the different generalized Kähler structures on the same Lie group.

In the following sections, we will perform these T-dualities in (2, 2) superspace. Since

in (2, 2) superspace, gauging an isometry complexifies the gauge group (with respect to

both complex structures), T-dualizing along isometries related by the complex structures

gives rise to the same T-dual model in superspace. This also implies that isometries related

by complex structures cannot be simultaneously gauged [17]. For the rank 2 Lie groups

which we consider in this paper, this means that T-duality along any Kac-Moody isometry

always leads to the same T-dual model.

2.6 General strategy for finding the generalized Kähler potential

Given the bihermitian data (g,H, J+, J−), the generalized Kähler potential K can in prin-

ciple be found by solving the equations (B.12)–(B.13), which relate nonlinearly the Hessian

of K to g and H in adapted coordinates. This is a nonlinear second order differential equa-

tion — a difficult equation to solve. However, on the symplectic leaves of σ (2.11), there is

a simplification. On each symplectic leaf, K generates the symplectomorphism between left

holomorphic Darboux coordinates (left semi-chiral superfields) and right holomorphic co-

ordinates (right semi-chiral superfields), which means that it satisfies the first order linear

differential equations (B.9)–(B.11).

This simplification, coupled with the observation about T-duality noted above, allows

one to find the generalized Kähler potentials for all the generalized Kähler structures

supported by a Lie group admitting a type (0, 0) structure. The strategy is as follows.

First, we find left and right holomorphic coordinates on the Lie group. This can be done

by expanding the left and right invariant frames about the origin, taking the leading term to

be given by the holomorphic Lie algebra generators, and solving for the higher order terms

order by order using the Maurer-Cartan equations. (See appendix D for more details.)

Next, for the type (0, 0) structure, identify combinations ℓ, ℓ̃ and r, r̃ of left and right
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holomorphic coordinates that are Darboux for σ. This yields one-form symplectic potentials

θL = ℓ̃ dℓ +
¯̃
ℓ dℓ̄ and θR = r dr̃ + r̄ d¯̃r for the (local) symplectic form σ−1. The difference

θL − θR is closed, and can be integrated to give the generalized Kähler potential K =
∫

θL − θR. Next, the potentials for the generalized geometries of other types on the Lie

group can be obtained by T-duality, as discussed above.

We illustrate this strategy for SU(2)×U(1) by first computing the type (0, 0) structure,

and then T-dualizing along a Kac-Moody isometry to obtain the type (1, 1) generalized

Kähler potential, reproducing a previously known result. We then apply this to SU(3),

constructing the type (1, 1) generalized Kähler potential from the type (0, 0) potential.

3 SU(2) × U(1)

The generalized Kähler geometry of SU(2) × U(1) has been studied in detail [15, 18]. In

this section, we revisit these results as a warm up for the SU(3) model.

The outline of the section is as follows. First, we choose complex structures J± on the

Lie group and find complex coordinates. As discussed in section 2.3, generalized Kähler

structures of two types are admissible depending on the choice of complex structures.

Next, we find generalized Kähler potentials for each of the two types. These potentials

can be written down in various different forms, differing from one another by generalized

Kähler transformations and coordinate transformations. Different choices of potentials suit

different purposes and the relations between them are illuminating. Finally, we relate the

generalized geometries of the two different types by T-duality.

3.1 Coordinates and generalized Kähler potential

On the Lie algebra, take the basis {h, h̄, e, ē} where

h =

(

ζ 0

0 −ζ̄

)

, h̄ =

(

ζ̄ 0

0 −ζ

)

, e =

(

0 1

0 0

)

, ē =

(

0 0

1 0

)

, (3.1)

ζ = 1
2(1+ i), ζ̄ = 1

2(1− i). The two complex structures on the Lie algebra compatible with

the choice of Cartan subalgebra h, h̄ are

J1 = diag(i,−i, i,−i), J2 = diag(−i, i, i,−i). (3.2)

Depending on whether one takes J± induced from the same or from different Lie alge-

bra complex structures J1, J2, one gets generalized Kähler structures of different types on

SU(2)×U(1).

3.1.1 Type (0, 0)

If one takes J+ and J− both induced from the same Lie algebra complex structure, say J1,

then generically the resulting generalized Kähler structure has type (0, 0); in other words,

[J+, J−] has full rank at generic points of the group.10 In this case, J+ and J− induce the

10There are loci of positive codimension on which ker[J+, J−] is nontrivial.
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same orientation on SU(2) × U(1). The sigma model description is in terms of one set of

semi-chiral superfields.

In terms of the group element in the defining representation

g =

(

g11 g12

g21 g22

)

, (3.3)

the J± holomorphic coordinates can be chosen to be11

z1+ = log gζ12ḡ
ζ̄
21,

z2+ = log gζ22ḡ
ζ̄
11,

z1− = log gζ̄12ḡ
ζ
21,

z2− = log gζ̄11ḡ
ζ
22.

(3.4)

Note that neither the set (z1+, z̄
1
+, z

1
−, z̄

1
−) nor the set (z2+, z̄

2
+, z

2
−, z̄

2
−) is nondegenerate (in

each case, unitarity of g implies one real relation between these functions). These holo-

morphic coordinates are chosen to be Darboux with respect to the Poisson structure σ:

σ(dz1±, dz
2
±) = ±1, σ(dz̄1±, dz̄

2
±) = ±1. (3.5)

One choice of semi-chiral coordinates is

ℓ = z2+, ℓ̃ = z1+, r = z2− − z1−, r̃ = z2−, (3.6)

satisfying d(ℓ̃ dℓ +
¯̃
ℓ dℓ̄ + r̃ dr + ¯̃r dr̄) = 0. Choosing polarizations such that the adapted

coordinates are ℓ̃,
¯̃
ℓ and r, r̄ results in the parametrization [18]

g = e−ζθ

(

eℓ̃+r eℓ̃

−e
¯̃
ℓ e

¯̃
ℓ+r̄

)

, θ = ℓ̃+
¯̃
ℓ+ log(1 + er+r̄) (3.7)

and potential

K
(0,0)
0 =

∫

−ℓ dℓ̃− ℓ̄ d
¯̃
ℓ+ r̃ dr + ¯̃r dr̄

= −(ℓ̃+ r)(
¯̃
ℓ+ r̄) +

∫ −r−r̄

log(1 + eq) dq (3.8)

satisfying ∂K
∂ℓ̃

= −ℓ, ∂K∂r = r̃. This potential is valid on the coordinate patch away from the

off-diagonal matrices. On the other coordinate patch, away from the diagonal matrices, we

choose the polarizations spanned by ℓ, ℓ̄ and r, r̄, which results in the parametrization

g = e−ζθ

(

eℓ̄ eℓ̄−r

−eℓ−r̄ eℓ

)

, θ = ℓ+ ℓ̄+ log(1 + e−(r+r̄)) (3.9)

11See appendix D for a discussion of how to find such coordinates.
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and potential

K
(0,0)
1 =

∫

ℓ̃ dℓ+
¯̃
ℓ dℓ̄+ r̃ dr + ¯̃r dr̄

= (ℓ− r̄)(ℓ̄− r)−
∫ r+r̄

log(1 + eq) dq +
1

2
(r2 + r̄2) (3.10)

satisfying ∂K
∂ℓ = ℓ̃, ∂K∂r = r̃. On the overlap of the two patches (comprising the group

elements with nonvanishing entries), (3.8) and (3.10) differ by a Legendre transform

K
(0,0)
0 (ℓ̃,

¯̃
ℓ, r, r̄) = K

(0,0)
1 (ℓ, ℓ̄, r, r̄)− ℓℓ̃− ℓ̄

¯̃
ℓ. (3.11)

This appears to be the choice of parametrization and polarization giving the simplest

expression for the potential. Some other choices are given in appendix E.

3.1.2 Type (1, 1)

If one instead takes J+ and J− induced from different Lie algebra complex structures, say

J+ from J1 and J− from J2, one finds [J+, J−] = 0 everywhere. In other words, the resulting

generalized Kähler structure has type (1, 1), and can be parametrized by a chiral coordinate

φ and a twisted chiral coordinate χ. Furthermore, J+ and J− induce opposite orientations.

In this case, the conditions that φ is holomorphic with respect to both J± determine it

uniquely up to a simple redefinition φ → φ′(φ). Similarly, χ is also essentially unique.

One choice of parametrization of the group element is given by

g = e−ζθ

(

eχ̄ eφ

−eφ̄ eχ

)

, θ = log(eφ+φ̄ + eχ+χ̄). (3.12)

where we recall that ζ = 1
2(1 + i). Equivalently, the chiral and twisted chiral coordinates

are given by

φ = log gζ12ḡ
ζ̄
21,

χ = log gζ22ḡ
ζ̄
11.

(3.13)

This coordinate patch covers the region where all the entries of the group are nonzero. A

redefinition φ̂ = eφ, χ̂ = eχ allows one to reach the diagonal elements (φ̂ = 0) and the

off-diagonal elements (χ̂ = 0).

The generalized potential for the type (1, 1) structure is known [15]

K
(1,1)
0 =

1

2
(χ− χ̄)2 +

∫ φ+φ̄−χ−χ̄

dq log(1 + eq). (3.14)

By redefining φ̂ = eφ and checking that the limit φ̂ → 0 is well-defined, one can verify that

this potential is valid on the coordinate patch away from the off-diagonal matrices.12 The

following potential

K
(1,1)
1 = −1

2
(φ− φ̄)2 −

∫ −φ−φ̄+χ+χ̄

dq log(1 + eq). (3.15)

12In [15], the variables used correspond to φ̂, χ̂.
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is valid on the coordinate patch away from diagonal matrices, as can be seen by redefining

χ̂ = eχ and checking that the limit χ̂ → 0 is well-defined. These two patches cover SU(2)×
U(1). On the overlap of the two patches, comprising the group elements with nonvanishing

entries, (3.14) and (3.15) differ by a generalized Kähler transformation K
(1,1)
0 − K

(1,1)
1 =

−(χ+ χ̄)(φ+ φ̄).

The generalized potentials (3.14), (3.15) were obtained by solving the second order

differential equations (B.12)–(B.13)13 In the next subsection, we shall make use of the

discussion in the previous section to derive the type (1, 1) potentials (3.14), (3.15) from the

type (0, 0) potentials (3.8), (3.10) via T-duality.

3.2 Isometries

The SU(2) × U(1) WZW model has isometry group SU(2)L × SU(2)R × U(1), and the

subgroup preserving both complex structures J± is U(1)L × U(1)R × U(1). It acts on the

group element g as

g 7→ hLgh
−1
R , (3.16)

with

hL = e−i(ǫh+ǭh̄), hR = ei(ηh̄+η̄h), (3.17)

where h is defined in (3.1), and ǫ and η are complex parameters.

In the type (0, 0) parametrization (3.6), this corresponds to

ℓ 7→ ℓ+ ǭ+ η, ℓ̃ 7→ ℓ̃+ ǫ+ η

r 7→ r − η + η̄, r̃ 7→ r̃ − ǭ− η.
(3.18)

The parameters ǫ and η can be promoted to Kac-Moody parameters satisfying

D̄+ǫ = 0, D±ǫ = 0,

D̄±η = 0, D−η = 0.
(3.19)

In the type (1, 1) parametrization (3.12), this corresponds to

φ 7→ φ+ ǫ+ η, χ 7→ χ+ ǭ+ η. (3.20)

The parameters ǫ and η can be promoted to Kac-Moody parameters satisfying (note the

chirality constraints on ǫ differ from above)

D̄±ǫ = 0, D+ǫ = 0,

D̄±η = 0, D−η = 0.
(3.21)

3.3 T-duality: relating the two types

As discussed in section 2.5, T-duality along a Kac-Moody isometry relates the two gen-

eralized structures on SU(2) × U(1). This T-duality may be realized in (2, 2) superspace

using the gauging prescription of [13].

13For special case of SU(2)×U(1), which has no semi-chiral coordinates, these equations turn out to be

linear. For generic Lie groups, these equations are nonlinear and difficult to solve.
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3.3.1 Type (0, 0) to type (1, 1)

We begin with the type (0, 0) generalized Kähler structure (3.8), and T-dualize along any

factor of the U(1)L × U(1)R × U(1) Kac-Moody isometry group. The complex structures

J± map these isometries into one another, so in superspace, where the gauge group is

complexified, the gauging of any of these isometries is equivalent (up to reparametrizations).

Along U(1)R. Consider first T-duality along U(1)R, which acts on the semi-chiral co-

ordinates as in (3.18) with ǫ = 0, η = iλ, where λ is a real parameter. This isometry is

gauged with an Semichiral Vector Multiplet (SVM) [23] (see appendix C). The combina-

tions invariant under the U(1)R isometry are ℓ̃+
¯̃
ℓ, −1

2(r+ r̄) and i(
¯̃
ℓ− ℓ̃+ 1

2(r̄−r)), and are

respectively gauged with the potentials V L, V R and V ′ of the SVM. Starting from K
(0,0)
0

in (3.8), we add the generalized Kähler transformation term

K(0,0) = K
(0,0)
0 +

1

2
(ℓ̃2 +

¯̃
ℓ2)− 1

4
(r2 + r̄2) (3.22)

to make the potential exactly invariant.14 The generalized Kähler transformation terms

amount to redefining ℓ and r̃ to the invariant combinations ℓ 7→ ℓ − ℓ̃, r̃ 7→ r̃ − r/2. The

resulting invariant potential is

K(0,0) =
1

2

(

¯̃
ℓ− ℓ̃+

1

2
(r̄ − r)

)2

− 3

8
(r+ r̄)2− 1

2
(ℓ̃+

¯̃
ℓ)(r+ r̄)+

∫ −r−r̄

dq log(1+eq). (3.23)

Gauging with an SVM, enforced to be flat by Lagrange multipliers ΦI , and gauge fixing

ℓ̃ =
¯̃
ℓ = r = r̄ = 0 yields

K̃(0,0) = −1

2
(V ′)2 − 3

2
(V R)2 + V LV R +

∫ 2V R

dq log(1 + eq)− V IΦI , (3.24)

where the Lagrange multipliers are

ΦL =
1

2
(φ+ φ̄− χ− χ̄),

ΦR =
1

2
(−φ− φ̄− χ− χ̄),

Φ′ =
i

2
(φ− φ̄+ χ̄− χ).

(3.25)

Eliminating the SVM gauge fields yields the T-dual potential

K̃(0,0) = −1

2
(χ+ χ̄)2 +

∫ φ+φ̄−χ−χ̄

dq log(1 + eq)− 1

2

(

(φ− χ)2 + (φ̄− χ̄)2
)

+
1

4

(

(φ+ χ̄)2 + (φ̄+ χ)2
)

,

(3.26)

which is precisely K
(1,1)
0 (3.14) up to a generalized Kähler transformation.

14This is not necessary but simplifies the discussion somewhat.
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Along U(1)L. Consider now T-duality along the U(1)L factor of U(1)L ×U(1)R ×U(1),

which acts on the coordinates as in (3.18) with ǫ = iλ, η = 0, where λ is a real parameter.

In this case, there is a complication because r, r̄ are invariant - how does the potential (3.8)

couple to the SVM in this case? One way to do so is to perform a Legendre transform from

r, r̄ to r̃, ¯̃r (corresponding to a change in polarization), yielding the potential (we also add

the generalized Kähler transformation −1
2(ℓ̃

2 +
¯̃
ℓ2) to render the potential invariant - this

amounts to redefining ℓ → ℓ+ ℓ̃)

K(0,0)(ℓ̃,
¯̃
ℓ, r̃, ¯̃r) = K

(0,0)
0 (ℓ̃,

¯̃
ℓ, r, r̄)− 1

2
(ℓ̃2 +

¯̃
ℓ2)− rr̃ − r̄¯̃r

= −1

2
(ℓ̃+

¯̃
ℓ)2 − r(

¯̃
ℓ+ r̃)− r̄(ℓ̃+ ¯̃r)− rr̄ +

∫ −r−r̄

dq log(1 + eq). (3.27)

Note that r̃ does indeed transform as r̃ 7→ r̃+ iλ, so now the invariant combinations ℓ̃+
¯̃
ℓ,

ℓ̃+ ¯̃r and
¯̃
ℓ+ r̃ can be respectively gauged with the components V L, Ṽ and ¯̃

V of the SVM.

The T-dual potential is

K̃(0,0) = −1

2
(V L)2 − rr̄ − r ¯̃V− r̄Ṽ+

∫ −r−r̄

dq log(1 + eq)− V IΦI , (3.28)

where

V IΦI = V Li(φ̄− φ) + Ṽ(φ̄− χ) + ¯̃
V(φ− χ̄). (3.29)

Note that the variational equations of V I are

0 =

(

∂K
(0,0)
0

∂r
+ r̃

)

∂r

∂V I
+

(

∂K
(0,0)
0

∂r̄
+ ¯̃r

)

∂r̄

∂V I
+

∂K(0,0)

∂V I
, (3.30)

where the derivative in the last term is taken with r, r̄ held fixed. The two terms in

parentheses vanish. In particular, the variational equation of Ṽ sets r̄ = χ− φ̄. The T-dual

potential then simplifies to

K̃(0,0) =
1

2
(χ− χ̄)2 +

∫ φ+φ̄−χ−χ̄

dq log(1 + eq)− 1

2

(

(φ− χ)2 + (φ̄− χ̄)2
)

, (3.31)

which we recognize as (3.14) up to a generalized Kähler transformation. We have obtained

the type (1, 1) potential without the need to solve second order differential equations.

3.3.2 Using the group coordinates to find the T-dual

We make an observation of the T-dualities which we performed, which we will apply to

simplify the discussion in the SU(3) case.

In the type (0, 0) structure, both complex structures J± were induced from the Lie

algebra structure J1. As discussed in section 2.5, T-duality along the left Kac-Moody

isometry U(1)L does not change the metric, torsion and left complex structure. Therefore,

on the dual type (1, 1) structure, we know exactly what the complex structures are: J+
is unchanged and is still induced from J1, while J− is changed and is now induced from

J2. The adapted coordinates for this particular generalized Kähler structure are already
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known and given in (3.12). The solution to the SVM equations of motion must therefore

be given by the original type (0, 0) coordinates (3.6),15 expressed in terms of the type (1, 1)

coordinates of the dual (3.12), to wit

ℓ = χ+ φ, ℓ̃ = φ,

r = χ̄− φ, r̃ = φ− θ,
where θ = log(eφ+φ̄ + eχ+χ̄). (3.32)

Notice also that, when the isometries act as translations (all the examples we encounter

in this paper are translational isometries), the Lagrange multiplier term may be written as

V IΦI = −ℓ(Φ) ℓ̃− ℓ̄(Φ)
¯̃
ℓ− r(Φ) r̄ − r̄(Φ) ¯̃r, (3.33)

where ℓ(Φ), ℓ̄(Φ), r(Φ), r̄(Φ) are functions of Φ = (φ, φ̄, χ, χ̄) given in (3.32). This yields a

simple integral expression for the type (1, 1) potential

K(1,1)(φ, φ̄, χ, χ̄) =

(

−
∫

ℓ dℓ̃+ ℓ̄ d
¯̃
ℓ+ r dr̃ + r̄ d¯̃r

)

− V IΦI

=

∫

ℓ̃ dℓ+
¯̃
ℓ dℓ̄+ r̃ dr + ¯̃r dr̄, (3.34)

where the semi-chiral fields ℓ, ℓ̃, r, r̄ are to be understood as functions of φ, χ through (3.32).

It is straightforward to verify, via direct substitution, that this exactly reproduces (3.31).

For another illustration of using the group coordinates to solve the vector multiplet

moment map equations, see appendix F where the T-duality in the other direction, which

is done with an Large Vector Multiplet (LVM) [23], is discussed.

4 SU(3)

4.1 Complex coordinates and generalized Kähler potential

On the Lie algebra, take the basis {h, h̄, e3, ē3, e1, ē1, e2, ē2}, where

h =









1
2 + i

2
√
3

− i√
3

−1
2 + i

2
√
3









, e3 =









1








, e1 =









1








, e2 =









1









, (4.1)

and the bar denotes hermitian conjugation. The two complex structures on the Lie algebra

compatible with the choice of Cartan subalgebra h, h̄ are

J1 = diag(i,−i, i,−i, i,−i, i,−i), and J2 = diag(−i, i, i,−i, i,−i, i,−i). (4.2)

As discussed in section 2.3, SU(3) admits generalized Kähler structures of two different

types depending on whether one takes J± induced from the same or from different Lie

algebra complex structures J1, J2.

15With ℓ replaced with ℓ+ ℓ̃ corresponding to the addition of the generalized Kähler transformation term

− 1
2
(ℓ̃2 +

¯̃
ℓ2).
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4.1.1 Type (0, 0)

If one takes J+ and J− both to be induced from the same Lie algebra complex structure,

say J1, then generically the resulting generalized Kähler structure has type (0, 0).16 The

J± complex coordinates take the simplest form when presented in an overcomplete basis,

zφ+ = log ḡω̄31g
ω
13, zχ+ = log ḡω̄11g

ω
33,

z1+ = log
g13
g23

, z2+ = log
g23
g33

, z3+ = log
ḡ11
ḡ21

, z4+ = log
ḡ21
ḡ31

, (4.3)

zφ− = log ḡω31g
ω̄
13, zχ̄− = log gω̄11ḡ

ω
33,

z1− = log
g11
g12

, z2− = log
g12
g13

, z3− = log
ḡ31
ḡ32

, z4− = log
ḡ32
ḡ33

, (4.4)

where gij is the (i, j)th entry of the group element g in the defining representation of SU(3),

and ω = eiπ/3 = 1
2(1 + i

√
3). For each of + and −, the six complex coordinates satisfy two

relations

ez
1
±
+z3

± + e−z2
±
−z4

± + 1 = 0,

zφ+ − zχ+ = ω(z1+ + z2+)− ω̄(z3+ + z4+), (4.5)

zφ− − zχ̄− = −ω̄(z1− + z2−) + ω(z3− + z4−).

Semichiral coordinates are holomorphic coordinates that are Darboux with respect to

the Poisson structure σ: σ(dℓj , dℓ̃k) = δjk, σ(dℓj , dℓk) = σ(dℓ̃j , dℓ̃k) = 0, σ(drj , dr̃k) = −δjk

and σ(drj , drk) = σ(dr̃j , dr̃k) = 0. One choice of semi-chiral coordinates is given by

ℓ̂1 =
1

3
(zχ+ + 2zφ+ − ωz1+ + ω̄z4+) =

1

3
log(ḡ11ḡ21ḡ31)

ω̄(g13g23g33)
ω,

ˆ̃
ℓ1 = (ω̄ − ω)(z1+ + z2+ + z3+ + z4+) = (ω̄ − ω) log

ḡ11g13
ḡ31g33

,

ℓ̂2 = zχ+ = log ḡω̄11g
ω
33,

ˆ̃
ℓ2 = zφ+ = log ḡω̄31g

ω
13,

r̂1 = (ω̄ − ω)(z1− + z2− + z3− + z4−) = (ω̄ − ω) log
g13ḡ33
g11ḡ31

,

ˆ̃r1 =
1

3
(zχ̄− + 2zφ− + ω̄z2− − ωz3−) =

1

3
log(g11g12g13)

ω̄(ḡ31ḡ32ḡ33)
ω,

r̂2 = zχ̄− = log gω̄11ḡ
ω
33,

ˆ̃r2 = zφ− = log gω̄13ḡ
ω
31.

(4.6)

(Recall ω = eiπ/3 = 1
2(1 + i

√
3).) Choosing the polarizations defined by ℓ̂j ,

¯̂
ℓj and ˆ̃rj ,

¯̂
r̃j ,

the group element is parametrized as

g =





exp(
¯̂
ℓ2 + uĥ1) exp(3ˆ̃r1 −

¯̂
ℓ2 − ˆ̃r2 − ĥ1 + ūĥ4) exp(ˆ̃r2 − ūĥ2)

− exp(3
¯̂
ℓ1 −

¯̂
ℓ2 −

¯̂
r̃2 −

¯̂
h2 + uĥ3) g22 exp(3ℓ̂1 − ℓ̂2 − ˆ̃r2 − ĥ2 + u

¯̂
h3)

exp(
¯̂
r̃2 − ū

¯̂
h2) − exp(3

¯̂
r̃1 −

¯̂
r̃2 − ℓ̂2 −

¯̂
h1 + ū

¯̂
h4) exp(ℓ̂2 + u

¯̂
h1)





(4.7)

16There are loci of positive codimension on which ker[J+, J−] is nontrivial.
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where u = 1√
3
eiπ/6 = 1

2(1 +
i√
3
) and ĥ1, ĥ2, ĥ3, ĥ4 are functions of ℓ̂j ,

¯̂
ℓj , ˆ̃rj ,

¯̂
r̃j , determined

by the orthonormality of the first and third rows and columns;17 and finally g22 may be

determined by unimodularity.

To find the potential, we need to express
ˆ̃
ℓj , r̂j in terms of ℓ̂j ,

¯̂
ℓj , ˆ̃rj ,

¯̂
r̃j . It is straight-

forward to verify that
ˆ̃
ℓ1 = −¯̂

h1 + ĥ2,

ˆ̃
ℓ2 = ˆ̃r2 − ĥ2,

r̂1 = −ĥ1 + ĥ2,

r̂2 =
¯̂
ℓ2 + ĥ1.

(4.8)

The difference between the one-form symplectic potentials adapted to the left and right

semi-chiral coordinates is the closed one-form θ̂1 + θ̂2, where

θ̂j =
ˆ̃
ℓjdℓ̂j +

¯̂
ℓ̃jd

¯̂
ℓj − r̂jdˆ̃rj − ¯̂rjd

¯̂
r̃j (no sum over j). (4.9)

The potential is given by

K =

∫ (ℓ̂j ,
¯̂
ℓj ,ˆ̃rj ,

¯̂
r̃j)

O
θ̂1 + θ̂2, (4.10)

where O is some base point. The closure condition d(θ̂1+ θ̂2) = 0 ensures that the integral

is independent of path. K generates the symplectomorphism between left and right semi-

chiral coordinates
∂K

∂ℓ̂j
=

ˆ̃
ℓj ,

∂K

∂
¯̂
ℓj

=
¯̂
ℓ̃j ,

∂K

∂ ˆ̃rj
= −r̂j ,

∂K

∂
¯̂
r̃j

= −¯̂rj .

(4.11)

A different choice. In section 4.2, it will prove convenient to choose instead the following

Darboux coordinates (these are adapted to the isometry considered later in section 4.2)

ℓ1 =
1

3
(zχ+ + 2zφ+ − ωz1+ + ω̄z4+) =

1

3
log(ḡ11ḡ21ḡ31)

ω̄(g13g23g33)
ω,

ℓ̃1 = (ω̄ − ω)(z1+ + z2+ + z3+ + z4+) = (ω̄ − ω) log
ḡ11g13
ḡ31g33

,

ℓ2 = zχ+ = log ḡω̄11g
ω
33,

ℓ̃2 = zφ+ + zχ+ = log(ḡ11ḡ31)
ω̄(g13g33)

ω, (4.12)

r1 = (ω − 2ω̄)(z1− + z2−) + (2ω − ω̄)(z3− + z4−) = (2ω̄ − ω) log
g13
g11

+ (ω̄ − 2ω) log
ḡ33
ḡ31

,

r̃1 =
1

6
(zχ̄− − zφ− + ω̄z2− − ωz3−) =

1

6
log

(

g11g12
g213

)ω̄ (

ḡ32ḡ33
ḡ231

)ω

,

r2 = ω(z1− + z2−)− ω̄(z3− + z4−) = log
gω11ḡ

ω̄
33

gω13ḡ
ω̄
31

,

r̃2 =
1

6
(zχ̄− + 5zφ− + ω̄z2− − ωz3−) =

1

6
log(g11g12g

4
13)

ω̄(ḡ431ḡ32ḡ33)
ω.

17Unfortunately, it seems that ĥ1, ĥ2, ĥ3, ĥ4 cannot be written down in terms of elementary functions, so

we have to work implicitly.
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In the polarizations defined by ℓj , ℓ̄j and r̃j , ¯̃rj , the group element is parametrized as

g=





exp(ℓ̄2+uh1) exp(4r̃1− ℓ̄2+2r̃2−h1+ ūh4) exp(−r̃1+ r̃2− ūh2)

−exp(3ℓ̄1− ℓ̄2+ ¯̃r1− ¯̃r2− h̄2+uh3) g22 exp(3ℓ1−ℓ2+ r̃1− r̃2−h2+uh̄3)

exp(−¯̃r1+ ¯̃r2− ūh̄2) −exp(4¯̃r1+2¯̃r2−ℓ2− h̄1+ ūh̄4) exp(ℓ2+uh̄1)



 ,

(4.13)

where h1, h2, h3, h4 are once again functions of ℓj , ℓ̄j , r̃j , ¯̃rj determined by the orthonormal-

ity of the first and last rows and columns. The Darboux partners are expressed in this

mixed coordinate system as

ℓ̃1 = −h̄1 + h2,

ℓ̃2 = −r̃1 + r̃2 + ℓ2 − h2,

r1 = −ℓ̄2 − r̃1 + r̃2 − 2h1 + h2,

r2 = ℓ̄2 + r̃1 − r̃2 + h2.

(4.14)

The generalized potential is given by

K(0,0) =

∫ (ℓj ,ℓ̄j ,r̃j ,¯̃rj)

O
θ1 + θ2, where θ = θ1 + θ2, (4.15)

θj = ℓ̃jdℓj +
¯̃
ℓjdℓ̄j − rjdr̃j − r̄jd¯̃rj (no sum over j) (4.16)

4.1.2 Type (1, 1)

If one instead takes J+ and J− induced from different Lie algebra complex structures, say

J+ from J1 and J− from J2, then generically the resulting generalized Kähler structure has

type (1, 1). The biholomorphic coordinate is

φ = log ḡω̄31g
ω
13, (4.17)

and represents a chiral superfield in the (2, 2) sigma model, while the J+-holomorphic and

J−-antiholomorphic coordinate is

χ = log ḡω̄11g
ω
33, (4.18)

and represents a twisted chiral superfield. The other holomorphic coordinates once again

take the simplest form in an overcomplete basis

w1
+ = log

g13
g23

, w2
+ = log

g23
g33

, w3
+ = log

ḡ11
ḡ21

, w4
+ = log

ḡ21
ḡ31

, (4.19)

w1
− = log

g11
g12

, w2
− = log

g12
g13

, w3
− = log

ḡ31
ḡ32

, w4
− = log

ḡ32
ḡ33

, (4.20)

satisfying

ew
1
±
+w3

± + e−w2
±
−w4

± + 1 = 0, (4.21)

φ− χ = ω(w1
+ + w2

+)− ω̄(w3
+ + w4

+), (4.22)

φ− χ̄ = −ω(w1
− + w2

−) + ω̄(w3
− + w4

−). (4.23)
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One choice of semi-chiral coordinates is

ℓ̂ = φ− ωw1
+ + ω̄w4

+ = log gω23ḡ
ω̄
21,

ˆ̃
ℓ = −w1

+ − w2
+ + w3

+ + w4
+ = log

ḡ11g33
ḡ31g13

,

r̂ = −w1
− − w2

− + w3
− + w4

− = log
ḡ31g13
g11ḡ33

,

ˆ̃r = φ+ ωw2
− − ω̄w3

− = log gω12ḡ
ω̄
32.

(4.24)

In the polarizations defined by ℓ̂,
¯̂
ℓ and ˆ̃r,

¯̂
r̃, the parametrization looks relatively uncluttered

g =









eχ̄+u
¯̂
f1 e

ˆ̃r+uf̂4 eφ+uf̂2

−e
¯̂
ℓ+u

¯̂
f3 g22 eℓ̂+uf̂3

eφ̄+u
¯̂
f2 −e

¯̂
r̃+u

¯̂
f4 eχ+uf̂1









. (4.25)

(Recall u = 1√
3
eiπ/6 = 1

2(1+
i√
3
).) The conditions of orthonormality on the first and third

rows and columns are

eφ+χ(eūf̂1+uf̂2 + euf̂1+ūf̂2)− e2ℓ̂+
√
3f̂3 = 0,

eφ+χ̄(eū
¯̂
f1+uf̂2 + eu

¯̂
f1+ūf̂2)− e2

ˆ̃r+
√
3f̂4 = 0,

e2Re(χ+uf̂1) + e2Re(φ+uf̂2) + e2Re(ℓ̂+uf̂3) = 1,

e2Re(χ+ūf̂1) + e2Re(φ+ūf̂2) + e2Re(ℓ̂+ūf̂3) = 1,

e2Re(χ+ūf̂1) + e2Re(φ+uf̂2) + e2Re(ˆ̃r+uf̂4) = 1,

e2Re(χ+uf̂1) + e2Re(φ+ūf̂2) + e2Re(ˆ̃r+ūf̂4) = 1.

(4.26)

The first equation of (4.26) is complex, and may be solved for f̂3 in terms of φ, χ, ℓ̂, f̂1, f̂2.

This may then be substituted into the third and fourth equations, which are real. Similarly,

the second complex equation may be solved for f̂4 in terms of φ, χ̄, ˆ̃r,
¯̂
f1, f̂2, and substituted

into the fifth and sixth equations. This yields four real equations, from which we may solve

for f̂1, f̂2,
¯̂
f1 and

¯̂
f2.

18 It is not obvious, at first glance, that these 8 real equations (4.26)

are independent — for instance, the equations gg† = 1 and g†g = 1 are equivalent — but

we have checked that they indeed are, and hence uniquely determine the f̂i,
¯̂
fis.

Note that these equations (4.26) exhibit two involutive symmetries. There is first a

left-right symmetry given by exchanging χ ↔ χ̄, ℓ̂ ↔ ˆ̃r, f̂1 ↔ ¯̂
f1, f̂3 ↔ f̂4, which exchanges

the first, third, fourth equations with the second, fifth and sixth equations. Under this

symmetry, the Darboux partners

ˆ̃
ℓ = log

ḡ11g33
ḡ31g13

= 2χ− 2φ+ f̂1 − f̂2, (4.27)

r̂ = log
ḡ31g13
g11ḡ33

= 2φ− 2χ̄− ¯̂
f1 + f̂2 (4.28)

18As before, it is not possible to write down f̂1, f̂2,
¯̂
f1,

¯̂
f2 using elementary functions, so we work implicitly.
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are interchanged with a twist,
ˆ̃
ℓ ↔ −r̂. Second, there is a local mirror symmetry which

exchanges φ ↔ χ, ˆ̃r ↔ ¯̂
r̃, f̂1 ↔ f̂2, f̂4 ↔ ¯̂

f4,
ˆ̃
ℓ ↔ −ˆ̃

ℓ, r̂ ↔ −¯̂r. This exchanges the second

equation with its conjugate, and the fifth with the sixth equation, and preserves the other

equations.

On top of symplectomorphisms on each symplectic leaf, the semi-chiral coordinates

may also be redefined by arbitrary functions of chiral and twisted chiral coordinates (with

the appropriate holomorphy)

ℓ̂ 7→ ℓ̂′(ℓ̂, ˆ̃ℓ, φ, χ),

ˆ̃r 7→ ˆ̃r′(r̂, ˆ̃r, φ, χ̄).
(4.29)

There is therefore a large amount of freedom in the choice of holomorphic Darboux coor-

dinates ℓ̂,
ˆ̃
ℓ, r̂, ˆ̃r.

A different choice. In section 4.2 we will find it convenient to use a different choice of

semi-chiral coordinates (adapted to an isometry introduced later in section 4.2), given by

ℓ =
1

3
(wχ

+ + 2wφ
+ − ωw1

+ + ω̄w4
+) =

1

3
log(ḡ11ḡ21ḡ31)

ω̄(g13g23g33)
ω,

ℓ̃ = (ω̄ − ω)(w1
+ + w2

+ + w3
+ + w4

+) = (ω̄ − ω) log
ḡ11g13
ḡ31g33

,

r = (ω − 2ω̄)(w1
− + w2

−) + (2ω − ω̄)(w3
− + w4

−) = (ω − 2ω̄) log
g11
g13

+ (ω̄ − 2ω) log
ḡ33
ḡ31

,

r̃ =
1

6
(ω̄w1

− + 2ω̄w2
− − 2ωw3

− − ωw4
−) =

1

6
log

(

g11g12
g213

)ω̄ (

ḡ32ḡ33
ḡ231

)ω

. (4.30)

Note that they coincide with ℓ1, ℓ̃1, r1, r̃1 in (4.12). The parametrization of the group

element is

g=









exp(χ̄+uf1) exp(6r̃+2φ− χ̄−f1+2f2+ ūf4) exp(φ+uf2)

−exp(3ℓ− φ̄− χ̄+uf3) g22 exp(3ℓ−φ−χ+uf̄3)

exp(φ̄+uf̄2) −exp(6¯̃r+2φ̄−χ− f̄1+2f̄2+ ūf̄4) exp(χ+uf̄1)









,

(4.31)

with the Darboux partners given by

ℓ̃ = −f̄1 + f2,

r = φ− χ̄− 2f1 + 2f2.
(4.32)

On each symplectic leaf, the generating function of the symplectomorphism (4.11)

(ℓ, ℓ̄, ℓ̃,
¯̃
ℓ) → (r, r̄, r̃, ¯̃r) is formally

K(1,1) =

∫ (ℓ,ℓ̄,r̃,¯̃r)

O
θ1, where θ1 = ℓ̃ dℓ+

¯̃
ℓ dℓ̄− r dr̃ − r̄ d¯̃r, (4.33)

where O = O(φ, φ̄, χ, χ̄) is collection of base points, one on each symplectic leaf. To find

the explicit dependence of K on φ, φ̄, χ, χ̄, one has to, as discussed above, solve the second

order nonlinear differential equations (B.12)–(B.13). However, this can be circumvented,

as discussed in section 2.6, by relating the type (1, 1) generalized Kähler structure to the

type (0, 0) structure (4.15).
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4.2 T-duality: relating the two generalized Kähler structures

4.2.1 Isometries

The group of isometries preserving both complex structures of SU(3) is U(1)2L × U(1)2R,

acting on the group element as

g 7→ hL g h−1
R ≡ eǫh̄−ǭhg eη̄h̄−ηh, (4.34)

where h and h̄ are defined in (4.1), and ǫ and η are complex Kac-Moody parameters. In

the type (0, 0) structure, they obey the constraints

D̄+ǫ = 0, D±ǫ = 0, D̄±η = 0, D−η = 0, (4.35)

and the coordinates (4.12) transform as

ℓ1 7→ ℓ1 + η, ℓ̃1 7→ ℓ̃1,

ℓ2 7→ ℓ2 + ǭ+ η, ℓ̃2 7→ ℓ̃2 + ǫ+ ǭ+ 2η,

r1 7→ r1 + η − η̄, r̃1 7→ r̃1 +
1

2
η̄,

r2 7→ r2 − η + η̄, r̃2 7→ r̃2 − ǭ− 1

2
η̄.

(4.36)

Meanwhile, in the type (1, 1) structure, ǫ and η obey (note that, as in the SU(2) × U(1)

case, the chirality constraint on ǫ differs from that in the type (0, 0) structure)

D̄±ǫ = 0, D+ǫ = 0, D̄±η = 0, D−η = 0, (4.37)

and the coordinates (4.30) transform as

φ 7→ φ+ ǫ+ η, χ 7→ χ+ ǭ+ η,

ℓ 7→ ℓ+ η, ℓ̃ 7→ ℓ̃,

r 7→ r + η − η̄, r̃ 7→ r̃ +
1

2
η̄.

(4.38)

4.2.2 T-duality from type (0, 0) to type (1, 1)

In this subsection, we T-dualize from the type (0, 0) structure (4.15) to the type (1, 1)

structure along the left Kac-Moody U(1)L isometry defined by setting ǫ = iλ and η = 0

in (4.34), where λ is a real parameter. Under this isometry, ℓ1, ℓ̄1, r̃1, ¯̃r1 are invariant

spectator fields, while ℓ2 7→ ℓ2 − iλ, r̃2 7→ r̃2 + iλ. The invariance of the Darboux partners

ℓ̃j ,
¯̃
ℓj , rj , r̃j guarantees that the potential (4.15) is invariant this isometry.

The Killing field of the isometry is

k = i(−∂ℓ2 + ∂ℓ̄2 + ∂r̃2 − ∂¯̃r2); (4.39)

and the invariant combinations −ℓ2 − ℓ̄2, r̃2 + ¯̃r2 and i(ℓ2 − ℓ̄2 + r̃2 − ¯̃r2) can be gauged re-

spectively by the components V L, V R and V ′ of the SVM. The T-dual potential is obtained

by constraining the SVM to be flat using Lagrange multipliers ΦI

K̃(ℓ1, ℓ̄1, r̃1, ¯̃r1,ΦI) = Kg(ℓ1, ℓ̄1, r̃1, ¯̃r1, V I)− V IΦI , (4.40)
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where V I are to be eliminated using their equations of motion. We make use of the

observation in section 3.3.2: since the T-duality is along a left Kac-Moody isometry, the left

complex structure is preserved and continues to be induced by J1, and therefore the relation

between the type (0, 0) coordinates (4.12) and type (1, 1) coordinates (4.17), (4.18), (4.30)

is a solution to the SVM equations of motion. This relation is

ℓ2 = χ,

ℓ̃2 = φ+ χ,

r2 = χ̄− φ,

r̃2 = r̃1 + φ+ f2.

(4.41)

It is easily verified that this relation is consistent with (4.14). The moment maps are linear

combinations of the Darboux partners since the isometry acts translationally, so the SVM

equations of motion are

ΦL = −1

2
(ℓ̃2 +

¯̃
ℓ2),

ΦR = −1

2
(r2 + r̄2),

Φ′ =
i

4
(−ℓ̃2 +

¯̃
ℓ2 + r2 − r̄2),

(4.42)

which is once again consistent with (4.41).

As in the SU(2)×U(1) case, we can write the dual potential as an integral. Note that

the invariance of the type (0, 0) potential implies

LkK = i(−ℓ̃2 +
¯̃
ℓ2 − r2 + r̄2) = 0, (4.43)

which means that the Lagrange multiplier term is

V IΦI = ℓ̃2(Φ)ℓ2 +
¯̃
ℓ2(Φ)ℓ2 − r2(Φ)r̃2 − r̄2(Φ)¯̃r2, (4.44)

where ℓ̃2,
¯̃
ℓ2, r2, r̄2 are understood as functions of Φ = (φ, φ̄, χ, χ̄) given by (4.41). Therefore,

the dual potential can be written as

K̃ =

∫

θ1 − ℓ2 dℓ̃2 − ℓ̄2 d
¯̃
ℓ2 + r̃2 dr2 + ¯̃r2 dr̄2. (4.45)

In terms of the functions f1, f2 defined in (4.13),

K̃ =

(∫

(−f̄1 + f2) dℓ+ 2(f1 − f2) dr̃ − (χ+ f2) dφ+ (φ̄+ f̄2) dχ

)

−1

2

(

φ2 + χ2
)

+ r̃(χ̄− φ) + cc. (4.46)

Note that the two terms on the last line are generalized Kähler transformations. In contrast

to (4.33), this is an unambiguous potential for the type (1, 1) structure, obtained without

having to solve the nonlinear differential equations (B.12)–(B.13).
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4.2.3 Type (1, 1) to type (0, 0)

One can also perform the T-duality in the other direction, gauging the same left Kac-Moody

isometry of the type (1, 1) geometry with an LVM and enforcing it to be flat with semi-

chiral Lagrange multipliers, and then integrating out the LVM. This would return (4.46)

to the type (0, 0) potential (4.15).

5 Discussion and conclusion

5.1 Results

In this paper, we studied the generalized Kähler structures of two rank 2 groups, SU(2)×
U(1) and SU(3), in detail. We found coordinates that were holomorphic with respect to

left-invariant and right-invariant complex structures, and formulae (in one case explicit, in

the other implicit) for their generalized Kähler potentials (which have an interpretation as

the Lagrange density of the sigma model in (2, 2) superspace).

We explained how rank two groups carry generalized Kähler structures of two different

types, related to one another by T-duality along a Kac-Moody isometry, and how a clever

trick trivializes the Legendre transform that is usually needed to relate their generalized

Kähler potentials. We also gave a wealth of computational details that may be useful for

future investigations.

5.2 Possible future developments

5.2.1 Type change

Apart from SU(2) × U(1), U(1)2 and their products, left and right complex structures on

Lie groups do not commute, and therefore semi-chiral superfields are generically present.

Semichiral coordinates are accompanied by type change loci, which are loci of positive

codimension on which the type of the generalized geometry changes. For SU(2)×U(1), an

analysis of the type change locus for the type (0, 0) generalized geometry was performed

in [18]. For SU(3), this has not yet been done and is a direction for future work.

5.2.2 (4, 4) supersymmetry

The WZW models on both SU(2)×U(1) and SU(3) admit a further enhancement of super-

symmetry to (4, 4). Such bi-hypercomplex Lie groups were classified [14], and the whole list

of them are SU(n+1), SU(2n)×U(1), SO(4n)×U(1)2n, SO(4n+2)×U(1)2n−1, SO(2n+1)×
U(1)n, Sp(2n)×U(1)n, E6×U(1)2, E7×U(1)7, E8×U(1)8, F4×U(1)4, G2×U(1)2 (and prod-

ucts). There always exists a choice of left and right complex structures that gives rise to a

type (0, 0) generalized geometry - fully parametrized by semi-chiral coordinates. For such

generalized Kähler structures, the potential is an integral of a tautological one-form and

can be easily computed without having to solve nonlinear second order PDEs. Generalized

geometries of other types on these Lie groups can be obtained from the type (0, 0) geometry

via T-duality and (possibly repeated) applications of the technique detailed above.

Another direction for the study of (4, 4) supersymmetric models is the problem of

manifestly realizing all the supersymmetries. For SU(2) × U(1), a (4, 4) formulation of
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the type (1, 1) generalized geometry in biprojective superspace is known [15] (although it

is not known how to define the contour for the generalized potential), while for the type

(0, 0) geometry, the extra supersymmetries are not compatible with (2, 2) superspace [19].

Preliminary investigations of the SU(3) model seem to indicate that it is not compatible

with the multiplet structure of biprojective superspace. It is worthwhile to conduct a more

thorough investigation of off-shell (4, 4) supersymmetry for WZW models.

5.2.3 Other groups

Another obvious direction is to investigate other groups. The holomorphic structures on

SU(3) are surprisingly subtle and we can expect more surprises as we investigate higher

rank groups.
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A Sigma models and supersymmetry

The d = 2 non-linear sigma model is a Lagrangian field theory of maps ϕ from a two-

dimensional worldsheet (Σ, h) to a target Riemannian manifold (M, g), equipped with a

closed 3-form H, known as the torsion. Let b be a local 2-form potential (the Kalb-Ramond

2-form) for H, db = H. The action is the sum of the integrals of the pullback (via ϕ) of g,

with respect to the volume form of h, and the pullback (via ϕ) of b

I[ϕ] =

∫

Σ

√
hd2σ hαβ∂αϕ

µgµν∂βϕ
ν +

∫

Σ
d2σ ǫαβ∂αϕ

µbµν∂βϕ
ν . (A.1)

The action depends only on the conformal class of h.

Any sigma model admits an (1, 1) supersymmetric extension, which moreover can be

written in (1, 1) superspace as

I[Φ] =

∫

Σ
d2σ d2θ∇+Φ

µ(gµν + bµν)∇−Φ
ν (A.2)

where ∇± are the (1, 1) supercovariant derivatives satisfying the algebra

{∇±,∇±} = 2i∂++
=
, {∇±,∇∓} = 0, (A.3)

and Φµ(σ, θ) is the (1, 1) superfield which has ϕµ as its bottom component.

To look for extended supersymmetries, one considers the most general transformations

δΦµ = ǫ+(A)(J
(A)
+ )µν∇+Φ

ν + ǫ−
(Ã)

(J
(Ã)
− )µν∇−Φ

ν , (A.4)
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where A = 2, . . . ,N+ and Ã = 2, . . . ,N− indexes the extended supersymmetries. Demand-

ing that these transformations satisfy the supersymmetry algebra implies that the J
(A)
+ and

J
(Ã)
− are integrable complex structures onM , and moreover satisfy the Clifford-like relations

{J (A)
+ , J

(B)
+ } = −2δAB

1, {J (Ã)
− , J

(B̃)
− } = −2δÃB̃

1. (A.5)

Demanding that the action (A.2) is invariant under these transformations further implies

that the metric g is hermitian with respect to all the complex structures J
(A)
± , and that

the complex structures are covariantly constant

∇(+)J
(A)
+ = 0, ∇(−)J

(Ã)
− = 0 (A.6)

with respect to the Bismut connections ∇(±), which are metric connetions with torsions

±g−1H. Explicitly, the connection coefficients of the Bismut connections are

Γ(±)µ

νρ = Γ(0)µ

νρ ±
1

2
gµσHσνρ, (A.7)

where Γ(0) is the Levi-Civita connection.

For (2, 2) supersymmetry, which is the subject of discussion in this paper, this im-

plies that the target geometry is bihermitian [2], which is equivalent to generalized Kähler

geometry [8]. In the more specific case J+ = ±J−, the manifold is Kähler [1].

For (4, 4) supersymmetry, the target geometry is bi-hypercomplex (or bi-hyperKähler

with torsion). The SU(2)×U(1) and SU(3) WZW models are in fact bi-hypercomplex [14],

and therefore has (4, 4) supersymmetry, but the off-shell formulation of the supersymmetry

is more challenging and will not be addressed in this paper.

B Local description of bihermitian geometry

The bihermitian data (g,H, J+, J−) of the generalized Kähler manifold may be expressed in

terms of generalized Kähler potential K. Consider a (2, 2) sigma model with Nc chiral, Nt

twisted chiral and Ns sets of semi-chiral superfields, which locally describes a type (Nc, Nt)

generalized Kähler manifold of real dimension 2Nc + 2Nt + 4Ns. The generalized Kähler

potential, which also serves as the (2, 2) superspace Lagrange density, is a real function of

the superfields

K = K(ℓ, ℓ̄, r̃, ¯̃r, φ, φ̄, χ, χ̄). (B.1)

We use a convention where c, c̄ = 1, . . . , Nc label the chiral and antichiral superfields,

t, t̄ = 1, . . . , Nt label the twisted chiral and twisted antichiral superfields, and l, l̄, r, r̄ =

1, . . . , Ns label the left, anti-left, right and anti-right semi-chiral superfields respectively.

Furthermore, capital indices label the collective set of chiral, twisted chiral and semi-chiral

superfields

L = (l, l̄), R = (r, r̄), C = (c, c̄), T = (t, t̄). (B.2)

To express the bihermitian data in terms of the potential, we introduce the notation

KAB =

(

Kab Kab̄

Kāb Kāb̄

)

, (B.3)
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where A,B = L,R,C, T , and Kab is shorthand for the second derivative ∂a∂bK. For

example, KCL is the 2Nc × 2Ns matrix of second derivatives

KCL =

(

∂c∂lK ∂c∂l̄K

∂c̄∂lK ∂c̄∂l̄K

)

. (B.4)

We write K−1
AB = (KBA)

−1. We also define

CAB = JKAB −KABJ, AAB = JKAB +KABJ, (B.5)

where J is the square matrix

J =

(

i1 0

0 −i1

)

, (B.6)

whose size varies depending on the context.

By reducing the (2, 2) superspace formulation of the sigma model to (1, 1) superspace

and eliminating auxiliary fields arising from the semi-chiral sector, one can obtain explicit

expressions for the bihermitian data in terms of the potential K (for more details, see [6]).

The complex structures are (in the order L,R,C, T )

J+ =















J

K−1
RLCLL K−1

RLJKLR K−1
RLCLC K−1

RLCLT

J

J















,

J− =















K−1
LRJKRL K−1

LRCRR K−1
LRCRC K−1

LRART

J

J

−J















, (B.7)

and the Poisson structure σ is

σ =















0 K−1
LR 0 0

−K−1
RL 0 0 0

0 0 0 0

0 0 0 0















. (B.8)

Note that a change of coordinates from (ℓ, ℓ̄, r̃, ¯̃r, φ, φ̄, χ, χ̄) to (ℓ, ℓ̄, ℓ̃,
¯̃
ℓ, φ, φ̄, χ, χ̄), where

ℓ̃ :=
∂K

∂ℓ
,

¯̃
ℓ :=

∂K

∂ℓ̄
(B.9)

diagonalizes J+ and puts the Poisson structure in the canonical form

σ =















0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0















; (B.10)
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while a coordinate change to (r, r̄, r̃, ¯̃r, φ, φ̄, χ, χ̄), where

r := −∂K

∂r̃
, r̄ := −∂K

∂ ¯̃r
(B.11)

diagonalizes J− and again puts σ in the canonical form. In other words, the general-

ized potential K serves as the generating function of the symplectomorphism between the

J+-holomorphic Darboux coordinates (ℓ, ℓ̄, ℓ̃,
¯̃
ℓ) and J−-holomorphic Darboux coordinates

(r, r̄, r̃, ¯̃r) on the symplectic leaves of σ. This is an important characterization of the gen-

eralized Kähler potential which will be repeatedly used in this paper.

The metric g and 2-form potential b can be obtained from the local symplectic forms

F+ =
1

2
(b+ − g)J+ =

1

2















dℓL

drR

dφC

dχT















T 













−CLL −ALR −ALC −CLT

ARL CRR CRC ART

ACL CCR CCC ACT

−CTL −ATR −ATC −CTT





























dℓL

drR

dφC

dχT















(B.12)

F− =
1

2
(b− + g)J− = −1

2















dℓL

drR

dφC

dχT















T 













CLL CLR CLC CLT

CRL CRR CRC CRT

CCL CCR CCC CCT

CTL CTR CTC CTT





























dℓL

drR

dφC

dχT















. (B.13)

Here, b+ and b− are different two-form potentials for H, db± = H, chosen such that b± are

(2, 0) + (0, 2) forms with respect to J±. b+ and b− differ by an exact form

G =
1

2
(b+ − b−) = dλ. (B.14)

The local symplectic two-forms F± may be interpreted as connections for flat gerbes [20].

Finally, we turn to the quantum properties of the underlying (2, 2) sigma model. De-

noting

N+ =









Kll̄ Klr Klt̄

Kr̄l̄ Kr̄r Kr̄t̄

Ktl̄ Ktr Ktt̄









, N− =









Kll̄ Klr̄ Klc̄

Krl̄ Krr̄ Krc̄

Kcl̄ Kcr̄ Kcc̄









, (B.15)

the one loop beta function vanishes if [21]

log
detN+

detN−
= f(ℓ, φ, χ) + f̄(ℓ̄, φ̄, χ̄) + g(r, φ, χ̄) + ḡ(¯̃r, φ̄, χ), (B.16)

while the target manifold is generalized Calabi-Yau if it satisfies the stronger condition [22]

log
detN+

detN−
= const. (B.17)

We end this section with a final remark. Mapping the bihermitian data,

(g,H, J+, J−) → (g,H, J+,−J−) , (B.18)
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merely amounts to mapping the corresponding generalized Kähler potential

K(ℓ, ℓ̄, r̃, ¯̃r, φ, φ̄, χ, χ̄) → −K(ℓ, ℓ̄, ¯̃r, r̃, χ, χ̄, φ, φ̄) , (B.19)

leaving any of the expressions above unchanged. This is a general symmetry of (2,2)

supersymmetric sigma models.

C Isometries and T-duality

T-duality is an equivalence of the underlying physics of sigma models describing different

geometries. The duality can be realized by gauging an isometry of the sigma model,

and then adding a Lagrange multiplier enforcing flatness of the gauge connection, so that

it is equivalent to the original model. Integrating out instead the non-dynamical gauge

connection yields the T-dual model, which in general describes a different geometry [13].

In (2, 2) superspace, T-duality also changes the complex structures [12], and therefore

also the type of the generalized Kähler geometry. Isometries of (2, 2) supersymmetric sigma

models fall into three categories: in appropriate local coordinates, they act either on (i)

a chiral or a twisted chiral coordinate, (ii) a pair of chiral and twisted chiral coordinates,

or (iii) a set of semi-chiral coordinates.19 The isometries can then be gauged using an

appropriate gauge connection: for (i), a usual vector multiplet; for (ii), a large vector

multiplet (LVM); and for (iii) a semi-chiral vector multiplet (SVM) [23–25].

T-duality along isometries of type (i) exchanges a chiral superfield for a twisted chiral

(or vice versa), so if the original generalized geometry is of type (p, q), then the dual

geometry has type (p− 1, q + 1) (or (p+ 1, q − 1)). T-dualizing along a type (ii) isometry

exchanges a pair of chiral and twisted chiral coordinates for a set of semi-chirals, so the

dual model has type (p− 1, q− 1). Finally, for type (iii), a set of semi-chirals is exchanged

for a chiral and twisted chiral, so the dual model has type (p+ 1, q + 1).

The LVM and SVM are novel vector multiplets which do not arise in the Kähler

(torsionless) case. We briefly review these vector multiplets.

C.1 Large vector multiplet (LVM)

A type (i) isometry k = kφ∂φ+kφ̄∂φ̄+kχ∂χ+kχ̄∂χ̄ acts on both chiral φ and twisted chiral

χ coordinates and is gauged with a large vector multiplet (LVM), consisting of three real

vector multiplets V I = (V φ, V χ, V ′). Since the isometry preserves the generalized Kähler

structure Lkg = LkH = LkJ± = 0, the potential transforms into a generalized Kähler

transformation

LkK = f(φ, χ) + f̄(φ̄, χ̄) + g(φ, χ̄) + ḡ(φ̄, χ). (C.1)

The preservation of both complex structures J± implies that the components of k depend

only on coordinates of the appropriate chirality

kφ = kφ(φ), kφ̄ = kφ̄(φ̄), kχ = kχ(χ), kχ̄ = kχ̄(χ̄). (C.2)

19More generally, isometries of type (i) and (ii) can also act on semi-chiral coordinates.
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In this paper we deal only with invariant potentials, so we shall assume f = f̄ = g = ḡ = 0.

Therefore,

kφ∂φK = iµφ + µ′,

kφ̄∂φ̄K = −iµφ + µ′,

kχ∂χK = iµχ − µ′,

kχ̄∂χ̄K = −iµχ − µ′,

(C.3)

for some real functions µI = (µφ, µχ, µ
′). These functions have the interpretation as (local)

moment maps with respect to the 2-form gerbe potentials F± of the generalized geometry,

and another symplectic form G we define below. Recall that generalized Kähler geometry

may be reformulated as a flat biholomorphic gerbe [20] with local two-form potentials

F± =
1

2
(b±J± ∓ ω±) =

i

2
d(∓Kφdφ±Kφ̄dφ̄+Kχdχ−Kχ̄dχ̄) = ∓1

2
ddc∓K, (C.4)

where subscripts of K denote derivatives, and b± are local torsion potentials db± = H

which are chosen to be (2, 0) + (0, 2) with respect to the complex structures J±. We also

introduce the local symplectic form

G =
1

2
(b+ − b−) =

1

2
d(−Kφdφ−Kφ̄dφ̄+Kχdχ+Kχ̄dχ̄) =

1

2
d(Kµ J+J−dX

µ). (C.5)

For an invariant potential K,

ιkF± = ∓1

2
Lk(Kµ J∓dX

µ)± 1

2
dιk(Kµ J∓dX

µ)

= −1

2
d(±µφ − µχ), (C.6)

ιkG =
1

2
Lk(Kµ J+J−dX

µ)− 1

2
dιk(Kµ J+J−dX

µ) = dµ′, (C.7)

which shows that the µI are indeed moment maps with respect to F± and G.
Gauging the isometry in (2, 2) superspace promotes the parameter to chiral and twisted

chiral parameters

δΛ = Λφkφ∂φ + Λφ̄kφ̄∂φ̄ + Λχkχ∂χ + Λχ̄kχ̄∂χ̄

=
1

4
(Λφ + Λφ̄ + Λχ + Λχ̄)Lk + i(Λφ − Λφ̄)Lk(φ)

+ i(Λχ − Λχ̄)Lk(χ)
+ (Λφ + Λφ̄ − Λχ − Λχ̄)Lk(‘) . (C.8)

where the complex conjugate vector fields kI are defined by

k(φ) = −1

4
(J+ + J−)k =

i

2
(kφ̄∂φ̄ − kφ∂φ),

k(χ) = −1

4
(J+ − J−)k =

i

2
(kχ̄∂χ̄ − kχ∂χ),

k(′) = −1

4
J+J−k =

1

4
(kφ∂φ + kφ̄∂φ̄ − kχ∂χ − kχ̄∂χ̄).

(C.9)
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The gauged potential is

Kg(φ, φ̄, χ, χ̄, V φ, V χ, V ′) = K(φ, φ̄, χ, χ̄) +

∫ 1

0
dt exp(tV ILkI )V

KµK

= exp(V ILkI )K(φ, φ̄, χ, χ̄), (C.10)

with implicit sums over repeated indices I, J,K (over φ, χ,′). Note that LkIK = µI .

The equations of motion of V I from (C.10) are

∂Kg

∂V I
= exp(V JLkJ )LkIK = exp(V JLkJ )µI . (C.11)

Since

δΛK
g = exp(V JLkJ )

(

δΛK + LkIK δΛV
I
)

, (C.12)

gauge invariance of (C.10) follows provided

δΛV
φ = i(Λφ̄ − Λφ),

δΛV
χ = i(Λχ̄ − Λχ),

δΛV
′ = −Λφ − Λφ̄ + Λχ + Λχ̄.

(C.13)

It is convenient to combine the gauge fields into complex combinations

V =
1

2
(−V ′ + i(V φ − V χ)), Ṽ =

1

2
(−V ′ + i(V φ + V χ)), (C.14)

which transform with semi-chiral parameters δΛV = Λφ − Λχ, δΛṼ = Λφ − Λχ̄. Therefore,

the following are four gauge invariant semi-chiral field strengths

G+ = D̄+V, Ḡ+ = D+V,

G− = D̄−Ṽ, Ḡ− = D−Ṽ.
(C.15)

To enforce the flatness of the LVM, one constrains its field strengths with Lagrange

multipliers of the appropriate semi-chirality,

KLM = −1

2
V IXI = −(ℓV+ rṼ+ ℓ̄V̄+ r̄ ¯̃V)

= −1

2
(V ′X ′ + V φXφ + V χXχ), (C.16)

where X ′ = −(ℓ + ℓ̄ + r + r̄), Xφ = i(ℓ − ℓ̄ + r − r̄), Xχ = i(−ℓ + ℓ̄ + r − r̄). Here I runs

over the components φ, χ,′ of the vector multiplet.

To obtain the T-dual sigma model, one eliminates the flat vector fields V I by their

equations of motion, which set the moment maps µI equal to the Fayet-Iliopolous terms XI .

C.2 Semichiral vector multiplet (SVM)

A type (ii) isometry k = kℓ∂ℓ+kℓ̄∂ℓ̄+kr∂r+kr̄∂r̄ acting on semi-chiral coordinates ℓ, ℓ̄, r, r̄ is

gauged with a semi-chiral vector multiplet (SVM) consisting of three real vector multiplets

V I = (V L, V R, V ′). As discussed in section 2.1, the choice of coordinates ℓ, ℓ̄, r, r̄ encodes
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a choice of polarization on the symplectic leaves of the generalized Kähler manifold; we

demand that the isometry k preserves this polarization (on top of the usual conditions of

a generalized Kähler isometry). This implies

LkK = f(ℓ) + f̄(ℓ̄) + g(r) + ḡ(r̄), (C.17)

kℓ = kℓ(ℓ), kr = kr(r), kℓ̄ = kℓ̄(ℓ̄), kr̄ = kr̄(r̄). (C.18)

For the cases encountered in this paper, the potential K is invariant, so we shall set

f = f̄ = g = ḡ = 0. Note that the mixed coordinate system (ℓ, ℓ̄, r, r̄) is not holomorphic

with respect to either complex structure, so that e.g. kℓ may not be J+ holomorphic despite

it depending only on ℓ.

From (C.17) it follows that

kℓ∂ℓK = iµL + µ′,

kℓ̄∂ℓ̄K = −iµL + µ′,

kr∂rK = iµR − µ′,

kr̄∂r̄K = −iµR − µ′,

(C.19)

where µI = (µL, µR, µ
′) are three real functions. In fact, the µI may be interpreted as

moment maps. Recall that on a symplectic leaf of a generalized Kähler manifold, the

inverse of the Poisson structure π is a symplectic form Ω = g[J+, J−]−1 which may be

thought of as the real part of a holomorphic symplectic form with respect to either complex

structure, Ω = ΩL + Ω̄L = ΩR + Ω̄R, where ΩL = −d(∂ℓK dℓ),ΩR = −d(∂rK dr). Then,

using subscripts to denote derivatives of K, we may compute

ιkΩL = kℓdKℓ − (kℓ̄Kℓℓ̄ + krKℓr + kr̄Kℓr̄)dℓ

= d(kℓKℓ)− ∂ℓ(k
ℓKℓ + kℓ̄Kℓ̄ + krKr + kr̄Kr̄)dℓ

= d(kℓKℓ) = d(iµL + µ′), (C.20)

and similarly for ΩR. This shows that (µL, µR, µ′) are moment maps for the symplectic

forms Im(ΩL), Im(ΩR) and Re(ΩL) = Re(ΩL) respectively.

Upon gauging, each J±-(anti)holomorphic and polarized sector acquires its own gauge

parameter, ΛL, Λ̄L,ΛR, Λ̄R, so that the gauge variation is

δΛ = ΛLkℓ∂ℓ + Λ̄Lkℓ̄∂ℓ̄ + ΛRkr∂r + Λ̄Rkr̄∂r̄

=
1

4
(ΛL + Λ̄L + ΛR + Λ̄R)Lk + i(ΛL − Λ̄L)LkL

+ i(ΛR − Λ̄R)LkR + (ΛL + Λ̄L − ΛR − Λ̄R)Lk′ , (C.21)

where

kL =
i

2
(kℓ̄∂ℓ̄ − kℓ∂ℓ)

kR =
i

2
(kr̄∂r̄ − kr∂r)

k′ =
1

4
(kℓ∂ℓ + kℓ̄∂ℓ̄ − kr∂r − kr̄∂r̄).

(C.22)
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Note that LkIK = µI . The gauged action is

Kg(ℓ, ℓ̄, r, r̄, V L, V R, V ′) = K(ℓ, ℓ̄, r, r̄) +

∫ 1

0
exp(tV ILkI )(V

KµK)

= exp(V ILkI )K. (C.23)

The equations of motion of V I from (C.23) are

∂Kg

∂V I
= exp(V JLkJ )LkIK = exp(V JLkJ )µI . (C.24)

The gauge variation of Kg is

δΛK
g = exp(V JLkJ )

(

δΛK + LkIK δΛV
I
)

. (C.25)

Using (C.21) and LkK = 0, we see that δΛK
g vanishes provided the SVM transforms as

δΛV
L = i(Λ̄L − ΛL),

δΛV
R = i(Λ̄R − ΛR),

δΛV
′ = −ΛL − Λ̄L + ΛR + Λ̄R.

(C.26)

The gauge invariant field strengths are built out of the complex combinations

V =
1

2
(−V ′ + i(V L − V R)), Ṽ =

1

2
(−V ′ + i(V L + V R)) (C.27)

which transform as δΛV = ΛL − ΛR, δΛṼ = ΛL − Λ̄R. The complex field strengths are

F = D̄+D̄−V, F̄ = D+D−V̄,

F̃ = D̄+D−Ṽ,
¯̃
F = D+D̄−

¯̃
V,

(C.28)

which are respectively chiral and twisted chiral.

To enforce the flatness of the SVM, one constrains its field strengths with Lagrange

multipliers of the appropriate chirality,

KLM = −1

2
V IΦI = −(φV+ φ̄V̄+ χṼ+ χ̄ ¯̃V)

= −1

2
(V ′Φ′ + V LΦL + V RΦR), (C.29)

where Φ′ = −(φ+ φ̄+ χ+ χ̄),ΦL = i(φ− φ̄+ χ− χ̄),ΦR = i(−φ+ φ̄+ χ− χ̄).

To obtain the T-dual sigma model, one eliminates the flat vector fields V I by their

equations of motion, which set the moment maps µI equal to the Fayet-Iliopolous terms ΦI .

D Finding complex coordinates

Suppose we have a Lie algebra complex structure (with Tα = (Ta, Tā) denoting respectively

the holomorphic and antiholomorphic generators) which induces a complex structure on

the Lie group, with holomorphic coordinates xµ = (zi, z̄ ī). For definiteness, suppose we
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are working with the left complex structure, so the complex structures on the Lie algebra

and group are related by conjugation by the left Maurer-Cartan frame g−1dg = eαTα.

In this appendix, we discuss how to obtain the holomorphic coordinates zi, z̄ ī in some

neighborhood around the origin from the Lie algebra complex structure.

Compatibility of the complex structures of the group and algebra implies that the

Maurer-Cartan frames corresponding to the holomorphic Lie algebra generators lie in the

holomorphic cotangent bundle:

eaī dz̄
ī = 0, eāi dz

i = 0. (D.1)

Suppose we parametrize the group element as g = exp(ξa(z, z̄)Ta− ξ̄ā(z, z̄)Tā). In the cases

encountered in this paper, the group is unitary, and if Ta are chosen to be hermitian, then

ξ̄ā = (ξa)∗. The Maurer-Cartan frames are

eαTα = exp(−Lξ−ξ̄)d =
∞
∑

n=0

1

(n+ 1)!
(−Lξ−ξ̄)

nd(ξ − ξ̄)

= d(ξ − ξ̄) +
1

2
[d(ξ − ξ̄), ξ − ξ̄] +

1

3!
[[d(ξ − ξ̄), ξ − ξ̄], ξ − ξ̄] + . . . , (D.2)

where LX(Y ) = [X,Y ]. In a neighborhood around the origin, we can solve for ξ(z, z̄) order

by order, by imposing (D.1). Suppose that z = z̄ = 0 at the origin, and expand ξ around it

ξα(z, z̄) = Aα
i z

i +Aα
ī z̄

ī +Aα
ijz

izj +Aα
īj z̄

īzj +Aα
īj̄ z̄

īz̄j̄ + . . . (D.3)

Using a holomorphic diffeomorphism, we can set Aa
i = δai and Aa

ij...k = 0. This allows us to

identify the holomorphic coordinates zi with the holomorphic directions at the origin ea|g=1

determined by the Lie algebra complex structure. We substitute this expansion into (D.2)

and apply the constraint (D.1), order by order in z and z̄. At leading order, we obtain

Aa
ī = 0, Aā

i = 0, (D.4)

and the next order yields

Aa
īj̄ = 0, Aa

īj =
1

2
fa
īj , Aā

ij = 0, Aā
īj =

1

2
f ā
īj , (D.5)

where the integrability condition (see section 2.3) f ā
bc = 0, fa

b̄c̄
= 0 has been used. This

process can be iterated, and in principle yields all the coefficients Aα
īj̄...kl

in terms of the

structure constants. The integrability condition ensures that solutions for the coefficients

always exists. This yields a series for ξ(z, z̄) and therefore a complex parametrization of

the group in a neighborhood of the origin within the radius of convergence.

An important check on our expressions for the holomorphic coordinates comes from

the integrability condition that the form

Ω =
∧

a

tr(Tag
−1dg), (D.6)

is proportional to the holomorphic top form, and hence annihilates all holomorphic differ-

entials dza.

– 33 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
9

E Other type (0, 0) potentials for SU(2) × U(1)

In section 3.1.1, we found a type (0, 0) generalized Kähler potential for SU(2) × U(1)

corresponding to a particular choice of parametrization and polarization. Here we explore

other choices.

One choice of parametrization is

ℓ = z2+, ℓ̃ = z1+, r = −z1−, r̃ = z2−, (E.1)

satisfying Re d(ℓ̃ dℓ + r̃ dr) = 0. In the polarization spanned by ℓ̃,
¯̃
ℓ and r̃, ¯̃r, the group

element is parametrized as

g =

(

eζ̄θ+r̃ e−ζθ+ℓ̃

−e−ζθ+
¯̃
ℓ eζ̄θ+

¯̃r

)

. (E.2)

Unimodularity of the SU(2) factor implies that θ satisfies

eθ+r̃+¯̃r + e−θ+ℓ̃+
¯̃
ℓ = 1, (E.3)

which is solved by

θ = ℓ̃+
¯̃
ℓ+ log f(eℓ̃+

¯̃
ℓ+r̃+¯̃r), (E.4)

where f(x) solves the quadratic equation

x f2(x)− f(x) + 1 = 0. (E.5)

The potential, satisfying ∂K
∂ℓ̃

= −ℓ, ∂K∂r̃ = −r is

K
(0,0)
2 = ℓ̃r̃ +

¯̃
ℓ¯̃r +

1

2
(r̃ + ¯̃r)2 +

∫ ℓ̃+
¯̃
ℓ+r̃+¯̃r

dx log f(ex). (E.6)

Note that this parametrization (E.2) is related to the parametrization (3.7) in section 3.1.1

by the symplectomorphism (r, r̃) 7→ (r′, r̃′) with r′ = r + r̃, r̃′ = r̃, so we expect the

potentials (E.6) and (3.8) to be related by a generalized Kähler transformation followed by

a change in polarization. Indeed, it can be checked that

K
(0,0)
0 (ℓ̃,

¯̃
ℓ, r, r̄) = K

(0,0)
2 (ℓ̃,

¯̃
ℓ, r̃, ¯̃r)− 1

2
(r̃2 + ¯̃r2) + rr̃ + r̄¯̃r. (E.7)

This potential (E.6) can be obtained via T-duality along U(1) from the type (1, 1) poten-

tial (3.14), provided the following generalized Kähler transformation is added

K
(1,1)
0 − 1

2
(φ− χ)2 − 1

2
(φ̄− χ̄)2 (E.8)

= −1

2
(φ− φ̄)2 +

1

4
(χ− χ̄− φ+ φ̄)2 − 1

4
(φ+ φ̄− χ− χ̄)2 +

∫ φ+φ̄−χ−χ̄

dq log(1 + eq).

Another family of parametrizations, indexed by a nonzero real parameter γ, is given by

ℓ =
1

2
(γz1+ − (γ + 1)z2+), ℓ̃ = 2(−z1+ + z2+),

r =
1

2
(−γz1− + (γ − 1)z2−), r̃ = 2(−z1− + z2−).

(E.9)
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In the polarization ℓ, ℓ̄ and r, r̄, the potential is

K
(0,0)
3 =

1

2γ2
(ℓ− ℓ̄+ r − r̄)2 +

1

γ

(

(r − r̄)2 − (ℓ− ℓ̄)2
)

−
∫ ℓ+ℓ̄+r+r̄

dx log(ex − 1). (E.10)

This potential can be obtained via T-duality along U(1) from the type (1, 1) poten-

tial (3.14), with the addition of the generalized Kähler transformation

K
(1,1)
0 +

γ

2

(

(φ− χ)2 − (φ− χ̄)2 + (φ̄− χ̄)2 − (φ̄− χ)2
)

=

=
1

2
(χ− χ̄)2 − γ(χ− χ̄)(φ− φ̄) +

∫ φ+φ̄−χ−χ̄

dq log(1 + eq). (E.11)

F T-duality from type (1, 1) to type (0, 0) on SU(2) × U(1)

We begin with the type (1, 1) generalized Kähler structure, with group element

parametrized as in (3.12). We may perform the T-duality along any factor of the

U(1)L ×U(1)R ×U(1) Kac-Moody isometry group. The complex structures J± map these

isometries into one another, so in superspace, where the gauge group is complexified, the

gauging of any the isometries is equivalent up to reparametrizations.

For definiteness, let us dualize along U(1)R, which corresponds to ǫ = 0, η = iλ

in (3.20), with λ a real parameter. This isometry can be gauged with a LVM (see ap-

pendix C). The invariant combinations of fields are φ + φ̄, χ + χ̄ and i(φ̄ − φ + χ − χ̄),

which are respectively gauged with the components V φ, V χ and V ′ of the LVM. There is

a subtlety involved in dualizing from K
(1,1)
0 (3.14): performing the gauging prescription

of [13] on K
(1,1)
0 (and gauge fixing φ → 0, χ → 0) yields

K̃
(1,1)
0 = −1

2
(V χ)2 +

∫ V φ−V χ

dq log(1 + eq)− V IXI , (F.1)

in which V ′ appears only linearly and hence cannot be solved for. To get around this issue,

we restrict the potential to be defined only on the overlap of the two patches (where all the

entries of the group element are nonzero), and add generalized Kähler transformations to

the potential.20 For simplicity, we shall consider only invariant potentials, and in that case,

the generalized Kähler transformations which can be added must be functions of i(φ− χ),

i(φ+ χ̄) (and complex conjugates),

K(1,1) 7→ K(1,1) + f(i(φ− χ)) + f̄(−i(φ̄− χ̄)) + g(i(φ+ χ̄)) + ḡ(−i(φ̄+ χ)). (F.2)

These combinations are gauged by the complex gauge fields V and Ṽ respectively, so the

T-dual potential is now

K̃(1,1) = −1

2
(V χ)2 + f(V) + f̄(V̄) + g(Ṽ) + ḡ( ¯̃V) +

∫ V φ−V χ

dq log(1 + eq). (F.3)

20Adding these terms, which in general shifts the b-field of the original geometry, correspond to holomor-

phic symplectomorphisms of the T-dual geometry.
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If we restrict to the case where f(x) = αx2 and g(x) = βx2 are quadratic monomials, then

solutions for all the gauge fields V φ, V χ, V ′ exist if

8ββ̄ + 2(α+ ᾱ)(β + β̄) + (α+ ᾱ+ β + β̄) 6= 0. (F.4)

In order to arrive at the type (0, 0) potential K
(0,0)
0 obtained in (3.8), we choose α = 1

2 and

β = −1
4 . The dual potential becomes

K̃(1,1) =
1

8
(V ′)2− 3

8
(V φ−V χ)2+

1

4
(V φ−V χ)(V φ+V χ)+

∫ V φ−V χ

dq log(1+ eq)−V IXI .

(F.5)

Defining the Lagrange multipliers by

1

2
(Xφ +Xχ) = −1

4
(r + r̄),

1

2
(Xφ −Xχ) = −1

2
(ℓ̃+

¯̃
ℓ),

X ′ =
i

4
(−r + r̄ − 2ℓ̃+ 2

¯̃
ℓ),

(F.6)

after some simplification the dual potential may be written as

K̃(1,1) = −(ℓ̃+ r)(
¯̃
ℓ+ r̄) +

∫ −r−r̄

dq log(1 + eq) +
1

2
(ℓ̃2 +

¯̃
ℓ2)− 1

4
(r2 + r̄2), (F.7)

which agrees with (3.8) up to a generalized Kähler transformation.

Performing the duality along the U(1) factor requires a subtle maneuver (due to the

fact that r is invariant - see (3.18)) which we shall illustrate here. The U(1) isometry

corresponds to Im ǫ = 0, Im η = 0 and ǫ + η = λ with λ a real parameter. The invariant

combinations i(φ−φ̄), i(χ−χ̄) and φ+φ̄−χ−χ̄ are gauged with V φ, V χ and V ′ respectively.

Starting with (3.14), we add the generalized Kähler transformation 1
2(φ− χ̄)2 + 1

2(φ̄−χ)2,

resulting in the T-dual potential

K̃(1,1) = −1

2
(V χ)2 +

1

2
Ṽ
2 +

1

2
¯̃
V
2 +

∫ −Ṽ− ¯̃
V

dq log(1 + eq)− V IXI (F.8)

with Lagrange multipliers defined such that

V IXI = V χi(ℓ− ℓ̄) + Ṽ(ℓ+ r̃) + ¯̃
V(ℓ̄+ ¯̃r). (F.9)

At this point, we can eliminate V χ using its variational equation V χ = i(ℓ̄ − ℓ), while Ṽ

and ¯̃
V are somewhat more complicated functions of (r̃ + ℓ) and (¯̃r + ℓ̄). Rather than solve

them explicitly, we instead change the polarization21 from r̃, ¯̃r to r, r̄:

K̃ ′(ℓ, ℓ̄, r, r̄) = K̃(1,1)(ℓ, ℓ̄, r̃, ¯̃r) + r̃r + ¯̃rr̄

= −1

2
(ℓ− ℓ̄)2 +

1

2
Ṽ
2 +

1

2
¯̃
V
2 +

∫ −Ṽ− ¯̃
V

dq log(1 + eq)

− Ṽ(ℓ+ r̃)− ¯̃
V(ℓ̄+ ¯̃r) + r̃r + ¯̃rr̄ (F.10)

21In superspace language, changing the polarization is a semi-chiral duality.
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Since
∂K̃(1,1)

∂r̃
=

(

∂K(1,1)

∂V I
−XI

)

∂V I

∂r̃
− Ṽ, (F.11)

and the expression in the parentheses vanishes, the variational equation of r̃ sets r = Ṽ.

This yields

K̃ ′ = ℓℓ̄− ℓr − ℓ̄r̄ +

∫ −r−r̄

dq log(1 + eq) +
1

2
(−ℓ2 − ℓ̄2 + r2 + r̄2). (F.12)

A generalized Kähler transformation cancelling the last term on the line above, and a

further change of polarization, this time on the left semi-chiral fields, brings this to (3.8):

K
(0,0)
0 (ℓ̃,

¯̃
ℓ, r, r̄) = K̃ ′(ℓ, ℓ̄, r, r̄) +

1

2
(ℓ2 + ℓ̄2 − r2 − r̄2)− ℓℓ̃− ℓ̄

¯̃
ℓ. (F.13)

G SU(2) × SU(2)

In this appendix, we examine the two types of generalized Kähler structures on SU(2) ×
SU(2) and relate them by T-duality along an affine isometry. The complex structures on

SU(2)× SU(2) were first written down in [12] and the generalized geometry is discussed in

great detail in [18].

As discussed in section 2.3, SU(2) × SU(2) admits generalized Kähler structures of

two types: choosing the complex structures to be equal on the Lie algebra leads to a type

(Nc, Nt) = (1, 0) generalized Kähler structure while choosing them to be opposite on the

Cartan subalgebra leads to a type (0, 1) structure.

We choose the basis {h, h̄, e1, ē1, e2, ē2} for the Lie algebra of SU(2)× SU(2), where

h =
1

2
(σ1,3 + iσ2,3), e1 =

1

2
(σ1,1 + iσ1,2), e2 =

1

2
(σ2,1 + iσ2,2) (G.1)

and σ1,i (respectively σ2,i), i = 1, 2, 3, are the sigma matrices of the first (second) SU(2)

factor, and the bar denotes hermitian conjugation. The two complex structures on the Lie

algebra compatible with the choice of Cartan subalgebra h, h̄ are

J1 = diag(i,−i, i,−i, i,−i) and J2 = diag(−i, i, i,−i, ,−i). (G.2)

G.1 Type (1, 0)

If one takes J+ and J− both induced from the same Lie algebra complex structure, say J1,

then generically the resulting generalized Kähler structure has type (1, 0) (there are once

again positive codimension type change loci). Denoting the group element in the defining

representation by (g1ij , g
2
ij), i, j = 1, 2, the chiral coordinate is

φ = − log g112 + i log g212, (G.3)

while J± coordinates on each symplectic leaf can be chosen to be

z1+ = log
g112
g122

, z2+ = log
g212
g222

,

z1− = log
g112
g111

, z2− = log
g212
g211

.

(G.4)
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The Poisson structure in these coordinates is

σ(dz1±, dz
2
±) = ±i. (G.5)

We choose the semi-chiral coordinates

ℓ = z1+, ℓ̃ = −iz2+,

r = z2−, r̃ = iz1−,
(G.6)

which satisfy d(ℓ̃dℓ+
¯̃
ℓdℓ̄+ r̃dr + ¯̃rdr̄) = 0. In the polarization determined by ℓ and r, the

generalized potential is22

K = F (φ, φ̄) +

∫ (ℓ,ℓ̄,r,r̄)

ℓ̃ dℓ+
¯̃
ℓ dℓ̄+ r̃ dr + ¯̃r dr̄

=
1

2
(φ̄− φ)2 − (r + iℓ)(r̄ − iℓ̄)− (φ+ φ̄)(ℓ+ ℓ̄) + i(φ̄− φ)(r + r̄)

+

∫ ℓ+ℓ̄

dq log(1 + eq) +

∫ r+r̄

dq log(1 + eq)− 1

2
(ℓ2 + ℓ̄2 + r2 + r̄2). (G.7)

Here, F (φ, φ̄) = 1
2(φ̄ − φ)2 is determined by solving the second order differential equa-

tions (B.12)–(B.13). For our later discussion of T-duality, it is convenient to add generalized

Kähler transformation terms so that

K(1,0)(ℓ, ℓ̄, r, r̄, φ, φ̄) =
1

2
(φ̄− φ)2 − (r + iℓ)(r̄ − iℓ̄) + i(φ̄− φ)(r + r̄ + iℓ− iℓ̄)

+

∫ ℓ+ℓ̄

dq log(1 + eq) +

∫ r+r̄

dq log(1 + eq)− 1

2
(r2 + r̄2), (G.8)

which corresponds to shifting ℓ̃ → ℓ̃′ = ℓ̃+ 2φ+ ℓ = −iz2+ + z1+ + 2φ.

G.2 Type (0, 1)

If one takes J+ induced from the Lie algebra complex structure J1 and J− induced from

J2, then generically the resulting generalized Kähler structure has type (0, 1). The twisted

chiral coordinate is

χ = − log g122 + i log g222 (G.9)

while J± coordinates on the symplectic leaves can be chosen to be the same as those for

the type (1, 0) structure (G.4). The Poisson structure in these coordinates, however, is now

different

σ(dz1±, dz
2
±) = i. (G.10)

We choose now

ℓ = z1+, r = z2−, r̃ = iz1−, (G.11)

as before, but now

ℓ̃ = iz2+ (G.12)

22Note that, due to the relations zj+ + z̄j+ = zj− + z̄j− for each j = 1, 2, the combinations (ℓ, ℓ̄, r̃, ¯̃r) and

(ℓ̃,
¯̃
ℓ, r, r̄) are not functionally independent.
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has an extra minus sign compared to the above. This is necessary to preserve d(ℓ̃dℓ+
¯̃
ℓdℓ̄+

r̃dr + ¯̃rdr̄) = 0. In the polarization determined by ℓ and r, the generalized potential is

K = G(χ, χ̄) +

∫ (ℓ,ℓ̄,r,r̄)

ℓ̃ dℓ+
¯̃
ℓ dℓ̄+ r̃ dr + ¯̃r dr̄

= −1

2
(χ̄− χ)2 + i(ℓr − ℓ̄r̄)− (χ+ χ̄)(ℓ+ ℓ̄) + i(χ̄− χ)(r + r̄)

+

∫ ℓ+ℓ̄

dq log(1 + eq) +

∫ r+r̄

dq log(1 + eq), (G.13)

where G(χ, χ̄) = −1
2(χ̄− χ)2 is determined by (B.12), (B.13).

For later discussion of T-duality, it is convenient to add generalized Kähler transfor-

mation terms so that

K(0,1)(ℓ, ℓ̄, r, r̄, χ, χ̄) = −1

2
(χ̄− χ)2 + i(χ̄− χ)(r + r̄ + iℓ− iℓ̄)

+

∫ ℓ+ℓ̄

dq log(1 + eq) +

∫ r+r̄

dq log(1 + eq)− 1

2
(ℓ2 + ℓ̄2) (G.14)

which corresponds to shifting ℓ̃ → ℓ̃′ = ℓ̃ + 2χ − ℓ = iz2+ − z1+ + 2χ. This matches with ℓ̃

in (G.8) since iz2+ − z1+ + 2χ = −iz2+ + z1+ + 2φ.

G.3 T-duality

The subgroup of the isometry group preserving both complex structures is (U(1)×U(1))L×
(U(1)×U(1))R, acting as g 7→ eǫh̄−ǭhgeη̄h̄−ηh. Under this action, the coordinates transform

as
φ 7→ φ− iǭ+ iη, χ 7→ χ+ iǭ+ iη,

z1+ 7→ z1+ + iǫ+ iǭ z1− 7→ z1− − iη − iη̄,

z2+ 7→ z2+ + ǫ− ǭ z2− 7→ z2− + η̄ − η.

(G.15)

For the type (1, 0) structure, the parameters satisfy

D̄+ǫ = 0, D±ǫ = 0, D̄±η = 0, D−η = 0, (G.16)

while for the type (0, 1) structure, they satisfy

D̄±ǫ = 0, D+ǫ = 0, D̄±η = 0, D−η = 0. (G.17)

In both cases, it is clear that these isometries are affine, ∂++ǫ = 0 = ∂=η.

Let us perform T-duality along the isometry with parameter ǫ = −iλ, η = 0, with λ

real. This isometry transforms φ 7→ φ+λ and χ 7→ χ−λ and leaves ℓ, ℓ̄, r, r̄ invariant. The

potential (G.8) is invariant under this isometry, and can be gauged by a standard vector

multiplet. Constraining the gauge field to be flat using a twisted chiral Lagrange multiplier

χ returns one to the original model

K̃(1,0) = −1

2
V 2 − (r + iℓ)(r̄ − iℓ̄) + V (r + r̄ + iℓ− iℓ̄)

+

∫ ℓ+ℓ̄

dq log(1 + eq) +

∫ r+r̄

dq log(1 + eq)− 1

2
(r2 + r̄2)− i(χ̄− χ)V, (G.18)
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where we have gauge fixed φ = 0. It is now straightforward to check that integrating out

the gauge field V yields the type (0, 1) potential K(0,1) (G.14).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[3] T. Buscher, U. Lindström and M. Roček, New supersymmetric σ models with Wess-Zumino

terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].

[4] A. Sevrin and J. Troost, Off-shell formulation of N = 2 nonlinear σ-models,

Nucl. Phys. B 492 (1997) 623 [hep-th/9610102] [INSPIRE].

[5] M.T. Grisaru, M. Massar, A. Sevrin and J. Troost, Some aspects of N = (2, 2), D = 2

supersymmetry, Fortsch. Phys. 47 (1999) 301 [hep-th/9801080] [INSPIRE].
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