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1 Introduction

The lack of new physics discoveries at the LHC has led us to consider the possibility that

beyond Standard Model (BSM) states responsible for solving the outstanding problems

in particle physics, e.g. unification and dark matter, are much heavier than the weak

scale. In this scenario, weak-scale phenomenology can be conveniently described by an

effective field theory (EFT). With heavy new particles integrated out, their virtual effects
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are encoded in higher-dimensional effective operators involving the light Standard Model

(SM) fields. Recent years have seen a growing EFT literature, many of which aim to

carefully examine phenomenological impact of higher-dimensional operators; see e.g. [1–3]

for reviews. Experimental data have put constraints on many of these operators, which

can be translated into constraints on, e.g. masses and couplings of heavy new particles,

once the BSM theory is specified.

On the other hand, the usefulness of EFT approaches to BSM physics extends beyond

bottom-up studies. From a top-down perspective, we may be interested to ask whether

some attractive speculative ideas — supersymmetry (SUSY), unification, etc. — can be

realized in specific BSM setups, while being consistent with the SMEFT we have estab-

lished at low energy. To address such questions requires careful matching between the

full theory and EFT parameters across heavy particle thresholds. In particular, in addi-

tion to higher-dimensional operators being generated, changes in renormalizable operator

coefficients across thresholds are often important to account for. These “threshold correc-

tions” are invisible to low-energy experiment, but may be crucial for answering questions

regarding high-scale physics, like the one on SUSY and unification posed above.

For example, in the context of the Minimal Supersymmetric Standard Model (MSSM),

we would like to know what regions of parameter space can realize unification of not only the

three gauge couplings, but also the bottom and tau Yukawa couplings, and meanwhile allow

consistent matching onto the SMEFT with its parameters (those in the Higgs potential in

particular) measured at low energy. Further, we would like to know what phenomenological

implications, if any, such parameter choices may have.

These are questions we would like to investigate in this paper, taking a top-down

EFT approach. We will compute the full one-loop contributions to the SM renormalizable

operators when heavy BSM states in the MSSM are integrated out, from which SUSY

threshold corrections to all SM parameters can be easily obtained. As we will see, threshold

corrections to the bottom Yukawa and Higgs quartic couplings are of particular importance

for achieving both b-τ Yukawa unification and consistent matching onto the SMEFT.

In this calculation, we find solutions for SUSY scales from TeV up to 1010 GeV. How-

ever, only the lower edge of this broad trans-TeV window can be within experimental reach.

Given the further motivation of a dark matter candidate, we will take a closer look at the

1-10 TeV regime. In particular, we will extend our one-loop matching calculation to the

dimension-six level, and obtain parametrically enhanced contributions to the operators af-

fecting hbb̄ and hτ+τ− couplings, which can dominate over tree-level effects. We will show

how precision Higgs measurements constitute a powerful indirect probe of TeV-scale SUSY

with b-τ Yukawa unification that is complementary to direct superpartner searches.

We note that while the full one-loop SUSY threshold corrections (as well as sparticle

mass corrections) in the MSSM have been known for some time [4], growing interest in

EFT formulations of the calculation is quite recent (see e.g. [5–11]). This is of course

largely due to higher-scale SUSY having been less attractive from the fine-tuning point

of view. Here we shall adopt the perspective that the weak scale may indeed be fine-

tuned to some degree, with new particles in the trans-TeV regime, justifying an EFT

treatment. In this case, the MSSM still exhibits several attractive features, including
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gauge and Yukawa coupling unification as mentioned above, and may also provide a dark

matter candidate. Our philosophy here is in line with earlier studies in [12, 13] on Yukawa

unification with heavy superpartners. In particular, the capability of unification and dark

matter requirements to severely constrain the SUSY parameter space has been recently

emphasized in [13].

A new ingredient of our work is that, instead of computing low-energy observables

such as SM particle masses and the Fermi constant, we obtain SUSY threshold corrections

directly from the path integral by taking advantage of functional matching techniques,

which have attracted much attention and undergone interesting developments recently [14–

23] (see also [24–28]). Such techniques can greatly simplify EFT matching calculations,

thanks to preservation of gauge covariance and exhibition of a universal structure [18, 20,

23]. In [22], a concise diagrammatic formulation of functional matching at one-loop level

was obtained: the low-energy effective Lagrangian directly derives from a sum of “covariant

diagrams,” following a set of simple rules. This approach is general enough to overcome

several limitations of previous formulations, and so will be used here.

From the technical point of view, our calculation also serves as a nontrivial test case

for the covariant diagrams technique. It also further demonstrates the simplicity of the

approach. In particular, with just 30 covariant diagrams, we are able to obtain full one-loop

SUSY threshold corrections in agreement with existing results in the literature.

The paper is organized as follows. In section 2, we give a general overview of EFT

approach to BSM physics. In particular, we aim to present a concise and cogent review of

functional matching and covariant diagrams, for readers unfamiliar with such techniques

to quickly grasp the essentials.

Starting from section 3, we focus on the specific case of the MSSM. We first present

an analytical calculation of matching the MSSM onto the SMEFT. Next, sections 4 and 5

are dedicated to numerical analyses of implications of b-τ Yukawa unification on the SUSY

spectrum and Higgs couplings. Finally, we conclude in section 6.

Given the considerable length and technicality of the paper, let us reiterate the physics

motivation and summarize the main results before delving into the details.

• The primary goal of this paper is to demonstrate a top-down EFT approach to a well-

motivated BSM theory, the MSSM, and provide an updated view of its parameter

space, in light of recent LHC results (discovery of the Higgs boson and null results

in superpartner searches) and future opportunities of precision Higgs measurements.

More generally, we hope to set up a template of using EFT techniques to gain insights

on BSM physics, which is becoming ever more important in the absence of weak scale

new physics discoveries.

• The EFT approach we take offers several benefits. First of all, RG evolution between

the SUSY scale and the weak scale resums large logarithms of log(MSUSY/mW ),

thus improving the accuracy of weak scale calculations. Meanwhile, the matching

and running procedure separates the study of MSSM phenomenology into different

modules, allowing us to use known results in each module (e.g. RG equations in the

SM and the MSSM, and calculation of weak scale observables from SM parameters).
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Finally, top-down EFT studies like the one we present here can be easily interfaced

with bottom-up EFT results, such as projected sensitivities of Higgs couplings in

terms of SMEFT coefficients, to gain information on the full theory parameter space.

• A major physics question we investigate is b-τ Yukawa unification. In the SM, the

bottom and tau Yukawa couplings do not unify at the scale of Grand Unified Theories

(GUTs), unless there are unexpectedly large (∼60%) GUT threshold corrections.

In contrast, b-τ Yukawa unification is easily achievable in the MSSM, because the

presence of superpartners modifies the running of Yukawa couplings above the SUSY

threshold, as well as adding to the couplings a finite threshold correction when the

MSSM is matched onto the SMEFT. We work out these modifications explicitly, and

map out the MSSM parameter space consistent with b-τ Yukawa unification and weak

scale observations by imposing UV and IR boundary conditions for the RG evolution.

As we will see, the key ingredients are a sizable SUSY threshold correction for the

bottom Yukawa, and the right amount of SUSY threshold correction for the Higgs

quartic in order to reproduce the SM-like Higgs mass at low energy (which in the

non-EFT calculation would be phrased as raising the SM Higgs mass to 125 GeV via

SUSY loop corrections).

• Another important issue we address is how precision Higgs measurements can provide

indirect information about TeV-scale SUSY, complementary to direct superpartner

searches. Interestingly, when superpartner masses are raised beyond direct LHC

reach, hbb̄ and hτ+τ− coupling modifications do not decouple (and may even in-

crease) if the heavy Higgs mass is held fixed. This can be understood from the mass

dependence of dimension-six operator coefficients in the SMEFT, and involves inter-

play between tree level and tan β enhanced one-loop level contributions, which we

discuss in detail.

2 Overview of EFT approach to BSM physics

2.1 EFT matching, threshold corrections and observables

Consider a general BSM theory whose Lagrangian has the following form,

L [ϕBSM, ϕSM] = LSM[ϕSM] + LBSM[ϕBSM, ϕSM] . (2.1)

Here ϕSM, ϕBSM collectively denote fields within and beyond the SM, respectively. The

SM part of the Lagrangian reads

LSM = |Dµφ|2 +
∑

f=q,u,d,l,e

f̄ i /Df − 1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

−m2|φ|2 − λ|φ|4 −
(
ψ̄u yu ψq · ε · φ+ ψ̄d yd ψq · φ∗ + ψ̄e ye ψl · φ∗ + h.c.

)
, (2.2)

where ε = iσ2, and dots denote SU(2)L index contractions. ψf are four-component spinors

containing the SM chiral fermions f , e.g. ψq = (qa, 0), ψu = (0, u†ȧ), etc. Here and in the

following, we use boldface, e.g. yu, yd, ye, for 3× 3 matrices in generation space.
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The EFT approach applies when the BSM fields ϕBSM are much heavier than the SM

weak scale. In this case, integrating out ϕBSM from the path integral results in a local

effective Lagrangian for ϕSM,∫
[DϕBSM][DϕSM] e i

∫
ddx (LSM+LBSM) =

∫
[DϕSM] e i

∫
ddx
(
LSM+L(d≤4)+L(d=5)+L(d=6)+...

)
≡
∫

[DϕSM] e i
∫
ddxLSMEFT . (2.3)

As implied in the equation above, this procedure of matching L onto LSMEFT generally

produces extra renormalizable (d ≤ 4) pieces in the EFT Lagrangian, in addition to LSM

that already exists in the full theory. However, they can be absorbed into LSM via proper

redefinitions of fields and couplings and thus do not have observable consequences at low

energy. To be explicit, let us write

L(d≤4) = δZφ|Dµφ|2 +
∑

f=q,u,d,l,e

ψ̄f δZf i /Dψf

−1

4
δZGG

A
µνG

Aµν − 1

4
δZWW

I
µνW

Iµν − 1

4
δZBBµνB

µν

+δm2|φ|2 + δλ|φ|4

+
(
ψ̄u δyu ψq · ε · φ+ ψ̄d δyd ψq · φ∗ + ψ̄e δye ψl · φ∗ + h.c.

)
. (2.4)

Rescaling the SM fields to retain canonical normalization of their kinetic terms (up to

terms of second order or higher in the δZ’s1),

ϕ̂SM =

(
1 +

1

2
δZϕSM

)
ϕSM , (2.5)

and defining effective parameters as follows,

geff
3 = g3

(
1− 1

2
δZG

)
, geff = g

(
1− 1

2
δZW

)
, g′

eff
= g′

(
1− 1

2
δZB

)
,

m2
eff = m2 (1− δZφ)− δm2 , λeff = λ (1− 2 δZφ)− δλ ,

yeff
u = yu − δyu −

1

2
(yu δZq + δZu yu + yu δZφ) ,

yeff
d = yd − δyd −

1

2
(yd δZq + δZd yd + yd δZφ) ,

yeff
e = ye − δye −

1

2
(ye δZl + δZe ye + ye δZφ) , (2.6)

we obtain

LSMEFT = |Dµφ̂|2 +
∑

f=q,u,d,l,e

¯̂
f i /Df̂ − 1

4
ĜAµνĜ

Aµν − 1

4
Ŵ I
µνŴ

Iµν − 1

4
B̂µνB̂

µν

−m2
eff|φ̂|2−λeff|φ̂|4−

( ¯̂
ψu y

eff
u ψ̂q · ε · φ̂+

¯̂
ψd y

eff
d ψ̂q · φ̂∗+ ¯̂

ψe y
eff
e ψ̂l · φ̂∗ + h.c.

)
+L(d=5) + L(d=6) + . . . , (2.7)

1Here δZϕSM is understood as the matrix δZf for ϕSM = f , which is symmetric in generation space as

required by hermiticity of the Lagrangian.
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where

Dµ = ∂µ − i geff
3 tAĜAµ − i geff tIŴ I

µ − i g′
eff
Y B̂µ , (2.8)

with tA, tI being the SU(3)c and SU(2)L generators in the corresponding representation.

We see that while the renormalizable part of LSMEFT contains the same operators as

the LSM part of the full theory Lagrangian, their coefficients, i.e. the parameters labeled

by “eff” whose values we can extract from experiment, are generally different from their

counterparts in the full theory. These differences are usually referred to as “threshold cor-

rections,” and are important to take into account when studying higher-energy phenomena

of the full theory, such as unification in the MSSM. It is clear from eq. (2.6) that threshold

corrections are directly related to operator coefficients in the L(d≤4) piece generated from

the matching procedure of eq. (2.3).

On the other hand, the non-renormalizable part of LSMEFT, i.e. L(d=5) +L(d=6) + . . . ,

can cause low-energy observations to deviate from expectations of the renormalizable SM:

L(d=5) contains just one operator which is responsible for non-zero neutrino masses, while

L(d=6) contains a large number of operators which contribute to e.g. electroweak, Higgs, and

flavor observables. For example, consider the following dimension-six operators (neglecting

differences between ϕSM and ϕ̂SM),

L(d=6) ⊃ |φ|2 (ψ̄qCdφ ψd) · φ+ |φ|2 (ψ̄lCeφ ψe) · φ + h.c. (2.9)

After RG evolved down to the weak scale, they affect couplings of the SM Higgs boson to

down-type quarks and leptons, and hence observables like the Higgs boson partial widths.

When fermion masses are used as inputs of the calculation, we have

Γ(h→ ff̄) = (1 + δκf )2 Γ(h→ ff̄)SM , (2.10)

with

δκb = −
Cbφv

2

yeff
b

, δκτ = −
Cτφv

2

yeff
τ

, (2.11)

etc. at tree level, where yeff
b,τ , Cbφ,τφ are 33 elements of yeff

d,e, Cdφ,eφ, respectively.

Note that Cbφ,τφ ∼ Λ−2 with Λ being the scale of new physics being integrated out,

and therefore, the observable BSM effects δκb,τ decouple as v2

Λ2 as Λ increases. This is in

contrast to the (unobservable) threshold corrections discussed above, which originate from

d ≤ 4 operators and thus do not decouple. We will see in section 4 that in the specific case

of the MSSM with b-τ Yukawa unification, threshold corrections to λ and yb are actually

larger for higher SUSY scales.

Meanwhile, in addition to the Λ power counting, the low-energy EFT is also organized

by a loop counting. Take the calculation of Γ(h→ bb̄) for example. Higher order corrections

come from both EFT matching for d > 4 operators (Cbφ = Ctree
bφ + C1-loop

bφ + . . . in the

present case) and loop level Feynman diagrams in the EFT. Generally speaking, when

Λ is much higher than the weak scale, the only such corrections that are essential to

take into account are the non-decoupling ones from the renormalizable SM loops, namely

corrections to Γ(h → bb̄)SM (see [29–31] for state-of-the-art calculations). An exception

is when O( 1
16π2Λ2 ) corrections are parametrically enhanced, e.g. by tan β � 1 in the case

– 6 –
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of the MSSM. We will see in section 5 that such enhanced contributions to C1-loop
bφ can

dominate over Ctree
bφ in some regions of the MSSM parameter space, and are therefore

also essential to take into account when making predictions for Γ(h→ bb̄) in the EFT. The

results can of course be further refined by computing non-enhanced contributions, and even

higher order terms in both the Λ−1 and loop expansions (see e.g. [32–35]). See also [36–39]

for related discussions on EFT power counting.

2.2 Functional matching and covariant diagrams

We now review the procedure of carrying out the matching calculation of eq. (2.3). The

idea is to derive the EFT Lagrangian as a sum of gauge-invariant operators directly from

the path integral, without computing correlation functions. In particular, we will sketch

the procedure leading to the systematic formulation of covariant diagrams, the details of

which can be found in ref. [22]. This can be viewed as the analog of the procedure of

deriving Feynman rules for correlation functions. However, it should be clear that here we

are taking a different route from the path integral than deriving Feynman rules, which is

in fact a most economic route where we gather just enough information for the purpose of

obtaining the EFT Lagrangian. We shall use a more general notation ϕBSM → ϕH (“H”

for “heavy”), ϕSM → ϕL (“L” for “light”), since the applicability of the approach is not

restricted to the specific case of matching decoupled BSM theories onto the SMEFT.

Our goal is to integrate out the heavy fields ϕH in the UV theory path integral, as in

eq. (2.3). At tree (classical) level, the result is given by the stationary point approximation,

Ltree
EFT[ϕL] = LUV

[
ϕH,c[ϕL], ϕL

]
, (2.12)

where ϕH,c[ϕL] is a local operator expansion that solves the classical equations of motion

for ϕH ,
δLUV

δϕH

∣∣∣∣
ϕH=ϕH,c

= 0 . (2.13)

Moving on to one-loop level, we take into account the leading quantum corrections

using the background field method,

ϕH = ϕH,c[ϕL,b] + ϕ′H , ϕL = ϕL,b + ϕ′L , (2.14)

⇒ LUV[ϕH , ϕL] + JLϕL = LUV

[
ϕH,c[ϕL,b], ϕL,b

]
+ JLϕL,b (2.15)

− 1

2

(
ϕ′TH ϕ′TL

)
QUV

[
ϕH,c[ϕL,b], ϕL,b

](ϕ′H
ϕ′L

)
+O(ϕ′3) .

Up to this order in the quantum fluctuation fields ϕ′H,L, the path integral is Gaussian, and

evaluates to the functional determinant of the quadratic operator QUV. This is in fact the

familiar procedure of computing one-particle-irreducible (1PI) effective actions. Here, since

we have set the background heavy fields to ϕH,c[ϕL,b], which corresponds to setting heavy

fields’ currents JH = − δLUV
δϕH

∣∣∣
ϕ=ϕb

to zero in the Legendre transform, what we obtain is
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the one-light-particle-irreducible (1LPI) effective action,

Γ1-loop
L,UV [ϕL,b] = i cs log detQUV

[
ϕH,c[ϕL,b], ϕL,b

]
= i cs Tr logQUV = i cs

∫
ddx

∫
ddq

(2π)d
tr log QUV|Pµ→Pµ−qµ , (2.16)

where cs is a spin factor, e.g. cs = 1
2 (−1

2) for real scalars and vectors (Weyl fermions). The

last equation follows from evaluating the spacetime part of the functional trace, and the

remaining “tr” is over internal degrees of freedom only. We have introduced the notation

Pµ ≡ iDµ, understood to be acting on everything to the right (so that (Dµϕ) = −i [Pµ, ϕ],

etc.). A convenient feature of Pµ is that it is a hermitian operator,

(. . . APµB . . . )
† = . . . B†(−i

←−
Dµ)A† . . . = . . . B†PµA

† . . . (2.17)

We would like to derive L1-loop
EFT from Γ1-loop

L,UV . The fact that
∫
ddxL1-loop

EFT [ϕL] 6=
Γ1-loop

L,UV [ϕL] has caused some confusion in the previous literature on the capability of func-

tional methods to compute L1-loop
EFT . However, as argued in [21] and proved in [22], there is

actually a simple relation between the two quantities,∫
ddxL1-loop

EFT [ϕL] = Γ1-loop
L,UV [ϕL]

∣∣∣
hard

, (2.18)

where “hard” means taking the hard region contribution to the loop integral. Technically,

using dimensional regularization, one simply expands the integrand for |q2| ∼ m2
ϕH
� m2

ϕL

(with q being the loop momentum) before integrating over the full momentum space.2

The physical intuition of eq. (2.18) is the following. With an integral over the full

momentum space
∫ ddq

(2π)d
as in eq. (2.16), the 1LPI effective action Γ1-loop

L,UV encodes quantum

fluctuations at all scales in the UV theory (when used at classical level). It is non-local in

general due to long-distance contributions. By taking the hard region contribution as in

eq. (2.18), we essentially extract short-distance information from Γ1-loop
L,UV , manifest as local

effective operators in L1-loop
EFT .

Combining eqs. (2.16) and (2.18), we have

L1-loop
EFT [ϕL] = i cs tr

∫
ddq

(2π)d

[
log QUV|Pµ→Pµ−qµ

]
expand for |q2|∼m2

ϕH
�|m2

ϕL
|
. (2.19)

We would like to perform the expansion in a gauge-covariant way, without separating

the Pµ’s contained in QUV into partial derivatives and gauge fields. In other words, we

would like to perform a covariant derivative expansion (CDE), which automatically ensures

gauge invariance of the final result. To begin with, we assume the following general (gauge-

covariant) form for the quadratic operator,

QUV = K[Pµ;mϕH ,mϕL ] + X[ϕ, Pµ] , (2.20)

2Correspondingly, the soft region contribution is obtained by expanding the integrand for |q2| ∼ m2
ϕL
�

m2
ϕH

before integrating over the full momentum space. The sum of hard and soft region contributions is

equal to the original integral; see e.g. [40–42].
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where K is the diagonal kinetic operator with elements −P 2 + m2 for bosonic fields and

−/P +m for fermionic fields,3 and

X[ϕ, Pµ] =

(
XH XHL

XLH XL

)
= U[ϕ] + Pµ Zµ[ϕ] + Z†µ[ϕ]Pµ +O(P 2) (2.21)

contains interactions among the fields. The expansion and momentum integration in

eq. (2.19) can then be carried out in a general way, in terms of Pµ and components of

U[ϕ], Z[ϕ] matrices.

The CDE procedure outline above, albeit conceptually simple, can be quite tedious

technically due to the large number of terms produced by the expansion. The idea of

covariant diagrams is to significantly reduce the technical complexity by introducing a

systematic bookkeeping device that collects identical terms. As it turns out, the rules for

using covariant diagrams, as derived in [22], are very simple. We will review some of these

rules in section 2.2.1.

It is worth noting that the philosophy here is quite similar to using Feynman dia-

grams to keep track of the (non-gauge-covariant) expansion of correlation functions. How-

ever, unlike Feynman diagrams, covariant diagrams represent expressions made of covariant

derivatives Pµ and the light fields ϕL contained in the U[ϕ], Z[ϕ] matrices (after setting

ϕH = ϕH,c[ϕL]), which combine into gauge-invariant operators. Therefore, by enumerat-

ing covariant diagrams, we are able to directly obtain all operators generated by one-loop

matching, avoiding the detour of computing correlation functions.

2.2.1 Rules for covariant diagrams

Covariant diagrams consist of propagators and vertex insertions of the form shown in

table 1.4 Some of them carry Lorentz indices, which we connect in pairs with dotted lines

to indicate Lorentz contraction. There are different types of vertex insertions, represented

by different symbols. Only two of them, P and U , are shown in the table, which are all we

need for the calculation in this paper.5

Each covariant diagram drawn this way represents a collection of terms in the CDE of

eq. (2.19) that reads “prefactor · trO[Pµ, ϕ].” The operator structure O[Pµ, ϕ] is obtained

simply by sequentially reading off each building block according to table 1. The prefactor

3Note that this requires
(
ϕ′TH ϕ′TL

)
on the left side of QUV in eq. (2.15) should be replaced by a conjugate

field multiplet that contains φ† and ψ̄ for complex scalars and fermions, respectively. Also, to have the

right prefactor − 1
2

for the quadratic terms, we can represent each complex scalar φ by a multiplet (φ, φ∗)T ,

and each Dirac fermion ψ by a multiplet (ψ,ψc)T .
4We are using a slightly different notation than [22]: here we prefer to make the distinction between

bosonic and fermionic propagators more transparent by using different types of lines (dashed vs. solid).

In [22], on the other hand, more emphasis is put on the treatment of heavy vs. light fields, and solid

(dashed) propagators are used for heavy (light) propagators regardless of spin.
5From the CDE procedure summarized above it should be clear that additional types of vertex insertions

include Z, Z† and mϕL insertions. There are only a few nonzero entries of the MSSM Z matrix because of

minimal coupling, none of which contributes to the operators we will calculate. Also, mϕL insertions are

not considered because they lead to terms suppressed by powers of m2

Λ2 compared to those retained in our

results.
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Building blocks Bosonic Fermionic

Propagators i
= 1

i
=

{
Mi (heavy)

0 (light)

i
= −γµ

P insertions
i i

= 2Pµ
i i

= −/P

U insertions
i j

,
i j

,
i j

,
i j

= Uij [ϕ]

Contractions
µ ν

= gµν

Table 1. Building blocks of covariant diagrams needed in this paper. i, j represent fields that can

be either heavy or light unless specified otherwise. A covariant diagram must contain at least one

heavy propagator so that its prefactor (2.22) is nonzero. See [22] for a detailed derivation of the

rules for covariant diagrams from evaluating the CDE series of eq. (2.19).

takes care of combinatorics (which can be quite tedious to work out if one were to proceed

algebraically as in previous CDE literature). For a covariant diagram with ni (nj , . . . )

heavy propagators of tree-level mass Mi (Mj , . . . ), nL light propagators, and nc dotted

lines (Lorentz contractions), we have

prefactor = −i cs
1

S
I[q2nc ]

ninj ...nL
ij...0 =

cs
16π2

1

S
Ĩ[q2nc ]

ninj ...nL
ij...0 , (2.22)

where the spin factor cs is determined by the spin of the propagator from which one

starts reading the diagram, which is arbitrary.6 The symmetry factor 1
S is present if the

diagram has a ZS symmetry under rotation, and the master integrals I[q2nc ]
ninj ...nL
ij...0 =

i
16π2 Ĩ[q2nc ]

ninj ...nL
ij...0 are defined by∫
ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
≡ gµ1...µ2nc I[q2nc ]

ninj ...nL
ij...0 , (2.23)

with gµ1...µ2nc being the completely symmetric tensor, e.g. gµνρσ = gµνgρσ+gµρgνσ+gµσgνρ.

Note that in dimensional regularization, I[q2nc ]nL0 = 0 because they are scaleless integrals,

which means a covariant diagram must contain at least one heavy propagator to be nonzero.

We derive a general decomposition formula that allows us to easily evaluate arbitrary

master integrals in appendix B, where we also give explicit expressions of the master

integrals appearing in this paper.

6There is no ambiguity here because of the cyclic property of the trace, even when the loop involves

both bosons and fermions. For example, one may have tr(. . . UBF . . . UFB . . . ) or tr(. . . UFB . . . UBF . . . ),

depending on whether one starts reading the diagram from a bosonic (B) or fermionic (F) propagator. The

values of the two traces are opposite, since UBF and UFB are fermionic and anticommuting (while all . . . ’s

are bosonic), so they give the same result when multiplied by opposite spin factors.
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By connecting vertex insertions with propagators and contracting Lorentz indices in

all possible ways, we can derive all independent operators in L1-loop
EFT . In practice, however,

one is often interested in obtaining just a few specific operators. To decide what covariant

diagrams should be computed, we note that since all fields must come from U[ϕ] or Z[ϕ],

we can simply look for elements of these matrices involving the same fields as contained in

the operators of interest, and enumerate combinations of them that can be connected by

propagators to form loops.

As a technical note, when enumerating covariant diagrams, we can omit those with op-

erator structure tr(. . . P µPµ . . . ) = tr(. . . P 2 . . . ). This is because the remaining diagrams,

giving rise to tr(. . . P µ . . . Pµ . . . ) with no “adjacent Pµ contractions,” already contain suf-

ficient information for determining all the independent EFT operator coefficients.

3 Matching the MSSM onto the SMEFT

3.1 MSSM fields and interactions

The techniques reviewed in section 2.2 are generally applicable to matching any pertur-

bative Lorentz-invariant UV theory onto a Lorentz-invariant EFT. We now focus on the

specific case of matching the MSSM onto the SMEFT. To begin with, we need to extract

the field content (including gauge quantum numbers of each field which determine the form

of Pµ) and the interaction matrix U[ϕ] of the MSSM.

The complete MSSM field multiplet (ϕH , ϕL)T is given in tables 2 and 3. We have

explicitly written out the internal indices carried by each field, in various colors for clarity.

In particular, we use i, A, α, I, a and ȧ for SU(3)c fundamental and adjoint, SU(2)L
fundamental and adjoint, and spinor indices on the conjugate fields on the left side of the

quadratic operator QUV, and j, B, β, J , b and ḃ for those on the fields on the right side.

The scalar sector of the MSSM consists of sfermions and two Higgs doublets. For the

latter, we choose a basis (Φ, φ) where the mass matrix in the electroweak-symmetric phase

is diagonal,

LMSSM ⊃ −(µ2 +m2
Hu)|Hu|2 − (µ2 +m2

Hd
)|Hd|2 − b (Hu · ε ·Hd + h.c.)

= −m2|φ|2 −M2
Φ|Φ|2 . (3.1)

The (Φ, φ) and (Hu, Hd) bases are related by

Φ = cβ′ Hu + sβ′ ε ·H∗d , φ = sβ′ Hu − cβ′ ε ·H∗d . (3.2)

where we have abbreviated sin β′ ≡ sβ′ , cosβ′ ≡ cβ′ , with β′ defined by

tan 2β′ =
2b

m2
Hu
−m2

Hd

. (3.3)

Note that β′ is different from what is usually referred to as β as in tan β = vu
vd

, the ratio

of vacuum expectation values (vevs) of Hu and Hd. In fact, at one-loop level, minimizing
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MSSM field SU(3)c × SU(2)L ×U(1)Y Conjugate field

Heavy spin-0 ( cs = 1
2 )

Φβ
(

1 , 2 , 1
2

)
Φ∗α

Φ∗β
(

1 , 2̄ , − 1
2

)
Φα

q̃jβ =
(
uLj , dLj

) (
3 , 2 , 1

6

)
q̃∗iα

q̃∗jβ =
(
u∗jL , d∗jL

) (
3̄ , 2̄ , − 1

6

)
q̃iα

ũj = ũRj
(

3 , 1 , 2
3

)
ũ∗i

ũ∗j = ũ∗jR
(

3̄ , 1 , − 2
3

)
ũi

d̃j = d̃Rj
(

3 , 1 , − 1
3

)
d̃∗i

d̃∗j = d̃∗jR
(

3̄ , 1 , 1
3

)
d̃i

l̃β =
(
νL , eL

) (
1 , 2 , − 1

2

)
l̃∗α

l̃∗β =
(
ν∗L , e

∗
L

) (
1 , 2̄ , 1

2

)
l̃α

ẽ = ẽR ( 1 , 1 , −1 ) ẽ∗

ẽ∗ = ẽ∗R ( 1 , 1 , 1 ) ẽ

Heavy spin-1/2 ( cs = − 1
2 )

χ̃β =

(
χ̃ubβ

εβδχ̃
†ḃδ
d

) (
1 , 2 , 1

2

)
χ̃
α

=
(
εαγχ̃adγ , χ

†α
uȧ

)
χ̃cβ =

(
εβδχ̃dbδ

χ̃†ḃβu

) (
1 , 2̄ , − 1

2

)
χ̃

c
α =

(
χ̃auα , εαγχ

†γ
dȧ

)
g̃B =

(
λBgb

λ†ḃBg

)
( 8 , 1 , 0 ) g̃

A
=
(
λaAg , λ†Agȧ

)
W̃ J =

(
λJWb

λ†ḃJW

)
( 1 , 3 , 0 ) W̃

I
=
(
λaIW , λ†IWȧ

)
B̃ =

(
λBb

λ†ḃB

)
( 1 , 1 , 0 ) B̃ =

(
λaB , λ

†
Bȧ

)
Table 2. Heavy fields ϕH in the MSSM, their gauge quantum numbers, and conjugate fields

(which appear on the left side of QUV, see footnote 3). For clarity, SU(3)c, SU(2)L and spinor

indices are in brown, blue and green, respectively.

the effective potential, we can see that the two are related by7

β = β′ +
1

M2
Φ

sβcβ

(
tu
vu
− td
vd

)
O
(

Λ2

16π2

) +O(Λ−2) , (3.4)

in the decoupling limit |m2| �M2
Φ,f̃ ,χ̃,Ṽ

∼ O(Λ2) that we are interested in. Here tu, td are

one-loop tadpoles, whose analytical expressions can be found in e.g. [4].

As for fermions, we choose to work with four-component spinor fields. In particular,

we write the Higgsinos as a Dirac spinor, and the gauginos as Majorana spinors. The SM

7Here we are defining β in a tadpole-free scheme, where vu, vd denote the location of the minimum of the

loop-corrected effective potential (and are gauge dependent). An alternative scheme that is also commonly

used defines vu, vd by the location of the minimum of the tree-level Higgs potential, independent of gauge

choice; in that scheme, tan β differs from tan β′ only by O(Λ−2) terms.
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MSSM field SU(3)c × SU(2)L ×U(1)Y Conjugate field

Light spin-0 ( cs = 1
2 )

φβ
(

1 , 2 , 1
2

)
φ∗α

φ∗β
(

1 , 2̄ , − 1
2

)
φα

Light spin-1/2 ( cs = − 1
2 )

ψqjβ =

(
qbjβ

q′†ḃjβ

) (
3 , 2 , 1

6

)
ψ
iα

q =
(
q′aiα , q†iαȧ

)
ψcjβ
q =

(
q′jβb

q†ḃjβ

) (
3̄ , 2̄ , − 1

6

)
ψ

c

qiα =
(
qaiα , q

′†
ȧiα

)
ψuj =

(
u′bj

u†ḃj

) (
3 , 1 , 2

3

)
ψ
i

u =
(
uai , u′†iȧ

)
ψcj
u =

(
ujb

u′†ḃj

) (
3̄ , 1 , − 2

3

)
ψ

c

ui =
(
u′ai , u

†
ȧi

)
ψdj =

(
d′bj

d†ḃj

) (
3 , 1 , − 1

3

)
ψ
i

d =
(
dai , d′†iȧ

)
ψcj
d =

(
djb

d′†ḃj

) (
3̄ , 1 , 1

3

)
ψ

c

di =
(
d′ai , d

†
ȧi

)
ψlβ =

(
lbβ

l′†ḃβ

) (
1 , 2 , − 1

2

)
ψ
α

l =
(
l′aα , l†αȧ

)
ψcβ
l =

(
l′βb

l†ḃβ

) (
1 , 2̄ , 1

2

)
ψ

c

lα =
(
laα , l

′†
ȧα

)
ψe =

(
e′b

e†ḃ

)
( 1 , 1 , −1 ) ψe =

(
ea , e′†ȧ

)
ψc
e =

(
eb

e′†ḃ

)
( 1 , 1 , 1 ) ψ

c

e =
(
e′a , e†ȧ

)
Light spin-1 ( cs = 1

2 )

GBν ( 8 , 1 , 0 ) GAµ

W J
ν ( 1 , 3 , 0 ) W I

µ

Bν ( 1 , 1 , 0 ) Bµ

Table 3. Light fields ϕL in the MSSM, their gauge quantum numbers, and conjugate fields (which

appear on the left side of QUV, see footnote 3). For clarity, SU(3)c, SU(2)L and spinor indices are

in brown, blue and green, respectively. Primed Weyl fermion fields are unphysical auxiliary fields,

to be set to zero at the end of the calculation.
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Φ
q̃

ũ
d̃

l̃
ẽ

χ̃
g̃

W̃
B̃

φ
q

u
d

l
e

G
W

B

Φ
ϕ

2
ϕ

2
u
,d

q
q

e
l

D
Φ

D
Φ

q̃
ϕ

2
ϕ

ϕ
u
,d

q
q

q

ũ
ϕ

ϕ
2

Φ
φ

q
u

u

d̃
ϕ

Φ
φ

ϕ
2

q
d

d

l̃
ϕ

2
ϕ

e
l

l

ẽ
ϕ

ϕ
2

l
e

χ̃
u
,d

q
q

e
l

ϕ
ϕ
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q

u
d

W̃
q

l
ϕ
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q

u
d
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e

ϕ

φ
ϕ

2
ϕ

2
u
,d

q
q

e
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D
φ

D
φ

q
u
,d

u
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ϕ
ϕ
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q

q

u
q

q
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u
u

d
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d
d
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e

e
ϕ
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e
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e
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2
,Φ

2

B
D

Φ
D
φ

q
u

d
l

e
φ

2
,Φ

2

T
a
b

le
4

.
F

ie
ld

s
co

n
ta

in
ed

in
th

e
n

on
ze

ro
en

tr
ie

s
o
f

th
e

M
S

S
M

U
m

a
tr

ix
,

w
it

h
th

e
h

ea
v
y

fi
el

d
s
ϕ
H

to
b

e
se

t
to
ϕ
H
,c

(w
h

ic
h

is
n

o
n
va

n
is

h
in

g
o
n

ly

fo
r

th
e

h
ea

v
y

H
ig

gs
Φ

).
In

th
is

ta
b

le
,
ϕ

co
ll

ec
ti

ve
ly

d
en

o
te

s
th

e
h

ea
v
y

a
n

d
li

g
h
t

H
ig

g
s

fi
el

d
s

Φ
a
n

d
φ

,
e.

g
.
ϕ

2
re

p
re

se
n
ts

Φ
2
,Φ
φ
,φ

2
.

A
ls

o
,
ψ
f
,

th
e

D
ir

ac
sp

in
or

s
co

n
ta

in
in

g
S

M
fe

rm
io

n
s,

ar
e

w
ri

tt
en

si
m

p
ly

a
s
f

fo
r

cl
a
ri

ty
.

D
et

a
il

ed
ex

p
re

ss
io

n
s

o
f

th
e

U
m

a
tr

ix
ca

n
b

e
fo

u
n

d
in

a
p

p
en

d
ix

A
.

– 14 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
2

chiral fermions f are embedded into Dirac spinors ψf , in which we also retain unphysical

wrong-chirality Weyl fermions f ′, and set them to zero only at the end of the calculation.8

Interactions among the MSSM fields in tables 2 and 3 are encoded in the covariant

derivative Pµ and interaction matrices U[ϕ], Z[ϕ] in our functional matching formalism.

They are extracted from the terms in the MSSM Lagrangian that are quadratic in quantum

fluctuation fields, following eqs. (2.14), (2.15), (2.20) and (2.21). It turns out that the Z

matrix does not contribute to the operators computed in this paper (up to Λ−1 suppressed

corrections), and so will not be considered further.

To write down the U matrix, we follow the conventions in [43] (ref. [4] uses an opposite

sign for the tree-level Higgsino mass parameter µ), assuming R-parity is conserved. We

assume a trivial flavor structure for the soft SUSY breaking parameters for simplicity,

LMSSM ⊃ −M2
q̃ q̃
∗ 1 q̃ −M2

ũ ũ
∗ 1 ũ−M2

d̃
d̃∗ 1 d̃−M2

l̃
l̃∗ 1 l̃ −M2

ẽ ẽ
∗ 1 ẽ

−Au ũ∗ λu q̃ · ε ·Hu +Ad d̃
∗ λd q̃ · ε ·Hd +Ae ẽ

∗ λe l̃ · ε ·Hd , (3.5)

where λu,λd,λe are Yukawa matrices in the MSSM. Our results can be easily extended to

include flavor mixing, at the cost of making the analytical expressions more complicated.

Furthermore, we assume µv,Afv � M2
f̃
, so that matching in the electroweak-symmetric

phase without sfermion mass mixing is justified.

We summarize the fields contained in each nonzero entry of the MSSM U matrix in

table 4, relegating detailed expressions to appendix A. This U matrix exhibits a block-

diagonal structure because of the assumed R-parity: if i and j have opposite R-parity, Uij
would be proportional to a heavy R-parity-odd field, which should be set to ϕH,c = 0 (so

that δLMSSM
δϕH

∣∣
ϕH=ϕH,c

∝ ϕH,c = 0). We will demonstrate in sections 3.3 and 3.4 how to use

table 4 to quickly pick out the U insertions containing the right fields to make up a desired

operator in our one-loop matching calculation.

3.2 Tree-level matching

The tree-level effective Lagrangian is obtained by solving the equations of motion of the

heavy fields; see eq. (2.12). As mentioned in the previous subsection, in the absence of

R-parity violation, δLMSSM
δϕH

= 0 is trivially solved by ϕH,c = 0 for all the heavy fields in the

MSSM except the R-parity-even heavy Higgs doublet Φ, for which

δLMSSM

δΦ∗α
=
[
(P 2)βα −M2

Φ δ
β
α

]
Φα

+
1

8
(g2 + g′2)s4β′ |φ|2φβ + cβ′ εαβψ̄

β
q λ
†
u ψu + sβ′ ψ̄d λd ψqα + sβ′ ψ̄e λe ψlα

+

[
1

4
(g2 + g′2)c2

2β′ −
1

2
g2

]
|φ|2Φα −

[
1

4
(g2 + g′2)s2

2β′ −
1

2
g2

]
(φ∗Φ)φα

−1

4
(g2 + g′2)s2

2β′(Φ
∗φ)φα +O(Φ2φ,Φ3) . (3.6)

8Generally, such embedding would require additionally writing projection operators in interaction terms

to pick up the physical fermion fields. However, this is not necessary in the special case of R-parity-

conserving MSSM considered here.
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Here we have used the relation between D-term scalar quartic couplings and gauge cou-

plings, which holds even beyond tree level in the DR scheme. In the MS scheme, on the

other hand, the scalar quartic couplings (and hence the scalar cubic terms in eq. (3.6))

receive O( g4

16π2 ,
g2g′2

16π2 ,
g′4

16π2 ) corrections [44], which will need to be accounted for when we

compute the one-loop effective Lagrangian later.

We can solve the equation of motion δLMSSM
δΦ∗ = 0 for Φc perturbatively, as a power

series in M−1
Φ ,

Φc = Φ(1)
c + Φ(2)

c + . . . where Φ(n)
c ∼ O(M−2n

Φ ) . (3.7)

The first and second order solutions read

Φ(1)
cα =

1

M2
Φ

[
1

8
(g2 + g′2)s4β′ |φ|2φα + cβ′ εαβψ̄

β
q λ
†
u ψu + sβ′ ψ̄d λd ψqα + sβ′ ψ̄e λe ψlα

]
,

(3.8)

Φ(2)
cα =

1

M2
Φ

{
−
(
D2Φ(1)

c

)
α

+

[
1

4
(g2 + g′2)c2

2β′ −
1

2
g2

]
|φ|2Φ(1)

cα

−
[

1

4
(g2 + g′2)s2

2β′ −
1

2
g2

]
(φ∗Φ(1)

c )φα −
1

4
(g2 + g′2)s2

2β′(Φ
(1)∗
c φ)φα

}
. (3.9)

Only Φ
(1)
c is needed in tree-level matching up to dimension six. We have

Ltree
SMEFT = LMSSM|ϕH→ϕH,c = LSM +M2

Φ

∣∣Φ(1)
c

∣∣2 +O(Λ−4)

= LSM +
∑
i

Ctree
i O(d=6)

i +O(Λ−4) , (3.10)

where the dimension-six operators O(d=6)
i generated and their coefficients Ctree

i are listed

in table 5. We have used the basis of [45], known as the Warsaw basis, for dimension-six

operators. Fierz identities have been used to transform some of the four-fermion operators

into this basis. Note that with the tree-level matching of eq. (3.10) alone, each appearance

of β in table 5 should really read β′. However, as we will see shortly, part of one-loop

matching result can be absorbed into a redefinition of β′ → β in the tree-level operator

coefficients.

3.2.1 β redefinition

An interesting observation can be made on the tree-level effective Lagrangian computed

above. Differentiating Ltree
SMEFT with respect to β′, we find

∂

∂β′
Ltree (d=4)

SMEFT =
∂

∂β′

[
−1

8

(
g2 + g′2

)
c2

2β′ |φ|4

−
(
sβ′ψ̄u λu ψq · ε · φ+ cβ′ψ̄d λd ψq · φ∗ + cβ′ψ̄e λe ψl · φ∗ + h.c.

)]
=

1

4

(
g2 + g′2

)
s4β′ |φ|4

+
[
φ∗
(
cβ′ε · ψ̄q λ†u ψu + sβ′ψ̄d λd ψq + sβ′ψ̄e λe ψl

)
+ h.c.

]
= M2

Φ

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
, (3.11)
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Coefficient Operator

Ctree
φ = 1

64M2
Φ
s2

4β (g2 + g′2)2 Oφ = |φ|6[
Ctree
uφ

]
pr

= − 1
8M2

Φ
s4βcβ (g2 + g′2)

[
λ†u
]
pr

[
Ouφ

]pr
= |φ|2 (ψ̄ p

q ψ r
u ) · εφ∗[

Ctree
dφ

]
pr

= 1
8M2

Φ
s4βsβ (g2 + g′2)

[
λ†d
]
pr

[
Odφ

]pr
= |φ|2 (ψ̄ p

q ψ r
d ) · φ[

Ctree
eφ

]
pr

= 1
8M2

Φ
s4βsβ (g2 + g′2)

[
λ†e
]
pr

[
Oeφ

]pr
= |φ|2 (ψ̄ p

l ψ
r
e ) · φ[

C(1)tree
qu

]
prst

= − 1
6M2

Φ
c2
β

[
λ†u
]
pt

[
λu
]
sr

[
O(1)
qu

]prst
= (ψ̄ p

q γµψ
r
q )(ψ̄ s

u γ
µψ t

u )[
C(8)tree
qu

]
prst

= − 1
M2

Φ
c2
β

[
λ†u
]
pt

[
λu
]
sr

[
O(8)
qu

]prst
= (ψ̄ p

q γµT
Aψ r

q )(ψ̄ s
u γ

µTAψ t
u )[

C
(1)tree
qd

]
prst

= − 1
6M2

Φ
s2
β

[
λ†d
]
pt

[
λd
]
sr

[
O(1)
qd

]prst
= (ψ̄ p

q γµψ
r
q )(ψ̄ s

d γ
µψ t

d )[
C

(8)tree
qd

]
prst

= − 1
M2

Φ
s2
β

[
λ†d
]
pt

[
λd
]
sr

[
O(8)
qd

]prst
= (ψ̄ p

q γµT
Aψ r

q )(ψ̄ s
d γ

µTAψ t
d )[

Ctree
le

]
prst

= − 1
2M2

Φ
s2
β

[
λ†e
]
pt

[
λe
]
sr

[
Ole
]prst

= (ψ̄ p
l γµψ

r
l )(ψ̄ s

e γ
µψ t

e )[
C

(1)tree
quqd

]
prst

= − 1
M2

Φ
sβcβ

[
λ†u
]
pr

[
λ†d
]
st

[
O(1)
quqd

]prst
= (ψ̄ p

q ψ r
u ) · ε · (ψ̄ s

q ψ
t
d )[

C
(1)tree
lequ

]
prst

= 1
M2

Φ
sβcβ

[
λ†e
]
pr

[
λ†u
]
st

[
O(1)
lequ

]prst
= (ψ̄ p

l ψ
r
e ) · ε · (ψ̄ s

q ψ
t
u )[

Ctree
ledq

]
prst

= 1
M2

Φ
s2
β

[
λ†e
]
pr

[
λd
]
st

[
Oledq

]prst
= (ψ̄ p

l ψ
r
e )(ψ̄ s

d ψ
t
q )

Table 5. Dimension-six operators generated at tree level when matching the MSSM onto the

SMEFT. p, r, s, t are generation indices. Tree-level matching alone produces the operator coefficients

listed here, but with β′ in place of β. As explained in section 3.2.1, adding the one-loop-generated

piece cΦφ(Φ∗cφ+ φ∗Φc) to Ltree
SMEFT amounts to replacing β′ by β in all Ctree

i .

∂

∂β′
Ltree (d=6)

SMEFT = M2
Φ

(
Φ(1)∗

c · ∂Φ
(1)
c

∂β′
+ h.c.

)
= Φ(1)∗

c ·
[

1

2

(
g2 + g′2

)
c4β′ |φ|2φ

−sβ′ ε · ψ̄q λ†u ψu + cβ′ ψ̄d λd ψq + cβ′ ψ̄e λe ψl

]
+ h.c.

EoM
= Φ(1)∗

c ·
[
−(D2φ) +

1

4

(
g2 + g′2

)(
c2

2β′ − 2s2
2β′
)
|φ|2φ

]
+ h.c.

IBP
= M2

Φ

(
Φ(2)∗

c φ+ φ∗Φ(2)
c

)
. (3.12)

In the equations above, we have used the fact that both m2 = µ2 +m2
Hu
s2
β′+m

2
Hd
c2
β′−bs2β′

and M2
Φ = µ2 + m2

Hu
c2
β′ + m2

Hd
s2
β′ + bs2β′ have vanishing first derivative with respect to

β′, when eq. (3.3) is satisfied. “
EoM
= ” and “

IBP
= ” mean equivalence with the use of the

renormalizable SM equations of motion and integration by parts, respectively — opera-

tions that are allowed when we are dealing with dimension-six operators in the SMEFT

Lagrangian. We have neglected the m2 piece and one-loop threshold corrections to the
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relation λ = 1
8(g2 + g′2)c2

2β′ when applying the equation of motion for φ, because they lead

to m2

Λ2 suppressed and loop-suppressed terms compared to those retained in our results.

Meanwhile, as we will see explicitly in the next subsection, matching the MSSM onto

the SMEFT at one-loop level generates

L1-loop
SMEFT ⊃ cΦφ(Φ∗cφ+ φ∗Φc) , (3.13)

with cΦφ ∼ O( Λ2

16π2 ) given in eq. (3.36). The observation we made above, namely

∂

∂β′
Ltree

SMEFT = M2
Φ

(
Φ∗cφ+ φ∗Φc

)
(3.14)

suggests that we can absorb the part of L1-loop
SMEFT shown in eq. (3.13) into Ltree

SMEFT via a

redefinition of β′,

Ltree
SMEFT(β′) + cΦφ(Φ∗cφ+ φ∗Φc) = Ltree

SMEFT

(
β′ +

cΦφ

M2
Φ

)
, (3.15)

up to two-loop corrections. Comparing cΦφ presented below in eq. (3.36) and analytical

expressions of one-loop tadpoles in [4], we can actually show that

cΦφ = sβcβ

(
tu
vu
− td
vd

)
O
(

Λ2

16π2

) . (3.16)

Therefore,

Ltree
SMEFT(β′) + cΦφ(Φ∗cφ+ φ∗Φc) = Ltree

SMEFT(β) , (3.17)

with β defined by the minimum of the (loop-corrected) 1PI effective potential, i.e. tan β =
vu
vd

in the tadpole-free scheme; see eq. (3.4). We see that adding the one-loop-generated

piece cΦφ(Φ∗cφ + φ∗Φc) to Ltree
SMEFT amounts to simply replacing β′ by β in all tree-level

operator coefficients.

There is a simple power-counting argument for the relation eq. (3.17). If instead of

eq. (3.2), we define Φ, φ to be related to Hu, Hd by an angle β (as opposed to β′) rotation,

we would have 〈φ〉 = v√
2
' 174 GeV, while 〈Φ〉 = 0. In this basis (usually referred to

as the Higgs basis), integrating out heavy superpartners must not produce (Φ∗cφ + φ∗Φc)

with O( Λ2

16π2 ) coefficient, because otherwise, the same contribution would be present if

we compute the 1PI effective potential of the MSSM — this would lead to an O( v
16π2 )

contribution to 〈Φ〉 which, in fact, is the only possible contribution at this order, thus

contradicting 〈Φ〉 = 0. Technically, what happens is a cancellation of O( Λ2

16π2 )·(Φ∗cφ+φ∗Φc)

pieces between Ltree
SMEFT and L1-loop

SMEFT: the same L1-loop
SMEFT ⊃ cΦφ(Φ∗cφ+φ∗Φc) is generated by

one-loop matching, while Ltree
SMEFT ⊃ −cΦφ(Φ∗cφ+φ∗Φc) because the UV theory Lagrangian

now contains a mass mixing term,

LMSSM ⊃
[
b c2β −

1

2
(m2

Hu −m
2
Hd

)s2β

]
(Φ∗φ+ φ∗Φ)

= −sβcβ
(
tu
vu
− td
vd

)
O
(

Λ2

16π2

)(Φ∗φ+ φ∗Φ) , (3.18)
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up to m2

Λ2 suppressed and higher-loop corrections. Note that the presence of mass mixing in

this basis does not invalidate our functional matching formalism (which assumes a diagonal

mass matrix), if we treat it as a small constant term in the U matrix. However, the Higgs

basis is not a convenient choice for tree-level matching, because Φc has to be solved as a

double series in Λ−1 and 1
16π2 .

3.3 One-loop matching: d ≤ 4 operators and SUSY threshold corrections

3.3.1 Enumerating covariant diagrams

To match the MSSM onto the SMEFT at one-loop level, we draw covariant diagrams

contributing to each SMEFT operator of interest, starting from the d ≤ 4 ones which

encode SUSY threshold corrections. Enumerating covariant diagrams is straightforward

by looking for desired fields from the MSSM U matrix.

Let us demonstrate the procedure with an example operator ψ̄d δyd ψq · φ∗ + h.c.

Obviously we should look for a d, a q and a φ in table 4. To begin with, there are several

options to get a d, such as from Uq̃χ̃, or from Ud̃g̃. Let us pick Uq̃χ̃ first. This Uq̃χ̃ insertion

should be followed by a χ̃ propagator, and then another U insertion containing either q or

φ. For this second U insertion, we need to enumerate all viable choices, one of them being

Uχ̃ũ ∼ q. With this particular choice, we can then close the loop with a ũ propagator,

followed by a Uũq̃ ∼ φ insertion, and then a q̃ propagator connecting back to our starting

point Uq̃χ̃. We thus end up with the following covariant diagram,

q̃

ũ

χ̃ = − i
2
µ I111

q̃ũχ̃ tr
(
Uq̃χ̃Uχ̃ũUũq̃

)
(3.19)

Note the factor of µ from the uncontracted fermionic χ̃ propagator. Plugging in explicit

expressions of Uq̃χ̃, Uχ̃ũ, Uũq̃ from eqs. (A.15), (A.16), (A.8b), we obtain

tr
(
Uq̃χ̃Uχ̃ũUũq̃

)
⊃ sβ (Au − µ cotβ)

(
ψ̄d λdλ

†
uλu ψq · φ

∗ + ψ̄cd λ
∗
dλ

T
uλ
∗
u ψ

c
q · φ

)
= (Au tanβ − µ)

(
ψ̄d ydλ

†
uλu ψq · φ

∗ + h.c.
)
, (3.20)

where we have dropped similar terms involving Φ which, after setting Φ to Φc, contribute to

ψ̄d δyd ψq ·φ∗+h.c. only at higher order in 1
Λ2 . Noting that there is an identical contribution

from the mirror reflection of the diagram of eq. (3.19), we can write the squark-Higgsino

loop contribution to δyd as

δyd ⊃ yd δ̄y
(q̃ũχ̃)
d , (3.21)

where

16π2 δ̄y
(q̃ũχ̃)
d = λ†uλu µ(Au tanβ − µ) Ĩ111

q̃ũχ̃ . (3.22)

The master integral involved here has the following explicit expression,

Ĩ111
ijk ≡ I111

ijk /
i

16π2

=
M2
j

(M2
i −M2

j )(M2
j −M2

k )
log

M2
j

M2
i

+
M2
k

(M2
j −M2

k )(M2
k −M2

i )
log

M2
k

M2
i

, (3.23)

see appendix B.
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An alternative route we can take to obtain ψ̄d δyd ψq · φ∗ + h.c. is to start from Ud̃g̃,

and form a d̃-g̃-q̃ loop,

d̃

q̃

g̃ = − i
2
M3 I111

q̃d̃g̃
tr
(
Ud̃g̃Ug̃q̃Uq̃d̃

)
. (3.24)

Evaluating the trace and adding the mirror diagram, we obtain the squark-gluino loop

contribution to δyd,

δyd ⊃ yd δ̄y(q̃d̃g̃)
d , (3.25)

where

16π2 δ̄y
(q̃d̃g̃)
d = −2 (Ad − µ tanβ) g2

3 C
SU(3)
2 M3 Ĩ111

q̃d̃g̃
, (3.26)

with C
SU(3)
2 = 4

3 being the quadratic Casimir of the fundamental representation of SU(3)c.

It is worth noting that both the squark-Higgsino loop and the squark-gluino loop computed

above can be viewed as part of a single covariant diagram,

j

i

k = − i
2
Mk I111

ijk tr
(
UijUjkUki

)
, (3.27)

with summation over i, j, k understood.

There are several other routes that can take us to the operator ψ̄d δyd ψq · φ∗ + h.c.,

and many others that can take us to other SMEFT operators. Following the procedure

demonstrated with the examples above, we enumerate covariant diagrams contributing to

each d ≤ 4 operator in tables 6 and 7. In particular, table 6 contains covariant diagrams

contributing to the Higgs potential and Yukawa interactions, which involve U insertions

only and no P insertions. The kinetic terms (wavefunction renormalization factors δZ),

on the other hand, come from covariant diagrams that involve P insertions, as shown

in table 7. The cΦφ(Φ∗cφ + φ∗Φc) piece, which we choose to absorb into Ltree
SMEFT via

a redefinition of β as explained in section 3.2.1, is computed from the same covariant

diagrams contributing to δm2|φ|2. In diagrams where permutations of propagator labels

produce inequivalent diagrams, such permutations are implicitly assumed to be included.

We refrain from elaborating on how to compute each of the tabulated covariant diagrams,

as the general procedure should already be clear from the examples given above.

From tables 6 and 7, we can see an advantage of our approach is that despite the

large number of terms in the final results of one-loop SUSY threshold corrections (which

we will present below), they all derive from just 30 covariant diagrams. The small number

of covariant diagrams can be understood on dimensional grounds. Generally, we have

dim(Pµ) = 1 , dim(Uij [ϕ]) ≥ 1 , (3.28)
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14 U -only covariant diagrams contributing to δm2, δλ, δyf

i i = Φ; f̃

δm2

j

i

ij = χ̃W̃ , χ̃B̃

j

i
ij = q̃ũ, q̃d̃, l̃ẽ

ij = ΦΦ, Φφ; f̃ f̃

k

j

i ijk = q̃q̃ũ, ũũq̃, q̃q̃d̃, d̃d̃q̃, l̃l̃ẽ, ẽẽl̃

δλ

l

kj

i

ijkl = q̃ũq̃ũ, q̃d̃q̃d̃, l̃ẽl̃ẽ

l

kj

i

ijkl = χ̃W̃ χ̃W̃ , χ̃W̃ χ̃B̃, χ̃B̃χ̃B̃

δyf
k

j

i ijk = Φqu, Φqd; f̃ χ̃Ṽ

j

i

k ijk = q̃ũχ̃, q̃d̃χ̃; q̃ũṼ , q̃d̃Ṽ , l̃ẽṼ

Table 6. Covariant diagrams contributing to Higgs potential and Yukawa interactions.
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16 P -dependent covariant diagrams contributing to δZ

j

ji

i

ij = q̃ũ, q̃d̃, l̃ẽ

δZφ

j

ji

i

ij = χ̃W̃ , χ̃B̃

δZf

j

j

i j

i

i

ij = Φf ; f̃ χ̃, f̃ Ṽ

δZG,W,B

i

ii

i

i = Φ, f̃

i

ii

i

i = χ̃, g̃, W̃

Table 7. Covariant diagrams contributing to kinetic terms.

where “dim” means operator dimension. d ≤ 4 operators can therefore only come from

covariant diagrams with at most 4 vertex insertions, as enumerated in the tables for the

case of the MSSM.9

3.3.2 Results

Now we present the results of one-loop-level coefficients of all d ≤ 4 SMEFT operators,

i.e. δZφ,f,V , δm2, δλ, δyf defined in eq. (2.4), which are calculated from the 30 covariant

diagrams in tables 6 and 7. These coefficients, together with the tree-level relations,

m2 ≡ µ2 +m2
Hus

2
β +m2

Hd
c2
β − bs2β , λ ≡ 1

8
(g2 + g′2) c2

2β ,

yu = λu sβ , yd = λd cβ , ye = λe cβ , (3.29)

9Similarly, dimension-six operators can be obtained from covariant diagrams with at most 6 vertex

insertions. This is true regardless of the UV theory, as long as it is Lorentz-invariant and satisfies the

general form of eq. (2.20). This simple observation of finite combinatorics underlies the idea of deriving

universal formulas for one-loop effective Lagrangians [18, 20, 23].
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can be readily plugged into eq. (2.6) to obtain one-loop SUSY threshold corrections (there

is a one-loop correction to the equation for λ if we work with the MS scheme [44]). We will

use parenthesized subscripts or superscripts to indicate the covariant diagram each term

comes from, and mention the reduction formulas used on the master integrals so that all

results can be easily reproduced.

We have cross-checked our results against conventional Feynman diagram calculations

reported in [4] and found complete agreement; see appendix C. Note in particular that at

one-loop level, MSSM threshold corrections are the same in both MS and DR schemes, as

is clear from the absence of ε-scalar loops in our matching calculation.

Our notation is the following. Nc = 3 is the number of colors. C
SU(3)
2 = 4

3 and

C
SU(2)
2 = 3

4 are quadratic Casimirs of fundamental representations of SU(3)c and SU(2)L,

respectively. The U(1)Y hypercharges are

{
Yφ , Yq , Yu , Yd , Yl , Ye

}
=

{
1

2
,

1

6
,

2

3
, −1

3
, −1

2
, −1

}
. (3.30)

The master integrals Ĩ ≡ I/ i
16π2 are functions of tree-level masses of the heavy particles.

Their analytical expressions in terms of tree-level heavy particle masses can be found in

appendix B.

Higgs potential. The one-loop coefficient of the d = 2 operator |φ|2 reads

δm2 = δm2
(Φ) + δm2

(f̃)
+ δm2

(f̃ f̃)
+ δm2

(χ̃Ṽ )
, (3.31)

where

16π2 δm2
(Φ) =

[
3

4
g2s2

2β + g′2 Y 2
φ (s2

2β − 2c2
2β)

]
Ĩ1

Φ , (3.32)

16π2 δm2
(f̃)

= Nc tr(λ†uλu) s2
β

(
Ĩ1
q̃ + Ĩ1

ũ

)
+Nc tr(λ†dλd) c2

β

(
Ĩ1
q̃ + Ĩ1

d̃

)
+ tr(λ†eλe) c

2
β

(
Ĩ1
l̃

+ Ĩ1
ẽ

)
−g′2 Yφc2β

(
2NcYq Ĩ1

q̃ −NcYu Ĩ1
ũ −NcYd Ĩ1

d̃
+ 2Yl Ĩ1

l̃
− Ye Ĩ1

ẽ

)
, (3.33)

16π2 δm2
(f̃ f̃)

= Nc tr(λ†uλu) s2
β (Au − µ cotβ)2 Ĩ11

q̃ũ

+Nc tr(λ†dλd) s2
β (Ad cotβ − µ)2 Ĩ11

q̃d̃

+ tr(λ†eλe) s
2
β(Ae cotβ − µ)2 Ĩ11

l̃ẽ
, (3.34)

16π2 δm2
(χ̃Ṽ )

= −4 g2C
SU(2)
2

[
M2(M2 + s2βµ)

M2
2 − µ2

Ĩ1
W̃
−
µ(s2βM2 + µ)

M2
2 − µ2

Ĩ1
χ̃

]
−4 g′2 Y 2

φ

[
M1(M1 + s2βµ)

M2
1 − µ2

Ĩ1
B̃
−
µ(s2βM1 + µ)

M2
1 − µ2

Ĩ1
χ̃

]
. (3.35)

Note that terms proportional to γµγµ = 4 − ε are generally encountered when computing

loops involving two fermionic fields. To arrive at eq. (3.35), we have used eq. (B.28) to

reduce (4− ε) Ĩ[q2]11
χ̃Ṽ

to Ĩ1
χ̃, Ĩ1

Ṽ
and Ĩ11

χ̃Ṽ
, and further used eq. (B.3) to reduce Ĩ11

χ̃Ṽ
to Ĩ1

χ̃

and Ĩ1
Ṽ

.
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From the expressions of master integrals in eqs. (B.15) and (B.18), it is clear that

each term in the equations above is O( Λ2

16π2 ). Quite generally, the |φ|2 operator receives

threshold corrections that are quadratically sensitive to the EFT cutoff scale Λ when a

high-energy BSM theory is matched onto the SMEFT, as a manifestation of a potential

hierarchy problem.

As noted before, the same covariant diagrams contributing to δm2|φ|2 can also be used

to compute the cΦφ(Φ∗cφ+ φ∗Φc) piece, for which we obtain

cΦφ = c
(Φ)
Φφ + c

(f̃)
Φφ + c

(f̃ f̃)
Φφ + c

(χ̃Ṽ )
Φφ , (3.36)

where

16π2 c
(Φ)
Φφ =

3

8
(g2 + g′2) s4β Ĩ1

Φ , (3.37)

16π2 c
(f̃)
Φφ = Nc tr(λ†uλu) sβcβ

(
Ĩ1
q̃ + Ĩ1

ũ

)
−Nc tr(λ†dλd) sβcβ

(
Ĩ1
q̃ + Ĩ1

d̃

)
− tr(λ†eλe) sβcβ

(
Ĩ1
l̃

+ Ĩ1
ẽ

)
+2g′2 Yφsβcβ

(
2NcYq Ĩ1

q̃ −NcYu Ĩ1
ũ −NcYd Ĩ1

d̃
+ 2Yl Ĩ1

l̃
− Ye Ĩ1

ẽ

)
, (3.38)

16π2 c
(f̃ f̃)
Φφ = Nc tr(λ†uλu) s2

β (Au − µ cotβ)(Au cotβ + µ) Ĩ11
q̃ũ

−Nc tr(λ†dλd) s2
β (Ad cotβ − µ)(Ad + µ cotβ) Ĩ11

q̃d̃

− tr(λ†eλe) s
2
β (Ae cotβ − µ)(Ae + µ cotβ) Ĩ11

l̃ẽ
, (3.39)

16π2 c
(χ̃Ṽ )
Φφ = −4 g2C

SU(2)
2 c2βM2µ Ĩ11

χ̃W̃
− 4 g′2 Y 2

φ c2βM1µ Ĩ11
χ̃B̃

. (3.40)

As discussed in section 3.2.1, we absorb this piece into the tree-level effective Lagrangian

via a redefinition of β, and thus do not consider it as contributing to threshold corrections.

The d = 4 operator |φ|4 has the following one-loop coefficient,

δλ = δλ(Φϕ) + δλ(f̃ f̃) + δλ(f̃ f̃ f̃) + δλ(f̃ f̃ f̃ f̃) + δλ(χ̃Ṽ χ̃Ṽ ) , (3.41)

where

16π2 δλ(Φϕ) =
1

16

[
(g2 + g′2)2

(
s4

2β − s2
2βc

2
2β + c4

2β

)
− 2 g2(g2 + g′2)c2

2β + 2 g4
]
Ĩ2

Φ

+
3

8
(g2 + g′2)2s2

2βc
2
2β Ĩ11

Φ0 , (3.42)

16π2 δλ(f̃ f̃) =
1

2
tr

{
Nc

[(
λ†uλus

2
β +

1

4
g2c2β − g′2 YφYqc2β

)2

+

(
λ†dλdc

2
β −

1

4
g2c2β − g′2 YφYqc2β

)2]
Ĩ2
q̃

+Nc

(
λuλ

†
us

2
β+g′2 YφYuc2β

)2 Ĩ2
ũ+Nc

(
λdλ

†
dc

2
β + g′2 YφYdc2β

)2 Ĩ2
d̃

+

[(
λ†eλec

2
β−

1

4
g2c2β−g′2 YφYlc2β

)2

+

(
1

4
g2c2β−g′2 YφYlc2β

)2]
Ĩ2
l̃

+
(
λeλ

†
ec

2
β + g′2 YφYec2β

)2 Ĩ2
ẽ

}
, (3.43)
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16π2 δλ(f̃ f̃ f̃) = tr

{
Nc (Au − µ cotβ)2 λ†uλus

2
β

[(
λ†uλus

2
β +

1

4
g2c2β − g′2 YφYqc2β

)
Ĩ21
q̃ũ

+
(
λ†uλus

2
β + g′2 YφYuc2β

)
Ĩ12
q̃ũ

]
+Nc (Ad cotβ − µ)2 λ†dλds

2
β

[(
λ†dλdc

2
β −

1

4
g2c2β − g′2 YφYqc2β

)
Ĩ21
q̃d̃

+
(
λ†dλdc

2
β + g′2 YφYdc2β

)
Ĩ12
q̃d̃

]
+(Ae cotβ − µ)2 λ†eλes

2
β

[(
λ†eλec

2
β −

1

4
g2c2β − g′2 YφYlc2β

)
Ĩ21
l̃ẽ

+
(
λ†eλec

2
β + g′2 YφYec2β

)
Ĩ12
l̃ẽ

]}
, (3.44)

16π2 δλ(f̃ f̃ f̃ f̃) =
1

2
Nc tr

(
λ†uλuλ

†
uλu

)
s4
β (Au − µ cotβ)4 Ĩ22

q̃ũ

+
1

2
Nc tr

(
λ†dλdλ

†
dλd

)
s4
β (Ad cotβ − µ)4 Ĩ22

q̃d̃

+
1

2
tr
(
λ†eλeλ

†
eλe

)
s4
β (Ae cotβ − µ)4 Ĩ22

l̃ẽ
, (3.45)

16π2 δλ(χ̃Ṽ χ̃Ṽ ) = −3

4
g4
{
Ĩ11
χ̃W̃
− c2

2βM
2
2µ

2 Ĩ22
χ̃W̃

+4
[
2M2

2 + 4s2βM2µ+ (1 + s2
2β)µ2

]
Ĩ[q2]22

χ̃W̃

}
−1

2
g4c2

2β

(
Ĩ11
χ̃W̃
−M2

2µ
2 Ĩ22

χ̃W̃
+ 4µ2 Ĩ[q2]22

χ̃W̃

)
(3.46)

−g2g′2 Y 2
φ

{
Ĩ11
χ̃W̃

+ Ĩ11
χ̃B̃
−
(
M2

2 +M2
1 − 2s2

2βM2M1

)
µ2 Ĩ211

χ̃W̃ B̃

+4
[
(M2 +M1)2 + 4s2β(M2 +M1)µ+ 2(1 + s2

2β)µ2
]
Ĩ[q2]211

χ̃W̃ B̃

}
−4 g′4 Y 4

φ

{
Ĩ11
χ̃B̃
− c2

2βM
2
1µ

2 Ĩ22
χ̃B̃

+4
[
2M2

1 + 4s2βM1µ+ (1 + s2
2β)µ2

]
Ĩ[q2]22

χ̃B̃

}
. (3.47)

For the χ̃Ṽ χ̃Ṽ loops, we have used eq. (B.31) to eliminate the Ĩ[q4] master integrals

(coming from covariant diagrams with two Lorentz contractions) from eq. (3.47).

Yukawa interactions. The d = 4 Yukawa interaction operators ψ̄u δyu ψq · ε · φ +

ψ̄d δyd ψq · φ∗ + ψ̄e δye ψl · φ∗ + h.c. are obtained with the following one-loop coefficients,

δyu = yu δ̄yu = yu
(
δ̄y(Φqd)
u + δ̄y(q̃d̃χ̃)

u + δ̄y(q̃ũṼ )
u + δ̄y(f̃ χ̃Ṽ )

u

)
, (3.48a)

δyd = yd δ̄yd = yd
(
δ̄y

(Φqu)
d + δ̄y

(q̃ũχ̃)
d + δ̄y

(q̃d̃Ṽ )
d + δ̄y

(f̃ χ̃Ṽ )
d

)
, (3.48b)

δye = ye δ̄ye = ye
(
δ̄y(l̃ẽṼ )
e + δ̄y(f̃ χ̃Ṽ )

e

)
, (3.48c)

where

16π2 δ̄y(Φqd)
u = λ†dλd c

2
β Ĩ11

Φ0 , (3.49a)

16π2 δ̄y
(Φqu)
d = λ†uλu s

2
β Ĩ11

Φ0 , (3.49b)

– 25 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
2

16π2 δ̄y(q̃d̃χ̃)
u = λ†dλd µ (Ad cotβ − µ) Ĩ111

q̃d̃χ̃
, (3.50a)

16π2 δ̄y
(q̃ũχ̃)
d = λ†uλu µ (Au tanβ − µ) Ĩ111

q̃ũχ̃ , (3.50b)

16π2 δ̄y(q̃ũṼ )
u = −2 (Au − µ cotβ)

(
g2

3 C
SU(3)
2 M3 I111

q̃ũg̃ + g′2 YqYuM1 I111
q̃ũB̃

)
, (3.51a)

16π2 δ̄y
(q̃d̃Ṽ )
d = −2 (Ad − µ tanβ)

(
g2

3 C
SU(3)
2 M3 I111

q̃d̃g̃
+ g′2 YqYdM1 I111

q̃d̃B̃

)
, (3.51b)

16π2 δ̄y(l̃ẽṼ )
e = −2 (Ae − µ tanβ) g′2 YlYeM1 I111

l̃ẽB̃
, (3.51c)

16π2 δ̄y(f̃ χ̃Ṽ )
u = −2 g2C

SU(2)
2

[
M2(M2 + µ cotβ)

M2
2 − µ2

Ĩ11
q̃W̃
− µ(µ+M2 cotβ)

M2
2 − µ2

Ĩ11
q̃χ̃

]
+2 g′2 Yφ

[
M1(M1 + µ cotβ)

M2
1 − µ2

(
Yq Ĩ11

q̃B̃
− Yu Ĩ11

ũB̃

)
−µ(µ+M1 cotβ)

M2
1 − µ2

(
Yq Ĩ11

q̃χ̃ − Yu Ĩ11
ũχ̃

)]
, (3.52a)

16π2 δ̄y
(f̃ χ̃Ṽ )
d = −2 g2C

SU(2)
2

[
M2(M2 + µ tanβ)

M2
2 − µ2

Ĩ11
q̃W̃
− µ(µ+M2 tanβ)

M2
2 − µ2

Ĩ11
q̃χ̃

]
−2 g′2 Yφ

[
M1(M1 + µ tanβ)

M2
1 − µ2

(
Yq Ĩ11

q̃B̃
− Yd Ĩ11

d̃B̃

)
−µ(µ+M1 tanβ)

M2
1 − µ2

(
Yq Ĩ11

q̃χ̃ − Yd Ĩ11
d̃χ̃

)]
, (3.52b)

16π2 δ̄y(f̃ χ̃Ṽ )
e = −2 g2C

SU(2)
2

[
M2(M2 + µ tanβ)

M2
2 − µ2

Ĩ11
l̃W̃
− µ(µ+M2 tanβ)

M2
2 − µ2

Ĩ11
l̃χ̃

]
−2 g′2 Yφ

[
M1(M1 + µ tanβ)

M2
1 − µ2

(
Yl Ĩ11

l̃B̃
− Ye Ĩ11

ẽB̃

)
−µ(µ+M1 tanβ)

M2
1 − µ2

(
Yl Ĩ11

l̃χ̃
− Ye Ĩ11

ẽχ̃

)]
. (3.52c)

We have used eq. (B.29) to reduce (4 − ε) Ĩ[q2]12
Φ0 to Ĩ11

Φ0 in eq. (3.49), and eqs. (B.3)

and (B.28) to reduce Ĩ111
f̃ Ṽ χ̃

and (4− ε) Ĩ[q2]111
f̃ χ̃Ṽ

to Ĩ11
f̃ χ̃

and Ĩ11
f̃ Ṽ

in eq. (3.52).

In these results, of particular interest is the appearance of terms proportional to

tanβ, originating from λd,e = yd,ec
−1
β = yd,es

−1
β tanβ. Since matching calculations are

done with UV theory parameters, it is expected here that δyd,e contain terms of order
1

16π2 λd,e ∝ tanβ
16π2 yd,e. A large tan β can partially overcome the loop suppression, giving

rise to sizable SUSY threshold corrections, which in turn is important for achieving b-τ

Yukawa unification. More on this in section 4.

Higgs kinetic term. The one-loop coefficient of the d = 4 Higgs kinetic term |Dµφ|2 is

δZφ = δZ
(f̃ f̃)
φ + δZ

(χ̃Ṽ )
φ , (3.53)

where

16π2 δZ
(f̃ f̃)
φ = −2Nc tr(λ†uλu) s2

β (Au − µ cotβ)2 Ĩ[q2]22
q̃ũ

−2Nc tr(λ†dλd) s2
β (Ad cotβ − µ)2 Ĩ[q2]22

q̃d̃

−2 tr(λ†eλe) s
2
β (Ae cotβ − µ)2 Ĩ[q2]22

l̃ẽ
, (3.54)
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16π2 δZ
(χ̃Ṽ )
φ = 2 g2C

SU(2)
2

[
Ĩ11
χ̃W̃

+ 2(M2
2 + µ2 + 2M2µs2β) Ĩ[q2]22

χ̃W̃

]
+2 g′2 Y 2

φ

[
Ĩ11
χ̃B̃

+ 2(M2
1 + µ2 + 2M1µs2β) Ĩ[q2]22

χ̃B̃

]
. (3.55)

Again, we have used eq. (B.31) to eliminate Ĩ[q4] in order to arrive at eq. (3.55). Note

that Dµφα is written as −i [Pµ, φα] in our approach (recall Pµ acts on everything to its

right). The covariant diagrams listed in table 7 give us the tr(Pµφ∗Pµφ) piece of |Dµφ|2 =

−tr([Pµ, φ∗][Pµ, φ]) = tr(P 2φ∗φ)+tr(P 2φφ∗)−2 tr(Pµφ∗Pµφ), which is sufficient to fix the

coefficient of |Dµφ|2.

Note that unlike δyd,e ∼ 1
16π2λd,e ∼ tanβ

16π2 yd,e, contributions to the threshold correc-

tions yd,e − yeff
d,e from δZφ (and also δZf below) are only ∼ 1

16π2yd,e (see eq. (2.6)), and

are thus subleading in the large tan β limit.

Fermion kinetic terms. The d = 4 fermion kinetic terms
∑

f ψ̄f δZf i /Dψf are obtained

with the following one-loop coefficients,

δZq = δZ(Φf)
q + δZ(f̃ χ̃)

q + δZ(q̃Ṽ )
q 1 , (3.56a)

δZu = δZ(Φq)
u + δZ(q̃χ̃)

u + δZ(ũṼ )
u 1 , (3.56b)

δZd = δZ
(Φq)
d + δZ

(q̃χ̃)
d + δZ

(d̃Ṽ )
d 1 , (3.56c)

δZl = δZ
(Φe)
l + δZ

(ẽχ̃)
l + δZ

(l̃Ṽ )
l 1 , (3.56d)

δZe = δZ(Φl)
e + δZ(l̃χ̃)

e + δZ(ẽṼ )
e 1 , (3.56e)

where

16π2 δZ(Φf)
q = 2

(
λ†uλuc

2
β + λ†dλds

2
β

)
Ĩ[q2]21

Φ0 , (3.57a)

16π2 δZ(Φq)
u = 4λuλ

†
uc

2
β Ĩ[q2]21

Φ0 , (3.57b)

16π2 δZ
(Φq)
d = 4λdλ

†
ds

2
β Ĩ[q2]21

Φ0 , (3.57c)

16π2 δZ
(Φe)
l = 2λ†eλes

2
β Ĩ[q2]21

Φ0 , (3.57d)

16π2 δZ(Φl)
e = 4λeλ

†
es

2
β Ĩ[q2]21

Φ0 , (3.57e)

16π2 δZ(f̃ χ̃)
q = 2

(
λ†uλu Ĩ[q2]21

ũχ̃ + λ†dλd Ĩ[q2]21
d̃χ̃

)
, (3.58a)

16π2 δZ(q̃χ̃)
u = 4λuλ

†
u Ĩ[q2]21

q̃χ̃ , (3.58b)

16π2 δZ
(q̃χ̃)
d = 4λdλ

†
d Ĩ[q2]21

q̃χ̃ , (3.58c)

16π2 δZ
(ẽχ̃)
l = 2λ†eλe Ĩ[q2]21

ẽχ̃ , (3.58d)

16π2 δZ(l̃χ̃)
e = 4λeλ

†
e Ĩ[q2]21

l̃χ̃
, (3.58e)

16π2 δZ(q̃Ṽ )
q = 4

(
g2

3 C
SU(3)
2 Ĩ[q2]21

q̃g̃ + g2C
SU(2)
2 Ĩ[q2]21

q̃W̃
+ g′2 Y 2

q Ĩ[q2]21
q̃B̃

)
, (3.59a)

16π2 δZ(ũṼ )
u = 4

(
g2

3 C
SU(3)
2 Ĩ[q2]21

ũg̃ + g′2 Y 2
u Ĩ[q2]21

ũB̃

)
, (3.59b)

16π2 δZ
(d̃Ṽ )
d = 4

(
g2

3 C
SU(3)
2 Ĩ[q2]21

d̃g̃
+ g′2 Y 2

d Ĩ[q2]21
d̃B̃

)
, (3.59c)
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16π2 δZ
(l̃Ṽ )
l = 4

(
g2

2 C
SU(2)
2 Ĩ[q2]21

l̃W̃
+ g′2 Y 2

l Ĩ[q2]21
l̃B̃

)
, (3.59d)

16π2 δZ(ẽṼ )
e = 4 g′2 Y 2

e Ĩ[q2]21
ẽB̃
. (3.59e)

To arrive at eqs. (3.58) and (3.59), we have used eqs. (B.3), (B.10) and (B.28) to simplify

(2− ε) I[q2]12
ij −M2

j I12
ij = (4− ε) I[q2]12

ij −M2
j I12

ij − 2 I[q2]12
ij = I11

ij − 2 I[q2]12
ij

=
1

M2
i −M2

j

(
I1
i − I1

j

)
− 2 I[q2]12

ij

=
2

M2
i −M2

j

(
I[q2]2i − I[q2]2j

)
− 2 I[q2]12

ij

= 2
(
I[q2]21

ij + I[q2]12
ij

)
− 2 I[q2]12

ij = 2 I[q2]21
ij . (3.60)

This relation is also valid in the limit Mj → 0,

(2− ε) I[q2]12
i0 = 2 I[q2]21

i0 , (3.61)

which we have used to obtain eq. (3.57).

Gauge boson kinetic terms. General results of wavefunction renormalization of gauge

fields from integrating out heavy matter fields are well-known, see e.g. [17]. The covari-

ant diagrams version of the calculation can be found in [22]. Specializing to the case of

integrating out the MSSM heavy fields, we find

δZG = g2
3

(
δ̄Z

(f̃)
G + δ̄Z

(g̃)
G

)
, (3.62a)

δZW = g2
(
δ̄Z

(Φ)
W + δ̄Z

(f̃)
W + δ̄Z

(χ̃)
W + δ̄Z

(W̃ )
W

)
, (3.62b)

δZB = g′2
(
δ̄Z

(Φ)
B + δ̄Z

(f̃)
B + δ̄Z

(χ̃)
B

)
, (3.62c)

where

16π2 δ̄Z
(Φ)
W =

1

6
Ĩ2

Φ , 16π2 δ̄Z
(Φ)
B =

2

3
Y 2
φ Ĩ2

Φ , (3.63)

16π2 δ̄Z
(f̃)
G =

1

6

(
2 Ĩ2

q̃ + Ĩ2
ũ + Ĩ2

d̃

)
, 16π2 δ̄Z

(f̃)
W =

1

6

(
Nc Ĩ2

q̃ + Ĩ2
l̃

)
,

16π2 δZ
(f̃)
B =

1

3

(
2Nc Y

2
q Ĩ2

q̃ +Nc Y
2
u Ĩ2

ũ +Nc Y
2
d Ĩ2

d̃
+ 2Y 2

l Ĩ2
l̃

+ Y 2
e Ĩ2

ẽ

)
, (3.64)

16π2 δ̄Z
(χ̃)
W =

2

3
Ĩ2
χ̃ , 16π2 δ̄Z

(χ̃)
B =

8

3
Y 2
φ Ĩ2

χ̃ , (3.65)

16π2 δ̄Z
(g̃)
G = 2 Ĩ2

g̃ , 16π2 δ̄Z
(W̃ )
W =

4

3
Ĩ2
W̃
. (3.66)

We have used eq. (B.10) to reduce the bosonic loop integral I[q4]4i to 1
24 I

2
i . The fermionic

loops, on the other hand, are proportional to −M4
i I4

i + 8M2
i I[q2]4i + (−16 + 10ε) I[q4]4i

which, by eq. (B.30), is equal to 8 I[q4]4i − I2
i = −2

3 I
2
i .
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3.4 One-loop matching: d = 6 operators Odφ,eφ in the large tanβ, low MΦ

limit

We can use the same techniques to obtain one-loop-generated d = 6 operators. There is

a large number of them, but not all are equally interesting phenomenologically. In fact,

given the loop suppression, together with a possibly high superpartner mass scale Λ due

to lack of new particle discoveries as well as a SM-like Higgs boson mass of mh ' 125 GeV,

a generic d = 6 operator with O( 1
16π2

1
Λ2 ) coefficient is likely to have a negligible effect on

observables. In this regard, we would like to identify a region of MSSM parameter space

where some d = 6 operators have parametrically enhanced observable effects, and can thus

point to realistic experimental targets to be pursued.

To do so, we first note that, as in the case of δ̄yd,e discussed in the previous subsection,

factors of tan β can appear when operator coefficients are written in terms of yd,e rather

than λd,e, which can partially overcome the loop suppression if tan β � 1. We are thus

led to consider the large tan β limit. At dimension-six level, tan β enhancement occurs for

several operators, among which we focus on Odφ and Oeφ, motivated by their relevance to

precision Higgs physics as they modify hbb̄ and hτ+τ− couplings; see eq. (2.11). Note that

in contrast, Ouφ, which modifies htt̄ coupling, does not have a tan β enhanced effect.

To further boost observable effects of the operators Odφ and Oeφ, we would like to

focus on the scenario where MΦ, the mass of the heavier Higgs doublet, is somewhat

lower than Λ. In this case, there are contributions to Cdφ,eφ that are proportional to
1
M2

Φ
, which is parametrically larger compared to 1

Λ2 . There are in principle two sources

of such contributions — loops involving Φ propagators, and operators proportional to

Φc. By carefully enumerating covariant diagrams following the procedure of the previous

subsection, we are able to show that loops involving Φ propagators are all free from tan β

enhancement, and so will not consider them further.

As for the second option, there are only a few possibilities for writing down d = 6

operators that are proportional to Φc, since Φ
(1)
c (Φ

(2)
c ) is already dimension three (five).

They are, schematically,

(Φ(1)
c )2 , Φ(1)

c ψ2 , Φ(1)
c φ3 , Φ(1)

c φP 2 , Φ(2)
c φ . (3.67)

Among them, (Φ
(1)
c )2 and Φ

(1)
c ψ2 do not contain Odφ,eφ with tan β enhanced coefficients,

while Φ
(2)
c φ has already been absorbed into Ltree

SMEFT via the redefinition of β discussed

before. So we are left with Φ
(1)
c φ3 and Φ

(1)
c φP 2. To be explicit, we have

L1-loop
SMEFT ⊃ cΦφ3 |φ|2

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
+ cΦφP 2

[
(DµΦ(1)

c )∗(Dµφ) + (Dµφ)∗(DµΦ(1)
c )
]

IBP
= cΦφ3 |φ|2

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
− cΦφP 2

[
Φ(1)∗

c (D2φ) + (D2φ)∗Φ(1)
c

]
EoM
=
(
cΦφ3 + 2λ cΦφP 2

)
|φ|2

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
+ . . .

⊃ tanβ

M2
Φ

(
cΦφ3 + 2λ cΦφP 2

)([
y†d
]
pr

[
Odφ

]pr
+
[
y†e
]
pr

[
Oeφ

]pr)
. (3.68)

Note that there is also a tree-level matching contribution to Φ
(1)
c φ3, which we already
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computed in section 3.2. Though DR scheme was assumed there, the one-loop difference

between MS and DR is not tan β enhanced and negligible.

The operator coefficients cΦφ3 and cΦφP 2 can be computed from the same covariant

diagrams that give rise to δλ and δZφ, respectively. In fact, we just need to retrieve O(Φφ3)

and O(Φφ) pieces from products of U matrix elements, instead of O(φ4) and O(φ2) pieces.

From appendix A we see that, with the exception of diagrams involving Uϕϕ, this amounts

to starting from the latter, and replacing sβφ→ cβΦ, cβφ→ −sβΦ in all possible ways. In

other words, from the form of the U matrix we can infer that

LSMEFT ⊃ δλ |φ|4 +
1

2

(
∂

∂β
δλ

)
|φ|2

(
Φ∗cφ+ φ∗Φc

)
+δZφ |Dµφ|2 +

1

2

(
∂

∂β
δZφ

)(
DµΦ∗cDµφ+Dµφ∗DµΦc

)
, (3.69)

up to loops involving Φ propagators. We have verified eq. (3.69) by explicit calculation.

The simple replacement rule observed above, which connects different operators in-

volving φ and Φc, can be understood by considering a variation of the EFT matching

problem we are dealing with now. Suppose, instead of integrating out all BSM fields of the

MSSM, we integrate out only the R-parity-odd fields, while keeping both Higgs doublets

in the low-energy EFT. The calculation in this case would be more conveniently done in

the (Hu, Hd) basis, and the angle β does not appear in the effective Lagrangian in the

electroweak symmetric phase. Afterward, we can substitute

Hu → sβφ+ cβΦ , Hd → ε · (cβφ− sβΦ)∗ , (3.70)

so as to write the effective Lagrangian in terms of φ and Φ. From eq. (3.70) it is clear

that for each term involving sβφ (cβφ), if we replace sβφ→ cβΦ (cβφ→ −sβΦ), the result

would also be a term in the effective Lagrangian. Further integrating out Φ to arrive at

the SMEFT does not change the conclusion for the terms that already existed, namely

those generated by integrating out R-parity-odd fields. Meanwhile, additional terms, such

as δλ(Φϕ)|φ|4 (see eq. (3.42)), are generated by loops involving Φ, for which the simple

replacement rule above does not apply. However, none of these terms is tan β enhanced,

and we will thus neglect them in the d = 6 part of the EFT Lagrangian.

To sum up, in the limit tan β � 1, MΦ . Λ, we have

C1-loop
dφ ' tanβ

M2
Φ

(
cΦφ3 + 2λ cΦφP 2

)
y†d , C1-loop

eφ ' tanβ

M2
Φ

(
cΦφ3 + 2λ cΦφP 2

)
y†e , (3.71)

where

cΦφ3 ' c
(f̃ f̃)
Φφ3 + c

(f̃ f̃ f̃)
Φφ3 + c

(f̃ f̃ f̃ f̃)
Φφ3 + c

(χ̃Ṽ χ̃Ṽ )
Φφ3

=
1

2

∂

∂β

(
δλ(f̃ f̃) + δλ(f̃ f̃ f̃) + δλ(f̃ f̃ f̃ f̃) + δλ(χ̃Ṽ χ̃Ṽ )

)
, (3.72)

cΦφP 2 ' c
(f̃ f̃)
ΦφP 2 + c

(χ̃Ṽ )
ΦφP 2 =

1

2

∂

∂β
δZφ , (3.73)

with various contributions to δλ and δZφ computed in the previous subsection.
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4 Bottom-tau Yukawa unification

In this section, we study implications of b-τ Yukawa unification on the SUSY spectrum in

the EFT framework. To simplify the analyses, we neglect Yukawa couplings of the first

two generation fermions, and impose the following relations among MSSM parameters,

Mq̃ = Mũ = Md̃ = Ml̃ = Mẽ ≡Ms , (4.1)

Au = Ad = Ae ≡ At , (4.2)

Mg̃ = 3MW̃ = 6MB̃ ≡M3 , (4.3)

where the gaugino mass relation is motivated by GUTs. As a result, above the SUSY

threshold Λ, we have a theory of 13 parameters:

g′ , g , g3 , λt , λb , λτ , m
2 , At , (4.4a)

MΦ , Ms , µ , M3 , tanβ . (4.4b)

Below the SUSY threshold Λ, they are mapped onto parameters in the SMEFT, as we

have worked out in detail in section 3. We shall keep only the renormalizable operators

and dimension-six ones that are generated at tree level. The EFT is therefore a theory

characterized by 20 parameters:

g′
eff
, geff , geff

3 , yeff
t , yeff

b , yeff
τ , λeff , m

2
eff , (4.5a)

Cφ , Ctφ , Cbφ , Cτφ , C
(1)
qu , C

(8)
qu , C

(1)
qd , C

(8)
qu , Cle , C

(1)
quqd , C

(1)
lequ , Cledq . (4.5b)

It is implicit here that all generation indices are set to 3 in the four-fermion operator

coefficients.

We numerically evolve the 13 parameters in eq. (4.4) in the regime Q > Λ according to

two-loop RG equations of the MSSM [46], and the 20 parameters in eq. (4.5) in the regime

Q < Λ according to two-loop RG equations of the renormalizable SM [47] and one-loop

RG equations of the dimension-six SMEFT [48–50]. At Q = Λ, the two sets of parameters

are connected by the matching calculation presented in section 3, together with one-loop

scheme conversion between MS (used for RG evolution in the SMEFT) and DR (used for

RG evolution in the MSSM) [44].

As boundary conditions for the entire set of RG equations, we set

g′
eff

= 0.35827 , geff = 0.64779 , geff
3 = 1.1671 ,

yeff
t −

v2

2
Ctφ = 0.93612 , yeff

b −
v2

2
Cbφ = 0.01539 , yeff

τ −
v2

2
Cτφ = 0.00988 ,

λeff −
3v2

2
Cφ = 0.12592 , m2

eff +
3v4

4
Cφ = −(92.964 GeV)2 , (4.6)

at Q = mt = 173.21 GeV, where v2 = −m2
eff/λeff. These linear combinations of SMEFT

parameters are what would be actually extracted when mapping the SM Lagrangian to

low-energy observables, including mW = 80.385 GeV, mh = 125.09 GeV, αs(mZ) = 0.1185,

etc. The numbers in eq. (4.6) are taken from [47], except for yeff
b −

v2

2 Cbφ, which is taken
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from [51], and yeff
τ − v2

2 Cτφ, which is fixed by requiring mpole
τ = 1.77686 GeV is reproduced

when the SM is matched onto five-flavor QCD×QED and RG evolved down to the low scale

according to [52]. Note that the mapping calculation leading to eq. (4.6) incorporates state-

of-the-art results on SM loop corrections, while additional contributions of dimension-six

operators are included at leading order (O(Λ−2) tree level), which is sufficient for Λ &TeV

considered here.

As another technical note, since contributions from dimension-six operators to the RG

evolution of SM parameters are suppressed by m2/Λ2, we can apply an iterative procedure,

starting with zero coefficients for all dimension-six operators at Q = mt. In the first

iteration, the renormalizable SM couplings (geff, yeff
t , etc.) are evolved up to Q = Λ using

RG equations of the renormalizable SM. Next, using the results in section 3, we solve for

the corresponding parameters in the MSSM (g, yt, etc.), and then compute coefficients

of dimension-six operators at Q = Λ. After that, all SMEFT parameters are evolved

down to Q = mt, and the values of renormalizable SM couplings are updated according to

eq. (4.6), now with nonzero dimension-six operator coefficients, and the above procedure

of RG evolution and matching is repeated with the dimension-six operators taken into

account. Convergence is always found after a few iterations.

The 8 boundary conditions in eq. (4.6) reduce the number of free parameters from 13

to 5. We choose them to be those in eq. (4.4b). Thus, for any specific values of MΦ, Ms,

µ, M3, tanβ, we can ask whether the entire set of equations admits a solution with all

couplings in the perturbative regime, and if it does, whether λb and λτ unify at the grand

unification scale QGUT.

To be precise, we shall set the matching scale Λ = Ms, and determine

QGUT by (5/3)1/2g′(QGUT) = g(QGUT). We define “b-τ Yukawa unification” by

|λb(QGUT)/λτ (QGUT) − 1| < 0.02 here, as it is generally difficult to have a larger GUT

threshold correction [13].

We further set MΦ = Ms in this section for simplicity, since MΦ does not play a

significant role in b-τ Yukawa unification. For several choices of tan β = 50, 10, 4, 2, we

scan Ms between 103 GeV and 1010 GeV, and scan µ and |M3| = −M3 within a factor of

50 from Ms, to search for solutions with b-τ Yukawa unification (no solution exists when

µM3 > 0, see below).10 We refrain from going beyond Ms = 1010 GeV for the present

analysis, because additional GUT-scale input, namely gauge coupling threshold corrections,

would be needed to precisely define QGUT. Also, larger mass ratios are disallowed so as not

to compromise the validity of our matching calculation, where all BSM fields are assumed

to have similar masses and thus integrated out together.

Figures 1 and 2 show points in the MSSM parameter space that allow consistent

matching of the MSSM onto the SMEFT and meanwhile realize b-τ Yukawa unification,

projected onto (logMs, µ/Ms) and (logMs, |M3|/Ms) planes, respectively. Different colors

(blue, yellow, green, red) are used for solutions with xt ≡ (At − µ cotβ)/Ms in different

ranges (−4 < xt < −
√

6, −
√

6 < xt < 0, 0 < xt <
√

6,
√

6 < xt < 4, respectively).

10We can fix the signs of µ and M3, keeping their relative sign, without loss of generality here, because

the MSSM Lagrangian is invariant under simultaneous sign change of µ, M3,2,1 and Au,d,e.
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Figure 1. Points in the MSSM parameter space that allow consistent matching onto the

SMEFT and meanwhile realize b-τ Yukawa unification, projected onto (logMs, µ/Ms) plane,

for several choices of tan β. Blue, yellow, green, red points have xt ≡ (At − µ cotβ)/Ms ∈
(−4, −

√
6) , (−

√
6, 0) , (0,

√
6) , (

√
6, 4), respectively. Empty circles represent solutions with

a gluino lighter than 2 TeV, potentially already in tension with direct LHC searches, depending on

decay kinematics.

We have quite conservatively considered a large interval (−4, 4) for xt, keeping in mind

the caveat that xt values past maximal mixing ±
√

6 (blue and red dots) may run afoul of

charge and color breaking vacuum constraints [53, 54]. In addition, points with |M3| <
2 TeV, potentially already in tension with gluino searches at the LHC (depending on decay

kinematics, see e.g. [55]), are represented by empty circles in all plots.

An immediate observation from these figures is that b-τ Yukawa unification is achiev-

able for SUSY scales from TeV all the way up to (at least) 1010 GeV, with suitable choices

of mass ratios and tan β. It is worth noting, though, that a large Higgsino mass µ > Ms

is always required for tan β . 10, which may be less preferable from the point of view of

fine-tuned electroweak symmetry breaking.

There are two issues that are key to understanding these results in more detail, which

we now discuss in turn.
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Figure 2. Same as figure 1, now projected onto (logMs, |M3|/Ms) plane.

4.1 Matching of the Higgs quartic

First of all, it should noted that it is not always possible to match the MSSM onto the

SMEFT while satisfying the boundary conditions of eq. (4.6), for arbitrary choices of SUSY

parameters. This is largely due to the fact that the Higgs quartic coupling λ is a derived

quantity in the MSSM, given by 1
8(g2 + g′2) c2

2β at tree level. A threshold correction of just

the right size is needed for λeff to match the low-energy determination, most importantly

from mh = 125 GeV.

To see this explicitly, we plot in figure 3 the value of

∆λ ≡ λ− λeff , (4.7)

for each point in our sample of b-τ Yukawa unification solutions, evaluated at the matching

scale Λ = Ms. For the most part of parameter space, this threshold correction can be

approximated by

∆λ ' δλ(f̃ f̃ f̃) + δλ(f̃ f̃ f̃ f̃)

' Nc

16π2

{
2 y4

t (At − µ cotβ)2 Ĩ3
f̃

+
1

2

[
y4
t (At − µ cotβ)4 + (yb tanβ)4(µ−At cotβ)4

]
I4
f̃

}
' Nc

16π2

1

12

[(
yb tanβ

µ

Ms

)4

+ y4
t

(
(x2
t − 6)2 − 36

)]
, (4.8)
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Figure 3. Same as figure 1, now showing SUSY threshold correction for the Higgs quartic coupling,

defined as ∆λ ≡ λ− λeff at the matching scale Λ = Ms.

see eqs. (3.44) and (3.45). The dependence on xt in eq. (4.8) explains the existence of up

to four branches of solutions, separated by xt = −
√

6, 0 and
√

6.

Matching of the Higgs quartic essentially selects a range of µ/Ms for any given Ms,

for which eq. (4.8) can possibly be of the right size with suitable choice of xt. Since

the required threshold correction increases logarithmically with the SUSY threshold scale,

and is meanwhile insensitive to tan β when c2
2β ' 1, the range of µ/Ms being selected

roughly scales as cot β (logMs)
1/4 for tanβ � 1. Of course, on each branch of xt, part

of this range can be excluded by either lack of b-τ Yukawa unification, or a mass ratio

µ/Ms or |M3|/Ms outside of the interval (1/50, 50). Nevertheless, the general trend of

µ/Ms ∼ cotβ (logMs)
1/4 is still visible in figure 1.

Another feature of the figures is that the available parameter space is cut off at low Ms.

Here the ∆λ needed becomes too small to be achievable by eq. (4.8), which is bounded from

below, while maintaining a large enough threshold correction for the bottom Yukawa (which

is roughly proportional to (µ/Ms) tanβ, see below). The issue is more severe at smaller

tanβ because of a smaller λ ' 1
8(g2 + g′2) c2

2β at any given Λ = Ms. These conclusions are

perhaps more familiar when phrased as “raising the SM Higgs mass to 125 GeV requires

large one-loop corrections from heavy stops.” Here, instead of computing mh from the full

theory (the MSSM), we have taken an EFT approach, where mh is computed from the

SM to fix λeff, and the problem becomes matching λeff with λ with the right amount of

threshold correction. See also [56] for related discussion.
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Figure 4. Same as figure 1, now showing SUSY threshold correction for the bottom Yukawa

coupling, defined as δb ≡ (yb − yeff
b )/yeff

b at the matching scale Λ = Ms.

4.2 Bottom Yukawa threshold correction

Next, let us take a closer look at the SUSY threshold correction for the bottom Yukawa

coupling, which is a key ingredient for b-τ Yukawa unification. Our discussion in what

follows in this subsection is consistent with previous studies [57–60].

In figure 4 we plot

δb ≡
yb − yeff

b

yeff
b

, (4.9)

evaluated at the matching scale Λ = Ms, for our sample of b-τ Yukawa unification solutions.

We see that they correspond to a specific range of δb for any given Ms, with numbers ranging

from 10% to 60%.

At this point, it is worth emphasizing again that threshold corrections, which originate

from renormalizable operators generated in EFT matching, do not decouple as the EFT

cutoff is raised. In fact, as we see from figures 3 and 4, for both the Higgs quartic and

the bottom Yukawa, a higher Ms calls for a larger SUSY threshold correction, in order to

compensate for a longer period of running in the SMEFT.

Returning to the issue of bottom Yukawa threshold correction, we note that for the

most part of parameter space, δb is dominated by contribution from the squark-gluino loop,

δb ' δ
(q̃d̃g̃)
b ' g2

3

16π2

yb

yeff
b

· 2CSU(3)
2

(
µ

Ms
tanβ

)(
M3Ms Ĩ21

f̃ g̃

)
, (4.10)
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see eq. (3.51b). Since Ĩ21
f̃ g̃

is negative-definite, a positive δb is only possible when µM3 < 0,

which explains our sign choice. We have checked explicitly that no solutions can be found

when the sign of either µ or M3 is reversed.

The factor (M3Ms Ĩ21
f̃ g̃

) in eq. (4.10) only depends on the mass ratio. It is approximately

−M3
Ms

when |M3|/Ms � 1, and −Ms
M3

(log
M2

3
M2
s
− 1) when |M3|/Ms � 1, with a maximum

absolute value of about 0.566 at |M3|/Ms ' 2.12. Thus, for any given value of (µ/Ms) tanβ

that is sufficiently large, we expect to have two solutions for |M3|/Ms — one on each side

of 2.12 — which lead to the same desired δb (up to higher-order corrections from e.g. gluino

loop contribution to g3 threshold correction). This degeneracy is clearly visible in figure 2,

especially in the high Ms regime of the first three plots, where the range of µ/Ms, as

determined by the Higgs quartic matching condition, is narrow due to the xt-dependent

terms in eq. (4.8) becoming subdominant. For the tan β = 2 plot, on the other hand, only

a region near |M3|/Ms ' 2.12 survives because of a much smaller (µ/Ms) tanβ (∼ 100 as

opposed to ∼ 200 for the first three plots, as can be inferred from figure 1).

In addition to eq. (4.10), there is a subdominant contribution to δb from squark-

Higgsino loop, which is responsible for some finer details of the plots. From eq. (3.50b)

we have

δ
(q̃ũχ̃)
b =

λ2
t

16π2

yb

yeff
b

· xt
(
µ

Ms
tanβ

)(
M2
s Ĩ21

f̃ χ̃

)
. (4.11)

Comparing eqs. (4.10) and (4.11), we see that δ
(q̃d̃g̃)
b and δ

(q̃ũχ̃)
b have opposite (same) signs

when xt > 0 (xt < 0). Thus, higher values of µ/Ms are required for the xt > 0 branches

(green and red) to compensate for the cancellation between δ
(q̃d̃g̃)
b and δ

(q̃ũχ̃)
b , as we can see

from figure 1.

5 Higgs couplings in TeV-scale SUSY

In the previous section, we have seen that b-τ Yukawa unification alone does not point to a

unique scale for the masses of superpartners in the MSSM. However, if in addition, we would

like the MSSM to provide a dark matter candidate in the form of the lightest neutralino,

that would be further motivation for TeV-scale SUSY. For example, two classic thermal

dark matter benchmarks are a ∼1 TeV Higgsino LSP and a ∼2.7 TeV wino LSP [61]. A

wider range of masses is allowed if the LSP is a mixture of bino, wino and Higgsino states

or if the sfermions do not decouple [62, 63], or if non-thermal production mechanisms are

at work. Therefore, we will broadly consider the 1-10 TeV regime for superpartner masses,

while remaining agnostic about the detailed cosmology of dark matter. We will focus on

precision Higgs coupling measurements as an indirect probe of TeV-scale SUSY, and discuss

how they can be complementary to direct superpartner searches at the LHC.

To compute Higgs coupling modifications, we follow the same numerical procedure as

outlined at the beginning of section 4. Now the 20 SMEFT parameters in eq. (4.5) should

be evolved down to Q = mh = 125.09 GeV, in order to compute δκb and δκτ according to

eq. (2.11). As discussed in section 3.4, we shall focus on the scenario where MΦ, the mass of

the second Higgs doublet, is relatively low. To be precise, let us first fix MΦ = 1 TeV, and
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allow Ms and |M3| to vary between 1 TeV and 10 TeV. The Higgsino mass µ is determined

by requiring exact b-τ Yukawa unification, i.e. λb(QGUT) = λτ (QGUT). Solutions may exist

on multiple branches of xt, in which case we find all of them.

Our results are displayed in figures 5, 6 and 7, for tan β = 50, 20, 8, respectively. For

each of the four xt branches, we show variation of δκb in the region of the |M3|-Ms plane

where a solution exists. Also shown in the plots are contours of µ/Ms (black) and xt (red

dashed) which, as we will see shortly, are the key quantities that determine the value of

δκb. In addition, light green contours represent µ = 1 TeV, corresponding to the Higgsino

thermal dark matter benchmark. Plots of δκτ (not shown here) exhibit the same patterns

of variation in the |M3|-Ms plane, but with smaller overall sizes than δκb as a consequence

of Cτφ ∝ yτ/yeff
τ < yb/y

eff
b .

From these plots, it is first of all interesting to see how large one-loop effects can be.

Indeed, as we have fixed MΦ = 1 TeV, a tree-level calculation would yield constant Cbφ
(and hence δκb) for given tan β; see table 5. The patterns of δκb observed in the figures is

a result of interplay between tree- and one-loop-level contributions. They admit a simple

analytical understanding in the large tan β limit, where

Cbφ ' Ctree
bφ +

yb
M2

Φ

tanβ
(
c

(f̃ f̃ f̃)
Φφ3 + c

(f̃ f̃ f̃ f̃)
Φφ3

)
' − yb

2M2
Φ

[
(g2 + g′2)− tanβ

16π2
y4
t

(
µ

Ms

)
xt(x

2
t − 6)

]
. (5.1)

at the matching scale Λ = Ms (corrections from RG evolution down to Q = mh are not tan β

enhanced and thus subdominant). We see that tree-level matching always gives a negative

contribution to Cbφ, and thus a positive contribution to δκb. On the other hand, the one-

loop piece can have either sign, depending on the value of xt. On two of the four branches,

xt < −
√

6 and 0 < xt <
√

6, its contribution to Cbφ is negative, resulting in an enhanced

(positive) δκb. More specifically, for xt < −
√

6 (upper-left plot in each figure), δκb is seen

to increase monotonically with both µ/Ms and |xt|, while for 0 < xt <
√

6 (lower-left plot

in each figure), δκb also increases with µ/Ms, but now exhibits a plateau around xt =
√

2

where −xt(x2
t − 6) is maximized, in agreement with eq. (5.1). In contrast, the other two

branches feature a negative one-loop contribution to δκb: for −
√

6 < xt < 0 (upper-right

plot in each figure), we have a suppressed but still positive δκb, with the suppression being

more severe in regions with large µ/Ms and xt close to −
√

2; for xt >
√

6 (lower-right plot

in each figure), one-loop correction becomes large enough in part of the parameter space

so as to make δκb negative, and, as expected, δκb tends to be smaller (more negative) in

regions with larger µ/Ms and xt.

Precision Higgs measurements — h→ bb̄ in particular — are most sensitive to regions

of parameter space with the largest |δκb|, which in most cases (all xt < −
√

6 and 0 < xt <√
6 plots, and xt >

√
6 plots for tan β = 50, 20 as well) are those with heavy sfermions

and light to intermediate-mass gluino, once b-τ Yukawa unification is stipulated. In these

regions, as we have discussed in section 4, b-τ Yukawa unification calls for relatively large

µ/Ms to boost SUSY threshold correction for yb (recall δb ∝ |M3|/Ms for |M3|/Ms . 2.12,

and larger δb is needed for heavier sfermions), which in turn enhances one-loop contributions
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Figure 5. Variation of δκb in the region of the |M3|-Ms plane where a solution exists for exact

b-τ Yukawa unification, on each xt branch, with MΦ = 1 TeV and tan β = 50. Superimposed are

contours of µ/Ms (black) and xt (red dashed). Light green curves in the xt < 0 plots correspond to

the 1 TeV Higgsino dark matter benchmark. Direct superpartner searches probe lower mass regions

of the parameter space (with |M3| . 2 TeV potentially already excluded at the LHC depending

on decay kinematics), while precision Higgs measurements can be more sensitive to higher mass

regions where δκb is enhanced by one-loop corrections.

to δκb according to eq. (5.1); meanwhile, there is a visible suppression of |δκb| for the largest

µ/Ms (hence smallest |M3|/Ms) due to |xt| approaching
√

6 in order to match the Higgs

quartic (see eq. (4.8)).

In comparison, direct searches can most easily access the region of parameter space

with light squarks and gluino. Our results show a nice complementarity between direct su-

perpartner searches and precision Higgs measurements, as they probe the SUSY parameter

space from different directions.

To further demonstrate this complementarity, let us consider a scenario where the

gluino and sfermions are beyond direct LHC reach, even after the high luminosity phase [64,
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Figure 6. Same as figure 5, now with tan β = 20.

65]. We choose |M3| = 5 TeV, Ms = 10 TeV as a benchmark, and allow MΦ and tanβ to

vary. The Higgsino mass µ is still determined by exact b-τ Yukawa unification, and is not

a free parameter in this analysis.

Figure 8 shows plots of |δκb| in the MΦ-tanβ plane for this benchmark scenario, on all

four xt branches. The LHC will be able to probe |δκb| ∼ 10% [66, 67], corresponding to part

of the sub-TeV regime for MΦ (red and orange regions). Meanwhile, direct heavy Higgs

searches can put stronger constraints in the high tan β regime. For illustration, we show in

figure 8 current exclusion limit from the ATLAS search in the di-tau channel [68] (the CMS

limit [69] is slightly weaker) and projected high luminosity LHC reach (up to MΦ = 2 TeV)

in the same channel from the CMS analysis [70] (dark solid and dashed curves, respectively),

both of which are reported assuming the “mmod+
h benchmark scenario” (see [71]).

On the other hand, a 0.5-1% level determination of the hbb̄ coupling, as envisioned at

possible future Higgs factories (ILC, CLIC, CEPC and FCC-ee — see e.g. [72–74] for recent

studies), would extend the sensitivity to MΦ potentially up to ∼(2-4) TeV, even for lower
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Figure 7. Same as figure 5, now with tan β = 8.

tanβ, and beyond direct and indirect LHC reach. The existence of well-motivated sce-

narios, like trans-TeV SUSY with b-τ Yukawa unification studied here, which escape LHC

search but nevertheless can manifest themselves as modified Higgs couplings, highlights

the opportunity of BSM discoveries through precision Higgs measurements.

To close this section, we finally comment on the availability of a 1 TeV Higgsino thermal

dark matter candidate. From the figures we see that µ = 1 TeV (light green curves) can

only be achieved on the xt < 0 branches for tan β & 20.11 The xt > 0 branches cannot

support such a small Higgsino mass because of cancellation between the squark-gluino and

squark-Higgsino loops contributing to δb, as discussed below eq. (4.11). Meanwhile, when

tanβ is reduced, a larger µ/Ms is generally needed to obtain sufficient threshold corrections

for both λ and yb. The disappearance of the µ = 1 TeV curve is further accelerated by a

shrinking parameter space where matching of the Higgs quartic is simultaneously possible.

11The quantitative discrepancy between our conclusion and that of [13] is due to differences in the

matching calculation for the Higgs quartic. Our results are in good agreement with the more recent

calculation in [7].
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Figure 8. Contours of |δκb| in the MΦ-tanβ plane, for our benchmark scenario |M3| = 5 TeV,

Ms = 10 TeV, which will evade gluino and stop searches at the LHC. The Higgsino mass is de-

termined by exact b-τ Yukawa unification, for which solutions exist for tan β & 5. Dark solid and

dashed curves represent current exclusion limit (95% CL) and projected high-luminosity reach (95%

CL with 3 ab−1 at 14 TeV) from heavy Higgs searches in the di-tau channel at the LHC, reported

assuming the mmod+
h benchmark scenario. Future Higgs factories, with 0.5-1% projected precision

for the hbb̄ coupling, will be able to probe much of the parameter space displayed.

6 Conclusions

As traditional naturalness and weak-scale new physics are under siege, it is worth con-

sidering more attentively trans-TeV regimes. Here, effective field theory becomes the tool

of choice to accurately connect a vast range of BSM ideas to low-energy observation. In

this paper, we have focused on the specific case of the MSSM, and performed a matching

calculation onto the SMEFT. In particular, we computed the full set of renormalizable

operators of the SMEFT by integrating out heavy superpartners from the path integral up

to one-loop level, which allowed us to extract SUSY threshold corrections with ease.
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Our calculation highlights the simplicity of recently-developed functional matching

and covariant diagrams techniques. In fact, we were able to reproduce one-loop SUSY

threshold corrections for all SM parameters from just 30 covariant diagrams (shown in

tables 6 and 7), each of which is straightforward to compute. Essentially, we have taken

a more economic route than traditional Feynman diagram calculations, where just the

information needed for deriving the low-energy limit of the theory has been extracted from

the path integral. In the long run, it is hoped that these novel EFT techniques will aid

the program of (automated) precision calculation in trans-TeV supersymmetry, and other

BSM scenarios as well.

Taking unification as a key motivation for SUSY, we investigated implications of b-τ

Yukawa unification on the MSSM parameter space, while remaining agnostic about further

details of the grand unified theory. The EFT approach we have taken allowed us to take

advantage of existing precision calculations within the SM, to ensure consistency with

low-energy observations, in particular mh = 125 GeV. We found solutions that realize b-τ

Yukawa unification for SUSY scales from TeV up to 1010 GeV, with suitable choices of

superpartner mass ratios and tan β (see figures 1 and 2). In this analysis, a key role is

played by SUSY threshold corrections to the Higgs quartic and bottom Yukawa couplings,

which, when forced to have the correct (finite) sizes (see figures 3 and 4), dramatically

constrain the predicted SUSY parameter space.

The lower edge of this broad trans-TeV window is further motivated by the possibility

of having a dark matter candidate. For superpartners in the (1-10) TeV regime, we showed

that one-loop matching contributions can drastically modify tree-level predictions for the

hbb̄ (and also hτ+τ−) coupling, rendering some regions of the MSSM parameter space with

heavier squarks more accessible to precision Higgs measurements (see figures 5, 6 and 7).

It is interesting to see that, even for superpartner masses out of LHC reach, precision

Higgs measurements can offer a powerful indirect probe of TeV-scale SUSY. For example,

in a benchmark scenario with a 5 TeV gluino and 10 TeV degenerate sfermions that realizes

b-τ Yukawa unification, we showed that a 0.5-1% level determination of the hbb̄ coupling

will be able to probe the heavy Higgs mass up to ∼(2-4) TeV for a wide range of tan β (see

figure 8). This constitutes an unambiguous example of a motivated BSM scenario that

may only reveal itself through precision Higgs measurements of the future.
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A The MSSM U matrix

In this appendix, we present detailed expressions for the entries of the MSSM U ma-

trix needed in our one-loop matching calculation in section 3. They are obtained from
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the MSSM Lagrangian by the background field method explained in section 2.2; see

eqs. (2.14), (2.15), (2.20) and (2.21). Keeping in mind that the U matrix is to be used

at one-loop level, we do not distinguish between β and β′, and write β throughout. Also,

tree-level SUSY relations between couplings can be used regardless of scheme choice, e.g.

gaugino-sfermion-fermion couplings are identified with gauge couplings (which is true be-

yond tree level in DR but not MS scheme).

In what follows, the heavy Higgs field Φ is understood as Φc obtained in section 3.2.

The other heavy fields do not appear because they are set to zero by the classical equations

of motion. We carefully keep all color and weak indices explicit for clarity, using i (A) and α

(I) for SU(3)c and SU(2)L fundamental (adjoint) indices on the conjugate fields to appear

on the left side of the U matrix, and j, B, β, J for those on the fields on the right side. We

will not explicitly show the entries involving leptons, because they can always be obtained

from those involving quarks by the obvious substitutions q → l, d→ e, λu → 0, λd → λe,

g3 → 0.

A.1 R-parity-even block

Higgs-Higgs entries. From the MSSM Higgs potential, we obtain

UΦΦ =
1

4
(g2 + g′2)

(
−δβαc2

2β |φ|2 + s2
2βφαφ

∗β s2
2β φαφβ

s2
2β φ

∗αφ∗β −δαβ c2
2β |φ|2 + s2

2βφ
∗αφβ

)

+
1

2
g2

(
δβα|φ|2 − φαφ∗β 0

0 δαβ |φ|2 − φ∗αφβ

)

+
1

8
(g2 + g′2) s4β

(
δβα 0

0 δαβ

)(
φ∗Φ + Φ∗φ

)
+

1

8
(g2 + g′2) s4β

(
φαΦ∗β + Φαφ

∗β φαΦβ + Φαφβ
φ∗αΦ∗β + Φ∗αφ∗β φ∗αΦβ + Φ∗αφβ

)

+
1

4
(g2 + g′2)c2

2β

(
δβα|Φ|2 + ΦαΦ∗β ΦαΦβ

Φ∗αΦ∗β δαβ |Φ|2 + Φ∗αΦβ

)
, (A.1)

UΦφ = −1

8
(g2 + g′2) s4β

(
δβα|φ|2 + φαφ

∗β φαφβ
φ∗αφ∗β δαβ |φ|2 + φ∗αφβ

)

+
1

4
(g2 + g′2) s2

2β

(
δβα(φ∗Φ + Φ∗φ) + φαΦ∗β φαΦβ

φ∗αΦ∗β δαβ (φ∗Φ + Φ∗φ) + φ∗αΦβ

)

−1

4
(g2 + g′2) c2

2β

(
Φαφ

∗β Φαφβ
Φ∗αφ∗β Φ∗αφβ

)

+
1

2
g2

(
−δβα(φ∗Φ) + Φαφ

∗β −φαΦβ + Φαφβ
−φ∗αΦ∗β + Φ∗αφ∗β −δαβ (Φ∗φ) + Φ∗αφβ

)

+
1

8
(g2 + g′2) s4β

(
δβα|Φ|2 + ΦαΦ∗β ΦαΦβ

Φ∗αΦ∗β δαβ |Φ|2 + Φ∗αΦβ

)
. (A.2)
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The other two entries Uφφ and UφΦ can be obtained from UΦΦ and UΦφ by simply exchang-

ing Φ↔ φ, sβ ↔ cβ .

Higgs-fermion entries. From the MSSM Yukawa interactions, we obtain

UΦq =

(
−sβ δβα ψ̄jd λd −cβ εαβ ψ̄cuj λ∗u
−cβ εαβ ψ̄ju λu −sβ δαβ ψ̄cdj λ∗d

)
, (A.3a)

UqΦ =

(
−sβ δβα λ†d ψdi −cβ εβα λ†u ψui
−cβ εβα λTu ψciu −sβ δαβ λTd ψcid

)
, (A.3b)

UΦu = cβ

((
ψ̄qε
)j
α
λ†u 0

0
(
ψ̄cqε
)α
j
λTu

)
, UuΦ = cβ

(
λu
(
ψqε
)β
i

0

0 λ∗u
(
ψcqε
)i
β

)
, (A.4)

UΦd = −sβ

(
0 ψ̄cqjα λ

T
d

ψ̄jαq λ†d 0

)
, UdΦ = −sβ

(
0 λd ψqiβ

λ∗d ψ
ciβ
q 0

)
. (A.5)

The φf , fφ entries (not needed in our calculation) can be obtained from the equations

above by simple substitutions λucβ → λusβ , λdsβ → −λdcβ .

Fermion-fermion entries. The Yukawa interactions also give rise to

Uqu = sβ

(
δji λ
†
u

(
εφ∗
)
α

0

0 δij λ
T
u

(
εφ
)α)+ cβ

(
δji λ
†
u

(
εΦ∗
)
α

0

0 δij λ
T
u

(
εΦ
)α) , (A.6a)

Uuq = sβ

(
δji λu

(
εφ
)β

0

0 δij λ
∗
u

(
εφ∗
)
β

)
+ cβ

(
δji λu

(
εΦ
)β

0

0 δij λ
∗
u

(
εΦ∗
)
β

)
, (A.6b)

Uqd = cβ

(
δji λ
†
d φα 0

0 δij λ
T
d φ
∗α

)
− sβ

(
δji λ
†
dΦα 0

0 δij λ
T
d Φ∗α

)
, (A.7a)

Udq = cβ

(
δji λd φ

∗β 0

0 δij λ
∗
d φβ

)
− sβ

(
δji λdΦ∗β 0

0 δij λ
∗
dΦβ

)
. (A.7b)

In addition, there are nonzero entries involving the SM gauge bosons, which are how-

ever not needed in our calculation.

A.2 R-parity-odd block

Sfermion-sfermion entries. From the sfermion-sfermion-Higgs interactions, we obtain

Uq̃ũ = (Ausβ − µcβ)

(
δji λ
†
u

(
εφ∗
)
α

0

0 δij λ
T
u

(
εφ
)α)

+(Aucβ + µsβ)

(
δji λ
†
u

(
εΦ∗
)
α

0

0 δij λ
T
u

(
εΦ
)α) , (A.8a)
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Uũq̃ = (Ausβ − µcβ)

(
δji λu

(
εφ
)β

0

0 δij λ
∗
u

(
εφ∗
)
β

)

+(Aucβ + µsβ)

(
δji λu

(
εΦ
)β

0

0 δij λ
∗
u

(
εΦ∗
)
β

)
, (A.8b)

Uq̃d̃ = (Adcβ − µsβ)

(
δji λ
†
d φα 0

0 δij λ
T
d φ
∗α

)
− (Adsβ + µcβ)

(
δji λ
†
dΦα 0

0 δij λ
T
d Φ∗α

)
,

(A.9a)

Ud̃q̃ = (Adcβ − µsβ)

(
δji λd φ

∗β 0

0 δij λ
∗
d φβ

)
− (Adsβ + µcβ)

(
δji λdΦ∗β 0

0 δij λ
∗
dΦβ

)
.

(A.9b)

Meanwhile, the scalar quartic interactions give rise to

Uq̃q̃ =

(
δji Uq̃

β
α 0

0 δij U
T
q̃
α

β

)
, Uũũ =

(
δji Uũ 0

0 δij U
T
ũ

)
, Ud̃d̃ =

(
δji Ud̃ 0

0 δij U
T
d̃

)
, (A.10)

where

Uq̃
β
α = λ†uλu

[
s2
β

(
δβα|φ|2 − φαφ∗β

)
+sβcβ

(
δβα(φ∗Φ + Φ∗φ)− φαΦ∗β − Φαφ

∗β)+ c2
β

(
δβα|Φ|2 − ΦαΦ∗β

)]
+λ†dλd

[
c2
β φαφ

∗β − sβcβ
(
φαΦ∗β + Φαφ

∗β)+ s2
β ΦαΦ∗β

]
+g2 1

4
σIβα

[
(s2
β − c2

β)
(
φ∗σIφ− Φ∗σIΦ

)
+ 2sβcβ

(
φ∗σIΦ + Φ∗σIφ

)]
+g′2 YφYq δ

β
α

[
(s2
β − c2

β)
(
|φ|2 − |Φ|2

)
+ 2sβcβ

(
φ∗Φ + Φ∗φ

)]
(A.11)

Uũ = λuλ
†
u

[
s2
β |φ|2 + sβcβ

(
φ∗Φ + Φ∗φ

)
+ c2

β |Φ|2
]

−g′2 YφYu
[
(s2
β − c2

β)
(
|φ|2 − |Φ|2

)
+ 2sβcβ

(
φ∗Φ + Φ∗φ

)]
, (A.12)

Ud̃ = λdλ
†
d

[
c2
β |φ|2 − sβcβ

(
φ∗Φ + Φ∗φ

)
+ s2

β |Φ|2
]

−g′2 YφYd
[
(s2
β − c2

β)
(
|φ|2 − |Φ|2

)
+ 2sβcβ

(
φ∗Φ + Φ∗φ

)]
. (A.13)

There are also off-diagonal entries between ũ and d̃,

Uũd̃ =

(
δji λuλ

†
d

(
φεΦ

)
0

0 δij
(
λdλ

†
u

)T (
φ∗εΦ∗

)) , (A.14a)

Ud̃ũ =

(
δji λdλ

†
u

(
φ∗εΦ∗

)
0

0 δij
(
λuλ

†
d

)T (
φεΦ

)) . (A.14b)
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Sfermion-Higgsino entries. From the sfermion-fermion-Higgsino interactions,

we obtain

Uq̃χ̃ =

(
−δβα ψ̄cdi λ∗d εαβ ψ̄

c
ui λ
∗
u

εαβ ψ̄iu λu −δαβ ψ̄id λd

)
, Uχ̃q̃ =

(
−δβα λTd ψ

cj
d −εαβ λ†u ψuj

−εαβ λTu ψ
cj
u −δαβ λ

†
d ψdj

)
, (A.15)

Uũχ̃ =

((
ψ̄cqε
)β
i
λTu 0

0
(
ψ̄qε
)i
β
λ†u

)
, Uχ̃ũ =

(
λ∗u
(
ψcqε
)j
α

0

0 λu
(
ψqε
)α
j

)
, (A.16)

Ud̃χ̃ =

(
0 −ψ̄cqiβ λTd

−ψ̄iβq λ†d 0

)
, Uχ̃d̃ =

(
0 −λd ψqjα

−λ∗d ψ
cjα
q 0

)
. (A.17)

Sfermion-gaugino entries. From the sfermion-fermion-gaugino interactions, we obtain

Uq̃g̃ =
√

2 g3

((
TBψ̄cq

)
iα(

ψ̄qT
B
)iα
)
, Ug̃q̃ =

√
2 g3

((
ψcqT

A
)jβ (

TAψq
)
jβ

)
, (A.18)

Uq̃W̃ =
√

2 g
1

2

((
σJ ψ̄cq

)
iα(

ψ̄qσ
J
)iα
)
, UW̃ q̃ =

√
2 g

1

2

((
ψcqσ

I
)jβ (

σIψq
)
jβ

)
, (A.19)

Uq̃B̃ =
√

2 g′ Yq

(
ψ̄cqiα
ψ̄iαq

)
, UB̃q̃ =

√
2 g′ Yq

(
ψcjβq ψqjβ

)
, (A.20)

Uũg̃ = −
√

2 g3

((
TBψ̄cu

)
i(

ψ̄uT
B
)i
)
, Ug̃ũ = −

√
2 g3

((
ψcuT

A
)j (

TAψu
)
j

)
, (A.21)

UũB̃ = −
√

2 g′ Yu

(
ψ̄cui
ψ̄iu

)
, UB̃ũ = −

√
2 g′ Yu

(
ψcju ψuj

)
, (A.22)

Ud̃Ṽ ,Ṽ d̃ = UũṼ ,Ṽ ũ

∣∣∣
u→d

. (A.23)

Higgsino-gaugino entries. Finally, from the Higgs-Higgsino-gaugino interactions,

we obtain

Uχ̃Ṽ = U
(S)

χ̃Ṽ
+ U

(P )

χ̃Ṽ
γ5 , UṼ χ̃ = U

(S)

Ṽ χ̃
+ U

(P )

Ṽ χ̃
γ5 , (A.24)

with

U
(S)

χ̃W̃
=

g√
2

1

2
(sβ + cβ)

( (
σJφ

)
α(

φ∗σJ
)α)− g√

2

1

2
(sβ − cβ)

( (
σJΦ

)
α(

Φ∗σJ
)α) , (A.25a)

U
(S)

W̃ χ̃
=

g√
2

1

2
(sβ + cβ)

((
φ∗σI

)β (
σIφ

)
β

)
− g√

2

1

2
(sβ − cβ)

((
Φ∗σI

)β (
σIΦ

)
β

)
,

(A.25b)

U
(P )

χ̃W̃
=

g√
2

1

2
(sβ − cβ)

( (
σJφ

)
α

−
(
φ∗σJ

)α)+
g√
2

1

2
(sβ + cβ)

( (
σJΦ

)
α

−
(
Φ∗σJ

)α) , (A.25c)

U
(P )

W̃ χ̃
= − g√

2

1

2
(sβ − cβ)

((
φ∗σI

)β −(σIφ)
β

)
− g√

2

1

2
(sβ + cβ)

((
Φ∗σI

)β −(σIΦ)
β

)
,

(A.25d)
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U
(S)

χ̃B̃
=

g′√
2
Yφ (sβ + cβ)

(
φα
φ∗α

)
− g′√

2
Yφ (sβ − cβ)

(
Φα

Φ∗α

)
, (A.26a)

U
(S)

B̃χ̃
=

g′√
2
Yφ (sβ + cβ)

(
φ∗β φβ

)
− g′√

2
Yφ (sβ − cβ)

(
Φ∗β Φβ

)
, (A.26b)

U
(P )

χ̃B̃
=

g′√
2
Yφ (sβ − cβ)

(
φα
−φ∗α

)
+

g′√
2
Yφ (sβ + cβ)

(
Φα

−Φ∗α

)
, (A.26c)

U
(P )

B̃χ̃
= − g′√

2
Yφ (sβ − cβ)

(
φ∗β −φβ

)
− g′√

2
Yφ (sβ + cβ)

(
Φ∗β −Φβ

)
. (A.26d)

B Master integrals

Our results for one-loop matching presented in section 3 are written in terms of master

integrals Ĩ[q2nc ]
ninj ...nL
ij...0 ≡ I[q2nc ]

ninj ...nL
ij...0 / i

16π2 . They can in general be evaluated via the

following decomposition formula,

Ĩ[q2nc ]
ninj ...nL
ij...0 =

ni−1∑
pi=0

[
1

pi!

(
∂

∂M2
i

)pi 1(
M2
i

)nL∏
a 6=i
(
∆2
ia

)na ] I[q2nc ]ni−pii

+

nj−1∑
pj=0

[
1

pj !

(
∂

∂M2
j

)pj 1(
M2
j

)nL∏
a 6=j
(
∆2
ja

)na ] I[q2nc ]
nj−pj
j + . . . (B.1)

where ∆2
ij ≡M2

i −M2
j . To derive eq. (B.1), we first recall the definition,∫

ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
≡ gµ1...µ2nc I[q2nc ]

ninj ...nL
ij...0 , (B.2)

where gµ1...µ2nc is the completely symmetric tensor, e.g. gµνρσ = gµνgρσ + gµρgνσ + gµσgνρ.

It is easy to see that

I[q2nc ]
ninj ...nL
ij...0 =

1

∆2
ij

(
I[q2nc ]

ni,nj−1,...nL
ij...0 − I[q2nc ]

ni−1,nj ...nL
ij...0

)
, (B.3)

I[q2nc ]
ninj ...nL
ij...0 =

1

M2
i

(
I[q2nc ]

ninj ...,nL−1
ij...0 − I[q2nc ]

ni−1,nj ...nL
ij...0

)
, (B.4)

∂

∂M2
i

I[q2nc ]
ninj ...nL
ij...0 = ni I[q2nc ]

ni+1,nj ...nL
ij...0 , (B.5)

Note that in principle, we can just start from I[q2nc ]
ninj ...nL
ij...0 and use eqs. (B.3) and (B.4)

repeatedly to reduce the number of propagators, until arriving at a sum of heavy-only

degenerate master integrals of the form I[q2nc ]nii (recall I[q2nc ]nL0 = 0), which cannot be

further reduced. However, the same result can be obtained via a more systematic and often

easier path, starting from applying eq. (B.5),

I[q2nc ]
ninj ...nL
ij...0 =

1

(ni − 1)!

(
∂

∂M2
i

)ni−1 1

(nj − 1)!

(
∂

∂M2
j

)nj−1

. . . I[q2nc ]11...nL
ij...0 . (B.6)
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The master integrals I[q2nc ]11...nL
ij...0 , where each heavy propagator appears only once, are

much easier to reduce via eqs. (B.3) and (B.4) compared to the original master integral.

In fact, we can show that

I[q2nc ]11...nL
ij...0 =

1

∆2
ij∆

2
ik∆

2
il . . .

I[q2nc ]1nLi0 +
1

∆2
ji∆

2
jk∆

2
jl . . .

I[q2nc ]1nLj0 + . . .

=
1(

M2
i

)nL∆2
ij∆

2
ik∆

2
il . . .

I[q2nc ]1i +
1(

M2
j

)nL∆2
ji∆

2
jk∆

2
jl . . .

I[q2nc ]1j + . . .

=
1(

M2
i

)nL∏
a 6=i ∆2

ia

I[q2nc ]1i +
1(

M2
j

)nL∏
a 6=j ∆2

ja

I[q2nc ]1j + . . . (B.7)

Plugging eq. (B.7) into eq. (B.6) and taking derivatives according to eq. (B.5), we obtain

I[q2nc ]
ninj ...nL
ij...0 =

1

(ni − 1)!

(
∂

∂M2
i

)ni−1 1(
M2
i

)nL(∆2
ij

)nj(∆2
ik

)nk(∆2
il

)nl · · · I[q2nc ]1i

+
1

(nj − 1)!

(
∂

∂M2
j

)nj−1 1(
M2
j

)nL(∆2
ji

)ni(∆2
jk

)nk(∆2
jl

)nl · · · I[q2nc ]1j

+ . . . , (B.8)

which can be easily seen to lead to eq. (B.1).

Eq. (B.1) allows us to decompose an arbitrary master integral I[q2nc ]
ninj ...nL
ij...0 into a

sum of degenerate master integrals of the form I[q2nc ]nii . For example,

I[q2]211
ij0 =

1

M2
i ∆2

ij

I[q2]2i +
∂

∂M2
i

(
1

M2
i ∆2

ij

)
I[q2]1i +

1

M2
j

(
∆2
ji

)2 I[q2]1j . (B.9)

The degenerate master integrals I[q2nc ]nii cannot be decomposed further in this way, but

can be worked out explicitly and tabulated; see table 7 of [22]. Here, we note that if ni ≥ 2

and nc ≥ 1, I[q2nc ]nii can in fact be further reduced using

I[q2nc ]nii =
1

2(ni − 1)
I[q2(nc−1)]ni−1

i , (B.10)

which follows from the explicit expression

I[q2nc ]nii =
i

16π2

(
−M2

i

)2+nc−ni 1

2nc(ni − 1)!

Γ( ε2 − 2− nc + ni)

Γ( ε2)

(
2

ε̄
− log

M2
i

Q2

)
, (B.11)

where 2
ε̄ ≡

2
ε − γ + log 4π with ε = 4− d, and Q is the renormalization scale. For example,

eq. (B.9) can be further reduced to

I[q2]211
ij0 =

1

2M2
i ∆2

ij

I1
i +

∂

∂M2
i

(
1

M2
i ∆2

ij

)
I[q2]1i +

1

M2
j

(
∆2
ji

)2 I[q2]1j . (B.12)

We therefore only list irreducible master integrals here. For ni = {1, 2, 3, 4, 5, 6},

Ĩnii =

{
M2
i

(
1− logM2

i

)
,− logM2

i , −
1

2M2
i

,
1

6M4
i

, − 1

12M6
i

,
1

20M8
i

}
, (B.13)
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while for nc = {1, 2, 3},

Ĩ[q2nc ]1i =

{
M4
i

4

(
3

2
− logM2

i

)
,
M6
i

24

(
11

6
− logM2

i

)
,
M8
i

192

(
25

12
− logM2

i

)}
, (B.14)

where we have dropped the 1
ε̄ poles (as in MS and DR schemes), and abbreviated log

M2
i

Q2

to logM2
i . In cases where O(ε) terms are produced from e.g. gamma matrix algebra, the

1
ε̄ pieces in the master integrals that have been subtracted off can be recovered by simply

replacing − logM2
i → 2

ε̄ − logM2
i .

Using the formulas above, we can compute explicit expressions for the master integrals

appearing in our one-loop matching results in section 3. We list them in the following,

including also additional master integrals encountered when some of the heavy particles

are degenerate in mass (e.g. Ĩ4
i = lim

M2
j→M2

i

Ĩ22
ij ),

Ĩ1
i = M2

i

(
1− logM2

i

)
, Ĩ2

i = − logM2
i , (B.15)

Ĩ3
i = − 1

2M2
i

, Ĩ4
i =

1

6M4
i

, Ĩ11
i0 = 1− logM2

i , (B.16)

Ĩ[q2]3i = −1

4
logM2

i , Ĩ[q2]4i = − 1

12M2
i

, Ĩ[q2]21
i0 =

1

8
− 1

4
logM2

i , (B.17)

Ĩ11
ij = 1− 1

∆2
ij

(
M2
i logM2

i −M2
j logM2

j

)
, (B.18)

Ĩ21
ij = − 1

∆2
ij

−
M2
j(

∆2
ij

)2 log
M2
j

M2
i

, (B.19)

Ĩ22
ij = − 2(

∆2
ij

)2 − M2
i +M2

j(
∆2
ij

)3 log
M2
j

M2
i

, (B.20)

Ĩ31
ij =

M2
i +M2

j

2M2
i

(
∆2
ij

)2 +
M2
j(

∆2
ij

)3 log
M2
j

M2
i

, (B.21)

Ĩ[q2]21
ij =

M2
i − 3M2

j

8∆2
ij

− 1

4
(
∆2
ij

)2 [M2
i (M2

i − 2M2
j ) logM2

i +M4
j logM2

j

]
, (B.22)

Ĩ[q2]22
ij = −

M2
i +M2

j

4
(
∆2
ij

)2 − M2
iM

2
j

2
(
∆2
ij

)3 log
M2
j

M2
i

, (B.23)

Ĩ[q2]31
ij = −

M2
i − 3M2

j

8
(
∆2
ij

)2 +
M4
j

4
(
∆2
ij

)3 log
M2
j

M2
i

, (B.24)

Ĩ111
ijk =

M2
j

∆2
ij∆

2
jk

log
M2
j

M2
i

+
M2
k

∆2
jk∆

2
ki

log
M2
k

M2
i

, (B.25)

Ĩ211
ijk = − 1

∆2
ij∆

2
ik

− 1

∆2
jk

[
M2
j(

∆2
ij

)2 log
M2
j

M2
i

−
M2
k(

∆2
ik

)2 log
M2
k

M2
i

]
, (B.26)

Ĩ[q2]211
ijk = − M2

i

4∆2
ij∆

2
ik

− 1

4∆2
jk

[
M4
j(

∆2
ij

)2 log
M2
j

M2
i

−
M4
k(

∆2
ik

)2 log
M2
k

M2
i

]
. (B.27)

In the equations above, we have used the notation ∆2
ij ≡M2

i −M2
j .
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Finally, let us also present some formulas that can be used to decrease nc, because they

are often useful for simplifying loops involving fermions. When nc = 1, we can contract

both sides of eq. (B.2) with gµ1µ2 to obtain

(4− ε) I[q2]
ninj ...nL
ij...0 = Ini−1,nj ...nL

ij...0 +M2
i I

ninj ...nL
ij...0 (B.28)

(4− ε) I[q2]
ninj ...nL
ij...0 = Ininj ...,nL−1

ij...0 (nL ≥ 1) (B.29)

Similarly, when nc = 2, we can contract both sides of eq. (B.2) with gµ1µ2gµ3µ4 to obtain

(24− 10ε) I[q4]
ninj ...nL
ij...0 =

∫
ddq

(2π)d
(q2 −M2

i )2 + 2M2
i q

2 −M4
i

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL

= Ini−2,nj ...nL
ij...0 + 2(4− ε)M2

i I[q2]
ninj ...nL
ij...0 −M4

i I
ninj ...nL
ij...0

(ni ≥ 2) .

(B.30)

Alternatively,

(24− 10ε) I[q4]
ninj ...nL
ij...0 =

∫
ddq

(2π)d
(q2 −M2

i )(q2 −M2
j ) + (M2

i +M2
j )q2 −M2

iM
2
j

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL

= Ini−1,nj−1,...nL
ij...0 +(4−ε)(M2

i +M2
j ) I[q2]

ninj ...nL
ij...0 −M2

iM
2
j I

ninj ...nL
ij...0

(ni, nj ≥ 1) .

(B.31)

C Comparison with Feynman diagram matching

Our results for one-loop SUSY threshold corrections presented in section 3.3, which are

obtained from computing just 30 covariant diagrams, have been cross-checked against con-

ventional Feynman diagram calculations reported in [4], with full agreement found. In this

final appendix, we explain how this comparison is made.

The general procedure is as follows. From [4], we obtain analytical relations between

the full theory parameters g3, g, g′, yf , m2 and λ (related to MSSM Lagrangian parameters

via eq. (3.29)) and the standard set of SM input observables (denoted with hats) α̂s(mZ),

m̂Z , ĜF , α̂em, m̂f and m̂h, computed via Feynman diagrams up to one-loop accuracy (we

consistently drop higher loop order corrections, some of which are also reported in [4]). The

same relations, with BSM contributions removed, define the corresponding effective param-

eters geff
3 , geff, g′eff, yeff

f , m2
eff and λeff in the SMEFT, up to power-suppressed corrections

from d ≥ 4 operators. One-loop threshold corrections are then obtained by comparing the

two, which should agree with what we have found via the more elegant covariant diagrams

approach. Note that the tadpole-free scheme for Higgs vevs is adopted in [4], so their re-

sults should be compared to ours when LSMEFT is written in terms of β (as opposed to β′),

i.e. when the one-loop-generated piece cΦφ(Φ∗cφ+ φ∗Φc) has been absorbed into Ltree
SMEFT.

Let us start with the strong coupling g3, which is simply extracted from α̂s(mZ) via

g2
3 =

4π α̂s(mZ)

1−∆αs
. (C.1)
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Therefore,

geff
3 = g3

[
1− 1

2

(
∆αs

)SUSY

O(1)

]
, (C.2)

where, according to [4],

(
∆αs

)SUSY
= − g2

3

16π2

(
1

6

∑
f=u,d

2∑
i=1

logm2
f̃i

+ 2 logM2
3

)

=
g2

3

16π2

[
1

6

(
2 Ĩ2

q̃ + I1
ũ + I2

d̃

)
+ 2 I2

g̃ +O
(
v2

Λ2

)]
, (C.3)

with summation over three generations implicit. The v2

Λ2 power-suppressed terms come

from electroweak symmetry breaking contributions to squark masses, and are not relevant

here. For simplicity, throughout this appendix, we denote non-power-suppressed terms as

O(1) (as in eq. (C.2)) although they are formally O( 1
16π2 ) when loop counting is also taken

into account. It is readily seen that eq. (C.3) is in agreement with our δZG in eq. (3.62a).

Next, to extract electroweak gauge couplings g and g′, we recall the relations

α =
α̂em

1−∆α
, c2

θs
2
θ =

π α
√

2 m̂2
Z ĜF (1−∆r)

, (C.4)

where

∆r =
ΠT
WW (0)

m2
W

− Re
ΠT
ZZ(m2

Z)

m2
Z

+ δVB . (C.5)

Here, ΠT
WW (p2) and ΠT

ZZ(p2) are transverse parts of the W and Z self-energies, which

represent “universal” contributions to µ− → e−ν̄eνµ which determines ĜF . On the other

hand, δVB contains non-universal contributions from vertex corrections, box diagrams, and

wavefunction renormalizations. Only the universal part of ∆r, i.e.

∆ru ≡
ΠT
WW (0)

m2
W

− Re
ΠT
ZZ(m2

Z)

m2
Z

(C.6)

is relevant for g, g′ threshold corrections, because δVB has an EFT counterpart in terms of

local effective operator contributions to muon decay. Thus, from eq. (C.4),

αeff = α
[

1− (∆α)SUSY
O(1)

]
,

(
c2
θs

2
θ

)eff
= c2

θs
2
θ

[
1− (∆α)SUSY

O(1) − (∆ru)SUSY
O(1)

]
. (C.7)

The QED coupling and weak mixing angle can be directly translated into SU(2)L×U(1)Y
gauge couplings via 4πα = gsθ = g′cθ. We therefore obtain

geff = g

{
1 +

1

2

1

c2
θ − s2

θ

[
s2
θ (∆α)SUSY

O(1) + c2
θ (∆ru)SUSY

O(1)

]}
= g

{
1 +

1

2

1

c2
θ − s2

θ

[
s2
θ (∆α)SUSY

O(1) + c2
θ

4

v2

(
1

g2
ΠT
WW (0)−

c2
θ

g2
ΠT
ZZ(m2

Z)

)SUSY

O(v2)

]}
, (C.8)

g′
eff

= g′
{

1− 1

2

1

c2
θ − s2

θ

[
c2
θ (∆α)SUSY

O(1) + s2
θ (∆ru)SUSY

O(1)

]}
= g′

{
1− 1

2

1

c2
θ−s2

θ

[
c2
θ (∆α)SUSY

O(1) +s2
θ

4

v2

(
1

g2
ΠT
WW (0)−

c2
θ

g2
ΠT
ZZ(m2

Z)

)SUSY

O(v2)

]}
. (C.9)
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The SUSY part of the self-energies ΠT
WW and ΠT

ZZ are to be expanded in powers of v2

Λ2 .

Analytical expressions of these and other self-energies to appear below can be found in [4].

They are rather tedious and will not be displayed here.

Then, moving on to Yukawa couplings yf , we note that

m̂f =
1√
2
yfv

(
1− Re

Σf (mf )

mf

)
, (C.10)

where Σf (/p) is the fermion self-energy, and the light Higgs vev v is extracted via

v2 = 4
m̂2
Z + Re ΠT

ZZ(m2
Z)

g2 + g′2
. (C.11)

In the SMEFT, it is v̂, the vev of the canonically normalized light Higgs field φ̂, that is

extracted via this procedure,

v̂2 = 4
m̂2
Z + Re

(
ΠT
ZZ(m2

Z)
)SM(

geff
)2

+
(
g′eff

)2 . (C.12)

With eqs. (C.8) and (C.9), it is easily seen that

v̂2 = v2

[
1−

(
ΠT
WW (0)

m2
W

)SUSY]
. (C.13)

Therefore,

yeff
f = yf

v

v̂

[
1−

(
Σf (mf )

mf

)SUSY

O(1)

]
= yf

[
1−

(
Σf (mf )

mf

)SUSY

O(1)

+
1

2

(
ΠT
WW (0)

m2
W

)SUSY

O(1)

]
.

(C.14)

When cross-checking with our results, it is worth noting the following correspondence

between the terms in eq. (C.14) and those in eq. (2.6) (using f = t as an example),(
Σt(mt)

mt

)SUSY

O(1), B0 part

=
δyt
yt

,

(
Σt(mt)

mt

)SUSY

O(1), B1 part

=
1

2

(
δZq + δZu

)
,(

ΠT
WW (0)

m2
W

)SUSY

O(1)

= −δZφ , (C.15)

where B0 and B1 are different loop integrals that appear in Σf .

Finally, we discuss the Higgs potential parameters m2 and λ. The minimization con-

dition of the 1PI effective potential,

0 = µ2 +m2
Hu − b cotβ − 1

8
(g2 + g′2)c2β v

2 − tu
vu

= µ2 +m2
Hd
− b tanβ +

1

8
(g2 + g′2)c2β v

2 − td
vd

(C.16)

allows us to eliminate µ2 +m2
Hu

and µ2 +m2
Hd

in favor of v and β. From eq. (3.29) we see

that m2 and λ are related by

m2 = µ2 +m2
Hus

2
β +m2

Hd
c2
β − bs2β = −1

8
(g2 + g′2)c2

2βv
2 +

th
v

= −λv2 +
th
v
, (C.17)

– 53 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
2

where
th
v
≡
sβ tu + cβ td

v
= s2

β

tu
vu

+ c2
β

td
vd
. (C.18)

To extract them from m̂h, we write the tree-level mass matrix squared in the (Hu, Hd) basis,

M2
H =

(
b cotβ + 2λv2c−2

2β s
2
β + tu

vu
−b− 2λv2c−2

2β sβcβ

−b− 2λv2c−2
2β sβcβ b tanβ + 2λv2c−2

2β c
2
β + td

vd

)
. (C.19)

Therefore,

m̂2
h = smaller eigenvalue of M2

H −

(
Πuu Πud

Πud Πdd

)
= 2λv2 +

th
v
−Πhh , (C.20)

where Πuu,ud,dd are one-loop self-energies of the Higgs doublets Hu, Hd, and

Πhh ≡ s2
β Πuu + c2

β Πdd + 2sβcβ Πud . (C.21)

From eq. (C.20) we obtain

λeff = λ
v2

v̂2
+

1

2v2

(
th
v
−Πhh

)SUSY

O(v2)

= λ

[
1 +

(
ΠT
WW (0)

m2
W

)SUSY

O(1)

]
+

1

2v2

(
th
v
−Πhh

)SUSY

O(v2)

,

(C.22)

and then from eq. (C.17),

m2
eff = −λeff v̂

2 +

(
th
v
−Πhh

)SM

= m2 − 1

2

(
3
th
v
−Πhh

)SUSY

O(Λ2)

. (C.23)

Note that while both th
v and Πhh contain O(Λ2) terms, they cancel in the combination

th
v − Πhh appearing in eq. (C.22). The subleading O(v2) terms needed here come from

both expanding the loop integrals involved up to next-to-leading order, and electroweak

symmetry breaking contributions to superpartner masses. Also, note the different notation

adopted in [4]: t1,2 = td,u, Πs1s1,s1s2,s2s2 = Πdd,ud,uu.
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