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ABSTRACT: We introduce non-trivial two-point functions of the super Schur polynomials
in the ABJM matrix model and study their exact values with the Fermi gas formalism.
We find that, although defined non-trivially, these two-point functions enjoy two simple
relations with the one-point functions. Omne of them is associated with the Littlewood-
Richardson rule, while the other is more novel. With plenty of data, we also revisit the
one-point functions and study how the diagonal BPS indices are split asymmetrically by
the degree difference.
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1 Introduction

Recently, there is a great progress in the study of the correlation functions on the M2-
branes. The most important breakthrough is, of course, the proposal [1-3] that the
world-volume theory of min(Nj, N3) M2-branes and [Ny — Ni| fractional M2-branes on
the orbifold C*/Zy, is described by the N' = 6 supersymmetric Chern-Simons theory with
the gauge group U(Np)rxU(N2)_; and two pairs of bifundamental matters. Then, due
to the localization technique [4, 5], the partition function and the vacuum expectation
value of the half-BPS Wilson loop operator on S%, which are originally defined with the
infinite-dimensional path integral, is reduced to a finite-dimensional matrix integration.
It is interesting to observe that the matrix model has a hidden structure of the gauge
symmetry in the supergroup U(N7|Ns) [6-8].

Another interesting progress is the study of this matrix model. After the study of
the large N limit in the ’t Hooft expansion [9-11], where the degrees of freedom N3/2
of the M2-branes were reproduced, it was found that all of the perturbative corrections
in the large N limit are summed up to the Airy function [12, 13]. These studies further
lead beautifully to an unexpected description of the Fermi gas formalism [14] where the
partition function is reexpressed as that of a non-interacting Fermi gas system with a non-
trivial one-particle Hamiltonian and the Chern-Simons level k is identified as the Planck
constant. In the Fermi gas formalism, the behavior of the Airy function was reproduced
in a few line computations, which immediately indicates the importance of the formalism.
The Fermi gas formalism was further used to study the non-perturbative effects in this
matrix model with the WKB expansion [14, 15] and the exact values [16-19]. Finally,
after combining these studies, it was proposed that the partition function [20] and the
one-point function of the half-BPS Wilson loop operator [21] are respectively given by the
free energy of the closed topological string theory and the open topological string theory
on local P! x P'. The proposal was originally made for the case of equal ranks Ny = N
and later turned out to be valid in the rank deformation Ny # Ny [22, 23] by generalizing
the Fermi gas formalism. (See [24, 25] for reviews.) One of the generalizations is called
open string formalism [21, 22| and the other is called closed string formalism [23, 26-31].

There are several natural questions related to these developments. First, though so
far we have considered only the partition function or the one-point function of the half-
BPS Wilson loop operator, it is natural to ask whether we can generalize our analysis to
more general correlation functions. On one hand, in general, when two half-BPS Wilson
loop operators preserve completely different supersymmetries, as a whole the correlation
function does not preserve any supersymmetries at all, which prevents us from applying
many techniques. Especially since the localization technique for supersymmetric correlation
functions does not work, our correlation function does not reduce to a matrix model any
more. On the other hand, it is obvious that, for two identical half~-BPS Wilson loops with
only representations being possibly different, the two-point function reduces to a matrix
model with the product of two characters. Then, due to the Littlewood-Richardson rule,
the product of two characters can be decomposed trivially into a linear combination of
characters. Hence, the correlation function with more than one insertion is not a new



quantity but reduces to the one-point functions. We hope to study two-point functions
with a non-trivial and at the same time tractable structure.

Secondly, it was known that the partition function and the one-point functions en-
joy many non-trivial relations, such as the Wronskian identity [32], the open-closed dual-
ity [31, 33|, the Giambelli identity [21, 22, 34], the Jacobi-Trudi identity [35] and so on. It
would be great if we can introduce a larger framework to combine all of the identities.

Thirdly, in the open string formalism, the one-point function of the half-BPS Wilson
loop is given by a minor determinant of an infinite-dimensional matrix which contains two
ingredients H and K (see (2.19)). One of them H is exactly the same as the one-point
function of the half-BPS Wilson loop in the hook representation. Although a combination
of the other ingredients K plays an important role especially in studying the partition
function with the rank deformation [22, 36], the interpretation for a single component of
it is missing.

Fourthly, in discussing the integrable structure of the ABJM matrix model [34, 35],
the starting point is the open string formalism [22], where, unlike the indices of H, one of
the indices of K is always negative and appears consecutively. It is natural to ask whether,
in studying other correlation functions, we encounter a totally general minor determinant.

Fifthly, in studying the one-point function of the 1/6-BPS Wilson loop opera-
tor [37, 38|, we encounter an imaginary contribution which cannot be regarded as a simple
phase factor as that of the half-BPS Wilson loop. Since we do not have much experience
in correlation functions containing imaginary parts, the study is difficult in general. We
hope to have more tractable examples of correlation functions with imaginary parts.

It turns out that all of these dissatisfactions can be alleviated by considering a certain
type of two-point functions in the ABJM matrix model. Namely, instead of introducing
the characters both by sy (e#|e”) and sz(e*|e”), we invert the “charge” of one Wilson loop
operator, and introduce a two-point function with the insertions sy (e#|e”) and sz (e #|e™").

Of course it is natural to ask whether our capricious inversion of charges is physically
relevant. Especially we would like to know whether we can insert two different half-BPS
Wilson loop operators in the ABJM theory preserving the total supersymmetries, and after
applying the localization technique, whether the insertion of these operators results in the
two-point function in the matrix model we have introduced. Although we do not have
a concrete analysis to justify our expectation, we believe that this is possible due to the
following arguments. Since the scalar fields come into the half-BPS Wilson loop operator
with the norm of the coordinates [7], we believe that we can simultaneously reverse the
sign of the scalar fields in the Wilson loop and the orientation of the loop to preserve the
supersymmetries. We hope that, after applying the localization technique, the correlation
function with these two insertions results in the two-point function we have defined. Also,
as we explain later, from the viewpoint of the Fermi gas formalism of the matrix model,
we can still construct an open string formalism for the insertion of two characters with the
opposite charges in a parallel manner as the one-point function in [22]. The final result for
the Fermi gas formalism of the two-point function is reminiscent of the representation of the
supergroup U(N7|Ny) which is characterized by the so-called composite Young diagram [39]
combining two Young diagrams in the opposite direction. Our result that the two-point



function fully respects the hidden structure of the supergroup may suggest the naturalness
of the definition and their origin in the ABJM theory. Note that this Fermi gas formalism
of the two-point function generalizes that of the one-point function and therefore provides
a larger framework. Also, this formalism associates to a general minor determinant and
includes a tractable imaginary part.

After the introduction of the matrix model with two insertions of the opposite charges,
we continue to study this two-point function. Although it looks non-trivial at the beginning,
after a long numerical analysis of the matrix model, we have found that the two-point func-
tion with the opposite charges is directly related to the two-point function with the same
charges by the complex conjugate, which are subsequently related to the one-point functions
with the Littlewood-Richardson rule. We shall refer to this relation as a conjugate relation.

We also find an interesting relation for the imaginary part. We find that, after the
removal of the main phase factor, the imaginary part of the two-point function in the
representations Y and Z reduces to a sum of the one-point functions in the representation
X whose box number is less than the sum of the box numbers of Y and Z by two. Since we
are studying the imaginary part of the two-point function and the result reduces to simpler
quantities, this property may remind us of an interference between the two insertions Y
and Z. We shall refer to this relation as a descent relation.

Since the two-point function is related to the one-point function, on occasion of many
numerical data, we also revisit the one-point function. Although so far only the so-called
diagonal BPS indices are identified which correspond to the case of equal ranks Ny = Ny,
with the various numerical data in the rank deformation, we can investigate how the
diagonal BPS indices are split by the degree difference. Interestingly, we have found an
asymmetry of the BPS indices in exchanging the two degrees (dy,d_).

This paper is organized as follows. In the next section, we introduce the two-point
function. After establishing the Fermi gas formalism to study the two-point function, we
proceed to studying it and find a few relations to the one-point functions. In section 3,
we revisit the one-point function and investigate how the diagonal BPS indices are split.
Finally we conclude in section 4. In appendix A we collect a few determinant formulas nec-
essary for constructing the Fermi gas formalism of the two-point function and in appendix B
we compute the non-vanishing two-point function in the lowest rank. In appendix C we list
a few data to study the conjugate relation, while appendix D is devoted to the descent rela-
tion. After presenting some relations and formulas for the one-point function in appendix E
and appendix F, in appendix G we list our exact expression of the non-perturbative part
of the one-point function to study the split of the diagonal BPS indices.

2 Two-point function

In this section we shall introduce the two-point function in the ABJM matrix model,
establish the Fermi gas formalism for it and study its property.

2.1 Definition

The one-point function of the half-BPS Wilson loop operator in the ABJM theory is re-
duced to a matrix model, after applying the localization technique for the supersymmetric



theories [4, 5],

DMy DNy TINL, (2sinh L5t )2 [TV (2 ginh Lo tar )2

(sy)i(N1, Ny) = i—2 (NP =N3)

N N m—_Yn
Nyt Nyl [Ty I1,,2, (2 cosh bmsn )2
x sy (e!'|e”), (2.1)
with
dp ik 2 N o dv _ik 2 No aE
Du = o-e D™= H Dy, Dv= 2.¢ D™y = H Duy,. (2.2)
m=1 n=1

Here it was known that the hyperbolic functions can be regarded as a hyperbolic defor-
mation of the invariant measure for the supergroup U(N;|N2) and the Fresnel exponential
factor can be regarded as the supertrace (see [24] for a review). Also the character sy (e/|e”)
is the super Schur polynomial, the character of the supergroup U(Np|N2), and the argu-
ments are the abbreviation, sy (et|e”) = sy (elt et2 ... elNi|et e¥2 ... e"N2).
Although we do not have a rigorous localization analysis for two-point functions of
the half-BPS Wilson loop operators in the ABJM theory, it is interesting to ask how we
can define a two-point function naturally at the level of the matrix model. If we simply
insert another character sz(et|e”) in addition to the original one sy (e#|e”) with the same
arguments, the multiplication can be computed by the Littlewood-Richardson rule

sy (e!]e”)sz(e"|e”) = ) Ni¥zsx(e|e”), (2.3)
X

and the result reduces to the one-point functions trivially. Here let us consider the in-
sertion of sz (e™H|e™V) = sz(e ™1 e7H2 ... [eTHN1|eTV1 eT2 ... eTYN2) with the opposite
“charges”.

The insertion of the characters with the opposite charges is partially motivated by
the study of the Hopf links in the Chern-Simons matrix model [40].2 The Chern-Simons
theory is a topological theory, where the topological invariant of knots can be regarded
as the correlation function of the Wilson loop operators [42] and expressed as the Chern-
Simons matrix model [43]. Especially for the Hopf links the matrix model is constructed
by gluing two wave functions on the solid tori with the Wilson loop inside. In the gluing
process we effectively invert the charge of one of the Wilson loops.

After these discussions, let us define the two-point function in the ABJM matrix

model as
N : m m/ N : mn n/
<SY§Z>k(N17N2):i_%(Nf—Ng) DNl'uDNQVHm1<m’(281nh%)2 Hnin’(251nh%)2
N1l No! TV TIY2, (2cosh bt )2
x sy (e''|e”)sz (e Hle™), (2.4)

We follow the phase factor introduced in [9]. This phase factor simplifies later formulas.
2See also [41] for discussions on the similarity.



and the matrix model in the grand canonical ensemble as?

o0

(syso)nsr(z) = Y. ZN(sysz)e(N,N + M). (2.5)
N=max(0,—M)

Although our definition of the two-point function is not based on a concrete physical
argument from the localization technique, we shall see in the next subsection that this is
in fact a nice definition which naturally incorporates the structure of the representation of
the supergroup U(Ny|Na).

Before proceeding to the study of the two-point function, here let us shortly comment
on its symmetries and relations. First, we note that the two-point function satisfies

(s25y)k(N1, N2) = (sy52)r(N1, N2),
<$yT§ZT>k(N2,N1) = [<Sy§Z>k(N1,N2)]*, (2.6)

which can be respectively proved by inverting the signs of the integration variables p and
v and by exchanging the integration variables p and v and using the transposition relation
syr(ylz) = sy (z]y). In terms of the grand canonical ensemble, the two relations read

(sz8v)isi(z) = (sySz)iar(2),
(syr8,m)n < ar(2) = 2M [(sy52) 55 (2)]", (2.7)

where the complex conjugate does not apply to z, z* = z. Secondly, when one of the
representations is trivial, the two-point function reduces to the one-point function

(so8y)k(N1, Na) = (Sy)r(N1, N2) = (sy)x(N1, N2) = (sySz)x(N1, Vo). (2.8)
2.2 Fermi gas formalism

In this subsection we present the Fermi gas formalism to study this matrix model. Although
so far it was only noted that the case of M = Ny — N7 < 0 can be studied by taking the
complex conjugate, here we study the cases of M > 0 and M < 0 separately and point out
that they are connected smoothly at M = 0. In the both cases, the resulting Fermi gas
formalism is schematically summarized by the expression

5y)6C (2) = i3M°= (@l)
(s sy () = 8" 2 (w) det (M0 (w)) o o o (2.9)

where w is related to z by w = (—i)Mz.

Before explaining various quantities, let us first explain the notation of the Young
diagram and the structure of the determinant in (2.9). See figure 1 for examples. Here we
denote the Young diagram Y by the so-called M-shifted Frobenius notation

Y:(al,ag,”-,aR‘ll,lg,-”,lM+R)M, R:max{i]ai>0}:max{j\lj>0}—M, (2.10)

where a; and [; are defined by

1 1
ai =\ —i+g =M, lj:)\;-r—j+§—|—M, (2.11)

3Tt is important to match the power of z with one of the ranks for both positive and negative M [36].
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Figure 1. The shifted Frobenius notation for Y = [5,4,2, 1] (left) and Y’ = [4,2, 2,1, 1] (right). For

Y we adopt the original shifted Frobenius notation (a1, as|ly,lo,l3,l4) =2 = (g, % %, %, %, %)M:Q

defined in (2.11). For Y’ we change the signs and the roles for the notation aj and I as in (2.13),

(=ly|—al, —db, —al)p=2 = (3|22, 2, $) =2

with the standard notation of the Young diagram, listing the non-vanishing numbers of
horizontal boxes Y = [A1, Ag,---] or dually YT = [AT,A\],...]. In other words, the arm
lengths a; and the leg lengths I; are obtained by measuring the horizontal lengths and
the vertical lengths from the diagonal line shifted by M upward/rightward (or |M| down-
ward/leftward when M < 0) to the boundary of the Young diagram. The Young diagram
Y’ is also denoted by the M-shifted Frobenius notation, though we change the signs and
the roles for the notation @ and l;,

Y = (=14, —lp|—d, - ,—a’]\4+R/)M, R = max{j]l} < 0} = max{ila; < 0} — M,
(2.12)

with
/ !/ . ]- / I'T . ]-
for Y = [N], A}, ---]. The column indices and the row indices appearing in the determinant
in (2.9) are obtained by collecting the “arm” lengths a;, a} and the “leg” lengths ;, l;-,
g = {a/]{’-i,-M? a’/R’+M—17 e ,(1/1,(11,(12, T ,GR}, E = {l/ /y ;{’—17 T 7l/17 lla l27 e 7lM+R}-
(2.14)

Note that, compared with (2.12), in (2.14) the signs and the roles of the arm lengths and
the leg lengths in the Young diagram Y’ are changed to combine with those in Y. This is
why we have introduced the notation in (2.12). Pictorially, this change is clearly encoded
by reversing the Young diagram Y’. See figure 2 for an explanation for the example of
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Figure 2. After reversing the order of arms and legs in Y, the arm and leg lengths in the Fermi gas

formalism (2.9) are given by (a},dh,d}, a1, as|l},l1,l2,13,1s) = (—%7—1 I R T Y

20 29020217 2)7212)212
as in (2.14).

the two Young diagrams Y and Y’ given in figure 1. The diagram combining two Young
diagrams in the opposite direction is called the composite Young diagram and appears
naturally in the study of the representation of the supergroup U(Np|N2) [39]. We shall
refer to the order of the arm lengths and the leg lengths in (2.10) as the standard order
for a single Young diagram and the order in (2.14) as the standard order for a composite
Young diagram.

Although at the first sight the matrix (”H,(gal )(w)) iy 7 i (2.9) consists of four blocks
respectively with positive/negative arm/leg lengths, they reduce essentially to two blocks.
If we refer to the matrix elements as H ,gall) and K ,ga,”) when the leg length is positive, the
matrix elements for the negative leg length are also given in terms of H ,gall) and K ,ga/“) by

the complex conjugate as

- (=a’|=1") * (a’[l)
<H§€a|l) (U])) — [Hk (fwg] (R'+M)x R/ [Kk (Ilw)] (R'+M)x(M+R) (215)
AxL [_le(C_al_ )(w)]*RxR’ [ngal )(w)]Rx(M+R)

where the complex conjugate does not apply to w, w* = w. Of course, as in the left-hand
side, the indices on the right-hand side are also given in the standard order of the composite
Young diagram (2.14). Now, various quantities appearing in (2.9) and (2.15) are defined as

Zk(w) = Det(1 + wPQ),
KW (w) = F(1+ wQP) ' Fy,
H™ (w) = wF(1+ wQP) ' QE,, (2.16)



with

! Qv, ) = !

- - b
2 cosh “5£

P(Ma V) P ——
2 cosh K5~

E,(n) =€, Fy(v)=e. (2.17)

Here we regard P(u,v), Q(v, ) as matrices and E,(u), Fy(v) as vectors. When multi-
plying by contracting the “indices” p and v we utilize the integration measure (2.2). The
determinant Det used in defining Zj(w) in (2.16) is the Fredholm determinant on the
function space.

Note that, for the partition function or the one-point function, the expression (2.9)
reduces to those found in [14, 21, 22]. Especially, for the grand canonical partition func-
tion of equal ranks Ny = Nj or M = 0 [14], we have <1>g§/[:0(z) = Ei(w), which gives
a physical interpretation to Zp(w). For the one-point function of the Wilson loop op-
erator in the hook representation for the case of equal ranks No = N; [21], we find
<5(au)>g§f/[:0(z) = Ek(w)H,ga”)(w). Hence, after the normalization, H,E,a“)(w) is clearly
interpreted as the one-point function in the hook representation. For the grand canon-
ical partition function with the rank deformation N > N; or M > 0 [22], we find
<1>S§\34(z) = i%MQEk(w) det[K,ia/ll) (w)]arxar- Though the determinant is important in com-
puting the grand canonical partition function with the rank deformation, the interpretation
of the single component of K lia,‘l) (w) is not clear. After our introduction of the two-point
function, the situation is improved. We can consider, for example, the two-point function

1

_ i a’—1]1+1
<S(%|1)8(%|_a/)>]§?\4:1(2) = 12:k(w)K,i i+ )(’LU), (218)

which gives the interpretation for the single component of K lialll) (w).
Also note that, for the general one-point function of the Wilson loop operator with the
rank deformation M > 0, we find [22]

al|l;
)

[H(aillj)(w)] M ) (2.19)
k

(sv)551(2) = i7M° 2y (w) det
(w)] Rx(M+R)

Regarding the determinant as a minor determinant of an infinite-dimensional matrix, the
matrix element with negative leg lengths never appears. Besides, although the indices of
a; and [; depend on the shape of the Young diagram and can appear generally by choosing
different Young diagrams, the indices of a/ always range consecutively within

1 3 1
!/
Eq =, — =, , M4 — 5. 2.20
The situation is not improved much even we include the case of M < 0. This may imply
that the one-point function is not the most general quantity to study and there is a natural
generalization of it. After obtaining the Fermi gas formalism for the general two-point

function, the matrix elements with both of the lengths in (a|l) being negative can participate
and the indices ¢’ and I” do not have to range consecutively any more.



2.3 Derivation

In this subsection, we shall give a derivation of the Fermi gas formalism for the two-point
function (2.9) from the definition (2.4). The basic techniques for the derivation already
appeared in the derivation for the one-point function [22]. We first introduce two determi-
nant formulas, where one is used to express the integration measure in a determinant and
the other is used to express the super Schur polynomial by replacing the previous determi-
nant by another. Then we can combine the determinants by the continuous Cauchy-Binet
formula. The only new ingredient for the two-point function is to repeat the application
of the determinant formulas twice.

2.31 M>0

We first explain the Fermi gas formalism for the case of Ny > N carefully. Namely, we
set N1 = N and No = N 4+ M with M > 0. For the integration measure, we introduce the
combination of the Vandermonde determinant and the Cauchy determinant

1
N- No _—
Hm1<m/ (xm - [Bm/) HTL<7’1/ (yn - yn’) _ (_1)N1(N27N1) det |:fL‘m ‘J‘ yn:| (m,n)€Z1><Zz
T T2 (o + 1) -}
m=1 n=1\"m n [yn :| B N
(I,n)ELX Z>

(2.21)
with Z; = {1,2,--- N1}, Zo ={1,2,--+ ,No}and L = {M —5,M—3,--- , 1} appearing in
the determinant in this order. For the super Schur polynomial, we utilize the determinant
formula [44]

L]
- o
sy (zly) = (—=1)" det [xmjgf” (myn)€Z1x Zs (m,a)€Z1xA
-3
0
[y" }(l,n)eLxZg [0z
B
det | L¥m T Unlmmyezixz, | | (2.22)
o]
I inyeTxzs
where A = {ay,a9, - ,ar} and L = {l1,l2, -+ ,lpr+r} are the sets of the arm and leg

lengths in the shifted Frobenius notation in the standard order (2.10).

Since we have the square in the integration measure and two super Schur functions in
the two-point function (2.4), we need a copy of the previous two determinants. It is easier
for the later convenience to obtain them by substituting + — z=1, y — ¢!
by Y (namely I — —a, a — —I', | — —a’ as in (2.12)) and transposing the matrix. Then,
we find

, replacing Y

N -1 -1 N: -1 -1
(_1)%N1(N1—1)+%N2(N2—1) Hml<m’(xm’ - ':Em ) Hnin’(yn’ - yn )
N N: —1 —
Hmlzl nil(xm + Yn 1)

(2.23)

Yn

= ()M N2 get ({_1_1] m%} ) > ’
Yn© +Tm (n,m)€Zax 2y (n,@)€Zax A



with A = {—(M — 1), ~(M — 3),--- =1} and

2 2
[1} ]
— — n
sy (z 7y~ = (=1)F det Yn ' + ffml (n,m)€Zax Z1 (n,a')€Zax A/
U'+3
|:~Tm 2} [O]L’XA’
(l/’m)elezl
1 a+l
Jia(lral o ). 22
Yn  + Tm (n,m)€EZax Z1 (n,a)eZax A
where —L' = {=l},~ly,--+, =l } and —A" = {—a), —a5, -+, —a), p} are respectively

the sets of the arm and leg lengths for the single Young diagram Y. See figure 1 again to
avoid confusion.

After substituting the four determinant formulas (2.21), (2.22), (2.23), (2.24) with
Ty = ey, = e, we find that the two-point function is given by

N1, PN
(s 8y (N, N4 M) = i~ SVEND (1) 3Nt No oty reny [ DD 20
’ N1 No!
« det [P(pV)INs(Nenry  [Ea(p)nxr dot QW W (N4anyx N [Far(W)(N+a)x (M+R?)
[FL(W)] v+ ryx(van) [0l ryxr Ep ()] rixn 0] pr s (M4 R) ’
(2.25)
with
P( V>—¥ E.(p) =e™,  F(v)=¢e"
My - 2COSh N;V7 a\b) = ) l - ’
1 ! !
Qi) = 5——=g Fulv) = e, () = '™ (2.26)
T2

Now using the continuous Cauchy-Binet formula, Formula 1 given in appendix A, we
can combine two determinants into

(N) _ Z~MN+%M2(_1)MN+§M(M—1)+R+R’+Rl~2’ DiNﬁ‘ (2 27)
N! '
[(Po@)(mnxn  [(PoFa)(w)lnxm+r) [Ealt)lnxr

x det | [(F1 o Q)(1)](m+ryxn [(Fi o Fo)l(msryx(m+r)y Olv+ryxr | >
[Ev ()] rrx N 0] R/ x (4R 0]r/ xR

(sYy Sy )kMm

with o denoting the contraction with Dv (2.2). Using Formula 2, we can express the
two-point function in the grand canonical ensemble defined in (2.5) as

o ) , / 1+wPo@ wPolFy, wkE,
(sysyngar(z) =iz (1) MMDFRHRFRE Do | [oQ  FoFy 0 . (2.28)
Ey 0 0

Here we have introduced w = (—i)™ 2z to take care of the sign factor proportional to N.
The determinant Det is a combination of the Fredholm determinant for the first block of
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rows and columns and the ordinary determinant for the remaining blocks. Using Formula 3

we can further separate the Fredholm determinant from the ordinary one,

(sy sy (2) =02 M (—1) sMM-DFRERERR Dot (1 4y P)

)

wdet [ F1ATWQP) Fularemyxorer) [F0R(+wQP) QBudariryxr (5 99)
[—wEy(14+wPQ) ' PFylpxm+r) [—wE(14+wPQ) 'Erxr |’

where we have dropped o and understand the matrix multiplications by the integrations
Dy and Dv tacitly. Now it is very interesting to observe that the arm and leg lengths are
those appearing in the composite Young diagram in figure 2.

To reduce the expression, we first multiply the sign factors (—1)R+R/ to the second
column block and the second row block. After that we exchange the first and second row
block and rearrange the arm and leg lengths to the standard order of the composite Young
diagram. Due to the exchange of the rows and columns, we encounter the extra sign factor

(_1)(M+R)R’+%R’(R/—1)+%(M+R/)(M+R’—1) _ (_1)%M(M—1)+RR/7 (2.30)

cancelling parts of the original sign factor. Finally, the two-point function in the grand
canonical ensemble is given by
(sy3y)§5(2) = i7" Det(1 + wQP)
% det [U)El/(l +WPQ)71PFQ’]R’><(R’+M) [-U)El/(l +wPQ)71Ea]R’><R (2 31)
[Fi(1 4+ wQP) ' Fol s rys(ran) [wF(14+wQP) ' QEo) (v+r)xR

After transposing the determinant in this expression and using

wEy(1+wPQ) 'PFy =wE_yp(14+wPQ) 'PF_y = [wF_y(1+wQP) 'QE_,/*,
—wEy(1+wPQ) 'E, = —wE_y(1+wPQ) ' E_, = [~wF_y(1+wQP) ' F_,]*, (2.32)

we obtain (2.9). Note that the complex conjugate can be realized effectively by exchanging
the matrices (P, Q) and the vectors (E, F') simultaneously.

2.32 M<O0

The construction of the Fermi gas formalism for the case of M < 0 does not change much.
Instead of keeping the same notation with M < 0, let us introduce the notation M = —M,
Ny =N =N+ M, Ny =N + M = N which is more intuitive. This time instead of (2.21)
and (2.23) we use

N N-
Hm1<m’(‘7;m - 'T’m’) Hnin/(yn - yn’)

N- N:
Hmlzl nil(xm +yn)

oy

1 [
Tm 2} —_ 1, 2.33
Tm + yn:| (m,n)EZ1 % Zs (m,a)eZ XA) ( )

— 11 —



with A={M -3, M —3,.-- 1} and

N -1 -1 N -1
<_1)%N1(N171)+%N2(N271) Hml<m’(xm L ) Hnin (y — Yn )
TIoL T102 (! + )
m=1 11ln=1\"m y”
1

_ (_1)N2(N1—N2) det |:y7;1 _; Cgr_n1:| (n,m)€Zax 71 , (234)
[ﬂsrf} S
(l,m)ELXZ1

with L = {—(M—3),—(M—32),--- ,—1} and change the denominators of (2.22) and (2.24)
accordingly. Also for the M-shifted Frobenius notation of the Young diagram, we introduce
Y = (a1, ,agiplls- 5 lg) R = max{i|a; > 0} — M = max{j|l; > 0},
Y = (=1}, l;\4+R'| —ay, - ,—a;—%,)fM, R = max{j|l9 < 0} — M = max{i|a; < 0},
(2.35)
where we note that R and R are related by R = M + R, M + R = R and R’ and R’ are
related by R' = M + R/, M + R’ = R'. Then we arrive at the same expression as in (2.25).

DNy DN2y

Nyl No!
><det<[P(’u’ V)N x N [Ea(ﬂ)](N+J\7[)x(M+R)>det( Qs §x iy FoW)]wxr |
[

[FL (V)] px v [0] & (i1 +R) Ey () (sr+m)yx(w+51) [Ola4+-ry<
(2.36)

(sy 3y Ve (N+M,N) =i~ 2(NT=N3) (_1)3 M (Ni=D)+5No(No—1)+ R+ R

This time, since we have more p variables than v variables, we shall perform the
integration Dy first and then move to the grand canonical ensemble (2.5)

<8y8y/ . M Z z SySy/ k(N—i—M,N) (2.37)

Effectively we can exchange the two determinants in the integrand and proceed in the
parallel manner. Finally, we find

(sy5y)§C 17 (2) = i2 M7 (— 1) s M DHRERHRR Dot (1 1y Q P)

«(—w)™ d [Er (1 +wPQ) ™ Eo) (i1 fryx i+ &) [~wEr(1+wPQ)~! Eol sy |
[~wF(1+wQP) "' QEu] a1+ ) [— UJFl(lJr’wQP) "Fulpx i
(2.38)

After changing the rows and the columns suitably and transposing the determinant, we
arrive at the same expression as (2.31).

2.4 Phase factor

After establishing the Fermi gas formalism for the two-point function in the ABJM matrix
model in the previous subsection, we can start the computation. We first note that we can

— 12 —



compute the lowest component of the grand canonical two-point function in the expansion
of z (in other words, the non-vanishing canonical two-point function (sysz)i(N, N + M)
of the lowest rank N) and present the results in terms of the Young diagrams Y and Y.
The result is given in appendix B.

For higher orders we need to perform the residue integration order by order for each
ingredient (2.16) appearing in (2.9) and (2.15). Fortunately, the computation of each part
already appeared previously. For Zi(w), the computation was already given in the first
computation of the exact values for the partition function in [16-18]. The techniques of
rewriting the multiplications among matrices P and () into subsequent multiplications by
matrices on a vector were also reviewed in [24]. For H ,ga‘l)(w), the computation was given
in the study of the one-point function of the Wilson loop in [21], where it was found that
the computation is convergent for 2(a + 1) < k. For K Iga/“)(w), the computation was given
in the study of the partition function with the rank deformation No # Nj in [22], where
the convergence is valid for 2|a’| < k and 2] < k. Using these results of the computation,
we can compute the two-point function without difficulty. For simplicity in discussing the
numerical results, we always consider the case of M > 0. We have computed the two-point
function (sySz)p(N,N + M) of 2 < |Y|+ |Z| <5 and k = 3,4,6,8,12 up to N = Npax
with (k, Nmax) = (3,7), (4,13), (6,8), (8,4), (12,5) for M within the range of convergence.

As a preliminary study of the result, we start with the phase factor. As known
in [21, 22|, the phase dependence of the partition function and the one-point function

is rather trivial. Especially, with the phase factor i~3WE=N3) included in the definition
. NO
of (2.4) [9], the phase of the partition function "% and that of the one-point function

@k defined by
Le(NVN+M) _ ep,, sy, N+ M) 9% ar,

_ , - 2.39
{1)(N, N+ M) oy (N, N + A1) (239)
are given by
TM3— M T
Ofar = Okar + B 0, Opar = w5 OF v = E(QCY - MYY), (2.40)

independent of the rank N. Here |Y| is the total box number of the Young diagram Y and
¢ is the sum of the contents for the Young diagram Y,

Yi= > 1, &= > (G- (2.41)

(4,7)€Y (i,5)€Y

Here we stress that, with the phase i3 (NP=N3) included, all of the remaining phases
in (2.40) are proportional to k~! and cannot be removed simply by changing rows
or columns.

The phase factor of the two-point function is more complicated. Nevertheless, after
plotting the phase, we have found that, in the large N limit, the phase of the two-point
function is exponentially approaching to the sum of those of the two one-point functions
with separated insertions,

(sy52)r(N,N+M)  iov7  yy v
M, O =10 0 07 ar- 2.42
oz, N+ 0] 7 ¢ Ok = ka4 O+ Oar - (242)
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Figure 3. The phases of the two-point function (sg3g)r—e(N, N + M) (red dots) and the phases
@E%M = Op—o. 1 + 205 6. (blue lines) for M = 0 (left), M =1 (center), M = 2 (right). The

phases are approaching to @k:% u in the large N limit for M = 1,2 and the phase is identically
vanishing for M = 0.

As an example, in figure 3 we plot the phases of the two-point function (sg5q)x—g(N, N+ M)
and show how the phases are approaching to @%’E&M = Or—6n + 2:9%:67]\/[ for M =0,1,2.

It was known [42] that the phase factor is interpreted as the framing factor in the
field-theoretical viewpoint. Here 0 ps is the framing factor of the manifold while 9,5; M s
the framing factor of the Wilson loop. Hereafter we often consider the two-point function
with this framing factor removed,

@YZ

e kM (sy S (N, N + M). (2.43)

2.5 Perturbative part

It turns out that as in the case of the one-point function the result of the two-point function
is summarized cleanly in the grand canonical ensemble. To present the result we define the
chemical potential p from the fugacity z by pu = logz and study the perturbation theory
in large p in this subsection.

We first conjecture that, for the one-point function of the half-BPS Wilson loop oper-
ator in an arbitrary representation, the perturbative part is given by

(sy)pSr(z) [pert LAY (2.44)
GC - . 2nh(ij)’ :
(D (2) [Tji ey 2sin 2
where h(i,j) at (i,7) € Y is the hook length
h(i,j) =X+ Aj —i—j+1. (2.45)

There are many consistency checks for this expression. First, this expression is con-
sistent with the numerical analysis in [33], where it was found that for many one-point
functions in the hook representation, the perturbative part is given as

(8(aln)) i 7 (2) [P 5 (o %)hmmz)e% 2.46
W N in 2% a+l) 2 27rm 2 27rn ’ ( . )
k.M 2sin H ) 2sin <21 H 9 gin 2

Our perturbative expression (2.44) reduces to (2.46) for the hook representation.
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Secondly, this expression is also consistent with the Giambelli identity proved
in [21, 34, 35]

<8(a1,a2,~--,aR|l1,l2,~--,lR)>kG7(]€4(Z) — det <8(a¢\lj)>]§§\:4(z)
N 1<i<R’

(e (2) (i (2)

(2.47)
1<j<R

which reduces the expression in an arbitrary representation to that in the hook repre-
sentation. In appendix F.1 we prove that the perturbative truncation of the one-point
function (2.44) satisfies the Giambelli identity.

Thirdly, after assuming the correspondence with the open topological string theory [21]
and the identification of the variables (see (3.14) later), we also see that the expression of the
open topological string free energy gives (2.44) when expanded for various representations
Y. The expansion is given in appendix F.2.

For the perturbative part of the two-point function, from the numerical studies, we
find that it is equal to the product of the two one-point functions with separated insertions,

(svs2) S5 P L E P (S P o)
(DEar(2) (D (=) ORI '

S
k.
2.6 Conjugate relation

A direct study of the non-perturbative part of the two-point function is more complicated.
Nevertheless, we can separate the two-point function into the real part and the imaginary
part and investigate the large 1 expansion in the grand canonical ensemble as in the one-
point function. We have performed this analysis for a few two-point functions. After
seeing in the previous two subsections that the phase factor and the perturbative part of
the two-point function split into the product of those of the two one-point functions with
separated insertions, we may expect a more direct relation to the one-point functions even
for the non-perturbative part. In our analysis we have found two relations to the one-point
functions. We shall present one in this subsection, the other in the next subsection and
discuss their possible interpretations.

The first relation is

.Y, Z

3 Y, Z *
e kM (sy5,)(N,N + M) = [e”@k’M@ysz)k(N,N + M)] : (2.49)

Namely, our two-point function with the main phase factor removed is equal to the com-
plex conjugate of the trivial two-point function constructed by the two characters sy (e#|e”),
sz(e*|e”) of the same “charges” and can be decomposed into the one-point functions fol-
lowing the Littlewood-Richardson rule. From our original viewpoint of the definition of
the non-trivial two-point function (2.4), there are no signs that we can superpose the two
insertions. Nevertheless, after the long analysis of the exact values, we have found that
actually these two insertions can be superposed to each other and essentially reduced to the
one-point functions. In the following, we shall refer to this relation as the conjugate relation.
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There are several ways to express this relation. For example, if we do not want our
result to contain the phase factors, we can express the result as

(sy52)k(N1, Na) - (1)x(N1, Ny) {<sysz>k<N1,Nz> - (D)r (N1, Na) | (2.50)

(sy)i(N1, Na) - (52)1(N1, N2) | (sy)&(N1, No) - (s2)x(N1, No)

Also, if we expand the two characters by the Littlewood-Richardson rule sy sz =) XNéfst,
it is given by

. Y.,Z .
e MO (s 52D (NN + M) = 37 Ni¥e™ O {sx) (N, N + M). (2.51)
X

Although this relation is natural from the viewpoint of our studies of the phase factor
and the perturbative part, it is a highly non-trivial relation, considering that it continues
to be valid for all of the non-perturbative corrections. In fact, at present we cannot prove
this relation from any rigorous arguments. We have checked this relation for all the cases of
2<Y|+|Z| <5and k = 3,4,6,8,12 where the integrations are convergent. Especially we
have listed some data for the case of (sgsg)k=6(IN, N + M) with M = 0,1, 2 in appendix C
to convince the readers of the validity. We note that, although all the ingredients in the
two-point function (sgsg)g=e(N, N + M) and the one-point function (s)x—¢(N, N + M)
are convergent for M = 0,1,2, those in the one-point function <35)k:6(N,N + M) are
convergent only for M = 0,1. The ranges of the convergence do not necessarily coincide
for the both sides of (2.51).

This relation may reflect the topological aspects of the ABJM matrix model. The
one-point function in the ABJM matrix model originates from the half-BPS Wilson loop
operator and is known to relate to the topological string theory. Though our definition of
the two-point function is not obtained from the localization technique for supersymmetric
correlation functions, since this definition respects all of the symmetries the one-point
function has, it may still relate to the topological string theory. Therefore, we expect that
the relation we have found is another sign of the deep relation between the ABJM matrix
model and the topological string theory, though the full interpretation is unclear to us.

2.7 Descent relation

As we have explained in section 2.4, in the large N limit, the phase of the two-point
function (sySz)r(N,N + M) is approaching to @ky”f/[ exponentially. This implies that
the imaginary part of the two-point function with the main phase factor removed,
Im e Ok (sy5z)k(N,N + M), has a simpler structure. In this subsection, we observe
an interesting relation for the imaginary part of the two-point function.

In the study of the simplest two-point function (sgso) (N, N+ M) with both insertions
in the fundamental representation [J, we find that, after removing the main phase, the
imaginary part of the two-point function simply reduces to the partition function

0,0 2 M ;
Im [e_lekaM (so50) (N, N + M)} = (sin 7;) ¢ Ok a1 (1),(N, N + M). (2.52)

,16,



It turns out that this relation is a special case of a more general relation between the
imaginary part of the two-point function and the one-point functions. Our conjecture is
that there exists a set of Laurent polynomials Q{/(Z of ¢ = e depending only on the
Young diagrams so that the relation

Im [67i@§73<sygz>k(N7N + M)| =Tm | e Ox > QFsx)k(N,N+M)|,
|X[=Y[+Z]-2
(2.53)
holds where the sum is taken over the Young diagrams X whose box number |X| is less
than Y|+ |Z| by 2. Later we will denote this relation simply by

(sy§z) ~ Z Q% (sx) mod ¢© 'R, (2.54)
X

or, when there is no confusion, we often drop mod e©"“R since the phase is clear for the
two-point function.

For the case of Z = [, we have explicitly found a simple set of the coefficients Q})ﬁm
for the relation (2.53). Namely, Q{/(D is non-vanishing only for X = Y, with Y, denoting
the Young diagram with one box removed from Y without affecting the rule of the Young
diagram and Q?D = 1. In other words, the relation simplifies to

(sys0) ~ > (sv.). (2.55)
Ye

Especially when Y = (a|l) is the hook representation, the relation is

(8(alty30) ~ (S(aji=1)) + (S(a=111))- (2.56)

Also, for the case of Y = (a|3) and Z =, the relation is
_ 1 -
<S(a‘%)3m> ~ qa’ 2 <S(a|%)> + q 1<3(a_1|%)>, (257)
while for the case of Y = (3|I) and Z = (a|3), the relation is

<S(%\l)§(a|%)> ~ (S(ali—1)) + (S(a—11))- (2.58)

In fact (2.56) and (2.58) are equivalent if we assume the conjugate relation (2.49) in the
previous subsection. We list the first few concrete relations in appendix D.1. For the cases
when the total box number is less than five, the relations are always special cases of our list
in (2.55), (2.57), (2.58), though for the cases with more boxes there appear relations which
do not belong to the cases we have discussed. Nevertheless, our conjecture is that they still
satisfy the general expression (2.53) with a suitable choice of the Laurent polynomials Q})f -

Note that we do not claim that the set of the coefficients Qfgz is unique due to the
non-trivial relations for the imaginary part among the one-point functions with the same
box number

:o(n)
Im e Okt 3" Q¥ (sx)(N, N+ M)| =0, (2.59)
|X|=n
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with

M

@g4:%M~%n+@77, (2.60)
or, in our abbreviated notation,
3" Q¥(sx)~0  mod ¢®"R. (2.61)

| X|=n

The set of the coefficients {,(Z is determined only up to these ambiguities and we have
chosen one representative set to express the relation. Nevertheless, we stress that, once
Qfg 4 is chosen up to the ambiguities, the same set of Q?f  is valid for any N and M.

For example, for the case of the one-point functions with three boxes, we find a non-
trivial relation for the one-point functions

- [e"@g” (q<5m>k<N,N+M> ~ (s, N £ M) 7 (s)u(N, N + M)ﬂ -

(2.62)
Note that we are free to multiply the relation (2.62) by
q% — q_%
[nlg = 4, (2.63)
q2 — q 2

since [n]; € R, which is sometimes necessary for discussing the representative choice of
Q{f - In the notation (2.61), the relation for the one-point functions can be expressed as

q(sm) — (spp) + q_1<sa> ~0  mod ¢®”R. (2.64)

For the case of the one-point functions with more than three boxes, there are more sim-
ilar relations. We list the first few ambiguities in appendix D.2. Our descent relations
in (2.55), (2.57), (2.58) and appendix D.1 are given up to these ambiguities.

We have many checks for the relation (2.53) (and (2.59) as well). Since we have
computed the exact values of the two-point function up to a certain rank N = Npax,
we can substitute the values to the relations to check the validity. Also in appendix B
we have computed the non-vanishing two-point function of the lowest rank (or the lowest
component in the grand canonical ensemble) and we check the relation (2.53) for the lowest
component in appendix D.3. Anyway, our conjecture passes all of the consistency checks.

Since the lowest component is determined for any values of M, we can proceed one
step further by asking which set of the Laurent polynomials fo( , satisfies the relation for
the lowest component. Surprisingly, we find that actually the lowest component gives a
large enough number of the constraints so that as long as these constraints are satisfied the
relation on the imaginary part also holds for the higher components. In fact this is true
for all of the relations given in appendix D.1.
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The interpretation of the relation (2.53) is again obscure. Since we are considering the
imaginary part of the two-point function, this may relate to the interference between the two
insertions. One may also expect that the relation is related to the orientifold projection [28-
30, 45, 46], since the resulting condition for the non-vanishing values of Q3% ,, |X| = |Y]| +
|Z| — 2, is reminiscent of the reduction of the unitary groups to the orthogonal groups or
the symplectic groups (due to the invariant tensor d,, and Jy; respectively). An alternative
attempt for the interpretation is given in appendix D.4, where the reduction by two boxes
is interpreted by the derivative, in the analogy of the symplectic structure of the Heisenberg
algebra [q, p] = ih, which reduces the total number of the coordinate/momentum operators
by two. Since the relation reduces the total box number, we shall refer to this relation as
the descent relation.

2.8 Implications to one-point functions

In the previous two subsections, we have found two relations among the two-point functions
and the one-point functions. The conjugate relation reduces our non-trivial two-point
function to the trivial two-point function which can be reexpanded into the one-point
functions by the Littlewood-Richardson rule. The descent relation reduces the two-point
function to the one-point functions more directly by concentrating on the imaginary part.
Although originally the relations are naturally given in terms of the two-point function,
after eliminating the two-point function, we find a relation purely among the one-point
functions with the box numbers differing by two. For example, for the case of two boxes,
the relation is

2

. . 27 2T M
sin ?|<Sm>k(N1, Na)| — sin ?|<SE>I§(NM Na)| + sin

[(1)k(N1,No)| =0.  (2.65)

We shall abbreviate this relation as

o1l(sm)| — a1l{sp| + oml(1)| = 0, (2.66)
by introducing o, = sin(%’rn). We can alternatively write down the expression using

the g-number (2.63) with [n], = 0,/01. Similar relations also hold for more boxes. We
summarize the relations for the box number up to five in appendix E. Beyond four boxes
the relations are subject to the ambiguities (2.62) as we have discussed. These relations are
given purely with the one-point functions and some of them reproduce the relations known
previously. We could have pointed out these relations without introducing the two-point
function. However, with the two simple relations given in the previous two subsections, we
find it more natural to discuss in a larger framework with the two-point function.

3 Topological strings

In the previous section we have defined the non-trivial two-point function, studied them
carefully and found that the two-point function relates to the one-point function directly.
From these studies we are convinced of the importance of the two-point function we have
defined, since it provides a natural framework to unify many aspects of the one-point
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function. Here on occation of various numerical data, let us revisit the one-point function
and uncover some fine structure of them. Among others, we find that the Gopakumar-Vafa
invariants are asymmetric in the exchange of the two degrees, which is not very common
in our experience. We first briefly explain the correspondence between the matrix model
and the topological string theory before going into the analysis of the Gopakumar-Vafa
invariants. Although most of the correspondences are well-known, we try to shed some
light by presenting the cases of closed strings and open strings in a parallel manner.

3.1 Partition function and closed topological strings

From the definition of the matrix model in the grand canonical ensemble (2.5), it is not
difficult to observe that the function (sy5y/)$S,(e#) is invariant under the shift of u by
27i. For this reason, we define the reduced correlation function by

o

(sysyiar(e) = Y (sysv )i+ 2min). (3.1)

n=—oo

Then it was known that, if we further redefine the chemical potential p into peg, the
reduced grand canonical partition function can be described by the free energy of closed
topological strings [20]

(RS () = . (3.2)
Here, besides the perturbative part FP'Y(T), the free energy
FNT) = FP(T) + FVS(T) + FMB(T), (3.3)

is separated into the worldsheet instanton part FWS(T') and the membrane instanton part
FMB(T) given by (s /g = 2ji/r + 1)

1)(8L+3R*1)”3R sin 2w gsnst,
FWS S —nd-T
Z Z JL:JR Z n(2sinwgsn)? sin 2w gsn ‘ ,

d JL.Jr
MB nﬂsL sin 7;—"SR _pdT
F =D N Z “ gs 9s 47m2(s1n w3 ¢ T (34)
d JL.Jr s
with the identification
4 . 2M 2
T:I:: /;:ﬂ:l:ﬂ"l<1—k>, QSZ% (35)

For integral £ and M the effective chemical potential is explicitly given by

33
p—2(—1)2Me 2“4F3<1 L 50 5i2:2,216(- )_Me_2“>, k : even,
Heff = 3 3 (36)
p+ ey Fy (1 L5i5i%22 —166—4“> k :odd.
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When the BPS index N]‘i jr s non-vanishing only for s;, + sg —1 = 0 mod 2, if
we ignore the non-perturbative membrane instanton part F MB(T), we can rewrite the

worldsheet instanton part FWS(T') as

i 2i sin wgsn)292 —nd-
FWS(T):ZZan( - SO nar (3.7)

d g=0n=1

where we have introduced the Gopakumar-Vafa invariants ng by

. o
SR Sin 2mwggn sy, die. - 20—2
Ng . = 2 9-2, 3.8
]Z; JL08 (2 sin mgen) 2 sin 27 gen Zong( isinmgsn) (3.8)
LyJR -

The free energy of closed topological strings was known to enjoy the multi-covering prop-
erty. Namely, if we define the multi-covering component as (Q+ = e~ 1*)

0 27 2g—2
=3 nd (22’ sin k) Q4 (3.9)
d g=0

or more explicitly

o) 29—2 )
2 i
Aar(@ =303 nd (Zi sin ;) el =) P g (3.10)
d g=0
4 €
after introducing @ = —6_%, the free energy can be expressed as
FWVS(T Z — Ak 4, (QM). (3.11)

n’

Higher powers of @ in FWS(T) consist both of the Gopakumar-Vafa invariants of higher
degrees and the Gopakumar-Vafa invariants of lower degrees. Physically, by regarding n
as the winding number, this insists that both genuine states of multiple degrees without
windings and states of degree one wound multiply contribute as the same effects.

3.2 Omne-point functions and open topological strings

The normalized one-point function in the grand canonical ensemble is given by the free
energy of open topological strings

(0 J———
2 mEs g W= | 12

where the free energy of open topological strings is given by

h ..
2zsm7rg ) 9-21 2isinwgsnl; =~ o\ _. 4.
§ : § :E :E : d/r sT stoty / d-T
FOP(T ‘/ h' gj tr‘rnj e n 7

=1 £ n=1 j=1

(3.13)
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with the identification )
V=0,%, (3.14)
along with those in the partition function Q4 = e~ T*, (3.5), (3.6). Note that the relation

in [21, 47]

Sr A StrUT tr VW GC ~
{(e2=n=1 Vi (1) _ JFPTY) (3.15)

(5 () ’

with U = diag(e#,--- ,e!N|—e" ... —e’N+M) is rewritten into (3.12) with the help of
the orthogonal relation

(1 .
sy = S el (2, (3.16)
i, i v

where sy (x|y) is the super Schur polynomial while sy (z) is the ordinary Schur polynomial.

The identification (3.14) without the fractional branes M = 0 was pointed out in [47]
with V = Q_%V. Here we generalize the identification to the cases with M # 0 by replacing
Q with only one of the Kahler parameters Q4 = e ’+. In appendix F.2, by carefully
studying the phase factor as well, we check that the identification (3.14) is consistent with
the correspondence between the open topological string theory (3.12) and the perturbative
part of the one-point function in the ABJM matrix model (2.44) in section 2.5.

As in the case of closed topological strings, we can express the free energy as

= > 1 & tr vl
YD) =350 At @ I (3.17)
i

h=1 £ n=1

if we define the multi-covering component suitably. We first define the multi-covering
component as

2 - abf . . 2m 29-2 (] . 27l -1 €] —2d 1 —2d_
AL(Q4,Q-) = ZZTLQ’ 228111? H 2zsmT Q+ Q_ ’
d

(3.18)
. -1 . 2Wef  _ miM . 2WeF  miM
with ( +2,Q2> = (ze ke k ,—ie k e k >, and observe that we can safely change
. -1 . 2Meff miM -1 | Mo miM
the sign of Q_2? = —ie % e & into Q_? = ide * e k since only even powers appear.

This means that we can rewrite the multi-covering component into

A 1(Q) (3.19)
00 or\20-2 [ I ol cina \ €l—2(d4—d_) 1\ 14=2(dy+d-)
- 0 ( . T[2isin 27 | (=8 .
—E g nyg 2@sm> 24 sin ek Q2 ,
d g=0 K J=1 F ( ) ( )
2leff

with Qfé =ie k
Note that, although the free energy of open topological strings is clearly given in the
power sum basis, the one-point function in the ABJM matrix model is more naturally
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given in the basis of the Schur function with the universal phase (2.40). To relate these
two theories, as the first step, let us see how the multi-covering structure is given in the
basis of the Schur function. For this purpose we expand

Foo(T, V)= Al >trV+A;1) tr V244 AL )m;/)QJF. . .+A(12)tr;/2 e (3.20)
with the abbreviation A% = k g (@) for (3.17). Then, we find that the exponentiation
can be expanded by o P Z a (1 o)
where each coefficient is

AP = AW,
AT [;Agl’” + ;Agﬂ + B(Agl))2 + ;AS)} :
A= [;Agm - ;Agﬂ + B(AP)Q - ;Ag)} . (3.22)

For A™ and ;15 it is natural to interpret the terms in the first bracket as the genuine states
without windings and the terms in the second bracket as the states coming from the double
windings of AP, This computation continues to higher degrees.

Comparing the proposals for the partition function and the one-point function from
the viewpoint of the tau function of the integrable system, we find a close similarity. It was
observed in [48] that the partition function of the spectral curve (generalizing the ABJM
matrix model) corresponds to the tau function of the ¢g-Painleve equation and it was proved
in [34, 35] that the normalized one-point function in the ABJM matrix model satisfies the
Giambelli and Jacobi-Trudi identities, which are shared with the expansion coeflficients of
the tau function of the soliton theory [49-51]. These two proposals seem compatible with
each other by regarding e’ “ and e as the “closed” and “open” tau functions respectively.
Also if we combine the proposals (3.2) and (3.12), we find

> sy DS () try (V) = F @OHFRED), (3.23)
Y

This relation combining closed topological strings and open topological strings may make
the open-closed duality between the ABJM matrix model [31, 33] and the topological
strings [52, 53] clearer.

3.3 BPS indices

After the review of the correspondence, let us turn to the study of the Gopakumar-Vafa
invariants in the open topological string theory. Although in [21] it was found that the
one-point function of the half-BPS Wilson loop is described by the diagonal BPS indices
identified in [47], it was not known how the diagonal BPS indices are split. Especially, since
some of the diagonal BPS indices given in [47] are odd which can only be decomposed by
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| [ofu[ 2 [ 3 [4[s][ Jo[1[2][3[4]5][ [ofi[2[3[4]5]
of1[1[ o] o ofjfofJofofo]o offofofo]Jo]o]o]o]
135 |79 1lojolofo]o 1lojolo]o]o
2 0[5] 35 [135 2 ofo[8 [ 2 ofofo 11
3 o[7]135 3lofo]7 3lofof11
NEE 4fo]o 1ofo
5] 0 500 50
nbE=® nbe= nbe®

Table 1. The Gopakumar-Vafa invariants n‘;’l for £ = (1). Each column and each row denote the
specific values of d; and d_ respectively.

| Jofr[2 |8 [afs][ Jofr[2]s]4]s) Jo[1[2[3[4]5]
ofojo] o] o Jofo]lofJoJo]o]o offofofo]o 0]0]
11]2] 4] 6 [38 1ojojo]o]o 1ojofo]o]o
2] 0[4] 36 [ 160 2007 |74 2] 0fo]o0 10
3] 0[6]160 3lofo[7 3ofo]10
NIE 4fo]o afo]o
50 50 50
nbt= (D e nbts D

Table 2. The Gopakumar-Vafa invariants ng,z for £ = (1,1). The asymmetry of the Gopakumar-
(d+dd7):(071)7l:(1»1) -1

Vafa invariants in the degrees appear in n

| Jofif2]s4s) Jo[a[2a[s[4]s][ JoJi]2]3[4]5]
ofojolo]oofol[fo]o]o]o]o oflofofo]o 0]0]
11]2]4]6]s 1fojoJofo]o 1ojojo]o]o
20424796 2[[0]0] 7 [56 2/ 0][0]0 |10
3069 3] 0]0]56 3o0fo]10
NIEE afo]o 4fo]o
50 5[0 50

nbt=® nb2e® nd2s®

Table 3. The Gopakumar-Vafa invariants n%¢ for £ = (2). The asymmetry of the Gopakumar-Vafa

invariants in the degrees appear in né@o’d‘):(o’l)’k@) 1.

the degree difference asymmetrically, it is interesting to see how the diagonal BPS indices
are split. With the abundant numerical data, here we read off the non-perturbative one-
point function in the grand canonical ensemble in appendix G and identify the split for the
first few BPS indices.

The results are given in tables 1, 2, 3 for £ = (1), £ = (1,1), £ = (2) respectively up to
dy+de =5 and table 4 for £ = (1,1,1), £ = (2,1), £ = (3) up to dy +do = 3. It is clear that
the Gopakumar-Vafa invariants for £ = (1,1) and £ = (2) at g = 0 are split asymmetri-
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| [ofu[2]s][ Jojij2]3)] Joji]2][s3]
ofofofJoJo]lo]fo[o]o]o][o]o]o]o]o0]
1]1]2]3 1/1]2]3 1/1]2]3
216 2176 2176
3]0 3]0 3]0

pbE (LD nbE=) b=

Table 4. The Gopakumar-Vafa invariants n¢ for £ = (3), £ = (2,1) and £ = (1,1,1) respectively.

cally as n;d:JrO,d,):(O,l),E:(l,l) _ n;d:t),d,):(o,l),K:(Q)

|€] = 3 in table 4. In determining the BPS indices for |€| = 2, we assume the symmetry in

= 1 and the asymmetry is even larger for

exchanging the degrees for higher order of ). The reason is as follows. The one-point func-
tion in the grand canonical ensemble in appendix G is identical for £ = (1,1) and £ = (2)
beyond the order of Q? (see (G.3) and (G.4)). Although we only have data with k = 6, 8, 12,
let us asuume this is the case for any k£ and M. This implies that ((Str U)2>>g§\3/[ <<1>)S§\34 =

(A +(A)2) /2 and (Str UGS, /(1) EG, = (AP +A5Y) /2 are real and pure imaginary
respectively. Combining with the fact that ((Str U ))g%/[ (<1>>g(]€4 = Agl) is also pure imag-

inary, we find that Agl’l) and AgQ) are themselves real and pure imaginary, which implies
the symmetry in exchanging the degrees.

From the geometric viewpoint of local P! x P! the two Kahler parameters corresponding
to the sizes of P! should be symmetric under the exchange. It is only after we include the
Wilson loop insertion indicating one P! that the split of the diagonal BPS indices happens.

4 Conclusion and discussions

In this paper, we have introduced the two-point function and studied it numerically.
Though we have defined the two-point function so that it does not decompose to the
one-point functions trivially, after our full analysis, we have found two unexpected rela-
tions to the one-point functions. One of them relates the non-trivial two-point function to
the trivial one which further reduces to a combination of the one-point functions through
the Littlewood-Richardson rule. The other relates the imaginary part of the two-point
function to the one-point functions in the representation with the box number smaller
than the total number by two. We have also revisited the one-point function and identified
how the diagonal BPS indices split by the degree difference asymmetrically.

Apparently there are many questions related to our result.

The first and the most important one would be the physical origin of the two-point
function. In this paper we have defined the two-point function with two characters of the
opposite charges in the matrix model. It is of course desirable to understand how the
two-point function arises from the correlation function in the ABJM theory. We would like
to identify it as the two-point function of the physical Wilson loops in the ABJM theory
and derive our two-point function from the localization technique.
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Although we have the general expression for the conjugate relation in section 2.6,
the general expression for the descent relation in section 2.7 is missing, where we have
only proposed some relations in the main text and in appendix D.1. Also, the physical
interpretation of the two relations we have found is unclear. We can imagine that the
two relations reflect the topological nature and the orientifold or symplectic nature of the
ABJM matrix model. Especially in appendix D.4, we make a proposal on the relation
between the two-point function with the main phase removed Im efieki'/»’f‘i (sys Z}g% and a
bracket between sy and sz. We hope to elaborate the interpretation.

It is surprising to us that the two-point function turns out to closely relate to the rep-
resentation theory of the supergroup U(NN1|N2) in the Fermi gas formalism. It is, however,
still unclear what role the composite Young diagram appearing in the Fermi gas formalism
plays in the representation theory.

Our definition of the non-trivial two-point functions in section 2.1 has a direct general-
ization to other N/ = 4 superconformal Chern-Simons matrix models of type A [36, 54-59].
Namely, for the circular quiver gauge group [[,U(XV;) with an even number of nodes, the
Fermi gas formalism works naturally when the arguments of the inserted supersymmet-
ric Schur functions appear reversely for the adjacent nodes as in sy, (x(V)]|2(Ni+1)) and
sy;,, (27 1) NVir) | (7 1)(Nix2)) - In terms of the original gauge theory, we expect that, for
the multiple insertion of the Wilson loops in the A/ = 4 superconformal Chern-Simons the-
ories, the correlation functions preserve half of the supersymmetries only when the charges
of the two adjacent loop insertions are reverse. We hope to study this fact following the
discussions in [60-64].

A Determinantal formulas

In this appendix, we summarize several determinantal formulas which are useful in our
derivation of the Fermi gas formalism in section 2.3. The first one is collected from [36],
generalizing the previous simpler version with My = 0 in [22]. The remaining two are
collected from [22].

Formula 1. Let (¢;)i<i<n+r, and (¥;)i<j<n+Rr, be arrays of functions of = and let

(&ik) 1<i<nN4+r, and (M) N+1<i<N+R, be arrays of constants. Then, we have
N+1<k<N+R; 1<j<N-+R2

(Y1) 1<u<N

ay :

T qet ((¢i($k))1gi§N+R1 (&ik) 1<i<N+R: ) det 1<j<N+Rp
N! 1<k<N N+1<k<N+R; (nlj)N+1<l<N+R2

1<j<N+Ry

(i o¥j)1<i<ntr (Sik) 1<i<N+R
_ (_1)R1R2 det 1<j<N+R2 N+1<k<N+R; (A.l)
(mj)N+1<i<snir,  (O)Ni1<i<N+R,
1<j<N+R2 N+1<k<N+R;
with

bi o = / dai ()3 (). (A2)
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Formula 2. Let A(z,2") be a function of x and ', (Bg(x))1<k<m and (Ci(x))1<i<nm be
arrays of functions of « and (Dy)i1<k<m be an array of constants. Then, we have

1<i<M
> [dNz A(zi, x;) Br(z;) 1+AB
—— det v ] = Det A3
Nz::o/ Nt ° (c,(xj) Dy “\ ¢ bp) (#.3)

where det on the left-hand side is an ordinary determinant in dimension N + M, while
Det on the right-hand side is a determinant combined with the Fredholm determinant in
infinite dimensions of the function space and an ordinary determinant in dimension M.

Formula 3. For a square matrix containing two diagonal blocks of square matrices A and
D, the determinant formula holds,

A B
=det Adet(D — CA™'B). A4
det ( o D) det A det( C ) (A4)

B Lowest component

After establishing the Fermi gas formalism for the two-point function, let us study the
lowest component of it. For this purpose, we fix M > 0 and R’ < R and study the lowest
components of each ingredient first,

Er(w) = 1+ O(w),

K(a,‘l)( B @ _ik 2 (ol B e—%(a’-i—l)z
(10w) = [ GLe e 1 Ow) = S+ O(u),
D ) — dvdp ;, ik, 1 ik 2 oy gy _ R 2
p o (w) —w/%%e e ir mem e + O(w*) = MU}—I—O(M )
(B.1)

Then, the two-point function becomes

<8Y§Y/>S§jw(2):i%M2€%(Za2—212_2a/2+zl/2)
2 e~ 2itlal
T AR ) —+O(w)

x det 2heos TZ’ (R'+M)xR' t (R-AMIX(MR)

er @ ) ) 2

_ —w+O(w?) L ow?)

ik 2%k cos Tath

RXR/ - R (MR

(B.2)

Hereafter let us drop the symbol denoting higher components. Suppose we bring the factor
w in the lower blocks out of the determinant. If the determinant is non-vanishing after
setting all components depending on w to be zero, then the lowest component is

1ar2 mi 2 2 9 ” wR(_l)R/
(sy5y)SG,(2) = iaM*e ¥ (Za®-EP-2a+E17)
| ik R
x (—1)E+MRER (MR 3 B (R =15 (M+R)(M+R 1) A (B.3)
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with A being an abbreviation for the determinant part

1 ]
RxR'

s o Lm0
[O] (R'+M)x R’

Rx(M+R) (B.4)

Znig
c } (R'+M)x(M+R)
Note that we have exchanged the two row blocks and the two column blocks and at the same
time rearranged the arm lengths {—I'} and the leg lengths {—a’} of the Young diagram
Y’ to be in the standard order of a single Young diagram. In fact the determinant is

non-vanishing in general for R < R and computable, which is clear if we rewrite the
determinant as

|:1:| |:6_2]:Za(_l/_%)i|
A = e%(*ZtH»Zl) det e—%a 6%[

and apply the transpose of (2.24) along with (2.23) with x; ' = e~ *F% and y; =er .
Then, we find

2mi

; ai_e—QEiav)HMtR(e

Hz 1HM+R( o

_ i—%R(R—l)-ﬁ-%(M-&-R)(M—i—R—l) (_1)R’+MR€ LM (S a+301)

T al—a , M+R (l'_lj/)
le<l 2sin Tei0a) [PMER 9 gy T 1)

J<J
sy(e
M+R i+l
T T 2c0s leetls)

R
A= e%(_ E“+El)(_1)R’+MR Hi<i’ (e

Tk

e . (B.6)

To summarize for now, the two-point function is given by
<$Y§Y/>S,CM(Z) = e%i(ZQQ—ZP—Za’2+Zl’2)€%M(Za+ZZ)
R : ﬂ(ai—ai/) M+R (lj—l~/)
2R [y 2sin === [[; ;" 2sin —5—= 2mi

x i<y Esyi(emF a9l ). (B.T)
LR+ Hz 1HM+R2 W(az;‘lj)

Let us take a detour to study the phase factor. For this purpose we compute in two
ways the sum of the shifted contents j — ¢ — M over all of the boxes, where the arrows
representing the arm lengths or the leg lengths pierce (see figure 1). On one hand we sum
up the shifted contents along the arrows defining the arm lengths and the leg lengths, while
on the other hand we compute the same quantity separately for the Young diagram part
(the yellow/cyan part for Y /Y” in figure 1) and the triangular part where only the arrows
defining the auxiliary arm or leg lengths pierce (the green part in figure 1),

R @~3  M+RlL~3%
ZZJ—ZZZ— Z+Z (j—i—-M), (B.8)
=1 j=1 =1 =1

where A denote the sum over the green triangular region. Then we find that

M+R

R
1 Za —Zl”* =c —M]Y]—é(Mg—M), (B.9)
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for Y, along with

R M+R'

1 ZZ/Q ZCLIQ-F*

7j=1

1
— M|Y'| - 6(1\43—1\4), (B.10)

for Y, which implies that the first line in (B.7) is

Za2—Zz2—za’2+2z’2+M(Za+Zz)

1 ,
= —6(M3—M)+20Y—M]Y|+2CY —2M1Y’|, (B.11)

resembling a lot with the main phase factor @kyﬁ (2.42).
Finally the two-point function with the main phase factor removed can be expressed as

eTOLN (sy 5y )85 (2) (B.12)
2 Ity 2sin = [T 2sin e —EMY |- a) 2R
N kR+A74 HZ 1 HM+R 2 cos L(“igrlj) e r syr(e e 7).
On the other hand, when R’ > R the expression is
O (sy 3y, (2) (B.13)
__A® Hj’%’M 2sin ﬂ(l;;l;/) [T 2sin % e FMW gy (5 | )
Ry Hf:{M 17, 2cos ﬂ(ai,:rl;) 7

which is obtained by exchanging Y and Y’. The expressions of (B.12) and (B.13) are valid
also for M < 0 with the understanding M = —-M, R=M+ R, M+ R=R, R = R + M,
R +M=R.

For the case of one-point functions with Y/ = &, the expression reduces to
SB[, 2sin w H]A/i—;R 2sin %
) kR—i_% H,L ) HM+R 2 cos ﬂ(azk+lj)

(B.14)

C Conjugate relation

In this appendix we shall summarize some numerical data to convince the reader of our
proposal of the conjugate relation discussed in section 2.6. Due to the vast data, we
introduce the abbreviation

®YZ

Wenn(N) = e O (sy52)k (N, N + M), W) (N) = e Ok (53 ) (N, N + M), (C.1)

and only record those with k = 6 and M = 0, 1,2 in this appendix.
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On one hand, the exact values of the two-point function W,E ’]\D/[ (N) for k = 6 are given by

1 1 378 4+ 96+/31 — 9172
wep) = L8 ppa) - S SVSEOL
) 26 , 216v/2m
Woh() = 432(—3i — \/3) 4 72(43 — 17iy/3)m + (807i — 499\/3)7#7
6,1 186624+/272

Welit(3) = (3240(—3i — V/3) + 2592(—19 + 5i/3)m + (4347i — 5463v/3)”
+ (8185 — 1931iv/3)7?) / (20155392V/27%),

OO 3+ V3 00,y —36+12iV3 + (51 + 7TV3)m
o0 () = 1627 + 54v/3 + (324 — 108iv/3) 7 + (457 — 65/3) 72
6,2 6220872 ’
Wels (3) = (—12636 + 4212iv/3 + (2835 + 3969v/3)m + (24030 — 1098iv/3) 7
+ (83i — 4583V/3)7%) /(201553927°). (C.2)

On the other hand, the exact values of the one-point function Wi5,(N) for k = 6 are

given by
1 1 378 4+ 961/31 — 9172
1) = = ) e — J(3) =
Weo(1) = ¢, Ws0(2) = 135 W50(3) 9331272 ’
WED (1) = 1 Wir(2) = 45v/2 — 867 W(3) —1728 — 1921/37 + 281n?
T WVo G 3888w G 5598722 ’
1 12v3 -7 54 — 108v/37 + 5572
11 i 11 1) = 1] 2) =
We,2(0) R We2(1) 4327 Wea(2) 3110472 ’
W) = 42121/3 — 5677 — 4554+/37% + 233373 (©3)
6,21 — 1007769673 ’ '
while the exact values of the one-point function WkE 1 (N) for k = 6 are given by
a 1 A 1 A 378 + 9631 — 9172
1 = — 2 = — =

Weo(1) = & Weo(2) = 33 Wo(3) 9331272 ’

W (0) = s Wi (1) = 3v6 + 5v2r W (2) = —432 + 312V/37 — 11572
6,1 - \/6’ 6,1 - 2167T ? 6,1 - 31104\/671_2 )
= —9720 — 18144+/37 — 602172 + 3127/37°

Wea(3) = 3 . (C.4)

10077696+/67

These exact values satisfy the conjugate relation (2.49).
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D Descent relation

D.1 Explicit relations

In this appendix we list up the explicit forms of the descent relation discussed in section 2.7.
We adopt the abbreviated notation we have introduced in (2.54) with the tacit understand-
ing of mod ¢®"?R. For the case of the two-point functions with two, three and four boxes in
total, the relations all fall into the patterns (2.55), (2.57), (2.58) discussed in the main text,

(sosm) ~ (1), (scmso) ~ (o), <SH§D> ~ (s),
(scoso) ~ (sm), (sp8a) ~ (sc) + (s, <SE§D> ~ (s,
(sc5m) ~ s +0 M o)y (s ~ (s + (s, (sgig) ~alsm) +a Mo (D)

For the case of the two-point functions with five boxes in total, the expressions are not
unique due to the relation (2.62) among the one-point functions with three boxes. We
choose a representative set of the coefficients for our expressions.

(Scrrmso) ~ (som)s <SH:D<§D> ~ <31:Dj>+<351>7 <SBE(§D> ~ <SHH>7 (D.2)
<5a:|§l]> ~ <853>+<8E>a <5E§D> ~ <SE>,
(scrmdeo) ~ ¢ (scm) +a 7 (sp), (spden) ~ (a+1+¢7 ) (sp). <SE§ED> ~ (s +<8§),
(scrmdp) ~ (scm) + (), {spsm) ~ (a+1+¢7 ") (spp), <Sﬁ§5> ~q{sp) +q*2<sﬁ>-

Note that the third relation can be alternatively expressed as <SBH§D) ~ q(Sm) + qil(sg

for example due to the relation (2.62) among the one-point functions. Also note that the
relations for <SH:|§D:[> and <sHj§E> are not included in the patterns (2.55), (2.57), (2.58) and
are new. For the case of the two-point functions with six boxes in total, again the expres-
sions are not unique and we choose a representative set of the coefficients. The expressions
with (|Y],|Z]) = (4,2) are

(scrrmseo) ~ ¢ (sm) + 47! (s7m),
(sgrmsm) ~ (¢ +q+1) (serrm) +¢% (sgm) + (¢ +q*2)<s§z>,

{se) ~ (@ +) (serrm) +(1—a7 ) {spp) +(1+q’2)<8E3>,
<8ﬁj§m> ~ (g+1){sgm) +Q<8ﬁ3> +(g g P+ ?) <SE>7 <SE851> ~ <3ﬁ3> + <8E>,

(scrrmdg) ~ (scrrm) +(sgm), (sgmsg) ~ (@ + @+ ) (s +a7 Hsgm) +(1+¢7) <5§1>7
{s059) ~ (¢ + 1) (sgm) + (=g + 1) (s + (¢ +q_3)<SE>7

<8ﬁj‘§5> ~ (q2+Q)<SBE>+q_2(Sﬁ3> +(1+q_1+q_2)<SE>,

<SESH> ~ Q<8§3>+q3(SE>a (D-3)

— 31 —



while the expressions with ([Y],|Z]) = (3,3) are
(scroscrn) ~ ¢ (scm) + (sgm) + 72 (s),
(sgpsrm) ~ (¢° + q + D) {scm) + ¢ (sgm) + (a7 + q‘2)<8§:>,
<SE§D:D> ~ (sgm) + <8§3>,
(scp5) ~ (¢ +2)(sgm) + (¢ + 1+ ¢ ) (sm) + (2 + q_2)<8E1>7
(Sﬁggﬂ ~ (¢° + @) (sgm) + q72<8§3> +(1+q "+ q2)<SE>,

<SE§E> ~ ¢ (spp) + <Sﬁj> + q_4<SE)- (D.4)

D.2 Ambiguities

In this appendix we list the relations among the one-point functions with the same box
number, which cause the ambiguities when we express the imaginary part of the two-point

function in terms of the one-point functions. We adopt the abbreviated notation (2.59)

©R for simplicity. For the case with less than five boxes we find

and drop mod e
q(stm) — (sp) + q_1<’aﬁ> ~0,
(6" + ) errm) — a{sgr=) — alogg) + opp) ~ 0,

(sgm) —a s — q_1<sﬁﬂ> +(g 7+ q_3)<SE> ~0, (D.5)
while for the case with five boxes we find

(¢° + ") (srrrm) — (6 + ¢%) (sgm) + a{sgp) + atsgrm) — (o) ~ 0,

¢*(sgrm) — (¢ + @) (sp) + (1 + q_1)<8ﬁ3> — ¢ (s) ~ 0,
(@ + a){sgree) = (o) — ogge) — (o) + (0" 7)) ~ 0.
e = (@ Do) + (a4 a7 — a7 sp) ~ 0,

(s = q‘1<3§ﬂ> - q‘1<8§3> + (g% + q‘3)<SE:> — (¢ '+ q“”’)(? ~ 0. (D.6)
There are more relations for the case with more boxes. These relations can be translated
into

onm1l{scm)| — oml (s + onr—1l( SE
(or42 + on)|(scrm) | — oml(sgm)| — onm—2l{(sg)| + onr—2l( Sﬁl

0M+2|<5513>|—0M+2|<853>\—0M|(5§1>|+(0M+0M 2 SE (D.7)
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and
(oar2+ou) [ (sermrm)| = (o1 +oa-1) spgrm) ol (s 1o -2 (s = oar—2 ) [ =0,

onm—1[(sgro)| —(om +0'M—2)|<553:‘>|+(UM+UM—2)|<SEH> | —0M—1|<8E:>\ =0,

(a3 +om1)[(sgro) | —om 2/ (sgp)| —UMKSEEH _UMfZ|<3§E(>|+(UMfl +0M73)|<SE:>\ =0,
om+1 (o) | = (Tm42 +0M)|<855D>|+(0M+2+0M)\<8ﬁ3>I*GM+1I<5E:>\ =0,
0M+2|(5533>|+UM+2|<SEE>I+UM|<8§3>\—(0M+1 +0'M1)|<8E:>|+(UM+0M2)I<SE> =0.

(D.8)
D.3 Check of the lowest component

In this appendix we compute the lowest component for the both sides of the descent relation
and find a check for the relation.
We first consider the descent relation (2.56) between the hook representation and the
fundamental representation,
7.®(a|l),D B _ 9( all),l]
Ton e Ok (s )5 E5 (2) | = Tm e R (50§51 (2) + (s(ap-1)E51(2)) | (D.9)
We can compute the lowest component on both sides and find that, when M = 0 the lowest
component on both sides is

— l
%sin 77T( Z+ ), (D.10)

when 1 < M <a— % the lowest component is

M-—1 M—
» T4 @sin FHM HJJHQQSIH? m(—a+1+ M)

sin , (D.11)

M 1
k't M52 2cos™ K
j:a—M+ k

and when a + % < M the lowest component is

) IS @sin gH)M7 H 225““7;3 m(—a+1+ M)

—iF cos . (D.12)
M M
KT I 2sin szl“ : 95in ¢
Note that a special care is needed in discussing the case of M = a — 5. For this case, both

the left-hand side and the second term on the right-hand side contrlbute as O(z) in (D.11)
while the first term on the right-hand side does not contribute if we assume that the phase
of the one-point function is constant.

Next let us turn to the check of the descent relation (2.57) between the hook represen-
tation and the symmetric representation

Im |e” @SL)DI@ 51)95(2)
(al3) "/ kM

)

(al %),

i 1 _
L [ O (g b sy 55 () +q 1<8<a1|;)>,?%4<z>)], (D.13)
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with a > 1. Again, we can compute the lowest component on both sides and find that,
when M = 0 the lowest component on both sides is

z 1 4ma o2m(a — 1
% oD [sin ’ —|—sin(]€2) , (D.14)
2 cos MTQ
when 1 < M <a-— l the lowest component is
M1
P HA 1(2sin 52 JyM+1-j | dm(a—4) sin 2m(a — ) gin ﬂ(%ﬂ) sin%siniﬂ(%ﬂ)
— sin — - P— )
By H;i—;—M-i- 9 cos T;CJ k sin 7 sin 7
(D.15)
and when a + % < M the lowest component is
1 H L(2sin ﬂ"CJ)M-i-l —Jj
oM M-
k2 Hthska] szla 2281n7rk]
_ M+1
_Am(a—2)  sin 2r(a — ) sin W(]V][jl) sin ™ sin W(]V][jl)
X |sin — — — — . (D.16)
k sin 7 sin 7

As before a special care is necessary for M = a — %

D.4 Towards interpretation

Stimulated by the reduction by two boxes in (2.53) and the explicit relation (2.55), we
attempt an interpretation in the “operator formalism”. Since taking the imaginary part on
the left-hand side of (2.53) amounts to the subtraction by its conjugation, we are naturally
led to the study of the “Poisson bracket” (without the anticommutativity). To be concrete,
we define the bracket by

{sy,sz} = hm Z@sy (982 ) (D.17)

Oxy, Ty

Then, it is not difficult to check the relation

{sy,s0} = sw., (D.18)
Ye

up to total boxes of six which resembles (2.55). Aside from the pattern, we also find

{sm,sgj}:sgj—i-sE, {SH,sm}:sm—i-sH, {SH,SE}:SE\:H-SH,
{SDEaSD]}ZSD]j+SHIa {SHIHSED} :Smj+2853+8§7 {SE’SD]} :SBIﬂLSE,
{SD:D)SE}:SD:D—'_SBZH {853785} :SD:D_’_QSB:H_SEv {Sﬁvsg} :SB:H_SEa

{SD]IuSDI}ZSDjI+SB:l:|7 {5511781:\1}2553:3-1—255334—853%—8@1
{SBH,SD]}ZSH:D—FSBH—FSE} {SEI’SE}ZSHE+SE+28EI+SE’ {SE,SE}:SEIH-SE,

{sm,sE} = scro s, {SE:\],SB} = sm+23533+353+3@j,
{SE’SE}:SE:D+SBH+SE:" {SEJ’SH}ZSE:D+SBH+28EJ+SE’ {SE,SH}:SE:H—SE,

(D.19)
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for Z =rmand Z =H and

{scm, s} = sooro + sgo+ s {SE:‘a S} = Serro + 25531 st 5@1
{sﬁ, s = SO+ Sﬁj, {SB], SBj} = st + 3sgo + 28 + 3sﬁj + SE,
{SB, SB]} = Sgo + S + 28@] + SE, {SE, SB} =Sq + Sﬁj + SE, (D.20)
for |Z| = 3. Most of the results closely resemble the descent relation we have found in

appendix D.1 if we set all of ¢ = e~ % to be 1. There are several exceptions. For example,
in the case of five total boxes (D.2), after setting ¢ — 1, both (s B:\SD:[> and <SB:|SE> reduce
to 3(353) instead of (s) + 2<SB:|> + (sp) which is expected from (D.19). So naturally our

next question would be whether we can use the ambiguities discussed in appendix D.2 to
improve the descent relation in appendix D.1 so that the result of the bracket (D.17) is
correctly reproduced in the limit ¢ — 1. We have found that, up to six total boxes, the
answer is yes at the price of allowing half-integral coefficients.* After the improvements,
the relations read

2(scpsr) ~ (q+1) (serm) + 2+ 14+¢7 ) (s + (g7 ¢ 72) 5@

2(spsp) ~ (@°+q) (serm) + (g +142¢7 ) (sp) +(L+q7) g
2(sgmsen) ~ (% +1) (scrrm) + (2% +14+¢7 ) (sgm) + (a7 (s + (q*1+q*2)<8@3>,
2<853§m>~Q(q—1)2<8m>+(q+1)<85:1>+(q+3—2q*1)<853>+(1—q’1+2q*2)<8E3>,
2<3E3§m> ~ (q+1)<8533>+(1+q1)<SE>+(2q+1+q1)(8@:>+(q1+q3)<sE>,
2<SBE§E>N(q3+Q)<SDjjj>+(Q+1+2q_1)<SEE>+(Q+1)<SH§>+(1+q_1)<5ﬁ3>7
2<SHH'§E>N(2‘12—CJ+1)<5533>+(—29+3+q_1)<353>+(1+q_1)<saj>+q_1(1—q_1)2<5E>7
2<Sﬁ3<§5>N(q2+Q)(SEEH(Q+1)<853>+(Q+1+2q*2)<8 +(1+q72)(s
2(s050) ~ (6% +0%) (srm) + (24 —q+5)<85:z>+( ¢ —q+2—q" +2¢72) (s

+(5—q_1+2q_2)<8ﬁ3>+(q +q~ )<SE> (D.21)

Note that since the descent relations (D.3), (D.4) and the brackets (D. 19) (D.20) match
both between (SBEEDQ> and (sBj§Djj> and between (s EjSE ) and ( SE Bj the improve-

ments (D.21) also match and we omit the latter cases.

4We can alternatively allow half-integral powers of ¢ while keeping integral coefficients.
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E Relations among one-point functions

In this appendix we shall list some relations among the one-point functions discussed in
section 2.8, which are obtained by combining the two relations for the two-point functions.
We present the result with the notation introduced in section 2.8. For the case of less than
four boxes we have

o1|(smm)| — o1l(sp)| + oar[(1)] = 0,
2| (sco)| — o1l {spp) [ 4+ o1l {so)| = 0,
0’1|<551>|—U2|<SE>|+UM+1’<SD>| =0, (E.1)
for the case of four boxes we have
o3| (scm)| — o1 [(sgm) | + o2/ {sm) [ = 0,
o4l (sem)| — o2l(sgg) | + onm—sl(sm) | + on—1l(sg)| = 0,
o2|(sgm)| — 02!<8@3>\ +oumal(sm)| + om-1l{sg)| = 0,

a2|(spg)| = U4\<SE>\ +on|(sm)| + o3l (sl =0,
71l{spp)| —03|<SE)| +oumal(spl =0, (E.2)

and for the case of five boxes we have
o4l (scrrm) [ o[ (s [+ o -3/ (sam) [ = 0,
06| (scrrm) |+ o1 (s | — o2 [ (s [+ o —5 [ (srm) [+ o2 (s} | = 0,
o3| (srm)| —o2l(s ﬁﬂj>|+0'M+l‘<SEDIl>H‘O'M 2|(s) | =0,

04!<SBE>|+01|<8533>|—01|<8ﬁ11>|—03|<8§3>\+(0M73+0M71+0'M+1)|(553>|=0,
02|(5533>\—U2|<5§3>|+0’M|<Sgﬂ>|=0,
03!(8531>|+0’1<8ﬁjﬂ>!—01\<8§3>|—U4|<8E3>\+(0M+3+0M+1+0’M1)|(SHH>|=
02\<Sﬁﬂ>|—03|<SE3>|+UM+2!<SBH [+onm-1l( 8@

02|<8§3>!—01\<SEJ>|—06|<8E>|+0’M+2!<853 |+ onrsl 8@

01!<8E3>\—04|<E [+oare3l( SE 0. (E.3)

F Perturbative one-point function

F.1 Giambelli compatibility

In this appendix we show that the perturbative part of the one-point function (2.44) satisfies
the Giambelli identity (2.47). Since the numerators which count the box number of the
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Young diagram |Y'| or add up the contents ¢¥ (2.41) cancel trivially on both sides, the
proof reduces to that of the denominators

1 1

xe(al,m,aRUl,-u,lR)QSln k xe(aiuj)QSm k 1<i<R
155<R

This is because the original Schur polynomials sy (z) satisfy the Giambelli identity (see
section 1.3, Example 9 in [65])
S(ar,sanliny i) (T1 5 Tn) = det(s(q ) (1, %n)) 1<i<R, (F.2)
1<j<R
and after the specification x; = qi_% the Schur polynomials reduce to (see section 1.3,

Example 1 in [65] combined with section I.1, Examples 2 and 3 to eliminate some unwanted
quantities)

n+c(x)

s (F.3)

Lh(z)

103 _1 q2 1 q

sy(q2,q7,-- =11 - T
J:EY q2

where ¢(x) denotes the content at © € Y, ¢(i,5) = j — i. Since the factor unrelated the

hook length cancels on both sides, the only remaining factor is

g3 e
H m:det H 1 oh@

xe(a‘17. 70‘R‘l17.. ?ZR)

(F.4)

After substituting g = e_%, the formula reduces to (F.1).

F.2 Free energy of open topological strings

In this appendix we show that, with the correspondence (3.12), the perturbative part of the
one-point function (2.44) can be derived from the free energy of the open topological string

theory (3.13) with the identification (3.14). If the only contribution for (d4,d_) = (0,0)

d=0.6=(1) _

comes from n,_ = 1, the free energy of the open topological string theory is given by

oo
1 1
7 27 sin 27];”

FOP(V) = tr V", (F.5)

n=1

The sine function in the denominator can be expanded as

FoP(V Z Z —tr [Vq’"*z} , (F.6)

nlmO

with ¢ = e~ ToTtis enough to only consider the diagonal matrix V= dlag(f}) If we sum
over n first, the free energy becomes

Fr) =% Z - 1og( - Xqu%), (F.7)

i m=0
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which, after the exponentiation, implies

FPWV) Zsy(qéjq%, )ty (V), (F.8)
Y
where we have used the orthogonal relation
1
[[— =D sv@sv(w). (F.9)
i LTS

Using (F.3), we can further rewrite the free energy of the open topological string theory as

PN 2mi () )

Y Leey 28in =%
which takes care of both the phase factor (2.40) by

I e = ot )

zeY

and the remaining perturbative part (2.44).

G Non-perturbative one-point function

In this appendix, we list some values of the one-point function in the grand canonical
ensemble <5y>g%4 obtained numerically to study the relation to the free energy of the open
topological string theory. Since the phase factor of the one-point function is trivial, we list

the reduced one-point function in the grand canonical ensemble with the perturbative part

removed pert
e/ engs, -
k,M - 9 .
(NEsr / WES
in terms of Q) = —e_4ukeﬂ.

For the case that the total box number is one, |Y| = 1, there is only the fundamental
representation I % ar- For the convergent combination of (k, M), the values of FE} A are
given by

I3 =142Q+3Q%+10Q"+25Q" +54Q° +143Q°+364Q"+ O(Q®),
I'70=142Q+3Q°+10Q+17Q*+64Q°+132Q°+494Q" + O(Q®),
I'Y =1+3Q*—11Q*+64Q°+0(Q®),

I'§o=142Q+3Q°+10Q°+25Q"* +54Q° +143Q°+364Q" + O(Q®),

s =1+Q+3Q°+5Q* +4Q* —10Q° —10Q" +0O(Q®),

I'g,=1-Q+3Q%—5Q*+4Q*—10Q°+10Q"+0(Q®),

'Yy =142Q+3Q°+10Q°+33Q*+88Q°+228Q° +646Q" +0(Q®),

I, =1+v2Q+3Q%+5v2Q3+19Q* +26v2Q° +78Q° + 117vV2Q" + O(Q®),

I'gy =143Q*+5Q'+16Q°+0(Q®),

Y5 =1-v2Q+3Q%-5v2Q°+19Q" - 26v2Q° +78Q° ~117v2Q" +0(Q®),

I'Th0=142Q+3Q%*+10Q>+41Q" +166Q° +615Q°+2156Q" + O(Q®),
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I' 1 =1+V3Q+3Q%+5V3Q%+34Q" +74v/3Q° +442Q° +840V3Q" + O(Q®),

I'Th o =14Q+3Q%+5Q°+20Q* +56Q°+162Q° +442Q"+ O(Q®),

I'Th 5 =1+3Q%+13Q"+55Q°+0(Q®),

', =1-Q+3Q%—5Q°+20Q" —56Q°+162Q° —442Q"+ 0(Q®),

' 5 =1-v3Q+3Q°—5v3Q+34Q" —74v/3Q°+442Q° —840V3Q"+0O(Q%).  (G.2)
For the case that the total box number is two, |Y| = 2, we have the symmetric represen-

tation and the anti-symmetric representation. For the convergent combinations of (k, M),
the one-point function in the symmetric representation 'z, is given by

I'§0=14+Q+4Q°+8Q"+18Q" +52Q°+116Q°+283Q" + O(Q®),

I'h =142Q+Q°+4Q%+2Q° - 13Q°+0(Q®),
I'ss=1+Q+Q*—4Q*—2Q°—-13Q°+0(Q®),

I'g)=142Q+6Q°+16Q°+47Q"* +128Q°+358Q° +992Q" + O(Q®),

Te = 1+2v2Q+4Q°+8v2Q% +23Q"* +32v2Q"+100Q°+144v2Q" + O(Q®),
I'ss =142Q+2Q* - Q" +2Q°+0(Q%),

53 = 1+4Q% - 8V2Q% +23Q" - 32v/2Q° +100Q° — 144v2Q"+0(Q®),

I =1+3Q+8Q%*+24Q° +90Q" +348Q° +1288Q° +4608Q" + O(Q®),

I = 14+2V3Q+7Q% +12v3Q° +72Q" +150v/3Q° +893Q° +1728v3Q7+O(Q®),
Iy =1+3Q+5Q%*+12Q° +36Q* +102Q° +283Q° +792Q" + O(Q®),

Iy =1+V3Q+4Q°+18Q"+63Q°+0(Q%),

I'5 = 1+5Q% - 12Q° +36Q* —102Q° +283Q° — 792Q" + 0O(Q®),

IS5 =1-V3Q+7Q%—12V3Q°+72Q* —150v/3Q° +893Q° — 1728v3Q"+ 0(Q®), (G.3)

while the one-point function in the anti-symmetric representation FE A 1s given by

FEO =1+ Q +4Q%* +8Q% + 18Q" + 52Q° + 116Q° + 283Q" + O(Q®),

F@l =1-Q+Q*+4Q° +2Q° —13Q° + 0O(Q®),

FEO =1+2Q +6Q? +16Q% + 47Q" + 128Q° + 358Q° + 992Q" + O(Q®),

Ty, = 1+4Q% + 8v3Q° + 23Q" + 32v3Q° + 100Q° + 144v2Q7 + O(Q®),

r@z =1-2Q+2Q% — Q* +2Q° + 0(Q%),

r%o =1+3Q +8Q? +24Q° + 90Q" + 348Q° + 1283Q° + 4608Q" + O(Q®),

r%l = 14+V3Q + 7Q% + 12v3Q> + 72Q* + 150v/3Q° + 893Q° + 1728v3Q7 + O(Q®),
r?m =14 5Q% +12Q° + 36Q* + 102Q° + 283Q° + 792Q" + O(Q®),

Ty = 1— V3Q +4Q2 + 18Q" + 63Q° + O(Q®),

P%A =1-3Q +5Q% — 12Q% + 36Q* — 102Q° + 283Q° — 792Q" + O(Q®). (G.4)
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In the case that the total box number is three, there are the totally symmetric repre-
sentation, the mixed representation and the totally anti-symmetric representation. The
convergent combinations of FE:—A% are

Ie) = 1+Q%*+8Q%+18Q* +40Q°+117Q°+360Q" + 0(Q®),
I =1+v2Q+3Q*+5v2Q% +18Q* +25v2Q° + 75Q° +112v/2Q" + O(Q®),

1“5323*1+2Q+Q2+6Q3 204 +10Q°+Q°+32Q"+0(QY),

T =1+V20—-Q%+v2Q3 —2Q" +13v2Q° —29Q5 +44v2Q7 + O(Q®),
r?;ﬁ =142Q+8Q%+32Q%+116Q* +426Q° +1535Q° +5502Q" +O(Q®),
I3 = 142vV3Q+10Q° +18V3Q° +106Q" +212v/3Q° +1255Q°+2444v3Q"+ O(Q®),
I35 =1+4Q+8Q%+22Q° +56Q" +168Q° +467Q°+1320Q" + O(Q®),
I3 = 1+2V3Q+4Q°+6V3Q° +16Q* +26v3Q°+67Q°+110v3Q"+0(Q®),
I'51=1+2Q+2Q%—4Q+26Q" —48Q° +131Q° - 348Q"+ 0(Q®),
IR = 1+4Q* - 12v3Q% +76Q" — 144v/3Q° +811Q° — 1560v/3Q" +O(Q®), (G.5)

the convergent combinations of FEHM are
Ejo =1420Q+5Q%+14Q3+38Q*+106Q° +293Q° +816Q" +0O(Q®),
Ejl =14v2Q+3Q*+5vV2Q +18Q* +25v2Q° + 75Q° +112v2Q" + O(Q®),
I, =140 -2Q*+Q°+0(Q"),
r%jﬂ =14+4Q+12Q*+38Q% +136Q* +508Q° +1867Q5+6732Q" + O(Q®),
T 1 = 142V3Q+10Q%+18v/3Q%+106Q" +212v/3Q5 +1255Q° +2444v/3Q + O(Q%),
FBJQ =142Q+6Q%+16Q>+46Q*+128Q° +355Q° +996Q" + O (Q®),
?2]3 =14+4Q%+16Q* +67Q5+0(Q®),
r%jA =1-2Q+6Q%—16Q>+46Q* —128Q° +355Q° —996Q" + O (Q®), (G.6)

and the convergent combinations of I'; ;, are
FE,O =1+Q*+8Q* +18Q* +40Q° +117Q° +360Q™ + O(Q®),
Fg,l = 1—\/iQ_QQ_\/§Q3_2Q4_13\/§Q5_29Q6_44\/§Q7+0(Q8)’

I 0= 14+2Q+8Q% +32Q° +116Q* +426Q° +1535Q° +5502Q" +0(Q®),

)

I'D | =1+4Q%+12V3Q% +76Q* +144v/3Q° +811Q° +1560v/3Q" +O(Q®),

)

I o =1-20Q+2Q%+4Q3+26Q* +48Q° +131Q° +348Q" + 0(Q®),

)

' 5 =1-2v3Q+4Q°—6vV3Q%+16Q*—26V3Q°+67Q° —110v3Q"+0(Q%).  (G.7)

The numerical data in this appendix is helpful in determining the BPS indices in
tables 1, 2, 3, 4.
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