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Abstract: Without any shred of evidence for new physics from LHC, the last hiding

spots of natural electroweak supersymmetry seem to lie either in compressed spectra or in

spectra where scalars are suppressed with respect to the gauginos. While in the MSSM (or

in any theory where supersymmetry is broken by the F -vev of a chiral spurion), a hierar-

chy between scalar and gaugino masses requires special constructions, it is automatic in

scenarios where supersymmetry is broken by D-vev of a real spurion. In the latter frame-

work, gaugino mediated contributions to scalar soft masses are finite (loop suppressed but

not log-enhanced), a feature often referred to as “supersoftness”. Though phenomenologi-

cally attractive, pure supersoft models suffer from the µ-problem, potential color-breaking

minima, large T -parameter, etc. These problems can be overcome without sacrificing the

model’s virtues by departing from pure supersoftness and including µ-type effective oper-

ators at the messenger scale, that use the same D-vev, a framework known as generalized

supersoft supersymmetry. The main purpose of this paper is to point out that the new op-

erators also solve the last remaining issue associated with supersoft spectra, namely that

a right handed (RH) slepton is predicted to be the lightest superpartner, rendering the

setup cosmologically unfeasible. In particular, we show that the µ-operators in generalized

supersoft generate a new source for scalar masses, which can raise the RH-slepton mass

above bino due to corrections from renormalisation group evolutions (RGEs). In fact, a

mild tuning can open up the bino-RH slepton coannihilation regime for a thermal dark

matter. We derive the full set of RGEs required to determine the spectrum at low energies.

Beginning with input conditions at a high scale, we show that completely viable spectra

can be achieved.
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1 Introduction

Supersymmetry at the electroweak scale remains one of the most celebrated solutions to the

hierarchy problem of the Standard Model (SM) to date. However, the LHC experiments

have not yet found any significant excesses in their pursuit of superpartners. After the

most recent run, containing an integrated luminosity of nearly 36 fb−1 at a center of mass

energy of 13 TeV, the constraints on the superpartner masses are becoming quite stringent.

For example, the lack of events in the jets plus missing energy search has excluded de-

generate squark/gluino scenarios up to masses of 2 TeV, and squarks (including the stop)

are now ruled out up to a TeV or so provided they can decay to comparatively lighter

neutralinos [1–3]. However, it should be emphasized that these experimental exclusions

are drawn assuming simplified scenarios within the paradigm of the Minimal Supersym-

metric Standard Model (MSSM), and are subject to change with more involved topologies.

Within the MSSM, the increased top squark and gluino masses have profound implications

for naturalness, as both scales feed into the soft mass of the Higgs via renormalization,

dragging it upwards and requiring fine-tuned cancellations among parameters.1 In short,

the promise of a natural MSSM explanation for the weak scale is fading, even if we neglect

other generic MSSM problems such as rapid proton decay from dimension five operators,

excessive flavor changing neutral currents, and additional CP violating phases.

While the MSSM is the most well studied framework of weak scale supersymmetry,

it does not provide all aspects of a general model of electroweak scale supersymmetry.

Specifically, the MSSM is an infrared effective supersymmetric framework with superpart-

ner masses sourced by the supersymmetry-breaking vacuum expectation value (vev) of

the F -component of a chiral spurion. Alternative theories, where supersymmetry break-

ing is sourced from D-vev of a real spurion, are qualitatively distinct and bring several

new niceties:

• The primary operators sourced by the D-vev generate Dirac masses for gauginos.

This requires one to extend the theory to include new chiral superfields in the adjoint

representations, as the D-vev mass terms pair up the gauginos with the fermion com-

ponents of the appropriate adjoint superfield, e.g. gluino with color octet fermion,

wino with SU(2) triplet fermion, etc. In the absence of any other mass terms, gaug-

inos are purely Dirac. This can be contrasted to the MSSM, where gauginos are

purely Majorana.

• It turns out that one can not write similar D-vev sourced operators that can gener-

ate scalar masses at the messenger scale. Further, because of the specific structure

of gaugino masses, the gaugino-mediated contribution to scaler masses do not get

any log-enhancement and remain finite. This property that the gaugino generated

sfermion masses are insensitive to even logarithmic dependence of the ultraviolet

(UV) scale, is often referred to as ‘supersoft’ [15] — as opposed to the MSSM, where

1Exceptions exist within MSSM where scalar masses can somewhat decouple from gaugino masses.

Examples include models with double protection [4–10], scalar sequestering [11–13], twin SUSY [14] etc.
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a logarithmic dependence remains (‘soft’). As a result, the scalar masses at the weak

scale are loop suppressed with respect to the gaugino masses.

• The resultant mild split in the squark-gluinos masses are of utmost importance, es-

pecially when one calculates the bound in the jets + missing energy (MET) channel.

Heavier gluinos imply suppressed gluino pair and squark-gluino pair production. Ad-

ditionally, pair production of same-chirality squarks (pp → q̃Lq̃L) is not possible

if gluinos are pure Dirac, as it requires a chirality flipping Majorana mass inser-

tion. The reduced cross-sections relax the bound on the first two generation squark

masses [16, 17].

• As the gaugino are Dirac particles, the theory (minus the Higgs sector) respects a

continuous U(1)R symmetry. This symmetry suppresses supersymmetric contribu-

tions to flavor changing neutral currents and electric dipole moments [15, 18]. More

model building can elevate the U(1)R symmetry to be a symmetry of the full La-

grangian, which ameliorates many of the flavor and CP difficulties of the prototypical

MSSM [19, 20].

While the above features are attractive, the supersoft framework does have its share

of issues:

• The ‘µ’ problem is severe for supersoft models. A non-zero µ term is essential in

a supersymmetry framework as it controls the mass of the charginos. The LEP

experiments have placed model independent bounds on light charged states, e.g.,

mχ̃+
1
> 97 GeV at 95% C.L [21], therefore a small µ term is catastrophic. The most

elegant solution — at least in the framework of the MSSM — is given by the Guidice-

Masiero mechanism [22], however this mechanism requires an F -type spurion and

thus will not work for supersoft models. Another solution was proposed in ref. [15],

where the conformal compensator field generates the mass for the higgsinos. While

viable, this mechanism relies on a conspiracy among the supersymmetry breaking

scale and the Planck scale. A third solution is to include a gauge singlet S in the

theory and the superpotential interaction SHuHd (e.g., NMSSM [23]) which becomes

an effective µ-term once the scalar component of S acquires a vev. Supersoft models

automatically include the gauge singlet required for this approach as the Dirac partner

of the bino. Gauge singlets do require care, however, and may lead to power law UV

sensitivity [24].

• The infamous ‘lemon-twist’ operators [15, 25, 26] can break color or generate a too

large a T -parameter. Upon replacing the real spurion by its D-vev, one finds mass

squared of the adjoint scalars to be linear in the coupling constants of these operator.

In a large part of the parameter space, the imaginary components of these adjoints

may acquire vevs leading to dangerous charge and color breaking vacuum. Previous

solutions to this problem require deviation from the supersoftness, resulting in a low

energy theory with Majorana gauginos or extended messenger sectors [26, 27]. A

viable solution of this problem was put forward in terms of Goldstone gauginos [28],
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where the right handed gaugino is a pseudo-Goldstone field originating from the

spontaneous breaking of an anomalous flavor symmetry.

• In the framework of pure supersoft supersymmetry breaking, D-flatness is a natural

direction, leading to vanishing D terms in the potential [15]. In the generic MSSM,

the D-term contribution leads to a tree level mass of the Higgs boson as MZ cos 2β.

Given the discovery of a Higgs with mass close to 125 GeV, a vanishing D-term is

not a good starting point, as one needs to depend on large quartic corrections at

the tree level (NMSSM like) or at the one-loop level to achieve the correct value.

Most R-symmetric models with Dirac gauginos therefore include both F - and D-

type breaking to enhance the Higgs quartic term, which consequently increases the

Higgs mass. A partial list of such frameworks can be found in the literature [29–79].

• Another problematic issue of the supersoft scenario is dark matter (DM). If the D-vev

spurion remains the only source of superpartner masses and the mediation scale is

high, then the lightest supersymmetric particle (LSP) is a right handed (RH) slepton,

leading to contradictions with cosmological observations. Lowering the mediation

scale, the gravitino becomes the LSP, but this brings its own issues: i.) a lower

mediation scale means the conformal compensator mechanism for generating a µ

fails, and ii.) the gravitino LSP scenario is highly constrained because of the long

lived charged particle searches [80] or — if the gravitino mass is less than a few keV

— constraints arise from prompt multi-jet or multi-lepton final states [81, 82].

A recently proposed framework, ‘generalized supersoft supersymmetry’ (GSS) [83] is

free of many of these issues yet maintains key phenomenological features of pure supersoft

models, such as finite gaugino mediated contribution to scalar soft masses. Crucially, GSS

ameliorates the above issues without introducing additional matter or additional sources

of supersymmetry breaking. Instead, in GSS one adds a set of new operators formed

from matter superfields and the same D-type spurion used to give gauginos mass. When

written with chiral adjoints, the new operators give supersymmetric masses to the adjoints

and allow one to avoid color-breaking and T -parameter issues. When written using Higgses,

one finds two µ-parameters (namely, µu and µd) are generated, both of which scale with

the supersymmetry breaking D-vev. If µu = µd, these operators can be replaced by the

supersymmetric µ-term with µ = µu = µd, which solves the µ problem in the same spirit

as that of Guidice-Masiero mechanism. However when µu 6= µd, supersoftness is lost

as the hyperchage D-term gets a vev and log sensitivity (i.e., soft) creeps back into the

scalar masses.

The goal of this paper is to flesh out the spectrum of generalized supersoft theories

and to determine the parameter regions where they can be viable. While at first glance

the loss of supersoftness when µu 6= µd appears to be a flaw in the idea, we will show that

it turns out to be a feature that can be utilized to resolve the DM issue that plagues pure

supersoft setups. It turns out that this theory with ∆ ≡ µu − µd 6= 0 is equivalent to the

usual supersoft picture with a supersymmetric ‘µ’ term
(
µ = µu+µd

2

)
, a hypercharge D-

term with DY ∝ µ∆, and non-holomorphic trilinears (such as ∆h†uq̃ũ, etc.). In particular
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the non-zero D-terms provide a boost to all scalar soft masses, while D-term operators

involving the adjoint superfields allow more flexibility in the gaugino masses. These effects

combine to open up a swath of parameter space where the theory satisfies the observed

Higgs mass and achieves the correct thermal relic dark matter abundance through bino-

slepton coannihilation, all in addition to the usual supersoft phenomenological benefits.

Additionally, whenever µu 6= µd, non-standard supersymmetry breaking operators arise

which give subtle effects in the running of soft parameters. To map out the effects of

the GSS UV inputs, we derive the full set of renormalization group equations (RGEs)

and provide full numerical results for important outputs such as the Higgs mass and relic

abundance. It turns out that RGEs with these unconventional operators are quite subtle

and previous attempts [84, 85] miss several important effects. To give a more intuitive

understandings of electroweak parameters in terms of high scale inputs, we also derive

analytical solutions to the RGE under simplifying assumptions.

The rest of this paper is organized as follows: in section 2 we begin by laying out

the fields, scales, and operators we will consider. Next, in section 3 we examine how the

radiative generation of soft masses in our theory differs from the conventional MSSM and

pure supersoft setups, using a toy model to illustrate the key features. In section 4 and 5,

we turn to the IR spectra. Many of the gross features of the spectrum can be understood

using simplified renormalization group equations that admit analytic solutions, however

we will resort to numerics when calculating quantities like the Higgs mass and dark matter

constraints. This section concludes with a few benchmark points that pass all tests. Finally,

a summary and discussion of our results is given in section 6 .

2 The framework

The skeleton of any weak scale model of supersymmetry typically consists of two sectors —

one containing the MSSM fields, and the other, known as the hidden sector, responsible for

supersymmetry breaking, linked by a “messenger” sector.2 The messenger sector provides

a scale (namely, Λmess) that characterizes all contact operators among the hidden and

visible fields. The supersymmetry breaking scale (or rather the supersymmetry breaking

vev, namely Λint) is generated in the hidden sector. Note that the observables at the

electroweak scale are various superpartner masses, which are functions of both Λint and

Λmess, as well as dimensionless numbers, that represent details of messenger mechanisms,

and renormalization effects. In fact, renormalization can be quite tricky especially if the

Λmess is taken as the input scale. As shown in refs. [11, 87], the superpartner masses are

renormalized due to interactions of hidden sectors from the scale Λmess to Λint, in addition to

the usual effects from visible sector interactions. The lack of knowledge of the exact nature

of hidden sector dynamics can actually lead to order one uncertainty in the superpartner

masses as calculated using mass-market softwares such as SOFTSUSY [88], SPheno [89, 90],

SuSpect [91] etc, which completely neglect these effects. Therefore, out the two natural

choices for setting the UV input scale of the theory (Λmess or Λint) we choose Λint; below

this scale the hidden sector decouples and the superpartner masses renormalize only due to

2Examples of single site model do exist, see ref. [86].
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visible sector interactions. In other words, we use the superpartner masses and couplings

at the scale of renormalization µr = Λint to be the input conditions in order to evaluate

the spectrum at the electroweak scale. Directly using Λint as the input scale naturally

raises questions regarding the nature of hidden sector interactions and the details of the

messengers that result in the used boundary conditions. We leave this discussion (and

further UV completion) for future work.

We reiterate that Λint is the scale at which contact operators are turned into masses

for visible sector fields. In order to simplify, we begin with a hidden sector where the

supersymmetry breaking is captured in the vev of a single real field R, with the follow-

ing conditions:

R† = R and D ≡
〈

1

8
D2D̄2R

〉
> 0 (2.1)

Here, D’s are the usual chiral covariant derivative and D is the gauge auxiliary fields.

Further, we redefine R → R/Λdmess, where d is the engineering dimension of the operator

at Λmess. This redefinition sets the engineering dimension of R to be 0.

The visible sector in generalized supersoft supersymmetry extended beyond the MSSM

content to include three extra chiral superfields in the adjoint representation of the three SM

gauge groups, i.e. we include a color octet Σ3, a weak triplet Σ2, and a charge-neutral Σ1.

Given this field content, we will work with the minimal set of contact operators (between the

hidden and visible sector fields) capable of generating a viable µIR spectrum. First, consider

the conventional supersoft operator [15] that gives rise to Dirac type gaugino masses.

−1

2

∫
d2θωi(Λint)

1

Λmess
D̄2DαRWα,iΣi → MDi(Λint)λiψi ,

where MDi(Λint) = ωi(Λint)
D

Λmess
,

(2.2)

where Wα
i is the field-strength chiral superfields for the i-th SM gauge group (i is not

summed over, but spinor Lorentz indices α are summed) and ωi are dimensionless coupling

constants. In eq. (2.2) we have suppressed any gauge group indices. By design, the super-

symmetry breaking vev of R picks out gauginos (λi) from Wi and the fermionic component

of Σi fields (denoted by ψi). Another operator often used in this context is known as the

‘lemon-twist’ operators [15]:

−1

2

∫
d2θωqq′

1

Λ2
mess

(
D̄2DR

)2
QQ′ → bqq′(Λint)φqφ

′
q ,

where bqq′(Λint) = ωqq′(Λint)
D2

Λ2
mess

,

(2.3)

where Q and Q′ represent visible sector chiral superfields with scalar components φq, φ
′
q,

and the coupling constant ωqq′ is nonzero only if QQ′ is a gauge singlet. Examples of

such operators include Σ2
i , and HuHd. These operators are problematic because they give

opposite sign mass to the real and imaginary parts of the scalars and thus can drive fields

tachyonic [15].
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In addition to eq. (2.2) and (2.3), we use the operators proposed in ref. [83] to generate

the µ term.

−1

4

∫
d2θωDqq′

1

Λmess
D̄2 (DαRDαQ)Q′ → µDqq′(Λint)

(
1

2
ψqψq′ + FQφQ′

)
,

where µDqq′(Λint) = ωDqq′(Λint)
D

Λmess
, (2.4)

where FQ represents the auxiliary component of the field Q. As in eq. (2.3), the coupling

constant ωDqq′ are nonzero only if the chiral operator QQ′ is a gauge singlet. The potential

generated after eliminating the auxiliary fields is given by

∣∣∣∣
∂W

∂Q
+ µDqq′(Λint)φQ′

∣∣∣∣
2

; (2.5)

crucially, if Q and Q′ represent different fields, the equation above only gives mass for

Q′-scalars. For non-zero ∂W
∂Q , eq. (2.4) also gives rise to trilinear scalar mass terms. As

an explicit example, substituting Q → Hu and Q′ → Hd, eq. (2.4) generates masses for

higgsinos, the scalar hd, and a non-holomorphic scalar trilinear operator h†dq̃ũ. If we flip

Hu and Hd (namely, Q → Hd and Q′ → Hu), eq. (2.4) instead gives rise to masses for

the higgsinos and hu scalar, and operator h†uq̃d̃. Including both possibilities and denoting

the mass scales of the two operators by µd and µu, we find the following terms in the

Lagrangian:

L ⊃ 1

2
(µd + µd) H̃uH̃d −m2

hu |hu|
2 −m2

hd
|hd|2 − Yuµ∗dh†dq̃ũ − Ydµ∗uh†uq̃d̃+ h.c. . (2.6)

In the limit µu = µd = µ/2, all the Higgs scalars and the higgsinos have identical masses,

a result identical to what we would get from superpotential µHuHd. To make this super-

symmetric limit more apparent we can rewrite eq. (2.6) in terms of a new superpotential

term (namely, the µ-term) and soft supersymmetry breaking mass terms:

W ⊃ µ HuHd

Lsoft ⊃ −m̃2
hu |hu|

2 − m̃2
hd
|hd|2 − Yuξ̃∗uh†dq̃ũ − Ydξ̃∗dh†uq̃d̃+ h.c. ,

(2.7)

where m̃2
hu

=
∣∣µ0
u

∣∣2−
∣∣µ0
∣∣2, m̃2

hd
=
∣∣µ0
d

∣∣2−
∣∣µ0
∣∣2, and ξ̃u = −ξ̃d = 1

2

(
µ0
d − µ0

u

)
. Written this

way, the supersymmetric limit corresponds to Lsoft → 0. In addition, supersoft models are

well motivated as the flavor and CP violating effects are suppressed. In our scenario, we

are generating non-standard trilinear scalar terms proportional to Yu and Yd. As a result,

minimal flavor violation (MFV) would ensure that flavor issues are under control.

As pointed out in [83], the operators in eq. (2.4) can also be used to solve potential

color breaking or a large T -parameter issues in supersoft models by preventing scalars from

Σ fields from becoming tachyonic. In detail, one needs to include the operators in eq. (2.4),

with QQ′ replaced by Tr(Σ2
a). Repeating the same steps as shown after eq. (2.4), this

results in a mass for both the fermion and scalar components of Σa. The Majorana mass

for ψa upsets the cancellation of the SU(2) and U(1) D-terms that occurs in pure supersoft

– 7 –
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scenarios, regenerating the tree-level Higgs quartic. Additionally, the scalar mass squared

from eq. (2.4) is positive for both the real and imaginary parts of the adjoint scalar, thus the

issue of tachyonic masses can be avoided provided contributions from eq. (2.4) are larger

than any ‘lemon twist’ adjoint masses.

At this point, let us reiterate that we are still describing the theory at the scale of

renormalization µr = µIR. In order to calculate the spectrum at the electroweak scale, these

operators must be renormalized below Λint. Renormalization gives rise to new counter-

terms and changes the couplings of various operators. In particular, one finds that the

nice relationship between µ, ξ̃u,d, m̃hu,d , are modified and need to be treated independently.

We therefore, collect all the terms described above, include new operators to account for

generated counter-terms as follows:

W = Yu QHuU + Yd QHdD + Yτ LHdE + µ HuHd +
1

2

∑

a

MΣa Tr
(
Σ2
a

)

Lsoft ⊃
∑

a

MDa λaψa −
∑

φ

m̃2
φ |φ|2 − m̃2

hu |hu|
2 − m̃2

hd
|hd|2

− Yuξ̃∗u h†dq̃ũ− Ydξ̃∗d h†uq̃d̃− Yτ ξ̃∗τ h†u ˜̀̃e− bµ huhd + h.c. ,

(2.8)

where φ stands for q̃i, ũi, d̃i, l̃i, ẽi, and i denotes the family. Coefficients of many of these

operators are either zero or related to each other at the input scale Λint, as discussed before.

Before we proceed any further, let us completely specify the coefficients at the input

scale as well as establish our notation. Our UV inputs are:

• The Dirac gaugino masses and supersymmetric masses for the adjoints (Σ fields), as

well as the supersymmetric µ parameter:

MDa (Λint) = M0
Da , MΣa (Λint) = M0

Σa , µ (Λint) = µ0 , (2.9)

where a runs over the three gauge groups in the SM.

• Soft masses for scalars

m̃2
φ (Λint) = 0, m̃2

hu (Λint) =
∣∣µ0
u

∣∣2 −
∣∣µ0
∣∣2 , m̃2

hd
(Λint) =

∣∣µ0
d

∣∣2 −
∣∣µ0
∣∣2 .

(2.10)

Another important quantity is the Hypercharge D-term defined as S ≡ ∑φ qφm̃
2
φ,

where φ runs over all particles, and qφ represent corresponding hyperchages. There-

fore, we find the boundary value of S to be

S (Λint) =
(∣∣µ0

u

∣∣2 −
∣∣µ0
d

∣∣2
)
≡ S0 . (2.11)

• The initial conditions for the soft trilinear ξ̃ operators are completely specified in

terms of the Higgs sector parameters:

ξ̃u (Λint) =
1

2

(
µ0
d − µ0

u

)
≡ ξ̃0 ,

ξ̃d/τ (Λint) =
1

2

(
µ0
u − µ0

d

)
≡ −ξ̃0.

(2.12)

We devote the next section for deriving the renormalization group equations for the

coupling constants given in eq. (2.8).
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G1 ≡ SU(3) G2 ≡ SU(2) U(1)X U(1)R
Q 3 2 0 0

U 3̄ 1 -1 1

D 3̄ 1 1 1

Hu 1 2 1 1

Hd 1 2 -1 1

Table 1. Charge assignments of the chiral superfields in the toy model. The global symmetries

help us to disregard complexities due to the gaugino masses.

3 Renormalization group equations

With the exception of the non-holomorphic trilinear terms (namely the ξ-operators) in

eq. (2.8), RGEs of all other operators are well known and widely used. The effect of the ξ-

operators, on the other hand, are extremely non-trivial and subtle. Early efforts in deriving

these missed several effects [84, 85], and the RGEs of these operators and their effects in

RGEs of other operators get more complicated in the presence of various Yukawa terms,

gauge couplings, and, in particular, the hypercharge D-term. In order to get things correct,

we begin with a simple toy model consisting of:

1. A minimal set of degrees of freedoms;

2. Only a single Yukawa coupling;

3. Only global symmetries: this assumption allows us to disregard complexities due to

gaugino masses. Towards the end we will gauge one of the global U(1) in the model,

and study the effects of ξ-operators, in the presence of D-term.

RGEs of the full model of eq. (2.8) is given in section 3.1.2. Readers interested in seeing

the final form can simply jump to section 3.1.2.

3.1 A toy model

In order to understand the non-trivial effects of the operator in eq. (2.4) we construct a

toy model of the visible sector described by five multiplets (namely, Q,U,D,Hu and Hd)

charged under the global groups G1×G2×U(1)X×U(1)R as described in table 1, along with

a single superpotential term (namely, Y QHuU). The non-generic nature of the holomorphic

superpotential allows us to get away with not writing any other marginal interaction.

With this particle content, the only invariant, holomorphic bilinear we can form is

HuHd. Consequently, there can be two operators of the form eq. (2.4) (namely, one term

with derivative acting on Hu, and the second with derivative on Hd). At the input scale Λint,

this give rise to masses for higgsinos, scalar Higgses as well as non-holomorphic scalar tri-

linear.

µr = Λint : L ⊃ 1

2
(µu + µd) H̃uH̃d −

∣∣µu
∣∣2 |hu|2 −

∣∣µd
∣∣2 |hd|2 − Y µ∗dh

†
dq̃ũ+ h.c.. (3.1)
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In eq. (3.1) we have explicitly written down µr = Λint in order to indicate the fact that the

relationships exhibited amongst masses of Higgs scalars, higgsinos, as well as the couplings

is only valid at the scale Λint. In order to renormalize the theory below Λint, additional

counter-terms are needed, and this is where the full symmetry structure in table 1 is helpful

since it restricts the number of operators we need to consider considerably. Further, the

D multiplet does not have any interaction at all, and as a result no new counter-term

involving D needs to be written down (another way to see it is the fact that with the

current interactions, there is an additional U(1) symmetry under which only D is charged,

and this restricts more counter-terms). Including all of the counter-terms we need to take

into account (and that are invariant under all global symmetries mentioned above), the

Lagrangian in this toy model at any scale µr ≤ Λint, is given by:

W = Y QHuU ,

L ⊃ µH̃uH̃d −m2
hu |hu|

2 −m2
hd
|hd|2 −m2

q̃ |q̃|2 −m2
ũ |ũ|2 −m2

d̃

∣∣∣d̃
∣∣∣
2

− Y ξ∗uh†dq̃ũ+ h.c. .

(3.2)

Terms corresponding to traditional a-terms, such as huq̃ũ (h†uq̃ũ), or the bµ-term break

U(1)R (U(1)X) and therefore will not be generated via loops. Note that the masses-squared

parameters in eq. (3.2), such as m2
hu

, refer to the full masses of the scalar fields. Following

the logic of eq. (2.7), this Lagrangian can be re-expressed as a superpotential piece plus

soft terms:

W = Y QHuU + µ HuHd ,

Lsoft ⊃ − m̃2
hu |hu|

2 − m̃2
hd
|hd|2 − m̃2

q̃ |q̃|2 − m̃2
ũ |ũ|2 − m̃2

d̃

∣∣∣d̃
∣∣∣
2

− Y ξ̃∗uh†dq̃ũ+ h.c. ,

(3.3)

with

m̃2
hu = m2

hu − |µ|
2 , m̃2

hd
= m2

hd
− |µ|2 , ξ̃u = ξu − µ , and m̃2

q̃,ũ,d̃
= m2

q̃,ũ,d̃
. (3.4)

The supersymmetric limit of eq. (3.3) is obvious, namely Lsoft → 0, while for (3.2), the

supersymmetric limit corresponds to: m2
hu,d
→ |µ|2 , ξ → µ, m2

q̃,ũ,d̃
→ 0.

It is instructive to derive the RGEs both in term of mass-parameters from eq. (3.2) and

in terms of soft-mass parameters in eq. (3.3), then match the two apprroaches using the

substitutions stated above for a consistency check. However, to save space in this write-up

we show only one derivation, the β-functions of the operators in eq. (3.2); the β-functions

for the soft parameters can be derived using the substitutions in eq. (3.4)

At one loop order, the β-functions can be evaluated diagrammatically. In addition to

the standard diagrams one encounters in MSSM calculations, we need to take into account

new diagrams due to the ξ operators (e.g., figure 1). Starting from eq. (3.2), the full β-

functions for the Yukawa coupling Y , the higgsino mass parameter µ, the non-holomorphic
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q̃, ũ, hd q̃, ũ, hd eq, eu eq, eu
Y Y ⇤

⇠uY
⇤⇠⇤uY

q̃, ũ, hd

q̃, ũ, hd

H̃u

q, u

Figure 1. Non standard soft supersymmetry breaking terms contributing to the running of the

scalar fields.

scalar trilinear parameter ξu, and various scalar mass-squared parameters are given below.

16π2 β (Y ) = 6 |Y |2 Y , (3.5)

16π2 β (µ) = 3 |Y |2 µ , (3.6)

16π2 β (ξu) =
1

Y ∗
β (Y ∗ξu)− ξu

Y ∗
β (Y ∗) = 3 |Y |2 ξu , (3.7)

16π2 β
(
m2
q̃

)
= 2 |Y |2

(
m2
q̃ +m2

ũ +m2
hu + |ξu|2 − 2 |µ|2

)
, (3.8)

16π2 β
(
m2
ũ

)
= 4 |Y |2

(
m2
q̃ +m2

ũ +m2
hu + |ξu|2 − 2 |µ|2

)
, (3.9)

16π2 β
(
m2
d̃

)
= 0 , (3.10)

16π2 β
(
m2
hu

)
= 6 |Y |2

(
m2
q̃ +m2

ũ +m2
hu

)
, (3.11)

16π2 β
(
m2
hd

)
= 6 |Y |2 |ξu|2 . (3.12)

3.1.1 Detour: consistency check

As a consistency check for the RGEs derived above due to the unconventional ξ operator,

consider taking the supersymmetric limit. In particular, we look at the mass parameter

m2
hd

— in the supersymmetric limit, m2
hd

should be equal to the higgsino mass parameter

(namely, |µ|2) at all scales,

lim
ξ→µ

d

dt

(
m2
hd
− |µ|2

)
= 0 . (3.13)

Staring at eq. (3.6), (3.12), we see our RGE pass this check.

3.1.2 Towards the full Lagrangian

To formulate the RGEs of the full theory as given in eq. (2.8), one needs to incorporate

important complexicites:

• If the superpotential in eq. (3.2) is expanded to include new marginal interactions

involving the D superfield, such as Ȳ QHdD, the accidental global U(1) symmetry

with D is lost and new counter-terms are needed. For example, in the presence of

both Y and Ȳ , the operator h†dq̃ũ shown in figure 2 is permitted.
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ũ

Y ⇠⇤u

hd hd

q̃q̃

��Ȳ
��2

Figure 2. Generation of new operator h†dq̃ũ because of the presence of Ȳ .

• If one gauges U(1)X , the effect of its D-terms need to be taken into account, even if we

refrain from adding mass term for the gaugino (so that the U(1)R remains unbroken,

and we can keep using the symmetry arguments in order to restrict counter-terms).

The impact of gauging shows up in two places. First, the anomalous dimensions of

all superfields charged under U(1)X changes because of the gauge fields. Second,

new additive contributions to the RGEs arise because of the U(1)X D-term. The

contribution can be summarized in terms of the parameter SX .

SX ≡
∑

φ

qφ m̃
2
φ , (3.14)

β
(
m̃2
φ

)
→ β

(
m̃2
φ

)
− g2

X qφ SX , (3.15)

β (SX) = g2
XSX − 12 |Y |2

(∣∣∣ξ̃u
∣∣∣
2

+ ξ̃uµ
∗ + ξ̃∗uµ

)
+ 12

∣∣Ȳ
∣∣2
(∣∣∣ξ̃d

∣∣∣
2

+ ξ̃dµ
∗ + ξ̃∗dµ

)
,

(3.16)

where φ runs over all scalars of the model, qφ represents φ’s charge under U(1)X , and

gX represents the gauge coupling constant.

Importantly, these RGE hold as long as U(1)R remains unbroken. Therefore, even

in the presence of U(1)R preserving gaugino mass terms (i.e., Dirac gaugino masses)

the above one-loop results prevail.

• if one adds a bµ term to the toy model, it is multiplicatively renormalized and does

not enter the RGE for any other parameters. Both effects stem from the fact that

bµ is the only U(1)R breaking term and has the wrong mass dimension to radiatively

generate a-terms.

The experience with the toy model (with or without added complications) paves way

for us to write down the RGEs of the full model, as shown in the next section.

3.2 Renormalization group equations in the full model

We will take the approximation that only the third generation of the Yukawa couplings are

non-zero. This reduces Yukawa coupling matrices to

Yt =




0 0 0

0 0 0

0 0 yt


 , Yb =




0 0 0

0 0 0

0 0 yb


 , Yτ =




0 0 0

0 0 0

0 0 yτ


 . (3.17)
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When expressing the RGE in the full model, we will work in the more familiar language of

running supersymmetric and supersymmetry breaking parameters, in the spirit of eq. (3.3).

To split RGE for full masses into supersymmetric and soft pieces, one needs to express the

soft mass parameters in terms of the mass parameters in eq. (3.2) using eq. (3.4), then

apply equations eqs. (3.5)–(3.12). Written in this form and using the reduced Yukawa

matrices, the β-functions of the soft masses are:

16π2 β
(
m̃2
q̃3

)
= 2 |yt|2

(
m̃2
q̃ + m̃2

ũ + m̃2
hu

)
+ 2 |yb|2

(
m̃2
q̃ + m̃2

d̃
+ m̃2

hd

)

+ 2 |yt|2
(∣∣∣ξ̃u

∣∣∣
2

+ ξ̃uµ
∗ + ξ̃∗uµ

)

+ 2 |yb|2
(∣∣∣ξ̃d

∣∣∣
2

+ ξ̃dµ
∗ + ξ̃∗dµ

)
+

1

5
g2

1S , (3.18)

16π2 β
(
m̃2
ũ3

)
= 4 |yt|2

(
m̃2
q̃ + m̃2

ũ + m̃2
hu

)
+4 |yt|2

(∣∣∣ξ̃u
∣∣∣
2

+ ξ̃uµ
∗ + ξ̃∗uµ

)
− 4

5
g2

1S , (3.19)

16π2 β
(
m̃2
d̃3

)
= 4 |yb|2

(
m̃2
q̃ + m̃2

d̃
+ m̃2

hd

)
+4 |yb|2

(∣∣∣ξ̃d
∣∣∣
2

+ ξ̃dµ
∗ + ξ̃∗dµ

)
+

2

5
g2

1S , (3.20)

16π2 β
(
m̃2

˜̀
3

)
= 2 |yτ |2

(
m̃2
L̃

+ m̃2
ẽ + m̃2

hd

)
+2 |yτ |2

(∣∣∣ξ̃τ
∣∣∣
2

+ ξ̃τµ
∗ + ξ̃∗τµ

)
− 3

5
g2

1S , (3.21)

16π2 β
(
m̃2
ẽ3

)
= 4 |yτ |2

(
m̃2
L̃

+ m̃2
ẽ + m̃2

hd

)
+4 |yτ |2

( ∣∣∣ξ̃τ
∣∣∣
2

+ ξ̃τµ
∗ + ξ̃∗τµ

)
+

6

5
g2

1S , (3.22)

16π2 β
(
m̃2
hu

)
= 6 |yt|2

(
m̃2
q̃ + m̃2

ũ + m̃2
hu

)
+ 6 |yb|2

(∣∣∣ξ̃d
∣∣∣
2

+ ξ̃dµ
∗ + ξ̃∗dµ

)

+ 2 |yτ |2
(∣∣∣ξ̃τ

∣∣∣
2

+ ξ̃τµ
∗ + ξ̃∗τµ

)
+

3

5
g2

1S , (3.23)

16π2 β
(
m̃2
hd

)
= 6 |yb|2

(
m̃2
q̃ + m̃2

d̃
+ m̃2

hd

)
+ 2 |yτ |2

(
m̃2
L̃

+ m̃2
ẽ + m̃2

hd

)

+ 6 |yt|2
(∣∣∣ξ̃u

∣∣∣
2

+ ξ̃uµ
∗ + ξ̃∗uµ

)
− 3

5
g2

1S . (3.24)

The soft mass RGE must be complemented by the RGE for the Higgs sector parame-

ters, ξ̃u, ξ̃d, ξ̃τ , µ and bµ:

16π2 β
(
ξ̃u

)
=
(

3 |yt|2 + 3 |yb|2 + |yτ |2
)
ξ̃u − 2 |yb|2

(
ξ̃u + ξ̃d

)
+ ξ̃u

(
3g2

2 +
3

5
g2

1

)
, (3.25)

16π2 β
(
ξ̃d

)
=
(

3 |yt|2 + 3 |yb|2 + |yτ |2
)
ξ̃d − 2 |yt|2

(
ξ̃u + ξ̃d

)

+ 2 |yτ |2
(
ξ̃τ − ξ̃d

)
+ ξ̃d

(
3g2

2 +
3

5
g2

1

)
,

(3.26)

16π2 β
(
ξ̃τ

)
=
(

3 |yt|2 + 3 |yb|2 + |yτ |2
)
ξ̃τ + 6 |yb|2

(
ξ̃d − ξ̃τ

)
+ ξ̃τ

(
3g2

2 +
3

5
g2

1

)
, (3.27)

16π2 β (µ) =

(
3 |yt|2 + 3 |yb|2 + |yτ |2 − 3g2

2 −
3

5
g2

1

)
µ , (3.28)

16π2 β (bµ) =

(
3 |yt|2 + 3 |yb|2 + |yτ |2 − 3g2

2 −
3

5
g2

1

)
bµ. (3.29)
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The notation for left and right handed sleptons are ˜̀and ẽ respectively. The RGEs of Dirac

gauginos and Majorana adjoint fermions can be found in [56]. Examining these RGE, there

are several features worth mentioning. First, the first and second generation squarks and

sleptons can be found by setting the Yukawa couplings in eq. (3.18)–(3.22) to zero. As

the traditional gaugino mediated contribution to the soft mass RGEs is absent because of

the Dirac nature of our gauginos, the first and second generation squarks/sleptons only

renormalize due to hypercharge D-term. Written compactly,

16π2 β
(
m̃2
φ

)
=

6

5
Yφ g

2
1 S, (3.30)

where φ is a first or second generations sfermion with hypercharge Yφ. A second feature of

these RGE is the unusual piece proportional to ξuµ
∗ seen in e.g. eq. (3.18). As shown in

figure 1, this piece can be traced to insertions of trilinear scalar term from µ-operator and

the ξ-operator.

The final ingredient needed to complete the RGE for this theory is the running of S:

16π2 β (S) =
66

5
g2

1S − 12 |yt|2
(∣∣∣ξ̃u

∣∣∣
2

+ ξ̃uµ
∗ + ξ̃∗uµ

)

+ 12 |yb|2
(∣∣∣ξ̃d

∣∣∣
2

+ ξ̃dµ
∗ + ξ̃∗dµ

)
+ 4y2

τ

(∣∣∣ξ̃d
∣∣∣
2

+ ξ̃dµ
∗ + ξ̃∗dµ

)
.

(3.31)

In the limit the ξ̃ parameters are taken to zero, eq. (3.31) reduces to its conventional

MSSM form.

4 Solutions

Our objective in this section is to determine the spectra at µIR and other parameters after

solving equations listed in eqs. (3.18)–(3.31) using all the initial conditions specified at the

boundary Λint (eq. (3.1)). Before we proceed any further, however, we give the schematics of

the scales we target. We think that having a prior understanding of the scales (i.e., sizes of

various terms) allows one to visualize and consequently appreciate the solutions, especially

the analytical part, better. We have plotted a schematic representation of superpartner

mass spectrum in figure 3. Here is a simplified summary of the mass scales.

The key spectral features are:

• As expected, the lowest lying scale represents the mass of the LSP. For the relic

abundance to work out we rely on co-annihilation of the LSP (mostly bino) with RH

sleptons. This scale, therefore, also represents masses of the RH sleptons. We take

this opportunity to reiterate that gaugino mediated contribution (loop suppressed

and finite) from bino can not generate this mass-scale. In this work, we generate this

scale by the hypercharge D-term S. The mass of dark matter therefore also directly

gives the size of the S-term.

• Decays of left handed sleptons to LSP give rise to hard leptons and consequently

these need to be significantly heavier than the LSP mass scale (or the scale of RH
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RH slepton masses Dominant contribution comes fromS
gives the size of S

bino mass
See-saw in neutralino mass matrix 
resulting in a mostly Majorana bino LSP

LH slepton masses
Dominant contribution comes from

threshold corrections from weak gauginos 

Squarks Dominant contribution comes from

threshold corrections from gluinos 

Weak gauginos

Gluinos

⇠ 100 GeV

⇠ 500 GeV

⇠ 1 TeV

⇠ 10 TeV

Directly set by initial conditions}Weak adjoint fermions

Figure 3. A schematic diagram of the spectrum to show various scales.

sleptons). Setting the LH sleptons above the LHC bound, therefore, gives rise to

a second scale in the spectrum. Masses for the LH sleptons are generated by finite

corrections from Wino masses. This allows us, in-turn, to set the scale for wino mass.

• Finally, LHC bounds on colored particles imply that squarks need to be signifi-

cantly heavier. The primary source for squark masses are finite corrections from

gluinos. Setting the squark masses to be around the TeV scale, one then finds masses

for gluinos.

• The final piece is the mass scale of the higgsinos. This can be determined either

by dark matter direct detection constraints which limits the higgsino fraction in the

lightest bino-like neutralino or by direct LHC searches. At LHC, heavy higgsinos can

decay to the LSP associated with Higgs or Z-boson. The non-observation of such

events puts an upper bound on the higgsino masses.

4.1 Analytical solutions

It is clear that, even at one loop order, we need to solve the RGE eq. (3.18)–(3.31) numer-

ically. However, in order to develop some intuition for the gross features of the spectrum,

we start by making some simplifying assumptions which allow us to solve the RGE an-

alytically. As we show later in this subsection, most of the phenomenological aspects of

this work, such as finding a viable candidate for dark matter or the spectrum of colored

particles, can be understood within this simplified picture. Calculating the Higgs mass,

however, requires more careful considerations and will only be discussed in the context of

full numerical solutions.

To simplify the RGE, in the following subsections we will ignore all Yukawa couplings

except for the top Yukawa yt. Even though we use non-zero S0, we will use ξ̃0 = 0, which

ensures that none of the ξ operators will play a role. While this approximation may seem

– 15 –
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unjustified given our initial conditions, we find that the full, numerical solution derived

later is well approximated by the results we derive with ξ̃0 = 0.

4.1.1 First and second generation sfermions

As mentioned earlier, the first and second generation sfermions only run because of the

hypercharge D-term S. With the Yukawa couplings zeroed, the running of S is easy to

work out:

S(µIR) = S0

[
g1(µIR)

g1(Λint)

]66/5b1

, (4.1)

where b1 is the beta function for hypercharge and we have imposed the boundary conditions

from eq. (2.10). Plugging eq. (4.1) into the sfermion RGE (eq. (3.30)), we find

m̃2
φ(µIR) = −6

5
qY S0

α1(µIR)

4π
log

(
Λint

µIR

)
, (4.2)

where qY is the hypercharge of the sfermion. No matter what sign we choose for S0, this

(radiative) mass squared will be negative for some matter fields (q̃i, ũi, d̃i, l̃i, ẽi), simply

because they don’t all have the same sign hypercharge. If eq. (4.2) were the only contri-

bution to the sfermion masses, this result would be fatal as charge/color breaking minima

would occur. Fortunately, as illustrated in figure 3, the LH sfermion masses receive positive

definite and finite contributions from loops of gauginos [15]. As eq. (4.2) is proportional

to the hypercharge coupling and only logarithmically sensitive to Λint, it is entirely possi-

ble for the finite contribution proportional to α2(µIR), α3(µIR) to dominate over eq. (4.2).

This logic suggests that we should choose S0 < 0, so that eq. (4.1) is positive for the right

handed sleptons. For example, if Λint = 1011 GeV we need |S0| ∼ (700 GeV)2 in order

to achieve 100 GeV right handed slepton masses. Such a value of S can be obtained by

properly choosing UV inputs µ0
u and µ0

d. This choice for S0 renders the contribution of

eq. (4.2) to m̃2
q̃ and m̃2

d̃
also positive, while m̃2

˜̀ and m̃2
ũ receive a negative contribution. As

we will show, negative m̃2
˜̀, m̃

2
ũ must be offset by the finite wino and gluino loops, and the

requirement that m̃2
˜̀(µIR) > 0, m̃2

ũ(µIR) > 0 can be used to restrict the input wino/gluino

mass parameters. In order to impose this restriction, we first need to know how the µIR

gaugino masses depend on the Λint inputs.

4.1.2 Colored sector

The gluino sector (gluino + adjoint partner) masses at µIR are straightforward to calculate.

Using the boundary conditions set in section 4, the renormalized masses are.

αs (Λint) = αs (µIR) , (4.3)

ZΣ3 (µIR) = ZΣ3 (Λint)
(µ

Λ

) 3αs
π

, (4.4)

MD3 (µIR) =

√
αs (µIR)

αs (Λint)

√
ZΣ3 (Λint)

ZΣ3 (µIR)
MD3 (Λint) = MD3 (Λint)

(µ
Λ

)− 3αs
2π

, (4.5)

MΣ3 (µIR) =
ZΣ3 (Λint)

ZΣ3 (µIR)
MΣ3 (Λint) = MΣ3 (Λint)

(µ
Λ

)− 3αs
π
, (4.6)
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q
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Figure 4. Gaugino mediated masses of the squark fields. The purely scalar loop cancels the

logarithmic divergence which appears in the prototypical gaugino mediated correction to squark

masses.

where ZΣ3 is the field strength renormalization of the color adjoint and eq. (4.3) contains

the well-known result that the QCD gauge coupling does not run with the supersoft field

content. Using ψ3 to denote the fermion within Σ3, the color adjoint fermion masses can

be written in matrix form as3

(
g̃ ψ3

)( 0 MD3

MD3 MΣ3

)(
g̃

ψ3

)
. (4.7)

Depending on the relative strength of the Dirac mass of gluino (MD3) and the Majorana

mass of ψ3 (MΣ3), three qualitatively distinct spectrum at the scale µIR emerge. i.) primar-

ily Majorana gluinos, ii.) primarily Dirac gluinos, and iii.) mixed Majorana-Dirac gluinos.

For the coupling structure and some collider implications of the different possibilities, see

ref. [92].

The gluino mass matrix can acquire all the three types of textures even if MΣ3 and MD3

start out being equal at the messenger scale (depending on whether Σ3 self interactions

are present or not). It is instructive to properly diagonalize the mass matrix and write the

effective theory in terms of mass eigenstates

(
g̃l
g̃h

)
=

(
cos θg sin θg
− sin θg cos θg

)(
g̃

ψ3

)
, (4.8)

cos2 θg =
1

2


1− MΣ3√

M2
Σ3

+ 4M2
D3


 , (4.9)

In the above, g̃l and g̃h represent the light and heavy gluino spinors with masses Mgl and

Mgh respectively.

L ⊃1

2
Mgl g̃lg̃l +

1

2
Mgh g̃hg̃h ,

−Mgl =
1

2

(
MΣ3 −

√
M2

Σ3
+ 4M2

D3

)
and Mgh =

1

2

(
MΣ3 +

√
M2

Σ3
+ 4M2

D3

)
.

(4.10)

This decomposition is valid even if gluinos are purely Dirac; there, MΣ3 = 0, Mgl = −Mgh ,

and sin θg = cos θg = 1/
√

2.

One of the important features of the generalized supersoft spectrum is that — re-

gardless of the Majorana/Dirac composition of the gluino in all these three cases — squark

3The gluino g̃ does not acquire a Majorana mass.
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masses remain supersoft, i.e. the gluino mediated squarks masses do not pick up any log Λint

sensitivity. Below, we verify this statement using the diagrams in figure 4:

m̃2
q = − αs

π
C2 (r)

∫
d4k

(
cos2 θg
k2 −M2

gl

+
sin2 θg
k2 −M2

gh

)
+
αs
π

C2 (r)

∫
d4k

M2
D3

k2(k2 −m2
φR

)

⊃ − αs
π

C2 (r)
(
cos2 θgM

2
gl

+ sin2 θgM
2
gh

)
log Λ2

int +
αs
π

C2 (r) M2
D3

log Λ2
int . (4.11)

Here, m̃2
q is the finite correction squark mass generated at µIR and C2(r) is the quadratic

casimir. Examining eq. (4.11), the first integral is due to gl and gh running in the loop,

and the second integral is due to the real part of the scalar octet of mass mφR . The log Λ2
int

term is cancelled between the two terms, as

cos2 θgM
2
gl

+ sin2 θgM
2
gh

= −MglMgh = M2
D3

. (4.12)

Cleaning up eq. (4.11), the gluino-induced contributions to the soft masses (squared) of

the squarks (m̃2
q̃ , m̃

2
ũ, m̃2

d̃
) can be written in terms of the mass eigenvalues and the gluino

mixing angle,

m̃2
q̃ =

αs
π

C2 (r)

{
M2
D3

log
m2
φ3

M2
D3

+M2
D3

cos 2θg log
(
tan2 θg

)}
. (4.13)

where mφ3 is the mass of the scalar adjoint component in Σ3. At tree level,

mφ3 = 2MD3 , though running and the existence of Majorana masses will change the

relationship somewhat.

If we assume that finite gluino contribution represents the squark masses, we can com-

pare eq. (4.13) to the LHC bounds on colored sparticles to get an idea for the allowed

ranges of UV inputs M0
D3
,M0

Σ3
. The IR masses for the squarks and lightest gluino sector

are shown below in figure 5 as a function of the input masses. As the squark masses are

radiatively generated and finite, the squarks are significantly lighter than the gluinos for

a given set of inputs. The shape of the squark mass curves can be understood from the

fact that the Majorana gluino sector mass runs significantly faster than the Dirac mass.

For M0
Σ3
∼ M0

D3
, MΣ3(µIR) � MD3(µIR), effectively, the gluino is Majorana like with

eigenvalue M2
D3
/MΣ3 . In such a scenario, the log emerges in the gluino mediated correc-

tion to the scalar masses but with a cut off MΣ3 , i.e., Log (MΣ3/MD3). In assuming the

squark masses are set by eq. (4.13), we have ignored: i.) finite (positive) contributions

from loops of SU(2) or U(1) gauginos, ii.) the log-enhanced hypercharge D-term contri-

bution proportional to S0. While necessary for getting the exact spectrum of the theory,

these contributions are both subdominant to eq. (4.13); the SU(2) and U(1) gaugino loops

are suppressed by the smaller EW couplings, and the S0 contribution is small because,

as explained in section 4.1.1, it sets the mass of the lightest sfermions. Therefore, our

assumption that eq. (4.13) sets the squark mass is justified, and we can use figure 5 to rule

out M0
D3

. 2 TeV. These bounds are rough, as the detailed phenomenology will depend

on how ‘Dirac-like’ vs. ‘Majorana-like’ the lightest gluino eigenstate is; see refs. [16, 92].
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Figure 5. Left: finite correction to the squark mass m̃q̃(µIR) as a function of the UV inputs: the

Dirac mass M0
D3

and adjoint Majorana mass M0
Σ3

. Right: mass of the lightest eigenvalue of the

gluino sector as a function of the same UV inputs. For both plots, we used the tree level relation

mφ3
= 2MD3

for simplicity and took µIR = 103 GeV, Λint = 1011 GeV and α3(µIR) = α3(Λint) =

0.118 as inputs. The starred point (M0
D3
,M0

Σ3
) = (2.48 TeV, 0 TeV) for BP1 and (M0

D3
,M0

Σ3
) =

(2.65 TeV, 940 GeV) for BP2, yields m̃q̃ ' 1.8 TeV which satisfy the present LHC bounds [1, 2], and

a gluino mass of 7 TeV and 4.6 TeV respectively.

4.1.3 Electroweak sector

Following the same procedure as above, we can calculate the electroweak gaugino masses

(both Dirac and Majorana pieces). One difference in the electroweak case is that the gauge

couplings do run in a supersoft theory, with beta function coefficients b1 = 33/5 and b2 = 3.

Working in the yt → 0 limit, the masses at the µIR scale are:

1

αi (Λint)
=

1

αi (µIR)
− ba

2π
log

(
Λint

µIR

)
, (4.14)

ZΣa (µIR) = ZΣa (Λint)

(
αi (µR)

αi (Λint)

) 2C2(Adj)
ba

, (4.15)

MDa (µIR) = M0
Da

(
αa (µIR)

αi (Λint)

) 1
2
−C2(Adj)

ba

, (4.16)

MΣa (µIR) = M0
Σi

(
αi (µIR)

αi (Λint)

)− 2C2(Adj)
ba

, (4.17)

where a = 1, 2 and C2(Adj) is the quadratic Casimir of the adjoint representation.

Focusing first on the SU(2) sector, loops of winos and SU(2) adjoints generate a finite

correction to the mass of all SU(2) charged sfermions. The contribution has the same form

as eqs. (4.7)–(4.13), but with MD2 replacing MD3 , α2 replacing α3, and θ2 replacing θg:

m̃2
˜̀ =

α2

π
C2 (r)

{
M2
D2

log
m2
φ2

M2
D2

+M2
D2

cos 2θ2 log
(
tan2 θ2

)}
. (4.18)

This effect is particularly important for the left-handed sleptons, as the contribution to

their masses from the S0 piece is negative (see discussion following eq. (4.2)) and they
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Figure 6. Left: finite contribution to all SU(2) doublet sfermion masses, m̃˜̀(µIR) as a function

of the UV wino-sector masses. Right: lightest wino-sector (2 × 2) mass eignenvalue after run-

ning. For both plots, µIR = 103 GeV, Λint = 1011 GeV and α2(µIR) = 0.033. The starred point

(M0
D2
,M0

Σ2
) = (4.7 TeV, 0 TeV) for BP1 and (M0

D2
,M0

Σ2
) = (5.2 TeV, 3.45 TeV) for BP2 yields a

finite mass contribution of 565 and 515 GeV respectively for all SU(2) doublets, and wino eigenvalue

of 5 TeV and 3.4 TeV respectively.

receive no contribution from gluino loops. In fact, if we follow the same logic as in the

previous section and neglect the S0 and bino loop terms, the left handed slepton mass is

completely set by eq. (4.18). The slepton mass and the lightest wino sector eigenvalue are

shown below in figure 6 as a function of the UV inputs M0
D2
,M0

Σ2
.

We can use figure 6 to get a rough idea of what range of UV inputs are allowed. For

sleptons significantly heavier than the LSP, the current limits are ∼ 500 GeV [93, 94] from

the process pp → ˜̀+ ˜̀−, ˜̀± → `± + LSP. Imposing this constraint selects M0
D2

> 5.2 TeV,

however the situation is a bit more subtle. One complication is that the mass eigenstate

electroweakinos are actually a combination of wino sector fields, bino sector fields, and

higgsinos, and we have so far neglected mixing among these different multiplets. The

full mass matrix for the electroweak gauginos is given in appendix A and will be used in

section 5.6 when we present benchmark points. The second issue is that the Higgs multiplets

are also charged under SU(2) so their soft mass receives a boost from eq. (4.18). However,

to achieve EWSB, we need one Higgs mass (squared) eigenvalue to become negative. Large,

positive contributions to m2
Hu
,m2

Hd
introduce some tension into the Higgs mass system,

since they must be countered by other contributions to the soft masses or by a large bµ
term. Both options introduce some degree of tuning. Because of these complications, an

accurate description of the allowed region in M0
D2
,M0

Σ2
space will need to wait until we

study EWSB and the Higgs mass, section 5.5.

Turning to the U(1)Y (bino) sector, in the limit 〈Hu〉 = 〈Hd〉 = 0 the bino sector mass

matrix has the same form as the gluino sector in eq. (4.7) with the substitutions MD3 →
MD1 andMΣ3 →MΣ1 . While any of the Dirac/Majorana mass hierarchies mentioned in the

gluino section are theoretically possible for the bino, we would like the lightest bino sector

eigenstate to play the role of dark matter. As such, the lightest bino eigenvalue should

be predominantly Majorana in order avoid the stringent direct detection constraints on
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electroweakly charged Dirac dark matter [95]. A predominantly Majorana bino is achieved

by taking MΣ1 �MD1 (the ‘see-saw’ limit), in which case

MDM = smallest eigenvalue of bino sector mass matrix ≈
M2
D1

MΣ1

+O
(
v2

µ

)
. (4.19)

For any desired bino dark matter mass, eq. (4.19) fixes this combination of the µIR masses

MΣ1 ,MD1 , which can be translated into a constraint on the UV parameters M0
Σ1
,M0

D1
.

Unfortunately, the range of masses where an isolated, predominantly Majorana bino dark

matter particle can satisfy the observed thermal relic abundance is relatively small [96].

However, as discussed around figure 3, the range of viable masses becomes much larger if the

lightest right handed slepton has nearly the same mass as the dark matter, as coannihilation

enhances the annihilation cross section. Within our setup, the condition m̃2
ẽ ≈M2

DM boils

down to a relationship among µIR masses, which can be transmuted into constraints on the

UV parameters. Explicitly, let us approximate the right handed slepton masses by their

S0 dependent piece, Eq (4.1).4 Then, the coannihilation requirement m̃ẽ ∼ MDM can be

turned into a condition on S0 log(Λint/µIR)

m̃2
ẽ = M2

DM −→ S0 log

(
Λint

µIR

)
= −6

5

M4
D1

M2
Σ1

4π

α1(µIR)
. (4.20)

This line of thinking can actually be extended further. Once we turn on vu, vd 6= 0,

the lightest neutralino will contain traces of higgsino, and a neutralino-neutralino-Higgs

interaction. This interaction will mediate spin-independent neutralino-nucleus scattering

and can come into conflict with dark matter direct detection bounds if the interaction

strength is too large [97]. These problematic interaction vanish in the limit µ � vu, vd
when we decouple the higgsinos. Therefore we can turn the direct detection constraint into

a lower bound on µ. In order to derive the lower bounds on µ, we impose the direct detection

constraint by requiring µ to be sufficiently large compared to the dark matter mass:

|µ|2 ≥ kdd ×M2
DM ≈ −kdd ×

6

5

α1

4π
S0 log

(
Λint

µIR

)
. (4.21)

where kdd is a constant that contains how µ(µIR) translates to a neutralino-neutralino-

Higgs interaction strength and what interaction strength is permitted by current direct

detection experiments. Notice that the right hand side of the above equation has the log in

the leading order, whereas log appears in the left hand side only at the subleading order.

Keeping the dominant terms on both sides of the equation and swapping S0, µ for µ0
u, µ

0
d,

we can get an approximate constraint equation:

(
µ0
u + µ0

d

)2
∣∣µ0
d

∣∣2 − |µ0
u|2

& kdd
6

5
× α1

π
log

(
Λint

µIR

)
. (4.22)

4Comparing Eq (4.1) to the finite contribution from bino-loops (eq. (4.13), with MDa → MD1 and

mφR → mS (the mass of the bino-partner’s scalar component), the latter contribution to m̃ẽ is suppressed

in the limit MΣ1 ≈ mS �MD1 .
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This forces us to take
∣∣µ0
d

∣∣2 �
∣∣µ0
u

∣∣2, an appropriate limit given that we know from sec-

tion 4.1.1 that S0 must be negative, further simplification happens,

log

(
Λint

µIR

)
.

1

kdd

5π

6α1
⇒ log10

(
Λint

µIR

)
.

140

kdd
. (4.23)

For example, if kdd = 20 and µIR = 1 TeV, we find Λint . 1010 GeV. A precise limit on kdd
could either come from direct detection DM results or from LHC. For example, the present

bound on higgsino mass is roughly 600 GeV for a 100 GeV LSP neutralino. Moreover, DM

direct detection experiments such as LUX, puts a constraint on the higgsino fraction of

the lightest DM candidate. For a 100 GeV bino-like DM, higgsino mass need to be around

500 GeV to evade the direct detection bounds in the paradigm of MSSM. Therefore, the

sectors roughly signals to kdd ' |µ|2 /M2
DM ∼ 25. However, In all the above derivations, we

have neglected the role of Yukawa couplings. A closed solution of S in the presence of the

Yukawa couplings is given in appendix B.

4.1.4 Electroweak symmetry breaking

In pure supersoft supersymmetry, the operator in eq. (2.2) responsible for the SU(2) and

U(1) gaugino masses also cancels their D-term contributions to the scalar potential, making

the Higgs massless at tree level. In GSS, the Majorana adjoint masses introduced via

eq. (2.4) disrupts the D-term cancellation, and the Higgs quartic coupling is non-zero.

While smaller than the conventional MSSM quartic (which is already too small for the

observed Higgs mass), the fact that the GSS quartic is non-zero means we do not need to

rely as much on radiative stop contributions to achieve mh = 125 GeV. In order to find

the conditions for electroweak symmetry breaking, we look at the quartic terms of the real

scalar potential.

V1 =
1

32

[
g′2M2

Σ1

M2
Σ1

+ 4M2
D1

+
g2M2

Σ2

M2
Σ2

+ 4M2
D2

]
(
h2
d − h2

u

)2
, (4.24)

where we have integrated out the scalar adjoint fields. In the limit MΣ � MD, we get

back the MSSM quartic term V =
(g2+g′2)

32

(
h2
d − h2

u

)2
, while the opposite limit MD �MΣ

takes us to the purely supersoft case.

In general, the quartic terms stabilize the scalar potential for large values of hu and hd.

The common wisdom in generic MSSM-like scenarios is to look for D-flat directions in the

field space with |hu| = |hd|, where the quartic contributions vanish. The quadratic pieces

need to be positive along the D-flat directions in order for the potential to be bounded

from below. Also, for EWSB, one linear combination of hu and hd must have a negative

mass squared near hu = hd = 0. As the quadratic part of the GSS Higgs potential is

identical to the MSSM, the stabilization and EWSB conditions [98] are as well, namely:

b2µ >
(
m̃2
hu + µ2

) (
m̃2
hd

+ µ2
)
, (4.25)

where all terms are evaluated at the IR scale. In practice, we will use eq. (4.25) to establish

the allowed range of IR bµ values that are consistent with given (UV) inputs of m̃hu , m̃hd , µ
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(equivalently, µ0
u, µ

0
d) and tan β; the bµ(µIR) values can then be translated into bµ(Λint)

via eq. (3.29).

Inspecting some of the results of this section, one may wonder how natural relations

such as eq. (4.23) actually are. While this is a legitimate question, it is not straight forward.

Our goal is to map out the viable parameter space of generalized supersoft theories. To

concretely answer how tuned a particular parameter choice is, we need to know the UV

theory behind the supersymmetry breaking spurions — something beyond the scope of

this paper.

5 Numerical results

Having outlined the features of viable generalized supersoft spectra and identified what

experimental constrains will shape the allowed parameter space, we now turn to numerics.

For our numerical evaluation, we take µIR ∼ 1 TeV and Λint = 1011 GeV, though in some

cases we will vary the UV scale to show features of the running. The gauge couplings and

SM fermion masses are also input parameters, with values [99]:

g3(µIR) = 1.21 , mt(µIR) = 150.7 GeV ,

g2(µIR) = 0.64 , mb(µIR) = 2.43 GeV ,

g1(µIR) = 0.45 , mτ (µIR) = 1.77 GeV . (5.1)

We define the Yukawa couplings as yu/d = m/vu,d, where

vu =
v sinβ√

2
, vd =

v cosβ√
2

, (5.2)

with v = 246 GeV. This leaves us with 9 additional inputs.

µ0
u, µ

0
d, M

0
Da , M

0
Σa , tanβ, (5.3)

subject to the requirement that |µ0
d| > |µ0

u|.

5.1 Right-handed slepton masses

Turning first to the right handed sleptons, we show the running of the right handed slepton

mass-squared (scaled by S0) in the left panel of figure 4.1.1 as a function of the UV scale

and assuming three different values of tan β: 2.5 (red-solid), 20 (blue-dashed), 40 (black-

dotted). From these curves, one can readily estimate S0 in order to obtain right handed

slepton mass around 100 GeV.

The solution of the full RGE has two effects not present in section 4.1.1: i.) the

running of S, and thereby the running of all soft masses, inherits a tan β dependence due

to the Yukawa couplings in eq. (3.31), ii.) the running of the third generation sleptons

explicitly depends on the Yukawa couplings, while the first and second generations do

not. This dependence is tan β-dependent and breaks the mass degeneracy among slepton

generations, as exhibited in the right panel of figure 7. A mass splitting between sleptons

has the potential to be phenomenologically dangerous in generalized supersoft scenarios,
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Figure 7. In the left panel we show the running of the right handed slepton mass square scaled

by S0 as a function of the intermediate scale for different tan β values of 2.5 (red-solid), 20 (blue-

dashed) and 40 (black-dotted). In the left panel we present the mass splitting between the first and

third generation of right handed sleptons as a function of tan β. The tan β dependence manifests

itself in the RGEs.

where — as discussed earlier — the largest regions parameter space will have the bino (LSP)

and lightest right handed selectron nearly degenerate. As such, a mass splitting between

slepton generations means the heavier sleptons are slightly heavier than the LSP and can

decay ˜̀→ `χ̃0
1. For sleptons in the 100 GeV range, bounds from lepton plus missing energy

searches are quite stringent [100, 101]. To avoid these bounds without raising the overall

mass scale, we need to quench the splitting by restricting parameters to low to moderate

tanβ. As we shall see in the next section, the small tan β region also well motivated from

the perspective of Higgs mass.

To obtain a rough estimate on the size of S0, we present two cases with different values

of tanβ: 2.5 and 40. To obtain a right slepton µIR mass of around 100 GeV for these tan β

values, one would require

√
|S0| =

(
m̃ẽ

100 GeV

)
×





100√
0.026

∼ 620 GeV for tan β = 2.5

100√
0.019

∼ 725 GeV for tan β = 40

(5.4)

For tanβ = 2.5, the effect of the tau Yukawa coupling in the RGEs can be neglected to a

very good approximation. Hence, typical values such as µ0
d = 800 GeV and µ0

u = 500 GeV

satisfies the left hand side of eq. (5.4). Furthermore, requiring the right-sleptons to be

nearly degenerate results in

|∆m̃ẽ|2
m̃2
ẽ

< 1% =⇒ tanβ . 10. (5.5)

From eq. (5.5) and for m̃ẽ ∼ 100 GeV, the degeneracy between the slepton generations turn

out to be around 10 GeV. In the next section we look at the DM constraints which gives

a range of the LSP-right slepton masses where relic density can be satisfied.
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5.2 Dark matter constraints

In the absence of coannihilation, the relic density of a bino-like neutralino can be approxi-

mated as [96]

Ωχ̃0
1
h2 '

2.16× 10−5x2
f

|N11|4
(

mf̃

100 GeV

)2 (1 + r)4

r(1 + r2)
, (5.6)

where xf represents the freeze-out epoch and r = m2
χ̃0

1
/m̃2

ẽ. For a bino well-separated from

other states, say r < 0.8, the present value of the observed relic density 0.1199 [102] readily

limits m̃ẽ . 100 GeV. Such slepton masses are very tightly constrained from the LEP

data [21]. As a result, in most of the allowed parameter space of slepton masses, the bino

suffers from overabundance.

In our setup, the bino is nearly mass-degenerate with right handed sleptons, and

consequently coannihilation becomes important. Roughly, whenever δm ≡ m̃ẽ−mχ̃0
1
∼ Tf ,

then these slightly heavier degrees of freedom are thermally accessible and are therefore

nearly abundant as the relic species. Since Tf ∼ mχ̃0
1
/25 [96], we find the degree of

degeneracy needed for coannihilation is

m̃ẽ −mχ̃0
1

mχ̃0
1

=
δm

mχ̃0
1

=
Tf
mχ̃0

1

∼ 5%. (5.7)

Once coannihilation becomes important, the slepton self interactions and interactions with

the bino [103] set the relic abundance. These additional interactions relax the bound on

the slepton masses and overabundance issue can be avoided if

m̃ẽ ∼ mχ̃0
1
. 500GeV, (5.8)

which is well above the current LHC bound on sleptons nearly degenerate with the

LSP [94]. For a dedicated and more robust analysis, we implemented the effective µIR

model in SARAH-4.11.0 [104, 105] and generated the spectrum using SPheno-3.3.3 [89, 90].

We have varied the masses of the lightest neutralino state and the slepton masses (as-

sumed to be degenerate). If the LSP is neutralino then only the spectrum file is fed

to micrOMEGAs-v3 [106] for computing relic abundance and dark matter direct detection

rates. We find that coannihilation works efficiently for mχ̃0
1
∼ mẽ ∼ 400 GeV. This imme-

diately sets ξd(Λint) ∼ 2 TeV and µ(µIR) ∼ 600 GeV. This limit is obtained by considering

again ξu(Λint) ∼ 0.

5.3 Higgsino masses

The higgsino mass is essentially tied with the right handed slepton masses through their

initial conditions. Assuming again µ0
u = 500 GeV and µ0

d = 800 GeV, the right panel of the

figure 8 shows that the higgsino mass at µIR is driven by

µ(µIR)
∣∣∣
tanβ=2.5

∼ 1.025× µ0
d + µ0

u

2
∼ 660 GeV. (5.9)

Another way to make higgsinos heavy would rely on the modification of the messenger scale.
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Figure 8. In the left panel of the figure we show the running of the higgsino mass scaled with

its initial condition for a fixed value of tan β = 2.5. On the right panel we elucidate how the low

energy constraints can be translated to a bound on the intermediate scale. These constraints can

come from either DM direct detection results or collider experiments. The yellow shaded region is

excluded from the direct collider searches for right slepton/LSP masses close to 100 GeV for the

same initial conditions as discussed before.

In the right panel of figure 8 we show how low energy constraints can significantly

constrain the messenger scale in our scenario. The constraints are two folds, first from direct

detection experiments. The limit from direct detection experiment constrains the higgsino

fraction in the lightest neutralino. As a result, higgsino should be heavier compared to

the LSP or the lightest slepton. In our case, the lightest neutralino is a predominant

mixture of the bino and singlino gauge eigenstates and the higgsino admixture is negligible.

Therefore, the stringent constraint from the DM direct detection can be avoided easily.

However, to push the Higgs mass to the observed value, as elaborated in the next section,

we require introducing new superpotential terms. For larger couplings, this increases the

higgsino component in the lightest neutralino state. Secondly, collider experiment can also

provide stringent constraint on the ratio of the higgsino and slepton masses. For example,

our spectrum has the following hierarchical structure where NLSPs are the right handed

slepton and LSP is the bino-singlino admixture neutralino. Higgsinos are heavier than the

sleptons. Such a higgsino after electroweak production can decay to a Zχ̃0
1 or hχ̃0

1 [93, 107].

However, all these modes are phase space suppressed for χ̃0
2 ∼ χ̃0

3 ∼ 200 GeV. In such cases

the dominant decay mode would be ˜̀̀ . The limits on this particular final state is very

robust [101]. In our case, we took a conservative approach and used µ(µIR)/m̃˜̀
R

(µIR) ∼ 6.

For our choice of parameters, we observe from figure 8 that the UV scale should be less than

1011 GeV or so. Changing the initial values would modify the results as the dependence of

these two parameters are different for higgsino and slepton mass runnings.

5.4 Dark matter direct detection

Our framework also needs to be consistent with the null results in DM direct detection.

When the squarks are heavy, the spin-independent interaction between DM and nuclei

comes from Higgs exchange and thus it depends crucially on the Higgs coupling to the

lightest neutralino. The Higgs-neutralino coupling, in turn, depends on the higgsino mass
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parameter. For a given LSP bino mass we can translate limits from direct detection di-

rectly into limits on the higgsino mass. The spin-independent cross-section can be well

approximated by the following relation [108]

σSI '
8G2

F

π
M2
Zm

2
red

F 2
hI

2
h

m4
h

, (5.10)

where GF ,MZ ,mred are the Fermi coupling constant, Z boson mass, and DM-nucleon

reduced mass, and Fh, Ih are coupling and kinematic factors. In the limit when the wino

and heavy Higgs are heavy and effectively decoupled (in addition to the squarks),

Fh = −N11N14 sin θW , Ih =
∑

q

khqmq〈N |q̄q|N〉. (5.11)

Here, N11, N14 are the bino and higgsino fraction in the lightest neutralino, khup-type =

cosα/ sinβ, khdown-type = − sinα/ cosβ, and we have already assumed cosα → 1 and

sinα → 0 by decoupling the heavy Higgs. Because of the Dirac nature of the gaugino

masses and the extra interactions involving the adjoint (e.g., SHuHd coupling in the su-

perpotential), the neutralino mass matrix no longer has the MSSM form. Taking the ratio

of the DM direct detection in GSS to the prototypical MSSM, the only factors that don’t

drop out are the N11, N14,

σGSS
SI

σMSSM
SI

'
∣∣NGSS

11 NGSS
14

∣∣2

|N11N14|2
. (5.12)

For typical values µ = 300 GeV, Mχ̃0
1
∼ 150 GeV, tan β = 4, the direct detection cross-

section in GSS turns out to be an order of magnitude less than in the MSSM, as the bino-

singlino mixing in GSS dominates over bino-higgsino mixing. This implies lower higgsino

masses are possible in our framework.

The constraints on the right handed slepton masses and the higgsino mass can be

effectively translated to constrain the two input parameters µ0
u and µ0

d. In figure 9 we show

the contours of right handed slepton mass (red) and higgsino mass (blue) in the µ0
u-µ0

d plane.

As already stated, one needs to have µ0
d > µ0

u in order to get positive definite right handed

slepton mass. As a result, the grey shaded region is not viable. The masses of right handed

sleptons and the LSP should be nearly degenerate in order to satisfy the relic abundance.

Moreover, DM direct detection experiments sets a limit on the bino-higgsino mixing and

effectively on the higgsino mass parameter, µ. Therefore, given the values of m˜̀
R

and µ

one can readily constrain the input parameters µ0
u and µ0

d. We have fixed λS = 0, for the

figure in the left panel. In such cases, the lightest neutralino is a predominant admixture

of the bino and the singlino instead of bino-higgsino. As a result, the dark matter direct

detection constraints are irrelevant. However, collider constraints are certainly applicable

and we discuss those issues in detail later. The figure in the right panel is obtained by fixing

λS = 0.8. A non-zero λS is important to satisfy the Higgs mass constraints as discussed in

section 5.5. It is obvious, that order one value of λS increases the higgsino fraction in the

lightest neutralino and hence direct detection constraints become important. The yellow
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Figure 9. We show the contours of right handed slepton mass (red) and higgsino mass (blue) in

the µ0
u-µ0

d plane. To obtain positive definite mass for the right handed sleptons one needs to have

µ0
d > µ0

u, therefore, ruling out the shaded region. For definite values of right handed slepton and

higgsino masses, designated by the crossing of the contours, the two input parameters µ0
u and µ0

d

can be readily obtained. We have fixed Λint = 1011 GeV and tan β = 2.5. We have fixed λS = 0,

for the figure in the left panel. In such a scenario, the direct detection constraints are not relevant.

However, for the figure in the right panel, we have fixed λS = 0.8 and show the excluded region

after taking into account constraints from direct detection experiments

.

shaded region in the right panel plot of figure 9 shows the excluded parameter space when

direct detection results (LUX WS 2014-16) [97] are taken into consideration. We reiterate

that the LEP results exclude parameter space where slepton masses are below 100 GeV.

5.5 Higgs mass and new superpotential terms

In previous sections we have shown how the inputs µ0
u, µ

0
d, the Dirac and Majorana gaugino

masses and, to some extent, tan β are constrained by collider physics and dark matter.

What remains to be done is to see what Higgs masses are possible in the ‘surviving’ regions.

As already mentioned in section 4.1.4, the traditional MSSM Higgs quartic terms get

depleted due to the presence of Dirac gauginos. However, new superpotential couplings such

as λS generates additional quartic terms which are NMSSM like. Under some simplified

assumptions such as i.) integrating out the adjoint scalar fields, ii.) assuming λT = 0, for

simplicity, the Higgs mass can be obtained by diagonalizing the scalar mass matrix in the

basis (hu, hd) given in appendix C.

To fully answer the question of the Higgs mass, we need to go beyond tree-level. The

largest loop-level contribution comes from the top squarks and is governed by their overall

mass and degree of t̃L− t̃R mixing. In GSS, the top squark mass matrix, neglecting D-term

contributions, is:

m2
t̃

=

(
m2
Q3

+m2
t −ξ̃uytvd

−ξ̃uytvd m2
ū3

+m2
t

)
, (5.13)

where the terms ξ̃u is the supersymmetry breaking trilinear interaction originating from
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eq. (2.8). It is well known that the top squark contribution to the Higgs mass is largest

when there is substantial t̃L− t̃R mixing [98]. In GSS, the mixing angle in the stop-sector,

tan 2θ =
−2ξ̃uytvd
m2
Q3
−m2

ū3

, (5.14)

is proportional to vd ∼ cosβ, while the mixing angle in the MSSM ∼ sinβ. The difference

can be traced to the unusual structure of the scalar trilinears in GSS and, since one usually

wants to take tan β large to maximize the tree level Higgs quartic, leads to suppressed stop

sector mixing. Suppressed stop sector mixing can be overcome by taking large ξ̃u, though

this is an unattractive option as it will increase the traditional fine tuning measure of the

setup. Moreover, even if we set aside tuning concerns for the moment, we find that even

very large values of ξ̃u are unable to push the Higgs mass to more than 100 GeV (recent

works, studying the phenomenological implications of such non-standard soft supersym-

metry breaking terms in MSSM can be found in [109, 110]). In addition to the tree level

terms, we have also included two loop corrections from the stop sector [111] (for three loop

corrections in MSSM see [112]) and considered mt̃1
∼ mt̃2

∼ 1.8 TeV.5 Higher Higgs masses

are possible if we consider heavier stops, though at the expense of increased tuning.

Hence, the most natural way to increase the Higgs mass is to extend the theory with

additional F -terms, as in the NMSSM. In GSS, this extension requires no new matter as

the theory already contains a SU(2) singlet and triplet superfield. Including interactions

between these superfield and the Higgses, the GSS superpotential is modified to

WGSS = W + λSS HuHd + λTHu T Hd, (5.15)

with W given in eq. (2.8). The modified superpotential generates a new tree level quartic

for the Higgs. Specifically, taking λS 6= 0, λT = 0 for simplicity, two new Higgs potential

terms are generated,

V2 =
|λS |2

4

[
4M2

D1

M2
Σ1

+4M2
D1

h2
uh

2
d +

µMΣ1

M2
Σ1

+ 4M2
D1

huhd
(
h2
u+h2

d

)
− µ2

M2
Σ1

+4M2
D1

(
h2
u + h2

d

)2
]
,

V3 = −
√

2g′λS
4

MD1

M2
Σ1

+ 4M2
D1

[
µ
(
h2
u + h2

d

)
−MΣ1huhd

] (
h2
d − h2

u

)
. (5.16)

In the limit MD � MΣ, µ, the quartic no longer vanishes but instead takes on a NMSSM

form, e.g., V = |λs|2
4 h2

uh
2
d and can generate a large tree level Higgs mass.6

In the left panel of figure 10 we show the Higgs mass with new tree level quartic

contributions after taking into account two loop corrections from the stop sector (m̃t̃ ∼
5In the presence of additional superpotential interactions (eq. (5.15)), the electroweak adjoints also

contribute to the Higgs mass and can in principle be included. At one loop, these contributions are ∝ λ4
S , λ

4
T

and are logarithmically sensitive to the difference between the adjoint fermion and scalar masses. However,

unlike in the top-stop sector, the ratio of adjoint fermion to scalar masses is O(1), thereby suppressing

the adjoint contribution to the Higgs mass. We have therefore neglected this (positive definite) piece for

simplicity.
6The λ-dependent pieces do not vanish in the D-flat limit so they will alter the stabilization conditions,

as well as the relation between the bµ and the other inputs.

– 29 –



J
H
E
P
0
5
(
2
0
1
8
)
1
7
6

⇤int (GeV)

�
S

0

0.5

1

1.5

2

2.5

3

3.5

104 106 108 1010 1012 1014 1016
0

0.5

1

1.5

2

2.5

3

3.5

104 106 108 1010 1012 1014 1016

�S

ta
n
�

mh
=
12
4G

eV

2

2.5

3

3.5

4

4.5

0.5 0.6 0.7 0.8 0.9 1

ta
n

b

lS

2

2.5

3

3.5

4

4.5

0.5 0.6 0.7 0.8 0.9 1

126
Ge

V

BP1

Figure 10. Left: Higgs mass with new tree level quartic contributions after taking into account two

loop corrections from the stop sector (m̃t̃ ∼ 1.8 TeV). The MSSM tree level contribution is depleted

due to our choice of MΣ and MD’s (same as BP1). However, additional F -term contributions occur

from the superpotential coupling λS . Right: running of superpotential coupling λS (shown by

the red-solid curve on the left panel) and top Yukawa coupling (blue-solid curve). We have fixed

λ(µIR) = 0.8 and tanβ = 3.6 (same as BP1) to satisfy Higgs mass constraints.

1.8 TeV). The MSSM tree level contribution gets reduced due to the presence of MΣi and

MDi , however additional F -term contributions from the superpotential coupling λS helps.

The values shown in figure 10 are the IR values, so one might worry that the relatively

large λ values needed for mh = 125 GeV grow even larger in the UV and lead to a violation

of perturbativity. In addition to their own running, the λ couplings modify the anomalous

dimensions of the Higgs fields and thus contribute to the running of the top and bottom

Yukawa couplings:

β [λS ] = λS

[
3y2
t + 3y2

b − 3g2 − 3

5
g2

1 + 4λ2
S + 6λ2

T

]
,

β [λT ] = λT

[
3y2
t + 3y2

b − 7g2 − 3

5
g2

1 + 2λ2
S + 8λ2

T

]
,

β [yt] = yt

[
6y2
t + y2

b −
16

3
g2

3 − 3g2 − 13

15
g2

1 + λ2
S + 3λ2

T

]
. (5.17)

We reiterate, the RGEs of the scalar masses are shown to run from Λint ∼ 1011 GeV,

therefore integrating out any hidden sector effects. However, λ’s are superpotential coupling

and should remain perturbative upto the GUT scale. The running of the singlet coupling to

the Higgs fields is shown in eq. (5.17) and depicted in the right panel of figure 10. We have

chosen λ(µIR) = 0.8 and tanβ = 3.6 (same as BP1) to satisfy Higgs mass constraints. The

coupling remains perturbative up to the GUT scale. However, due to larger group theory

factors in the anomalous dimension the triplet coupling diverges more rapidly, becoming

nonperturbative at an energy close to 1010 GeV unless additional structure is added to

the theory.

The new superpotential couplings generate new trilinear interactions in the scalar

potential and modify the running of the Higgs soft masses m̃hu , m̃hd and couplings ξ̃u, ξ̃d.
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The rest remains unaffected. The additional couplings in the Lagrangian

L → L− λSξd |hu|2 S − λSξu |hd|2 S + triplet trilinear terms (5.18)

The modified RGE are presented in appendix D. One important thing to note that the

presence of the singlet field and non-standard soft terms can give rise to dangerous tad-

pole diagrams which might destabilize the hierarchy [113, 114]. We discuss such issues in

appendix E.

5.6 Benchmark points

Finally, we provide two benchmark points to show that the framework is consistent with all

the phenomenological observations including the Higgs mass, DM relic density, DM direct

detection and collider results. The UV and IR parameters for these benchmarks, along

with mh,Ωh2 and the DM-nucleon spin-independent cross section are shown in table 2.

As discussed in section 5.5, a viable Higgs mass is most naturally reached in GSS when

one admits superpotential interactions between the SU(2),U(1) adjoint superfield and the

Higgses. While either λS , λT or both can be used, however, λT = 0 is the safer choice,

in the sense that it requires fewer assumptions about the UV. Therefore, both of the

benchmark setups have λS 6= 0, λT = 0.

Inspecting the benchmarks, both points share the feature that q̃, ũ, d̃, ˜̀, ẽ are massless at

Λint and have µ0
d,u split in a way that yields positive RH slepton masses, µ0

d−µ0
u ∼ 100 GeV.

To augment the Higgs mass, both benchmarks have λS 6= 0,O(1). Order one values of λS
enhance the higgsino fraction of the lightest bino sector field [115]. Hence, to overcome

stringent constraints from the DM direct detection,7 the higgsino mass — set by µ0
u,d —

needs to be around a TeV. We note in passing that such a problem does not arise when one

makes the triplet coupling λT large to fix the Higgs mass. As this coupling only increases

the higgsino fraction in the wino-tripletino like neutralino, considered to be heavy in our

case. For both benchmarks, the bµ(Λint) values have been determined numerically following

the logic established in section 4.1.4 with refinements due to λS 6= 0 and are similar in size

to the other UV inputs.

The largest difference between the points is the mass of the triplet and octet fermions.

In BP1, MΣ2 = MΣ3 = 0 in the UV, which, since the running of these masses is multi-

plicative, implies MΣ2 = MΣ3 = 0 in the IR as well.8 We cannot further simplify things

by choosing MΣ1 = 0 without destroying the see-saw mechanism in the bino sector. A

second difference between the benchmarks is the LSP mass, set to be 100 GeV in BP1 and

150 GeV in BP2. The fact that the LSP mass is higher in BP2 while the higgsino mass

remains the same as in BP1 results in slightly enhanced direct detection limit.

Finally, one set of bounds we have yet to address are the LHC limits on electroweakinos.

The bounds on chargino/heavier neutralinos (χ̃0
2, χ̃

0
3) production can be quite stringent,

∼ 1 TeV if the chargino/neutralinos decay primarily to sleptons [116, 117]. Fortunately,

7We have used micrOMEGAs-v3 for DM direct detection cross-section. For ∼ 100 GeV neutralino, the

cross-section should be less than 9 × 10−47 cm2 [97].
8There is no phenomenological disaster associated with MΣ2 = MΣ3 = 0 as the Σ2,3 fields will receive a

finite, loop-level contribution from gaugino loops, see section 4.1.2 and 4.1.3
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Parameters (Λint) BP1 BP2

Λint 1011 GeV 1011 GeV

MD3 2.48 TeV 2.65 TeV

MD2
4.72 TeV 5.20 TeV

MD1
556 GeV 567 GeV

MΣ3
0 940 GeV

MΣ2 0 3.45 TeV

MΣ1
1.97 TeV 1.30 TeV

m̃q̃,ũ,d̃,˜̀,ẽ 0 0

µ0
d 1.39 TeV 1.475 TeV

µ0
u 1.15 GeV 1.0 TeV

bµ 0.7392 TeV2 0.8582 TeV2

Parameters (µIR) BP1 BP2

MD3
7.00 TeV 7.50 TeV

MD2 5.00 TeV 5.50 TeV

MD1 515 GeV 525 GeV

MΣ3
0 7.50 TeV

MΣ2
0 5.50 TeV

MΣ1 2.50 TeV 1.65 TeV

µ 1.026 TeV 1.076 TeV

bµ 0.7492 TeV2 0.8672 TeV2

λS 0.80 0.7

tanβ 3.6 2.9

Outputs BP1 BP2

m̃g̃1,g̃2 7, 7 TeV 12.1, 4.6 TeV

m̃q̃,ũ,d̃ 1.845, 1.842, 1.845 TeV 1.823, 1.817, 1.824 TeV

m̃t̃1,2
1.847, 1.85 TeV 1.82, 1.83 TeV

m̃χ̃2,3
1.022, 1.031 TeV 1.071, 1.081 TeV

m̃˜̀ 513.5 GeV 514.4 GeV

m̃ẽ 110 GeV 160 GeV

m̃χ̃0
1

100 GeV 150 GeV

mh,H 125.6 GeV, 1.45 TeV 125.3 GeV, 1.53 TeV

Ωh2 0.081 0.107

σSI 1.615× 10−47 cm2 6.17× 10−47 cm2

Branching Ratios BP1 BP2

χ̃0
2 → Zχ̃0

1 72.7% 87.2%

χ̃0
2 → hχ̃0

1 23.8% 10.6%

χ̃0
3 → Zχ̃0

1 24.4% 85.0%

χ̃0
3 → hχ̃0

1 70.3% 10.4%

χ̃+
1 →Wχ̃0

1 96.7% 96.7%

Table 2. Benchmark points for GSS scenarios with the two different values of λS . Points satisfy

the Higgs mass and DM relic density and direct detection constraints. The DM direct detection

limit for a 100 GeV WIMP is around 9 × 10−47 cm2 [97].
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electroweakino decays to sleptons are rare in our setup. As we have seen, collider bounds

on left handed sleptons push the mass of the winos into the multi-TeV range, while DM

and Higgs constraints prefer higgsinos at 1 TeV. As a result, χ̃±, χ̃0
2, χ̃

0
3 are predominantly

higgsino and thus have Yukawa-suppressed couplings to SM fermions (this is exacerbated by

the small tan β in BP1 and BP2). With sfermion-fermion decays suppressed, the charginos

and neutralinos decay preferentially to gauge bosons and Higgses, modes with much looser

constrains. The dominance of the gauge/Higgs boson branching ratios of χ̃±, χ̃0
2, χ̃

0
3 in BP1

and BP2 can be seen in the bottom rows of table 2.

These two benchmarks have been chosen with particles sitting just outside the existing

bounds. In the near future, both points would be exposed through jets plus missing energy

searches (sensitive to q̃, ũ, d̃) or leptons plus missing energy (sensitive to ˜̀). However,

the squarks and left handed sleptons can easily been taken heavier without ruining the

main features of GSS, namely the near degeneracy of the right handed sleptons with the

LSP. Compressed spectra, especially among weakly interacting states, are hard to probe at

the LHC, though studies with displaced vertices [118, 119], soft-tracks [120, 121], or initial

state radiation [122–126] can be a useful tool to look for such regions. Should a compressed

slepton-LSP sector be discovered at the LHC, the next step towards singling out GSS as

the underlying framework would be to verify the hierarchical structure of the spectrum, for

example, a right handed slepton signal without any sign of squarks, left handed sleptons,

or gauginos. As the absence of other states is a rather unsatisfactory discriminator among

models, a more concrete signal is the presence of SU(2), SU(3) adjoint scalars. The masses

of these states is more model dependent (e.g. compare BP1 and BP2) and it is possible

that they are light enough to yield a signal at the LHC [127], however it is likely that a

future, higher energy machine is required to explore the spectrum fully.

6 Summary and conclusion

The recent run of the LHC has put stringent constraints on the superpartner masses.

In fact, the strongest limit is drawn when the gluinos/squark masses are well separated

from the LSP mass, reaching almost 2 TeV. A heavy gluino raises the soft mass of Higgs

fields through renormalization group evolutions. As these parameters are a measure of

the fine tuning, the non-observation of the superpartners has resulted into finely tuned

regions of parameter space for most supersymmetry models. Frameworks with supersoft

supersymmetry with Dirac gauginos are well motivated in this light. The supersoft nature

of the gluinos ensure that the gaugino mediated correction to the squark masses are finite

and not log enhanced. Therefore, Dirac gluinos can be naturally heavy. Consequently,

the pair production of the gluinos goes down significantly due to kinematic suppression.

Moreover, the production of same chirality squarks are also less as this requires chirality

flipping Majorana gaugino masses in the propagator. The reduction in the production

cross-section of the squarks weakens the constraints on the squark masses significantly.

Hence, supersoft models are often coined as ‘supersafe’ in the literature. An additional

virtue of this framework is flavor and CP violating effects are well under control.
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However, supersoft frameworks also suffer from a few drawbacks. First, the Guidice-

Masiero mechanism is unavailable so viable µ values require a conspiracy between the

supersymmetry breaking scale and the Planck scale. Further, the natural D-flat direction

of the Higgs potential sets the tree level quartic term to zero, making it very difficult to fit

the observed Higgs mass of 125 GeV. Finally, supersoft models contain additional scalars

in the adjoint representation of the SM gauge group that often acquire negative squared

masses, resulting in a color breaking vacuum. An interesting way to resolve these three

issues is to supplement the theory with additional, potentially non-supersoft operators in-

volving the same D-term vev used to generate gaugino masses, the so-called generalized

supersoft framework. The additional operators in GSS generate µ-terms proportional to

the supersymmetry breaking vev and positive definite masses (squared) for the scalar com-

ponents of the adjoint chiral superfields. While economically solving the µ and adjoint

masses issues is a step forward, dark matter remains an issue in GSS; right handed slep-

tons only receive mass through the finite correction from the bino and therefore seem to

be destined to be the LSP unless the mediation scale is low.

In this work we mapped out the parameter space of GSS, paying particular attention to

the DM problem. We have shown that bino LSP can be avoided while maintaining a high

mediation scale and without new fields in parameter regions where the two GSS µ-terms

are unequal. If µu 6= µd, supersoftness is lost and loop suppressed, log divergent pieces

from the hypercharge D-term contribute to the running of the scalar masses. For the right

choice of inputs, these hypercharge contributions can lift up the RH slepton mass above the

bino. Focusing on the region where the bino is the LSP, we explored how well the setup can

satisfy additional constraints such as the 125 GeV Higgs mass, correct relic abundance —

achieved whenever the bino and RH slepton masses are similar and coannihilation becomes

important — and compatibility with the latest LHC results.

The RH slepton masses are controlled by the difference of the UV µ parameters while

the higgsino mass is set by the sum. If we insist that the LSP bino is a valid thermal

relic DM that escapes all direct detection bounds, the two constraints become tightly

correlated, since the slepton mass controls the degree of coannhiliation while the higgsino

mass controls the strength of the Higgs-exchange DM-nucleon interaction. Within this

parameter region, we find squark and slepton collider bounds can be satisfied, but the

Higgs mass is generically too low unless one resorts to large loop corrections. Rather than

resort to heavy stops, we showed how additional, NMSSM-type interactions can be used to

lift the Higgs mass. These NMSSM-type interactions require no additional field content,

as the bino’s Dirac partner is a gauge singlet. The interpolation between IR constraints

and UV inputs requires some care, as non-standard supersymmetry breaking interactions

are generated whenever µu 6= µd and enter non-trivially into the RGE.

Even though we supplement this work with full numerical solutions, we focus rather

on calculating general features of the spectrum, which we derive using analytical solutions

whenever we can after making various simplifying assumptions. In fact, most of the fea-

tures of the electroweak spectra get captured even after these simplifications. Instead of

scanning the full parameter space numerically for allowed regions, this approach allows us

to generate intuitions about how to convert various experimental bounds into bounds in
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the UV parameter space within this framework. Before concluding, we emphasize that the

results of this paper came from taking the masses and parameters of the theory at the su-

persymmetry breaking scale (
√
D) to be inputs. The lack of knowledge in the exact nature

of supersymmetry breaking dynamics does not allow us directly to consider the parameters

at the messenger scale as inputs. A derivation of renormalization group equations of these

new operators — including the operators proposed in eq. (2.4) — in the presence of arbi-

trary hidden sector dynamics (in the fashion of [87]) would allow one to relate these masses

and parameters of the messenger scale and the supersymmetry breaking scale. To further

UV complete this framework, more detailed messenger sector model building is required.
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A Neutralino and chargino mass matrices

The fermion sector in our case is different from the usual MSSM structure. The neutralino

mass matrix in the basis (B̃, S̃, W̃ 0, T̃ 0, H̃0
u, H̃

0
d) looks like

Mχ̃0 =




0 MD1 0 0 g′vu
2 −g′vd

2

MD1 MΣ1 0 0 −λSvd√
2
−λSvu√

2

0 0 0 MD2 −gvu
2

gvd
2

0 0 MD2 MΣ2 −λT vd
2 −λT vu

2
g′vu

2 −λSvd√
2
−gvu

2 −λT vd
2 0 −µ

−g′vd
2 −λSvu√

2

gvd
2 −λT vu

2 −µ 0




. (A.1)

Also the chargino mass matrix written in the basis (W̃−, T̃−, H̃−d ) and (W̃+, T̃+, H̃+
u ) takes

the following shape

Mχ̃+ =




0 MD2

gvu√
2

MD2 MΣ2

λT vd√
2

gvd√
2
−λT vu√

2
µ


 . (A.2)

B Switching on the Yukawa coupling

We now switch on the Yukawa couplings and show how the right handed slepton masses

get generated through RGEs. For this the following equations are required to be solved

through some approximate means. Such as

16π2dS
dt

=
66

5
g2

1S − 12 |yt|2
[∣∣∣ξ̃u

∣∣∣
2

+ ξ̃∗uµ+ ξ̃uµ
∗
]
, (B.1)

16π2dξ̃u
dt
' 3 |yt|2 ξ̃u, (B.2)

16π2dyt
dt
' yt

[
6 |yt|2 −

16

3
g2

3

]
. (B.3)
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Eq. (B.3) can be simplified to obtain the following form

∫ µ

Λ
d log |yt|2 =

3

4π2

∫ µ

Λ
dt |yt|2 −

2g2
3

3π2

∫ µ

Λ
dt. (B.4)

This can be further simplified to

3

4π2

∫ µ

Λ
dt |yt|2 = log

[(
|yt(µ)|2

|yt(Λ)|2

)(µ
Λ

)8αS/3π
]
, (B.5)

and used for the solution of ξ̃u, which we find

ξ̃u(µ) ' ξ̃u(Λ)

[(
yt(µ)

yt(Λ)

)(µ
Λ

)4αS/3π
] 1

2

, (B.6)

The final part is the computation of S which directly goes into the RGEs of the scalar

masses. We simplify by considering

16π2dS
dt
− 66

5
g2

1S ' −12 |yt|2
∣∣∣ξ̃u
∣∣∣
2
. (B.7)

One can treat the above equation as the most general linear first order ordinary differential

equations. The term in the right hand can be regarded as a source or a driving term for

the inhomogeneous ordinary differential equation. The solution is straightforward which

involves a integrating factor. The final solution can be written in the closed form as

S(t) = −2 exp

[
2

∫ t

t0

d log g1(t1)

] [∫ t

d |ξu(t3)|2 exp

{
−2

∫ t3

d log g1(t2)

}]
, (B.8)

= −2

[
g1(t)

g1(t0)

]2



∫ t

t0

dt3
d
∣∣∣ξ̃u(t3)

∣∣∣
2

dt3
{g1(t3)}−2


 . (B.9)

Using integration by parts one can further simply this to obtain

S(t) = −2

[
g1(t)

g1(t0)

]2




∣∣∣ξ̃u(t3)
∣∣∣
2

|g1(t3)|2
+

b1
8π2

∫
dt3

∣∣∣ξ̃u(t3)
∣∣∣
2




t

t0

. (B.10)

Although, the final result is not really transparent from eq. (B.10), however it is conspicuous

that a non-zero S requires a non-zero ξ̃u/d at Λint.
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C Higgs mass matrix

The scalar mass matrix elements written in the basis (hu, hd) after integrating out the

adjoint scalars and assuming λT = 0, turns out to be

M2
11 = bµ cotβ +

1

4

[
g2M2

Σ2

4M2
D2

+M2
Σ2

+
g′2M2

Σ1

4M2
D1

+M2
Σ1

]
v2 sin2 β

+
g′λs

2
√

2

MD1MΣ1v
2

4M2
D1

+M2
Σ1

(−2 + cos 2β) cotβ − λ2
s

2

MΣ1µv
2

4M2
D1

+M2
Σ1

cos 3β cscβ

+2
√

2λsg
′ MD1µv

2

4M2
D1

+M2
Σ1

sin2 β − 2λ2
s

µ2v2

4M2
D1

+M2
Σ1

sin2 β,

M2
22 = bµ tanβ +

1

4

[
g2M2

Σ2

4M2
D2

+M2
Σ2

+
g′2M2

Σ1

4M2
D1

+M2
Σ1

]
v2 cos2 β

+
g′λs

2
√

2

MD1MΣ1v
2

4M2
D1

+M2
Σ1

(2 + cos 2β) tanβ +
λ2
s

2

MΣ1µv
2

4M2
D1

+M2
Σ1

sin 3β secβ

+2
√

2λsg
′ MD1µv

2

4M2
D1

+M2
Σ1

cos2 β − 2λ2
s

µ2v2

4M2
D1

+M2
Σ1

cos2 β,

M2
12 = −bµ −

1

4

[
g2M2

Σ2

4M2
D2

+M2
Σ2

+
g′2M2

Σ1

4M2
D1

+M2
Σ1

]
v2 sinβ cosβ

+
3g′λs

2
√

2

MD1MΣ1v
2

4M2
D1

+M2
Σ1

cos 2β +
λ2
sv

2

2

3MΣ1µ+
(
4M2

D1
− 2µ2

)
sin 2β

4M2
D1

+M2
Σ1

. (C.1)

Furthermore, integrating out the Dirac adjoint scalars and adding the two minimization

equations for hu and hd we find

2bµ
sin 2β

= |µu|2 + |µd|2 + 2λ2
sv

2
M2
D1
− µ2

4M2
D1

+M2
Σ1

+
g′λsv

2

√
2

MD1MΣ1

4M2
D1

+M2
Σ1

cot 2β (C.2)

−
√

2g′λsv
2 MD1µ

4M2
D1

+M2
Σ1

cos 2β − λ2
sv

2

4

MΣ1µ

4M2
D1

+M2
Σ1

(−7 + 5 cos 2β) cotβ .

For a fixed right-slepton and higgsino masses, µu and µd is completely fixed. Therefore,

given the values of gaugino masses and tan β, one completely fixes bµ. The size of bµ also

controls the heavy and charged Higgs masses. Hence, the whole spectrum gets determined.

D RGEs with λS, λT

The inclusion of the superpotential and non-standard soft supersymmetry breaking terms

proportional to λS and λT modifies the anomalous dimensions of the Higgs fields. This

in turn modifies the RGEs of the soft supersymmetry breaking Higgs mass parameters

and obviously the µ-term and non-standard supersymmetry breaking terms proportional
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µ

H̃u

H̃d

Hu, Hd

S S

Figure 11. Tadpole diagrams originating from the non-standard soft terms in the presence of the

gauge singlet chiral superfield.

to ξ̃u, ξ̃d.

β
[
m̃2
hu

]
→ β

[
m̃2
hu

]
+
(

2 |λS |2 + 6 |λT |2
) [
m̃2
hu + m̃2

hd
+ 2

{
|ξ̃d|2 + ξ̃∗dµ+ ξ̃dµ

∗
}]

,

β
[
m̃2
hd

]
→ β

[
m̃2
hd

]
+
(

2 |λS |2 + 6 |λT |2
) [
m̃2
hu + m̃2

hd
+ 2

{
|ξ̃u|2 + ξ̃∗uµ+ ξ̃uµ

∗
}]

,

β [µ] → β [µ] +
(

2 |λS |2 + 6 |λT |2
)
µ,

β
[
ξ̃d

]
→ β

[
ξ̃d

]
+
(

2 |λS |2 + 6 |λT |2
)
ξ̃d,

β
[
ξ̃u

]
→ β

[
ξ̃u

]
+
(

2 |λS |2 + 6 |λT |2
)
ξ̃u. (D.1)

E Tadpole issue

Another important aspect of our case is the effect of non-standard soft terms in the pres-

ence of the singlet. These terms have been traditionally neglected in models with gauge

singlets as they could give rise to dangerous tadpole diagrams which might destabilize the

hierarchy [113, 114]. It is important to see the effect of such terms in GSS. These diagrams

can be evaluated in a straight forward manner and the terms which gives rise to hard

breaking are

δS =
λS

16π2
Λ2

int

[
µ(Λint)−

(
µ0
u + µ0

d

2

)]
. (E.1)

Since we have chosen µ(Λint) = (µ0
u + µ0

d)/2, therefore these tadpole diagrams do not give

rise to hard breaking at Λint.
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