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1 Introduction

Over the last decade quantum entanglement has emerged as a significant theme in diverse

disciplines from condensed matter physics to quantum gravity and has attracted focused

research attention. In this context entanglement entropy has emerged as a crucial measure

to characterize entanglement for bipartite pure states. In quantum information theory the

entanglement entropy is defined as the von Neumann entropy of the reduced density matrix.

Although this quantity is relatively simple to compute for systems with finite degrees of

freedom, it is a complex issue for extended quantum many body systems. However this

issue was addressed in [1] where the authors utilized a replica technique to compute the

entanglement entropy for a bipartite system described by a (1 + 1)-dimensional conformal

field theory (CFT1+1).

Recently there has been a surge of interest in studying the entanglement entropy of

holographic CFT s in the context of the AdS/CFT correspondence which was inspired

through an elegant conjecture advanced by Ryu and Takayanagi in [2, 3]. Their conjecture

states that the entanglement entropy SA for a subsystem A in a (d)-dimensional holographic

CFT (CFTd) is proportional to the area of the co-dimension two bulk extremal surface γA
which is homologous to the subsystem A and is given as

SA =
Area(γA)

(4G
(d+1)
N )

, (1.1)

where, G
(d+1)
N is the gravitational constant of the bulk AdSd+1 space-time. Using this

holographic prescription it was possible to obtain the entanglement entropy for bipartite

systems described by holographic CFTds ( see for example the reviews in [4, 5]).

It is well known however that the entanglement entropy is not a valid measure for the

characterization of mixed state entanglement in quantum information theory. For exam-

ple the entanglement entropy for a finite temperature mixed state of a holographic CFT
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receives contributions from both thermal and quantum correlations [6, 7]. The characteri-

zation of mixed state entanglement was hence a subtle and complex issue in quantum in-

formation theory which was addressed in a classic communication by Vidal and Werner [8].

The authors in this work proposed a computable measure termed entanglement negativity

which characterizes mixed state entanglement for bipartite systems and provides an upper

bound to the distillable entanglement. This measure involves a partial transpose of the

reduced density matrix ρA over one of the subsystems (say A2 ) in a bipartite system

A = A1 ∪A2.
1 The monotonicity and non convexity properties of entanglement negativity

were later demonstrated in an important communication by Plenio in [9].

Interestingly in [10–12] the authors provided a replica technique to compute the entan-

glement negativity for bipartite quantum states of a CFT1+1. Typically for the bipartite

finite temperature mixed states of a CFT1+1, the authors were able to demonstrate that the

entanglement negativity which characterizes the upper bound on the distillable entangle-

ment, involves the elimination of the thermal contributions [12]. Furthermore it could also

be shown that for the pure state described by a CFT1+1 vacuum, the entanglement negativ-

ity reduces to the Renyi entropy of order half as expected from quantum information theory.

The above discussion naturally leads to the crucial issue of a possible holographic

description of the entanglement negativity for bipartite systems described by holographic

CFT s in the AdS/CFT framework. In the recent past several attempts has been made

to understand this critical issue. In this context, the authors in [13] have computed the

entanglement negativity for bipartite systems in pure states described by the CFT vacuum

which is dual to bulk pure AdS space time. Moreover, in [14] the authors have conjectured

a holographic c-function of which the entanglement negativity may be a possible example.

Despite this a clear holographic prescription for the entanglement negativity of bipartite

states described by CFTds in the AdS/CFT framework remained a critical open issue.

As a first step towards addressing the significant open issue described above, in this

article we advance a holographic conjecture for the entanglement negativity of bipartite

systems described by a CFT1+1 in the AdS3/CFT2 scenario. In this framework it is

possible to compare the holographic bulk results with the corresponding replica technique

results for the CFT1+1. Hence such an analysis is expected to provide useful insights into

the corresponding higher dimensional extension of the holographic negativity conjecture in

a generic AdSd+1/CFTd scenario.

For the AdS3/CFT2 scenario our conjecture involves the holographic description of a

four point twist correlator related to the entanglement negativity described in [12], in terms

of an algebraic sum of bulk space like geodesics anchored on appropriate intervals relevant to

the purification of the corresponding mixed state. Interestingly the holographic negativity

following from our conjecture reduces to a sum of holographic mutual informations ( upto

a numerical constant), between the intervals relevant to the purification. For the bipartite

pure state described by the CFT1+1 vacuum which is dual to the bulk pure AdS3 space-

1The computation of entanglement negativity is subtle involving a procedure termed purification in

quantum information theory. This requires embedding the given bipartite system in a mixed state into a

larger auxiliary system such that the full tripartite system is in a pure state. The auxiliary system may

then be traced over to obtain the corresponding reduced density matrix for the bipartite system.
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time, the holographic entanglement negativity computed through our conjecture reduces

to the Renyi entropy of order half as expected from quantum information theory. This

exactly matches with the corresponding replica technique results as given in [11]. We

then employ our conjecture to compute the entanglement negativity for bipartite finite

temperature mixed state dual to a bulk Euclidean BTZ black hole. Interestingly the

holographic entanglement negativity for the mixed state in question leads to the elimination

of the thermal contribution and exactly reproduces the corresponding CFT1+1 results

obtained through the replica technique [12], in the large central charge limit.

The AdS3/CFT2 results described above indicate a possible higher dimensional exten-

sion of our conjecture relevant to the entanglement negativity for bipartite states described

by holographic CFTds in the AdSd+1/CFTd scenario. Such a conjecture is expected to

have significant implications for applications to entanglement issues in diverse fields like

condensed matter physics, quantum information and issues of quantum gravity.

2 Entanglement negativity in CFT1+1

As discussed in the introduction, entanglement negativity leads to the characterization of

entanglement for bipartite mixed states in quantum information theory by providing an

upper bound on the distillable entanglement. A suitable replica technique was developed by

Calabrese et al. in [10–12] for pure and mixed state configurations in CFT1+1 which we pro-

ceed to briefly describe. For this purpose we consider the tripartition involving the spatial

intervals denoted as A1,A2 and B such that A1 and A2 correspond to finite intervals defined

by [u1, v1] and [u2, v2] of lengths l1 and l2 respectively whereas B represents the rest of the

system. The reduced density matrix ρA of the subsystem A = A1∪A2 is obtained by tracing

over the subsystem B i.e. ρA = TrBρ. The definition of entanglement negativity requires

the operation of partial transpose over one of the subsystem. If |q1i
〉

and |q2i
〉

represent

the bases of Hilbert space corresponding to subsystems A1 and A2 respectively then this

operation of the partial transpose with respect to A2 degrees of freedom is defined as follows

〈

q1i q
2
j |ρ

T2
A |q1kq

2
l

〉

=
〈

q1i q
2
l |ρA|q

1
kq

2
j

〉

, (2.1)

The authors in [10, 11] provided a replica definition for the entanglement negativity as2

E = lim
ne→1

ln[Tr(ρT2
A )ne ], (2.2)

where ne denotes that the parity of n is even. This is because the quantity Tr(ρT2
A )n shows

different functional dependence on the eigenvalues of ρT2
A based on the parity of n. A sen-

sible result is obtained by defining entanglement negativity to be an analytic continuation

of even sequences of ne to ne = 1 as suggested in [10, 11].3 In a CFT1+1 the operation

of partial transpose on the reduced density matrix ρA under the trace i.e Tr(ρT2
A ) has the

2Note that this definition reduces to the one employed in quantum information theory E = ln ||ρT2

A ||

provided by Vidal and Werner, in the replica limit ne → 1.
3The explicit construction of this non-trivial analytic continuation remains elusive except for some simple

conformal field theories ( See [12, 15, 16]).
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effect of exchanging upper and lower edges of the branch cut along the interval A2 on

the ne-sheeted Riemann surface. This leads to the following expression for the quantity

Tr(ρT2
A )ne in terms of the twist field correlator,

Tr(ρT2
A )ne =

〈

Tne(u1)T ne(v1)T ne(u2)Tne(v2)
〉

. (2.3)

In the limit v1 → u2 and v2 → u1, the tripartite configuration (A1, A2, B) reduces to a

bipartite configuration (A,B, ∅) such that the interval corresponding to the subsystem A

is now given by [u, v] with its length given as l = |u− v|. Hence, in this limit the quantity

Tr(ρT2
A )ne → Tr(ρTAc )ne = Tr(ρTA)ne and the four point function described above reduces

to the following product of two point twist correlators

Tr(ρTA)ne =
〈

T 2
ne
(u)T

2
ne
(v)

〉

. (2.4)

The authors in [10, 11] observed that the twist fields T 2
ne

connect nth
e sheet of the Riemann

surface to (ne + 2)th sheet of the Riemann surface. Similarly, the twist field T
2
ne

connects

nth
e sheet to (ne − 2)th sheet of the Riemann surface. This leads to the following factoriza-

tion of the correlation function in eq. (2.4) due to the reduction of the ne (n even) sheeted

Riemann surface into two ne/2 sheeted Riemann surfaces,

〈T 2
ne
(u)T

2
ne
(v)〉C = 〈Tne

2
(u)T ne

2
(v)〉2C. (2.5)

Hence, the scaling dimension (∆
(2)
ne ) of the operator T 2

ne
can be related to the scaling di-

mensions (∆ne) of the operator Tne as

∆(2)
ne

= 2∆ne
2
=

c

6

(

ne

2
−

2

ne

)

, (2.6)

∆ne =
c

12

(

ne −
1

ne

)

. (2.7)

This leads to the following expression for the entanglement negativity of a bipartite pure

state described by the vacuum of the CFT1+1 as

E =
c

2
ln

(

l

a

)

+ constant =
3

2
SA + constant, (2.8)

where, a is the UV cut-off for the CFT1+1, SA denotes the entanglement entropy of the sub-

system A in the pure vacuum state of the CFT1+1 and the non-universal constant is related

to the normalization of the two point twist field correlator. This result conforms to quan-

tum information expectation that the entanglement negativity for a bipartite pure state is

given by the Renyi entropy of order half. However, in a subsequent significant communica-

tion [12] the authors demonstrated through explicit geometrical arguments that although

the result in eq. (2.4) is valid for a bipartite pure state of the CFT1+1 it is incorrect for the

finite temperature mixed state of the CFT1+1.
4 It could then be shown that the correct

4This is because the quantity Tr(ρTA)ne does not factorize in the finite temperature case due to subtle

geometric reasons. See [12] for a detailed explanation of this.
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expression for the entanglement negativity of the bipartite finite temperature mixed state

is given in terms of a four point twist field correlator as follows

E = lim
L→∞

lim
ne→1

ln[
〈

Tne(−L)T
2
ne
(−l)T 2

ne
(0)T ne(L)

〉

β
], (2.9)

where Tn(L) corresponds to the twist field at some large distance L from the interval A.

It is to be noted that the order of limits plays a crucial role for this case implying that the

bipartite limit (L → ∞) should be taken only after the replica limit (ne → 1). Note that

the subscript β in eq. (2.9) indicates that the four point twist correlator has to be evalu-

ated on an infinitely long cylinder of circumference β = 1/T . This cylindrical geometry can

be obtained from the complex plane by the conformal transformation z → ω = β/2π ln z

where z denotes the coordinates on the complex plane and ω denotes the coordinates on

the cylinder. The form of the four point function on the complex plane is fixed upto a

function of cross ratios as follows

〈

Tne(z1)T
2
ne
(z2)T

2
ne
(z3)T ne(z4)

〉

C
=

cnec
2
ne/2

z
2∆ne

14 z
2∆

(2)
ne

23

Fne(x)

x∆
(2)
ne

, (2.10)

where the cross ratio x = z12z34
z13z24

,zij = |zi−zj |, cne and c2ne/2
are the normalization constants

of the two point twist correlator. The subscript C in the above equation denotes that the

four point twist correlator is evaluated on the complex plane. Following [12] it is possible

to obtain the following constraints on the arbitrary function Fne(x) in the two limits x → 1

and x → 0,

Fne(1) = 1, Fne(0) = Cne , (2.11)

here, Cne is a constant that depends on the full operator content of the theory. The entan-

glement negativity for the bipartite finite temperature mixed state of the CFT1+1 may then

be obtained from eq. (2.9) and eq. (2.10) through a conformal map from the complex plane

to the cylinder. This leads to the following expression for the entanglement negativity [12]

E =
c

2
ln

[

β

πa
sinh

(

πl

β

)]

−
πcl

2β
+ f(e−2πl/β) + const.

where f(x) = lim
ne→1

ln[Fne(x)],

The above expression for the entanglement negativity may be recast into an interesting

form as

E =
3

2

[

SA − Sth
A

]

+ f(e−2πl/β) + const. (2.12)

where SA = c
3 ln[

β
πa sinh

(

πl
β

)

] and Sth
A = πcl

3β correspond to the entanglement entropy and

the thermal entropy of the subsystem A for the finite temperature mixed state respectively.

This result clearly suggests that the entanglement negativity precisely leads to the upper

bound on the distillable entanglement for the finite temperature mixed state through the

elimination of the thermal contribution. Note that the non-universal function f(e−2πl/β)

and the constant depend on the full operator content of the theory.
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3 Large central charge limit

In the AdS3/CFT2 scenario, it is well known that the semiclassical limit in the AdS3

bulk defined by the limit GN → 0 corresponds to the large central charge limit c → ∞

in the dual CFT1+1, as these two quantities are related by the Brown-Hennaux formula

c = 3R

2G
(3)
N

[17]. Hence, it is required to examine the large central charge limit of the

twist field correlator in eq. (2.9) for the entanglement negativity before we proceed to

a holographic description involving the bulk AdS3 geometry. The large central charge

limit of such twist field correlators for the entanglement entropy of multiple intervals were

investigated in [18, 19]. The authors in [18] utilized the monodromy technique [20–22]

to determine the large central charge limit of entanglement entropy for multiple disjoint

intervals. They demonstrated that to the leading order in 1
c the entanglement entropy for

multiple intervals is universal (i.e independent of the full operator content of the theory)

and the results match exactly with those computed from the Ryu-Takayanagi conjecture.

A different four point twist correlator describing the entanglement negativity of a simpler

mixed state configuration of adjacent intervals in CFT1+1 has also been studied in the

large central charge limit in [23]. The authors there demonstrated that in this limit the

entanglement negativity for the mixed state of adjacent intervals matches exactly with

the universal part obtained through the replica technique by Calabrese et al. in [10, 11].

Notice that in all of the above mentioned cases the dominant contribution to the twist

field correlators are universal, whereas the non-universal contributions constitute the sub

leading 1
c corrections in the large central charge limit.

The above discussion suggests a similar computation to demonstrate that the non-

universal function f(e−2πl/β) and the constant in eq. (2.12) for the entanglement negativity

of the mixed state in question, to be sub leading in the large central charge limit (see5).

From [24] we therefore observe that in the large central charge limit the entanglement

negativity in eq. (2.12) reduces to the following universal expression

E =
3

2

[

SA − Sth
A

]

. (3.1)

Having determined the large central charge limit of the entanglement negativity for the

bipartite (A∪Ac) mixed state described by the finite temperature CFT1+1, we now proceed

to outline our holographic conjecture to describe this quantity through the bulk AdS3

geometry.

4 Holographic entanglement negativity in AdS3/CFT2

In this section we utilize the standard AdS/CFT dictionary in order to formulate the

holographic conjecture for the entanglement negativity in the AdS3/CFT2 scenario. We

begin by first considering a bipartition ( A ∪ Ac) described by an interval A of length

5We have recently performed this monodromy computation in [24] for the required four point twist

correlator for the entanglement negativity in which we have demonstrated that this non-universal function

is indeed sub leading in the large central charge limit.
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Figure 1. Schematic of geodesics anchored on the subsystems A, B1 and B2 which live on the

(1+1)-dimensional boundary.

l and its complement Ac. For our construction it is also required to consider two other

subsystems B1 and B2 within Ac on either side of A as depicted in the figure 1.

The two point twist correlators are fixed by the conformal symmetry as

〈

Tne(zk)T ne(zl)
〉

C
=

cne

z
2∆ne

kl

(4.1)

〈T 2
ne
(u)T

2
ne
(v)〉C =

〈

Tne
2
(zi)T ne

2
(zj)

〉2

C
=

c2ne/2

z
4∆ne

2
ij

, (4.2)

where we have utilized the factorization in eq. (2.5). Interestingly, the universal part of

the four point twist correlator in eq. (2.10), which is dominant in the large central charge

limit, factorizes into the above mentioned two point twist correlators as follows

〈

Tne(z1)T
2
ne
(z2)T

2
ne
(z3)T ne(z4)

〉

C
=

〈

Tne
2
(z2)T ne

2
(z3)

〉2〈
Tne(z1)T ne(z4)

〉

(4.3)

×

〈

Tne
2
(z1)T ne

2
(z2)

〉〈

Tne
2
(z3)T ne

2
(z4)

〉

〈

Tne
2
(z1)T ne

2
(z3)

〉〈

Tne
2
(z2)T ne

2
(z4)

〉 +O

[

1

c

]

From the AdS/CFT dictionary it is known that the two point twist correlator in the

holographic CFT1+1 is related to the length of the space like geodesic (Lij) anchored on

the points (zi, zj) and extending into the AdS3 bulk as follows [2, 3]

〈

Tne(zk)T ne(zl)
〉

C
∼ e−

∆neLkl
R (4.4)

〈

Tne
2
(zi)T ne

2
(zj)

〉

C
∼ e−

∆ne
2

Lij

R , (4.5)

where, R is the AdS3 radius. From figure 1 we identify that

L12 = LB1 , L23 = LA, L34 = LB2 ,

L13 = LA∪B1 , L24 = LA∪B2 , L14 = LA∪B. (4.6)

– 7 –
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Utilizing eq. (4.3) describing the factorization of the four point twist correlator into

two point correlators, and the geodesic approximations in (4.4) and (4.5), it is now possible

to express the four point twist correlator in eq. (2.10) in a suggestive form as follows

〈

Tne(z1)T
2
ne
(z2)T

2
ne
(z3)T ne(z4)

〉

C
∼ exp

[

−∆neX −∆ne
2
Y

R

]

, (4.7)

where

X = LA∪B (4.8)

Y = 2LA + LB1 + LB2 − LA∪B1 − LA∪B2 (4.9)

Note that the coordinates (z1, z2, z3, z4) = (−L,− l
2 ,

l
2 , L) in eq. (4.7) are as depicted in

the figure 1. As discussed earlier, in the large central charge limit we have ignored the sub

leading contribution involving the non-universal function f(x) in the above expression.6

In the replica limit ne → 1, ∆ne → 0 and ∆ne
2

→ − c
8 .

7 Hence, the eq. (4.7) leads to the

following expression for the holographic entanglement negativity

E = lim
B→Ac

3

16G
(3)
N

[

(2LA + LB1 + LB2 − LA∪B1 − LA∪B2)

]

, (4.10)

where we have used the Brown-Hennaux formula c = 3R

2G
(3)
N

.

Observe that upon utilizing the Ryu-Takayanagi conjecture in eq. (1.1), the above

equation eq. (4.10) reduces to the following form

E = lim
B→Ac

3

4

[

2SA + SB1 + SB2 − SA∪B1 − SA∪B2

]

, (4.11)

and B → Ac denotes the bipartite limit in which the intervals B1, B2 are extended to

infinity such that B1 ∪ B2 = Ac. Note that the bipartite limit essentially corresponds to

the limit L → ∞ in the CFT1+1 described earlier. Recall that the holographic mutual

information between the pair of intervals (A,B1) and (A,B2) are given as

I(A,Bi) = SA + SBi
− SA∪Bi

,

=
1

4G
(3)
N

(LA + LBi
− LA∪Bi

), (4.12)

where i = {1, 2}. Interestingly from equations (4.11) and (4.12) we observe that the holo-

graphic entanglement negativity may be re expressed in terms of the holographic mutual

informations between the intervals (A,B1) and (A,B2) as follows
8

E = lim
B→Ac

3

4

[

I(A,B1) + I(A,B2)
]

, (4.13)

6The authors would like to thank Ashoke Sen for pointing this out.
7Note that the negative scaling dimension of the twist operators (T 2

ne
and Tne

2

) in the replica limit

ne → 1 has to be understood only in the sense of an analytic continuation ne → 1 (See also footnote 3).
8Note that entanglement negativity and mutual information are completely distinct measures in quantum

information theory. This does not contradict with the expression in eq. (4.13) as this result holds only for the

universal parts of the two quantities which are dominant in the holographic (large central charge limit c →

∞) limit. Interestingly the matching between the universal parts of these two quantities has also been re-

ported for the case of adjacent intervals in a CFT1+1 in connection with both local and global quench [25, 26].

– 8 –
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Clearly the above discussion suggests a holographic conjecture for the entanglement nega-

tivity of bipartite systems (A∪Ac) described by holographic CFT1+1s through eq. (4.10),

in terms of the lengths of the bulk space like geodesics in AdS3 as depicted in the figure 1.

Observe that the large central charge analysis described in [24] for the entanglement

negativity in CFT1+1 assumes a crucial role in the above arguments leading to our con-

jecture. We mention here that although the large central charge analysis strongly sub-

stantiates our conjecture for the AdS3/CFT2 scenario, a bulk proof along the lines of [27]

remains a non trivial open issue. However as a first consistency check we employ our

holographic conjecture described by eq. (4.10) to compute the entanglement negativity for

specific quantum states of a holographic CFT1+1. These include the bipartite pure state

described by the CFT1+1 vacuum which is dual to the pure AdS3 space time and the finite

temperature mixed state dual to the Euclidean BTZ black hole. Quite remarkably we are

able to demonstrate that in both the cases the holographic entanglement negativity com-

puted through our conjecture, exactly matches with the corresponding replica technique

results in the large central charge limit. We emphasize that the exact reproduction of the

CFT1+1 results mentioned above is an extremely significant consistency check and provides

strong indication towards the plausibility of a formal proof along the lines of [27].

4.1 Pure AdS3

According to the AdS/CFT correspondence, the vacuum state of a holographic CFT1+1 is

dual to the pure AdS3 space time whose metric in Poincare coordinates is given as

ds2 =
R2

z2
(−dt2 + dz2 + dx2). (4.14)

where z is the inverse radial coordinate extending into the bulk, R is the AdS radius

and (x, t) are the coordinates on the boundary CFT1+1. The length of bulk geodesic Lγ

anchored to the subsystem γ in the boundary CFT1+1 in this space time is given as

Lγ = 2R ln

[

lγ
a

]

. (4.15)

Utilizing the above expression for the various subsystems γ = {A,B1, B2, A ∪B1, A ∪B2}

as depicted in the figure 1 and substituting these in the expression for the holographic

entanglement negativity given by eq. (4.13) we obtain

E =
3R

4GN
ln

[

l

a

]

. (4.16)

where l is the length of the interval A as described earlier and a is the UV cut-off for the

CFT1+1. Observe from the above expression that the contributions from various geodesics

in eq. (4.10) cancel exactly in the bipartite limit L → ∞ ( B → Ac), except twice the length

of the geodesic anchored on the subsystem-A. Hence, upon using the Brown-Hennaux

formula c = 3R

2G
(3)
N

the above equation reduces to

E =
c

2
ln

[

l

a

]

=
3

2
SA, (4.17)
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Quite interestingly this result precisely matches with the universal result obtained by Cal-

abrese et al. [10, 11] given in eq. (2.8) through the replica technique for the vacuum state of

a CFT1+1. Note that our result is in conformity with quantum information theory where

the entanglement negativity for a pure state is given by the Renyi entropy of order half.

4.2 Euclidean BTZ black hole

Let us now consider a finite temperature mixed state of a holographic CFT1+1 which is

dual to a bulk Euclidean BTZ black hole whose metric is given by

ds2 =
(r2 − r2h)

R2
dτ2E +

R2

(r2 − r2h)
dr2 + r2dφ2, (4.18)

here, τE is the compactified Euclidean time (τE ∼ τE + 2πR
rh

). Note that the coordinate φ

is identified with (φ+2π) for the BTZ black hole and is uncompactified for the BTZ black

string case as φ = x
R . Under the co-ordinate transformation r = rh cosh ρ, τE = R2

rh
θ, φ =

R
rh
t the metric in (4.18) becomes

ds2 = R2(dρ2 + cosh2 ρdt2 + sinh2 ρdθ2). (4.19)

The length of a space like geodesic Lγ anchored on the subsystem γ may then be determined

using the above transformation as described in [5]

Lγ = 2R ln

[

β

πa
sinh

[

πlγ
β

] ]

, (4.20)

where, a is the UV cut-off for the CFT1+1. The parameter lγ represent the length of the

subsystem (γ) in the holographic CFT1+1. The above general expression for the geodesic

length Lγ in eq. (4.20) may then be utilized to obtain the corresponding lengths of various

geodesics anchored on the appropriate subsystems γ = {A,B1, B2, A ∪ B1, A ∪ B2} as

depicted in the figure 1. Using these expressions in eq. (4.13), the holographic entanglement

negativity for the finite temperature mixed state in question may then be obtained as

follows

E =
3R

4G
(3)
N

[

ln

{

β

πa
sinh

(

πℓ

β

)}

−
πℓ

β

]

, (4.21)

=
3

2

[

SA − Sth
A

]

. (4.22)

Remarkably the above result matches exactly with the universal result given by eq. (3.1)

for the entanglement negativity of a finite temperature mixed state in a CFT1+1 obtained

through the replica technique [12], in the large central charge limit. Note that we have once

again used the Brown-Hennaux formula c = 3R

2G
(3)
N

to arrive from eq. (4.21) to eq. (4.22).

The expression in eq. (4.22) clearly suggests that the holographic entanglement negativity

captures the distillable quantum entanglement for the finite temperature bipartite mixed

state of a CFT1+1 through the elimination of the thermal contributions.

The above observations clearly suggests a higher dimensional extension of our holo-

graphic entanglement negativity conjecture in the AdS3/CFT2 scenario to a generic
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AdSd+1/CFTd framework. To this end we first consider an extended bipartite system

(A ∪ Ac) described by the holographic CFTd. We then consider two other subsystems B1

and B2 within Ac, on either side of the subsystem A such that B = (B1 ∪ B2). If AA,

AB1 and AB2 denote the areas of co-dimension two bulk AdSd+1 static minimal surfaces

which are anchored on the subsystems A,B1 and B2, then the holographic entanglement

negativity for the bipartite system A ∪Ac described by the holographic CFTd is given as

E = lim
B→Ac

3

16G
(d+1)
N

[

(2AA +AB1 +AB2 −AA∪B1 −AA∪B2)

]

. (4.23)

Here G
(d+1)
N is the (d+1)-dimensional Newton constant and the limit (B → Ac) in eq. (4.23)

corresponds to the bipartite limit in which subsystems B1 and B2 are extended infinitely

such that the subsystem B = (B1 ∪ B2) becomes the rest of the system Ac. Once again

upon using the Ryu-Takayanagi conjecture given in eq. (1.1), the expression in eq. (4.23)

reduces to the following form

E = lim
B→Ac

3

4

[

2SA + SB1 + SB2 − SA∪B1 − SA∪B2

]

. (4.24)

The above expression for the holographic entanglement negativity may be re-expressed as

the sum of holographic mutual informations I(A,Bi) between appropriate subsystems as

follows

E = lim
B→Ac

3

4

[

I(A,B1) + I(A,B2)
]

(4.25)

where, the holographic mutual information I(A,Bi) (i = 1, 2) are given as follows

I(A,Bi) = SA + SBi
− SA∪Bi

,

=
1

4G
(d+1)
N

(AA +ABi
−AA∪Bi

). (4.26)

We should mention here that in [28] we have employed our conjecture to compute

the entanglement negativity for specific bipartite quantum states of a holographic CFTd.

This includes the bipartite pure state described by the vacuum of the CFTd dual to the

bulk pure AdSd+1 space time and the finite temperature mixed state dual to the bulk

AdSd+1-Schwarzschild black hole. We were able to demonstrate that for both the cases the

holographic entanglement negativity following from our conjecture has identical forms as

the universal CFT1+1 results given in eq. (4.17) and eq. (4.22) respectively. Although this

serves as a fairly strong consistency check we should emphasize that a proof for the higher

dimensional extension of our conjecture along the lines of [29] remains a significant open

issue that needs to be addressed.

5 Summary and conclusion

To summarize we have advanced a holographic conjecture for the entanglement negativity

of bipartite systems described by holographic CFT1+1s in the AdS3/CFT2 scenario. As a

first consistency check of our conjecture we have computed the holographic entanglement
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negativity for specific bipartite quantum states of a CFT1+1 utilizing our conjecture. These

were exemplified by the pure state of the CFT1+1 vacuum dual to the pure AdS3 space time

and the finite temperature mixed state dual to the Euclidean BTZ black hole. Remarkably

for both the pure and the mixed states, the holographic entanglement negativity computed

from our conjecture exactly reproduces the corresponding replica technique results for the

CFT1+1 in the large central charge limit. For the pure state of the CFT1+1 vacuum, our

conjecture leads to the expected result from quantum information theory that the entan-

glement negativity is equal to the Renyi entropy of order half. Furthermore for the finite

temperature bipartite mixed state of the CFT1+1, it is observed that the holographic en-

tanglement negativity captures the distillable entanglement through the elimination of the

thermal contributions. Significantly the above results exactly reproduce the corresponding

universal part of the replica technique results for the entanglement negativity of the holo-

graphic CFT1+1. As mentioned earlier despite the strong consistency check exemplified

by the above results and the clear substantiation through the large central charge analysis

in [24], a proof along the lines of [27] for our conjecture remains a critical open issue.

Our holographic entanglement negativity conjecture in the AdS3/CFT2 context nat-

urally indicates a higher dimensional extension which we have briefly alluded to in our

article. The application of the higher dimensional extension to specific examples have led

to interesting results in [28] which may serve as a first consistency check. However we

mention here that in the absence of independent explicit computations for the CFTd our

negativity conjecture requires a proof along the lines of [29]. As mentioned earlier this

remains a significant open issue for the future.

Quite clearly our proposed holographic entanglement negativity conjecture in the

AdS3/CFT2 context is expected to have significant implications for the characterization of

mixed state entanglement in diverse condensed matter phenomena such as quantum critical-

ity and topological phases amongst others. Furthermore a covariant version of holographic

entanglement negativity in the AdS3/CFT2 scenario, may be useful to address issues of

quantum gravity such as thermalization, black hole formation and collapse phenomena,

information loss paradox and the related firewall problem. The possible higher dimen-

sional extension, if strongly substantiated, may also lead to interesting insights into diverse

physical phenomena. These constitute fascinating open issues for future investigations.
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