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1 Introduction

One dimensional integrable models are special interacting many body systems, where the

eigenstates and eigenenergies can be computed with exact methods. Various forms of the

method called Bethe Ansatz have been developed that apply to a wide variety of models

including spin chains, continuum models, and Quantum Field Theories [1–3]. Interest in

integrable models has been sparked by recent experimental advances [4]: it has become

possible to measure physical quantities of such systems both at equilibrium and in far-

from-equilibrium situations. In order to compare to experimental data it is essential to

calculate the correlation functions.

However, computing exact correlations in Bethe Ansatz solvable models is a notoriously

difficult problem. Depending on the models a number of methods have been developed;

they include the Algebraic Bethe Ansatz [1], methods based purely on symmetry arguments

(for example the vertex operator approach to spin chains [5]), or the so-called form factor

approach. Here we do not attempt to review the vast literature, instead we focus on the

form factor method.

– 1 –



J
H
E
P
0
5
(
2
0
1
8
)
1
7
0

The main idea of the form factor approach is to evaluate two-point functions as a

spectral sum over intermediate states. By definition, the form factors are the matrix

elements of local operators on infinite volume scattering states, and they are naturally

related to finite volume on-shell matrix elements [6, 7]. Traditionally there are two ways

to obtain the form factors: either by solving a set of functional relations that follow from

factorized scattering and relativistic invariance [1, 7–11], or by explicitly embedding the

local operators into the Algebraic Bethe Ansatz framework [12–15]. In many cases these

methods lead to explicit and compact representations of the form factors. On the other

hand, the summation of the spectral series is typically a very challenging problem, and its

treatment depends on the specifics of the physical situation.

First of all, the form factor approach was applied in massive Integrable QFT in order

to obtain two-point functions in the physical vacuum [10]. In these cases only the so-called

elementary form factors (matrix elements between the vacuum and a multi-particle state)

are needed, and the resulting integral series has good convergence properties. Typically

it can not be summed up analytically, but a numerical treatment gives highly accurate

results [16].

A completely different situation arises when there is a finite density of excitations in

the system. Examples include the ground states of certain non-relativistic models such

as the anti-ferromagnetic spin chains or the Lieb-Liniger model, or finite temperature

situations. Quantum quenches also belong to this class of problems: the long-time limit of

local correlation functions can be evaluated on a finite density background given by the so-

called Generalized Gibbs Ensemble [17–19]. In these cases the form factors and correlation

functions display different types of singular behaviour, depending on how the finite density

state is constructed. Starting with the infinite volume form factors with a fixed number of

particles one encounters the so-called kinematical poles, whose treatment requires special

care. On the other hand, starting with a finite volume and increasing the number of

particles proportionally with the volume can lead to a non-trivial scaling behaviour for the

transition matrix elements [20]. In the XXZ spin chain and related models this approach

was used to compute the long distance behaviour of correlations (see [21] and references

therein), by studying the asymptotics of explicit determinant representations of the form

factors, and performing the relevant summations.

In the context of integrable QFT (iQFT) a framework was proposed in [22] to deal

with the kinematical poles of the form factors in finite temperature situations. Integral

series were derived for one-point and two-point functions. The resulting series (today

known as the LeClair-Mussardo series) are built on the basic form factors with a finite

number of particles. Additionally, they involve a thermodynamic function that describes

the distribution of Bethe roots, and in the case of the two-point function a thermodynamic

dressing of the energy and momenta of the intermediate particles. Arguments and counter-

examples against the LM series for two-point functions were presented in [23–27], whereas

the result for the one-point function was still believed to be true [23].

In [28] it was shown that the LM series for one-point functions follows from a finite

volume expansion of mean values, which uses the so-called connected limit of the infinite

volume form factors. The expansion itself was conjectured in full generality in [29] (see
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also [23]), and for the non-relativistic Lieb-Liniger model it was proven using Algebraic

Bethe Ansatz in [28]. Finally, the expansion was proven also for iQFT in the recent

work [30], which thus completed the proof of the LM series for one-point functions.

On the other hand, the problem of the finite temperature or finite density two-point

functions has remained unresolved. Multiple works performed a low-temperature expansion

and obtained explicit formulas for the first few terms [31–36]. These results were free of

any singularities, and they could be understood as the first few terms in an expansion of a

hypothetical LM-type series, but it was not clear what the general structure of this integral

series should be.

As an alternative approach it was suggested in [25–27] that finite temperature cor-

relations should be computed using form factors that take into account the dressing due

to the finite density background. This is in contrast to the logic of the LM series, which

uses the zero-density form factors calculated over the vacuum. Even though there is clear

physical motivation for this approach, the proposed program has only been applied to free

theories. Quite interestingly, a similar picture emerged in the recent work [37], which con-

sidered correlation functions in generic inhomogeneous non-equilibrium situations within

the framework of Generalized Hydrodynamics. An integral series was derived for the large

time and long distance limit of correlations, which would apply as a special case also to

static correlations in an arbitrary finite density background. The results of [37] only con-

cern the large time limit, nevertheless it is remarkable that the integral series takes the

same form as suggested by the works [25–27].

It is somewhat overlooked in the literature, that the formalism of the LeClair-Mussardo

series was already developed much earlier in the context of the infinite volume, non-

relativistic Quantum Inverse Scattering Method [12, 13, 38–41]. In the particular case

of the 1D Bose gas explicit formulas were obtained for the form factors of the field opera-

tors [12] and the particle current [39] from the so-called Quantum Gelfand-Levitan method.

In [40] these were shown to satisfy a set of functional relations that are known today as

“form factor axioms” in iQFT. Furthermore, an integral series for the two-point function

was also derived in [13, 40], that has the same structure as the LM series for one-point

functions. In these works the two-point function is treated as a composite object, and the

resulting series is built on the form factors of the bi-local operator. In this approach there is

no need for an insertion of intermediate states, because the underlying method (the Quan-

tum Gelfand-Levitan equation) allows for an explicit representation of the bi-local product

of field operators in terms of the Faddeev-Zamolodchikov creation/annihilation operators.

This program remained confined to the 1D Bose gas, essentially due to the fact that

in iQFT the form factors are determined from the solution of the form factor axioms,

their structure is considerably more complicated (for example the operators don’t preserve

particle number), and there is no efficient method to treat the matrix elements of bi-local

operators. Moreover, even in the 1D Bose gas alternative approaches (such as the finite

volume Algebraic Bethe Ansatz) became dominant, because they lead to intermediate

formulas that are more convenient for subsequent analytic or numerical analysis.

In a completely independent line of research the paper [42] developed an alternative

framework to deal with finite density states in integrable models. Here the goal was to
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provide a field theoretical derivation of the TBA equations, by computing the mean value

of the Hamiltonian density using its form factor series. The main idea of this work is to

consider smeared states such that one does not hit the singularities of the form factors

directly. Although this work only considered the Hamiltonian density, its derivations only

rely on the general properties of the form factors, therefore all of the intermediate results

(before specifying the operator through its form factors) are valid for general one-point

functions. This would imply an independent proof of the LeClair-Mussardo series for one-

point functions. We believe that this connection has not yet been noticed in the literature.

An important lesson of the works [12, 13, 39, 40] is that the bi-local operators satisfy the

same kinematical pole equation as the local ones. In the 1D Bose gas this was established

using explicit form factors for the bi-local operators. Therefore, any type of regularization

procedure that treats the kinematical singularities has to work equally well for the one-point

and two-point functions. In the present work we build on these ideas: we present arguments

for the validity of the kinematical pole equation for the bi-local operators even in integrable

QFT, and derive a well-defined LeClair-Mussardo formula for the two-point function.

The article is composed as follows. In section 2 we review previous approaches to-

wards the LM series, both for the one-point and two-point functions. In section 2.3 we

also formulate our main result using the form factors of the bi-local operators. These are

computed in section 3 by inserting a complete set of states between the two operators.

The properties of the bi-local form factors are studied in section 4. Two different compact

representations for the LM series are derived in section 5, where we explicitly prove the

clustering property of the integral series for the two-point function. Our results are com-

pared in section 6 to earlier calculations in a low-temperature expansion. Finally, section 7

includes our conclusions.

2 The LeClair-Mussardo series

In this work we consider one-point and two-point functions in massive, relativistic, inte-

grable QFT. We limit ourselves to theories with one particle species with mass m. The

scattering phase shift will be denoted by S(θ), where θ is the rapidity variable. We put

forward that the generalization of our results to more particles with diagonal scattering is

straightforward, but theories with non-diagonal scattering pose additional technical chal-

lenges, which are not considered here.

Let us denote the incoming and outgoing scattering states as

|θ1, . . . , θn〉, 〈ϑn, . . . , ϑ1|, (2.1)

where the rapidities are real numbers such that θj > θk and ϑj > ϑk for j > k.

We consider local operators O(x, t) in 2 dimensional Minkowski space. Their form

factors are uniquely defined as the matrix elements

FOn,m(ϑn, . . . , ϑ1|θ1, . . . , θm) = 〈ϑn, . . . , ϑ1|O|θ1, . . . , θm〉, (2.2)

where O ≡ O(0, 0). Originally defined for sets of rapidities with the ordering given above,

the form factor functions are extended analytically to the whole complex plane. The
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analytic properties of these functions have been investigated in great detail in [10, 43] and

they will be discussed below.

Our goal is to derive integral representations for the mean values of the one-point and

two-point functions in finite density situations. A finite density state can be characterized

by a density of rapidities ρr(θ) such that in a finite volume L the number of particles

between θ and θ + ∆θ is ∆N = 2πρ(θ)∆θ. As usually we also define the density of holes

ρh(θ), which satisfies the integral equation

ρr(θ) + ρh(θ) = p′(θ) +

∫ ∞
−∞

dθ′

2π
ϕ(θ − θ′)ρr(θ′), (2.3)

where ϕ = −i ddθ logS(θ) is the scattering kernel and p′(θ) = m cosh θ is the derivative of

the one-particle momentum. We also define the filling fraction

f(θ) =
ρr(θ)

ρh(θ) + ρr(θ)
. (2.4)

The physical applications include the standard Gibbs and the Generalized Gibbs (GGE)

ensembles [17]. In the first case the thermal average is defined as

〈O1(0, 0)O2(x, t)〉T =
Tr
(
e−βHO1(0, 0)O2(x, t)

)
Tr (e−βH)

, (2.5)

where β = 1/T . Similarly, for the GGE

〈O1(0, 0)O2(x, t)〉GGE =
Tr
(
e−

∑
j βjQjO1(0, 0)O2(x, t)

)
Tr
(
e−

∑
j βjQj

) . (2.6)

In both cases the ensemble average can be simplified to a single mean value on a repre-

sentative state |Ω〉, whose root density ρr(θ) is determined by the Thermodynamic Bethe

Ansatz (TBA) equations [44]. Defining the pseudo-energy as ε(θ) = log ρh(θ)
ρr(θ) , the standard

TBA equation reads

ε(θ) = βe(θ)−
∫ ∞
−∞

dθ′

2π
ϕ(θ − θ′) log(1 + e−ε(θ

′)), (2.7)

with e(θ) = m cosh θ is the one-particle energy. Together with (2.3) this determines the

Bethe root distributions. In the case of the GGE the eigenvalue functions of the higher

charges also enter the source terms.

Our main goal is to develop integral series for the objects

〈Ω|O1(0)O2(x, t)|Ω〉 (2.8)

using their infinite volume, zero-density form factors, for arbitrary root distributions. We

allow for two different operators O1 and O2, even though in practice they are typically

the same or simply just adjoints of each other. We will restrict ourselves to space-like

separations x2 − t2 > 0, for reasons to be discussed below.
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In evaluating the two-point function there are two main difficulties that need to be

solved. First of all, the finite density state |Ω〉 is not a well defined object if one starts

from the infinite volume directly. Instead, different regularization schemes need to be

applied that increase the number of particles gradually. Second, one has to deal with the

singularities of the form factors, including the disconnected pieces and the kinematical

poles. Even after the subtraction of the singular parts it is highly non-trivial to find the

remaining finite contributions.

In 2.1 we review previous approaches to the one-point functions that lead to the cor-

responding LeClair-Mussardo series. Later in 2.2 we review previous attempts for the

two-point function and in 2.3 we formulate the main results. However, before turning to

the LM series we list here the main analytic properties of the form factors of local operators,

and discuss the diagonal limit with a finite number of particles.

A generic form factor can be expressed with the so-called elementary form factors

(matrix elements between the vacuum and a multi-particle state) by applying the so-called

crossing relation

FOm,n(θ
′
1, . . . , θ

′
m|θ1, . . . , θn) = FOm−1,n+1(θ

′
1, . . . , θ

′
m−1|θ

′
m + iπ, θ1, . . . , θn) (2.9)

+

n∑
k=1

(
2πδ(θ

′
m − θk)

k−1∏
l=1

S(θl − θk)FOm−1,n−1(θ
′
1, . . . , θ

′
m−1|θ1, . . . , θk−1, θk+1 . . . , θn)

)
.

Here the second line includes the disconnected terms. The elementary form factors satisfy

the relations [43, 45–48]

I. Lorentz transformation:

FOn (θ1 + Λ, . . . , θn + Λ) = esOΛFOn (θ1, . . . , θn), (2.10)

where sO is the Lorentz-spin of the operator.

II. Exchange:

FOn (θ1, . . . , θk, θk+1, . . . , θn) = S(θk − θk+1)FOn (θ1, . . . , θk+1, θk, . . . , θn). (2.11)

III. Cyclic permutation:

FOn (θ1 + 2iπ, θ2, . . . , θn) = FOn (θ2, . . . , θn, θ1). (2.12)

IV. Kinematical singularity:

− iRes
θ=θ′

FOn+2(θ + iπ, θ
′
, θ1, . . . , θn) =

(
1−

n∏
k=1

S(θ − θk)

)
FOn (θ1, . . . , θn). (2.13)

There is a further relation related to the bound state structure of the theory, but it will not

be used in the present work. On the other hand, we will assume that the form factors show

the asymptotic factorization property, when a subset of the rapidities is boosted to infinity:

lim
Λ→∞

FOn (θ1 + Λ, . . . , θm + Λ, θm+1, . . . , θn) =
1

〈O〉
FOm (θ1, . . . , θm)FOn−m(θm+1, . . . , θn).

(2.14)
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First observed by Smirnov [43] and later proven in [49], this relation holds for relevant

scaling operators, and it is used to identify solutions to the form factor axioms with con-

crete operators.

For future use it is useful to display the kinematical pole relation in the form

− i Res
ϑ1=θ1

FOn,m(ϑn, . . . , ϑ1|θ1, . . . , θm) = (2.15)

=

(
1−

m∏
k=2

S(θ1 − θk)
n∏
k=2

S(ϑk − ϑ1)

)
FOn−1,m−1(ϑn, . . . , ϑ2|θ2, . . . , θm).

The diagonal limit is reached by setting n = m and letting ϑj → θj . In this limit the

form factor has an apparent n-fold pole, but a straightforward calculation shows that the

residue is actually zero. It can be shown that around this point the form factor behaves as

FOn,n(ϑn, . . . , ϑ2|θ2, . . . , θn) ∼
∑

i1i2...in
Ai1i2...inεi1εi2 . . . εin∏n

j=1 εj
, εj = ϑj − θj , (2.16)

where the coefficients Ai1i2...in are symmetric in the n indices.

There are two natural ways to define a regularized diagonal form factor. The so-called

connected form factor is defined as

FOn,c(θ1, . . . , θn) ≡ F.P.
{
FO2n(θ1 + ε1, . . . , θn + εn|θn, . . . , θ1)

}
, (2.17)

where F.P. stands for finite part, i.e. the terms which are free of any singularities of the

form εj/εk. According to the expansion (2.16) this coincides with n!A12...n. The second

possibility is to define the symmetric limit as

FOn,s(θ1, . . . , θn) ≡ lim
ε→0

FO2n(θ1 + ε, . . . , θn + ε|θn, . . . , θ1). (2.18)

Both diagonal form factors are symmetric in their variables. The linear relations between

them can be found using (2.15); they were studied in detail in [29]. Further analytic

properties of the diagonal form factors were studied in [50].

2.1 One-point functions

In the seminal work [22] the following result was proposed for the finite temperature one-

point functions:

〈O〉T =

∞∑
n=0

1

n!

∫
dθ1

2π
. . .

dθn
2π

 n∏
j=1

1

1 + eε(θj)

FOn,c(θ1, . . . , θn), (2.19)

where ε(θ) is the solution of the TBA equations (2.7) and FOn,c are the connected diagonal

form factors defined in (2.17).

The main idea of [22] was to consider the finite-temperature problem in finite volume

L and in the low-temperature limit T � m. In this case the volume parameter can be

chosen to satisfy Le−m/T � 1 such that the partition functions in (2.5) are dominated

by states with few particles. In this case it is possible to perform an expansion in the
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small parameter e−m/T such that the disconnected terms in the numerator are canceled by

the Boltzmann-sums in the denominator. A formal calculation gives disconnected terms

proportional to δ(0), which were interpreted in [22] as diverging terms proportional to the

volume. It was argued that each order in the cluster expansion becomes finite after the

cancellation of all Dirac-deltas. However, this procedure only kept to most divergent pieces

in L, and sub-leading singularities can also affect the remaining finite answer.

A more rigorous approach was initiated in [29] which aimed to evaluate the aver-

age (2.5) in the small temperature limit by keeping all diverging pieces polynomial in L.

This was achieved by developing a precise description of the finite volume diagonal matrix

elements. In the following we briefly review the results of [29].

Let us denote finite volume states by

|θ1, . . . , θN 〉L.

Here it is understood that the rapidities solve the Bethe equations

eiQj ≡ eipjL
∏
k 6=j

S(θj − θk) = 1, j = 1 . . . N,

where pj = p(θj) = m sinh(θj). For transition matrix elements it was found in [6]

〈
θ′1, . . . , θ

′
M

∣∣O|θ1, . . . , θN 〉L =
FON,M (θ′1, . . . , θ

′
M |θ1, . . . , θN )√

ρM (θ′1, . . . , θ
′
M )ρN (θ1, . . . , θN )

+O(e−µL), (2.20)

where ρN and ρM are Gaudin determinants:

ρN (θ1, . . . , θN ) = detJ ij , J ij =
∂Qi
∂θj

. (2.21)

They can be interpreted as the density of states in rapidity space, and in non-relativistic

models as the exact norm of the Bethe Ansatz wave function. The relation (2.20) simply

states that (apart from the physically motivated normalization) the form factors are the

same in finite and infinite volume. For a coordinate Bethe Ansatz interpretation of this

statement see [7].

For finite volume mean values the following result was found in [29]:

〈θ1, . . . , θN |O|θ1, . . . , θN 〉L =
1

ρN (θ1, . . . , θN )

∑
{θ+}∪{θ−}

FO2n,c
(
{θ−}

)
ρ̄N−n

(
{θ+}|{θ−}

)
,

(2.22)

where we used the restricted determinant

ρ̄N−n({θ+}|{θ−}) = detJ+, (2.23)

where J+ is the sub-matrix of J corresponding to the particles in the set {θ+}. There

is also an alternative representation built on the symmetric diagonal form factors (2.18),

but it will not be used here. A rigorous proof of (2.22) was given for local operators of

the Lieb-Liniger model in [28], and for relativistic QFT it was finally proven in [30]. It is
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important that [30] used the kinematical pole relation and the result (2.20) for off-diagonal

matrix elements.

In [29] the expansion (2.22) was used to perform a rigorous low-temperature expansion

of the Gibbs average, and the LM series was confirmed up to third order. These calculations

were performed in the regime Le−m/T � 1, such that it was enough to consider states with

low particle numbers.

An alternative, all-orders proof was later given in [28]. Here the idea was to consider

a representative state at some temperature (or with some fixed root distribution) and to

perform the thermodynamic limit directly on the formula (2.22). In this approach the

physical amplitudes FO2n,c
(
{θ−}

)
of (2.22) enter the integrals of the LM series, and the

ratios of the determinants produce the weight functions 1/(1 + eε(θ)). More generally it

was shown that for an arbitrary state we have

〈Ω|O|Ω〉 =

∞∑
n=0

1

n!

∫
dθ1

2π
. . .

dθn
2π

 n∏
j=1

f(θj)

FOn,c(θ1, . . . , θn), (2.24)

where f(θ) is the filling fraction (2.4). It was also shown that the LM series can be expressed

using the so-called symmetric diagonal form factors defined in (2.18) as

〈Ω|O|Ω〉 =
∞∑
n=0

1

n!

∫
dθ1

2π
. . .

dθn
2π

 n∏
j=1

f(θj)ω(θj)

FO2n,s(θ1, . . . , θn), (2.25)

where

ω(θ) = exp

(
−
∫
dθ′

2π
f(θ′)ϕ(θ − θ′)

)
. (2.26)

The two formulas (2.24) and (2.25) can be considered to be partial re-summations of each

other. Results similar to (2.25) (including the weight function ω(θ)) had been obtained for

the Lieb-Liniger model using Algebraic Bethe Ansatz [1, 51].

It is remarkable, that results of the form (2.24) were obtained much earlier in the

context of the 1D Bose gas in [12, 13, 38–40]. These works considered both one-point

and two-point functions, for example the field-field correlation Ψ†(x)Ψ(0), which in the

x → 0 limit becomes the particle density operator. An integral series with the same

structure as the LM series was derived for Ψ†(x)Ψ(0), and in the x→ 0 limit the Yang-Yang

thermodynamics was obtained completely independently from the TBA arguments [38].

The main idea of these works is to introduce a regularization involving a Galilean boost

operator [38], which renders the various singular terms finite. A very important result of

this approach, presented in [40], is that the form factors of the two point function Ψ†(x)Ψ(0)

satisfy the same kinematical pole equation (2.13) as those of the local operators, see for

example (3.11) of [40].

An alternative infinite volume regularization scheme for one-point functions was devel-

oped in [42], which considered smeared states to avoid the singularities of the form factors.

The main goal of [42] was to provide a field theoretical derivation of the TBA equations,

by calculating the mean value of the energy density operator in a finite density state. Al-

though the regularization in [42] is different from that of [38], the treatment of the form
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factors is the same and the calculation relies only on the kinematical pole property. The

work [42] only considered the energy current operator, but its methods could be adapted

in a straightforward way to arbitrary local operators, and this would give an independent

rigorous proof of the LM series (2.19). We believe that this connection has not been noticed

in the literature before.

2.2 Earlier results for two-point functions in iQFT

In [22] the following series was proposed for the finite temperature two-point functions:

〈O(x, t)O(0, 0)〉T −
(
〈O〉T

)2
= (2.27)

∞∑
N=1

1

N !

∑
σi=±1

∫
dθ1

2π
. . .

dθN
2π

 N∏
j=1

fσj (θj) exp
(
− σj(tεj + ixkj)

) ∣∣〈0|O|θ1 . . . θN 〉σ1...σN
∣∣2,

where fσj (θj) = 1/(1 + e−σjε(θj)) and kj = k(θj), where k(θ) can be interpreted as the

dressed momentum and it is given by

k(θ) = m sinh(θ) +

∫
dθ′δ(θ − θ′)ρ1(θ′), (2.28)

where ρ1(θ) is the solution of the integral equation

2πρ1(θ)(1 + eε(θ)) = m cosh(θ) +

∫
dθ′ϕ(θ − θ′)ρ1(θ′). (2.29)

The form factors appearing in (2.27) are defined by

〈0|O|θ1 . . . θN 〉σ1...σN = FON (θ1 − iπσ̃1, . . . , θN − iπσ̃N ) σ̃j = (1− σj)/2 ∈ {0, 1}.

It is an important feature that the x and t dependent phase factors involve the dressed

energies and momenta of the particles, where the dressing is due to the finite density

background. On the other hand, the form factors are the bare quantities.

An explicit counterexample to (2.27) was found in [23]; this counter-example involved

a chemical potential, and it was not clear whether (2.27) could still hold for the µ = 0 case

for which it was originally derived. In [24] the temperature dependent two-point function

of the stress-energy operator T (x) was evaluated in the scaling Lee-Yang model, in the

massless limit. The results were compared to benchmark calculations from CFT. The

work [24] only considered terms of the LM series up to N = 2, but after an investigation

of the convergence properties of the series it was concluded that (2.27) can not be correct.

In [25–27] it was shown that the LM series is not correct in the Ising model for most

operators; it only works for operators with at most two free field factors.

Also, there is a central problem with the proposal (2.27), which is independent from

the previous counter-examples: the higher terms with N ≥ 3 involve ill-defined integrals

and it is not specified how to subtract the singular pieces. For N ≥ 3 all the terms for

which the σ variables are not equal have poles in the θ-variables. These poles are squared

and there is no prescription given for the subtraction of these singularities. As far as we
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know, this problem has not been emphasized in the literature. The calculation of [24] did

not encounter this problem, because they only included terms up to N = 2, for which the

pre-factor of the double pole is zero.

Later works attempted to perform a well-defined low-temperature expansion of the

Gibbs average for the two-point function. In [31–34] form factor series were developed for

spin chains and field theoretical models. The paper [34] includes both finite and infinite

volume regularization, involving also a constant shift in the rapidity parameters to treat the

singularities of the form factors; this corresponds to adding a Lorentz-boost operator into

the definition of the partition function. Adding a boost is essentially the same technique

that was used in [12, 13, 38–40], where the Galilean boost operator was used due to the

non-relativistic kinematics of the Lieb-Liniger model.

The finite volume regularization was applied later in [35, 36], where the main goal was

to derive a regularized form factor expansion irrespective of the details of the model or the

operator. The summation over Bethe states in the Gibbs average was transformed into

contour integrals such that the infinite limit volume could be taken in a straightforward

way. However, a shortcoming of this method was that it required a term by term analysis,

and it was not evident how to express the general higher order terms.

All of these approaches use the bare form factors, that is, the infinite volume zero

density form factors of the theory. In [25–27] it was suggested that finite temperature

correlations should be described by dressed form factors that already take into account

certain effects of the background. New form factor axioms were set up for the finite tem-

perature case, and they were solved for problems involving Majorana fermions. However,

the approach has not yet been worked out for interacting theories. On the other hand, an

exact result was computed in [37] for the large scale correlations in generic inhomogeneous,

non-equilibrium situations, which also include static backgrounds as special cases. Here we

do not discuss the results of [37] in detail, as they apply to the large time limit; however,

in the Conclusions we give remarks about the possible relations to our work.

2.3 LeClair-Mussardo series for two-point functions

In the following we derive a new form factor series for the two-point function in finite density

situations. The structure of our result is essentially the same as that of the formula (2.19),

therefore it can be called the LM-series for the two-point function. The central idea is

to treat the product of two local operators as a composite object, and to investigate its

matrix elements.

Let us define the form factors of the bi-local operator O1(0, 0)O2(x, t) as

Gx,tn,m(ϑn, . . . , ϑ1|θ1, . . . , θn) = 〈ϑn, . . . , ϑ1|O1(0, 0)O2(x, t)|θ1, . . . , θm〉. (2.30)

In order to shorten the notations, we have omitted the superscript O1O2 for Gx,tn,m and

we assume that we will deal with the same two (unspecified) local operators throughout

the work.

It is important that we restrict ourselves to space-like separations x2− t2 > 0, in which

case the two operators commute with each other. This restriction is essential for some
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of our arguments to be presented below. The form factors are always Lorentz-invariant,

therefore we could transform any |t| < |x| to t = 0 with a proper boost; however, the finite

density state |Ω〉 is typically not Lorentz-invariant, therefore we reserve the possibility of

a finite time displacement.

In the following we present three independent arguments that show that the bi-local

form factors satisfy the same kinematical pole property (2.15) as the usual form factors.

Our first argument is based on the analytic properties of the Operator Product Ex-

pansion (OPE)1 Writing the bi-local operator as the OPE

O1(0, 0)O2(x, t) =
∑
j

cO1O2
j (x, t)Oj(0, 0) (2.31)

each term on the r.h.s. satisfies the analytic properties, therefore their sum does too. This

argument relies on the existence and the absolute convergence of the OPE. Whereas this

has not been rigorously proven, it is generically believed to be true in QFT for space-like

separations [52–56].

Our second argument relies on the coordinate Bethe Ansatz wave function. It was

shown in [7] that in non-relativistic cases the kinematical pole is easily proven by investi-

gating the real space integrals in the form factor. For this argument we require t = 0, but

here we deal with only a finite number of rapidity variables (independent of the background

|Ω〉), therefore we can always set t to zero by an appropriate Lorentz-transformation. We

argue that the bi-local form factor satisfies the relation

− i Res
ϑ1=θ1

Gx,tn,m(ϑn, . . . , ϑ1|θ1, . . . , θm) = (2.32)

=

(
1−

m∏
k=2

S(θ1 − θk)
n∏
k=2

S(ϑk − ϑ1)

)
Gx,tn−1,m−1(ϑn, . . . , ϑ2|θ2, . . . , θm),

which has the same form as (2.15). The singularity can be understood easily by real space

calculation of the form factors [7]. The two terms in the pole represent divergent real space

integrals when the particles with rapidities θ1 and ϑ1 are before or behind the operator

and all the other particles, and the pre-factor reflects the change of the phase of the wave

functions as the particles with θ1 and ϑ1 are moved from the first position to the last.

The kinematical pole arises from infinite x → ±∞ real space integrations, therefore it is

not sensitive to the precise locality properties of the operators, the only requirement being

the product should have a finite support in real space. Similarly, relativistic effects that

modify the Bethe Ansatz wave function on small distances (comparable to the Compton

wavelength of the particles) do not play a role either, because the non-relativistic derivation

of [7] only uses the long distance behaviour of the wave function, which is described by the

Bethe Ansatz even in QFT. Therefore, this argument also supports the kinematical pole

property even for the bi-local operators.

The third argument is based on explicit representations of the bi-local form factors

in terms of the form factors of the individual operators; such integral formulas will be

1This argument was suggested to us by Gábor Takács.
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presented in section 3. The kinematical pole is then evaluated explicitly in section 4.3. This

derivation is mathematically rigorous, but it leaves the physical meaning of the kinematical

residue somewhat obscure. We believe that it is our first two arguments which provide the

physical understanding.

In 2.1 we reviewed three different approaches that lead to the LM series for one-point

functions:

• The infinite volume regularization of [12, 13, 38–40] that uses a boost operator.

• The infinite volume regularization of [42] that uses smeared states.

• The finite volume regularization of [29] (supplied with the proof of [30] for the diagonal

matrix elements), and the presentation of [28] regarding the thermodynamic limit.

All three approaches use only the kinematical pole property, and we have argued above

that this property holds for the bi-local operators as well. It follows that finite density

two-point functions are given by the LeClair-Mussardo series

〈Ω|O1(0)O2(x, t)|Ω〉 =

∞∑
n=0

1

n!

 n∏
j=1

∫
dθj
2π

f(θj)

Gx,tn,c(θ1, . . . , θn), (2.33)

where Gx,tn,c is the connected diagonal form factor of the bi-local operator, which is defined

as the finite part of

Gx,tn,n(θ1 + ε1, . . . , θn + εn|θn, . . . , θ1),

which is free of any singularities of the form εj/εk. Alternatively, the LM series can be

expressed in the same form as (2.25):

〈Ω|O1(0)O2(x, t)|Ω〉 =
∞∑
n=0

1

n!

 n∏
j=1

∫
dθj
2π

f(θj)ω(θj)

Gx,tn,s(θ1, . . . , θn), (2.34)

where

Gx,tn,s(θ1, . . . , θn) = lim
ε→0

Gx,tn,n(θ1 + ε, . . . , θn + ε|θn, . . . , θ1), (2.35)

and ω(θ) is given by (2.26). The equivalence between (2.33) and (2.34) is guaranteed by the

theorems for the connected and symmetric diagonal form factors presented in [29]; these

theorems only use the kinematical pole property, therefore they apply to the two-point

function as well.

Expressions (2.33)–(2.34) are implicit: they do not specify how to compute the form

factors of the bi-local operator, they only describe how to deal with the singularities of

this object. In the next section we also show how to compute the bi-local form factors

using those of the local operators. This is achieved by inserting a complete set of (infinite

volume) states between the two operators, which makes the LM series completely explicit.

It is very important that the composite form factors depend on the position (x, t), and the

diagonal limit has to be taken by considering a full dependence on the rapidities, including
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the kinematical factors involving (x, t). Examples in section 6 show that this can lead to

secular terms.

We remark again, that in the non-relativistic case an LM series of the form (2.33) has

been already established in [40], see for example eq. (3.18) in that work, together with

(3.14), which agrees with our definition for Gx,tn,c. An important difference between the two

situations is that in the 1D Bose gas the field operators change particle number by one,

and the bi-local form factors could be obtained explicitly as sums of algebraic expressions.

On the other hand, in the field theoretical case the operators can have matrix elements

between any N - and M -particle states, and the bi-local form factors are obtained as an

infinite integral series, to be presented in the next section.

3 Form factors of the bi-local operators

In this section we derive explicit integral representations for the generic n-m form factor

Gx,tn,m(ϑn, . . . , ϑ1|θ1, . . . , θm) = 〈ϑn, . . . , ϑ1|O1(0, 0)O2(x, t)|θ1, . . . , θm〉 (3.1)

by inserting a complete set of states between the two local observables. The idea and the

methods of this section are essentially the same as in the original works by Smirnov [43].

The analytic properties of the resulting series are investigated in section 4.

A naive insertion of states would lead to an encounter with the kinematical poles: this

happens when intermediate rapidities approach one of the ϑ or θ variables. In order to

avoid these singularities we employ a well-defined expansion of the local operators in terms

of the Faddeev-Zamolodchikov (FZ) creation/annihilation operators Z†(θ), Z(θ) [57, 58].

The FZ operators satisfy the commutation relations

Z†(θ1)Z†(θ2) = S(θ1 − θ2)Z†(θ2)Z†(θ1) ,

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1) ,

Z(θ1)Z†(θ2) = S(θ2 − θ1)Z†(θ2)Z(θ1) + 2πδ(θ1 − θ2)1 . (3.2)

Local operators are represented in terms of the FZ operators as [43, 59, 60]

O(x, t) =
∞∑

k,l=0

Hk,l(x, t), (3.3)

where

Hk,l(x, t) =
1

k!l!

∫ k∏
i=1

dθi
2π

∫ l∏
j=1

dηj
2π

fOk,l(θ1, . . . , θk|ηl, . . . η1)Kx,t({θ}|{η})

× Z†(θ1) . . . Z†(θk)Z(ηl) . . . Z(η1),

(3.4)

where the functions f can be expressed in terms of the form factors

fOk,l(θ1, . . . , θk|ηl, . . . , η1) = FOl+n(θk + iπ + i0, . . . , θ1 + iπ + i0, η1 − i0, . . . , ηl − i0) (3.5)
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and Kx,t is the phase factor due to the displacement of the operator:

Kx,t({θ}|{η}) = eit(
∑

i E(θi)−
∑

i E(ηi))−ix(
∑

i P (θi)−
∑

i P (ηi)) , (3.6)

where E(θ) = m cosh(θ) and P (θ) = m sinh(θ) are the energy end momentum of the

one-particle states.

An important ingredient in the expansion above is the presence of the infinitesimal

shifts of ±i0. They are irrelevant for the off-diagonal form factors of O, but they are

necessary to obtain a well-defined integral representation for the bi-local form factor (3.1).

The bi-local form factor is obtained by inserting two instances of the expansion (3.3)–

(3.4) into (3.1) and computing the contractions of the FZ operators using the algebra (3.2).

It is easy to see that only those terms contribute, where there are at least n FZ creation and

m annihilation operators. Also, there can not be more than m annihilation (or n creation)

operators immediately acting on the ket (or bra) states. These constraints are satisfied by

the triple sum

Gx,tn,m(ϑn, . . . , ϑ1|θ1, . . . , θm) =
n∑
k=0

m∑
l=0

∞∑
p=0

Hn,mk,l,p , (3.7)

where

Hn,mk,l,p = 〈ϑn, . . . , ϑ1|Hn−k,p+l(0, 0)Hp+k,m−l(x, t)|θ1, . . . , θm〉 . (3.8)

In Hn,mk,l,p the indices k and l show the numbers of the disconnected ϑ and θ rapidities.

We introduce the notation for the ordered set of rapidities {θj1 , θj2 , . . . , θjn} = {θ}J<
and {ϑjn , ϑjn−1 , . . . , ϑj1} = {ϑ}J> , where the elements of J are ordered as ji < ji+1. In,<
denotes the ordered set {1, 2, . . . , n} and In,> denotes {n, n− 1, . . . , 1}.

For each term in Hn,mk,l,p we need to evaluate a contraction of the form〈
{ϑ}In,>

∣∣Z†(α1) . . .Z†(αn−k)Z(βp+l) . . .Z(β1)Z†(µ1) . . .Z†(µp+k)Z(νm−l) . . .Z(ν1)
∣∣{θ}Im,<

〉
,

(3.9)

where ∣∣{θ}Im,<

〉
= Z†(θ1) . . . Z†(θm)|0〉〈

{ϑ}Im,>

∣∣ = 〈0|Z(ϑm) . . . Z(ϑ1).
(3.10)

The contractions lead to various Dirac-deltas and phase factors, which can be treated using

straightforward calculations, leading to

Gx,tn,m(ϑIn,> |θIm,<) =
∞∑
p=0

1

p!

p∏
i=1

∫
dµi
2π

∑
A+∪A−=Im

∑
B+∪B−=In

Kx,t({µ}Ip , {ϑ}B− |{θ}A+)

× FO1({ϑ}B+
>

+ iπ + i0, {µ}Ip,< − i0, {θ}A−< − i0)

× FO2({ϑ}B−> + iπ + i0, {µ}Ip,> + iπ + i0, {θ}A+
<
− i0)

× S<({θ}A+
<
|{θ}A−<)S>({ϑ}B−> |{ϑ}B+

>
)S↔({ϑ}B−> |{θ}A−<) ,

(3.11)

where the two inner summations run over bipartite partitions of the index sets In and Im,

and we omitted the particle number subscript of the form factors.

– 15 –



J
H
E
P
0
5
(
2
0
1
8
)
1
7
0

O1(0, 0)

O2(x, t)

{θA−}

{ϑB−}
{θA+}

{ϑB+}

{µ}
|{θ}〉〈{ϑ}|

Figure 1. Graphical interpretation of the integral representation (3.11) for the bi-local form factor.

The phase factors S<, S> and S↔ above result from the exchanges of the FZ operators

such that the set of particles {θA−} can be connected to the operator O1, and the set {ϑB−}
to O2. They are defined as follows. For a given partitioning Im = A+ ∪ A− we denote

by {{θA+
<
}, {θA−<}} the ordered set of rapidities that is obtained by concatenating the two

ordered sets {θA+
<
} and {θA−<}. The phase factor S< follows from the rearrangement of

rapidities as ∣∣{θ}Im,<

〉
= S<({θ}A+

<
|{θ}A−<)

∣∣∣{θ}A+
<
, {θ}A−<

〉
. (3.12)

Explicitly it is given by

S<({θ}A+
<
|{θ}A−<) =

∏
a+i >a

−
j

S(θa−j
− θa+i ), (3.13)

where a+
i , i = 1, . . . , |A+| and a−j , j = 1, . . . , |A−| are the indices in the sets A+ and A−.

Similarly, S> is defined as the phase factor coming from the rearrangement〈
{ϑ}In,>

∣∣ = S>({ϑ}B−> |{ϑ}B+
>

)
〈
{ϑ}B−> , {ϑ}B+

>

∣∣∣ (3.14)

with the explicit expression

S>({ϑ}B−> |{ϑ}B+
>

) =
∏

b+i >b
−
j

S(ϑb+i
− ϑb−j ). (3.15)

Finally, the mutual phase factor S↔ is given by

S↔({ϑ}B−> |{θ}A−<) =
∏
i∈B−

∏
j∈A−

S(ϑi − θj). (3.16)

The intuitive interpretation of the formula (3.11) is the following: the incoming and

outgoing particles are connected to one of the local operators, whereas they are disconnected

from the other one; this choice is given by the partitioning of the index sets. On the

other hand, the integration variables µj represent additional intermediate particles between

the two operators. The phase factors in (3.11) arise from the interchange of positions of

the particles. We stress that the ±i0 shifts for the rapidities are essential to obtain a

regular expression for the bi-local form factor. A graphical representation of (3.11) is given

in figure 1.

It is useful to derive an alternative representation of the bi-local form factor, where the

integration contour over the intermediate particles is well separated from the incoming and
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outgoing rapidities. To this order we shift the integration contour in (3.11) to R+ iα with

α being a small real number. The advantage of this step is that afterwards the kinematical

poles at ϑj → θk can be studied directly, without paying attention to the µ-integrals. On

the other hand, if some of the µ-integrals would run between the rapidities ϑj and θk,

then the contour could be pinched, and such cases would complicate the analysis of the

kinematical singularities.

First we assume that α > 0, then the contour shift picks up poles of the form factors

of O1. After a straightforward, but tedious calculation we obtain the formula

Gx,tn,m(ϑIn,> |θIm,<) =

∞∑
p=0

Gx,tn,m,p(ϑIn,> |θIm,<), where

Gx,tn,m,p(ϑIn,> |θIm,<) =
1

p!

p∏
i=1

∫
R+iα

dµi
2π

∑
A+∪A−=Im

∑
B+∪B−=In

Kx,t({µ}Ip , {ϑ}B− |{θ}A+)

× FO1({ϑ}B+
>

+ iπ, {µ}Ip,< , {θ}A−<)FO2({µ}Ip,> + iπ, {ϑ}B−> + iπ, {θ}A+
<

)

× S<({θ}A+
<
|{θ}A−<)S>({ϑ}B+

>
|{ϑ}B−> ) , (3.17)

where we omitted the ±i0 shifts, because they are not relevant anymore. Details of this

calculation are presented in appendix A; here we just note that the changes in the phase

factors (including the reordering of the rapidities in the form factor FO2) at a given p result

from adding pole contributions from terms with p′ > p.

We can also shift the contours to the negative imaginary direction, which results in

the alternative formula

Gx,tn,m,p(ϑIn,> |θIm,<) =
1

p!

p∏
i=1

∫
R−iα

dµi
2π

∑
A+∪A−=Im

∑
B+∪B−=In

Kx,t({µ}Ip , {ϑ}B− |{θ}A+)

× FO1({ϑ}B+
>

+ iπ, {θ}A−< , {µ}Ip,<)FO2({ϑ}B−> + iπ, {µ}Ip,> + iπ, {θ}A+
<

)

× S<({θ}A−< |{θ}A+
<

)S>({ϑ}B−> |{ϑ}B+
>

) . (3.18)

The differences between the integrands in (3.11) and those of (3.17) and (3.18) lie in the

phase factors, including the ordering of the rapidities in the form factors functions.

The convergence of the µ-integrals in the above expressions depends on the separation

between the operators. The µ-dependence for large |µ| is given solely by the K-factors,

given that the asymptotic factorization property (2.14) holds. It follows that the integra-

tions towards µ→ ±∞ are convergent in (3.17) if x < 0, and in (3.18) if x > 0. If the two

operators O1,2 are not identical then the two-point function might not have the x → −x
symmetry, and only one of the representations can be used, depending on the sign of x. On

the other hand, the µ-integrals would never be convergent for time-like separations: they

would diverge either for µ→ +∞ or µ→ −∞.

It is important that the integral series is effectively a large-distance expansion for the

bi-local form factor: each µ-integral carries a weight of e−ms with s2 = x2 − t2. This is

analogous to the case of the vacuum two-point function.

We note that essentially the same integral representations as presented in this section

were used by Smirnov to prove the local commutativity theorem [43]. This theorem states
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that if there are two operators such that the form factors satisfy the axioms as given above,

then the two operators commute for space-like separations. We do not replicate the proof

here. Instead, we just point that it also uses a shift of the integration contours in the

complex plane, which is only possible for space-like displacement between the operators.

4 Form factor properties of the bi-local form factors

In this section we investigate the analytic properties of the bi-local form factors based on

the integral representations (3.17)–(3.18). Most importantly we confirm explicitly that the

bi-local form factor satisfies the kinematical pole relation (2.32), which is the basis for the

derivation of the LeClair-Mussardo series. In 4.4 we also discuss the implications of the

form factor axioms for the bi-local operators.

4.1 Lorentz transformation

After a Lorentz transformation every rapidity is shifted by Λ. The S-matrix factors are

invariant under the shift, since they only depend on rapidity differences. Each elementary

form factor satisfies the Lorentz transformation axiom (2.10). The phase factor trans-

forms as

Kx,t({η}+ Λ|{ζ}+ Λ) = Kx′,t′({η}|{ζ}) , (4.1)

where x′ = x cosh(Λ)− t sinh(Λ) and t′ = t cosh(Λ)−x sinh(Λ) are exactly the transforma-

tion rules for space-time coordinates under Lorentz transformation. As a consequence, the

bi-local form factor satisfies the following Lorentz transformation rule

Gx,tn,m({ϑ}In,> + Λ|{θ}Im,< + Λ) = e(sO1
+sO2

)ΛGx
′,t′
n,m({ϑ}In,> |{θ}Im,<) , (4.2)

where sOi is the Lorentz spin of the operator Oi.

4.2 Exchange property

It is easy to see that the form factors of the bi-local operators satisfy the exchange property

for rapidities both sides of the operators

Gx,tn,m(. . . , ϑi+1, ϑi, . . . | . . . ) = S(ϑi+1 − ϑi)Gx,tn,m(. . . , ϑi, ϑi+1| . . . ) ,
Gx,tn,m(. . . | . . . , θi, θi+1, . . . ) = S(θi − θi+1)Gx,tn,m(. . . | . . . , θi+1, θi, . . . ) .

(4.3)

For those terms where the rapidities to be exchanged are in the same sets A± or B± the

property follows from the property of the elementary form factors (2.11). In those cases,

where the rapidities are in different sets, the extra S-matrix factor exactly cancels out

or introduces the terms in the S<(θA+
<
|θA−<) and S>(ϑB+

>
|ϑB−> ) phase factors to get the

appropriate ordering.

4.3 Kinematical poles

The kinematical pole property (2.13) is the essential ingredient for the proof of the LeClair-

Mussardo formula. Here we prove that it holds for the form factors of the bi-local operators
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too. We use the representation (3.17) in which there are no singularities associated with

the intermediate particles. However, the elementary form factors in the summation (3.17)

have direct kinematical poles for ϑ1 ∼ θ1, and these need to be summed up to obtain the

total residue of the bi-local form factor.

The singularities come from terms where ϑ1 and θ1 are in the same elementary form

factors, namely if ϑ1 ∈ {ϑ}B+ and θ1 ∈ {θ}A− or ϑ1 ∈ {ϑ}B− and θ1 ∈ {θ}A+ . Introducing

the notation Ã± = A± \ {1} and B̃± = B± \ {1}, the residues in the first situation are

∞∑
p=0

1

p!

∫
R+iα

p∏
i=1

dµi
2π

∑
Ã+∪Ã−=Im\{1}

∑
B̃+∪B̃−=In\{1}

Kx,t({µ}Ip , {ϑ}B̃− |{θ}Ã+)

× FO1({ϑ}B̃+
>

+ iπ, {µ}Ip,< , {θ}Ã−<)

× i[S↔({µ}Ip |θ1)− S↔(θ1|{ϑ}B̃+ + iπ)S↔(θ1|{θ}Ã−)]

× FO2({µ}Ip,> + iπ, {ϑ}B̃−> + iπ, {θ}Ã+
<

)

× S<({θ}Ã+
<
|{θ}Ã−<)S>({ϑ}B̃+

>
|{ϑ}B̃−> )S↔(θ1|{θ}Ã+)S↔({ϑ}B̃− |θ1) ,

(4.4)

while in the second situation they take the form

∞∑
p=0

1

p!

∫
R+iα

p∏
i=1

dµi
2π

∑
Ã+∪Ã−=Im\{1}

∑
B̃+∪B̃−=In\{1}

Kx,t({µ}Ip , {ϑ}B̃− |{θ}Ã+)

× FO1({ϑ}B̃+
>

+ iπ, {µ}Ip,< , {θ}Ã−<)FO2({µ}Ip,> + iπ, {ϑ}B̃−> + iπ, {θ}Ã+
<

)

× i[1− S↔(θ1|{µ}Ip + iπ)S↔(θ1|{ϑ}B̃− + iπ)S↔(θ1|{θ}Ã+)]

× S<({θ}Ã+
<
|{θ}Ã−<)S>({ϑ}B̃+

>
|{ϑ}B̃−> ) .

(4.5)

Adding up the two kinds of residues we arrive to the kinematical pole property of the

bi-local form factor

Res
ϑ1=θ1

Gx,tn,m({ϑ}(In\{1})> ,ϑ1|θ1,{θ}(Im\{1}))<) = i
(
1−S↔(θ1|{θ}Im\{1})S

↔({ϑ}In\{1}|θ1)
)

×Gx,tn,m({ϑ}(In\{1})> |{θ}(Im\{1})<) . (4.6)

This is identical to the crossed version (2.32) of the form factor kinematical pole ax-

iom (2.13).

We remark that an analogous calculation can be performed also for the alternative

representation (3.18).

4.4 Other properties and discussion

We have checked that the crossing and periodicity properties (2.9) and (2.12) also hold

for the bi-local form factors. However, these relations are not relevant for the LM series,

therefore we refrain from presenting the proof. We also remark that the asymptotic factor-

ization property (2.14) does not hold in the bi-local case, which can be understood simply

from a physical point of view, or from the integral representations.

So far we have argued that the bi-local form factors satisfy all axioms that were origi-

nally derived for the local ones. Here we discuss the implications of this statement.
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First of all, it is an interesting idea to apply the local commutativity theorem to

the composite objects. This theorem by Smirnov states that if the form factors of two

operators satisfy the set of axioms presented in section 2, then they commute at space-like

separations [43]. On the other hand, our results suggest an extension of this theorem to

bi-local objects. Such a theorem would state that for any three operators with the required

form factor properties we have

[O1(x1, t1),O2(x2, t2)O3(x3, t3)] = 0, (4.7)

given that all three separations are space-like. The trivial way of proving (4.7) is to apply

Smirnov’s theorem twice to commute the two objects. However, a second proof can be given

by using the form factor properties of the bi-local operator, and then repeating Smirnov’s

calculation for the composite object. We refrain from presenting a rigorous proof of this

extended theorem, as it is not relevant to the present work. Nevertheless, we stress that

the local commutativity theorem can not be applied backwards: it does not imply that

only the local operators can satisfy the form factor axioms.

Finally we comment on the possibility of a form factor bootstrap for the bi-local objects.

In the case of the local operators the form factor axioms (together with the asymptotic

factorization property) include enough constraints to fix the form factors completely, both

in relativistic and non-relativistic situations. The reason for this is the following: the form

factors can always be written as a product of a “minimal” part (which is two-particle

irreducible) and a physical amplitude, which is a symmetric polynomial in the appropriate

variables. Then the kinematical pole axiom is used to fix this polynomial. In the bi-local

case the polynomial would depend also on the displacement between the two operators, and

the same number of constraints can not fix it. Therefore, the standard bootstrap procedure

can not be applied to the bi-local form factors.

5 Compact representations of the LeClair-Mussardo series

Formulas (3.17)–(3.18) give an integral representation for Gx,tn,m in terms of the elementary

form factors. The LM series is then given by (2.33) and (2.34), and this gives a well-defined

way to evaluate the two-point function.

The final integral formulas (2.33) and (2.34) require the evaluation of the connected

and symmetric diagonal form factors. It follows from the proof of the kinematical pole

property, that these operations can be performed on the objects Gx,tn,n,p for each n and p

separately. On the other hand, computing the diagonal limit term by term in (3.17)–(3.18)

leads to singularities, and it is only the sum over the partitions in (3.17)–(3.18) that has

the desired residue structure

Gx,tn,n(ϑIn,> |θIn,<) ∼
∑

i1i2...in
Ai1i2...inεi1εi2 . . . εin∏n

j=1 εj
, εj = ϑj − θj . (5.1)

One way towards singularity free expressions is to develop an integral formula which

automatically produces the diagonal limit of the form factors. This can be achieved by
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introducing auxiliary integration variables. It follows from (5.1) that

Gx,tn,c(θ) =
n∏
j=1

∫
Cj

dϑj
2πi

Gx,tn,n(ϑIn,> |θIn,<)∏n
k=1 sinh(ϑk − θk)

, (5.2)

where Cj are small contours around θj . These contours can be opened to encircle the whole

real line. Opening the contours we do not encounter additional n-fold poles, therefore we

can write

Gx,tn,c(θ) =
1

n!

n∏
j=1

∫
C

dϑj
2πi

Gx,tn,n(ϑIn,> |θIn,<)∏n
k=1 sinh(ϑk − θk)

, (5.3)

where C is a narrow contour around the real line and the factor of 1/n! has been inserted

due to the possible permutations of the set {ϑ}. It is important that C is narrow enough so

that it does not hit the integration contours R+ iα or R− iα for the intermediate particles

in (3.17)–(3.18).

It follows that the LeClair-Mussardo series can be written finally as

〈Ω|O1(0)O2(x, t)|Ω〉 =
∞∑
n=0

1

(n!)2

n∏
j=1

[∫
C

dϑj
2πi

∫
R

dθj
2π

f(θj)

]
Gx,tn,n(ϑIn,> |θIn,<)∏n
k=1 sinh(ϑk − θk)

. (5.4)

An alternative compact formula can be given by using the symmetric diagonal limit

in (2.34). The idea is to exchange the ε → 0 limit with the summations. This is justified

(at least in the thermal situation) due to the exponentially decaying factors e−mR cosh(θ)

and e−mx cosh(θ) associated with the numbers n and p, and the limits on the growth of the

form factors following from the asymptotic factorization property (2.14). We then obtain

〈Ω|O1(0)O2(x, t)|Ω〉 =

= lim
ε→0

 ∞∑
n=0

1

n!

 n∏
j=1

∫
dθj
2π

f(θj)ω(θj)

Gx,tn,n(θ1 + ε, . . . , θn + ε|θn, . . . , θ1)

 . (5.5)

Substituting for example (3.17) gives

〈Ω|O1(0)O2(x,t)|Ω〉= lim
ε→0

[ ∞∑
n,p=0

1

n!

1

p!

n∏
j=1

∫
R

dθj
2π

f(θj)ω(θj)

p∏
i=1

∫
R+iα

dµi
2π

×
∑

A+∪A−=In

∑
B+∪B−=In

Kx,t({µ}Ip ,{θ}B−+iε|{θ}A+)S<({θ}A+
<
|{θ}A−<)S>({θ}B+

>
|{θ}B−> )

×FO1({θ}B+
>

+iε+iπ,{µ}Ip,< ,{θ}A−<)FO2({µ}Ip,> +iπ,{θ}B−> +iε+iπ,{θ}A+
<

)

]
. (5.6)

We stress that it is important to keep the iε shift in the kinematical factors Kx,t, because

they can combine with the poles the form factors to produce terms proportional to x and

t. Examples for this are given in section 6. On the other hand, the shifts could be omitted

from the phase factors, because these factors only depend on the rapidity differences within

a given set. It is also important that all ε variables have to be identical, because any other

choice with some εj/εk 6= 1 would lead to different finite terms.
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O1(0, 0)

O2(x, t)

{θA−}

{θB− + iε}
{θA+}

{θB+ + iε}

{µ}
|{Ω}〉〈{Ω}|

Figure 2. Graphical interpretation of the LM series (5.6). The set {θ} represents the particles from

the representative state |Ω〉 that interact with the two-point function, whereas {µ} are intermediate

particles between the two operators. Each physical amplitude is associated with additional phase

factors, that depend on the partitions (ordering of the particles) and the contour for the µ-integrals.

Representation (5.6) is perhaps the most transparent from a physical point of view:

the rapidities {θ} stand for particles that are present in the representative state |Ω〉 and

interact with the two-point function, whereas the {µ} are additional intermediate particles

between the two operators. A graphical interpretation is given in figure 2. We also point

out the striking similarity with the original proposal (2.27), however, there are crucial

differences. In (2.27) the energy and momenta of the intermediate particles is dressed,

and it is not specified how to deal with the kinematical poles in the higher order terms.

In contrast, here the energy and momenta are not dressed, and all terms are regular due

to the well-defined shifts iα and ε. The only “dressed” quantities in (5.6) are the weight

functions f(θ) and ω(θ), and the derivation in [28] shows that these are statistical weights

that are determined by the Bethe Ansatz description of the state |Ω〉.
To conclude this section we discuss the clustering property of the two-point function.

In the limit of large separations it is expected that

lim
|x|→∞

〈Ω|O1(0)O2(x, t)|Ω〉 = 〈Ω|O1|Ω〉〈Ω|O2|Ω〉. (5.7)

This identity is motivated by physical requirements about the pure state |Ω〉, but its explicit

confirmation is a highly non-trivial test of the various integral formulas [35, 36]. Here we

prove that the LM series satisfies the clustering property; the simplest way is to use the

representation (5.6).

The kinematical factors Kx,t include multipliers of the form e±ip(θ)x, which result in

terms of O(e−m|x|) after integration in θ. Therefore, in the large distance limit only those

terms survive where all K-factors are trivial. This happens when there are no intermediate

particles, and the partitions have to satisfy A+ = B− and A− = B+. In these cases

the incoming and outgoing θj rapidities are always attached to the same operator, and

we obtain

lim
|x|→∞

〈Ω|O1(0)O2(x, t)|Ω〉 = lim
ε→0

[ ∞∑
n=0

1

n!

n∏
j=1

∫
R

dθj
2π

f(θj)ω(θj)

×
∑

A+∪A−=In

S<({θ}A+
<
|{θ}A−<)S>({θ}A−> |{θ}A+

>
)

× FO1({θ + iε}A−> + iπ, {θ}A−<)FO2({θ + iε}A+
>

+ iπ, {θ}A+
<

)

]
.

(5.8)
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O1(0, 0)

O2(x, t)

{θA−}

{θA+ + iε}
{θA+}

{θA− + iε}
|{Ω}〉〈{Ω}|

Figure 3. Graphical interpretation of the clustering property of the two-point function. In the

|x| → ∞ limit only those terms survive in the two-point function, where {µ} = ∅ and the parti-

tionings of the index sets A and B are complementary, leading to a factorization of the two-point

function.

The phase factors cancel each other by definition, and then the integrals completely fac-

torize according to the partitions. By permutation symmetry we obtain

lim
|x|→∞

〈Ω|O1(0)O2(x,t)|Ω〉= (5.9)

lim
ε→0

[ ∞∑
n=0

n∑
k=1

1

k!(n−k)!

k∏
j=1

∫
R

dθj
2π

f(θj)ω(θj)×FO1({θ+iε}Ik,>+iπ,{θ}Ik,<)

×
n−k∏
j=1

∫
R

dθ̃j
2π

f(θ̃j)ω(θ̃j)F
O2({θ̃+iε}In−k,>

+iπ,{θ̃}In−k,<)

]
= 〈Ω|O1|Ω〉〈Ω|O2|Ω〉.

A graphical interpretation of this identity is shown in figure 3.

6 Comparison to our earlier work

Here we compare the formula (5.4) to our previous results for the finite temperature

case [35, 36]. These articles approached the evaluation of finite temperature two-point

functions through finite volume regularization, leading to a double series

〈Ω|O1(0, 0)O2(x, t)|Ω〉 =
∑
N,M

DN,M . (6.1)

Here |Ω〉 is a representative state of the Gibbs ensemble, and the r.h.s. is the result of a

linked cluster expansion, where the DN,M are well defined L → ∞ limits of finite volume

regularized expressions. For the details of the calculation we refer the reader to the original

articles; here we only describe the main properties of the expansion (6.1) and cite a few

relevant formulas.

The series (6.1) is organized as a low temperature expansion, such that each DN,M

carries a thermal weight e−NmR cosh(θ) and M refers to the number of intermediate particles

in the finite volume regularization scheme. It is important that N does not correspond to

the index n in (2.33): the LeClair-Mussardo series involves the weights f(θ) = 1/(1+eε(θ)),

which have a low-temperature expansion themselves. Therefore the terms with a given n

in (2.33) include certain terms from DN,M with N > n. Similarly, although the index M

plays a similar role as the number p of intermediate integrals in (3.17)–(3.18), the terms
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can not be matched one to one. This is an effect of the differences in the regularization

schemes, and it can be seen explicitly in the example presented below.

We compare the LM series to (6.1) up to first order in e−mR cosh(θ). Due to the infinite

number of possible intermediate particles between the two operators this is already a strong

independent confirmation of (2.33).

In the first order approximation the (2.7) gives simply f(θ) = e−mR cosh(θ) and we

expect to match the zeroth and first order contributions as∑
M

D0M = Gx,t0,c(∅) (6.2)

∑
M

D1M =

∫
dθ

2π
e−mR cosh(θ)Gx,t1,c(θ). (6.3)

These two terms are evaluated in the following two subsections.

6.1 Gc
0

We have simply

Gx,t0,c(∅) =
∞∑
p=0

1

p!

 p∏
j=1

∫
R+iα

dµj
2π

Kx,t({µ}|∅)FO1
(
{µ}<

)
FO2

(
{µ}> + iπ

)
, (6.4)

which is nothing more that the spectral series for the zero-temperature two-point function.

In this case there is no singularity for the µ-variables, and the integration contour could

be pulled back to the real line. The same result was given for
∑

M D0M in [35].

6.2 Gc
1

We calculate the connected part of G1, which is defined as the ε independent part of the

bi-local form factor G1(θ + iε|θ). Two-particle form factors don’t have kinematical poles,

therefore in this case the connected part coincides simply with the ε→ 0 limit. From (3.17)

we have the integral representation

G1(θ + iε|θ) =
∞∑
p=0

1

p!

 p∏
j=1

∫
R+iα

duj
2π


×
{
Kx,t({u}|θ)FO1

(
θ + iπ + iε, {u}<

)
FO2

(
{u}> + iπ, θ

)
+Kx,t({u}|∅)FO1

(
θ + iπ + iε, {u}<, θ

)
FO2

(
{u}> + iπ

)
+Kx,t({u}, θ + iε|θ)FO1

(
{u}<

)
FO2

(
{u}> + iπ, θ + iπ + iε, θ

)
+Kx,t({u}, θ + iε|∅)FO1

(
{u}<, θ

)
FO2

(
{u}> + iπ, θ + iπ + iε

)}
.

(6.5)

The first and fourth terms are finite in the ε → 0 limit, but the second and third terms

have apparent first order poles at ε = 0. These singularities cancel each other, and care

needs to be taken to obtain the finite left-over pieces.
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We introduce an expansion of the form factors to make the singularities apparent

FO1
(
θ+iπ,{u}I,<

)
=FO1

reg

(
θ+iπ,{u}I,<

)
+i
∑
k

∏
j<kS(uj−uk)

[
1−
∏

j 6=kS(uk−uj)
]
FO1

(
{u}I\{k},<

)
θ−uk

,

FO2
(
{u}I,>+iπ,θ

)
=FO2

reg

(
{u}I,>+iπ,θ

)
+i
∑
k

∏
j>kS(uj−uk)

[
1−
∏

j 6=kS(θ−uj)
]
FO2

(
{u}I\{k},>+iπ

)
θ−uk

.

(6.6)

With the help of the expansion we can express the ε independent part of the integrands in

the second and third lines of (6.9). Following [35, 36] these terms will also be called the

“connected parts”. They are given by

FO1
c

(
θ+iπ,{u}I,<,θ

)
≡F.P.

(
FO1
c

(
θ+iπ+iε,{u}I,<,θ

))
=FO1

reg

(
θ+iπ,{u}I,<,θ

)
+i
∑
k

FO1
(
{u}I\{k},<,θ

)∏j<kS(uj−uk)
[
1−
∏
j 6=kS(uk−uj)S(uk−θ)

]
θ−uk

,

(6.7)

F̃O2
c

(
{u}I,>+iπ,θ+iπ|θ

)
≡

F.P.
(
Kx,t({u}I ,θ+iε|θ)FO2

(
{u}I,>+iπ,θ+iπ+iε,θ

))
Kx,t({u}I |∅)

=FO2
reg

(
{u}I,>+iπ,θ+iπ,θ

)
+i
∑
k

FO2
(
{u}I\{k},>+iπ,θ+iπ

)∏j>kS(uj−uk)
[
1+
∏
j 6=kS(θ−uj)

]
θ−uk

+

1−
∏
j∈I

S(uj−θ)

∑
j∈I

ϕ(uj−θ)+i[t∂E(θ)+ix∂P (θ)]

FO2
(
{u}I\{k},>+iπ

)
.

(6.8)

In the (6.8) the tilde denotes, that the connected form factor incorporates the contribution

form the energy and momentum phase factor as well.

With the regular pieces introduced above the connected bi-local form factor is writ-

ten as

Gc1(θ|θ) =
∞∑
a=0

1

a!

 a∏
j=1

∫
R+iα

duj
2π


×
{
Kx,t({u}|θ)FO1

(
θ + iπ, {u}<

)
FO2

(
{u}> + iπ, θ

)
+Kx,t({u}|∅)FO1

c

(
θ + iπ|{u}<, θ

)
FO2

(
{u}> + iπ

)
+Kx,t({u}|∅)FO1

(
{u}<

)
F̃O2
c

(
{u}> + iπ, θ + iπ, θ

)
+Kx,t({u}, θ|∅)FO1

(
{u}<, θ

)
FO2

(
{u}> + iπ, θ + iπ

)}
.

(6.9)
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The D1M contributions to (6.1) were calculated in [35, 36] as

D10 =

∫
R

dθ

2π
e−mRcosh(θ)Kx,t (∅|θ)F 1 (θ+iπ)F 2 (θ) ,

D11 =

∫
R

dθ

2π
e−mRcosh(θ)

{
F 1 (θ+iπ,θ)〈O2〉+〈O1〉F 2 (θ+iπ,θ)

+

∫
R+iα

du1

2π
Kx,t (u1|θ)F 1 (θ+iπ,u1)F 2 (u1+iπ,θ)

}
,

D1,M≥2 =

∫
R

dθ

2π
e−mRcosh(θ)

{
1

M !

 M∏
j=1

∫
R+iα

duj

2π

Kx,t({u}|θ)FO1

×
(
θ+iπ,{u}<

)
FO2

(
{u}>+iπ,θ

)
+

1

(M−1)!

M−1∏
j=1

∫
R+iα

duj

2π

Kx,t({u}|∅)FO1
c

(
θ+iπ|{u}<,θ

)
FO2

(
{u}>+iπ

)

+
1

(M−1)!

M−1∏
j=1

∫
R+iα

duj

2π

Kx,t({u}|∅)FO1
(
{u}<,

)
F̃O2
c

(
{u}>+iπ,θ+iπ,θ

)

+
1

(M−2)!

M−2∏
j=1

∫
R+iα

duj

2π

Kx,t({u},θ|∅)FO1
(
{u}<,θ

)
FO2

(
{u}>+iπ,θ+iπ

)}
.

(6.10)

Comparing the form of D1M to Gc1 we see, that∑
M

D1M =

∫
dθ

2π
e−mR cosh(θ)Gc1(θ|θ), (6.11)

as required. Note that D1,M includes terms that have M , M − 1 and M − 2 intermediate

integrals, whereas in (6.9) the number of integrals for the terms with a given p is always p.

Nevertheless, the summed quantities exactly correspond to each other.

7 Conclusions

In this work we derived a LeClair-Mussardo formula for the two-point function at space-like

separations. The general structure of the series is given by the two implicit representa-

tions (2.33) and (2.34). These formulas involve the form factors of the bi-local operators,

for which the integral series are given by (3.17) or (3.18), depending on the sign of x. More

explicit representations are given by (5.4), and finally (5.6). We believe that the latter form

is the physically most transparent; its graphical interpretation is plotted on figure 2. The

result can be considered as a large distance expansion, because each intermediate particle

(each µ-integral) carries a weight of ∼ e−ms with s2 = x2 − t2.

It is an important property of the final formulas that each term is explicit, with a well

defined prescription to deal with the kinematical singularities. This was missing in the
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previous works: the original proposal of [22] had singularities in the higher order terms,

and the regularization of [35, 36] was only performed on a case by case basis.

Our results are expressed in terms of the bare form factors of the theory, and the

momenta and energy of the intermediate particles between the operators are also the bare

quantities. This follows from our approach to treat the bi-local operator as a composite

object, and to develop the LM series based on the bi-local form factors. The only dressed

quantities are the statistical filling fractions f(θ) and the weight function ω(θ). These two

are derived from the Bethe Ansatz description of the background |Ω〉, and they are the

same for all local and bi-local operators.

The original proposal of [22] used the bare form factors of the theory, but it suggested a

dressing for the intermediate particles. This might seem intuitive, but our derivation shows

that it is inconsistent. We expressed the two point function with the bare quantities, and

if there is a partial re-summation of the series, then it should lead to a dressing for both

the form factors and the kinematical factors. Examples for such dressing can be found in

the context of non-relativistic models [1], and a similar structure was also implied by the

results of [37], at least in the large time limit.

The methods and results of this paper also apply to non-relativistic models, such as

the 1D Bose gas. In fact, most of these results were already derived for the Bose gas

in [12, 13, 38–40], and these papers served as a motivation for the present work. The main

addition of our work is the realization that the kinematical pole structure of the bi-local

operator is the same even in the relativistic case, and that this property is enough to

establish the LM series. We presented three arguments for the kinematical pole; the most

rigorous is the explicit check presented in 4.3.

The form factors of the bi-local operator were obtained by inserting a complete set of

states between the two operators. This is the same technique that was used by Smirnov [43],

which lead to the proof of the local commutativity theorem. There is one essential step

in both calculations: a certain shift of integration contours, which is possible only for

space-like separations.

As tests of our results for the LM series we evaluated the first order corrections in the

low-temperature expansion in section 6 and compared them to existing results; complete

agreement was found for an arbitrary number of intermediate particles. As an additional

test we performed the large distance limit, and confirmed that the integral series factorizes

into the product of two LeClair-Mussardo series, thus fulfilling the clustering property.

This is a highly nontrivial test of the final formula (5.6).

The most important open problem is to find methods for the actual implementation

of the final formulas. As shown by the examples in section 6, this can be a cumbersome

task, both numerically and analytically.

It is also important to consider the case of time-like separations. Our first two argu-

ments for the validity kinematical pole property (those based on the OPE and the Bethe

wave function) do not apply in this situation, but preliminary calculations show that the

integral series for the bi-local form factor can be modified such that the kinematical pole

property can be proven nevertheless. However, the convergence properties of the resulting
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integral series can be drastically different, and we don’t have a decisive answer whether a

LM series can be established for this case too.

Coming back to space-like separations, it would be interesting to consider the first

corrections in a large distance expansion. Generally it is expected that

〈Ω|O1(0)O2(x, 0)|Ω〉 = 〈Ω|O1|Ω〉〈Ω|O2|Ω〉+O(e−x/ξ), (7.1)

where ξ is a correlation length. In the thermal situation Euclidean invariance implies, that

the above object is equal to a two-point function with time-like separation, evaluated in

the ground state of a finite volume QFT with volume R = 1/T . In this case the correlation

length is 1/ξ = E1 − E0, where E0 and E1 are the exact ground state and first excited

state energies in the given volume. It is an interesting question whether these quantities

(or possibly even the exact finite volume transition matrix elements that determine the

pre-factors of the correction terms in (7.1)) could be extracted from the LM series.

Finally, it would be interesting to establish a connection to the results of [37]. Equa-

tion (3.38) in that work is reminiscent of our formulas, even though it was derived for

time-like separations in the large time limit. The concrete relations between the two inte-

gral series have yet to be investigated.

We hope to return to these questions in future research.

Note added. After this work was finished we became aware of the work [61] which

derives the so-called first Lüscher’s corrections to finite volume form factors in iQFT. The

methods and results there are related to our work. In [61] the new results were shown to

be consistent with the previous works [35, 36], thus they are consistent with our present

results too.
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A Contour transformation

Here we perform the contour transformation in the µ-variables in the original formula (3.11).

The goal is to shift the contour to R + iα, thereby hitting the kinematical singularities

whenever the µ-integrals cross one of the ϑ variables.
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Let us focus on a term in Gx,tn,m with given A± and B± subsets, and the residue, when

r ≤ |B+| number of µs coincide with same number of ϑs, denoted by the set B̃. Due to

the exchange axiom (2.11) and relabeling the integration variables, we only calculate the

residue when ϑb̃i = µi and take into account the other permutation by the combinatorial

factor p!/(p − r)!. Furthermore, we use the notation B̂ = B+ \ B̃ and µ̃i = µi+r. The

residue to evaluate is

∞∑
p=r

1

(p− r)!

∫
R+iα

p−r∏
i=1

dµ̃i
2π

∑
B̃∪B̂=B+

r∏
i=1

∫
Ci

dµi
2π

Kx,t({µ}Ir , {µ̃}Ip−r , {ϑ}B− |{θ}A+)

× FO1({ϑ}B+
>

+ iπ, {µ}Ir,< , {µ̃}Ip−r,< , {θ}A−<)

× FO2({ϑ}B−> + iπ, {µ̃}Ip−r,> + iπ, {µ}Ir,> + iπ, {θ}A+
<

)

× S<({θ}A+
<
|{θ}A−<)S>({ϑ}B−> |{ϑ}B+

>
)S↔({ϑ}B−> |{θ}A−<) ,

(A.1)

where Ci is contour encircling ϑb̃i with positive orientation. We omitted the ±i0 shifts in

the formula, since there are no more poles on the integration contours, the form factor is

off-diagonal (ϑi 6= θj) and the shifts are not necessary anymore. We note, that in the case

|A−| = 0, p = |B+| and p = r, the residue is missing, since the two-particle form factor is

regular. With (2.11) and (2.13) the residue evaluates to

∞∑
p=r

1

(p− r)!

∫
R+iα

p−r∏
i=1

dµ̃i
2π

∑
B̃∪B̂=B+

Kx,t({ϑ}B̃, {µ̃}Ip−r , {ϑ}B− |{θ}A+)

× FO1({ϑ}B̂>
+ iπ, {µ̃}Ip−r,< , {θ}A−<)

× S>({ϑ}B̂>
|{ϑ}B̃>

)

r∏
i=1

[1− S↔({ϑ}b̃i |{ϑ}B̂<
+ iπ)S↔({ϑ}b̃i |{µ̃}Ip−r,<)S↔({ϑ}b̃i |{θ}A−<)]

× FO2({ϑ}B−> + iπ, {µ̃}Ip−r,> + iπ, {ϑ}B̃>
+ iπ, {θ}A+

<
)

× S<({θ}A+
<
|{θ}A−<)S>({ϑ}B−> |{ϑ}B+

>
)S↔({ϑ}B−> |{θ}A−<) . (A.2)

The next step is to expand the product in the formula. We separate the set B̃ into two

disjoint subsets B̃I ∪ B̃S = B̃. For indices in B̃I we pick the 1-term in the product, for the

indices in B̃S we pick the product of the S-matrices. Using the exchange axiom (2.11) we

simplify the expression to

∞∑
p=0

1

p!

∫
R+iα

p∏
i=1

dµi
2π

∑
B̃∪B̂=B+

∑
B̃I∪B̃S=B̃

(−1)|B̃S |

× FO1({ϑ}B̂>
+ iπ, {µ}Ip,< , {θ}A−<)Kx,t({ϑ}B̃I

, {ϑ}(B−∪B̃S), {µ}Ip |{θ}A+)

× FO2({ϑ}(B−∪B̃S)>
+ iπ, {µ}Ip,> + iπ, {ϑ}B̃I,>

+ iπ, {θ}A+
<

)

× S↔({ϑ}(B−∪B̃S)>
|{θ}A−<)S>({ϑ}(B−∪B̃S)>

|{ϑ}B̂>
)S>({ϑ}B̃S,>

|{ϑ}B̃I,>
)

× S>({ϑ}B−> |{ϑ}B̃I,>
)S<({θ}A+

<
|{θ}A−<)S>({ϑ}B̂>

|{ϑ}B̃I,>
) ,

(A.3)
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where for the set B−∪ B̃S we imply the rearrangement of the elements to increasing order,

and we relabeled the integration variables.

It is important to note that apart from the sign of the expression, it only depends on

the sets B̂, B̃I and B− ∪ B̃S and p. Since we have to sum for all disjoint B+ and B− that

sums up to B, there is a chance for cancellation of terms. For fixed B̂, B̃I and B− ∪ B̃S
and p the sum of the sign pre-factors is

|B−∪B̃S |∑
|B̃S |=0

(
|B− ∪ B̃S |
|B̃S |

)
(−1)|B̃S | = δ|B−∪B̃S |,0 . (A.4)

After this cancellation we relabel the sets as B̂ → B+ and B̃I → B− to arrive to the

result (3.17).

We should also investigate the situation when |A−| = 0, p = |B+| and p = r. The

general formula for the residues (A.3) is not valid in this case, since the two-particle form

factor is regular, and we don’t get corrections from residues to the |B̂| = 0, |A−| = 0

and p = 0 term. However, these terms already are in the shape of (3.17), hence the final

formula is valid.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] V. Korepin, N. Bogoliubov and A. Izergin, Quantum inverse scattering method and

correlation functions, Cambridge University Press, (1993).

[2] B. Sutherland, Beautiful Models, World Scientific Publishing Company, (2004).

[3] G. Mussardo, Off critical statistical models: Factorized scattering theories and bootstrap

program, Phys. Rept. 218 (1992) 215 [INSPIRE].

[4] M.T. Batchelor and A. Foerster, Yang-Baxter integrable models in experiments: from

condensed matter to ultracold atoms, J. Phys. A 49 (2016) 173001 [arXiv:1510.05810]

[INSPIRE].

[5] M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, CBMS Regional

Conference Series in Mathematics, Volume 85 (1995).
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[15] F. Göhmann and V.E. Korepin, Solution of the quantum inverse problem, J. Phys. A 33

(2000) 1199 [hep-th/9910253] [INSPIRE].

[16] A.B. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys.

B 348 (1991) 619 [INSPIRE].

[17] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable

many-body quantum system: An ab initio study of the dynamics of the highly excited states of

1D lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].

[18] F.H.L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable

quantum spin chains, J. Stat. Mech. 1606 (2016) 064002 [arXiv:1603.06452] [INSPIRE].

[19] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat.

Mech. Theor. Exp. 6 (2016) 064007 [arXiv:1604.03990].

[20] N.A. Slavnov, Nonequal-time current correlation function in a one-dimensional Bose gas,

Theor. Math. Phys. 82 (1990) 273.

[21] K.K. Kozlowski, Asymptotic analysis and quantum integrable models, arXiv:1508.06085

[INSPIRE].

[22] A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT,

Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].

[23] H. Saleur, A comment on finite temperature correlations in integrable QFT, Nucl. Phys. B

567 (2000) 602 [hep-th/9909019] [INSPIRE].

[24] O.A. Castro-Alvaredo and A. Fring, Finite temperature correlation functions from

form-factors, Nucl. Phys. B 636 (2002) 611 [hep-th/0203130] [INSPIRE].

[25] B. Doyon, Finite-temperature form-factors in the free Majorana theory, J. Stat. Mech. 0511

(2005) P11006 [hep-th/0506105] [INSPIRE].

[26] B. Doyon, Finite-temperature form-factors: A review, SIGMA 3 (2007) 011

[hep-th/0611066] [INSPIRE].

[27] Y. Chen and B. Doyon, Form factors in equilibrium and non-equilibrium mixed states of the

Ising model, J. Stat. Mech. 09 (2014) P09021 [arXiv:1305.0518] [INSPIRE].

[28] B. Pozsgay, Mean values of local operators in highly excited Bethe states, J. Stat. Mech. 1101

(2011) P01011 [arXiv:1009.4662] [INSPIRE].
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