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1 Introduction

Physical principles impose strong constraints on the scattering amplitudes of elementary

particles. For example, when working at finite order in perturbation theory, unitarity and

locality appear to constrain amplitudes to be holomorphic functions with poles and branch

points at precisely specified locations in the space of complexified kinematic data describing

the configuration of particles. Indeed, it has been a long-standing goal to understand how

to use the tightly prescribed analytic structure of scattering amplitudes to determine them

directly, without relying on traditional (and, often computationally complex) Feynman

diagram techniques.

The connection between the physical and mathematical structure of scattering ampli-

tudes has been especially well studied in planar N = 4 super-Yang-Mills [1] SYM1 theory in

1We use “SYM” to mean the planar limit, unless otherwise specified.
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four spacetime dimensions, where the analytic structure of amplitudes is especially tame.

The overall aim of this paper, its predecessors [2, 3], and its descendant(s), is to ask a

question that might be hopeless in another, less beautiful quantum field theory: can we

understand the branch cut structure of general scattering amplitudes in SYM theory?

The motivation for asking this question is two-fold. The first is the expectation that

the rich mathematical structure that underlies the integrands of SYM theory (the rational

4L-forms that arise from summing L-loop Feynman diagrams, prior to integrating over

loop momenta) is reflected in the corresponding scattering amplitudes. For example, it has

been observed that both integrands [4] and amplitudes [5–7] are deeply connected to the

mathematics of cluster algebras.

Second, on a more practical level, knowledge of the branch cut structure of amplitudes

is the key ingredient in the amplitude bootstrap program, which represents the current

state of the art for high loop order amplitude calculations in SYM theory. In particular

the hexagon bootstrap (see for example [8]), which has succeeded in computing all six-

particle amplitudes through five loops [9], is predicated on the hypothesis that at any

loop order, these amplitudes can have branch points only on 9 specific loci in the space

of external data. Similarly the heptagon bootstrap [10], which has revealed the symbols

of the seven-particle four-loop MHV and three-loop NMHV amplitudes [11], assumes 42

particular branch points. One result we hope follows from understanding the branch cut

structure of general amplitudes in SYM theory is a proof of this counting to all loop order

for six- and seven-particle amplitudes.

It is a general property of quantum field theory (see for example [12, 13]) that the loca-

tions of singularities of an amplitude can be determined from knowledge of the poles of its

integrand by solving the Landau equations [14]. Constructing explicit representations for

integrands can be a challenging problem in general, but in SYM theory this can be side-

stepped by using various on-shell methods [15–18] to efficiently determine the locations

of integrand poles. This problem is beautifully geometrized by amplituhedra [19], which

are spaces encoding representations of integrands in such a way that the boundaries of an

amplituhedron correspond precisely to the poles of the corresponding integrand. There-

fore, as pointed out in [3] (which we now take as our conceptual framework), the Landau

equations can be interpreted as defining a map that associates to any boundary of an am-

plituhedron the locus in the space of external data where the corresponding amplitude has

a singularity.

Only MHV amplitudes were considered in [3]. In this paper we show how to extend the

analysis to amplitudes of arbitrary helicity. This is greatly aided by a recent combinatorial

reformulation of amplituhedra in terms of “sign flips” [20]. As a specific application of

our algorithm we classify the branch points of all one-loop amplitudes in SYM theory.

Although the singularity structure of these amplitudes is of course well-understood (see for

example [21–29]), this exercise serves a useful purpose in preparing a powerful toolbox for

the sequel [30] to this paper where we will see that boundaries of one-loop amplituhedra

are the basic building blocks at all loop order. In particular we find a surprising ‘emergent

positivity’ on boundaries of one-loop amplituhedra that allows boundaries to be efficiently

mapped between different helicity sectors, and recycled to higher loop levels.
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The rest of this paper is organized as follows. In section 2 we review relevant definitions

and background material and summarize the general procedure for finding singularities

of amplitudes. In sections 3 and 4 we classify the relevant boundaries of all one-loop

amplituhedra. Section 5 outlines a simple graphical notation for certain boundaries and

shows that the one-loop boundaries all assemble into a simple graphical hierarchy which

will prove useful for organizing higher-loop computations. In section 6 we show how to

formulate and efficiently solve the Landau equations directly in momentum twistor space,

thereby completing the identification of all branch points of one-loop amplitudes. The

connection between these results and symbol alphabets is discussed in section 7.

2 Review

This section provides a thorough introduction to the problem our work aims to solve. The

concepts and techniques reviewed here will be illuminated in subsequent sections via several

concrete examples.

2.1 The kinematic domain

Scattering amplitudes are (in general multivalued) functions of the kinematic data (the

energies and momenta) describing some number of particles participating in some scattering

process. Specifically, amplitudes are functions only of the kinematic information about the

particles entering and exiting the process, called external data in order to distinguish it

from information about virtual particles which may be created and destroyed during the

scattering process itself. A general scattering amplitude in SYM theory is labeled by three

integers: the number of particles n, the helicity sector 0 ≤ k ≤ n − 4, and the loop order

L ≥ 0, with L = 0 called tree level and L > 0 called L-loop level. Amplitudes with

k = 0 are called maximally helicity violating (MHV) while those with k > 0 are called

(next-to-)kmaximally helicity violating (NkMHV).

The kinematic configuration space of SYM theory admits a particularly simple char-

acterization: n-particle scattering amplitudes2 are multivalued functions on Confn(P3),

the space of configurations of n points in P3 [5]. A generic point in Confn(P3) may be

represented by a collection of n homogeneous coordinates ZI
a on P3 (here I ∈ {1, . . . , 4}

and a ∈ {1, . . . , n}) called momentum twistors [31], with two such collections considered

equivalent if the corresponding 4 × n matrices Z ≡ (Z1 · · ·Zn) differ by left-multiplication

by an element of GL(4). We use the standard notation

〈a b c d〉 = εIJKLZ
I
aZ

J
b Z

K
c Z

L
d (2.1)

for the natural SL(4)-invariant four-bracket on momentum twistors and use the shorthand

〈· · · a · · · 〉 = 〈· · · a−1 a a+1 · · · 〉, with the understanding that all particle labels are always

2Here and in all that follows, we mean components of superamplitudes suitably normalized by dividing

out the tree-level Parke-Taylor-Nair superamplitude [32, 33]. We expect our results to apply equally well

to BDS- [34] and BDS-like [35] regulated MHV and non-MHV amplitudes. The set of branch points of a

non-MHV ratio function [36] should be a subset of those of the corresponding non-MHV amplitude, but

our analysis cannot exclude the possibility that it may be a proper subset due to cancellations.
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taken mod n. We write (a b) to denote the line in P3 containing Za and Zb, (a b c) to

denote the plane containing Za, Zb and Zc, and so a denotes the plane (a−1 a a+1). The

bar notation is motivated by parity, which is a Z2 symmetry of SYM theory that maps

NkMHV amplitudes to Nn−k−4MHV amplitudes while mapping the momentum twistors

according to {Za} 7→ {Wa = ∗(a−1 a a+1)}.
When discussing NkMHV amplitudes it is conventional to consider an enlarged kine-

matic space where the momentum twistors are promoted to homogeneous coordinates Za,

bosonized momentum twistors [19] on Pk+3 which assemble into an n × (k + 4) matrix

Z ≡ (Z1 · · · Zn). The analog of eq. (2.1) is then the SL(k + 4)-invariant bracket which we

denote by [·] instead of 〈·〉. Given some Z and an element of the Grassmannian Gr(k, k+4)

represented by a k×(k+4) matrix Y , one can obtain an element of Confn(P3) by projecting

onto the complement of Y . The four-brackets of the projected external data obtained in

this way are given by

〈a b c d〉 ≡ [Y ZaZbZcZd] . (2.2)

Tree-level amplitudes are rational functions of the brackets while loop-level amplitudes

have both poles and branch cuts, and are properly defined on an infinitely-sheeted cover

of Confn(P3). For each k there exists an open set Dn,k ⊂ Confn(P3) called the principal

domain on which amplitudes are known to be holomorphic and non-singular. Amplitudes

are initially defined only on Dn,k and then extended to all of (the appropriate cover of)

Confn(P3) by analytic continuation.

A simple characterization of the principal domain for n-particle NkMHV amplitudes

was given in [20]: Dn,k may be defined as the set of points in Confn(P3) that can be

represented by a Z-matrix with the properties

1. 〈a a+1 b b+1〉 > 0 for all a and b 6∈ {a−1, a, a+1},3 and

2. the sequence 〈1 2 3 •〉 has precisely k sign flips,

where we use the notation • ∈ {1 , 2 , . . . , n} so that

〈1 2 3 •〉 ≡ {0, 0, 0, 〈1 2 3 4〉, 〈1 2 3 5〉, . . . , 〈1 2 3n〉} . (2.3)

It was also shown that an alternate but equivalent condition is to say that the sequence

〈a a+1 b •〉 has precisely k sign flips for all a, b (omitting trivial zeros, and taking appropriate

account of the twisted cyclic symmetry where necessary). The authors of [20] showed, and

we review in section 2.2, that for Y ’s inside an NkMHV amplituhedron, the projected

external data have the two properties above.

2.2 Amplituhedra. . .

A matrix is said to be positive or non-negative if all of its ordered maximal minors are

positive or non-negative, respectively. In particular, we say that the external data are

positive if the n× (k + 4) matrix Z described in the previous section is positive.

3As explained in [20], the cyclic symmetry on the n particle labels is “twisted”, which manifests itself

here in the fact that if k is even, and if a = n or b = n, then cycling around n back to 1 introduces an extra

minus sign. The condition in these cases is therefore (−1)k+1〈c c+1n 1〉 > 0 for all c 6∈ {1, n−1, n}.
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A point in the n-particle NkMHV L-loop amplituhedron An,k,L is a collection (Y,L(`))

consisting of a point Y ∈ Gr(k, k + 4) and L lines L(1), . . . ,L(L) (called the loop momenta)

in the four-dimensional complement of Y . We represent each L(`) as a 2× (k + 4) matrix

with the understanding that these are representatives of equivalence classes under the

equivalence relation that identifies any linear combination of the rows of Y with zero.

For given positive external data Z, the amplituhedron An,k,L(Z) was defined in [19]

for n ≥ 4 as the set of (Y,L(`)) that can be represented as

Y = CZ , (2.4)

L(`) = D(`)Z , (2.5)

in terms of a k × n real matrix C and L 2 × n real matrices D(`) satisfying the positivity

property that for any 0 ≤ m ≤ L, all (2m+ k)× n matrices of the form
D(i1)

D(i2)

...

D(im)

C

 (2.6)

are positive. The D-matrices are understood as representatives of equivalence classes and

are defined only up to translations by linear combinations of rows of the C-matrix.

One of the main results of [20] was that amplituhedra can be characterized directly by

(projected) four-brackets, eq. (2.2), without any reference to C or D(`)’s, by saying that

for given positive Z, a collection (Y,L(`)) lies inside An,k,L(Z) if and only if

1. the projected external data lie in the principal domain Dn,k,

2. 〈L(`) a a+1〉 > 0 for all ` and a,4

3. for each `, the sequence 〈L(`) 1 •〉 has precisely k + 2 sign flips, and

4. 〈L(`1) L(`2)〉 > 0 for all `1 6= `2.

Here the notation 〈L a b〉 means 〈AB a b〉 if the line L is represented as (AB) for two points

A,B. It was also shown that items 2 and 3 above are equivalent to saying that the sequence

〈L(`) a •〉 has precisely k + 2 sign flips for any ` and a.

2.3 . . . and their boundaries

The amplituhedron An,k,L is an open set with boundaries at loci where one or more of

the inequalities in the above definitions become saturated. For example, there are bound-

aries where Y becomes such that one or more of the projected four-brackets 〈a a+1 b b+1〉
become zero. Such projected external data lie on a boundary of the principal domain

4Again, the twisted cyclic symmetry implies that the correct condition for the case a = n is

(−1)k+1〈L(`) n 1〉 > 0.
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Dn,k. Boundaries of this type are already present in tree-level amplituhedra, which are

well-understood and complementary to the focus of our work.

Instead, the boundaries relevant to our analysis occur when Y is such that the projected

external data are generic, but the L(`) satisfy one or more on-shell conditions of the form

〈L(`) a a+1〉 = 0 and/or 〈L(`1) L(`2)〉 = 0 . (2.7)

We refer to boundaries of this type as L-boundaries.5 The collection of loop momenta

satisfying a given set of on-shell conditions comprises a set whose connected components

we call branches. Consider two sets of on-shell conditions S, S′, with S′ ⊂ S a proper

subset, and B (B′) a branch of solutions to S (S′). Since S′ ⊂ S, B′ imposes fewer

constraints on the degrees of freedom of the loop momenta than B does. In the case

when B ⊂ B′, we say B′ is a relaxation of B. We use An,k,L to denote the closure of the

amplituhedron, consisting of An,k,L together with all of its boundaries. We say that An,k,L

has a boundary of type B if B ∩ An,k,L 6= ∅ and dim(B ∩ An,k,L) = dim(B).

2.4 The Landau equations

In [3] it was argued, based on well-known and general properties of scattering amplitudes

in quantum field theory (see in particular [12]), that all information about the locations

of branch points of amplitudes in SYM theory can be extracted from knowledge of the

L-boundaries of amplituhedra via the Landau equations [13, 14]. In order to formulate

the Landau equations we must parameterize the space of loop momenta in terms of 4L

variables dA. For example, we could take6 L(`) = D(`)Z with

D(1) =

(
1 0 d1 d2

0 1 d3 d4

)
, D(2) =

(
1 0 d5 d6

0 1 d7 d8

)
, etc., (2.8)

but any other parameterization works just as well.

Consider now an L-boundary of some An,k,L on which the L lines L(`) satisfy d on-shell

constraints

fJ = 0 (J = 1, 2, . . . , d) , (2.9)

each of which is of the form of one of the brackets shown in eq. (2.7). The Landau equations

for this set of on-shell constraints comprise eq. (2.9) together with a set of equations on d

auxiliary variables αJ known as Feynman parameters :

d∑
J=1

αJ
∂fJ
∂dA

= 0 (A = 1, . . . , 4L) . (2.10)

The latter set of equations are sometimes referred to as the Kirchhoff conditions.

5In the sequel [30] we will strengthen this definition to require that 〈L(1) L(2)〉 = 0 at two loops.
6By writing each L as a 2 × 4 matrix, instead of 2 × (k + 4), we mean to imply that we are effectively

working in a gauge where the last four columns of Y are zero and so the first k columns of each L are

irrelevant and do not need to be displayed.
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We are never interested in the values of the Feynman parameters, we only want to know

under what conditions nontrivial solutions to Landau equations exist. Here, “nontrivial”

means that the αJ must not all vanish.7 Altogether we have d + 4L equations in d + 4L

variables (the d αJ ’s and the 4L dA’s). However, the Kirchhoff conditions are clearly

invariant under a projective transformation that multiplies all of the αJ simultaneously by

a common nonzero number, so the effective number of free parameters is only d + 4L −
1. Therefore, we might expect that nontrivial solutions to the Landau equations do not

generically exist, but that they may exist on codimension-one loci in Confn(P3) — these

are the loci on which the associated scattering amplitude may have a singularity according

to [13, 14].

However the structure of solutions is rather richer than this naive expectation suggests

because the equations are typically polynomial rather than linear, and they may not always

be algebraically independent. As we will see in the examples considered in section 6, it is

common for nontrivial solutions to exist for generic projected external data,8 and it can

happen that there are branches of solutions that exist only on loci of codimension higher

than one. We will not keep track of solutions of either of these types since they do not

correspond to branch points in the space of generic projected external data.

There are two important points about our procedure which were encountered in [3]

and deserve to be emphasized. The first is a subtlety that arises from the fact that the

on-shell conditions satisfied on a given boundary of some amplituhedron are not always

independent. For example, the end of section 3 of [3] discusses a boundary of An,0,2

described by nine on-shell conditions with the property that the ninth is implied by the

other eight. This situation arises generically for L > 1, and a procedure — called resolution

— for dealing with these cases was proposed in [3]. We postpone further discussion of this

point to the sequel as this paper focuses only on one-loop examples.

Second, there is a fundamental asymmetry between the two types of Landau equa-

tions, (2.9) and (2.10), in two respects. When solving the on-shell conditions we are only

interested in branches of solutions that (A1) exist for generic projected external data, and

that (A2) have nonempty intersection with An,k,L with correct dimension. In contrast,

when further imposing the Kirchhoff constraints on these branches, we are interested in

solutions that (B1) exist on codimension-one loci in Confn(P3), and (B2) need not remain

within An,k,L. The origin of this asymmetry was discussed in [3]. In brief, it arises from

Cutkoskian intuition whereby singularities of an amplitude may arise from configurations of

loop momenta that are outside the physical domain of integration (by virtue of being com-

plex; or, in the current context, being outside the closure of the amplituhedron), and are

7Solutions for which some of the Feynman parameters vanish are often called “subleading” Landau

singularities in the literature, in contrast to a “leading” Landau singularity for which all α’s are nonzero.

We will make no use of this terminology and pay no attention to the values of the α’s other than ensuring

they do not all vanish.
8Solutions of this type were associated with infrared singularities in [2]. We do not keep track of these

solutions since the infrared structure of amplitudes in massless gauge theory is understood to all loop

order based on exponentiation [34, 37]. However, if some set of Landau equations has an “IR solution”

at some particular L(`), there may be other solutions, at different values of L(`), that exist only on loci of

codimension one. In such cases we do need to keep track of the latter.

– 7 –
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only accessible after analytic continuation to some higher sheet; whereas the monodromy

of an amplitude around a singularity is computed by an integral over the physical domain

with the cut propagators replaced by delta functions. The resulting monodromy will be

zero, i.e. the branch point doesn’t really exist, if there is no overlap between the physical

domain and the locus where the cuts are satisfied, motivating (A2) above. In summary, it is

important to “solve the on-shell conditions first” and then impose the Kirchhoff conditions

on the appropriate branches of solutions only afterwards.

2.5 Summary: the algorithm

The Landau equations may be interpreted as defining a map which associates to each

boundary of the amplituhedron An,k,L a locus in Confn(P3) on which the corresponding

n-point NkMHV L-loop amplitude has a singularity. The Landau equations themselves

have no way to indicate whether a singularity is a pole or branch point. However, it is

expected that all poles in SYM theory arise from boundaries that are present already in the

tree-level amplituhedra [19]. These occur when some 〈a a+1 b b+1〉 go to zero as discussed

at the beginning of section 2.3. The aim of our work is to understand the loci where

amplitudes have branch points, so we confine our attention to the L-boundaries defined in

that section.

The algorithm for finding all branch points of the n-particle NkMHV L-loop amplitude

is therefore simple in principle:

1. Enumerate all L-boundaries of An,k,L for generic projected external data.

2. For each L-boundary, identify the codimension-one loci (if there are any) in Confn(P3)

on which the corresponding Landau equations admit nontrivial solutions.

However, it remains a difficult and important outstanding problem to fully characterize

the boundaries of general amplituhedra. In the remainder of this paper we focus on the

special case L = 1, since all L-boundaries of An,k,1 (which have been discussed extensively

in [38]) may be enumerated directly for any given n:

1(a). Start with a list of all possible sets of on-shell conditions of the form 〈L a a+1〉 = 0.

1(b). For each such set, identify all branches of solutions that exist for generic projected

external data.

1(c). For each such branch B, determine the values of k for which An,k,1 has a boundary

of type B.

It would be enormously inefficient to carry out this simple-minded algorithm beyond one

loop. Fortunately, we will see in the sequel that the one-loop results of this paper can be

exploited very effectively to generate L-boundaries of L > 1 amplituhedra.

3 One-loop branches

In this section we carry out steps 1(a) and 1(b) listed at the end of section 2.5. To that

end we first introduce a graphical notation for representing sets of on-shell conditions via

– 8 –
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Landau diagrams. Landau diagrams take the form of ordinary Feynman diagrams, with

external lines labeled 1, . . . , n in cyclic order and one internal line (called a propagator)

corresponding to each on-shell condition. Landau diagrams relevant to amplituhedra are

always planar. Each internal face of an L-loop Landau diagram is labeled by a distinct

` ∈ {1, . . . , L}, and each external face may be labeled by the pair (a a+1) of external lines

bounding that face.

The set of on-shell conditions encoded in a given Landau diagram is read off as follows:

• To each propagator bounding an internal face ` and an external face (a a+1) we

associate the on-shell condition 〈L(`) a a+1〉 = 0.

• To each propagator bounding two internal faces `1, `2 we associate the on-shell con-

dition 〈L(`1) L(`2)〉 = 0.

At one loop we only have on-shell conditions of the first type. Moreover, since L only

has four degrees of freedom (the dimension of Gr(2, 4) is four), solutions to a set of on-shell

conditions will exist for generic projected external data only if the number of conditions is

d ≤ 4. Diagrams with d = 1, 2, 3, 4 are respectively named tadpoles, bubbles, triangles and

boxes. The structure of solutions to a set of on-shell conditions can change significantly

depending on how many pairs of conditions involve adjacent indices. Out of abundance of

caution it is therefore necessary to consider separately the eleven distinct types of Landau

diagrams shown in the second column of table 1. For d > 1 their names are qualified

by indicating the number of nodes with valence greater than three, called masses. These

rules suffice to uniquely name each distinct type of diagram except the two two-mass boxes

shown in table 1 which are conventionally called “easy” and “hard”. This satisfies step

1(a) of the algorithm.

Proceeding now to step 1(b), we display in the third column of table 1 all branches

of solutions (as always, for generic projected external data) to the on-shell conditions

associated to each Landau diagram. These expressions are easily checked by inspection

or by a short calculation. More details and further discussion of the geometry of these

problems can be found for example in [39]. The three-mass triangle solution involves

the quantities

ρ(α) = −α〈i j+1 k k+1〉 − (1− α)〈i+1 j+1 k k+1〉 ,
σ(α) = α〈i j k k+1〉+ (1− α)〈i+1 j k k+1〉 ,

(3.1)

and the four-mass box solution is sufficiently messy that we have chosen not to write it

out explicitly.

Altogether there are nineteen distinct types of branches, which we have numbered (1)

through (19) in table 1 for ease of reference. The set of solutions to any set of on-shell

conditions of the form 〈L a a+1〉 must be closed under parity, since each line (a a+1) maps

to itself. Most sets of on-shell conditions have two branches of solutions related to each

other by parity. Only the tadpole, two-mass bubble, and three-mass triangle (branches (1),

(4), and (9) respectively) have single branches of solutions that are closed under parity.

– 9 –
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Name
Landau

Diagram
Branches k-Validity

Low-k

Twistor

Diagram

Singularity

Locus/Loci

tadpole

(n≥ 4)

i
(1) L = (αZi+(1−α)Zi+1,A) 0≤ k≤n−4

i

0

one-mass

bubble

(n≥ 4)
i

(2) L = (Zi,A)

(3) L = i∩P

0 ≤ k≤ n−4

n−4 ≥ k≥ 0

i
0

two-mass

bubble

(n≥ 4)

i

j

(4) L = (αZi+(1−α)Zi+1,

βZj+(1−β)Zj+1)
0≤ k≤n−4

i

j

〈i i+1j j+1〉

one-mass

triangle

(n≥ 4)

i
(5) L = (Zi,αZi+1+(1−α)Zi+2)

(6) L = (Zi+1,αZi−1+(1−α)Zi)

0 ≤ k≤ n−4

n−4 ≥ k≥ 0

i

i+1

0

two-mass

triangle

(n≥ 5)

i

j

(7) L = (Zi,αZj+(1−α)Zj+1)

(8) L = i∩(j j+1A)

0 ≤ k≤ n−5

n−4 ≥ k≥ 1

i

j

0

three-mass

triangle

(n≥ 6)

i

j

k

(9) L = (αZi+(1−α)Zi+1,

ρ(α)Zj+σ(α)Zj+1)
1≤ k≤n−5

i

k

j fijfjkfki

–
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Name
Landau

Diagram
Branches k-Validity

Low-k

Twistor

Diagram

Singularity

Locus/Loci

one-mass

box (n≥ 5)

i
(10) L = (i i+2)

(11) L = i∩i+2

0 ≤ k≤ n−5

n−4 ≥ k≥ 1

i

i+2

〈i i+2〉〈i i+2〉

two-mass

easy box

(n≥ 6)

i

j

(12) L = (ij)

(13) L = i∩j

0 ≤ k≤ n−6

n−4 ≥ k≥ 2

i

j

〈ij〉〈ij〉

two-mass

hard box

(n≥ 6)

i

j

(14) L = i+1∩(ij j+1)

(15) L = i∩(i+1j j+1)

1 ≤ k≤ n−5

n−5 ≥ k≥ 1

i

j

i+1 〈i i+2〉〈i i+1j j+1〉

three-mass

box (n≥ 7)

i
j

k

(16) L= (ij j+1)∩(ik k+1)

(17) L= (i∩(j j+1), i∩(kk+1))

1 ≤ k≤ n−6

n−5 ≥ k≥ 2

i

k

j 〈i(i−1 i+1)(j j+1)(kk+1)〉

four-mass

box (n≥ 8)

i

j

k

`

(18) L=

(19) L=

}
see table 2 of [40]

2 ≤ k≤ n−6

n−6 ≥ k≥ 2

i

`

j

k

(fijfk`−fikfj`+fi`fjk)2

−4fijfjkfk`fi`≡∆ijk`

Table 1. This table shows: the eleven Landau diagrams corresponding to sets of one-loop on-shell conditions that can be satisfied for generic

projected external data; the nineteen branches of solutions to these on-shell conditions; the range of k for which NkMHV amplituhedra have

boundaries of each type; the twistor diagram depicting the low-k solution (or one low-k solution for the one-mass triangle and two-mass hard

box); the loci in Confn(P3) where the Landau equations for each branch admit nontrivial solutions (where the quantity in the last column

vanishes). At one loop it happens that the loci are the same for each branch of solutions to a given set of on-shell conditions. Here α,β are

arbitrary numbers, A is an arbitrary point in P3, P is an arbitrary plane in P3, ρ(α),σ(α) are defined in eq. (3.1), fab≡〈aa+1bb+1〉, and

〈i(i−1 i+1)(j j+1)(kk+1)〉≡ 〈i−1 ij j+1〉〈i i+1kk+1〉−(j↔ k).
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4 One-loop boundaries

We now turn to the last step 1(c) from the end of section 2.5: for each of the nineteen

branches B listed in table 1, we must determine the values of k for which An,k,1 has a

boundary of type B (defined in section 2.3). The results of this analysis are listed in the

fourth column of the table 1. Our strategy for obtaining these results is two-fold.

In order to prove that an amplituhedron has a boundary of type B, it suffices to

write down a pair of matrices C,D such that definitions (2.4) and (2.5) hold, C and
(
D
C

)
are both non-negative, and the external data projected through Y = CZ are generic for

generic positive Z. We call such a pair C,D a valid configuration for B. In the sections

below we present explicit valid configurations for each of the nineteen branches. Initially

we consider for each branch only the lowest value of k for which a valid configuration exists;

in section 4.7 we explain how to grow these to larger values of k and establish the upper

bounds on k shown in table 1.

However, in order to prove that an amplituhedron does not have a boundary of type

B, it does not suffice to find a configuration that is not valid; one must show that no valid

configuration exists. We address this problem in the next section.

4.1 A criterion for establishing absent branches

Fortunately, for L-boundaries of the type under consideration there is a simple criterion

for establishing when no valid configuration can exist. The crucial ingredient is that if

(Y,L) ∈ An,k,1 and 〈L a a+1〉 = 0 for some a, then 〈L a a+2〉 must necessarily be non-

positive;9 the proof of this assertion, which we omit here, parallels that of a closely related

statement proven in section 6 of [20].

Consider now a line of the form L = (αZa + βZa+1, A) for some point A and some

parameters α, β which are not both vanishing. We will show that an L of this form can lie

in the closure of an amplituhedron only if L = (a a+1) or αβ ≥ 0.

First, as just noted, since 〈L a a+1〉 = 0 we must have

0 ≥ 〈L a a+2〉 = β〈a+1Aaa+2〉 . (4.1)

On the other hand, as mentioned at the end of section 2.2, we also have 〈L a a+1〉 ≥ 0 for

all a. Applying this to a+ 1 gives

0 ≤ 〈L a+1 a+2〉 = α〈aAa+1 a+2〉 . (4.2)

If 〈a a+1 a+2A〉 6= 0, then the two inequalities (4.1) and (4.2) imply that αβ ≥ 0.

This is the conclusion we wanted, but it remains to address what happens if

〈a a+1 a+2A〉 = 0. In this case L lies in the plane (a a+1 a+2) so we can take

9 Unless a ∈ {n−1, n}, when one must take into account the twisted cyclic symmetry. In all that follows

we will for simplicity always assume that indices are outside of this range, which lets us uniformly ignore

all sign factors that might arise from the twisted cyclic symmetry; these signs necessarily always conspire

to ensure that all statements about amplitudes are Zn cyclically invariant.
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L = (αZa + βZa+1, γZa+1 + δZa+2). Then we have

0 ≥ 〈L a+1 a+3〉 = −αδ〈a a+1 a+2 a+3〉 ,
0 ≤ 〈L a−1 a〉 = βδ〈a−1 a a+1 a+2〉 .

(4.3)

Both of the four-brackets in these inequalities are positive (for generic projected external

data) since they are of the form 〈a a+1 b b+1〉, so we conclude that either δ = 0, which

means that L = (a a+1), or else we again have αβ ≥ 0.

In conclusion, we have developed a robust test which establishes that

L = (αZa + βZa+1, A) ∈ An,k,1 only if L = (a a+1) or αβ ≥ 0 . (4.4)

This statement is independent of k (and Y ), but when applied to particular branches, we

will generally encounter cases for which αβ is negative unless certain sequences of four-

brackets of the projected external data have a certain number of sign flips; this signals that

the branch may intersect An,k,1 only for certain values of k.

4.2 MHV lower bounds

The fact that MHV amplituhedra only have boundaries of type (1)–(7), (10) and (12)

(referring to the numbers given in the “Branches” column of table 1) follows implicitly

from the results of [3] where all boundaries of one- (and two-) loop MHV amplituhedra

were studied. It is nevertheless useful to still consider these cases since we will need the

corresponding D-matrices below to establish that amplituhedra have boundaries of these

types for all 0 ≤ k ≤ n− 4.

In this and the following two sections we always assume, without loss of generality, that

indices i, j, k, ` are cyclically ordered and non-adjacent (i+1 < j < j+1 < k < k+1 < `),

and moreover that 1 < i and ` < n. In particular, this means that we ignore potential

signs from the twisted cyclic symmetry (see footnote 9).

Branch (4) is a prototype for several other branches, so we begin with it instead of branch

(1). The solution for L shown in table 1 may be represented as L = DZ with

D =

( i i+1 j j+1

α 1− α 0 0

0 0 β 1− β

)
, (4.5)

where we display only the nonzero columns of the 2 × n matrix in the indicated

positions i, i+1, j and j+1. This solves the two-mass bubble on-shell conditions for

all values of the parameters α and β. This branch intersects An,0,1 when they lie in

the range 0 ≤ α, β ≤ 1, where the matrix D is non-negative. Thus we conclude that

MHV amplituhedra have boundaries of type (4).

Branches (5), (6), (7), (10), and (12) can all be represented by special cases

of eq. (4.5) for α and/or β taking values 0 and/or 1, and/or with columns relabeled,

so MHV amplituhedra also have boundaries of all of these types.
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Branch (1) may be represented by

D =

( i−1 i i+1 i+2

· · · 0 α 1− α 0 · · ·
· · · αi−1 αi αi+1 αi+2 · · ·

)
. (4.6)

This provides a solution to the tadpole on-shell condition 〈L i i+1〉 = 0 for all values

of the parameters, and there clearly are ranges for which D is non-negative. Note

that all but two of the parameters in the second row could be gauged away, but this

fact is not relevant at the moment (see footnote 10). If 0 ≤ α ≤ 1, we could have

either αa = 0 for a < i + 1 and αa > 0 for a > i, or α = 0 for a > i and αa < 0 for

a < i+ 1. We conclude that MHV amplituhedra also have boundaries of this type.

Branch (2) is the special case α = 1 of branch (1).

Branch (3) may be represented by

D =

( i−1 i i+1

1 0 α

0 1 β

)
(4.7)

for arbitrary α, β, which is non-negative for α ≤ 0 and β ≥ 0, so MHV amplituhedra

also have boundaries of this type.

4.3 NMHV lower bounds

Branch (8) of the two-mass triangle may be represented as

D =

( i i+1 j j+1

α 1− α 0 0

0 0 −〈i j+1〉 〈i j〉

)
(4.8)

for arbitrary α. For generic projected external data L 6= (j j+1), so criterion (4.4)

shows that this configuration has a chance to lie on the boundary of an amplituhe-

dron only if −〈i j+1〉〈i j〉 ≥ 0. This is not possible for MHV external data, where

the ordered four-brackets are always positive, so MHV amplituhedra do not have

boundaries of this type. But note that the inequality can be satisfied if there is at

least one sign flip in the sequence 〈i •〉, between • = j and • = j+1. This motivates

us to consider k = 1, so let us now check that with

C =
( i−1 i i+1 j j+1

ci−1 ci ci+1 cj cj+1

)
, (4.9)

the pair C,D is a valid configuration. First of all, it is straightforward to check that

L = DZ still satisfies the two-mass triangle on-shell conditions. This statement is

not completely trivial since these conditions now depend on Y = CZ because of the
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projection (2.2). Second, in order for C to be non-negative we need all five of the

indicated ca’s to be non-negative. Moreover, in order to support generic projected

external data, we need them all to be nonzero — if, say, ci were equal to zero, then

〈i−1 i+1 j j+1〉 would vanish, etc. Finally, for
(
D
C

)
to be non-negative we need

0 ≤ α ≤ ci
ci + ci+1

. (4.10)

This branch intersects An,1,1 for α in this range, so we conclude that NMHV ampli-

tuhedra have boundaries of this type.

Branch (9) is the general solution of the three-mass triangle, and is already given in ta-

ble 1 in D-matrix form as

D =

( i i+1 j j+1

α 1− α 0 0

0 0 ρ(α) σ(α)

)
, (4.11)

with ρ(α) and σ(α) defined in eq. (3.1). For generic projected external data this L
can never attain the value (i i+1) or (j j+1). Applying criterion (4.4) for both a = i

and a = j shows that this configuration has a chance to lie on the boundary of an

amplituhedron only if α(1−α) ≥ 0 and ρ(α)σ(α) ≥ 0. This is not possible for MHV

external data, so we conclude that MHV amplituhedra do not have boundaries of

this type. However, the ρ(α)σ(α) ≥ 0 inequality can be satisfied if the sequences

〈i k k+1 •〉 and 〈i+1 k k+1 •〉 change sign between • = j and • = j+1, as long as

the sequences 〈j k k+1 •〉 and 〈j+1 k k+1 •〉 do not flip sign here. Consider for k = 1

the matrix

C =
( i i+1 j j+1 k k+1

αci (1− α)ci cj cj+1 ck ck+1

)
. (4.12)

Then C,D is a valid configuration because (1) L = DZ satisfies the three-mass

triangle on-shell conditions (for all values of α and the c’s), and, (2) for 0 ≤ α ≤ 1 and

all c’s positive, the C-matrix is non-negative and supports generic positive external

data (because it has at least k+4 = 5 nonzero columns), and (3) for this range of

parameters
(
D
C

)
is also non-negative. Since this branch intersects An,1,1 for a range

of α, we conclude that NMHV amplituhedra have boundaries of this type.

Branch (16) is the special case α = 1 of branch (9).

Branch (14) is the special case j → i+ 1, k → j of branch (16).

Branch (15) is equivalent to the mirror image of branch (14), after relabeling.

Branch (11) is the special case j = i+ 2 of branch (15).
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4.4 N2MHV lower bounds

Branch (17) may be represented by

D =

( j j+1 k k+1

0 0 −〈i k+1〉 〈i k〉
−〈i j+1〉 〈i j〉 0 0

)
. (4.13)

For generic projected external data the corresponding L will never attain the value

(j j+1) or (k k+1). We can apply criterion (4.4) for both a = j and a = k, which

reveals that this configuration has a chance to lie on a boundary of an amplituhedron

only if both −〈i j+1〉〈i j〉 ≥ 0 and −〈i k+1〉〈i k〉 ≥ 0. This is impossible for MHV

external data, and it is also impossible in the NMHV case, where some projected

four-brackets may be negative but the sequence 〈i •〉 may only flip sign once, whereas

we need it to flip sign twice, once between • = j and • = j+1, and again between

• = k and • = k+1. We conclude that k < 2 amplituhedra do not have boundaries

of this form. Consider now pairing (4.13) with the k = 2 matrix

C =

( i−1 i i+1 j j+1 k k+1

c11 c12 c13 c14 c15 0 0

c21 c22 c23 0 0 c24 c25

)
. (4.14)

It is straightforward to check that C,D is a valid configuration for a range of values

of c’s, so we conclude that k = 2 amplituhedra have boundaries of this type.

Branch (13) may be represented by

D =

( i−1 i i+1

〈i j〉 −〈i−1 j〉 0

0 −〈i+1 j〉 〈i j〉

)
, (4.15)

which by (4.4) cannot lie on a boundary of an amplituhedron unless the sequence

〈j •〉 flips sign twice, first between • = i−1 and i and again between • = i and

i+1. Therefore, neither MHV nor NMHV amplituhedra have boundaries of this

type. However it is straightforward to verify that with

C =

( i−1 i i+1 j−1 j j+1

c11 c12 0 c13 c14 c15

0 c21 c22 c23 c24 c25

)
(4.16)

the pair C,D is a valid configuration for a range of values of c’s, so k = 2 amplituhedra

do have boundaries of this type.

Branches (18) and (19) of the four-mass box may be represented as

D =

( i i+1 j j+1

α 1− α 0 0

0 0 β 1− β

)
, (4.17)
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where α and β are fixed by requiring that L intersects the lines (k k+1) and (` `+1).

The values of α and β on the two branches were written explicitly in [40]; however, the

complexity of those expressions makes analytic positivity analysis difficult. We have

therefore resorted to numerical testing: using the algorithm described in section 5.4

of [4], we generate a random positive n × (k + 4) Z-matrix and a random positive

k × n C-matrix. After projecting through Y = CZ, we obtain projected external

data with the correct NkMHV sign-flipping properties. We have checked numerically

that both four-mass box branches lie on the boundary of NkMHV amplituhedra only

for k ≥ 2, for many instances of randomly generated external data.

4.5 Emergent positivity

The analysis of sections 4.2, 4.3 and 4.4 concludes the proof of all of the lower bounds on k

shown in the fourth column of table 1. We certainly do not claim to have written down the

most general possible valid C,D configurations; the ones we display for k > 0 have been

specifically chosen to demonstrate an interesting feature we call emergent positivity.

In each k > 0 case we encountered D-matrices that are only non-negative if certain

sequences of projected four-brackets of the form 〈a a+1 b •〉 change sign k times, at certain

precisely specified locations. It is straightforward to check that within the range of validity

of each C,D pair we have written down, the structure of the C matrix is such that it

automatically puts the required sign flips in just the right places to make the D matrix,

on its own, non-negative (provided, of course, that
(
D
C

)
is non-negative). It is not a

priori obvious that it had to be possible to find pairs C,D satisfying this kind of emergent

positivity; indeed, it is easy to find valid pairs for which it does not hold.

4.6 Parity and upper bounds

Parity relates each branch to itself or to the other branch associated with the same Landau

diagram. Since parity is a symmetry of the amplituhedron [20] which relates k to n−k−4,

the lower bounds on k that we have established for various branches imply upper bounds

on k for their corresponding parity conjugates. These results are indicated in the fourth

column of table 1, where the inequalities are aligned so as to highlight the parity symmetry.

Although these k upper bounds are required by parity symmetry, they may seem rather

mysterious from the analysis carried out so far. We have seen that certain branches can be

boundaries of an amplituhedron only if certain sequences of four-brackets have (at least)

one or two sign flips. In the next section, we explain a mechanism which gives an upper

bound to the number of sign flips, or equivalently which gives the upper bounds on k that

are required by parity symmetry.

4.7 Increasing helicity

So far we have only established that NkMHV amplituhedra have boundaries of certain

types for specific low (or, by parity symmetry, high) values of k. It remains to show

that all of the branches listed in table 1 lie on boundaries of amplituhedra for all of the

intermediate helicities. To this end we describe now an algorithm for converting a valid
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configuration C0, D0 at the initial, minimal value of k0 (with C0 being the empty matrix

for those branches with k0 = 0) into a configuration that is valid at some higher value of k.

We maintain the structure of D ≡ D0 and append to C0 a matrix C ′ of dimensions

(k − k0) × n in order to build a configuration for helicity k. Defining C =
(
C0

C′

)
, we look

for a C ′ such that following properties are satisfied:

1. The same on-shell conditions are satisfied.

2. In order for the configuration to support generic projected external data, the C-

matrix must have m ≥ k + 4 nonzero columns, and the rank of any m − 4 of those

columns must be k.

3. Both C and
(
D
C

)
remain non-negative.

Since the C-matrix only has n columns in total, it is manifest from property (2) that

everything shuts off for k > n− 4, as expected.

Let us attempt to preserve the emergent positivity of D. If k0 = 0 then this is

trivial; the D-matrices in section 4.2 do not depend on any brackets, so adding rows to

the empty C0 has no effect on D. For k0 > 0, let A and B be two entries in D0 that

are responsible for imposing a sign flip requirement. The argument applies equally to

all of the k0 > 0 branches, but for the sake of definiteness consider from eq. (4.8) the

two four-bracket dependent entries A = −〈i j+1〉 and B = 〈i j〉. Assuming that C0 is

given by eq. (4.9) so that both A and B are positive with respect to Y0 = C0Z, then

AB = −[Y0 i j+1][Y0 i j] > 0. If we append a second row C ′ and define Y ′ = C ′Z then

we have
A = −[Y0 Y

′Zi−1ZiZi+1Zj+1] = −cj [Zj Y
′ZiZi+1Zj+1] ,

B = [Y0 Y
′Zi−1ZiZi+1Zj ] = cj+1[Zj+1 Y

′ZiZi+1Zj ] .
(4.18)

Since cj and cj+1 are both positive, we see that A and B still satisfy AB > 0, regardless of

the value of Y ′. By the same argument, arbitrary rows can be added to a C-matrix without

affecting the on-shell conditions, so property (1) also holds trivially (and also if k0 = 0).

The structure of the initial D0 of sections 4.2, 4.3 and 4.4 are similar in that the

nonzero columns of this matrix are grouped into at most two clusters.10 For example, for

branch (17) there are two clusters {j, j+1} and {k, k+1} while for branch (3) there is only

a single cluster {i−1, i, i+1}. Property (3) can be preserved most easily if we add suitable

columns only in a gap between clusters. Let us illustrate how this works in the case of

branch (4) where C0 is empty and we can start by taking either

(
D0

C

)
=


i−1 i i+1 i+2 · · · j−1 j j+1 j+2

· · · 0 α 1− α 0 · · · 0 0 0 0 · · ·
· · · 0 0 0 0 · · · 0 β 1− β 0 · · ·
· · · 0 0 ~ci+1 ~ci+2 · · · ~cj−1 ~cj 0 0 · · ·

 (4.19)

10Branch (1) appears to be an exception, but only because eq. (4.6) as written is unnecessarily general:

it is sufficient for the second row to have only three nonzero entries, either in columns {i−3, i−2, i−1} or

in columns {i+1, i+2, i+3}.
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to fill in the gap between clusters {i, i+1} and {j, j+1}, or

(
D0

C

)
=


i−1 i i+1 i+2 · · · j−1 j j+1 j+2

· · · 0 α 1− α 0 · · · 0 0 0 0 · · ·
· · · 0 0 0 0 · · · 0 β 1− β 0 · · ·
· · · ~ci−1 ~ci 0 0 · · · 0 0 ~cj+1 ~cj+2 · · ·

 (4.20)

to fill in the gap between {j, j+1} and {i, i+1} that “wraps around” from n back to 1. In

both (4.19) and (4.20) each ~ca is understood to be a k-component column vector, and in

both cases
(
D0
C

)
can be made non-negative as long as C is chosen to be non-negative.11

In this manner we can trivially increment the k-validity of a given configuration until the

gaps become full. This cutoff depends on the precise positions of the gaps, and is most

stringent when the two clusters are maximally separated from each other, since this forces

the gaps to be relatively small. In this worst case we can fit only dn2 e columns into a

C-matrix of one of the above two types. Keeping in mind property (2) that the C-matrix

should have at least k + 4 nonzero columns, we see that this construction can reach values

of k ≤ dn2 e − 4. In order to proceed further, we can (for example) add additional columns

ci and cj+1 to eq. (4.19), or ci+1 and cj to eq. (4.20). Choosing a non-negative C then no

longer trivially guarantees that
(
D0
C

)
will also be non-negative, but there are ranges of C

for which this is possible to arrange, which is sufficient for our argument.

It is possible to proceed even further by adding additional, specially crafted columns

in both gaps, but the argument is intricate and depends delicately on the particular struc-

ture of each individual branch (as evident from the delicate structure of k upper bounds

in table 1). In the interest of brevity we terminate our discussion of the algorithm here

and note that it is straightforward to check that for all boundaries, even in the worst case

the gaps are always big enough to allow the construction we have described to proceed

up to and including the parity-symmetric midpoint k = bn2 c − 2; then we appeal again to

parity symmetry in order to establish the existence of valid configurations for k between

this midpoint and the upper bound.

This finally concludes the proof of the k-bounds shown in the fourth column of table 1,

and thereby step 1(c) from section 2.5.

5 The hierarchy of one-loop boundaries

Step (1) of our analysis (section 2.5) is now complete at one loop. Before moving on to

step (2) we demonstrate that the boundaries classified in section 4 can be generated by

a few simple graph operations applied to the maximal codimension boundaries of MHV

amplituhedra (table 1 type (12) or, as a special case, (10)). This arrangement will prove

useful in the sequel since one-loop boundaries are the basic building blocks for constructing

boundary configurations at arbitrary loop order.

We call boundaries of type (2), (5)–(7), (10), (12), and (14)–(16) low-k boundaries

since they are valid for the smallest value of k for their respective Landau diagrams. The

11If k is even this is automatic; if k is odd the two rows of D0 should be exchanged.
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branches (8), (11), (13) and (17) are high-k boundaries and are respectively the parity

conjugates of (7), (10), (12) and (16). Branch (3), the parity conjugate of branch (2), is

properly regarded as a high-k boundary since (2) is low-k, but it is accidentally valid for

all k. Branches (1), (4), and (9) are self-conjugate under parity and are considered both

low-k and high-k, as are the parity-conjugate pair (18), (19).

5.1 A graphical notation for low-helicity boundaries

We begin by devising a graphical notation in terms of which the operations between momen-

tum twistor solutions are naturally phrased. These graphs are twistor diagrams12 depicting

various configurations of intersecting lines in P3. The elements of a twistor diagram, an

example of which is shown in panel (a) of figure 1, are:

• The red line depicts an L solving some on-shell conditions, specifically:

• if L and a single line segment labeled i intersect at an empty node, then

〈L i i+1〉 = 0, and

• if L and two line segments intersect at a filled node labeled i, then

〈L i−1 i〉 = 〈L i i+1〉 = 0.

An “empty” node is colored red, indicating the line passing through it. A “filled” node is

filled in solid black, obscuring the line passing through it.

In general a given L can pass through as many as four labeled nodes (for generic

projected external data, which we always assume). If there are four, then none of them

can be filled. If there are three, then at most one of them can be filled, and we choose to

always draw it as either the first or last node along L. If there are more than two, then any

nodes between the first and last are called non-MHV intersections, which are necessarily

empty. This name is appropriate because branches satisfying such on-shell constraints are

not valid boundaries of MHV amplituhedra, and each non-MHV intersection in a twistor

diagram increases the minimum value of k by one.

Although no such diagrams appear in this paper, the extension to higher loops is

obvious: each L is represented by a line of a different color, and the presence of an on-shell

condition of the form 〈L(`1) L(`2)〉 = 0 is indicated by an empty node at the intersection of

the lines L(`1) and L(`2).

To each twistor diagram it is simple to associate one or more Landau diagrams, as

also shown in figure 1. If a twistor diagram has a filled node at i then an associated

Landau diagram has two propagators 〈L i−1 i〉 and 〈L i i+1〉 requiring a massless corner

at i in the Landau diagram. If a twistor diagram has an empty node on the line segment

marked i then an associated Landau diagram only has the single propagator 〈L i i+1〉,
requiring a massive corner in the Landau diagram. Therefore, twistor diagrams should

be thought of as graphical shorthand which both depict the low-k solution to the cut

conditions and simultaneously represent one or more Landau diagrams, as explained in the

caption of figure 1.

12Not to be confused with the twistor diagrams of [41].
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i

k

j

(a)

i
j

k

(b)

i
k

j

(c)

Figure 1. The twistor diagram shown in (a) depicts branch (16) of solutions to the three-mass box

on-shell conditions 〈L i−1 i〉 = 〈L i i+1〉 = 〈L j j+1〉 = 〈L k k+1〉 = 0, which is a valid boundary

for k ≥ 1. This branch passes through the point Zi and intersects the lines (j j+1) and (k k+1).

As drawn, the intersection at j is an example of a non-MHV intersection, but the figure is agnostic

about the relative cyclic ordering of i, j, k and is intended to represent either possibility. Therefore,

the corresponding Landau diagram can be either (b) or (c) depending on whether i < j < k

or i < k < j.

One useful feature of this graphical notation is that the nodes of a twistor diagram

fully encode the total number of propagators, nprops, in the Landau diagram (and so also

the total number of on-shell conditions): each filled node accounts for two propagators,

and each empty node accounts for one propagator:

nprops = 2nfilled + nempty . (5.1)

This feature holds at higher loop order where this counting directly indicates how many

propagators to associate with each loop.

Let us emphasize that a twistor diagram generally contains more information than its

associated Landau diagram, as it indicates not only the set of on-shell conditions satisfied,

but also specifies a particular branch of solutions thereto. The sole exception is the four-

mass box, for which the above rules do not provide the twistor diagram with any way to

distinguish the two branches (18), (19) of solutions. Moreover, the rules also do not provide

any way to indicate that an L lies in a particular plane, such as i. Therefore we can only

meaningfully represent the low-k boundaries defined at the beginning of section 5.

Given a twistor diagram depicting some branch, a twistor diagram corresponding to

a relaxation of that branch may be obtained by deleting a non-MHV intersection of the

type shown in (a) of figure 1, by replacing a filled node and its two line segments with an

empty node and a single segment, or by deleting an empty node. In the associated Landau

diagram, a relaxation corresponds to collapsing an internal edge of the graph. This is

formalized in greater detail in section 5.2.

5.2 A graphical recursion for generating low-helicity boundaries

In figure 2 we organize twistor diagrams representing eight types of boundaries according

to d and k; these are respectively the number of on-shell conditions d satisfied on the

boundary, and the minimum value of k for which the boundary is valid. It is evident from

this data that there is a simple relation between d, k, and the number of filled (nfilled)
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i

j

k

`

k

Kj,+

Ki,+

Uj,+ Ui,+

k

Ki,+
Rk

R`

Ui,+

Rk

RjRj Ki,+

Ui,+
k ≥ 0

k ≥ 0

k ≥ 1

k ≥ 2

N
k
M
H
V

Codimension

d = 4 d = 3 d = 2 d = 1

Figure 2. Twistor diagrams depicting eight types of low-k boundaries of NkMHV amplituhedra,

organized according to the minimum value of k and the codimension d (equivalently, the number

of on-shell conditions satisfied). These correspond respectively to branch types (2), (1), (12), (7),

(4), (16), (9) and (18)/(19). The graph operators K, R, and U are explained in the text and

demonstrated in figures 3–5, respectively. Evidently all eight types of boundaries can be generated

by acting with sequences of these operators on MHV maximal codimension boundaries of the type

shown shaded in gray. There is an analogous parity-conjugated version of this hierarchy which

relates all of the high-k branches to each other. The missing low-k boundary types (5), (6), (10),

(11), (14) and (15) are degenerate cases which can be obtained by starting with j = i + 1 in the

gray blob.

and empty (nempty) nodes. Specifically, we see that an NkMHV amplituhedron can have

boundaries of a type displayed in a given twistor diagram only if

k ≥ 2nempty + 3nfilled − d− 2 = nempty + nfilled − 2 , (5.2)

where we have used eq. (5.1) with nprops = d. In the sequel we will describe a useful map

from Landau diagrams to the on-shell diagrams of [4] which manifests the relation (5.2) and

provides a powerful generalization thereof to higher loop order. The amplituhedron-based

approach has some advantages over that of enumerating on-shell diagrams that will also be

explored in the sequel. First of all, the minimal required helicity of a multi-loop configura-
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i

Ki,−Ki,− Ki,−

i−1

j

i−1 i i+1

Collinear
Limit

i−1 ji
j+1

Figure 3. The graph operation Ki maps an NkMHV twistor diagram into an Nk+1MHV twistor

diagram as shown in the top row. On Landau diagrams, this corresponds to replacing a massless

corner by a massive corner; such an operation is effectively an inverse collinear limit. The shaded

region in the figures represents an arbitrary planar sub-graph. A dashed external line on a Landau

diagram may be either one massless external leg so the whole corner is massive, or completely

removed so the whole corner is massless.

tion can be read off from each loop line separately. Second, we immediately know the rel-

evant solution branches for a given helicity. And finally, compared to enumerating all rele-

vant on-shell diagrams the amplituhedron-based method is significantly more compact since

it can be used to produce a minimal subset of diagrams such that all allowed diagrams are

relaxations thereof, including limits where massive external legs become massless or vanish.

From the data displayed in figure 2 we see that a natural organizational principle

emerges: all NkMHV one-loop twistor diagrams can be obtained from the unique max-

imal codimension MHV diagram (shown shaded in gray) via sequences of simple graph

operations which we explain in turn.

The first graph operation K increments the helicity of the diagram on which it operates.

(The name K is a reminder that it increases k.) Its operation is demonstrated in figure 3.

Specifically, Ki replaces a filled node at a point i along L by two empty nodes, one at i and

a second one on a new non-MHV intersection added to the diagram. Since nfilled decreases

by one but nempty increases by two under this operation, it is clear from eq. (5.2) that

Ki always increases by one the minimal value of k on which the branch indicated by the

twistor diagram has support. From the point of view of Landau diagrams, this operation

replaces a massless node with a massive one, as illustrated in the bottom row of figure 3,

and hence it may be viewed as an “inverse” collinear limit.

The other two graph operations R and U both correspond to relaxations, as defined

in section 2.3, since they each reduce the number of on-shell conditions by one, stepping

thereby one column to the right in figure 2.

The operation Ri simply removes (hence the name R) an empty node i from a twistor

diagram, as shown in figure 4. This corresponds to removing 〈L i i+ 1〉 = 0 from the set of

on-shell conditions satisfied by L.13

13Note that in line with the conventions adopted in section 5.1 we label Ri only with the smaller label

of a pair (i i+1).
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i

Rj
Rj

i

i ji+1 j+1

Collapse
Propagator

i i+1

Figure 4. The graph operation Rj relaxes L by removing the condition that L must pass through

the line (j j+1); this is equivalent to removing the on-shell condition 〈L j j+1〉 = 0. On Landau

diagrams, this corresponds to collapsing the propagator indicated by the filled dot in the bottom

figure on the left. The shaded region in the figures represents an arbitrary planar sub-graph. A

dashed external line on a Landau diagram may be either one massless external leg so the whole

corner is massive, or completely removed so the whole corner is massless. It is to be understood

that the graphical notation implies that j 6= i + 2 and i 6= j + 2; otherwise, the two empty nodes

in the top left diagram would be represented by a single filled node on which the action of R is

undefined; the appropriate graph operation in this case would instead be U.

The last operation, U, corresponds to “un-pinning” a filled node (hence “U”). Un-

pinning means removing one constraint from a pair 〈L i−1 i〉 = 〈L i i+1〉 = 0. The line

L, which was pinned to the point i, is then free to slide along the line segment (i−1 i) or

(i i+1) (for Ui,− or Ui,+, respectively). In the twistor diagram, this is depicted by replacing

the filled node at the point i with a single empty node along the line segment (i i±1)

(see figure 5). Only U+ appears in figure 2 because at one loop, all diagrams generated

by any U− operation are equivalent, up to relabeling, to some diagram generated by a U+.

In general, however, it is necessary to track the subscript ± since both choices are equally

valid relaxations and can yield inequivalent twistor and Landau diagrams. From figure 2,

we read off the following identity among the operators acting on any diagram g:

Uj,+g = RkKj,+g . (5.3)

There was no reason to expect the simple graphical pattern of figure 5 to emerge

among the twistor diagrams. Indeed in section 3 we simply listed all possible sets of on-

shell conditions without taking such an organizational principle into account. At higher

loop order, however, the problem of enumerating all boundaries of NkMHV amplituhedra

benefits greatly from the fact that all valid configurations of each single loop can be it-

eratively generated via these simple rules, starting from the maximal codimension MHV

boundaries. Stated somewhat more abstractly, these graph operations are instructions for

naturally associating boundaries of different amplituhedra.

Before concluding this section it is worth noting (as is evident in figure 2) that relaxing

a low-k boundary can never raise the minimum value of k for which that type of boundary

is valid. In other words, we find that if An,k,1 has a boundary of type B, and if B′ is a
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i

Ui,+ Ui,+

i

i−1 i i+1

Collapse
Propagator

i i+1

Figure 5. The graph operation Ui,+ relaxes a line L constrained to pass through the point i,

shifting it to lie only along the line (i i+1). This is equivalent to removing the on-shell constraint

〈L i−1 i〉 = 0. (The equally valid relaxation Ui,−, not pictured here, lets the intersection point slide

onto (i−1 i).) On Landau diagrams, this corresponds to collapsing the propagator indicated by the

filled dot in the bottom figure on the left. The shaded region in the figures represents an arbitrary

planar sub-graph. A dashed external line on a Landau diagram may be either one massless external

leg so the whole corner is massive, or completely removed so the whole corner is massless. As

explained in the caption of figure 4, the U operation can be thought of as a special case of the R
operation, and we distinguish the two because only the latter can change the helicity sector k.

relaxation of B, then An,k,1 also has boundaries of type B′. This property does not hold in

general beyond one loop; a counterexample involving two-loop MHV amplitudes appears

in figure 4 of [3].

6 Solving Landau equations in momentum twistor space

As emphasized in section 2.5, the Landau equations naturally associate to each boundary

of an amplituhedron a locus in Confn(P3) on which the corresponding amplitude has a

singularity. In this section we review the results of solving the Landau equations for each

of the one-loop branches classified in section 3, thereby carrying out step 2 of the algorithm

summarized in section 2.5. The results of this section were already tabulated in [2], but we

revisit the analysis, choosing just two examples, in order to demonstrate the simplicity and

efficiency of these calculations when carried out directly in momentum twistor space. The

utility of this method is on better display in the higher-loop examples to be considered in

the sequel.

As a first example, we consider the tadpole on-shell condition

f1 ≡ 〈L i i+1〉 = 0 . (6.1)

We choose any two other points Zj , Zk (which generically satisfy 〈i i+1 j k〉 6= 0) in terms

of which to parameterize

L = (Zi + d1Zj + d2Zk, Zi+1 + d3Zj + d4Zk) . (6.2)
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Then the on-shell condition (6.1) admits solutions when

d1d4 − d2d3 = 0 , (6.3)

while the four Kirchhoff conditions (2.10) are

α1d4 = −α1d3 = −α1d2 = α1d1 = 0 . (6.4)

The only nontrivial solution (that means α1 6= 0; see section 2.4) to the equations (6.3)

and (6.4) is to set all four dA = 0. Since this solution exists for all (generic) projected

external data, it does not correspond to a branch point of an amplitude and is uninteresting

to us. In other words, in this case the locus we associate to a boundary of this type is all

of Confn(P3).

As a second example, consider the two on-shell conditions corresponding to the two-

mass bubble

f1 ≡ 〈L i i+1〉 = 0 , f2 ≡ 〈L j j+1〉 = 0 . (6.5)

In this case a convenient parameterization is

L = (Zi + d1Zi+1 + d2Zk, Zj + d3Zi+1 + d4Zk) . (6.6)

Note that an asymmetry between i and j is necessarily introduced because we should not

allow more than four distinct momentum twistors to appear in the parameterization, since

they would necessarily be linearly dependent, and we assume of course that Zk is generic

(meaning, as before, that 〈i i+1 j k〉 6= 0). Then

f1 = −d2〈i i+1 j k〉 ,
f2 = d3〈i i+1 j j+1〉+ d4〈i j j+1 k〉+ (d1d4 − d2d3)〈i+1 j j+1 k〉 (6.7)

and the Kirchhoff conditions are
0 d4〈i+1 j j+1 k〉

−〈i i+1 j k〉 −d3〈i+1 j j+1 k〉
0 〈i i+1 j j+1〉 − d2〈i+1 j j+1 k〉
0 〈i j j+1 k〉+ d1〈i+1 j j+1 k〉


(
α1

α2

)
= 0 . (6.8)

Nontrivial solutions exist only if all 2 × 2 minors of the 4 × 2 coefficient matrix vanish.

Three minors are trivially zero, and the one computed from the second and third rows

evaluates simply to

−〈i i+1 j k〉〈i i+1 j j+1〉 = 0 (6.9)

using the on-shell condition f1 = −d2〈i i+1 j k〉 = 0. If this quantity vanishes, then the

four remaining constraints (the two on-shell conditions f1 = f2 = 0 and the two remaining

minors) can be solved for the four dA, and then eq. (6.8) can be solved to find the two
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αJ ’s. Since 〈i i+1 j k〉 6= 0 by assumption, we conclude that the Landau equations admit

nontrivial solutions only on the codimension-one locus in Confn(P3) where

〈i i+1 j j+1〉 = 0 . (6.10)

These two examples demonstrate that in some cases (e.g. the tadpole example) the

Landau equations admit solutions for any (projected) external data, while in other cases

(e.g. the bubble example) the Landau equations admit solutions only when there is a

codimension-one constraint on the external data. A common feature of these examples is

that some care must be taken in choosing how to parameterize L. In particular, one must

never express L in terms of four momentum twistors (Zi, Zj , etc.) that appear in the

specification of the on-shell conditions; otherwise, it can be impossible to disentangle the

competing requirements that these satisfy some genericity (such as 〈i i+1 j k〉 6= 0 in the

above examples) while simultaneously hoping to tease out the constraints they must satisfy

in order to have a solution (such as eq. (6.10)). For example, although one might have

been tempted to preserve the symmetry between i and j, it would have been a mistake to

use the four twistors Zi, Zi+1, Zj and Zj+1 in eq. (6.6).

Instead, it is safest to always pick four completely generic points Za, . . . , Zd in terms

of which to parameterize

L =

(
1 0 d1 d2

0 1 d3 d4

)
Za

Zb

Zc

Zd

 . (6.11)

The disadvantage of being so careful is that intermediate steps in the calculation become

much more lengthy, a problem we avoid in practice by using a computer algebra system

such as Mathematica.

The results of this analysis for all one-loop branches are summarized in table 1. Nat-

urally these are in accord with those of [14] (as tabulated in [2]). At one loop it happens

that the singularity locus is the same for each branch of solutions to a given set of on-shell

conditions, but this is not generally true at higher loop order.

7 Singularities and symbology

As suggested in the introduction (and explicit even in the title of this paper), one of the

goals of our research program is to provide a priori derivations of the symbol alphabets of

various amplitudes. We refer the reader to [42] for more details, pausing only to recall that

the symbol alphabet of a generalized polylogarithm function F is a finite list of symbol

letters {z1, . . . , zr} such that F has logarithmic branch cuts (i.e., the cover has infinitely

many sheets)14 between zi = 0 and zi =∞ for each i = 1, . . . , r.

To date, symbol alphabets have been determined by explicit computation only for two-

loop MHV amplitudes [43]; all other results on multi-loop SYM amplitudes in the literature

14These branch cuts usually do not all live on the same sheet; the symbol alphabet provides a list of all

branch cuts that can be accessed after analytically continuing F to arbitrary sheets.
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are based on a conjectured extrapolation of these results to higher loop order. Throughout

the paper we have however been careful to phrase our results in terms of branch points,

rather than symbol letters, for two reasons.

First of all, amplitudes in SYM theory are expected to be expressible as generalized

polylogarithm functions, with symbol letters that have a familiar structure like those of

the entries in the last column of table 1, only for sufficiently low (or, by parity conjugation,

high) helicity. In contrast, the Landau equations are capable of detecting branch points of

even more complicated amplitudes, such as those containing elliptic polylogarithms, which

do not have traditional symbols.15

Second, even for amplitudes which do have symbols, determining the actual symbol

alphabet from the singularity loci of the amplitude may require nontrivial extrapolation.

Suppose that the Landau equations reveal that some amplitude has a branch point at

z = 0 (where, for example, z may be one of the quantities in the last column of table 1).

Then the symbol alphabet should contain a letter f(z), where f in general could be an

arbitrary function of z, with branch points arising in two possible ways. If f(0) = 0, then

the amplitude will have a logarithmic branch point at z = 0 [44], but even if f(0) 6= 0, the

amplitude can have an algebraic branch point (so the cover has finitely many sheets) at

z = 0 if f(z) has such a branch point there.

We can explore this second notion empirically since all one-loop amplitudes in SYM

theory, and in particular their symbol alphabets, are well-known (following from one-loop

integrated amplitudes in for example, [21–29]). According to our results from table 1, we

find that one-loop amplitudes only have branch points on loci of the form

• 〈i i+1 j j+1〉 = 0 or 〈i j〉 = 0 for 0 ≤ k ≤ n− 4,

• 〈i(i−1 i+1)(j j+1)(k k+1)〉 = 0 for 1 ≤ k ≤ n− 5, and

• ∆ijk` = 0 (defined in table 1) for 2 ≤ k ≤ n− 6,

where i, j, k, ` can all range from 1 to n. Happily, the first two of these are in complete

accord with the symbol letters of one-loop MHV and NMHV amplitudes, but the third

reveals the foreshadowed algebraic branching since ∆ijk` is not a symbol letter of the four-

mass box integral contribution to N2≤k≤n−6MHV amplitudes. Rather, the symbol alphabet

of this amplitude consists of quantities of the form

fij ≡ 〈i i+1 j j+1〉 and fi`fjk ± (fikfj` − fijfk`)±
√

∆ijk` , (7.1)

where the signs may be chosen independently. Since no symbol letter vanishes on the locus

∆ijk` = 0, amplitudes evidently do not have logarithmic branch points on this locus. Yet

it is evident from the second expression of (7.1) that amplitudes with these letters have al-

gebraic (in this instance, square-root- or double-sheet-type) branch points when ∆ijk` = 0.

Although we have only commented on the structure of various potential symbol en-

tries and branch point loci here, let us emphasize that the methods of this paper can

15It would be interesting to understand how the “generalized symbols” of such amplitudes capture the

singularity loci revealed by the Landau equations.
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be used to determine precisely which symbol entries can appear in any given amplitude.

For example, table 1 can be used to determine values of i, j and k for which the letter

〈i(i−1 i+1)(j j+1)(k k+1)〉 can appear, as well as in which one-loop amplitudes, indexed

by n and k, such letters will appear. An example of a fine detail along these lines evident

already in table 1 is the fact that all NMHV amplitudes have branch points of two-mass

easy type except for the special case n = 6, in accord with eq. (2.7) of [45].

We conclude this section by remarking that the problem of deriving symbol alphabets

from the Landau singularity loci may remain complicated in general, but we hope that

the simple, direct correspondence we have observed for certain one-loop amplitudes (and

which was also observed for the two-loop MHV amplitudes studied in [3]) will continue to

hold at arbitrary loop order for sufficiently simple singularities.

8 Conclusion

This paper presents first steps down the path of understanding the branch cut structure

of SYM amplitudes for general helicity, following the lead of [3] and using the recent

“unwound” formulation of the amplituhedron from [20]. Our algorithm is conceptually

simple: we first enumerate the boundaries of an amplituhedron, and from there, without

resorting to integral representations, we use the Landau equations directly to determine

the locations of branch points of the corresponding amplitude.

One might worry that each of these steps grows rapidly in computational complexity at

higher loop order. Classifying boundaries of amplituhedra is on its own a highly nontrivial

problem, aspects of which have been explored in [38, 46–49]. In that light, the graphical

tools presented in section 5.2, while already useful for organizing results as in figure 2, hint

at the more enticing possibility of a method to enumerate twistor diagrams corresponding

to all L-boundaries of any given An,k,L. Such an algorithm would start with the maximal

codimension twistor diagrams at a given loop order, and apply the operators of section 5.2

in all ways until no further operations are possible. From these twistor diagrams come

Landau diagrams, and from these come the branch points via the Landau equations. We

saw in [3] and section 6 that analyzing the Landau equations can be made very simple in

momentum twistor space.

Configurations of loop momenta in (the closure of) MHV amplituhedra are represented

by non-negative D-matrices. In general, non-MHV configurations must be represented by

indefinite D-matrices, but we observed in section 4.5 that even for non-MHV amplituhe-

dra, D may always be chosen non-negative for all configurations on L-boundaries. This

‘emergent positivity’ plays a crucial role by allowing the one-loop D-matrices presented in

sections 4.2, 4.3 and 4.4 to be trivially recycled at higher values of helicity. One way to

think about this is to say that going beyond MHV level introduces the C-matrix which

“opens up” additional configuration space in which an otherwise indefinite D-matrix can

become positive.

While the one-loop all-helicity results we obtain are interesting in their own right as

first instances of all-helicity statements, this collection of information is valuable because

it provides the building blocks for the two-loop analysis in the sequel. There we will argue
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that the two-loop twistor diagrams with helicity k can be viewed as compositions of two

one-loop diagrams with helicities k1 and k2 satisfying k = k1 + k2 or k1 + k2 + 1. We will

also explore in detail the relation to on-shell diagrams, which are simply Landau diagrams

with decorated nodes.

More speculatively, the ideas that higher-loop amplitudes can be constructed from

lower-loop amplitudes, and that there is a close relation to on-shell diagrams, suggests the

possibility that this toolbox may also be useful for finding symbols in the full, nonplanar

SYM theory. For example, enumerating the on-shell conditions as we do here in the planar

sector is similar in spirit to the nonplanar examples of [50] where certain integral represen-

tations were found such that individual integrals had support on only certain branches.16

There are of course far fewer known results in the nonplanar SYM theory, though there

have been some preliminary studies [52–56].
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