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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [2, 3], which is a one-dimensional model of N Ma-

jorana fermions with quenched random couplings, has recently been intensely studied as

a testbed for the AdS/CFT duality [4–7]. Arguably, one of the most useful features of

the model is that at the first few orders in 1/N it can be reformulated as a bilocal field

theory [3, 8, 9]. This allows to: derive the large-N Schwinger-Dyson equations as equa-

tions of motion [3]; neatly identify the light mode associated to the non-conformal per-

turbation in the strong coupling limit and derive its effective dynamics (controlled by the

so-called Schwarzian action [5, 7, 9], which can then be matched to a possible gravitational

dual [10–12]); efficiently build a perturbative expansion for n-point functions of bilinear op-

erators [7, 13–15]; possibly provide a holographic interpretation along the lines of [16, 17].

However, the bilocal theory lives in a replica space and it is difficult (and not done in the

literature) to study the fluctuations that break replica symmetry. Consequently, it only

works at the first few orders in 1/N at which the quenched and annealed versions of the

model coincide [7, 18].

In 2016 Witten [1] proposed a tensor model [19, 20] with a similar large-N limit as

the SYK model, but without quenched disorder. The fact that this model is a genuine

quantum system and has a symmetry which can be gauged (thus allowing to restrict the

operators in the theory to be singlets) makes it in principle more appealing from the point
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of view of holography. For these reasons, this model and other similar ones have been

intensely studied at large N [21–31], and at finite N [32–35]. The tensor large-N limit has

also been used to derive a new large-D expansion for multi-matrix models [36–39].

While they coincide at leading order, the SYK model and its tensor analogues are quite

different at subleading orders [40]. Moreover, tensor field theories1 have many more covari-

ant and invariant (or singlet) operators [25, 44–46]. This has rather drastic consequences:

one-dimensional tensor models display a large number of light modes in the infrared [25, 27]

which are absent in the SYK model. In order to study these modes, and possibly to better

understand the holographic dual of such theories, it would be useful to have a bilocal re-

formulation of the theory. In fact, while the construction of the bilocal action in the SYK

model is a standard procedure for disordered systems such as spin glasses [47, 48], it is

not tied to disorder and it can also be understood in a more general context as a special

case of the collective field method [49]. However, until now, no collective field formulation

has been found for tensor models (except in the few cases in which an intermediate field

representation is possible, but which do not have SYK-type behavior [29]): in [27] a bilocal

action is postulated but not derived, while in [25] the existence of the new light modes is

inferred from other arguments; in [50] a bilocal action is proposed for the Gurau-Witten

model [1, 19], but it leads to wrong Schwinger-Dyson equations. Actually, one can ex-

pect that no simple and exact reformulation of tensor models is possible in terms of few

collective variables because the collective field method of [49] is based on the idea that

one could rewrite a theory with a certain symmetry directly in terms of its invariants;

but while vector models have only one possible invariant (and its derivatives), and matrix

models can be reduced to eigenvalues, which are much less than the original number of

variables, tensor models have a much larger number of invariants and no useful reduction

to eigenvalues is known. Furthermore, for vector models the collective field reformulation

reduces the large-N expansion to a simple saddle-point (or loop) expansion, which we do

not expect to be the case for tensor models.

In this paper we propose to use the two-particle irreducible (2PI) effective action

formalism [51] (see [52] for a modern review) for tensor models and show that it provides

a useful version of the bilocal reformulation. The 2PI formalism has been applied to a

variety of problems (see for example [53–56] and references therein) and it has been shown

to be well suited for a 1/N expansion in the case of the O(N) model [57, 58]. Nevertheless,

it is not one of the most popular formalisms around, and therefore we will review it in a

self-contained way in section 2, together with its large-N expansion for the O(N) model in

section 2.1. The connection to the collective field formalism is in this case straightforward,

as we will explain in section 2.2.

In order to elucidate the usefulness of the 2PI effective action it is worthwhile to apply

it to the SYK model first, as we will do in section 3. It turns out that the 2PI reformulation

reproduces exactly all the results of [5, 7, 9], up to the same order in 1/N without using

1In this paper, tensor field theories are local field theories whose fields transform as a tensor under a

global or local symmetry group. They should not be confused with the theories that go under the same

name [41, 42] (also sometimes referred to as tensorial group field theories [43]) but which are field theories

with a non-local interaction following a tensorial pattern of points identification.
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the replica method, i.e. without using the trick in eq. (3.19). This being said, the 2PI

reformulation in the SYK model has its own drawbacks:

• it requires to know explicitly the graphs contributing to each order in 1/N . While

this is exogenous to the formalism, hence not very aesthetically pleasing, the graph

analysis has already been done and we are able to use this information to write the

2PI action up to the same order as the usual replica based bilocal action.

• it also fails at higher enough orders in 1/N . This has nothing to do with replicas,

although it happens at the same order at which the replica diagonal ansatz breaks

down: it has to do with the lack of commutation between going on shell and taking

quenched averages (this will be explained in section 3).

The main lesson to be drawn from the 2PI reformulation of the SYK model is that

the leading and next-to-leading orders in the 1/N expansion of the model are exactly the

leading order and first loop correction in a loop expansion of the bilocal theory of [5, 7, 9].

This structure does not survive at higher orders: the 1/N expansion is a loop expansion in

the annealed version of the model, but not in the quenched one.

The main point of our paper is however that the 2PI formalism becomes much more

useful in the tensor case, where the issues with the quenched average are absent, and where

we do not yet have an alternative collective field reformulation. We will apply it to the

Gurau-Witten [1, 19] and the Carrozza-Tanasa-Klebanov-Tarnopolsky [22, 59] models in

section 4. Among other things we will in this way put on a firmer ground the result of [27]

by showing that the bilocal action that they postulated is in fact the leading-order 2PI

effective action. Furthermore, in the Gurau-Witten model we will be able to expand the

action up to fourth order in the 1/N expansion, highlighting a similar structure among

the three subleading terms: they all have the form of a logarithm of a determinant, hence

they can be interpreted as Gaussian integrals over bilocal fields. Surprisingly, we will see

that all such terms can be interpreted as the one-loop correction of an auxiliary bilocal

effective action.

2 2PI effective action for vector models

Let us review the definition and properties of the 2PI effective action [51]. We consider a

theory of real bosonic scalar fields ϕa, where the index a denotes both a space time point

and flavor indices2 with classical action S[ϕ]. We denote functionals by capital bold letters

and, in order to simplify notation, we will sometimes omit the arguments of functionals.

Sums, products, Kronecker deltas and traces include both flavor indices and space time

points, and repeated indices are summed. We define:

W[j, k] = ln

∫
[dϕ] exp

{
− S[ϕ] + jaϕa +

1

2
ϕakabϕb

}
, (2.1)

2For example, vector indices a when the fields form a vector representation of some group. For specific

models later in the paper we will make the distinction between space time points and other indices explicit,

writing for example ϕa = ϕa(x).
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which is the generating functional of connected moments of a theory with shifted inverse

covariance δ2S
δϕaδϕb

[0] − kab. Observe that W[j, k] depends only on the symmetric part of

kab which then is assumed to be symmetric in its indices. Therefore:

δkab

δkmn
=

1

2
Sab;mn , (2.2)

where we have introduced the projector on symmetric matrices:3

Sab;mn =
1

2
(δamδbn + δanδbm) . (2.3)

To simplify notation we will denote sometimes the functional derivatives as indices:

Wja [j, k] ≡ δW

δja
[j, k], Wkab [j, k] ≡ δW

δkab
[j, k] . (2.4)

Using two independent sources in (2.1) has the advantage that one obtains several expres-

sions for the correlations of the theory in terms of derivatives of the generating functions,

which gives a certain redundancy in the description of the theory in this language: deriva-

tives with respect to kab are related to repeated derivatives with respect to ja, the examples

of one and two k-derivatives being explicitly worked out below. Such relations could be

used as consistency checks for truncations of the generating functional which are performed

in some approximation schemes where there is no small parameter, but such checks will not

be needed for more systematic approximation schemes, such as the 1/N expansion that we

will discuss below. In the following, we will use as much as possible only derivatives with

respect to the bilocal source to express the interesting correlations, hence we will often put

the local source on shell very early on. Alternatively one could start from the beginning by

introducing only the bilocal source k. This has the drawback that not all the correlations

of the theory can be obtained from the generating functional. However, all the ones which

interest us in this paper can.

We denote Φ and G the connected 1-point and 2-point functions of the theory with

sources j and k:

Φa[j, k] = Wja [j, k] , (2.5)

Gab[j, k] = Wjajb [j, k] = 2Wkab [j, k]−Wja [j, k]Wjb [j, k] . (2.6)

We are generally interested in the connected 1-point and 2-point functions of the theory

without sources, for which we introduce the following notation:

Φa[0, 0] = 〈ϕa〉conn ≡ φa
, Gab[0, 0] = 〈ϕaϕb〉conn ≡ Gab . (2.7)

Notice that Gab (hence in particular Gab) is symmetric in its indices.

3In the case of Grassmann fields (for which we will typically use the letters ψ and Ψ instead of ϕ

and φ) kab is antisymmetric, hence the derivative evaluates to the antisymmetric projector: Aab;mn =
1
2
(δamδbn − δanδbm).
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For a free theory with covariance C we obtain:

WC [j, k] = −1

2
Tr[ln(C−1 − k)] +

1

2
ja

(
1

C−1 − k

)
ab

jb . (2.8)

and as a consequence:

ΦC
a [j, k] =

(
1

C−1 − k

)
ab

jb , GC
ab[j, k] =

(
1

C−1 − k

)
ba

. (2.9)

Let {Ja[φ,G],Kab[φ,G]} be the inverse of {Φa[j, k],Gab[j, k]}. For a free theory

they are:

JCa [φ,G] = (G−1)abφb KC
ab[φ,G] = (C−1)ab − (G−1)ab .

The 1- and 2-point functions φ and G are then determined implicitly by the equations:

Ja[φ,G] = 0, Kab[φ,G] = 0 , (2.10)

and for the free theory we get φC = 0, GC = C.

The second derivative of W with respect to k is:

Wkabkcd =
1

2
Gab;kcd +

1

2
Φa;kcdΦb +

1

2
ΦaΦb;kcd . (2.11)

Assuming that we are in a symmetric phase in which the 1-point function is zero, φ = 0,

we obtain:∑
cd

Wkabkcd [j = 0, k = 0] Kcd;Gmn [φ = 0, G] =
1

2

δGab

δGmn
=

1

2
Sab;mn . (2.12)

The connected 4-point function is the fourth derivative Wjajbjcjd [0, 0]. It can be re

expressed using derivatives with respect to k, as several relations exist between derivatives

of W[j, k] with respect to j and k. The simplest one which is obtained by noticing that

deriving the partition function exp{W[j, k]} once with respect to k we obtain (one half

times) the same result as deriving twice with respect to j:

(Wjajb + WjaWjb − 2Wkab)eW = 0 , (2.13)

leading to eq. (2.6). Deriving this equality either one more time with respect to k or two

more times with respect to j, and combining the results we obtain a long relation, which

simplifies considerably in a symmetric phase φ = 0:

Wkabkcd [0, 0] =
1

4

(
Wjajbjcjd + WjajcWjbjd + WjajdWjbjc

)
j,k=0

≡ 1

4
F(a,b);(c,d) . (2.14)

We have thus obtained an explicit relation between the derivatives of W (on shell) with

respect to the k and j sources, as advertised before. The function F(a,b);(c,d) is the full 4-

point function minus the contribution of the disconnected channel (a,b)(c,d). For example,

in the free theory we obtain from (2.6) and (2.9):

WC
kabkcd

[0, 0] =
1

2
CbmCmaSmn;cd =

1

4
(CbcCda + CbdCca) . (2.15)
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We define the 2PI effective action4 of the theory as the double Legendre transform

of W[j, k]:

Γ[φ,G] = −W[J,K] + Jaφa +
1

2
φaKabφb +

1

2
Tr[GK] . (2.16)

Deriving (2.16) with respect to φ and G, we obtain the two identities:

Γφa [φ,G] = Ja[φ,G] + Kab[φ,G]φb , ΓGab
[φ,G] =

1

2
Kba[φ,G] . (2.17)

Furthermore, ΓGG[φ,G] = 1
2KG[φ,G] which, combined with eq. (2.12) and (2.14), yields

for a theory in the symmetric phase:

F(a,b);(c,d)ΓGcdGmn [0, G] = Sab;mn . (2.18)

As usual we get back to W[j, k] by means of a new Legendre transform:

W[j, k] = −Γ[Φ,G] + jaΦa +
1

2
ΦakabΦb +

1

2
Tr[Gk] , (2.19)

where the functionals Φ[j, k],G[j, k] are determined by solving:

Γφ[Φ,G] = j + kΦ , ΓG[Φ,G] =
1

2
k . (2.20)

The 2PI effective action has a number of interesting features [51, 52]:

1. The solution of the equations of motion Γφ = 0,ΓG = 0 is φ,G, which are the

connected 1- and 2-point functions of the theory.

2. It can be evaluated in a loop expansion. Substituting J[φ,G] and K[φ,G] for j and

k into (2.1), and using eq. (2.16), we obtain:

e−Γ[φ,G]+Jφ+ 1
2
φKφ+ 1

2
Tr[GK] =

∫
[dϕ] e−S[ϕ]+Jϕ+ 1

2
ϕKϕ . (2.21)

We translate ϕ→ φ+ ϕ and expand

S[φ+ ϕ] = S[φ] + Sφ[φ]ϕ+
1

2
ϕSφφ[φ]ϕ+ Sint[φ, ϕ] ,

where the interacting part of the action Sint[φ, ϕ] contains all higher powers of ϕ. We

obtain:

e−Γ[φ,G]+ 1
2

Tr[GK] =

∫
[dϕ] e−S[φ]+(J+Kφ−Sφ[φ])ϕ− 1

2
ϕ(Sφφ[φ]−K)ϕ−Sint[φ,ϕ] , (2.22)

or, using (2.17):

e−Γ[φ,G]+Tr
[
GΓG[φ,G]

]
=

∫
[dϕ] e−S[φ]+(Γφ[φ,G]−Sφ[φ])ϕ−ϕ( 1

2
Sφφ[φ]−ΓG[φ,G])ϕ−Sint[φ,ϕ] .

(2.23)

4The reason for this name will become clear below.
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So far eq. (2.22) is exact. In order to evaluate it at one loop, we observe that at the

classical level Γ[φ,G] ≈ S[φ], hence J + Kφ−Sφ[φ] = Γφ−Sφ is already at one loop

and the linear term in the Gaussian integral can be neglected as it yields a two loop

effect upon integration over ϕ. Thus at one loop we have:

Γ1[φ,G] = S[φ] +
1

2
Tr [GK1] +

1

2
Tr ln

(
Sφφ[φ]−K1

)
, (2.24)

where K1 is the functional K[φ,G] = 2ΓG[φ,G] evaluated at one loop. On the other

hand, at one loop:

δΓ1[φ,G]

δG
− 1

2
K1 =

1

2

(
G− 1

Sφφ[φ]−K1

)
δK1

δG
= 0 , (2.25)

which in turn fixes K1 = Sφφ[φ]−G−1. Substituting this in eq. (2.24) and discarding

a constant term we obtain:5

Γ[φ,G] = S[φ] +
1

2
Tr[lnG−1] +

1

2
Tr[G−1

0 G] + Γ2[φ,G] , (2.26)

where G0 = (Sφφ[φ])−1 is the free covariance of the theory around the field configu-

ration φ and Γ2[φ,G] starts at two loops.

In the free theory of covariance C, the one loop result is exact, and therefore we have:

ΓC [φ,G] =
1

2
φaC

−1
abφb +

1

2
Tr[lnG−1] +

1

2
Tr[C−1G] , (2.27)

and it can be easily verified that (2.18) holds.

3. The equations of motion of (2.26) with respect to G write:

G−1 = G−1
0 + 2

δΓ2

δG
. (2.28)

As G0 is the free covariance of the theory and G is the connected two point function,

it follows form the standard Schwinger-Dyson equation G−1 = G−1
0 − Σ that −2 δΓ2

δG

must be identified with the self energy Σ of the model, which is the sum of amputated

one-particle-irreducible two point graphs.

4. Γ2[φ,G] is given by (minus) the sum of all the two-particle irreducible vacuum graphs

(i.e. graphs that do not disconnect when cutting open any two edges) with ver-

tices given by the effective interaction Sint[φ, ϕ] and effective propagators G. This

is slightly non trivial. From eq. (2.22) we see that Γ[φ,G] is the sum of connected

graphs with:

• trivalent or higher order vertices given by −Sint[φ, ϕ],

• univalent vertices ϕ(J + Kφ− Sφ[φ]),

5Repeating the same constructions for complex or Grassmann fields, it is easy to see that we arrive at a

similar expression, but with the functional trace terms multiplied by an extra factor 2 for the complex case

and by a minus for the Grassmann case.
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• propagators (Sφφ[φ]−K)−1,

• a vacuum term 1
2Tr [GK].

On the other hand, as −2 δΓ2
δG = Σ it follows that Γ2 can be reconstructed by recon-

necting the two external vertices of the self energy by a propagator G, and since Σ

is one-particle-irreducible (1PI), Γ2 is two-particle-irreducible (2PI).

Two questions arise:

• what happened to the univalent vertices? As Γ2 is 2PI it is in particular 1PI,

hence can not have any univalent vertices. What happens is that the pertur-

bative expansion of Γ[φ,G] in eq. (2.22) for generic J and K is built out of

connected graphs. Each connected graph has the structure of a tree connecting

1PI vertex kernels. At the self-consistent values of the sources J and K, ob-

tained from (2.17), the univalent vertices ϕ(J + Kφ) act as counter terms and

subtract the contribution of all the trees with more that one 1PI vertex kernel.

• the covariance of the theory is (Sφφ[φ]−K)−1, so why are the edges of the 2PI

graphs contributing to Γ2 decorated by G? The 1PI kernels can still be two-

particle reducible. However, one can resum all the two-point function corrections

and replace the propagators by the full two point function of the theory which

is G. Using the resummed two point function makes the graphs 2PI.

In summary we can write the schematic expression:

e−Γ[φ,G] = e−S[φ]− 1
2

Tr[G−1
0 G]

∫
2PI

[dϕ] e−
1
2
ϕG−1ϕ−Sint[φ,ϕ] , (2.29)

where the subscript 2PI reminds us that in the perturbative expansion of the functional

integral we only retain 2PI graphs.

2.1 Large-N expansion

While the properties listed above are completely generic, we are now going to review a

useful expansion of the 2PI effective action that is applicable to certain models, namely

the 1/N expansion. We will use a classical example [51, 52], the O(N) model, in which N

is the number of scalar fields: ϕa(x), with a = 1, . . . , N . From now on, we make explicit

the vector indices and the space time points. We write
∫
x =

∫
ddx,

∫
x,y =

∫
ddxddy, and

so on and we denote by Tr a trace both on vector indices and a functional trace, i.e. for a

matrix-valued bi-local field Fab(x, y) we have

Tr[F ] =

∫
x,y

δ(x− y) Tr[Fab(x, y)] =

∫
x
Faa(x, x) .

As before, summation is implicit on repeated indices.

In the O(N) model, the N scalars are postulated to transform in the fundamental

representation of the O(N) group, i.e.

ϕa(x)→ Rabϕb(x) , R ∈ O(N) , (2.30)

– 8 –
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Figure 1. The two vertices from eq. (2.33).

and the action is chosen to be invariant under such transformations. More specifically,

restricting to quartic interactions, the action is:

S[ϕ] =
1

2

∫
x,y
ϕa(x)C−1(x, y)ϕa(y) +

λ

4!N

∫
x
(ϕa(x)ϕa(x))2 , (2.31)

where C(x, y) is the covariance of the Gaussian functional measure of the free theory. In

d ≥ 1, C−1(x, y) is usually the kernel of a differential operator, e.g. C−1 = −∂2 +m2.

All the definitions we introduced above for the 2PI effective action apply directly, with:

G−1
0,ab(x, y) = C−1(x, y)δab +

λ

6N
(φcφc)δabδ(x− y) +

λ

3N
φaφbδ(x− y) , (2.32)

Sint[φ, ϕ] =

∫
x

(
λ

6N
φaϕaϕbϕb +

λ

4!N
(ϕaϕa)

2

)
. (2.33)

In order to construct the 1/N expansion, one should take into account the implicit

N -dependence due to the presence of N variables. This is done by counting any “single-

trace” invariant as contributing with a factor N . There are two types of such invariants

in the O(N) model: Tr[Gn] and φa(G
n)abφb. Taking into account also the explicit factor

N−1 in the coupling, one immediately finds that the first three terms in:

Γ[φ,G] = S[φ] +
1

2
Tr[lnG−1] +

1

2
Tr[G−1

0 G] + Γ2[φ,G] , (2.34)

all scale like N , except the contribution from the last term in (2.32) which is of order one.

Next, one observes that the last term can be expanded as:

Γ2[φ,G] = Γ
(1)
2 [φ,G] + Γ

(0)
2 [φ,G] + Γ

(−1)
2 [φ,G] + . . . , with Γ

(p)
2 [φ,G] ∼ Np . (2.35)

This is again somewhat non trivial. We first review the Feynman expansion of Γ2[φ,G] for

the O(N) model. In (2.33) there are two kinds of vertices, a trivalent and a tetravalent one,

which we represent in figure 1. The solid lines track the identification of the indices in the

vertex. The dashed edge symbolizes the vertex (in an intermediate field representation it

would correspond to the propagator of the intermediate field), and the blue dotted halfedge

represents the background field φ.

The vertices are connected by propagators G which connect the solid half edges into

solid edges. An example of a Feynman graph is presented in figure 2.

We notice first of all that Γ2[φ,G], and hence Γ[φ,G], will only contain even pow-

ers of φ. This is obvious at one-loop level, because there are only even powers in the

action (2.31), and of course in the second variation (2.32). And is also true beyond one

loop, because a single φ is attached to each 3-valent vertex, while 4-valent vertices carry
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Figure 2. An example of a graph with one tetravalent and two trivalent vertices.

no powers of φ. Therefore, any closed graph will necessarily contain an even number of φ

fields. As a consequence, the equation of motion δΓ/δφ = 0 admits the solution φ = 0,

which is the only solution giving an invariant 1-point function. Whether such a solution

is stable or not, and whether there are other stable solutions, will depend on the space di-

mension. In particular, in d ≤ 2 spontaneous symmetry breaking of continuous symmetries

is impossible [60, 61], hence we do not expect other stable solutions for φ.6

Coming back to the 1/N expansion, from the Feynman rules one obtains a trace over

the vector indices of G to some power for each closed loop of the solid strands, hence each

such loop should be counted as a factor N (as seen for example by taking Gab ∼ δab). Each

vertex brings instead a factor 1/N . The open strands connect pairwise the background

fields φ, and correspond to scalar product of the type φa(G
n)abφb, so they also should be

counted as a factor N (as seen for example by taking φaφb ∼ Gab ∼ δab).
The power counting in N is transparent in a loop vertex representation [63] (or cacti

representation) in intermediate field. The loops of vector indices are contracted into loop

vertices (of arbitrary degree) and the original Feynman vertices become edges of the inter-

mediate field (the black dashed edges in figure 2). The open strands can be contracted to

external vertices (of degree two). In this representation the scaling with N of a graph is

N−E+L+Lext where E is the number of intermediate field edges (i.e. vertices in the original

Feynman representation), L the number of loop vertices, and Lext the number of external

vertices (i.e. half the number of background fields). As the graph is connected, the number

of excess edges7 in the intermediate field is E − (L+ Lext) + 1 = ω ≥ 0.

It follows that the scaling in N of a graph is N−ω+1, hence the graphs contributing

to Γ2 scale at most like N and they scale like N only if they are trees in the intermediate

field. Furthermore, the graphs contributing to Γ2[φ,G] must at the same time be 2PI from

the point of view of the original propagators, which translates into the constraint that the

tree has no vertices of degree greater than one. Thus only one graph (the double tadpole

of figure 3) contributes at leading order (LO):

Γ
(1)
2 [φ,G] =

λ

4!N

∫
x
Gaa(x, x)Gbb(x, x) = N

λ

4!

∫
x
G(x, x)2 , (2.36)

which in particular is independent of φ. In the last expression in order to make the N -

6However, one should keep in mind that the large-N limit can sometimes lead to an apparently opposite

conclusion, as explained for the chiral Gross-Neveu model by Witten [62]. See also [29] for an analogue

phenomenon in a tensor-valued version of the Gross-Neveu model.
7Loops (in the physics literature) for the intermediate field.
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Figure 3. The leading order contribution of the large-N expansion in the O(N) model.

dependence more explicit we restricted to Gab(x, y) = G(x, y)δab, which is valid on shell in

the symmetric phase.

The equations of motion of Γ[φ,G] at LO read:

0 = (C−1φa)(x) +
λ

6N
φa(x)(φb(x)φb(x)) +

λ

6N
φa(x)Gbb(x, x) , (2.37)

G−1
ab (x, y) =

(
C−1(x, y) +

λ

6N
Gcc(x, x)δ(x− y) +

λ

6N
(φcφc)δ(x− y)

)
δab . (2.38)

The first one clearly admits the φa = 0 solution, which plugged back into the second

equation leads to the large-N Schwinger-Dyson (SD) equations for the 2-point function:8

G−1
ab (x, y) =

(
C−1(x, y) +

λ

6N
Gcc(x, x)δ(x− y)

)
δab . (2.39)

As anticipated, we find that Gab = G(x, y)δab on shell, with the scalar part satisfying

G−1(x, y) = C−1(x, y) + λ
6G(x, x)δ(x − y). Notice also that a nonzero solution for φa

(necessarily a constant solution because of translation invariance) implies that it is a zero

mode of the inverse 2-point function, i.e. (G−1
ab φb)(x) = 0: this is because in the case of

spontaneous symmetry breaking we have N−1 Goldstone modes and only one radial mode,

but by keeping only LO terms we have discarded the latter. Including subleading terms

it is no longer true that the equation of motion of φ can be written as (G−1
ab φb)(x) = 0:

in particular in the LO approximation we have discarded a λ
3NGab(x, x)φb term in (2.37)

and a λ
3N φaφbδ(x − y) term in (2.38), both coming from the one-loop part of the 2PI

effective action.

At next-to-leading order (NLO), and for φ = 0, we have graphs with E = L, always

with the 2PI restriction: they are the closed chains of bubbles depicted in figure 4. The

form an infinite family, but thanks to their simple structure they can be summed. In fact,

by introducing the kernel

K(x, y) =
λ

6N
Gab(x, y)Gba(x, y) =

λ

6
G(x, y)2 , (2.40)

we find

Γ
(0)
2 [φ,G] =

∑
n≥1

(−1)n+1

2n
Tr[Kn] =

1

2
Tr[ln(1 +K)] . (2.41)

Still at NLO, but for φ 6= 0, we also have graphs like those of figure 4 but with exactly

one solid propagator line being replaced by a background field insertion at each of its end

8We notice that in d = 0 (and fixing for example C = 1) the SD equation becomes a simple quadratic

equation for G with solution G = 3(−1 ±
√

1 + 2λ/3)/λ, thus exhibiting a well-known singularity at a

negative value of the coupling (e.g. [64]). For d ≥ 1 instead (with C−1 = −∂2 + m2), the SD equation

simply leads to a renormalization of the mass (a finite one in d = 1).
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Figure 4. The next-to-leading order contribution of the large-N expansion in the O(N) model.

vertices (e.g. the graph in figure 2; see [52] for more details). Such graphs lead again to an

action term which is quadratic in φ, thus not affecting the existence of the φ = 0 solution.

2.2 Large-N expansion as the loop expansion of an auxiliary theory

Notice that (2.41) looks like the result we would obtain from a standard Gaussian integral

with inverse covariance 1+K. It turns out that the large-N expansion for the 2PI effective

action of the vector model can indeed be cast as a loop expansion for an auxiliary bilocal

theory, as we are now going to show.

Consider the partition function for the vector model, which corresponds to

Z = eW[0,0] = e−Γ[φ,G] =

∫
[dϕ] e−S[ϕ] , (2.42)

with the action (2.31). Next, insert in the functional integral the identity:

1 =

∫
[dG̃]δ

(
NG̃(x, y)− ϕa(x)ϕa(y)

)
=

∫
[dG̃][dΣ̃] e−

1
2

∫
x,y Σ̃(x,y)(NG̃(x,y)−

∑
a ϕa(x)ϕa(y)) ,

(2.43)

exploit the delta function to write the interaction in terms of G̃, and then perform the

integral over ϕ:

Z =

∫
[dϕ][dG̃][dΣ̃] e−S[ϕ]− 1

2

∫
x,y Σ̃(x,y)(NG̃(x,y)−

∑
a ϕa(x)ϕa(y))

=

∫
[dG̃][dΣ̃] e−N{

1
2

Tr[(C−1−Σ̃)G̃]+ 1
2

Tr[ln(Σ̃)]+ λ
4!

∫
x G̃(x,x)2}

≡
∫

[dG̃][dΣ̃] e−NSeff [G̃,Σ̃] .

(2.44)

We have thus rewritten the original functional integral over N (local) variables as an

integral over just two (bilocal) variables, and all the dependence on N is now explicit and

factored in front of the total action. Therefore, the 1/N expansion takes the standard

form of a loop (i.e. saddle-point) expansion. We shift the fields to the saddle point value:

G̃(x, y) = G(x, y) +N−1/2g(x, y), Σ̃(x, y) = Σ(x, y) +N−1/2σ(x, y). Expanding to second

order in g and σ, we find:

Z ' e−NSeff [G,Σ]

∫
[dg][dσ] e−S

(2)
eff [G,Σ;g,σ] , (2.45)
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where the on-shell effective classical action coincides with the on-shell 2PI effective action

at LO:

Seff [G,Σ] =
1

2
Tr[lnG−1] +

1

2
Tr[C−1G] +

λ

4!

∫
x
G(x, x)2 . (2.46)

We have also defined the quadratic part of the action:

S
(2)
eff [G,Σ; g, σ] =− 1

4

∫
x1,x2,x3,x4

σ(x1, x2)K4(x1, x2;x3, x4)σ(x3, x4)

− 1

2

∫
x1,x2

σ(x1, x2)g(x1, x2) +
λ

4!

∫
x
g(x, x)2 ,

(2.47)

where the kernel is:

K4(x1, x2;x3, x4) =
1

2
(G(x1, x3)G(x2, x4) +G(x1, x4)G(x2, x3)) . (2.48)

Performing the Gaussian integrals we find:

Z ' e−NSeff [G,Σ]

(det (K4))1/2

∫
[dg] e

− 1
4

∫
x1,x2,x3,x4

g(x1,x2)K−1
4 (x1,x2;x3,x4)g(x3,x4)− λ

4!

∫
x g(x,x)2

= e−NSeff [G]− 1
2

Tr[ln(1+K)] ,

(2.49)

where the kernel K in the final result is exactly the one in (2.40) evaluated on shell. Notice

that due to the interaction being local rather than bilocal (compare with the SYK model

in the next section), the 4-point kernel K4 reduces to the 2-point kernel K. We have thus

recovered the LO and NLO of Γ[φ,G] by a standard saddle-point method.

A remark is in order. In Γ[φ,G] the on-shell fields should be obtained from the full

effective action. As we explained, φ = 0 is valid to all orders in the symmetric phase, but the

on-shell value G receives corrections in 1/N . Expanding Γ[0, G] ' NΓ(1)[0, G] + Γ(0)[0, G],

we find an expansion for the solution G = G(0) + N−1G(−1), and therefore, Γ[φ,G] =

NΓ(1)[0, G(0)] + Γ(0)[0, G(0)] +O(N−1), because δΓ(1)

δG [0, G(0)] = 0 by construction.

3 2PI effective action for the SYK model

The SYK model is defined in terms of N Majorana fermions in one dimension, with anti

commutation relation {ψa, ψb} = δab, and with action

SSYK[ψ] =

∫
dt

(
1

2
ψa∂tψa +

iq/2

q!
Ja1...aqψa1 . . . ψaq

)
. (3.1)

Here, Ja1...aq is a random totally antisymmetric tensorial coupling, with Gaussian

distribution

P [Ja1...aq ] ∝ exp

{
−
N q−1(Ja1...aq)

2

2(q − 1)!J2

}
(no sum) . (3.2)

We will denote with a bar the average over the disorder:

A[J ] =

∫  ∏
a1<a2<...<aq

[dJa1...aq ]P [Ja1...aq ]

A[J ] . (3.3)
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For example, we have

Ja1...aqJb1...bq =
q!(q − 1)!

N q−1
J2 Πa1...aq ,b1...bq , (3.4)

where Πa1...aq ,b1...bq is the projector on antisymmetric rank-q tensors:

Πa1...aq ,b1...bq =
1

q!

∑
σ∈Sq

ε(σ)

q∏
i=1

δaibσ(i)
, (3.5)

with Sq the symmetric group on q elements, and ε(σ) the sign of the permutation σ.

One deals with the randomness of the coupling by computing quenched averages of

intensive quantities, such as the free energy or the entropy, which in general (e.g. for

models with short-range interactions) are self-averaging, i.e. in the thermodynamic limit

they converge with probability one to their average. In particular, the quenched free

energy is

−NF = lnZ =

∫ ( ∏
a1<a2<...<aq

[dJa1...aq ]P [Ja1...aq ]

)
ln

∫
[dψ]e−SSYK[ψ] . (3.6)

The expansion in Feynman graphs is standard, with the only peculiarity that each

vertex carries a tensor Ja1...aq with each index being associated to one half-edge.

In the same way as we defined a quenched free energy, we can define the quenched

generating functionals of connected, 1PI, and 2PI diagrams, by constructing them in the

usual way for each realization of the disorder and taking the average over disorder at the

end. One should be careful with defining the generating functionals in such a way, because

for example the averaging procedure does not in general commute with evaluating the

effective action on shell. However, for the SYK model it can be shown by an analysis of

the diagrams that commutativity holds at LO and NLO, a fact that here we will only show

a posteriori by comparison to known results.9

We can therefore repeat all the construction of the 2PI effective action as above, with

the novel feature that 2PI graphs contributing to Γ2 now have to be averaged over disorder,

and that the fermionic nature of the model brings in some minus factors. We have

Γ[Ψ, G] = SSYK[Ψ]− 1

2
Tr[lnG−1]− 1

2
Tr[G−1

0 G] + Γ2[Ψ, G] . (3.7)

In order to simplify the analysis of the large-N limit we directly set Ψ = 0, which is

again justified by the absence of spontaneous symmetry breaking. By the same reason we

could also fix Gab(x, y) = δabG(x, y), although in general it will be more transparent to

keep the general expression. After averaging over the disorder all the diagrams lead to

9Note that in the standard way of obtaining LO and NLO results for the SYK model a replica diagonal

ansatz is taken for the bilocal field, which is justified by the fact that for the SYK model quenched and

annealed averages coincide at LO and NLO [7, 18]. At NNLO, within the replica method one should take

into account interactions between different replicas (i.e. off-diagonal fluctuations of the bilocal field), while

in the 2PI formalism one should take into account diagrams that arise when the averaging is done after the

on-shell evaluation.
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Figure 5. The fundamental melon for q = 4. The dashed line represents the Wick contraction

associated to the quenched average.

different multiple traces of powers of Gab(t, t
′), and as before we should count each trace

as contributing a factor N . We find in this way an expansion of the same type as (2.35).

Remembering that in the large-N limit the disorder average selects melons [3], we find that

Γ2[0, G] at leading order in 1/N is given by the fundamental vacuum melon of figure 5,

which is the only 2PI melon graph, with propagators given by G, i.e.:

Γ
(1)
2 [0, G] = − 1

2q!
Ja1...aqJb1...bq

∫
t,t′

q∏
c=1

Gacbc(t, t
′)

= − J2

2qN q−1

∫
t,t′
Gaa(t, t

′)q = −J
2N

2q

∫
t,t′
G(t, t′)q .

(3.8)

Notice that having chosen a Wick pairing of fermions to give the propagators (in q! ways,

thus canceling one of the 1/q! factors that come from the vertices), the average over disorder

produces many different types of contractions, due to the projector in (3.4), but in the

second line we have taken the only contraction that contributes at LO. The number of

traces (and hence the power of N) is in general given by the number c(σ) of cycles in

the disjoint cycle decomposition of the permutation σ appearing in the projector. Thus

permutations that can be obtained with a single transposition contribute to the NLO:(
− 1

2q!
Ja1...aqJb1...bq

∫
t,t′

q∏
c=1

Gacbc(t, t
′)

)
NLO

= − J2

2qN q−1

(
q

2

)∫
t,t′
Gaa(t, t

′)q−2Gbc(t, t
′)Gcb(t, t

′) = −J
2(q − 1)

4

∫
t,t′
G(t, t′)q .

(3.9)

The full 2PI effective action at leading order in 1/N is thus:

1

N
Γ[0, G] = −1

2
Tr[lnG−1]− 1

2
Tr[∂tG(t, t′)]− J2

2q

∫
t,t′
G(t, t′)q , (3.10)

which coincides with the bilocal action derived in [9] by a change of variables within the

replica method. The equivalence with [9] implies in particular that the equations of motion

are the same and coincide with the SD equations:10

G−1(t, t′) = ∂tδ(t, t
′)− J2G(t, t′)q−1 , (3.11)

and that the Schwarzian action controlling the conformal fluctuations can be derived in a

similar fashion as in that paper. We denote the solution of (3.11) as G(t, t′).

10Here one should remember that for Majorana fermions G(t, t′) = −G(t′, t).
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Recalling eq. (2.14) and (2.18), the second derivative ΓGG[0, G] is equal to the inverse of

F(t1, t2, t3, t4), i.e. of the full 4-point function minus the disconnected channel (1 → 2, 3→
4). Interestingly, such channel is the leading-order (and uninteresting) term in the SYK

4-point function [3, 5].11 Therefore, ΓGG[0, G] captures precisely the inverse of the object

of interest in SYK. We can compute this from our LO effective action, and recover the

corresponding result of the SYK 4-point function given by the sum of the ladder diagrams,

see [3–5]. Taking into account that:

δG34

δG12
=

1

2
(δ(t1 − t3)δ(t2 − t4)− δ(t1 − t4)δ(t2 − t3)) ≡ I−(t1, t2; t3, t4) , (3.13)

with I the orthogonal projector on antisymmetric functions, and denoting the on-shell four

point kernel:

K(t1, t2; t3, t4) = −J2(q − 1)G(t1, t3)G(t2, t4)G(t3, t4)q−2 , (3.14)

we get:

ΓG34 =
1

2
G−1(t4, t3) +

1

2
∂tδ(t3 − t4)− 1

2
J2[G(t3, t4)]q−1 , (3.15)

ΓG12G34 = −1

4
G−1(t4, t1)G−1(t2, t3) +

1

4
G−1(t4, t2)G−1(t1, t3)

+
1

4
[δ(t1 − t3)δ(t2 − t4)− δ(t1 − t4)δ(t2 − t3)][−J2(q − 1)G(t3, t4)q−2]

= −1

2

∫
t,t′
G−1(t1, t)G

−1(t2, t
′)

[
I−(1−K)

]
(t, t′; t3, t4) . (3.16)

Inverting the last expression we find:

F(t1, t2, t3, t4) =

∫
t,t′

(
1

1−K

)
(t1, t2, t, t

′)(−G(t, t3)G(t′, t4) +G(t, t4)G(t′, t3)) , (3.17)

which is precisely the starting point of the computations in [3–5].

3.1 Next-to-leading order action

As in the vector model of the previous section, (3.10) will receive corrections at higher

orders in 1/N . We want to show that the NLO correction can be interpreted as the

result of performing the Gaussian integral over the fluctuations in the usual bilocal action

expanded to quadratic order. In order to do that, we need to understand which 2PI

diagrams contribute at NLO, a question that has been addressed in detail in [40] for the

colored version of the model, which is a special case of the generalization of the SYK

model introduced by Gross and Rosenhaus [6] (see also [50] for a discussion of the same

11As a reminder, the 4-point function we are talking about is:

1

N2
〈ψm(t1)ψm(t2)ψn(t3)ψn(t4)〉 = G(t12)G(t34) +

1

N
FLO(t1, t2, t3, t4) + . . . . (3.12)

TheG(t12)G(t34) part is precisely the channel missing when taking the derivatives as in (2.14), and therefore,

evaluating this derivative at LO will give us FLO. The latter was computed in [3–5].
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n n

Figure 6. NLO contributions with n rungs, without (left) and with (right) twist.

model at NLO). It turns out that similar type of diagrams dominate also the standard

SYK model, but have to be accompanied by the twisted melons (3.9), which are absent in

the colored case.

The NLO 2PI vacuum graphs are thus given by all the periodic ladders with n ≥ 1

rungs, with or without one twist of the rails, see figure 6. One should notice that the

case n = 1 is quite special. First, the case n = 1 without twist is 2-particle reducible if

q = 4, but since it evaluates to zero for any q (because G(t, t) = 0 due to the fermions’

anti commutation), we can formally include it in the list. On the other hand, the case

n = 1 with twist corresponds again to a fundamental melon, thus one might think that it is

LO rather than NLO. However, this corresponds precisely to the twisted melons in (3.9),

which therefore can be conveniently grouped with the ladders. Although such ladders form

an infinite family of graphs, they can be summed in a similar way as to what we did for

the vector case, i.e. by introducing a kernel for the insertion of a rung. One important

difference is that now the kernel carries two vertices rather than one, which counts for

different combinatorial factors and minus signs in the summation (notice that the kernel

below has itself another minus sign, due to the fermionic nature of the theory). More

explicitly, we have

Γ
(0)
2 [0, G] = −1

2

∑
n≥0

1

n
Tr[KnI−] =

1

2
Tr[ln(I− −KI−)] , (3.18)

where I− and K are given in (3.13) and (3.14) (now off-shell), and to obtain the last equality

we used the fact that I− = In− because it is a projector, and [K, I−] = 0. Evaluating

Γ
(0)
2 [0, G] on the solution of the LO equations of motion, we find that this is the same

result that one would obtain by integrating the quadratic fluctuations of the bilocal effective

action of [5, 7].

In order to see that, we just have to repeat what we have done for the vector case,

with the important difference that due to the disorder one has to use the replica method.

The quenched average in the SYK model can be performed using the replica method, at

the cost of introducing n replicas of the system, and having to take the non-trivial limit

n→ 0, which is needed in order to evaluate the quenched free energy:

lnZ = lim
n→0

∂nZn . (3.19)

– 17 –



J
H
E
P
0
5
(
2
0
1
8
)
1
5
6

One finds [7]:

Zn =

∫ ∏
αβ

[dGαβ ][dΣαβ ]

 e−NSeff [G,Σ] , (3.20)

where:

Seff [G,Σ] = −1

2
T̂r ln(∂t − Σ) +

1

2

∑
αβ

∫
t,t′

(
Σαβ(t, t′)Gαβ(t, t′)− J2

q
(Gαβ(t, t′))q

)
. (3.21)

Notice that the disorder average led to an effective bare action which is bilocal even in

the interaction term. Performing the saddle-point approximation with a replica diagonal

ansatz Gαβ = Gδαβ , which is valid up to NLO in 1/N [7], one arrives at [5]:

lnZ = N

(
1

2
Tr[lnG−1] +

1

2
Tr[∂tG(t, t′)] +

J2

2q

∫
t,t′
G(t, t′)q

)
− 1

2
Tr[ln(I−− K̃I−)] , (3.22)

with

K̃(t1, t2; t3, t4) = |G(t1, t2)|
q−2

2 K(t1, t2; t3, t4) |G(t1, t2)|
2−q

2 . (3.23)

Since 1
2Tr[ln(I−−K̃I−)] = 1

2Tr[ln(I−−KI−)], we recover our Γ[0, G] up to NLO, as claimed.

Note that the main difference between (3.21) with replica-diagonal ansatz and (2.44)

is that the SYK model the interaction part of Seff is bilocal while in the O(N) model it is

local. This is reflected in the fact that the associated fluctuation kernel is truly a 4-point

kernel in the SYK case while it is a 2-point kernel in the O(N) case. From a graphical

point of view the bilocality in the SYK model originates from the fact that the NLO graphs

are ladders, while in the vector model they are chains of bubbles.

The replica diagonal ansatz used to derive the result above implies that lnZ = lnZ, i.e.

that quenched and annealed averages coincide (see [18] for a combinatorial proof at LO).

Starting at NNLO [7], the two averaging procedures start to differ, or in other words, the

replica-symmetric ansatz becomes inaccurate. From the point of view of the 2PI formalism,

the complications at NNLO arise from the non-commutativity of averaging over disorder

and going on shell, as we discussed before.

4 2PI effective action for tensor field theories

A rank-r tensor-valued real bosonic12 field in d space time dimensions is a function ϕ : Rd →
⊗ri=1Vi, where Vi is the vector space associated to the fundamental representation of a group

Gi. In other words, the tensor is postulated to be in the fundamental representation of a

group G =
∏r
i=1 Gi. We denote its components as ϕa1...ar(x), with x ∈ Rd and ai = 1 . . . Ni,

where Ni = dim(Vi), hence the group acts by the transformation rule:

ϕa1...ar(x)→

(
r∏
i=1

R
(i)
aibi

)
ϕb1...br(x) , (4.1)

12In the fermionic case we will denote the field with ψ, and in dimensions d > 1 one should remember

also that its components are spinors.
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with the matrix R(i) belonging to the fundamental representation of the group Gi.13 We

only consider tensor field theories defined by a classical action which is invariant under the

action of G.

In the rest of the paper we will only study few specific models, yet we started this

section with a very generic definition to emphasize that the construction of the 2PI effective

action can be done in full generality. In fact, it is straightforward to define the 2PI effective

action for tensor-valued field theories in d dimensions applying the construction that we

reviewed in section 2: all the equations before section 2.1 are in fact still valid, with the

collective index now corresponding to an r-uple of indices (a1 . . . ar) plus the spacetime

point. For example, in rank 3 the bilocal field Gab corresponds to Ga1a2a3b1b2b3(x, y),

and so on. The presence of several fields (as in the GW model defined below) is also

straightforward to take into account: one simply needs to extend further the meaning of

the vector label by including a field (or color) index c = 1 . . . q. In this case, the discrete

part of the collective-index a can be thought as a vector index with a = 1 . . .M , with

M = q
∏r
i=1Ni. The crucial property that characterizes a proper tensor model is the

symmetry group: for a vector model the natural symmetry group would be O(M), while

for a tensor model this is broken by the choice of interaction down to a smaller group with

a natural tensorial interpretation (e.g. O(M) is broken down to O(N)r).

In the following we will consider only the cases d = 0 and d = 1, for two types of models:

the Carrozza-Tanasa-Klebanov-Tarnopolsky (CTKT) model [22, 59], for winch r = 3 and

Gi = O(N) for i = 1 . . . 3, and the Gurau-Witten (GW) model [1, 19], in arbitrary rank

r = q − 1 and with Gi = O(N) for i = 1 . . . q(q − 1)/2.

4.1 The bosonic CTKT model in d = 0

The CTKT model in zero dimensions is defined by the action:

SCTKT[ϕ] =
1

2
ϕabcϕabc +

λ

4N3/2
ϕa1a2a3ϕa1b2b3ϕb1a2b3ϕb1b2a3 . (4.2)

As standard, we refer to the location of an index as a color, e.g. the indices a1 and b1 in

the action above are of color 1, and so on.

The perturbative expansion can as usual be represented in a diagrammatic way. Due to

the tensor structure, there are different possible representation, which we depict in figure 7.

The corresponding 2PI effective action is constructed as explained in section 2, and in

particular equation (2.26) is still valid, with S[φ] = SCTKT [φ],

(G−1
0 )a1a2a3b1b2b3 = δa1b1δa2b2δa3b3

+
λ

N3/2
(φc1a2a3φc1b2b3δa1b1 +φa1c2a3φb1c2b3δa2b2 +φa1a2c3φb1b2c3δa3b3) ,

(4.3)

13One could also consider tensors in an irreducible tensor representation of a single group, for example

symmetric traceless or antisymmetric tensors for the group G = O(N). Tensor models of this type (for rank

r = 3) have recently been proved to admit a large-N expansion [65].
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Figure 7. The vertex of the CTKT model (4.2) in three different representation; from left to right:

the Feynman representation, the stranded representation, and the “tetrahedron”, or edge-colored

representation. In the last two the colors track the indices.

and with Γ2[φ,G] constructed from 2PI graphs with propagator Ga1a2a3b1b2b3 and

interaction

Sint[φ, ϕ] =
λ

N3/2
φa1a2a3ϕa1b2b3ϕb1a2b3ϕb1b2a3 +

λ

4N3/2
ϕa1a2a3ϕa1b2b3ϕb1a2b3ϕb1b2a3 . (4.4)

As in the vector model, Γ2[φ,G], and hence Γ[φ,G], will only contain even powers of φ,

and as a consequence, the equation of motion δΓ/δφ = 0 admits the solution φ = 0, which

is the only solution giving an invariant 1-point function. Thus we consider the case of zero

background field, φ = 0, and study the large-N expansion of Γ2[0, G].

In order to do a large-N expansion as in the vector case we need to identify quantities

that scale like N . In the vector case we saw that Tr[Gm] ∼ N for any m. The easiest

way to see such scaling is to assume that Gab ∝ δab which we know to be true for the

on-shell 2-point function. The analogue for the tensor case is to treat any “trace” over

a given color as being of order N . Again the easiest way to see why it is so is to take

Ga1a2a3b1b2b3 ∝ δa1b1δa2b2δa3b3 , which we know is going to be true on shell, due to the

invariance of the theory. The identification of the scaling with N of the graphs contributing

to the 2PI effective action is thus reduced to the well-studied problem of identifying the

scaling with N of tensor model graphs. We can then borrow the results from [59] and

claim that:

• Γ2[0, G] can be expanded as:

Γ2[0, G] =
∑
ω∈N/2

Γ
(3−ω)
2 [G] , with Γ

(p)
2 [G] ∼ Np . (4.5)

• In the large-N limit Γ2[0, G] is given by a single diagram, i.e. the fundamental vacuum

melon (whose Feynman representation is the same as in figure 5 with no dashed line,

and whose tetrahedron representation is given in figure 8), with propagators given

by G: since the interaction is the known one, we know that melons dominate the

large-N limit, and the fundamental melon is the only 2PI melon.14

14If we do not set φ = 0, we obtain in addition a term of the type φ2G3, corresponding to a melon with

two φ external legs and three internal propagators G. These terms should be taken into account when

looking at fluctuations around the solution, but at quadratic order the fluctuations of φ decouple from

those of G because φ = 0 and the action is at least quadratic in φ.

– 20 –



J
H
E
P
0
5
(
2
0
1
8
)
1
5
6

Figure 8. The fundamental melon for the CTKT model in the tetrahedron representation. Dashed

edges represent propagators.

Since the fundamental melon diagram comes with a combinatorial factor of 4,

we obtain:

Γ
(3)
2 [G] = − λ2

8N3
Ga1a2a3b1b2b3Ga1a′2a

′
3b1b

′
2b
′
3
Ga′1a2a′3b

′
1b2b

′
3
Ga′1a′2a3b′1b

′
2b3

. (4.6)

In the symmetric phase, the two point function is diagonal in the tensor indices:

Ga1a2a3b1b2b3 = Gδa1b1δa2b2δa3b3 , (4.7)

hence:

Γ
(3)
2 [G] = −1

8
λ2N3G4 , (4.8)

and we obtain at leading order in 1/N :

1

N3
Γ[0, G] =

1

2
lnG−1 +

1

2
G− 1

8
λ2G4 . (4.9)

The LO equations of motion are simply:

G−1 = 1− λ2G3 , (4.10)

which we recognize as the SD equations at leading order in the 1/N expansion [59].

Following [59], one finds that at next-to-leading order the dominant graphs are gen-

erated by inserting melonic 2-point functions in the propagators of the three core graphs

obtained form the one depicted in figure 9 by permutation of the colors. Since any insertion

of a melonic 2-point function makes the graph 2-particle reducible, we conclude that at

NLO there is only a finite number of 2PI graphs, i.e. the three core graphs themselves.

They correspond to three contractions like:

λ

4N3/2
Ga1a2a3a1b2b3Ga′1a2a3a′1b2b3

. (4.11)

With the diagonal ansatz for the two point function we obtain:

1

N3
Γ[0, G] =

1

2
lnG−1 +

1

2
G− 1

8
λ2G4 +

3λ

4N1/2
G2 . (4.12)
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Figure 9. The NLO core graph for the CTKT model in the tetrahedron representation.

The equations of motion are now:

G−1 = 1− λ2G3 +
3λ

N1/2
G . (4.13)

Writing G = G(0) +N−1/2G(−1/2) and expanding to order N−1/2 we recover the SD equa-

tions at NLO of [59].15

We expect to find an infinite family of graphs at NNLO, but the analysis of the CTKT

model at NNLO has never been done and it goes beyond the scope of the present pa-

per. Since, on the contrary, the subleading structure of the GW model is much better

understood, we will study the subleading corrections (up to NNNLO) in that model in

section 4.3.

4.2 The fermionic CTKT model in d = 1

Let us consider the d = 1 fermionic CTKT model, which is in some ways the simplest

tensor model with SYK-like large-N limit [22]. Its classical action is:

SCTKT[ψ] =

∫
t

(
1

2
ψabc(t)∂tψabc(t) +

λ

4N3/2
ψa1a2a3(t)ψa1b2b3(t)ψb1a2b3(t)ψb1b2a3(t)

)
.

(4.14)

The selection of dominant graphs in the large-N limit is not affected by the dimension

of space time, hence the analysis of d = 0 applies here without change. The Grassmann

nature of the fields leads instead to some extra minus signs, just as in the SYK case.

We concentrate again on the symmetric phase Ψ = 0, which is the only possible one

in d = 1. At LO in the 1/N expansion, Γ2[0, G] is given again by a single diagram, the

fundamental vacuum melon; with respect to (4.6) we only need to add the time dependence:

Γ
(3)
2 [G] =

−λ2

8N3

∫
t,t′
Ga1a2a3b1b2b3(t, t′)Ga1a′2a

′
3b1b

′
2b
′
3
(t, t′)Ga′1a2a′3b

′
1b2b

′
3
(t, t′)Ga′1a′2a3b′1b

′
2b3

(t, t′)

= −1

8
λ2N3

∫
t,t′
G(t, t′)4 , (4.15)

where in the last equality we used a diagonal ansatz:

Ga1a2a3b1b2b3(t, t′) = G(t, t′)δa1b1δa2b2δa3b3 , (4.16)

15Up to a factor of 3 which was forgotten in [59].
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which is valid on shell. By comparison with (3.8) it is obvious that we obtain the same

behavior as in SYK, in particular the bilocal nature of the interaction. In fact, including

also the one-loop contribution:

1

N3
Γ[0, G] = −1

2
Tr[lnG−1]− 1

2
Tr[∂tG(t, t′)]− 1

8
λ2

∫
t,t′
G(t, t′)4 , (4.17)

which has the same form as (3.10). If one were to not use a diagonal ansatz one would get:

Γ[0, G] = −1

2
Tr[lnG−1

a1a2a3b1b2b3
]− 1

2
Tr[∂tGa1a2a3b1b2b3(t, t′)] + Γ

(3)
2 [G] . (4.18)

with Γ
(3)
2 [G] written as in the first line of (4.15).

As pointed out in [27], if in the infrared we discard the time-derivative term, the global

O(N)3 symmetry of (4.18) is promoted to a local symmetry.16 The would-be gauge degrees

of freedom associated to such local transformations are however proper degrees of freedom

due to the explicit breaking provided by the time-derivative term, which we expect to endow

them with an effective action controlling their dynamics. The idea is very similar to what

happens with conformal symmetry: the action (4.17) has precisely the same form as (3.10),

and as such it is also conformally invariant (i.e. invariant under time reparametrizations)

in the infrared/strong-coupling limit, i.e. when discarding the time-derivative term. The

time derivative can then be viewed as a conformal breaking operator that generates an

effective action for the conformal mode, which takes the form of a Schwarzian action [3, 5]

(see [9, 13] for a derivation with an action with a single bilocal field, as in our (3.10), or [7]

for more details on how to regularize the conformal breaking operator). Choudhury et

al. [27] have followed a similar route to obtain an effective action for the would-be gauge

degrees of freedom, arriving at a non-linear sigma model type action, as one would expect

on general grounds. However, they postulated the action (4.18) as an effective classical

action without any derivation, while we derived it here as a 2PI effective action. It is not

clear at the moment whether a formulation analogous to the one in section 2.2 exists for the

KTCT model, but we can see two limitations to it: first, we expect such a formulation to be

necessarily more complicated in the tensor case, because there are many more invariants,

and the large-N expansion cannot be interpreted as a loop expansion; second, as we saw

in d = 0, the NLO correction to the 2PI effective action of the KTCT model is given by a

finite number of graphs and therefore it does not have the form of the result of a one-loop

integral (compare (4.12) with (2.41) or (3.18)), thus an hypothetical effective bilocal action

would necessarily not factor the N -dependence as simply as in the vector case. However, we

can bypass such open question, and apply the same reasoning directly to the 2PI effective

action. In order to see why, it is useful to recall that in section 3 we found that ΓGG gives

the inverse 4-point function. The latter is then singular if ΓGG has zero eigenvalues, as it is

the case if there is a gauge invariance which has not been gauge-fixed. In the present case

we do not need a gauge fixing because there is an explicit breaking of the gauge invariance.

The would-be gauge modes give a non-zero contribution to the quadratic part of the action

16Notice that this does not happen in the SYK model: in eq. (3.8) the trace Gaa(t, t′) identifies indices

at different times, while in (4.15) indices are identified at equal times.
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which can be obtained by evaluating the quadratic part of the breaking term in the gauge

transformations around the stationary point.

In order to translate in formulas what we just said, we write:

Γinv[G] = − 1

2
Tr[lnG−1

a1a2a3b1b2b3
] + Γ

(3)
2 [G] , (4.19)

Γpert[G] = − 1

2
Tr[∂tGa1a2a3b1b2b3(t, t′)] . (4.20)

The stationary point of the total action splits as (using boldface for a collective index only

for the tensor indices, e.g. a = a1a2a3):

Gab = G0(t− t′)δab +G1(t− t′)δab , (4.21)

where:

δΓinv

δGab
[G0] = 0 , (4.22)

δ2Γinv

δGabδGcc
[G0]G1 +

δΓpert

δGab
[G0] = 0 . (4.23)

We emphasize that Gab is leading order in 1/N : G1 is a perturbation in the strong coupling

expansion, i.e. it arises by treating (4.20) as a perturbation to (4.19), but it is still leading

order in the large N limit. Next, consider the transformation:

Gab(t, t′)→ Ga′b′(t, t
′)Vaa′(t)Vbb′(t

′) , (4.24)

where:

Vac(t) ≡ V (1)
a1b1

(t)V
(2)
a2b2

(t)V
(3)
a3b3

(t) ' δab + Hab(t) +
1

2
Hac(t)Hcb(t) + . . . , (4.25)

Hab(t) = H
(1)
a1b1

(t)δa2b2δa3b3 + δa1b1H
(2)
a2b2

(t)δa3b3 + δa1b1δa2b2H
(3)
a3b3

(t) , (4.26)

for V
(i)
ab ∈ O(N) and H

(i)
ab an antisymmetric matrix, for i = 1 . . . 3. Such transformation

leaves Γinv[G] invariant, but not Γpert[G]. Using the invariance of the former, and the

linearity in G of the latter, it can be easily shown (expanding at first order in G1 the

left-hand-side and using (4.23)) that:

δ2(Γinv + Γpert)

δGabδGcd
[G]gabgcd =

δ2Γpert[G0VacVbc]

δHabδHcd

∣∣∣
H=0

HabHcd , (4.27)

where:

gab = G(t, t′)(Hab(t)−Hab(t′)) . (4.28)

Rewriting the quadratic part of G(t− t′)Vab(t)Vab(t′) as:

1

2
G(t− t′)(Hac(t)Hca(t) + Hac(t′)Hca(t′)− 2Hab(t)Hba(t′))

' 1

2
G(t− t′)

(
∂tHac(t)∂tHca(t)(t− t′)2 +O((t− t′)3)

)
,

(4.29)
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Figure 10. The vertex of the GW model (4.32) with q = 4 in the Feynman (left) and the stranded

(right) representations.

we obtain:
δ2Γpert[G0VacVbc]

δHabδHcd

∣∣∣
H=0

HabHcd = −α
2

∫
t
∂tHac(t)∂tHca(t) , (4.30)

where

α =

∫
τ
G0(τ)τ2σ(τ) , (4.31)

with σ(τ) a suitable regularization of δ′(τ). This is precisely the same coefficient that

appears in front of the Schwarzian action, as derived in [7], and the action coincides with

the one derived in [27].

4.3 The fermionic GW model in d = 1

The (real) GW model in one dimension is defined by the action:

SGW[ψ] =
1

2

q∑
c=1

∫
t,t′
ψ

(c)
ac (t)C−1(t, t′)ψ

(c)
ac (t′) +

iq/2 λ

N (q−1)(q−2)/4

∫
t

q∏
c=1

ψ
(c)
ac (t)

∏
c1<c2

δac1c2ac2c1 ,

(4.32)

where ac = (acc1 |c1 ∈ {1, . . . , q}\{c}) and C−1(t, t′) = ∂tδ(t−t′). The vertex is represented

in figure 10 for the case q = 4. The model is symmetric under the global group O(N)q(q−1)/2,

where an independent O(N) element acts on each pair (ac1c2 , ac2c1).

We introduce a bilocal source for each color and obtain the 2PI effective action:

Γ[Ψ(c), G(c)] = SGW[Ψ(c)] +
1

2

q∑
c=1

Tr[ln(G(c))]− 1

2

q∑
c=1

Tr[(G
(c)
0 )−1G(c)] + Γ2[Ψ(c), G(c)] .

(4.33)

From now on we consider the symmetric phase Ψ(c) = 0. The leading order 2PI graph

is again the fundamental melon, thus Γ2[0, G(c)] has a large-N expansion which starts at

order N q−1:

Γ
(q−1)
2 [0, G(c)] = − λ2

2N (q−1)(q−2)/2

∫
t,t′

q∏
c=1

G
(c)
acbc

(t, t′)
∏
c1<c2

δac1c2ac2c1 δbc1c2bc2c1

= −λ
2N q−1

2

∫
t,t′
G(t, t′)q ,

(4.34)

where in the last step we restricted to the color symmetric and diagonal ansatz G
(c)
acbc

(t, t′) =

G(t, t′)
∏
c′ 6=c δacc′bcc′ . With such ansatz we recover precisely the SYK result (3.10), with J

replaced by λ and N by qN q−1.
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As −Γ2 is the sum over 2PI vacuum graphs, the subleading corrections begin at order

N2 for any q [40], and the diagrams contributing to Γ
(2)
2 , Γ

(1)
2 and Γ

(0)
2 are all the ring

graphs consisting in 4-point ladder diagrams closing onto themselves, similar to the ones

depicted in figure 6, but in which we need to distinguish the various possible sequences

of colors along the rails [40]. In order to compute their contributions to the 2PI effective

action, we recall that the Gaussian expectation with covariance G of real fermions is:

〈ψ(t1) . . . ψ(t2n)〉 =
∑
π

ε(π)
∏

(k,l)∈π

G(tk, tl) , (4.35)

where π are the pairings of 2n elements, (k, l) with k < l and ε(π) is the signature of the

pairing. We are interested in the perturbative expansion at order 2n:

λ2n inq

(2n)!

〈
2n∏
i=1

ψ1(ti) . . . ψ
q(ti)

〉
ring

, (4.36)

where the subscript signals that we only select the contractions that reproduce ring graphs.

A ring graph is built by first pairing the 2n vertices into n pairs where the vertices in

a pair are connected by q− 2 edges. We denote the colors of the external edges of a dipole

c1 and c2. For each pair we get a factor:

(−1)q/2+q(q−1)/2ψc1(t)ψc2(t)

[
G(t, t′)

]q−2

ψc2(t′)ψc1(t′)

= ψc1(t)ψc1(t′)(−1)

[
G(t, t′)

]q−2

ψc2(t′)ψc2(t) .

(4.37)

We now glue the pairs together to form ring graphs. This identifies the right external colors

on a pair with the left external colors on the next pair. The field at ti can connect with

either ti+1 or t′i+1 and we obtain schematically:

λ2n

(2n)!

(2n)!

2nn!
(n− 1)!2n−1

ci 6=ci−1∑
{ci}

(
n∏
i=1

G(ti−1, ti)G(t′i−1, t
′
i)(−1)

[
G(ti, t

′
i)

]q−2
)

×
[
δ(tn − t0)δ(t′n − t′0)− δ(tn − t′0)δ(t′n − t0)

]
.

(4.38)

We now reinstate the tensor indices. We denote:

K̂(c1c2)
ac1a′c1 ;bc2b′c2

(ta, ta′ ; tb, tb′) = (−1)G
(c)
ac1bc1

(ta, tb)G
(c)
a′c1b′c1

(ta′ , tb′)

×

 ∏
c 6=c1,c2

G
(c)
bcb′c

(tb, tb′)

(∏
c<c′

δbcc′bc′cδb′cc′b
′
c′c

)
,

I=
aca
′
c;bcb

′
c
(ta, ta′ ; tb, tb′) = δacbcδa′cb′cδ(ta − tb)δ(ta′ − tb′) ,

I×
aca
′
c;bcb

′
c
(ta, ta′ ; tb, tb′) = δacb′cδa′cbcδ(ta − tb′)δ(ta′ − tb) , (4.39)
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where repeated indices are summed. Later on we will take the color symmetric diagonal

ansatz for the two point function. We denote:

K̂(ta, ta′ ; tb, tb′) = (−1)G(ta, tb)G(ta′ , tb′)[G(tb, tb′)]
q−2 ,

I=(ta, ta′ ; tb, tb′) = δ(ta − tb)δ(ta′ − tb′) ,
I×(ta, ta′ ; tb, tb′) = δ(ta − tb′)δ(ta′ − tb) , (4.40)

and K̂I× = I×K̂. As a function of the sequence of horizontal colors ci, as well as the last

contraction, we get the following contributions to the 2PI effective action:

Γ
(2)
2 = −

∑
n≥2

λ2n

2n
N−n(q−1)(q−2)/2

cn+1=c1∑
(c1...cn)∈Un

Tr

[( n∏
i=1

K̂(cici+1)

)
I=
]
,

Γ
(1)
2 = −

∑
n≥2

λ2n

2n
N−n(q−1)(q−2)/2

cn+1=c1∑
(c1...cn)∈Un

Tr

[( n∏
i=1

K̂(cici+1)

)
(−I×)

]
, (4.41)

Γ
(0)
2 = −

∑
n≥2

λ2n

2n
N−n(q−1)(q−2)/2

cn+1=c1∑
(c1...cn)∈Bn

Tr

[( n∏
i=1

K̂(cici+1)

)
(I= − I×)

]
,

where Un is the set of alternating (or unbroken) words (c1c2 . . . c1c2) of length n with c1 < c2

over the colors, and Bn is the set of non alternating (or broken) words (c1 . . . c3 . . . c2) , ci 6=
ci+1 of length n with c1 < c2 over the colors. Restricting to the color symmetric diagonal

ansatz we get:

Γ
(2)
2 = −N2

∑
n≥2

λ2n

2n
|Un|Tr

[
K̂nI=

]
,

Γ
(1)
2 = −N

∑
n≥2

λ2n

2n
|Un|Tr

[
K̂n(−I×)

]
, (4.42)

Γ
(0)
2 = −

∑
n≥2

λ2n

2n
|Bn|Tr

[
K̂n(I= − I×)

]
.

In all these cases −N−rλ∂λΓ
(r)
2 is a generating function of nonempty words with weight

λ2K̂ per letter. Ignoring for an instant the fact that K̂ is an operator and denoting in

superscript the two external letters of the word we have:

• Unbroken words. The generating functions of nonempty, unbroken words are simple

geometric series:

U c1c1 =
(q − 1)λ6K̂3

1− λ4K̂2
, U c1c2 =

λ4K̂2

1− λ4K̂2
= λ∂λ

[
− 1

4
ln(1− λ4K̂2)

]
, (4.43)

• Arbitrary words. The generating function of nonempty, arbitrary words with equal

external letters is:

Ac1c1 = λ2K̂ (q − 1)λ2K̂
1− (q − 2)λ2K̂

(λ2K̂ +Ac1c1) =
(q − 1)λ6K̂3

1− (q − 2)λ2K̂ − (q − 1)λ4K̂2
,
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because an arbitrary, non empty word with equal external letters c1 is: a letter c1

followed by a nonempty word which does not reuse the letter c1, followed by either

exactly a letter c1 or a nonempty word with external letters c1c1. The generating

function of nonempty, arbitrary words with different external letters is:

Ac1c2 = λ2K̂
[

1

1− (q − 2)λ2K̂

]
(λ2K̂ +Ac2c2) =

λ4K̂2

1− (q − 2)λ2K̂ − (q − 1)λ4K̂2

= λ∂λ

[
− 1

2q(q − 1)
ln[1− (q − 1)λ2K̂]− 1

2q
ln(1 + λ2K̂)

]
, (4.44)

as such a word is a letter c1 followed by a possibly empty word which does not use

the letter c2, followed by either a letter c2 or a nonempty word with external letters

c2c2.

• Broken words. The generating function of nonempty, broken words with different

external letters is:

Bc1c2 = Ac1c2 − U c1c2

= λ∂λ

[
− 1

2q(q − 1)
ln[1− (q − 1)λ2K̂]− 1

2q
ln(1 + λ2K̂) +

1

4
ln(1− λ4K̂2)

]
.

(4.45)

Recalling now that K̂ is an operator and that the projector on antisymmetric functions is

I− = (I= − I×)/2 we get with the color-symmetric diagonal ansatz:

Γ[0, G] = N q−1 q

2
Tr[ln(G)]−N q−1 q

2
Tr[∂tG] + Γ2[G] , (4.46)

where:

Γ2[G] = Γ
(q−1)
2 [G] + Γ

(2)
2 [G] + Γ

(1)
2 [G] + Γ

(0)
2 [G] , (4.47)

and:

Γ
(q−1)
2 [G] = N q−1

(
−λ

2

2

)∫
t,t′
G(t, t′)q ,

Γ
(2)
2 [G] = N2 1

4

(
q

2

)
Tr

[
I= ln

(
1− λ4K̂2

)]
,

Γ
(1)
2 [G] = N

1

4

(
q

2

)
Tr

[
(−I×) ln

(
1− λ4K̂2

)]
, (4.48)

Γ
(0)
2 [G] =

1

2
Tr

[
I− ln

(
1− (q − 1)λ2K̂

)]
,

+
q − 1

2
Tr

[
I− ln

(
1 + λ2K̂

)]
− 1

2

(
q

2

)
Tr

[
I− ln

(
1− λ4K̂2

)]
.

A first use of eq. (4.48) is to determine the two point function at subleading order in

1/N . For instance, truncating the equation ∂GΓ = 0 at leading and next to leading order

for the bosonic GW model in d = 0 by we obtain:

0 = −G−1 + 1− λ2Gq−1 − 1

N q−3

(
q

2

)
λ4G2q−1

1− λ4G2q
, (4.49)
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and substituting G = G(0) +N−q+3G(−q+3), with G(0) = 1 + λ2(G(0))q, we get:

G(−q+3) =
1

N q−3

(
q

2

)
λ4(G(0))2q

[1− λ4(G(0))2q][1− qλ2(G(0))q−1]
, (4.50)

reproducing the result of [66].

Going back to d = 1 we observe that ∂GΓ(q−1)|G=G(0) = 0, hence Γ[0, G(0) +

N−q+3G(−q+3)] = Γ[0, G(0)] up to terms of order N q−1(N−q+3G(−q+3))2 ∼ N5−q(G(−q+3))2,

that is (except for q = 4 which is special) subleading with respect to all the terms in

eq. (4.48). Thus, up to order N0, the free energy of the GW model with q ≥ 6 is (intro-

ducing also the projector on symmetric functions I+ = (I= + I×)/2):

− lnZ = N q−1 q

2
Tr[ln(G(0))]−N q−1 q

2
Tr[∂tG

(0)]−N q−1λ
2

2

∫
t,t′
G(0)(t, t′)q

+

[
N(N − 1)

2

(
q

2

)]
1

2
Tr

[
ln

(
1− λ4[K̂(0)

]2I+

)]
+

[(
N(N − 1)

2
+ (N − 1)

)(
q

2

)]
1

2
Tr

[
ln

(
1− λ4[K̂(0)

]2I−

)]
+ (q − 1)

1

2
Tr

[
ln

(
1 + λ2[K̂(0)

]I−

)]
+

1

2
Tr

[
ln

(
1− (q − 1)λ2[K̂(0)

]I−

)]
,

(4.51)

where the four point kernel K̂(0)
is evaluated on G(0), the on-shell leading-order two point

function, and where we have rearranged the subleading terms in order to eliminate I= and

I× in favor of I±. For q = 4 the terms of order N and order 1 receive corrections from

G(−1). All the subleading correction have the form of traces of a logarithm, hence each of

them can be interpreted as resulting from the integration of freely fluctuating bilocal fields.

Furthermore, the factor N(N−1)
2

(
q
2

)
in the second line is very suggestive of the number of

antisymmetric matrices on color ij, i 6= j, while the factor
(N(N−1)

2 + (N − 1)
)(
q
2

)
in the

third line is suggestive of the number of symmetric traceless matrices on the same colors.

Such interpretation is in fact correct, as we will now show.

It turns out that the final result (4.51) can be interpreted as a one-loop approximation

for a bilocal effective action of the same form as the 2PI effective action at LO:

Seff [G] =
1

2

q∑
c=1

Tr[ln(G(c))]− 1

2

q∑
c=1

Tr[(G
(c)
0 )−1G(c)]

− λ2

2N (q−1)(q−2)/2

∫
t,t′

q∏
c=1

G
(c)
acbc

(t, t′)
∏
c1<c2

δac1c2ac2c1 δbc1c2bc2c1 .

(4.52)

In order to see that, we split the bilocal field as on-shell background plus fluctuations,

G
(c)
acbc

(t, t′) = G(0)(t, t′)δacbc + g
(c)
acbc

(t, t′) , (4.53)

and expand the action to second order in the fluctuations g
(c)
acbc

(t, t′). We obtain a quadratic

action of the form (see appendix A for notation):

〈g|B(I− λ2K)|g〉 , (4.54)
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21 34

14

24

32

31

Figure 11. The kernel K(c1c2) for q = 4 and (c1c2) = (23). When “gluing” to its right a fluctuation

g
(3)
a31a32a34b31b32b34

, with for example the a indices on top and the b indices at the bottom, the indices

of color 31 and 34 are traced, while the index of color 32 is transmitted.

where B is a λ-independent q×q block matrix with (G(0))−1(G(0))−1 on its diagonal and zero

otherwise. The latter leads to a 1
2Tr lnB term in the free energy that should be canceled

by the measure, as for zero coupling Γ2[G] should vanish. Notice that in the case of the

O(N) and SYK models we obtained the correct measure thanks to the Lagrange multiplier

Σ̃; we could introduce a similar field here by analogy, but since we are not deriving Seff

directly from the path integral it seems more natural to just fix the normalization by the

zero-coupling condition. Therefore, we can replace B = 1 in (4.54).

The important point to notice is that the operator K in (4.54) is built out of kernels

K(c1c2) that when acting on g
(c1)
acbc

(t, t′) or g
(c2)
acbc

(t, t′) take their trace with respect to all the

indices of color different from c1c2 (see figure 11). Therefore, it is useful to decompose (see

appendix A for details):

g
(c)
acbc

(t, t′) = g(c)(t, t′)
∏
i 6=c

δacibci +
∑
i 6=c

g
(ci)
acibci

(t, t′)
∏
j 6=i,c

δacjbcj + ĝ
(c)
acbc

(t, t′) , (4.55)

where g
(ci)
aciaci(t, t

′) = 0, for any i, and ĝ
(c)
acbc

(t, t′)
∏
j 6=i δacjbcj = 0, for any i 6= c.

One can then further decompose g
(ci)
acibci

(t, t′) in symmetric traceless and antisymmetric

parts with respect to the matrix indices (since g
(ci)
acibci

(t, t′) = −g(ci)
bciaci

(t′, t), the symmetry

properties with respect to t and t′ are opposite to those of the indices).

The Hessian has a block-diagonal form corresponding to the decomposition (4.55).

The block corresponding to the scalar modes g(c)(t, t′) is a q × q matrix with the identity

operator I− on the diagonal entries, and −λ2K̂(0)
I− on the off-diagonal ones. Such a matrix

has one eigenvalue (1− (q−1)λ2K̂(0)
)I−, and (q−1) eigenvalues (1 +λ2K̂(0)

)I−, thus upon

integration of such modes we obtain the last line in (4.51). The blocks corresponding to

the matrix modes g
(c1c2)
acibci

(t, t′), are instead 2× 2 matrices for each fixed pair c1c2, with the

identity operator = ≡ SI−+AI+ (the operators S and A are the projectors on symmetric
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traceless and antisymmetric matrices, respectively) on the diagonal entries, and −λ2K̂(0)=
on the off-diagonal ones. Integration over such modes thus produces the second and third

line of (4.51). Lastly, the block corresponding to ĝ
(c)
acbc

(t, t′) is just the identity, hence it

does not lead to any subleading correction to the free energy.

5 Summary and outlook

We have introduced and discussed the 2PI effective action for the SYK model and for

tensor field theories. The main lessons we drew from that are:

• For the SYK model, the 2PI effective action easily reproduces all the results of the

bilocal action formalism [5, 7, 9], without using the replica method, at least up to

the same order in 1/N at which the replica symmetric ansatz works for the latter.

• For tensor analogues of the SYK model, the 2PI formalism offers so far the only way

to obtain an effective action for collective fields, and it allows to obtain the same type

of results as in the SYK model.

• For the CTKT model, the 2PI effective action provides a solid starting point for the

argument of [27], showing the existence of soft modes associated to the O(N)3 quasi-

gauge invariance in the strong coupling limit. A similar argument can be repeated

straightforwardly for the GW model with the symmetry group being replaced by

O(N)q(q−1)/2.

• For the GW model, the 1/N expansion of the 2PI effective action can be pushed up

to NNNLO, and for all three subleading orders we find traces of logarithms, which

have a natural interpretation as the result of Gaussian integrals over bilocal fields.

Somewhat surprisingly, such Gaussian integrals correspond precisely to the one-loop

approximation for a bilocal effective action of the same form as the leading-order 2PI

effective action.

We think that the 2PI formalism is particularly promising for the exploration of sub-

leading effects in 1/N in tensor field theories. Hopefully this can lead to a better under-

standing of the underlying degrees of freedom and their possible holographic interpretation.

It would also be interesting to carry out a NNLO analysis for the CTKT model to uncover

similar trace log terms.

A Orthogonal decomposition of the fluctuations

To simplify notation let us suppress the time variables. We organize the fluctuations g
(c)
acbc

in a column vector with q entries, each of which is a N q−1 ×N q−1 matrix:

g =


g

(1)
a1b1

g
(2)
a2b2

...

g
(q)
aqbq

 , 〈h |g〉 =

q∑
c=1

Tr[(h(c))T g(c)] , (A.1)
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where T denotes transposition. We denote δacbc ≡
∏
c′ 6=c δacc′bcc′ and δc−cc1acbc

≡∏
c′ 6=c,c1 δacc′bcc′ . The identity operator in this vector space writes:

I =

I
(1) 0 0

0
. . . 0

0 0 I(q)

 , I
(c)
acbc;mcnc

= δacmcδbcnc . (A.2)

The 4-point kernel is the operator:

λ2K = λ2


0 K(1 2) . . . K(1 q)

K(2 1) 0 . . . K(2 q)

...

K(q 1) K(q 2) . . . 0

 ,

K
(c1c2)
ac1bc1 ;mc2nc2

=
K̂

N q−2
δc1−c1c2ac1bc1

δac1c2mc2c1 δbc1c2nc2c1 δ
c2−c2c1
mc2nc2

,

(A.3)

and the Hessian of (4.52) is proportional to the linear operator I−λ2K on this vector space.

Notice that when K(c1c2) acts on g
(c2)
mc2nc2

it traces it on q − 2 indices, i.e. those of color

different from c1c2 (see again figure 11), thus showing the way to its partial diagonalization.

We introduce the following operators:

P
(c1c2)
ac1bc1 ;mc2nc2

=
1

N q−1
δac1bc1

δmc2nc2
,

T
(c1c2)
ac1bc1 ;mc2nc2

=
1

N q−2
δc1−c1c2ac1bc1

(
δac1c2mc2c1 δbc1c2nc2c1 −

1

N
δac1c2bc1c2 δmc2c1nc2c1

)
δc2−c2c1mc2nc2

,

(A.4)

and:

R
(c−cc1)
acbc;mcnc

=
1

N q−2
δc−cc1acbc

(
δacc1mcc1 δbcc1ncc1 −

1

N
δacc1bcc1 δmcc1ncc1

)
δc−cc1mcnc

. (A.5)

In words, when acting on a fluctuations g(c2), P (c1c2) traces all the indices and replaces

them with an identity on color c1; T (c1c2) does the same but spares the shared color (c1c2),

on which it projects on the traceless part; lastly, R(c2−c2c1) is similar to T (c1c2), but it does

not change the color of the traced indices. They satisfy (no sum over c):

P (c1c)P (cc2) = P (c1c2) , P (c1c)T (cc2) = T (c1c)P (cc2) = 0 ,

T (c1c)T (cc2) = R(c2−c2c)δc1c2 , T (c1c)R(c−cc2) = T (c1c)δc1c2 (A.6)

R(c−cc1)R(c−cc2) = R(c−cc2)δc1c2 , P (c1c)R(c−cc2) = R(c−cc1)P (cc2) = 0 .

In the vector space spanned by g the 4-point kernel splits as the sum of two operators

K = K̂(T + P), with:

P =


0 P (1 2) . . . P (1 q)

P (2 1) 0 . . . P (2 q)

...

P (q 1) P (q 2) . . . 0

 , T =


0 T (1 2) . . . T (1 q)

T (2 1) 0 . . . T (2 q)

...

T (q 1) T (q 2) . . . 0

 . (A.7)
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Introducing also the projectors:

Q =

P
(1 1) 0 0

0
. . . 0

0 0 P (q q)

 , R = T2 =


∑

c 6=1R
(1−1c) 0 0

0
. . . 0

0 0
∑

c 6=q R
(q−qc)

 , (A.8)

the identity can be decomposed in orthogonal components as I = Î + Q + R, where Î =

I−Q− R. Using such a decomposition of the identity we can write:

g = Qg + Rg + Îg , (A.9)

which in components is:

g
(c)
acbc

= g(c)δcacbc
+
∑
c1 6=c

g
(cc1)
acc1bcc1

δc−cc1acbc
+ ĝ

(c)
acbc

, (A.10)

with:

g(c) =
1

N q−1
δcmcnc

g
(c)
mcnc ,

g
(cc1)
acc1bcc1

=
1

N q−2

(
δacc1mcc1 δbcc1ncc1 −

1

N
δacc1bcc1 δmcc1ncc1

)
δc−cc1mcnc

g
(c)
mcnc ,

δc−cc1acbc
ĝ

(c)
acbc

= 0 ,

(A.11)

which is the decomposition introduced in (4.55).

The quadratic action for the fluctuations thus writes:

〈g|(I− λ2K)|g〉 = 〈Qg|(Q− λ2K̂P)|Qg〉+ 〈Rg|(R− λ2K̂T)|Rg〉+ 〈Îg|̂Ig〉 . (A.12)

Furthermore, we can decompose:

〈Rg|(R− λ2K̂T)|Rg〉 = N q−2
∑
c1<c2

(
g(c1c2) g(c2c1)

)( 1 −λ2K̂

−λ2K̂ 1

)(
g(c1c2)

g(c2c1)

)
. (A.13)

Lastly, reintroducing the time variables, we notice that given that g
(cc′)
ab (t, t′) = −g(cc′)

ba (t′, t)

, we can rewrite (omitting the subscript cc′ on the indices):

g
(cc′)
ab (t, t′)g

(cc′)
ab (t, t′) =

∫
s,s′

g
(cc′)
ab (t, t′)=ab;mn(t, t′; s, s′)g(cc′)

mn (s, s′) , (A.14)

where:

=ab;mn(t, t′; s, s′) = Sab;mnI−(t, t′; s, s′) +Aab;mnI+(t, t′; s, s′) , (A.15)

and:

Sab;mn =
1

2
(δamδbn + δanδbm) , (A.16)

Aab;mn =
1

2
(δamδbn − δanδbm) , (A.17)

I±(t, t′; s, s′) =
1

2

(
δ(t− s)δ(t′ − s′)± δ(t− s′)δ(t′ − s)

)
. (A.18)

Together, (A.12), (A.13), and (A.14) realize the block-diagonalization described in the text,

thus leading to the trace log terms in (4.51) upon integration over the fluctuations.17

17Plus some constant factors (in particular logarithmic terms in N coming for example from the Nq−2

factor in (A.13)), which can be absorbed in the measure.
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