
J
H
E
P
0
5
(
2
0
1
8
)
1
4
0

Published for SISSA by Springer

Received: April 9, 2018

Accepted: May 11, 2018

Published: May 23, 2018

Quantum fields during black hole formation:

how good an approximation is the Unruh state?
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Abstract: We study the quantum effects of a test Klein-Gordon field in a Vaidya space-

time consisting of a collapsing null shell that forms a Schwazschild black hole, by explic-

itly obtaining, in a (1 + 1)-dimensional model, the Wightman function, the renormalised

stress-energy tensor, and by analysing particle detector rates along stationary orbits in

the exterior black hole region, and make a comparison with the folklore that the Unruh

state is the state that emerges from black hole formation. In the causal future of the shell,

we find a negative ingoing flux at the horizon that agrees precisely with the Unruh state

calculation, and is the source of black hole radiation, while in the future null infinity we

find that the radiation flux output in the Unruh state is an upper bound for the posi-

tive outgoing flux in the collapsing null shell spacetime. This indicates that back-reaction

estimates based on Unruh state calculations over-estimate the energy output carried by

so-called pre-Hawking radiation. The value of the output predicted by the Unruh state

is however approached exponentially fast. Finally, we find that at late times, stationary

observers in the exterior black hole region in the collapsing shell spacetime detect the local

Hawking temperature, which is also well characterised by the Unruh state, coming from

right-movers. Early-time discrepancies between the detector rates for the Unruh state and

for the state in the collapsing shell spacetime are explored numerically.
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1 Introduction

Quantum field theory in curved spacetimes has made several remarkable physical predic-

tions in the past years. A particularly notable one is that of black hole thermal radiation,

predicted by Hawking [1], which eventually lead to the discovery of black hole evaporation

and gave birth to the black hole information loss puzzle [2], which remains open. Since then,

the study of black hole radiation in field theory has become a large industry of theoretical

and mathematical physics.

There exists the common folklore that the modelling of the state of a test quantum

field (typically Klein-Gordon) in a collapsing star spacetime, which eventually forms a black

hole at late times, is well described by considering the analogous system of a quantum field

propagating in Schwarzschild spacetime in the Unruh state, a stationary but time-reversal

non-invariant state introduced by Unruh in [3]. In particular, computations with the Unruh
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state show that there is a negative energy flux across the Schwarzschild horizon that is the

source of Hawking radiation.

It is clear, however, that this model can only be good (extremely good, as we shall see in

this work) in certain spacetime regions, since stellar collapse is a non-stationary process, and

hence, the early time quantum effects are not captured by this analogy. This observation

has produced some speculation that early-time processes may avoid the formation of black

holes altogether. Recently, the works [4–11] are in this vein. On the other hand, the recent

works [12–14] argue in the oposite direction, namely, that early time quantum processes —

pre-Hawking radiation — cannot prevent the horizon formation, based on simple models

of stellar collapse. It is also worth reminding ourselves of earlier work in the same spirit

of [12, 13] that is based on the Unruh state analysis [15], as well as [16], which developed en

passant powerful conformal techniques for (1+1)-dimensional conformally-coupled theories,

and pointed at the connection between Hawking radiation and the conformal anomaly of

the renormalised stress-energy tensor, established in [17].

In the present paper, we take on the question of how good the Unruh state is in

modelling quantum effects during black hole formation. Our framework is the following:

we consider a spherically symmetric collapsing null shell spacetime, such that the exterior

region of the shell is isometric to Schwarzschild spacetime. We then consider a test quantum

Klein-Gordon field and construct a natural state in the collapsing shell spacetime, and

compare the quantum effects in this state with those of the Unruh state in Shwarzschild.

We do this exactly in 1+1 dimensions by considering incoming modes of positive frequency

with respect to ∂v at I − and imposing Dirichlet boundary conditions at the origin of the

radial coordinate, r = 0, to emulate a (3+1)-dimensional spherically symmetric spacetime.

This allows one to construct the Wightman function explicitly by standard sum-over-modes

techniques, much like is done in receding mirror spacetimes [18, 19], which have also been

very useful models in characterising the emergence of thermal radiation in non-stationary

situations. See e.g. the recent work [20–22], as well as [23] for the detector responses in the

context of receding mirrors.

We give a closed-form expression for the Wightman function in the 1+1 collapsing null

shell spacetime without any approximations, and obtain both the renormalised stress-tensor

in this state by conformal techniques [16] and the detector rates of late-time observers with

a derivative coupling to the field [23], so as to measure the experience of local observables.

The derivative coupling is chosen in order to avoid the problems stemming from infrared

ambiguities in the Wightman function that are well-known to appear in 1 + 1 dimensions

for conformal theories, but which do not plague the renormalised stress-enegy tensor.1

We then go on to compare these quantum effects produced by the field in the collapsing

shell spacetime state with those produced in the Unruh state. The comparison can be

readily made in the region to the future of the shell, where the spacetime is isometric to

Schwarzschild and one can therefore identify the two theories in a precise way, as a field

algebra equipped with either the state that we construct in this work or the Unruh state.

1Incidentally, the two-point function that we construct is absent of these ambiguities, but since our

purposes are to compare our findings with the Unruh state, we systematically adhere to the derivative-

coupling Unruh-DeWitt detector.
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In the case of the renormalised stress-energy tensor, we find that the behaviour near

the horizon is matched very precisely by the Unruh state, to order O
(
(r − 2M)2

)
and

is indeed dominated by a negative ingoing flux. Near future null infinity, in both cases

there is a positive outgoing flux of energy carrying Hawking radiation, but in the case

of the collapsing shell there is a retarded time dependence as r → ∞ (or the advanced

time v →∞), with this dependence being a strictly non-decreasing function of the u-time.

This flux at future null infinity however approaches exponentially fast (in u-time) the value

of the flux predicted using the Unruh state. The values for the two stress-energy tensor

coincide at future timelike infinity, as discussed below eq. (4.12). A numerical comparison

of the two states is plotted, showing the early-time discrepancies in the two cases.

In the case of local observers equipped with particle detectors, we see that a detector

that is switched on at the shell crossing2 and travels towards future timelike inifinity at fixed

radial coordinate will detect at late times Hawking radiation at the local Hawking temper-

ature. This is also known to be the case in the Unruh state, and we therefore see that late

time observers register the thermal character of the black hole radiation in this more realis-

tic setting. The early-time discrepancies in the rates are analysed by numerical techniques.

We shall therefore conclude that the Unruh state is an excellent approximation in the

near horizon regime description of the quantum processes during black hole formation. In

particular, it captures in an excellent way the negative energy flux across the horizon giving

rise to black hole radiation. Moreover, when analysing the radiation output at future null

infinity in the exterior black hole region (v → ∞) of the collapsing shell spacetime, it

can be verified that the outgoing flux (see eq. (4.12) below) is strictly non-decreasing in

u-time, showing that the largest output of radiation comes from the near-horizon region.

Thus, making it unlikely that pre-Hawking radiation can account for black hole formation

avoidance. Indeed, the stress-energy flux output at any point along I + in the collapsing

shell scenario is bounded by the constant outgoing flux calculated from the Unruh state (see

eq. (4.11) below). Thus, any back-reaction evaluation based on Unruh state estimates [15]

(and also on the one in [16]) is already over-estimating the early-time outgoing radiation

flux at infinity.

This paper is organised in the following way: in section 2 we provide the geomet-

ric and quantum-field-theoretic preliminaries of the Klein-Gordon quantum theory in

Schwarzschild spacetime (and its maximal extension), stressing the rôle played by the

spacetimes isometries in the definition of states, while at the same time introducing some

of the notation for this paper. In section 3 we describe the geometry of the collapsing null

shell spacetime and in 1 + 1 dimensions obtain the state of a Klein-Gordon field propagat-

ing on this spacetime, which is defined in terms of positive frequency modes at I − with

respect to ∂v and with Dirichlet boundary conditions at r = 0, and which emulates the

state of a Klein-Gordon field in a (3 + 1)-dimensional, spherically-symmetric, collapsing

null shell spacetime. We then obtain the stress-energy tensor of the Klein-Gordon field in

this state in section 4, and compare it with the Unruh-state stress-energy in Schwarzschild.

2The switch-on time is however irrelevant near future null infinity, and this is but a particular illustrative

choice.
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The comparison can be done unambiguously in the region in the causal future of the shell

because this region is isometric to part of the maximally extended Schwarzschild spacetime.

In this section, we also provide a comparative analysis for the near-horizon and near-future-

null-infinity regimes for the two states, finding that the ingoing negative energy flux at the

horizon, characteristic of the Unruh state, is in excellent agreement with the collapsing

null shell scenario. We also provide the analysis for the flux radiation output at I +, as

discussed above. In section 5 we show that the black hole radiation in the collapsing shell

spacetime is of thermal character at late times, by analysing the rate of a sharply-switched

detector coupled to the derivative of the Klein-Gordon field. We find that near i+ the

rate registered from the right-movers by a detector following an orbit generated by ∂t in

the exterior black hole region to the future of the shell, which is an orbit at fixed radial

coordinate, is thermal at the local Hawking temperature, i.e., the detector registers the

Hawking temperature weighted by an appropriate Tolman factor. The rate near future

timelike infinity is in excellent agreement with the rate detected from a coupling to a field

in the Unruh state. Finally, our conclusions appear in section 6.

Throughout this paper, by a spacetime, (M, g), we mean a real n-dimensional, con-

nected (Hausdorff, paracompact) differentiable manifold, M , equipped with a Lorentzian

metric g with signature (−,+, . . . ,+). Our spacetimes of interest are additionally time-

orientable and globally hyperbolic [24, 25]. We use units in which the speed of light, the

reduced Planck’s constant and Newton’s constant have value unit, c = ~ = GN = 1, and

we further fix Boltzmann’s constant as kB = 1. Spacetime points are denoted by Roman

characters (x, y, . . . ). Abstract tensor indeces are denoted by latin characters, a, b, . . ..

Complex conjugation is denoted by an overline. The adjoint of a Hilbert-space operator,

Â, is denoted by Â∗. O(x) denotes a quantity for which O(x)/x is bounded as x→ 0 and

o(x) is such that o(x)/x→ 0 in the limit under consideration.

2 The Klein-Gordon field in Schwarzschild spacetime

In this section, we briefly recall some elements of quantum field theory in Schwarzschild

spacetime. This will also serve the purpose of introducing the relevant notation for this

work. First, we shall recall the geometric structure of Schwarzschild spacetime and its

maximal extension, reminding ourselves the large symmetry structure of these spacetimes,

which serves as a guideline for constructing the quantum theory states. We shall then

introduce a Klein-Gordon field in the Schwarzschild maximal extension and recall the

properties of the usual states of the theory, the Boulware, Unruh and Hartle-Hawking-

Israel states, emphasising the physical relevance of the Unruh state.

2.1 Geometric preliminaries

For the purposes of the discussion of field theory global states in Schwarzschild spacetime, it

is useful to consider the maximal Kruskal-Szekeres extension, to which we refer as Kruskal

spacetime, and to consider states on field algebras defined thereon. Kruskal spacetime,
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Region sgn(ξaξa) sgn(U) sgn(V )

I: Exterior 2M < r −1 −1 +1

II: Black hole 0 < r < 2M +1 +1 +1

III: White hole 0 < r < 2M +1 −1 −1

IV: Isometric exterior 2M < r −1 +1 −1

Table 1. Regions of the Kruskal-Szekeres extension of the Schwarzschild black hole.

(MK, gK), is defined by the underlying manifold MK = R2 × S2 equipped with the metric

gK = −32M3e−r/(2M)

r
dUdV + r2

(
dθ2 + sin2 θdφ2

)
(2.1)

where U ∈ R, V ∈ R, θ ∈ [0, π] and φ ∈ [0, 2π) are global coordinates, r is a non-negative

global spacetime function defined by [r(U, V )/(2M) − 1] exp[r(U, V )/(2M)] = −UV and

M > 0 is a length parameter corresponding to the ADM black hole mass. A spacetime

singularity is located at r = 0, and the spacetime is asymptotically flat as r → ∞. The

spacetime is globally hyperbolic; for example U + V = 0 is a Cauchy surface.

The isometry group of Kruskal spacetime is generated by the spacelike Killing vector

fields that generate the spherical symmetry, ζ1 = ∂φ, ζ2 = sinφ∂θ + cot θ cosφ∂φ and

ζ3 = cosφ∂θ − cot θ sinφ∂φ, together with ξ = (4M)−1(−U∂U + V ∂V ). The Killing vector

ξ defines a bifurcate Killing horizon (by ξaξa = −(1 − 2M/r) = 0), which is located at

r = 2M and separates the spacetime into four regions, covered by the charts indicated in

table 1. The Killing horizon may be decomposed as H = H+ ∪H−, where H− is located at

V = 0 and H+ at U = 0.

An interesting region of the maximally extended Schwarzschild spacetime is the region

V > 0, which consists of Regions I and II and the portion of the Killing horizon joining

them. In this region, we can introduce an ingoing Eddington-Finkelstein coordinate with

the transformation V = exp[v/(4M)], v ∈ R, and view this submanifold as an asymp-

totically flat, globally-hyperbolic “ingoing Eddington-Finkelstein” spacetime,3 (MS, gS) as

the underlying manifold MS = R2 × S2 equipped with the metric induced from Kruskal

spacetime,

gS = −8M2e−r/(2M)+v/(4M)

r
dUdv + r2

(
dθ2 + sin2 θdφ2

)
. (2.2)

The group of isometries in this region is inherited from Kruskal, and generated by

the Killing vectors ζ1, ζ2 and ζ3, together with the restriction of ξ, which can be written

globally as ξ = −(4M)−1U∂U + ∂v.

The exterior region of Schwarzschild, Region I with U < 0 and V > 0, is covered

by the familiar Schwarzschild coordinates. They are related to the global coordinates by

introducing for U < 0 the outgoing Eddington-Finkelstein coordinate u = −4M ln(−U),

3Beware that Cauchy surfaces in Kruskal spacetime do not necessarily restrict to Cauchy surfaces in the

non-maximally extended Schwarzschild spacetime.
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and further relating v = t+ r∗, u = t− r∗, where r∗ = r+ 2M ln[r/(2M)−1] is the tortoise

radial coordinate. The Schwarzschild metric acquires the familiar form

gS = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.3)

The isometry group of the exterior region is generated by ζ1, ζ2 and ζ3, together with

the restriction of ξ, which can be written as ξ = ∂t.

2.2 States in (the maximal extension of) Schwarzschild spacetime

It is useful to think of the real Klein-Gordon field in an arbitrary globally-hyperbolic

curved spacetime, (M, g), in terms of smeared fields, Φ(f) for test functions f ∈ C∞0 (M),4

generating an abstract ∗-algebra with identity 11, A (M), satisfying the following axioms.

Let f, g ∈ C∞0 (M), then (i) f 7→ Φ(f) is linear (linearity), (ii) Φ(f)∗ = Φ(f) (her-

miticity), (iii) Φ((� −m2 − ξR)f) = 0 (field equation) and (iv) [Φ(f),Φ(g)] = −iE(f, g)

(spacetime commutation relations). Here E = E− − E+ is the advanced-minus-retarded

classical causal propagator of the Klein-Gordon equation (see. e.g. [26]), where E− and E+

are the advanced and retarded Green operators of the Klein-Gordon equation, that can be

regarded as a bi-distribution taking f, g ∈ C∞0 (M) to

E(f, g) =

∫
M×M

dvol(x)dvol(x′)f(x)E(x, x′)g(x′). (2.4)

It is guaranteed to exist and be unique because the Klein-Gordon operator is

normally hyperbolic (having unique E∓), and satisfies (� − m2 − ξR)Ef = 0, i.e.,

Ef(x) =
∫
Mdvol(x′)E(x, x′)f(x′) solves the classical Klein-Gordon equation. In fact, all

smooth solutions to the classical Klein-Gordon equation with initial data of compact sup-

port are of the form φf = Ef ∈ SolKG, with f ∈ C∞0 (M). See Lemma 3.2.1 in [27] for the

argument in Minkowski space that can be extended to globally hyperbolic spacetimes.

We refer to A (M) as the real Klein-Gordon algebra and, from this point of view, the

Klein-Gordon field is an algebra-valued distribution.5

States are linear functionals ω : A (M) → C, such that they are (i) normalised,

ω(11) = 1 and (ii) positive, for A ∈ A (M), ω(AA∗) ≥ 0, and they are determined by

the specification of all the n-point functions of the form ω(Φ(f1) . . .Φ(fn)). Of particular

relevance are the quasi-free or Gaussian states, which are determined fully by the two-point

function, via the relation ω(exp[iΦ(f)]) = exp[−ω(Φ(f)Φ(f))/2]. Vacuum states are, in

particular, quasi-free.

The standard textbook approach, where fields are operator-valued distributions acting

on a Hilbert space, can be recovered using the GNS construction. Out of the Klein-Gordon

algebra, A (M), and a state, ω, on the algebra, there is a standard procedure to construct

a GNS triple (π,D ⊂H ,Ω), where π : A (M)→ L (D) is a representation with respect to

the state ω that maps elements of the algebra to operators on a dense subspace D ⊂H of

the Hilbert space H and where Ω ∈H is a cyclic vector, which means that span{π(A)Ω}
4Formally, we can represent Φ(f) =

∫
M

dvol(x)Φ(x)f(x).
5In 1 + 1 dimensions, it is more convenient to think of the algebra of derived fields.
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(with A ∈ A ) is dense in H , that we identify with the vacuum. The two-point function

is ω(Φ(f)Φ(g)) = 〈Ω|π(Φ(f))π(Φ(g))Ω〉. See [28, chapter 5.1.3] for an overview of the

GNS construction.

We denote Φ̂ = π(Φ). In terms of the one-particle structure of the Hilbert space with

respect to ω, (K,H), which is such that H is the symmetric Fock space built out of the one-

particle Hilbert space H, H = ⊕∞n=0H◦n, with a prescribed notion of positive frequency

given by the polarisation map K : SolKG → H (mapping classical Klein-Gordon solutions to

positive-frequency Hilbert space vectors) [27, chapter 2.3], the operator Φ̂ can be written in

terms of annihilation and creation operators acting on Fock space, respectively â : H →H

and â∗ : H →H as Φ̂(f) = iâ(KEf)− iâ∗(KEf). The details can be found in [27, 29].

For the problem at hand, that of field theory in Schwarzschild spacetime, one can

construct three distinguished states, that are invariant under either (i) the isometries of the

whole Kruskal-Szekeres extension of Schwarzschild spacetime, (MK, gK), (ii) the isometries

of the non-maximally extetended Schwarzschild black hole, comprising regions I and II

and the portion of the horizon joining them, (MS, gS) or (iii) the isometries of the exterior

region of Schwarzschild, correspoding to Region I in the Kruskal extension.

Case (i) is known as the Hartle-Hawking-Israel state, defined in the whole Kruskal

manifold, where it can be seen as a map ωHHI : A (MK) → C. It was conjectured to

exist initially in [30, 31], shown to be unique in [29] and constructed in four spacetime

dimensions in [32]. It has modes of positive and negative frequency with respect to the

generators of the Killing horizon, ∂U and ∂V . It represents the state for an eternal black

hole in equilibrium. Further, the restriction of the state to Region I is a KMS (thermal

equilibrium) state at the Hawking temperature. Case (iii) is known as the Boulware state.

It is defined in the exterior region of Schwarzschild and was initially studied in [33]. It has

modes of positive and negative frequency with respect to the exterior Schwazschild timelike

Killing vector field ξ = ∂t, and fails to be regular at the event horizon.

The relevant setting for us is case (ii), the Unruh state, which is defined as a map in the

“ingoing Eddington-Finkelstein” region of the Kruskal space, and hence can be thought

of as a map ωU : A (MS) → C, whose state vector we denote by |ΩU 〉. This state was

introduced in [3] to mimick the late-time quantum behaviour on a black hole produced by

stellar collapse, and first abstractly constructed in 3 + 1 dimensions in [34]. It is obtained

by prescribing modes of positive frequency on the Cauchy surface Σ = I −∪H−, obtained

from the union of the past null infinity, I −, located at U → −∞, with the past event

horizon, located at V = 0 in the Kruskal spacetime (corresponding to v → −∞). The

positive frequency on the past horizon is prescribed with respect to the horizon generator,

∂U (with U being the affine parameter along H−), whereas the positive frequency on past

null infinity is prescribed with respect to the vector field ∂v, the null geodesic generator of

I − (with v being the affine parameter along I −).

Moreover, since its introduction, the Unruh state has been a key ingredient in the

study of black hole radiation, and its eventual evaporation. In particular, it is this state

that is considered for obtaining the Hawking temperature that can be recorded at i+ by

an observer, as well as the flux of stress-energy carried away by Hawking radiation. See for

example [15], in particular appendix A therein, for a discussion on the choice of the Unruh

– 7 –
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state in this context. As mentioned in the Introduction, the purpose of this work is to

study in a simple (1 + 1)-dimensional model how the qualitative features captured by the

Unruh state compare with the actual properties a state in a spacetime of stellar collapse

that is non-stationary in the exterior region. The reasons to favour a (1 + 1)-dimensional

treatment are, first, that it allows for explicit computations with analytic control and,

second, that they provide a good estimate on the amount of radiation that can escape to

infinity in 3 + 1 dimensions, as argued in [35], and also discussed in [12].

A remark is due at this stage. While it is true that the Boulware and HHI state

Wightman functions in 1 + 1 dimensions are invariant under the isometries generated by

the Killing vector ξ, the Unruh state Wightman function changes under these isometries by

an additive constant [36, 37]. The origin of this issue is the well-known infrared ambiguity

of the (1 + 1)-dimensional conformally coupled Klein-Gordon field [34]. Nevertheless, the

Unruh state may still be regarded as invariant under the isometries in the sense that the

stress-energy tensor and other quantities built from derivatives of the Wightman function

are invariant. In higher dimensions this situation does not arise, and the Unruh state is

invariant in the standard sense.

3 The Klein-Gordon field in a collapsing null shell spacetime

In this section, we study the Klein-Gordon theory in an ingoing Vaidya spacetime [38]

with a discontinuous length function, M, which represents a thin, ingoing, spherically-

symmetric light pulse, a null shell, with total energy M , that forms a black hole. We show

how to construct a state for the quantum Klein-Gordon field in 1+1 dimensions by writing

two-point function. Importantly, in the exterior region of the black hole produced by the

collapsing shell, to the future of the shell, the state that we construct is not invariant with

respect to the isometry of Schwazschild spacetime, generated by ξ = ∂t, unlike the Unruh

state (up to an additive constant). As a consequence, an observer moving at a fixed radius

will detect, by reading his trust-worthy particle detector, time-dependent radiation coming

from the black hole, and the flux of Hawking radiation will also be time-dependent.

3.1 Geometry of the collapsing null shell spacetime

The spacetime that we consider, which we denote by (MV, gV) has as an underlying man-

ifold R2 × S2, and it is equipped with the metric

gV = −
(

1− 2M(v)

r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
, (3.1a)

M(v) =

{
0, if v < 0,

M, if v ≥ 0,
(3.1b)

where v ∈ R is a null coordinate, r ∈ (0,∞) is a radial coordinate and θ ∈ [0, π] and

φ ∈ [0, 2π) are angular coordinates. The shell is located at v = 0, along a null surface S.

For v ≥ 0 the spacetime is isometric to a portion of Schwazschild spacetime with length

parameter M , with v playing the rôle of the advanced Eddington-Finkelstein coordinate,
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Figure 1. Conformal diagram of the Vaidya spacetime describing a collapsing null shell that forms

a black hole.

and a standard change of coordinate puts the metric in the form of eq. (2.2) in this region.

For v < 0 the spacetime is isometric to a portion of Minkowski spacetime, with v playing the

rôle of a Minkowski outgoing light-cone coordinate. We denote the black hole horizon by

H+. The shell falls into the singularity at (v, r) = (0, 0) or, in terms of Kruskal coordinates

that cover the causal future of the shell, at (U, V ) = (1, 1).

The spacetime can be thought of as the union of 4 regions, as shown in the conformal

diagram in figure 1. We call the exterior black hole region to the past of the shell, not

including the shell, J−(S) ∩ J−(I +) \ S, Region 1. We call Region 2 the interior black

hole region to the past of the shell, not including the shell, J−(S) ∩ (J−(I +))
c \ S. By

Region 3 we denote the exterior black hole region in the causal future of the shell, J+(S)∩
J−(I +). We call Region 4 the interior black hole region in the causal future of the shell,

J+(S) ∩ (J−(I +))
c
.

The (1+1)-dimensional version of the spacetime that we have just described is obtained

by suppressing the angular coordinates. In the sequel, we find the mode functions for a

Klein-Gordon field propagating in a 1 + 1 collapsing null shell spacetime, with the aim of

finding the Wightman function of the quantum theory.

3.2 Construction of the two-point function

We consider the real Klein-Gordon algebra A (MV) for a massless, conformally coupled

Klein-Gordon field in the null shell spacetime, and seek to construct a state ω : A (MV)→ C
for the theory. We shall do this directly by obtaining the classical mode solutions. By doing

this we in turn commit to a representation of the field on a Hilbert space.

We consider classical solutions to �ϕ = 0, where ϕ : MV → R, as incoming modes

from infinity, which are of positive frequency with respect to v, appropriately defined in

regions 1 and 3, which in addition satisfy a Dirichlet boundary conditions at r = 0 in

regions 1 and 2, so as to mimick the spherically-symmetric sector of the wave equation in
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3 + 1 dimensions. In regions 1 and 2, the mode solutions are

Φ1,2
ω = − i

(4πω)1/2

(
e−iωu − e−iωv

)
, (3.2)

where u = t− r in Regions 1 and 2 and ω is the mode frequency, while in Regions 3 and 4

one has

Φ3,4
Ω = − ieiΘΩ

(4πΩ)1/2

(
G(U)− e−iΩv

)
, (3.3)

where Ω is the mode frequency, ΘΩ is a phase and G(U) is an as-of-yet undetermined

function of the Kruskal U -coordinate.

In order to determine the function G(U), one can suppose that the phase ΘΩ = 0 and

that Ω = ω, and match the mode functions along the shell at v = 0. One then obtains

the relation

G(U) = ei2ωr = exp [i 4ωM (1 +W (−U/e))] , (3.4)

where W is the (strictly increasing) principal branch of the Lambert W -function [39],

defined on the domain (−1/e,∞).6 Thus, we have that

Φ3,4
ω = − i

(4πω)1/2

(
ei 4ωM(1+W (−U/e)) − e−iωv

)
. (3.5)

The Wightman function can now be written down explicitly as a mode sum by standard

methods, see e.g. [40]. We are interested in obtaining the Wightman function in Regions 3

and 4. Define the function ū(U) = −4M (1 +W (−U/e)). Then, the Wightman function

defines a state by W (x, x′) := 〈Ω|Φ̂(x)Φ̂(x′)Ω〉, and it is given by

Wε

(
x, x′

)
= − 1

4π
ln

[
(ū− ū′ − iε) (v − v′ − iε)

(v − ū′ − iε) (ū− v′ − iε)

]
. (3.6)

It can be seen that the action of the isometries generated by the Killing vector

ξ = (4M)−1(−U∂U + V ∂V ) in regions 3 and 4 does not leave the state (3.6) invariant.

4 Comparison of the stress-energy tensors

In this section, we wish to compare the renormalised stress-energy tensor in the Unruh

state, with state vector |ΩU〉, and in the state that we have constructed in the collapsing

null shell spacetime, with state vector |Ω〉. This comparison is possible because, while the

states are defined in different spacetimes, the union of Regions 3 and 4 of the collapsing

null spacetime is isometric to the region of Kruskal spacetime delimited by V ≥ 1, which is

included in the union of the Kruskal future horizon, Regions I and II. We shall make this

statement more precise below. First, we use the conformal techniques of Davies, Fulling

and Unruh [16, 40] to obtain the stress-energy tensors in the states |ΩU〉 and |Ω〉. The

key point is that 1 + 1 conformally flat spacetimes are conformal to (a region or all of)

Minkowski spacetime.

6Recall that −∞ < U < 1 in the region of interest.
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Let g and g̃ be two conformally related metrics, gab = Ω2g̃ab, where Ω2 > 0 is a

conformal factor. In 1 + 1 dimensions this relation takes the simple form g = −Ω2dudv

using appropriate coordinates. Then, we have that the renormalised stress-energy tensors

are related by

〈Ω|T ren
ab Ω〉 = 〈Ω̃|T ren

ab Ω̃〉+ Θab − (1/48π)R gab, (4.1)

with Ωab locally defined as

Θuu = −(1/12π)Ω∂2
uΩ−1, (4.2a)

Θvv = −(1/12π)Ω∂2
vΩ−1, (4.2b)

Θuv = Θvu = 0, (4.2c)

where |Ω〉 and |Ω̃〉 are conformally related state vectors defined on the spacetimes (M, g)

and (M̃, g̃) respectively, and R is the Ricci scalar of the spacetime (M, g).

4.1 Stress-energy tensor in the Unruh state

The Wightman function of the Unruh state is constructed from mode functions Φω =

− i
(4πω)1/2

(
e−iωŪ − e−iωv

)
, where the first term on the right hand side is a right-moving

mode, while the second is a left mover. Here Ū = 4MU has dimensions of length supplied by

the inverse surface gravity at the horizon, a natural length scale that renders the exponent

dimensionless. Let us write the Schwarzschild metric as gS = −Ω2dŪdv with

Ω2(Ū , v) =
2Me−r/(2M)+v/(4M)

r
= −(1− 2M/r)

U
, (4.3)

where r is a function of U (hence of Ū) and v, as explained above, and the right-hand

side is understood in a limiting sense as r → 2M . This choice is made such that the

two null corrdinates in question are in each case the two null coordinates that define the

positive frequency notion of the relevant mode functions. This allows us to say that the

associated state in the associated flat spacetime is the Minkowski vacuum therein and has

vanishing stress-energy. The Ricci scalar in 1 + 1 Schwarzschild is R = 4M/r3, therefore

the application of formula (4.1), taking Ū and v as the null coordinates, with respect to the

Minkowski vacuum, |Ω̃〉 = |ΩM〉 in Minkowski spacetime with the metric suitably written

as g̃ = gM = −dŪdv yields

〈ΩU|T ren
ab ΩU〉= 〈ΩU|T ren

Ū ŪΩU〉dŪadŪb+2〈ΩU|T ren
Ū v ΩU〉dŪadvb+〈ΩU|T ren

vv ΩU〉dvadvb, (4.4a)

〈ΩU|T ren
Ū ŪΩU〉=

(1−2M/r)2

48πŪ2r2

(
4Mr+r2+12M2

)
, (4.4b)

〈ΩU|T ren
vv ΩU〉=

M(3M−2r)

48πr4
, (4.4c)

〈ΩU|T ren
Ū v ΩU〉= 〈Ω|T ren

v Ū Ω〉=−M(1−2M/r)

24πUr3
. (4.4d)
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4.2 Stress-energy tensor in the collapsing null shell spacetime

We are interested in obtaining the renormalised stress-energy tensor in Regions 3

and 4, where the Wightman function of the state that we have constructed is built

out of the left and right-moving mode functions that appear in eq. (3.5), namely

Φ3,4
ω = − i

(4πω)1/2

(
e−iωū − e−iωv

)
, where ū can be related to the Kruskal U coordinate by

ū = −4M (1 +W (−U/e)). We choose to write the metric gV in Regions 3 and 4 as

gV = −Ω2dūdv with

Ω2(ū, v) = −2Me−r/2MeκvUū

(ū+ 4M)r
=
ū(1− 2M/r)

ū+ 4M
, (4.5)

where r is now viewed as a function of ū and v, and U as a function of ū. The choice is

made such that the stress-energy tensor in the conformally related spacetime vanishes by

the positive frequency properties of the mode functions (cf. section 4.1).

The application of formula (4.1) yields

〈Ω|T ren
ab Ω〉 = 〈Ω|T ren

ūū Ω〉dūadūb + 2〈Ω|T ren
ūv Ω〉dūadvb + 〈Ω|T ren

vv Ω〉dvadvb , (4.6a)

〈Ω|T ren
ū ū Ω〉 =

M
(
−16(3M + ū)r4 − 2ū4r + 3Mū4

)
48πū2(4M + ū)2r4

, (4.6b)

〈Ω|T ren
vv Ω〉 =

M(3M − 2r)

48πr4
, (4.6c)

〈Ω|T ren
ūv Ω〉 = 〈Ω|T ren

vū Ω〉 = −Mū(1− 2M/r)

12π(4M + ū)r3
. (4.6d)

4.3 Comparison of the stress-energy tensors

We wish to compare the stress-energy tensors as defined in the Unruh state and in the state

constructed in the collapsing null shell spacetime. While the two states are defined on dif-

ferent spacetimes, there exist a region of the Kruskal spacetime, (MK, gK), that is isometric

to the union of Regions 3 and 4 in the collapsing null shell spacetime (MV, gV). The key

point is to view this region as a spacetime on its own right, (M, g), and to define an algebra

of observables and states in this “late-time” spacetime. To make this statement precise, it

is useful to take an algebraic approach based on [41], motivated in turn by the ideas in [42].

See also [43, 44] in for a similar strategy in the context of quantum energy inequalities.

The discussion that follows is necessarily abstract, and a reader interested in concrete

results might proceed to section 4.3.1, considering that the punchline of the ensuing argu-

ment is that comparisons of expectation values of local observables (e.g. the stress-energy

tensor) confined to the shaded regions in figure 2 can be made in a precise sense.

Let (M, g), which we denote the “late-time” spacetime, be defined as the submani-

fold of (MV, gV) covered by Regions 3 and 4 in the collapsing null shell spacetime, with

M = J+(S) (see figure 1) and g the induced metric from gv on M , and let us call

iV : (M, g)→ (MV, gV) the isometric embedding of (M, g) into (MV, gV). There exists

also an isometric embedding into Kruskal spacetime iK : (M, g)→ (MK, gK). See figure 2.

Associated with the “late-time” spacetime is an algebra of observables A (M), whose ele-

ments are defined from algebra-valued distributions, mapping test functions, f ∈ C∞0 (M),
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Figure 2. Isometric embeddings of the “late-time” spacetime into the Kruskal spacetime and the

collapsing null shell spacetime.

to algebra elements. Further, associated to the isometric embeddings, iV and iK, are
∗-preserving, unit-preserving homomorphisms, which are also injective (hence monomor-

phisms), A (iV) : A (M) → A (MV) and A (iK) : A (M) → A (MK) respectively.7 It

follows from the homomorphism property that the kernels, ker[A (iV)] and ker[A (iK)] re-

spectively, must be the ideal of A (M), but if A (M) is simple (as is our case), the ideal

must be trivial or the whole algebra. In the latter case, the homomorphism cannot be

unit-preserving, hence the kernels are trivial, which implies that A (iV) and A (iK) are in-

vertibles, and hence A (M) is ∗-isomorphic with the subalgebras Im[A (iV)] and Im[A (iK)].

To end the argument, we can pullback the state defined in the collapsing null shell

spacetime, ω : A (MV) → C, and the Unruh state defined in the physical region of

Kruskal (see section 2), ωU : A (MS ⊂ MK) → C, to states in the “late-time” spacetime,

ωV = A (iV)∗ω and ωK = A (iK)∗ωU respectively.

We can therefore compare the expectation values of the renormalised stress-energy

tensor with respect to the states ωV and ωK in the late-time spacetime. For simplicity in

the book-keeping of notation, we henceforth continue to refer to ωV as ω (with state vector

|Ω〉) and to ωK as ωU (with state vector |ΩU〉) in the “late-time” spacetime.

4.3.1 Near-horizon behaviour

We can readily compare the behaviour of the stress-energy tensor in the near-horizon

region. For both the Unruh state and for the state produced out of the shell collapse we

have that8

〈Ω|T ren
vv Ω〉= 〈ΩU|T ren

vv ΩU〉=−
1

768πM2
+

(r−2M)2

512πM4
− 5(r−2M)3

1536πM5
+O

(
(r−2M)4

)
, (4.7a)

〈Ω|T ren
uv Ω〉= 〈ΩU|T ren

vu ΩU〉=
r−2M

384πM3
− (r−2M)2

192πM4
+

5(r−2M)3

768πM5
+O

(
(r−2M)4

)
. (4.7b)

7Here, we are considering that the algebra of observables has been suitably enlarged so as to contain the

stress-energy tensor.
8For the purposes of our comparisons, we perform coordinate transformations on eq. (4.4) and (4.6) to

bring the stress-energy tensors to an Eddington-Finkelstein coordinate basis in our region of interest.
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On the other hand, for the Unruh state,

〈ΩU|T ren
uu ΩU〉 =

(r − 2M)2

512πM4
− 5(r − 2M)3

1536πM5
+O

(
(r − 2M)4

)
, (4.8)

while for the collapsing shell state we have

〈Ω|T ren
uu Ω〉 =

(r − 2M)2

512πM4

(
1− e−

v
2M

)
−

(r − 2M)3
(

5 + 3e−
2v
4M − 8e−

3v
4M

)
1536πM5

+O
(
(r − 2M)4

)
. (4.9)

Thus, we can see from eq. (4.7), (4.8) and (4.9) that the near horizon behaviour of

the stress-energy tensor of a Klein-Gordon field during stellar collapse is captured very

precisely by the Unruh state, with deviation of order O
(
(r − 2M)2

)
. In particular, the

flux of negative energy that gives rise to black hole radiation, eq. (4.7a), is the dominant

contribution of the stress-energy tensor in this regime.

4.3.2 Near-future-infinity behaviour

Near the future null infinity, at fixed ū and as r →∞ (or v →∞), we have on the one hand,

〈Ω|T ren
v v Ω〉 = 〈ΩU|T ren

v v ΩU〉 = − M

24πr3
+

M2

16πr4
+O

(
r−5
)
, (4.10a)

〈Ω|T ren
u v Ω〉 = 〈ΩU|T ren

u v ΩU〉 =
M

24πr3
− M2

12πr4
+O

(
r−5
)
. (4.10b)

On the other hand, for the Unruh state

〈ΩU|T ren
uu ΩU〉 =

1

768πM2
− M

24πr3
+

M2

16πr4
+O

(
r−5
)
, (4.11)

while in the collapsing shell spacetime

〈Ω|T ren
uu Ω〉 =

−3M2 −Mū

3πū4
− M

24πr3
+

M2

16πr4
+O

(
r−5
)
. (4.12)

From eq. (4.12) it is clear that the radiation output to infinity is positive, but has a

richer form compared to the output radiated in the Unruh state. We also note that as

one approaches the future timelike infinity, i.e., as ū→ −4M along the future null infinity,

the leading terms of eq. (4.11) and (4.12) coincide, 〈Ω|T ren
uu Ω〉|I + − 〈ΩU|T ren

uu ΩU〉|I + =

O
(
(ū+ 4M)2

)
. Moreover, the leading term of eq. (4.12) has non-decreasing derivative

with respect to ū, and therefore ∂u〈Ω|T ren
uu Ω〉 ≥ 0 for ū ∈ (−∞,−4M ] indicating that at

late u-time the output of radiation at I + increases. Hence, we find that

0 ≤ 〈Ω|T ren
uu Ω〉|I + ≤ 1/

(
768πM2

)
. (4.13)

The upper bound in eq. (4.13) is attained exponentially fast as u → ∞. This can be

verified by analysing the asymptotic behaviour (cf. eq. (4.12)) of

F (u) =
1

768πM2
+

3M2 +Mū

3πū4
=

1

768πM2

(
1−

1− 4W
(
e−u/(4M)−1

)(
1 +W

(
e−u/(4M)−1

))4
)
, (4.14)

with (1− 4W (z))/(1 +W (z))4 = 1− 8z +O
(
z2
)
.
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(a) 〈Ω|T ren
uu Ω〉 (b) 〈ΩU|T ren

uu ΩU〉

Figure 3. Sampling of the values taken in the “late-time” spacetime (see figure 2) by T ren
uu , the

renormalised stress-energy tensor, in (a) the state produced in the collapsing shell spacetime, |Ω〉,
and (b) the Unruh state, |ΩU〉. Notice that as u → ∞, near the horizon at r = 2M , the values of

the expectation values coincide.

For the convenience of the reader, samplings of the values taken by 〈Ω|T ren
uu Ω〉 and

〈ΩU|T ren
uu ΩU〉 are plotted in figure 3.

5 The experience of late-time observers

We now analyse the experience of an observer carrying a detector in the collapsing null shell

spacetime, and analyse the emergence of radiation at late times for an orbit of constant

radial coordinate r > 2M .

The formula for the response of an Unruh-DeWitt detector coupled to a quantum scalar

in 1+1 dimensions with a derivative-coupling interaction [23], Hint(τ) = cχ(τ)µ(τ)Φ̇(x(τ)),

where τ is the proper time along the detector’s worldline, c is a coupling constant, χ is the

detector’s switching function (typically smooth of compact support), µ is the monopole

moment of the detector, and Φ̇(τ) is the proper-time derivative of the pullback of the field

to the detector worldline, is given by

F(ω) = −ω
2

∫ ∞
−∞

du [χ(u)]2 +
1

π

∫ ∞
0

ds

s2

∫ ∞
−∞

duχ(u)[χ(u)− χ(u− s)]

+ 2

∫ ∞
−∞

du

∫ ∞
0

χ(u)χ(u− s)Re

[
e−iωsA(u, u− s) +

1

2πs2

]
, (5.1)

with A(τ, τ ′) = ∂τ∂τ ′W(τ, τ ′), where by W(τ, τ ′) we mean the pullback of the Wightman

two-point bi-distribution to the worldline of the detector, and where the derivatives should

be understood in a distributional sense. In the formula (5.1), the integrand is a bona fide

function free of distributional singularities for Hadamard states. This is so because the

subtraction of −(2πs)−2 to A(u, u− s) takes care of the distributional singularities arising

from the Hadamard expansion in the short-distance limit of the Wightman bi-distribution.

We use the derivative coupling because, while the two-point function for the scalar field

in the collapsing-shell spacetime has no infrared ambiguities, the Unruh state two-point

function is ambiguous, and we wish to compare the two responses on equal grounds.
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Here, we consider that the detector is switched-on sharply at some time τ0 and that its

rate is read at very late times, as τ →∞ along the worldline. We choose for concreteness

that the detector is switched on when the detector crosses the shell, at v = 0, but this

choice is irrelevant for our late-time estimates.

In the sharp switching limit, the detector response diverges logarithmically as the

switching time vanishes, but the rate, Ḟ remains finite and is given by [23]

Ḟ(ω,∆τ) = −ω
2

+
1

π∆τ
+ 2

∫ ∆τ

0
dsRe

[
e−iωsA(τ, τ − s) +

1

2πs2

]
, (5.2)

where ∆τ = τ − τ0 is the total interaction detector proper time between the detector and

the field, such that the detector is switched on at time τ0 and read at time τ .

For a fixed orbit, the shell crossing occurs at v = 0 and r = R and we choose the

crossing to occur at τ0 = 0. In practice, we can regard the experience of these observers

as restricted to the late-time spacetime, and compare the detector rate for a Klein-Gordon

field in the Unruh state and in the collapse null shell spacetime state.

For the Unruh state, the late-time behaviour of the detector rate moving with fixed

r = R is known to capture the Hawking radiation coming from the right-movers (with the

Hawking temperature weighted by an appropriate Tolman factor), while the left-moving

modes contribute as if the state where the Minkowski state. This can be seen from eq. (5.2)

in the limit τ →∞ with the bi-distribution

AU
ε

(
τ, τ ′

)
=− 1

4π

[
U̇ U̇ ′

(U − U ′ − iε)2
+

v̇ v̇′

(v − v′ − iε)2

]
, (5.3)

obtained from the Unruh state, where the distributional character of AU is encoded in the

ε→ 0+ limit of AU
ε ,

WU
ε (x, x′) = − 1

4π
ln
[
(ε+ i(Ū − Ū ′))(ε+ i(v − v′))

]
. (5.4)

Here, the definition of WU
ε by the right-hand side of eq. (5.4) is unique up to the

addition of an ambiguous real-valued constant. Notice that AU
ε can be seen as a function

of the difference τ − τ ′ along a stationary orbit (generated by ξ = ∂t), r = R > 2M , due

to the invariance, up to a constant, of WU
ε under the action of the isometries generated by

ξ. One finds that the rate at late times is [23],

lim
∆τ→∞

ḞU(ω,∆τ) = −ω
2

Θ(−ω) +
ω

2
(
eω/Tloc − 1

) + o(1), (5.5)

where Θ is the Heaviside step function, and with the local temperature defined as

Tloc = (1− 2M/R)−1/2TH, where TH = 1/(8πM) is the Hawking temperature.
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For the collapsing shell state, we have that

Aε
(
τ,τ ′

)
=− 1

4π

[
˙̄u ˙̄u′

(ū−ū′−iε)2
+

v̇ v̇′

(v−v′−iε)2
− v̇ ˙̄u′

(v−ū′−iε)2
−

˙̄uv̇′

(ū−v′−iε)2

]
, (5.6)

and using formula (5.2) we can write the rate as a sum of several contributions,

Ḟ(ω, τ) = Ḟū ū(ω, τ) + Ḟv v(ω, τ) + Ḟv ū(ω, τ) + Ḟū v(ω, τ), (5.7a)

Ḟū ū(ω, τ) =
1

2π

∫ ∆τ

0
ds

[
− cos(ωs)

˙̄u(τ) ˙̄u(τ − s)
[ū(τ)− ū(τ − s)]2

+
1

s2

]
, (5.7b)

Ḟv v(ω, τ) =
1

2π

∫ ∆τ

0
ds

[
− cos(ωs)

v̇(τ) v̇(τ − s)
[v(τ)− v(τ − s)]2

+
1

s2

]
− ω

2
, (5.7c)

Ḟv ū(ω, τ) =
1

2π

∫ ∆τ

0
ds cos(ωs)

v̇(τ) ˙̄u(τ − s)
[v(τ)− ū(τ − s)]2

, (5.7d)

Ḟū v(ω, τ) =
1

2π

∫ ∆τ

0
ds cos(ωs)

˙̄u(τ) v̇(τ − s)
[ū(τ)− v(τ − s)]2

, (5.7e)

where each piece has been organised in such a way that each integrand is a singularity-free

expression.

As is the case in the Unruh state, the purely left-moving contribution contributes like

the Minkowski state, Ḟv v(ω, τ) = −(ω/2)Θ(−ω). We show in appendix A that as τ →∞,

we have Ḟv ū(ω, τ) = Ḟū v(ω) = o(1), while Ḟū ū(ω, τ) contributes as a Planckian spectrum

at the expected temperature. Namely, eq. (5.7) yields

Ḟ(ω, τ) = −ω
2

Θ(−ω) +
ω

2
(
eω/Tloc − 1

) + o(1), (5.8)

and we conclude that the late-time transition rate of the Unruh state is in excellent agree-

ment with the late-time rate in the state of the collapsing shell spacetime.

The early time behaviour of the Unruh and the collapsing shell spacetime’s states can

be explored numerically. We show in figure 4 the finite-time discrepancies between the

transition rates of detectors in the two states, such that the detector is sharply switched

on at proper time τ0 = 0 at the spacetime point (v, r) = (0, R) and measured at some

later finite time τ . It can be seen numerically that, unlike in the case of the Unruh state,

the detector rate is not steadily decreasing in the detector gap, ω, in the collapsing shell

scenario, and the onset of thermality takes place only at late times.

6 Conclusions

In this work, we have asked and answered the question of how good the usual folklore that

treats the Unruh state in Schwazschild spacetime as the state emerging from physical black

hole formation is. We have done so by analysing the simple model in 1 + 1 dimensions of

a Vaidya spacetime consisting of a collapsing null shell that forms a black hole, in which

the two-point function can be computed explicitly, and the stress-energy tensor obtained

using conformal techniques.
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(a) Ḟ(ω,∆τ) (b) ḞU(ω,∆τ) (c) Ḟ(ω,∆τ)− ḞU(ω,∆τ)

Figure 4. Comparison of the detector transition rates measured at finite times τ > τ0 for a detector

fixed at r = 3M and switched on sharply at proper time τ0 = 0 at (v, r) = (0, r). Figure 4a shows

the rate in the collapsing shell spacetime state. Figure 4b shows the rate in the Unruh state.

Figure 4c displays the difference between the two rates.

Our findings are that the Unruh state provides an excellent estimate in the near-horizon

region of the spacetime, and that the negative energy flux computed from the Unruh state

matches very precisely a negative energy flux present at the horizon in the collapsing null

shell spacetime. The behaviour of the radiation flux output at future null infinity is not

completely captured by the Unruh state, but near future timelike infinity the outgoing flux

in the collapsing shell spacetime is well characterised by the Unruh state. Moreover, we

find that pointwise 0 ≤ 〈Ω|T ren
uu Ω〉|I + ≤ 〈ΩU|T ren

uu ΩU〉|I + , i.e., at every point on I + the

outgoing flux of radiation in the Unruh state dominates the radiation output in the col-

lapsing null shell spacetime, and the latter is strictly non-decreasing in the u-time at future

null infinity (v → ∞). The energy output at infinity predicted using calculations based

on the Unruh state, 〈ΩU|T ren
uu ΩU〉|I + = 1/(768πM2) is however approached exponentially

fast in u-time. Thus, back-reaction estimates of pre-Hawking radiation based on the Unruh

state already over-estimate the radiation output, and this makes it unlikely, in our view,

that pre-Hawking radiation can prevent black-hole formation.

We have also analysed the character of the radiation as perceived by an external local

observer, moving on at fixed radial coordinate r > 2M in the causal future of the shell,

carrying a particle detector that couples to the derivative of the field (in order to avoid

infrared ambiguities). We have found that at late times, near future timelike infinity,

the right-moving modes yield a thermal spectrum at the local Hawking temperature, in

agreement with the Unruh state calculations, and showing the onset of thermality at late

times. The detection of particles at earlier times has been explored numerically, showing

substantial deviations between the rates measured by detectors in the collapsing shell

spacetime and those measured from the coupling to a field in the Unruh state.

Finally, our (1 + 1)-dimensional analysis is relevant in the 3 + 1 setting. In the case

of the stress-energy tensor, the arguments of [35] show how to extrapolate the lower-

dimensional renormalised stress-energy tensor to estimate the leading behaviour of the

(3 + 1)-dimensional object. For detectors, the derivative coupling detector in 1 + 1 cap-

tures the ultraviolet behaviour of the Wightman function in the integrand of the response

function of an Unruh-DeWitt (non-derivative coupling) detector in 3 + 1 dimensions.

– 18 –
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A Auxiliary results for detector rates

In this appendix, we show how to compute the expressions given by eq. (5.7b), (5.7d)

and (5.7e) in the limit τ → ∞. The key point will be to analyse the integrands and to

apply the convergence theorems that allow us to apply the limit inside the integral.

A.1 Ḟū ū

Let us begin by analysing the integrand of the expression defining Ḟū ū in the right hand

side of eq. (5.7b). We begin by writing

˙̄u(τ) ˙̄u(τ − s)
[ū(τ)− ū(τ − s)]2

=
u̇(τ)u̇(τ − s)

(−4M)2

W (−U(τ − s)/e)

W (−U(τ)/e)

× [(1 +W (−U(τ)/e))(1 +W (−U(τ − s)/e))]−1

(1−W (−U(τ − s)/e)/W (−U(τ)/e))2
, (A.1)

and using the defining relation of the Lambert W-function, W (z) = ze−W (z), we can write

along the orbit, (u, r) = (t − R − 2M ln(R/2M − 1), R), with the t coordinate satisfying

t− t′ = (1− 2M/R)−1/2(τ − τ ′),

˙̄u(τ) ˙̄u(τ − s)
[ū(τ)− ū(τ − s)]2

=
(4M)−2(1− 2M/R)−1[(1 +W (−U(τ)/e))(1 +W (−U(τ − s)/e))]−1

4 sinh2{[−W (−U(τ − s)/e) +W (−U(τ)/e) + (4M)−1(1− 2M/R)−1/2s]/2}
. (A.2)

In this form, one can readily verify that right hand side of eq. (A.2) is strictly non-

decreasing when viewed as a function of τ . This follows from standard properties of the

Lambert W -function, which is positive and non-decreasing for positive argument, from

where it follows that W (−U(τ)/e) > 0 and ∂τW (−U(τ)/e) ≤ 0 and, hence, that the

numerator,

N(τ, s) = [(1 +W (−U(τ)/e))(1 +W (−U(τ − s)/e))]−1 > 0, (A.3a)

∂τN(τ, s) ≥ 0, (A.3b)
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is a positive, non-decreasing function of τ . For the denominator, notice that the argument

of the sinh2 is a non-increasing function of τ , and hence the denominator is non-increasing.

It follows that one can apply the monotone convergence theorem and write eq. (5.7b) as

lim
τ→∞

Ḟū ū(ω, τ) =
1

2π

∫ ∞
0
ds

[
− cos(ωs) lim

τ→∞

(
˙̄u(τ) ˙̄u(τ − s)

[ū(τ)− ū(τ − s)]2

)
+

1

s2

]
, (A.4)

where

lim
τ→∞

˙̄u(τ) ˙̄u(τ − s)
[ū(τ)− ū(τ − s)]2

=
(1− 2M/R)−1

4(4M)2 sinh2[s/(8M(1− 2M/R)1/2)]
+ o(1). (A.5)

But eq. (A.4) with the first term in the integrand replaced by (A.5) can be handled as

a stationary problem by the complex analytic tecniques appearing in [23, section 2] and put

in the form of formula 3.985.1 in [45], see [23, section 3.2]. One obtains at late proper time

Ḟū ū(ω, τ) = −ω
2

Θ(−ω) +
ω

2
(
eω/Tloc − 1

) + o(1). (A.6)

A.2 Ḟv ū

The second term can be computed using a similar strategy. We have that the integrand

of (5.7d) can be written as

v̇(τ) ˙̄u(τ−s)
[v(τ)−ū(τ−s)]2

=− u̇(τ)v̇(τ−s)W (−U(τ−s)/e)/(4M)

[1+W (−U(τ−s)/e)][v(τ)+4M+4MW (−U(τ−s)/e)]2
. (A.7)

The right hand side of eq. (A.7) vanishes as τ → ∞. We now proceed to show by a

monotone convergence argument that we can take the limit inside the integral and, hence,

we show that the contribution of Ḟv ū = o(1). It suffices to study the τ derivative of the

integrand at fixed s of the integrand (A.7). Recall that ∂τW (−U(τ − s)/e) ≤ 0. Hence, for

∂τ
W (−U(τ − s)/e)

[1 +W (−U(τ − s)/e)][v(τ) + 4M + 4MW (−U(τ − s)/e)]2

=
∂τW (−U(τ − s)/e)

[1 +W (−U(τ − s)/e)]2[v(τ) + 4M + 4MW (−U(τ − s)/e)]2

×
[
1− 8M

W (−U(τ − s)/e)

v(τ) + 4M + 4MW (−U(τ − s)/e)

]
− 2W (−U(τ − s)/e)v̇(τ)

[1 +W (−U(τ − s)/e)][v(τ) + 4M + 4MW (−U(τ − s)/e)]3
, (A.8)

one can see that the second term is non-positive, while for the first term, the first factor is

non-positive, with the second factor being non-negative for sufficiently large τ . Namely, it

is guaranteed that when τ is sufficiently large, such that

v(τ) ≥ sup
s∈[0,τ ]

4M [W (−U(τ − s)/e)− 1], (A.9)

the derivative (A.8) is non-positive. It then follows from a monotone convergence argument

that in the appropriate limit Ḟv ū(ω, τ) = o(1).
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A.3 Ḟū v

Finally, let us calculate the contribution of Ḟū v. The integrand vanishes as τ → ∞, and

we can take the limit inside the integral by a dominated convergence argument, as follows:∣∣∣∣cos(ωs) ˙̄u(τ) v̇(τ−s)
2π[ū(τ)−v(τ−s)]2

∣∣∣∣≤ C1W (−U(τ)/e)u̇(τ)v̇(τ−s)
[1+W (−U(τ)/e)][−4M−4MW (−U(τ)/e)−v(τ−s)]2

≤ C2

[−4M−4MW (−U(τ)/e)−v(τ−s)]2
≤ C3

[4M+v(τ−s)]2
, (A.10)

where C1, C2 and C3 are positive constants. The right hand side of the expression above

is integrable because v(τ) = t(τ) +R+ 2M ln(R/2M − 1) is linear in τ . Hence Ḟū v = o(1)

as τ →∞.
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