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1 Introduction

The exact solution to an interacting quantum field theory in four dimensions would mark a

breakthrough in theoretical physics, although it still seems out of reach at present time. In

supersymmetric theories, one can make some progress since there are observables that pre-

serve a fraction of the supersymmetries and are therefore often amenable to exact analytic

methods, most notably supersymmetric localization [1].

Another powerful method, which is currently the subject of active exploration, is the

conformal bootstrap, see e.g. [2] for a recent review. This approach uses conformal symme-

try instead of supersymmetry, and has been remarkably successful in deriving bounds on

physical quantities in non-trivial CFTs (most notably the 3d Ising model) and in charting

a landscape of theories from a minimal set of assumptions [3, 4].

The third way towards this goal is integrability [5]. Although the applicability of

integrability is much smaller than the other two since it applies only to specific theo-

ries, the advantage is that it works not only for supersymmetric observables but for non-

supersymmetric ones as well. It also allows one to compute them exactly as a function of

coupling constants, rather than giving general bounds.

In this paper, we consider quantities which may stand at the “crossroads” of all these

three methods. More specifically, we study the correlation functions of local operator

insertions on the 1/8-BPS Wilson loop in N = 4 supersymmetric Yang-Mills theory (SYM).

The supersymmetric Wilson loop in N = 4 SYM has been an active subject of study since

the early days of AdS/CFT correspondence [6, 7]. The 1/2-BPS circular Wilson loop,

which preserves a maximal amount of supersymmetry, was computed first by summing up

a class of Feynman diagrams [8, 9], and the exact result for its expectation value was later

derived rigorously from supersymmetric localization [1], which reduces the problem to a

simple Gaussian matrix model. The result is a nontrivial function of the coupling constant,

which nevertheless matches beautifully with the regularized area of the string in AdS at

strong coupling, providing key evidence for the holographic duality.

The computation was subsequently generalized to less supersymmetric Wilson loops,

such as the 1/4 BPS circular loop [10], and a more general infinite family of 1/8-BPS

Wilson loops defined on curves of arbitrary shape on a two-sphere [11, 12]. For such

loops, an exact localization to 2d Yang-Mills theory was conjectured in [11, 12], and later

supported by a localization calculation in [13]. Because of the invariance under area-

preserving diffeomorphisms of 2d YM theory, one finds that the result for the expectation

value of the 1/8 BPS Wilson loop depends only on the area of the region surrounded by

the loop. The localization relation to the 2d theory was checked in a number of non-

trivial calculations, see e.g. [14–21]. It was also used in [22] to compute various important

quantities defined on the Wilson loop, such as the two-point function of the displacement

operator and the related “Bremsstrahlung function”. It was based on the observation

that one can insert a displacement operator by differentiating the expectation value of the

Wilson loop with respect to its area A; D ∼ ∂A〈W〉.
The purpose of this paper is to show that there are infinitely many other observables

that can be computed using the results from localization. They are the correlation functions

– 1 –
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of special scalar insertions Φ̃L inside the Wilson loop trace, where the scalar Φ̃ is chosen

so that the correlators are independent of the positions of the insertions.1 Similarly to

the displacement operator, one can relate the insertion of Φ̃’s to the area-derivative of the

Wilson loop, essentially because Φ̃ turns out to correspond via localization to insertions of

the Hodge dual of the 2d YM field strength. However, one key difference from the analysis

in [22] is that after taking the multiple area derivatives, to define the properly normal-

ordered operators one has to perform the so-called Gram-Schmidt orthogonalization to

make Φ̃k’s for different k orthogonal to each other (and, in particular, also orthogonal

to the identity, i.e. their one-point functions vanish). After doing so, the result for the

two-point function takes a particularly compact form and exhibits a simple determinant

structure:2

〈: Φ̃L1 : : Φ̃L2 : 〉 =
DL1+1

DL1

δL1,L2 , DL ≡ det i,j

[
∂i+j−2
A 〈W〉

]
(1 ≤ i, j ≤ L) . (1.1)

For higher-point functions, the result can be written succinctly in terms of certain polyno-

mials FL(X), which by themselves are expressed in terms of determinants:

〈: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Lm : 〉 =

(
m∏
k=1

FLk(∂A′)

)
〈W(A′)〉

∣∣∣∣∣
A′=A

. (1.2)

See section 5 for further details including the definition of FL.

As a special application of our analysis, we explain the relation of our correlators on

the Wilson loop to the “generalized Bremsstrahlung function” BL(θ) (whose definition is

reviewed in more detail in section 4 below), which was computed previously in the planar

large N limit from integrability [25, 26]. In particular we find that

HL(θ) ≡ 2θ

1− θ2

π2

BL(θ) = −1

2
∂θ log

DL+1

DL

∣∣∣∣
A=2π−2θ

. (1.3)

At large N , we show that this agrees with the integrability result. Moreover, since the

Wilson loop expectation value appearing in the calculation of the determinants DL is

known for any N,λ via localization, this provides the finite N form of the generalized

Bremsstrahlung function BL(θ).

Our results are valid for the general 1/8-BPS Wilson loop defined on an arbitrary

contour on S2, but perhaps the most interesting case is the 1/2-BPS loop. Since the

1/2-BPS loop is circular (or, by a conformal transformation, a straight line) it preserves

a SL(2,R) conformal subgroup, and therefore can be viewed as a conformal defect of

the 4d theory. The correlation functions of operator insertions on the 1/2-BPS loop are

then constrained by the SL(2,R) d = 1 conformal symmetry, or more precisely by the

OSp(4∗|4) ⊃ SL(2,R)×SO(3)×SO(5) 1d superconformal symmetry [27]. Some of the prop-

erties of this defect CFT were recently studied at weak [28–31] and strong coupling [31, 32].

1The correlators of Wilson loops and local operators of similar kind, but inserted away from the Wilson

loop, was studied in earlier literature, e.g. [18–20].
2A symmetric matrix of the type appearing here, which satisfies Mij = Mi+j , is sometimes called

“persymmetric”. Similar persymmetric determinants often appear in integrable models, for instance in the

correlation functions of the 2d Ising model [23, 24]. We thank J.H.H. Perk for pointing this out to us.
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The topological operators Φ̃L correspond to a special kind of protected defect primaries

(Y · Φ)L, where Y is a null polarization 5-vector. Such operators transform in the rank-L

symmetric traceless representation of SO(5), and they belong to short representations of

the 1d superconformal group, with protected scaling dimension ∆ = L. Because their

2-point and 3-point functions are fully fixed by the SL(2,R) symmetry, the restriction to

the topological choice of polarization vectors still allows one to extract exact results for

the 2-point normalization and 3-point structure constants of the general defect primaries

(Y ·Φ)L. Unlike the analogous case of single trace chiral primaries of the 4d theory, which

are dual to protected closed string states, the structure constants in the present case are

found to have a highly non-trivial dependence on the coupling constant. Our construc-

tion provides exact results for such structure constants of all operators in this protected

subsector, which should provide valuable input for a conformal bootstrap approach to the

Wilson-loop defect CFT (see e.g. [33]).

The connection to integrability techniques emerges in the planar limit. At large N , we

found that the results can be rewritten as a simple integral

〈: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Lm : 〉 =

∮
dµ

m∏
k=1

QLk(x) , (1.4)

with the measure dµ given in (5.5) (see also other forms of the measure (5.45) and (5.46)).

This is by itself an interesting result, but what is more intriguing is that the function QL(x)

that appears in the formula is directly related to the Quantum Spectral Curve [34], which

is the most advanced method to compute the spectrum of the local operators in N = 4

SYM. The appearance of such functions in our setup hints at a potential applicability of

the Quantum Spectral Curve to the problem of computing correlation functions.

The rest of this paper is organized as follows: in section 2, we review the construction

of the 1/8 BPS Wilson loop and explain the definitions of the correlators that we study in

this paper. We then relate them to the area derivative of the Wilson loop in section 3 by

using the OPE and the Gram-Schmidt orthogonalization. The final result for the correlator

at finite N is given in subsection 3.4. In section 4, we apply our method to compute the

finite-N generalization of the generalized Bremsstrahlung function. We then take the large

N limit of our results rewriting the correlators as an integral in section 5. The results at

large N are expanded at weak and strong coupling in section 6 and compared against the

direct perturbative computations on the gauge theory side and on the string theory side

respectively. We also provide a matrix-model-like reformulation of the large N results in

section 7. Finally, section 8 contains our conclusion and comments on future directions.

2 Topological correlators on the 1/8 BPS Wilson loop

In this section, we explain the definitions of the topological correlators that we study in

this paper and discuss their relation to the defect-CFT data.
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Figure 1. General configuration of the 1/8-BPS Wilson loop, denoted by a red curve. The 1/8-

BPS Wilson loop lives on S2 and couples to a scalar as prescribed in (2.1). The expectation value

of such a loop depends only on the area A of the region inside the loop (the red-shaded region in

the figure). Note that, although “the region inside/outside the loop” is not a well-defined notion,

such ambiguity does not affect the expectation value since it is invariant under A→ 4π−A, which

exchanges the regions inside and outside the loop.

2.1 1/8 BPS Wilson loop

The 1/8 BPS Wilson loops is a generalization of the standard Wilson loop and it couples to

a certain combination of the N = 4 SYM scalars, as well as the gauge field [8–12]. In order

to preserve 1/8 of the superconformal symmetry, the contour C must lie on a S2 subspace

of R4, which we may take to be parametrized by x2
1 + x2

2 + x2
3 = 1, and the coupling to the

scalars is prescribed to be

W ≡ 1

N
tr P

[
e
∮
C(iAj+εkjlxkΦl)dxj

]
. (2.1)

where i, j, k = 1, 2, 3, and we pick three out of the six scalar fields to be coupled to the loop.

In what follows we will focus for simplicity on the fundamental Wilson loop, namely the

trace in (2.1) is over the fundamental representation of the gauge group U(N). However

our construction below can be easily extended to arbitrary gauge group and arbitrary

representations.

The expectation value of this Wilson loop can be computed by supersymmetric local-

ization [1, 13]. The result only depends on the rank of the gauge group N , the coupling

constant gYM and the area of the subregion inside the contour C, see figure 1, which we

denote by A [10–13]:

〈W〉 =
1

ZMM

∫
[dM ]

1

N
tr
(
eM
)
e
− (4π)2

2A(4π−A)g2
YM

tr(M2)
. (2.2)

To emphasize its dependence on the area, we sometimes denote 〈W〉 as 〈W(A)〉. This

matrix model integral can be evaluated explicitly [9] as

〈W〉 =
1

N
L1
N−1

(
− λ′

4N

)
e
λ′
8N , λ′ ≡ λ

(
1− a2

4π2

)
, (2.3)

with λ being the ’t Hooft coupling, λ ≡ g2
YMN . L1

N−1 is the associated Laguerre polynomial

and a is defined by

a ≡ A− 2π . (2.4)

– 4 –
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When a = 0 (A = 2π), the Wilson loop corresponds to a great circle of the S2, and the

operator (2.1) couples to a single scalar field. This special case corresponds to the 1/2-BPS

Wilson loop, see section 2.3 below.

In the large N limit, the result simplifies and can be expressed in terms of the Bessel

function [8]:

〈W〉|large N =
2√
λ′
I1(
√
λ′) . (2.5)

This can also be rewritten in terms of the θ-deformed Bessel functions introduced in [26],

Iθn =
1

2
In

(√
λθ

)[(π + θ

π − θ

)n
2

− (−1)n
(
π − θ
π + θ

)n
2

]
, λθ ≡ λ

(
1− θ2

π2

)
, (2.6)

as

〈W〉|large N =
2√
λ
I
a/2
1 . (2.7)

In (2.7), all the area dependence is encoded in the function I
a/2
1 . This property turns

out to be very useful when we later derive the integral expression for the topological

correlators at large N .

2.2 Correlators on the 1/8 BPS loop

The correlation function of the local operators on the Wilson loop is defined by3

〈O1(τ1)O2(τ2) · · ·On(τn)〉 ≡
〈

1

N
tr P

[
O1(τ1) · · ·On(τn)e

∮
C(iAj+εkjlxkΦl)dxj

]〉
N = 4 SYM

.

(2.8)

Here we parametrize the loop by τ ∈ [0, 2π] and τi’s are the positions of the operator

insertions in that coordinate.

The BPS correlators we study in this paper are given by the following choice of the

operators,

Oi(τi) ≡ Φ̃Li(τi) , (2.9)

where Φ̃ is a position-dependent scalar,4

Φ̃(τ) = x1(τ) Φ1 + x2(τ) Φ2 + x3(τ) Φ3 + iΦ4 . (2.11)

An important property of such correlators is that they do not depend on the positions of

the insertions τi’s. This follows5 from the fact that, after localization, these operators are

3Note that here we do not divide the correlator by the expectation value of the Wilson loop 〈W〉.
4Throughout this article, we use the convention in which the scalar propagator reads

(ΦI(x1))a b (ΦJ(x2))c d =
g2YMδ

a
dδ
c
bδIJ

8π2|x1 − x2|2
, (2.10)

where a-d are the U(N) matrix indices, and I, J = 1, . . . , 6.
5Alternatively, one should be able to show that the (twisted) translation generator which moves the

positions of the insertions is Q-exact with Q being one of the supercharges preserved by the configuration.

It then follows that the correlators are position-independent. In the absence of Wilson loops, this was shown

in [35], which studied correlation functions of operators precisely of this kind. See also [36] for a similar

discussion in the CFT3 context.

– 5 –
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mapped to field-strength insertions in two-dimensional Yang-Mills theory (see section 3.1

for further explanation), which enjoys invariance under area-preserving diffeomorphisms,

making it almost topological. Because of their position independence, we will call them

“topological correlators” in the rest of this paper.

2.3 1/2-BPS Wilson loop and defect CFT

For special contours, the Wilson loops preserve higher amount of supersymmetry. Partic-

ularly interesting among them is the 1/2-BPS Wilson loop, whose contour is a circle along

the equator and which couples to a single scalar Φ3 [8, 9]:

W1/2-BPS ≡
1

N
tr P exp

(∮
equator

(
iAj ẋ

j + Φ3|ẋ|
)
dτ

)
(2.12)

Since the contour is circular, the 1/2-BPS loop preserves the SL(2,R) conformal symmetry.

Therefore, one can view the correlators on the 1/2-BPS Wilson loop as correlators of a

defect CFT. To make this point precise, one needs to consider the normalized correlator,

which is obtained by dividing the bare correlator (2.8) by the expectation value of the

Wilson loop:

〈〈O1(τ1)O2(τ2) · · ·On(τn)〉〉 ≡ 〈O1(τ1)O2(τ2) · · ·On(τn)〉
〈W〉

. (2.13)

After the normalization, the expectation value of the identity operator becomes unity and

the correlators obey the standard properties of the defect CFT correlators.

Using these normalized correlators, one can extract the defect CFT data from the

topological correlators. To see this, let us consider general two- and three-point functions

of BPS operators on the 1/2-BPS loop:

GL1,L2 = 〈〈(Y1 · ~Φ)L1(τ1) (Y2 · ~Φ)L2(τ2)〉〉circle ,

GL1,L2,L3 = 〈〈(Y1 · ~Φ)L1(τ1) (Y2 · ~Φ)L2(τ2) (Y3 · ~Φ)L3(τ3)〉〉circle .
(2.14)

In (2.14), ~Φ ≡ (Φ1,Φ2,Φ4,Φ5,Φ6) and Yi’s are five-dimensional complex vectors satisfying

Yi · Yi = 0. Unlike the topological correlators (2.8), the correlators (2.14) depend on the

positions of the insertions, and the vectors Yi. However, because of the conformal symmetry

and the SO(5) R-symmetry, their dependence is completely fixed to be:6

GL1,L2 = nL1(λ,N)×
δL1,L2(Y1 · Y2)L1

(2 sin τ12
2 )2L1

,

GL1,L2,L3 = cL1,L2,L3(λ,N)× (Y1 · Y2)L12|3(Y2 · Y3)L23|1(Y3 · Y1)L31|2(
2 sin τ12

2

)2L12|3
(
2 sin τ23

2

)2L23|1
(
2 sin τ31

2

)2L31|2
,

(2.15)

with τij ≡ τi − τj and Lij|k ≡ (Li + Lj − Lk)/2. Here nL1 is the normalization of the

two-point function while cL1,L2,L3 is the structure constant. As shown above, both of

6Of course, one may also write the analogous result for the straight line geometry, which is related to

the circle by a conformal transformation.
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these quantities are nontrivial functions of λ and N . Note that, although we often set the

normalization of the two-point function to be unity in conformal field theories, for special

operators the normalization itself can have physical meaning.7 For instance, the length-1

operator (Y · ~Φ) is related to the displacement operator and has a canonical normalization

which is related to the Bremsstrahlung function [22].

Now, if we go to the topological configuration by setting the vectors Yi to be

Yi = (cos τi, sin τi, 0, i, 0, 0) , (2.16)

we get

GL1,L2 |topological =

(
−1

2

)L1

× nL1δL1,L2 ,

GL1,L2,L3 |topological =

(
−1

2

)L1+L2+L3
2

× cL1,L2,L3 .

(2.17)

This shows that the topological correlators compute the normalization and the structure

constant in the defect CFT up to trivial overall factors. Alternatively, one can consider

the ratio
GL1,L2,L3

(GL1,L1GL2,L2GL3,L3)1/2

∣∣∣∣
topological

=
cL1,L2,L3

(nL1nL2nL3)1/2
, (2.18)

and get rid of the overall factors. The quantity which appears on the right hand side

of (2.18) is a structure constant in the standard CFT normalization; namely the normal-

ization in which the two-point function becomes unity.

Note that, for higher-point functions, there is no such a direct relation between the

general correlators and the topological correlators: the general higher-point correlators are

nontrivial functions of the cross ratios while the topological correlators do not depend at

all on the positions. Thus for higher-point functions, one cannot reconstruct the general

correlators just from the topological correlators.

3 Computation of the correlators

We now compute the correlators on the 1/8 BPS Wilson loop

〈Φ̃L1(τ1)Φ̃L2(τ2) · · · Φ̃Ln(τn)〉 , (3.1)

using the results from localization. We first discuss the correlators on the 1/2 BPS Wilson

loop from the OPE perspective and then present a general method that applies also to the

1/8 BPS Wilson loop.

3.1 Correlators on the 1/2 BPS Wilson loop from OPE

When all the operators are length-1 and the Wilson loop is circular (or equivalently 1/2

BPS), the correlators (3.1) were already computed in [32]. Let us fist briefly review their

7Other examples are the stress-energy tensor and the conserved currents, whose two-point functions are

related to CT and CJ .
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computation: by performing localization, one can reduce the computation of the 1/8 BPS

Wilson loop in N = 4 SYM to the computation of the Wilson loop in two-dimensional

Yang-Mills theory in the zero instanton sector [13]. Under this reduction, the insertion of

the position-dependent scalar Φ̃ is mapped to the insertion of the dual field strength ∗F2d:

Φ̃ ⇔ i ∗ F2d . (3.2)

Using this correspondence,8 one can insert Φ̃’s on the circular Wilson loop by differentiating

its expectation value with respect to the area A:

〈Φ̃ · · · Φ̃
L

〉|circle =
∂L〈W〉
(∂A)L

∣∣∣∣
A=2π

. (3.3)

Using the expression (3.3), one can compute arbitrary correlation functions of single-letter

insertions Φ̃.

To study more general BPS correlators, we also need to know how to insert operators

of longer length, Φ̃L with L > 1. The first guess might be to relate it simply to the L-th

derivative of the Wilson loop,

Φ̃L ∼ ∂L 〈W [C]〉
(∂A)L

? (3.4)

This guess, however, turns out to be incorrect. To see why it is so, let us consider Φ̃2 as an

example. We know that the second derivative of 〈W〉 corresponds to the insertion of two

Φ̃’s on the Wilson loop. Since the correlator we are studying is topological, one can bring

the two Φ̃’s close to each other without affecting the expectation value and rewrite them

using the operator product expansion. This procedure does produce the length-2 operator

Φ̃2 as we wanted, but the problem is that it also produces other operators:9

OPE

Φ̃ Φ̃ = Φ̃2 + c1 Φ̃ + c0 1 . (3.5)

Here ci’s are some numerical coefficients and 1 is the identity operator. Thus, to really get

the length-2 operator, one has to subtract these unnecessary OPE terms from Φ̃Φ̃:

: Φ̃2 : = Φ̃Φ̃− c1Φ̃− c01 . (3.6)

Here Φ̃Φ̃ on the right hand side denotes two single-letter insertions at separate points while

: Φ̃2 : is a length-2 operator inserted at a single point. Since this subtraction procedure is

conceptually similar to the normal ordering, we hereafter put the normal-ordering symbol

:∗ : to the operator obtained in this way.

The coefficients ci’s are nothing but the OPE coefficients of the topological OPE (3.5).

They are thus related to the following three-point functions:

c1 ∝ 〈Φ̃Φ̃Φ̃〉|circle , c0 ∝ 〈Φ̃Φ̃1〉|circle . (3.7)

8At weak coupling, this correspondence was checked by the direct perturbative computation on both

sides in [21].
9Owing to the representation theory of SO(5), the OPE does not produce higher-charge operators, Φ̃k

with k > 2.
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If we were using the operators, Φ̃/〈Φ̃Φ̃〉1/2 whose two-point function is unit-normalized,

the constants of proportionality in (3.7) would have been unity. However the operators we

are using here are not unit-normalized and one has to take into account that effect. This

leads to the following expressions for the coefficients c1 and c0:

c1 =
〈Φ̃Φ̃Φ̃〉|circle

〈Φ̃Φ̃〉|circle

=
∂3
A 〈W〉
∂2
A 〈W〉

∣∣∣∣
A=2π

,

c0 =
〈Φ̃Φ̃1〉|circle

〈11〉|circle
=
∂2
A 〈W〉
〈W〉

∣∣∣∣
A=2π

.

(3.8)

We can repeat this procedure to express operators of arbitrary length in terms of

single-letter insertions and compute their correlation functions. Although these procedures

can be easily automated using computer programs, they do not give much insight into the

underlying structure. In the next section, we discuss a simpler way to reorganize these

procedures which also leads to a simple closed-form expression.

3.2 Construction of operators from the Gram-Schmidt orthogonalization

As a direct consequence of the subtraction procedures (3.6), the operators constructed

above satisfy the following important properties:

• 〈: Φ̃L : : Φ̃M : 〉|circle ∝ δLM .

• : Φ̃L : is a linear combination of Φ̃ · · · Φ̃
M

with M ≤ L.

• The coefficient of the M = L term is 1. Namely : Φ̃L : = Φ̃ · · · Φ̃
L

+ · · · .

The operator basis with such properties turns out to be unique and can be constructed

systematically by using the so-called Gram-Schmidt orthogonalization. As we see below, it

also allows us to write down a closed-form expression for the operators : Φ̃L : .

The Gram-Schmidt orthogonalization is an algorithmic way of getting the orthogonal

basis from a given set of vectors. It was recently applied in the computation of Coulomb

branch operators in N = 2 superconformal theories in [37]. Its large N limit was discussed

in [38] while the case for N = 4 SYM was analyzed further in [39, 40]. What we describe

below is a new application of the method to the correlators on the Wilson loop. To get a

glimpse of how it works, let us orthogonalize two arbitrary vectors {v1 ,v2}. A simple way

of doing so is to define new vectors as

u1 = v1 , u2 = v2 −
〈v1,v2〉
〈v1,v1〉

v1 , (3.9)

where 〈∗, ∗〉 denotes the inner product between two vectors. This is of course just an

elementary manipulation, but the key point is that one can re-express (3.9) as

u1 = v1 , u2 =
1

〈v1,v1〉

∣∣∣∣∣ 〈v1,v1〉 〈v1,v2〉
v1 v2

∣∣∣∣∣ , (3.10)
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where | ∗ | denotes a determinant of a matrix. This expression can be readily generalized

to the case with more vectors. The result reads

uk =
1

dk−1

∣∣∣∣∣∣∣∣∣∣∣∣

〈v1,v1〉 〈v1,v2〉 · · · 〈v1,vk〉
〈v2,v1〉 〈v2,v2〉 · · · 〈v2,vk〉

...
...

. . .
...

〈vk−1,v1〉 〈vk−1,v2〉 · · · 〈vk−1,vk〉
v1 v2 · · · vk

∣∣∣∣∣∣∣∣∣∣∣∣
,

dk =

∣∣∣∣∣∣∣∣∣∣
〈v1,v1〉 〈v1,v2〉 · · · 〈v1,vk〉
〈v2,v1〉 〈v2,v2〉 · · · 〈v2,vk〉

...
...

. . .
...

〈vk,v1〉 〈vk,v2〉 · · · 〈vk,vk〉

∣∣∣∣∣∣∣∣∣∣
.

(3.11)

For details of the derivation, see standard textbooks on linear algebra. The new vectors

defined above are orthogonal but not normalized. Their norms can be computed using the

definitions above and we get

〈uk ,ul〉 =
dk
dk−1

δkl . (3.12)

We now apply the Gram-Schmidt orthogonalization to the set of single-letter insertions

{1 , Φ̃ , Φ̃Φ̃, . . .}. The norms between these vectors are given by the two-point functions,

which can be computed by taking derivatives of 〈W〉,

〈Φ̃ · · · Φ̃
L

Φ̃ · · · Φ̃
M

〉 = (∂A)L+M 〈W〉 (3.13)

We then get the expression for the operator : Φ̃L : ,

: Φ̃L : =
1

DL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈W〉 〈W〉(1) · · · 〈W〉(L)

〈W〉(1) 〈W〉(2) · · · 〈W〉(L+1)

...
...

. . .
...

〈W〉(L−1) 〈W〉(L) · · · 〈W〉(2L−1)

1 Φ̃ · · · Φ̃ · · · Φ̃
L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

DL =

∣∣∣∣∣∣∣∣∣∣
〈W〉 〈W〉(1) · · · 〈W〉(L−1)

〈W〉(1) 〈W〉(2) · · · 〈W〉(L)

...
...

. . .
...

〈W〉(L−1) 〈W〉(L) · · · 〈W〉(2L−2)

∣∣∣∣∣∣∣∣∣∣
,

(3.14)

with 〈W〉(k) ≡ (∂A)k 〈W〉. Let us emphasize that this method applies to general 1/8 BPS

Wilson loops. To get the result for the 1/2 BPS loop, one just needs to set A = 2π

at the end of the computation. For small values of n, one can check explicitly that this

expression coincides with the operators obtained by the recursive procedure outlined in the

previous subsection. One can also check that the basis obtained in this way satisfies the

aforementioned three properties.
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Owing to the property (3.12), the two-point function of the operators Φ̃L is given by

a ratio of determinants:

〈: Φ̃L : : Φ̃M : 〉 =
DL+1

DL
δLM . (3.15)

For the 1/2 BPS loop, this provides an exact result for the normalization of the two-point

function in the defect CFT (see the discussions in section 2.3),

nL = (−2)L
DL+1

DL

∣∣∣∣
A=2π

. (3.16)

As it is well-known, the result for L = 1 is related to the normalization of the displacement

operators while the results for L > 0 provide new defect-CFT observables.10

We will later see in section 5.3 that the large-N limit of these determinants is related

to the determinant representation of the generalized Bremsstrahlung function derived pre-

viously in [25, 26].

3.3 A remark on the 1/8 BPS Wilson loop

As mentioned above, the Gram-Schmidt process can be applied to the general 1/8 BPS

Wilson loops. At the level of formulas, one just needs to keep the area A general in (3.14)

and (3.19). However, there is one important qualitative difference which we explain below.

Unlike the 1/2 BPS Wilson loop, the first-order derivative 〈W〉(1) does not vanish for

the general 1/8 BPS Wilson loop. This means that the single-letter insertion Φ̃ has a non-

vanishing one-point function; in other words, the two-point function of Φ̃ and the identity

operator 1 is nonzero. Therefore, to define an orthogonal set of operators, one has to per-

form the subtraction even for Φ̃. In fact, by applying the Gram-Schmidt orthogonalization,

we get

: Φ̃ : = Φ̃− 〈W〉
(1)

〈W〉
1 . (3.17)

We thus need to distinguish : Φ̃ : from Φ̃. This was one of the reasons why we preferred to

put the normal-ordering symbol when defining the operator : Φ̃J : .

3.4 Results for topological correlators

Using the closed-form expression (3.14), one can compute higher-point functions of : Φ̃N : .

To express the result, it is convenient to introduce a polynomial

FL(X) =
1

DL

∣∣∣∣∣∣∣∣∣∣∣∣

〈W〉 〈W〉(1) · · · 〈W〉(L)

〈W〉(1) 〈W〉(2) · · · 〈W〉(L+1)

...
...

. . .
...

〈W〉(L−1) 〈W〉(L) · · · 〈W〉(2L−1)

1 X · · · XL

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.18)

10Although the normalization of the operators is usually not meaningful, for this class of operators, there

is a canonical normalization induced by the facts that Φ̃ is related to the displacement operator and : Φ̃L :

is essentially a product of L Φ̃’s.
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By replacing Xk by Φ̃ · · · Φ̃
k

, one recovers : Φ̃L : . In terms of these polynomials, the higher-

point function reads

〈: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Lm : 〉 =

(
m∏
k=1

FLk(∂A′)

)〈
W(A′)

〉
|A′=A . (3.19)

Let us make two remarks regarding this formula: first, the derivatives ∂A′ ’s on the right

hand side act only on the last term 〈W(A′)〉 (not on the coefficients of the polynomials

FLk). Second, the polynomial FL is not just a technical tool for writing down higher-

point correlators, but it gives an explicit map between the OPE and the multiplication of

polynomials. To see this, consider a product of two such polynomials. Since the product

is also a polynomial, one can express it as a sum of FL’s,

FL1(X)FL2(X) =

L1+L2∑
M=0

c̄L1,L2,MFM (X) , (3.20)

where c̄L1,L2,M is a “structure constant” for the multiplication of polynomials. This ex-

pansion can be performed also on the right hand side of (3.19). On the other hand, we can

perform a similar expansion on the left hand side of (3.19) using the OPE,

: Φ̃L1 : : Φ̃L2 : =

L1+L2∑
M=1

cL1,L2,M : Φ̃M : . (3.21)

Equating the two expressions, we conclude that these two structure constants must coincide,

namely c̄L1,L2,M = cL1,L2,M . This provides an interesting correspondence between the

multiplication of polynomials and the OPE.

We can also express the results more explicitly in terms of determinants. For this

purpose, we first perform the Laplace expansion of the polynomial FL(X):

FL(X) =
1

DL

L∑
n=0

(−1)L+nD
(L+1,n+1)
L+1 Xn . (3.22)

Here D
(i,j)
L is a minor of DL obtained by deleting the i-th row and j-th column. We then

substitute this expression into (3.19) to get

〈:Φ̃L1 : :Φ̃L2 : · · · :Φ̃Lm :〉=
L1∑
n1=0

· · ·
Lm∑
nm=0

(
m∏
k=1

(−1)Lk+nk
D

(Lk+1,nk+1)
Lk+1

DLk

)
〈W〉(ntot) , (3.23)

with ntot ≡
∑m

k=1 nk.

We can also perform one of the sums explicitly to reconstruct a determinant: the result

reads

〈:Φ̃L1 : :Φ̃L2 : · · · :Φ̃Lm :〉=
L2∑
n2=0

· · ·
Lm∑
nm=0

(
m∏
k=2

(−1)Lk+nk
D

(Lk+1,nk+1)
Lk+1

DLk

)
D̃L1,n′tot

, (3.24)
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Figure 2. Cusped Wilson line with insertions. The cusped Wilson line consists of two semi-infinite

lines which intersects with an angle φ at the origin, and the insertions ZL. The scalar coupling of

each semi-infinite line is given by the vector ~n1,2, and the relative angle between the two vectors is

θ. The divergence from this Wilson line is controlled by the generalized Bremsstrahlung function.

where n′tot =
∑m

k=2 nk and D̃L,n is given by

D̃L,n ≡

∣∣∣∣∣∣∣∣∣∣∣∣

〈W〉 〈W〉(1) · · · 〈W〉(L)

〈W〉(1) 〈W〉(2) · · · 〈W〉(L+1)

...
...

. . .
...

〈W〉(L−1) 〈W〉(L) · · · 〈W〉(2L−1)

〈W〉(n) 〈W〉(n+1) · · · 〈W〉(L+n)

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.25)

Importantly, D̃L,n vanishes unless n ≥ L since otherwise the last row coincides with one

of the rows above. This allows us to restrict the sum in (3.24) to n′tot ≥ L1. In particular,

for “extremal” correlators which satisfy L1 =
∑m

k=2 Lk, there is only one term in the sum

that survives and we get a simpler formula

〈: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Lm : 〉 =
DL1+1

DL1

for L1 =

m∑
k=2

Lk . (3.26)

For general correlators, the expression (3.24) is not very concise as it involves several

terms. The results for two- and three-point functions of operators with L ≤ 3 are given

explicitly in appendix A. We will later see in sections 5 and 7 that in the large N limit

there is an elegant reformulation in terms of integrals and a matrix model.

4 Generalized Bremsstrahlung functions

As an application of our method, in this section we compute the so-called “generalized

Bremsstrahlung function”. The result provides finite-N generalization of the planar results

computed previously in [25, 26] using integrability [41, 42].

4.1 Cusp anomalous dimension and Bremsstrahlung function

Let us first recall the definition of the generalized Bremsstrahlung function. Consider the

following cusped Wilson line with insertions (see also figure 2):

WL(θ,φ)≡Pexp

∫ 0

−∞
dτ
[
iA·ẋ1+~Φ·~n1|ẋ1|

]
×ZL×Pexp

∫ ∞
0

dτ
[
iA·ẋ2+~Φ·~n2|ẋ2|

]
. (4.1)

– 13 –



J
H
E
P
0
5
(
2
0
1
8
)
1
0
9

Here Z = Φ3 + iΦ4 and the x1,2(t) and ~n1,2 are given by

ẋ1 = (1, 0, 0, 0) , ẋ2 = (cosφ, sinφ, 0, 0) ,

n1 = (1, 0, 0, 0, 0) , n2 = (cos θ, sin θ, 0, 0, 0, 0) .
(4.2)

As shown above, WL is parametrized by the two angles θ and φ. When θ = φ, WL is

BPS and the expectation value 〈WL〉 is finite. However, if θ 6= φ, it has the divergence

controlled by the cusp anomalous dimension ΓL:

〈WL(θ, φ)〉 ∼
(
εUV

rIR

)ΓL(θ,φ)

(4.3)

Here εUV and rIR are the UV and IR (length) cutoffs respectively.

The cusp anomalous dimension can be expanded near θ ∼ φ and the leading term in

the expansion reads

ΓL(θ, φ) = (θ − φ)HL(θ) +O((θ − φ)2) , (4.4)

The function HL is related to the quantity called the generalized Bremsstrahlung function

BL(θ):

HL(θ) =
2θ

1− θ2

π2

BL(θ) . (4.5)

For L = 0, BL(θ) is related to the energy emitted by a moving quark [22] and this is why

it is called the generalized Bremsstrahlung function.

4.2 Relation to the two-point function and the result at finite N

To compute BL from our results, one has to relate it to the topological correlators. For

L = 0 this has already been explained in [22]. As we see below, essentially the same

argument applies also to L 6= 0 (see also [21]).

The first step is to consider a small deformation away from the BPS cusp by changing

the value of θ. Then, the change of the expectation value can be written as

δ〈WL〉
〈WL〉

=

∫ ∞
0

dτ 〈〈Φ′(τ)〉〉cusp × δθ (4.6)

where Φ′ is

Φ′ = − sin θΦ1 + cos θΦ2 , (4.7)

and 〈〈∗〉〉cusp is the normalized correlator of the scalar insertion on the cusped BPS Wilson

loop WL(θ, φ = θ). Using the invariance of WL under the dilatation around the origin, the

τ -dependence of 〈〈Φ′〉〉cusp can be fixed to be

〈〈Φ′(τ)〉〉cusp =
1

τ
〈〈Φ′(τ = 1)〉〉cusp . (4.8)

We can then compare (4.3) with (4.6) (introducing the UV and IR cutoffs to evaluate the

τ integral), to get

ΓL = −(θ − φ)〈〈Φ′(τ = 1)〉〉cusp +O((θ − φ)2) . (4.9)
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Figure 3. Cusped Wilson loop on S2. Applying the conformal transformation, one can map the

cusped Wilson line to a configuration depicted above. The red and black semi-circles correspond

to the two semi-infinite lines in figure 2 of the same color. The angle between the two semi-circles

is π − θ. The loop divides the S2 into two regions with areas 2π ∓ 2θ. (Note that we already set

φ = θ in this figure.)

The second step is to map the BPS cusp WL(θ, φ = θ) to the 1/8 BPS Wilson loop on

S2 by the conformal transformation,

x1 =
2X2

1 +X2
1 +X2

2

, x2 =
−2X1

1 +X2
1 +X2

2

, x3 =
1−X2

1 −X2
2

1 +X2
1 +X2

2

. (4.10)

Here xi’s are the (embedding) coordinates of S2 while Xi’s are the coordinates on R2 where

the cusped Wilson loop (4.2) lives. After the transformation, and changing variables by

τ = − cot(t/2), the two semi-infinite lines of the cusped Wilson loop are mapped to the

two arcs on S2 (see also figure 3),

(x1, x2, x3) =

{
(0, sin t,− cos t) 0 < t ≤ π
(− sin θ sin t, cos θ sin t,− cos t) π < t ≤ 2π ,

(4.11)

where the first arc (0 < t ≤ π) and the second arc (π < t ≤ 2π) correspond to the black

and the red lines in figure 2 respectively. The first arc couples to Φ1, and the second one

to cos θΦ1 + sin θΦ2, in accordance with our conventions (2.1) for the 1/8-BPS loop. As

shown in figure 3, the resulting Wilson loop has cusps at the north and the south poles (tN
and tS) with insertions ZL and Z̄L respectively. The insertion Φ′(τ = 1) is mapped to the

insertion at a point11 te where the red arc intersects the equator of S2. We then arrive at

11In terms of the parametrization given in (4.11), tS = 0, tN = π and te = 3π/2.
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the relation between the expectation values,

〈〈Φ′(τ = 1)〉〉cusp =
〈ZL(tN ) Z̄L(tS) Φ′(te)〉
〈ZL(tN ) Z̄L(tS)〉

(4.12)

where 〈∗〉 denotes a (un-normalized) correlator on the Wilson loop on S2. Now, a crucial

observation is that one can complete the insertion Φ′(te) to the position dependent scalar

Φ′ − iΦ4 = − sin θΦ1 + cos θΦ2 − iΦ4 = −Φ̃(te) , (4.13)

since the correlator with Φ4 vanishes owing to the charge conservation. Furthermore,

ZL(tN ) and Z̄L(tS) can be identified with : Φ̃L : . We thus arrive at the following relation,12

〈〈Φ′〉〉cusp = −〈: Φ̃
L : : Φ̃L : Φ̃〉
〈: Φ̃L : : Φ̃L : 〉

= −∂A log〈: Φ̃L : : Φ̃L : 〉 . (4.15)

Note that Φ̃ in the middle is not normal-ordered since it comes directly from the deforma-

tion of the loop. Since the area surrounded by this loop is given by A = 2π − 2θ, one can

express −∂A also as ∂θ/2.

From (4.9) and (4.15), we can compute the generalized Bremsstrahlung function as

HL(θ) =
2θ

1− θ2

π2

BL(θ) = −1

2
∂θ log

DL+1

DL
. (4.16)

As given in (3.14), DL is the following simple determinant,

DL = det i,j
[
(∂A)i+j−2〈W〉

]
(1 ≤ i, j ≤ L) , (4.17)

with A = 2π − 2θ. In the limit θ → 0, the formula takes a particularly simple form,

BL(0) = −1

4
∂2
θ log

DL+1

DL

∣∣∣∣
θ=0

= −∂2
A log

DL+1

DL

∣∣∣∣
A=2π

. (4.18)

This is the main result of this section. In the next section, we will see that the

formula (4.16) reproduces the results in [25, 26] in the large N limit. Note, however, that

our results (4.16) is also valid at finite N : all one has to do is to plug in (4.17) the finite

N form of the Wilson loop expectation value, which is given in (2.3). The first few explicit

results for θ = 0 are given in the appendix.

5 Large N limit

In this section, we study in detail the topological correlators in the large N limit. In

particular, we derive a simple integral expression.

12Precisely speaking, the area derivative can also act on the operator : Φ̃L : (in addition to inserting an

extra single-letter insertion) since it is given by a sum of single-letter insertions with the area-dependent

coefficients:

: Φ̃L : = Φ̃L + c1(A)Φ̃L−1 + · · · . (4.14)

However, since the leading coefficient is 1, ∂A : Φ̃L : only starts with Φ̃L−1. Therefore, one can always

express ∂A: Φ̃L : as a sum of : Φ̃k : with k < L. We thus conclude that such contributions vanish because of

the orthogonality, 〈: Φ̃k : : Φ̃L : 〉 = 0 for k < L, and do not affect (4.15).
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5.1 Integral expression for topological correlators

As mentioned before, an important simplification in the large N limit is that 〈W〉 can be

expressed in terms of the deformed Bessel function (2.7). A nice feature of the deformed

Bessel function is that it admits an integral expression [43],

Iθn =

∮
dx

2πixn+1
sinh(2πg(x+ 1/x))e2gθ(x−1/x) , (5.1)

where here and below we use the notation

g ≡
√
λ

4π
. (5.2)

Applying this to (2.7), we can express 〈W〉 and its derivatives simply as

〈W〉 =

∮
dµ , (5.3)

〈W〉(n) (≡ (∂A)n〈W〉) =

∮
dµ

(
g(x− x−1)

)n
, (5.4)

where the measure dµ is defined by

dµ =
dx

2πix2

sinh(2πg(x+ 1/x))ega(x−1/x)

2πg
. (5.5)

Recall that a = A − 2π and the 1/2-BPS Wilson loop corresponds to a = 0. Combining

this integral expression with the formula (3.19), we obtain a simple integral expression for

the multi-point correlators,

〈: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Lm : 〉 =

∮
dµ

m∏
k=1

QLk(x) , (5.6)

with

QL(x) ≡ FL
(
g(x− x−1)

)
. (5.7)

At this point, QL is just a rewriting of the polynomial FL. However, as we will show in

the rest of this section, it is related to the Quantum Spectral Curve [34].

5.2 Properties of QL(x)

The functions QL(x) have several important properties. First, owing to the orthogonality

of the two-point functions, they satisfy the following orthogonality relation:∮
dµ(x)QL(x)QM (x) =

DL+1

DL
δLM . (5.8)

Second, they are normalized as

QL(x) = gLxL + · · ·+ (−g)Lx−L . (5.9)

Third, since QL(x) is a polynomial of X = g(x− x−1), it follows that

QL(x) = QL(−1/x) . (5.10)
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Furthermore, they satisfy the following equalities:∮
dµ(x)xQL(x)QM (x) = 0 , (5.11)∮
dµ(x)x2QL(x)QM (x) =

DL+1

DL
δLM . (5.12)

The first equality follows from∮
dµ(x)xQL(x)QM (x) =

∮
dµ(−1/x)

(
−1

x

)
QL(−1/x)QM (−1/x)

= −
∮
dµ(x)xQL(x)QM (x) ,

(5.13)

where in the second equality we used the property of the measure,13
∫
dµ(−1/x)=

∫
x2dµ(x).

In a similar manner, the second equality can be proven:∮
dµ(x)x2QL(x)QM (x) =

∮
dµ(−1/x)

(
−1

x

)2

QL(−1/x)QM (−1/x)

=

∮
dµ(x)QL(x)QM (x) .

(5.14)

The equalities (5.8), (5.11) and (5.12) imply that QL(x) and xQL(x) for L ∈ N≥0

together form a set of orthogonal functions under the measure dµ(x). They are in fact

the Gram-Schmidt basis obtained by applying the orthogonalization to the set of functions

{1, x, x−1, x2, x−2, . . .}. As we see below, this characterization of the functions QL(x) plays

a key role in identifying them with the functions introduced in the integrability-based

approaches [26, 43].

5.3 Comparison with the results from integrability

We now prove the equivalence between our results and the results obtained previously from

integrability [25, 26]. For this purpose, we first show that QL coincides with the function

PL, which was introduced in [25, 26] and later shown to be directly related to the so-called

“Q-functions” in the Quantum Spectral Curve [44]. The equivalence of other quantities,

including the generalized Bremsstrahlung functions, follow from it.

As the first step, let us recall the polynomials PL defined in [26]:

PL(x) ≡ 1

m2L

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L I
θ
1−2L

Iθ2 Iθ1 · · · Iθ3−2L I
θ
2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0
x−L x1−L · · · xL−1 xL

∣∣∣∣∣∣∣∣∣∣∣∣
, L ≥ 0 , (5.15)

13Note that an extra minus sign comes from a change of the direction of the contour.
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where one has to set θ = a/2 to compare with our formulae and mL is given by

mL =

∣∣∣∣∣∣∣∣∣∣
Iθ1 Iθ0 · · · Iθ2−L
Iθ2 Iθ1 · · · Iθ3−L
...

...
. . .

...

IθL I
θ
L−1 · · · Iθ1

∣∣∣∣∣∣∣∣∣∣
. (5.16)

Note that we changed the normalization of PL slightly so that the coefficient of the leading

term becomes unity,14

PL(x) = xL + · · ·+ m̃2L

m2L
x−L , (5.18)

with

m̃n =

∣∣∣∣∣∣∣∣∣∣
Iθ0 Iθ−1 · · · Iθ1−n
Iθ1 Iθ0 · · · Iθ2−n
...

...
. . .

...

Iθn−1 I
θ
n−2 · · · Iθ0

∣∣∣∣∣∣∣∣∣∣
. (5.19)

Let us also introduce another set of functions P̃L(x) defined by

P̃L(x) ≡ 1

m2L+1

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ1−2L Iθ−2L

Iθ2 Iθ1 · · · Iθ2−2L I
θ
1−2L

...
...

. . .
...

...

Iθ2L+1 Iθ2L · · · Iθ1 Iθ0
x−L x1−L · · · xL xL+1

∣∣∣∣∣∣∣∣∣∣∣∣
, L ≥ 0 . (5.20)

These functions satisfy the following important orthogonality properties:∮
dµ(x)PL(x)PM (x) =

1

2πg

m̃2Lm2L+1

m2
2L

δLM , (5.21)∮
dµ(x)P̃L(x)PM (x) = 0 , (5.22)∮
dµ(x)P̃L(x)P̃M (x) = − 1

2πg

m̃2L+2

m2L+1
δLM . (5.23)

In what follows, we will prove these relations one by one.

Let us first consider (5.21). To prove it, it is enough to study the case with L ≥ M .

We first perform the Laplace expansion for PM (x) to get

PM (x) =

M∑
k=−M

ckx
k , (5.24)

14The relation between the conventions here and the conventions in [26, 43, 44] can be summarized as

follows:
detM2L = m2L+1 ,

PL(x) in [26, 43, 44] =
m2L

m2L+1
PL(x) here

(
=

detM2L−1

detM2L
PL(x) here

)
.

(5.17)
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where ck’s are constants with cM = 1 and c−M = m̃2M/m2M . Substituting this expression

to the left hand side of (5.21), one gets

∮
dµ(x)PL(x)PM (x) =

M∑
k=−M

ck
m2L

∮
dµ(x)

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L I
θ
1−2L

Iθ2 Iθ1 · · · Iθ3−2L I
θ
2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0
x−L+k · · · · · · · · · xL+k

∣∣∣∣∣∣∣∣∣∣∣∣
(5.25)

Using the integral expression for the deformed Bessel function (5.1), which can be expressed

in terms of dµ as

Iθn = 2πg

∮
dµ

xn−1
, (5.26)

one can perform the integral to get

∮
dµ(x)PL(x)PM (x) =

1

2πg

M∑
k=−M

ck
m2L

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L Iθ1−2L

Iθ2 Iθ1 · · · Iθ3−2L Iθ2−2L
...

...
. . .

...
...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0
IθL−k+1 · · · · · · · · · Iθ−L−k+1

∣∣∣∣∣∣∣∣∣∣∣∣
. (5.27)

If L > M , the last row always coincides with one of the rows above. Therefore, all the

terms in the sum vanishes and one has∮
dµ(x)PL(x)PM (x) = 0 , L > M . (5.28)

On the other hand, for L = M , there is one term in the sum which is nonzero: k = −L.

We thus have ∮
dµ(x)PL(x)PL(x) =

1

2πg

c−Lm2L+1

m2L
=

1

2πg

m̃2Lm2L+1

m2
2L

. (5.29)

Let us next consider (5.22). Expanding again the determinant expression for PM and

substituting it to the left hand side of (5.22), we obtain

∮
dµ(x)P̃L(x)PM (x) =

M∑
k=−M

ck
m2L+1

∮
dµ(x)

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ1−2L Iθ−2L

Iθ2 Iθ1 · · · Iθ2−2L Iθ1−2L
...

...
. . .

...
...

Iθ2L+1 Iθ2L · · · Iθ1 Iθ0
x−L+k · · · · · · · · · xL+k+1

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2πg

M∑
k=−M

ck
m2L+1

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ1−2L Iθ−2L

Iθ2 Iθ1 · · · Iθ2−2L Iθ1−2L
...

...
. . .

...
...

Iθ2L+1 Iθ2L · · · Iθ1 Iθ0
IθL−k+1 · · · · · · · · · Iθ−L−k

∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.30)
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One can easily see that, for L ≥M , the last row coincides with one of the rows above and

therefore the sum always vanishes. This proves (5.22) for L ≥M . One can also show (5.22)

for L < M by performing the Laplace expansion of P̃L:

P̃L(x) =

L+1∑
k=−L

c̃kx
k . (5.31)

Substituting this expression to the left hand side of (5.22), we get

∮
dµ(x)P̃L(x)PM (x) =

L+1∑
k=−L

c̃k
m2M

∮
dµ(x)

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2M Iθ1−2M

Iθ2 Iθ1 · · · Iθ3−2M Iθ2−2M
...

...
. . .

...
...

Iθ2M Iθ2M−1 · · · Iθ1 Iθ0
x−M+k · · · · · · · · · xM+k

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2πg

L+1∑
k=−L

c̃k
m2M

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2M Iθ1−2M

Iθ2 Iθ1 · · · Iθ3−2M Iθ2−2M
...

...
. . .

...
...

Iθ2M Iθ2N−1 · · · Iθ1 Iθ0
IθM−k+1 · · · · · · · · · Iθ−M−k+1

∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.32)

Again, one can show that the last row always coincides with one of the rows above as long

as L < M . This completes the proof of (5.22).

Let us finally show (5.23). Again it is enough to consider the case with L ≥ M . By

performing the Laplace expansion of P̃M and substituting it to (5.23), one gets

∮
dµ(x)P̃L(x)P̃M (x) =

M+1∑
k=−M

c̃k
m2L+1

∮
dµ(x)

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ1−2L Iθ−2L

Iθ2 Iθ1 · · · Iθ2−2L Iθ1−2L
...

...
. . .

...
...

Iθ2L+1 Iθ2L · · · Iθ1 Iθ0
x−L+k · · · · · · · · · xL+k+1

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2πg

M+1∑
k=−M

c̃k
m2L+1

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ1−2L Iθ−2L

Iθ2 Iθ1 · · · Iθ2−2L Iθ1−2L
...

...
. . .

...
...

Iθ2L+1 Iθ2L · · · Iθ1 Iθ0
IθL−k+1 · · · · · · · · · Iθ−L−k

∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.33)

For L > M , the determinant always vanishes for the same reason as the previous discus-

sions. On the other hand, if L = M , the term with k = L+ 1 does not vanish and gives15∮
dµ(x)P̃L(x)P̃L(x) = − c̃L+1m̃2L+2

(2πg)m2L+1
= − 1

2πg

m̃2L+2

m2L+1
. (5.34)

15The minus sign comes from the reordering of the matrix.
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Now, from the relations (5.21), (5.22) and (5.23) together with the normalization (5.18),

it follows that the set of functions {PL(x), P̃L(x)} forms a Gram-Schmidt basis ob-

tained from the functions {1, x, x−1, x2, x−2, . . .}. Since the Gram-Schmidt basis is unique

up to overall normalizations, we conclude that {PL(x), P̃L(x)} must be proportional to

{QL(x), xQL(x)}. The constants of proportionality can be fixed by comparing (5.9)

and (5.18) and we arrive at

PL(x) =
QL(x)

gL
, P̃L(x) =

xQL(x)

gL
. (5.35)

This in particular means that PL(x) also has a property

PL(x) = PL(−1/x) . (5.36)

Imposing this property on the expansion (5.18), we get

(−1)L =
m̃2L

m2L
. (5.37)

We can thus rewrite the relations (5.21) and (5.23) as∮
dµ(x)PL(x)PM (x) = (−1)L

1

2πg

m2L+1

m2L
δLM , (5.38)∮

dµ(x)P̃L(x)P̃M (x) = (−1)L
1

2πg

m2L+2

m2L+1
δLM . (5.39)

Comparing these relations with (5.8) and (5.12) in view of the correspondence (5.35), we

obtain the relation between the ratios of determinants

DL+1

DL
= (−1)L

g2L−1

2π

m2L+1

m2L
= (−1)L

g2L−1

2π

m2L+2

m2L+1
, (5.40)

which leads to

g4L−2

(2π)2

m2L+2

m2L
=

(
DL+1

DL

)2

. (5.41)

Using the initial condition m0 = D0 = 1, we can solve the recursion to get

m2L =
(2π)2L

g2L(L−2)
(DL)2 . (5.42)

This establishes the relation between the two determinant expressions.

Using this relation, we can express the large N limit of the generalized Bremsstrahlung

function (4.16) as

HL(θ) =
2θ

1− θ2

π2

BL(θ) = −1

4
∂θ log

m2L+2

m2L
. (5.43)

This is precisely the result obtained previously from integrability [26].
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5.4 Variations of the measure

Before proceeding, let us now make a small remark on the measure dµ. The expectation

value of the Wilson loop admits several different integral representations besides (5.3):

〈W〉 =

∮
dµsym =

∮
dµexp . (5.44)

Here dµsym is a “symmetrized” measure defined by

dµsym =
dx

2πi

1 + x−2

2

sinh(2πg(x+ 1/x))ega(x−1/x)

2πg
, (5.45)

while dµexp is an “exponential” measure defined by

dµexp =
dx

2πi

1 + x−2

2

e2πg(x+1/x)ega(x−1/x)

2πg
. (5.46)

The symmetrized expression can be derived from the original one (5.3) by performing the

transformation x→ −1/x and averaging the original expression and the transformed one.

On the other hand, the exponential expression can be obtained from the symmetrized one

by splitting sinh into two exponentials and performing x→ −1/x to e−2πg(x+1/x).

Almost all the results obtained so far in this section are valid even if we replace dµ

with dµsym or dµexp since the functions QL(x) are invariant under x → −1/x; see (5.10).

(The only exceptions are (5.11) and (5.12) whose derivation relies crucially on the property

of dµ.) This in particular means that one can alternatively use dµsym or dµexp for the

integral expression for the topological correlators (5.6). In the following sections, we will

see the uses of these other measures.

5.5 Nonplanar corrections to the measure

So far, we have been discussing the large N limit in this section. As we explain below, it is

also possible to correct the measure factor to incorporate the perturbative 1/N corrections.

The large N expansion of the expectation value of the Wilson loop is given by [9]

〈W〉 =
2√
λ′
I1(
√
λ′) +

λ′

48N2
I2(
√
λ′) + · · · , (5.47)

with λ′ ≡ λ
(
1− a2/(4π2)

)
= (4πg)2

(
1− a2/(4π2)

)
. To find the first non-planar correction

to the measure, we use the generating function,16

e2πg(x+ 1
x

)ega(x− 1
x

) =

+∞∑
n=−∞

In(
√
λ′)

(
2π + a

2π − a

)n/2
xn . (5.48)

which leads to the following integral representation:

In(
√
λ′)

(
2π + a

2π − a

)n/2
=

∮
dx

2πixn+1
e2πg(x+ 1

x
)ega(x− 1

x
) (5.49)

16This follows from the usual generating function for the modified Bessel function, e

√
λ′
2

(y+ 1
y
)

=∑
n In(

√
λ′)yn, after the change of variables y =

√
2π+a
2π−a x.
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Applying this to the first nonplanar correction, we get

λ′

48N2
I2(
√
λ′) =

λ′

48N2

2π − a
2π + a

∮
dx

2πix3
e2πg(x+ 1

x
)ea(x− 1

x
)

=
g2(2π − a)2

12N2

∮
dx

2πix3
e2πg(x+ 1

x
)ea(x− 1

x
)

(5.50)

The expression (5.50) contains an extra dependence on the area, (2π − a)2. However, this

can be absorbed into the integral by using

ga× ega(x− 1
x

) =
1

1 + 1/x2

dega(x− 1
x

)

dx
,

(ga)2 × ega(x− 1
x

) =
1

1 + 1/x2

d

dx

[
1

1 + 1/x2

dega(x− 1
x

)

dx

] (5.51)

and performing the integration by parts. As a result, we get

λ′

48N2
I2(
√
λ′) =

1

3N2

∮
dx

2πix

e2πg(x+ 1
x

)ega(x− 1
x

)

2πg
× f(2πg(x+ 1/x)) , (5.52)

with

f(z) =
(2πg)4

N2

z2 − 3z + 3

3z4
. (5.53)

Thus, using the exponential measure for the planar part, one can write down the corrected

measure dµ1/N as

dµ1/N =
dx

2πix

e2πg(x+ 1
x

)ega(x− 1
x

)

2πg
× F (2πg(x+ 1/x)) , (5.54)

with

F (z) =
1

(2πg)2

z

2
+

(2πg)4

N2

z2 − 3z + 3

3z4
+O(1/N4) · · · . (5.55)

Since the area dependence only appears in the exponent ega(x−1/x), the expectation value

of the Wilson loop and its derivatives retain the following simple expressions:

〈W〉(n) =

∮
dµ1/N

(
g(x− x−1)

)n
. (5.56)

From this, it follows that the integral expression for the topological correlators (5.6) and

the orthogonality condition for QL(x) (5.8) still hold if we replace dµ with dµ1/N .

Repeating the same analysis at higher orders, we can determine the corrections to the

measure order by order. After working out first several orders, we found17 the following

relation between the terms that appear in the expansion of 〈W〉 and the corrections to F (z):

(λ′)
n
2 In(
√
λ′)

Integration by parts−→
[

(4πg)2

z

]n√
2

π
e−z
√
−zKn+ 1

2
(−z) (5.57)

17We only checked the relation by Mathematica and did not work out a proof. It would be nice to prove

and establish the relation.
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Note that although the right hand side involves the modified Bessel function Kn+ 1
2
, it

actually reduces to a rational function of z. Now, applying this relation to the expansion

of 〈W〉 given by Drukker and Gross [9],

〈W〉 =
2√
λ′
I1(
√
λ′) +

∞∑
k=1

1

N2k

k−1∑
s=0

Xs
k

(
λ′

4

) 3k−s−1
2

I3k−s−1(
√
λ′) , (5.58)

we obtain the following expansion of F (z):

F (z) =
1

(2πg)2

z

2
+

√
−2z

π
e−z

∞∑
k=1

1

N2k

k−1∑
s=0

Xs
k

[
(2πg)2

z

](3k−s−1)

K(3k−s−1)+ 1
2
(−z) (5.59)

In (5.58) and (5.59), Xs
k is a numerical coefficient defined by the following recursion:

4Xs
k =

3k − s− 2

3k − s
Xs−1
k−1 +

1

3k − s
Xs
k−1 ,

X0
1 =

1

12
, Xk

k = 0 .

(5.60)

It would be interesting to try to resum the series (5.59) and to consider the nonperturbative

corrections.

6 Weak- and strong-coupling expansions

We now discuss the weak- and the strong-coupling expansions of topological correlators

on the 1/2-BPS Wilson loop at large N , and compare them with the direct perturbative

results. In particular, we focus on the three-point functions since the topological correlators

are closed under the OPE and the match of the three-point functions (or equivalently the

OPE coefficients) automatically guarantee the match of higher-point functions.

In both cases, we first compute the expansion of the polynomials QL(x):

QL(x) =

{
Q0
L(x) + g2Q1

L(x) + · · · g � 1

Q̄0
L(x) + 1

g Q̄
1
L(x) + · · · g � 1

. (6.1)

To determine the expansion, it is convenient to use the symmetrized measure dµsym (5.45)

and perform the change of variables from x to y ≡ i(x− x−1)/2. Then, the integral over x

can be rewritten as the following integral of y:

∮
dµsym (· · · ) =

2

π

∫ 1

−1
dy

sinh(4πg
√

1− y2)

4πg
(· · · ) . (6.2)

Note that we set a = 0 since we consider the 1/2-BPS loops. In what follows, we use this

representation for the measure to compute the weak- and the strong-coupling expansions.
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6.1 Weak coupling expansion

Let us expand the measure (6.2) at weak coupling,

dµsym = dµ0 + g2dµ1 +O(g4) · · · . (6.3)

At the leading order, it is given by

dµ0 =
2

π
dy
√

1− y2 . (6.4)

This coincides with the measure for the Chebyshev polynomials of the second kind. Thus,

taking into account the difference of the normalization, we conclude that QL at the leading

order at weak coupling is given by

Q0
L(x) = (−ig)LUL(y) , (6.5)

where UL(y) is the Chebyshev polynomial of the second kind determined by the following

recursion relation:
U0(y) = 1 , U1(y) = 2y ,

UL+1(y) = 2yUL(y)− UL−1(y) .
(6.6)

Having identified QN with the Chebyshev polynomial, one can now compute the two-

and the three-point functions by using the identities,

π

2

∫
dy
√

1− y2UL(y)UM (y) = δLM ,

UL(y)UM (y) =
M∑
k=0

UL−M+2k(y) (L ≥M) .

(6.7)

Using these identities to evaluate the integral expressions for the correlators (5.6), we get

〈: Φ̃L1 : : Φ̃L2 : 〉
∣∣∣
O(g0)

= (−g2)L1δL1,L2 ,

〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉
∣∣∣
O(g0)

= (−g2)
Ltot
2 dL1,L2,L3 ,

(6.8)

where Ltot is given by

Ltot ≡ L1 + L2 + L3 , (6.9)

and the symbol dL1,L2,L3 denotes

dL1,L2,L3 =

1 (Li + Lj ≥ Lk) ∧
(∑3

s=1 Ls : even
)

0 otherwise
. (6.10)

As shown in (6.10) the three-point function is nonzero only when the triangle inequalities

are satisfied and the sum of the lengths of the operators is even. These results precisely

match the tree-level planar Wick contractions. Note that, at this order, the expectation

value of the Wilson loop is 1 and there is no distinction between the un-normalized and

the normalized correlators 〈〈∗〉〉.
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Let us now discuss the one-loop correction. At one loop, the measure receives an

additional contribution,

dµ1 = dµ0 × 8π2

3
(1− y2) (6.11)

This change of the measure induces the change of the orthogonal polynomials Q1
L since

they need to satisfy the modified orthogonality condition∫
dµ1Q0

LQ
0
M +

∫
dµ0Q1

LQ
0
M +

∫
dµ0Q0

LQ
1
M ∝ δLM . (6.12)

Furthermore, in order to keep the normalization condition (5.9), the correction Q1
L must

be a polynomial of y with the order < L. One can solve these conditions using the equality

(1− y2)UL(y) =
1

4
(2UL(y)− UL+2(y)− UL−2(y)) , (6.13)

and the result reads

Q1
L(y) = (−ig)L

2π2

3
UL−2(y) . (6.14)

We can then compute the correction to the two- and the three-point functions using the

integral representation for the correlators (5.6) as follows:

〈: Φ̃L1 : : Φ̃L2 : 〉
∣∣∣
O(g2)

=
(2πg)2(−g2)L1

3
δL1,L2 ,

〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉
∣∣∣
O(g2)

=
(2πg)2(−g2)

Ltot
2

6
(2dL1,L2,L3 + dL1,L2−2,L3

+ dL1,L2,L3−2 − dL1+2,L2,L3) ,

(6.15)

where da,b,c is 1 only when a + b + c is even and they satisfy the triangular inequality,

(otherwise zero). Using the identities18

dL1,L2−2,L3 = dL1,L2,L3 − δL2+L3,L1 − δL1+L2,L3 + δL3+L1,L2−2 ,

dL1,L2,L3−2 = dL1,L2,L3 − δL3+L1,L2 − δL2+L3,L1 + δL1+L2,L3−2 ,

dL1+2,L2,L3 = dL1,L2,L3 + δL1+L2,L3−2 + δL3+L1,L2−2 − δL2+L3,L1 ,

(6.17)

we can rewrite the three-point function also as

〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉
∣∣∣
O(g2)

=
(2πg)2(−g2)

Ltot
2

6
(3dL1,L2,L3 − δL1+L2,L3

− δL2+L3,L1 − δL3+L1,L2) .

(6.18)

18These identities can be derived by expressing da,b,c as a product of step functions

Θ(x) =

{
1 (x ≥ 0)

0 (x < 0)
(6.16)

and using the fact that Θ(x+ 1) = Θ(x) + δx,−1 and Θ(x− 1) = Θ(x)− δx,0.
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By dividing the correlators by the expectation value of the Wilson loop 〈W〉 = 1 + 2π2g2 +

O(g2), we get the following results for the normalized correlators:

〈〈:Φ̃L1 : :Φ̃L2 :〉〉
∣∣∣
O(g2)

=−2(πg)2(−g2)L1

3
δL1,L2 ,

〈〈:Φ̃L1 : :Φ̃L2 : :Φ̃L3 :〉〉
∣∣∣
O(g2)

=−(2πg)2(−g2)
Ltot
2

6
(δL1+L2,L3 +δL2+L3,L1 +δL3+L1,L2) .

(6.19)

They are in perfect agreement with the direct one-loop computation performed in [29].

For completeness, let us also present the structure constant in the standard CFT

normalization; namely the normalization in which the two-point functions become unity.

The result up to O(g2) reads

〈〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉〉(
〈〈: Φ̃L1 : : Φ̃L1 : 〉〉〈〈: Φ̃L2 : : Φ̃L2 : 〉〉〈〈: Φ̃L3 : : Φ̃L3 : 〉〉

)1/2

= dL1,L2,L3 + (πg)2

[
dL1,L2,L3 −

2

3
(δL1+L2,L3 + δL2+L3,L1 + δL3+L1,L2)

]
. (6.20)

6.2 Strong coupling expansion

Let us consider the expansion at strong coupling. Here we send g →∞ while keeping the

lengths of the operators Li’s finite. In this limit, the integral

〈: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Ln : 〉 =
2

π

∫ 1

−1
dy

sinh(4πg
√

1− y2)

4πg

n∏
k=1

QLk(x) , (6.21)

can be approximated by its saddle point,

∂ log sinh(4πg
√

1− y2)

∂y

∣∣∣∣∣
y=y∗

= 0 ⇒ y∗ = 0 . (6.22)

Expanding the measure around this saddle point and performing the change of variables

t =
√

2πgy, we obtain the following expression for the measure at strong coupling:

2

π

∫ 1

−1
dy

sinh(4πg
√

1− y2)

4πg
=

∫ ∞
−∞

(
dµ̄0(t) +

1

g
dµ̄1(t) +O(g2)

)
+O(e−g) . (6.23)

with

dµ̄0 =
e4πg

(2π)5/2g3/2
e−t

2
dt , dµ̄1 = dµ̄0 ×

(
− t

4

8π

)
, (6.24)

At the leading order, the measure dµ0 is simply a gaussian. As is well-known, this is

nothing but the measure for the Hermite polynomials. Thus, QL(x) at strong coupling is

given by

Q̄0
L(x) = (−i)L

( g
2π

)L/2
HL(t) . (6.25)
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Here the factor (−i)L(g/2π)L/2 comes from the normalization of QL (5.9), and HL(t) is

the Hermite polynomial defined by

H0(t) = 1 , H1(t) = 2t ,

HL(t) = 2tHL−1(t)− 2(L− 1)HL−2(t) .
(6.26)

We can then compute the two- and the three-point functions using the properties of the

Hermite polynomials,∫ ∞
−∞

dt e−t
2
HL(t)HM (t) = 2LL!

√
πδLM ,

HL(t)HM (t) =

M∑
k=0

2M−kL!M !

(L−M + k)!(M − k)!k!
HL−M+2k(t) (L ≥M) .

(6.27)

The results are given by

〈: Φ̃L1 : : Φ̃L2 : 〉
∣∣∣
g→∞

=
e4πg

2(2πg)3/2

(
− g
π

)L1

L1!δL1L2 ,

〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉
∣∣∣
g→∞

=
e4πg

2(2πg)3/2

(
− g
π

)Ltot
2 L1!L2!L3! dL1,L2,L3

L12|3!L23|1!L31|2!
,

(6.28)

with Lij|k ≡ (Li + Lj − Lk)/2. Note that the overall coefficient e4πg/(2(2πg)3/2) is pre-

cisely the expectation value of the circular Wilson loop at strong coupling. Therefore, the

normalized correlators take the following simple form:

〈〈: Φ̃L1 : : Φ̃L2 : 〉〉
∣∣∣
g→∞

=
(
− g
π

)L1

L1!δL1L2 ,

〈〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉〉
∣∣∣
g→∞

=
(
− g
π

)Ltot
2 L1!L2!L3! dL1,L2,L3

L12|3!L23|1!L31|2!
.

(6.29)

These results reproduce the strong-coupling answer, which is given by the generalized free

fields in AdS2.

Let us now compute the correction to this strong coupling answer. At the next order,

the measure receives a correction dµ1, given by (6.24). As in the weak-coupling analysis,

the change of the measure induces the correction to QL since they have to satisfy the

modified orthogonality condition:

−
∫ ∞
−∞

dµ̄1Q̄0
LQ̄

0
M +

∫ ∞
−∞

dµ̄0Q̄1
LQ̄

0
M +

∫ ∞
−∞

dµ̄0Q̄0
LQ̄

1
M ∝ δLM . (6.30)

To solve this condition, we use the following property of the Hermite polynomial:

t4HL(t) =
H4(t) + 12H2(t) + 12

16
HL(t)

=
1

16
HL+4 +

2L+ 3

4
HL+2 +

3(2L2 + 2L+ 1)

4
HL

+ (2L− 1)
L!

(L− 2)!
HL−2 +

L!

(L− 4)!
HL−4 .

(6.31)
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We then get

Q̄1
L(x) =

(−i)L

8π

( g
2π

)L/2 [
(2L− 1)

L!

(L− 2)!
HL−2(t) +

L!

(L− 4)!
HL−4(t)

]
. (6.32)

Using this result, we can compute the correction to the two-point function as

〈: Φ̃L1 : : Φ̃L2 : 〉
∣∣∣
O(1/g)

= − e4πg

2(2πg)3/2

(
− g
π

)L1

L1!δL1L2

3

32πg
(2L2

1 + 2L1 + 1) ,

〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉
∣∣∣
O(1/g)

= − e4πg

2(2πg)3/2

(
− g
π

)Ltot
2 3

64πg
(L2

tot + 2Ltot + 2)

×
L1!L2!L3! dL1,L2,L3

L12|3!L23|1!L31|2!
.

(6.33)

Since the expectation value of the Wilson loop can be expanded at strong coupling as

〈W〉 g→∞=
e4πg

2(2πg)3/2

(
1− 3

32πg
+O(1/g2)

)
, (6.34)

the normalized correlators are given by

〈〈:Φ̃L1 : :Φ̃L2 :〉〉
∣∣∣
O(1/g)

=−
(
− g
π

)L1

L1!δL1L2

3

32πg
(2L2

1+2L1) ,

〈〈:Φ̃L1 : :Φ̃L2 : :Φ̃L3 :〉〉
∣∣∣
O(1/g)

=−
(
− g
π

)Ltot
2 3

64πg
(L2

tot+2Ltot)
L1!L2!L3! dL1,L2,L3

L12|3!L23|1!L31|2!
.

(6.35)

As we will see in the next subsection, these results are in perfect agreement with the direct

strong-coupling computation.

Using these results, we can also compute the structure constant in the standard CFT

normalization at strong coupling:

〈〈:Φ̃L1 : :Φ̃L2 : :Φ̃L3 :〉〉(
〈〈:Φ̃L1 : :Φ̃L1 :〉〉〈〈:Φ̃L2 : :Φ̃L2 :〉〉〈〈:Φ̃L3 : :Φ̃L3 :〉〉

)1/2

=

√
L1!L2!L3! dL1,L2,L3

L12|3!L23|1!L31|2!

[
1+

3(L2
1+L2

2+L2
3−2(L1L2+L2L3+L3L1))

64πg
+O

(
1

g2

)]
. (6.36)

6.3 Comparison to string theory

In this section we show that the strong coupling expansion of the localization results derived

above precisely matches the direct perturbative calculation using the AdS5×S5 string sigma

model. As is well-known, on the string theory side the 1/2-BPS (circular or straight) Wilson

loop is dual to a minimal surface with the geometry of an AdS2 embedded in AdS5 (and

pointlike in the S5 directions). The dynamics of the string worldsheet fluctuations is most

conveniently described using the Nambu-Goto action in static gauge. The bosonic part of

the string action up to the quartic order was written down explicitly in [32] and it reads

SB =

√
λ

2π

∫
d2σ
√
g

(
1+

1

2
gµν∂µx

i∂νx
i+xixi+

1

2
gµν∂µy

a∂νy
a+L4y+L4x+L2x,2y+. . .

)
(6.37)
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Here gµν is the AdS2 worldsheet metric, ya, a = 1, . . . , 5 are the massless fluctuations in

the S5 directions, which are dual to the scalar insertions Φa on the gauge theory side, and

xi, i = 1, 2, 3 are the m2 = 2 fluctuations in AdS5 dual to insertions of the displacement

operator [46, 47]. For the explicit form of the quartic vertices, see [32]. Note that there

are no cubic vertices between the elementary bosonic fluctuations.

Let us first review the result for the tree-level connected four-point function of the ya

fluctuations computed in [32], and its agreement with the localization prediction. Taking

the circular geometry at the boundary, it takes the form

〈Y1 ·y(τ1)Y2 ·y(τ2)Y3 ·y(τ3)Y4 ·y(τ4)〉conn.
AdS2

=

=

(√
λ

2π2

)2
Y1 ·Y2Y3 ·Y4

(4sin τ12
2 sin τ34

2 )2

1√
λ

[
GS(χ)− 2

5
GT (χ)+ξ(GT (χ)+GA(χ))+ζ(GT (χ)−GA(χ))

]
.

(6.38)

where χ is the cross-ratio

χ =
sin τ12

2 sin τ34
2

sin τ13
2 sin τ24

2

(6.39)

and ξ, ζ are SO(5) cross-ratios

ξ =
Y1 · Y3 Y2 · Y4

Y1 · Y2 Y3 · Y4
, ζ =

Y1 · Y4 Y2 · Y3

Y1 · Y2 Y3 · Y4
, (6.40)

with Yi null polarization 5-vectors. The functions of cross-ratio GS,T,A(χ) appearing in

the 4-point function above correspond to singlet, symmetric traceless and antisymmetric

channels, and their explicit form can be found in [32].

In writing (6.45) we have taken the normalization of the y fluctuations such that the

leading order 2-point function computed from the string action reads19

〈Y1 · y(τ1)Y2 · y(τ2)〉AdS2 =

√
λ

2π2

Y1 · Y2

(2 sin τ12
2 )2

. (6.41)

This normalization agrees in the strong coupling limit with the normalization we adopted

on the gauge theory side, which gives

〈〈Y1 · Φ(τ1)Y2 · Φ(τ2)〉〉 =

√
λ I2(

√
λ)

2π2 I1(
√
λ)

Y1 · Y2

(2 sin τ12
2 )2

=

√
λ

2π2

(
1− 3

2
√
λ

+ . . .

)
Y1 · Y2

(2 sin τ12
2 )2

.

(6.42)

We now specialize to the topological boundary operators, by choosing the polarizations

Yi = (cos τi, sin τi, 0, i, 0, 0) . (6.43)

By analogy with the notation introduced earlier on the CFT side, let us define

ỹ(τ) ≡ cos(τ)y1(τ) + sin(τ)y2(τ) + iy4(τ) , (6.44)

19In [32] instead a canonical normalization of the kinetic term was used, so that the leading 2-point

function was λ independent. The normalization in (6.41) is actually the one which is naturally induced by

the overall λ dependence in the string action, upon adopting the standard AdS/CFT dictionary to compute

the tree-level 2-point function, see [45].
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F F

F F

F F

FF

F F

FF

Figure 4. Witten diagrams in AdS2 contributing to the 4-point function of single-letter insertions Φ

to next-to-leading order at strong coupling. The grey blob in the middle figure denote the one-loop

correction to the “boundary-to-boundary” y propagator.

which is dual to the insertion of Φ̃ and has the constant 2-point function given at leading

order by 〈ỹ(τ1)ỹ(τ2)〉AdS2 = −
√
λ

4π2 . Then, using the explicit form of GS,T,A(χ), one finds

the position independent result for the connected 4-point function

〈ỹ(τ1)ỹ(τ2)ỹ(τ3)ỹ(τ4)〉conn.
AdS2

= − 3
√
λ

16π4
. (6.45)

The full 4-point function to the first subleading order also receives contribution from dis-

connected diagrams, as shown in figure 4. In addition to the leading tree-level generalized

free-field Wick contractions, there are corrections of the same order as (6.45) coming from

disconnected diagrams where one leg is one-loop corrected, see the figure. While these

corrections have not been computed explicitly yet from string theory, we will assume below

that they reproduce the strong coupling expansion of (6.42).20 Then, the 4-point function

of single-letter insertions computed from the AdS2 string theory side reads to this order

〈ỹ(τ1)ỹ(τ2)ỹ(τ3)ỹ(τ4)〉AdS2 =

(
−
√
λ

4π2

)2[(
1− 3

2
√
λ

)2

− 3√
λ

+. . .

]
=

3λ

16π4
− 3
√
λ

4π4
+. . .

(6.46)

where the first term in the bracket is the contribution of disconnected diagrams, and the

second term the one of the tree-level connected diagram. This precisely matches the strong

coupling expansion of the localization result

〈〈Φ̃Φ̃Φ̃Φ̃〉〉 =
∂4

∂A4 〈W〉
〈W〉

∣∣∣
A=2π

=
3λ

16π4
+

3

2π4
− 3
√
λI0(
√
λ)

4π4I1(
√
λ)

. (6.47)

Having reviewed the matching of the Φ̃ 4-point function, let us now move to the

computation of the two-point and three-point functions of arbitrary length insertions : Φ̃L : .

The Witten diagrams contributing to the 2-point function to the first two orders in the

strong coupling expansion are given in figure 5 (as in figure 4 above, there are one-loop

corrections to the diagrams involving free-field Wick contractions, that for brevity we do not

depict in the figure). The contribution of the diagram involving the 4-point vertex can be

obtained from the 4-point result (6.38) by taking Y2 → Y1, Y3,4 → Y2, and taking the limit

20Alternatively, one may consider normalized correlators as in (6.35), where such corrections drop out in

the ratio.
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FL FLFL FL

Figure 5. Topology of Witten diagrams contributing to the 2-point function of ΦL (in the pic-

ture the case L = 4 is shown). The diagrams on the left, corresponding to generalized free-field

contractions, also receive a subleading correction where a y-propagator is one-loop corrected.

τ2 → τ1, τ4 → τ3 ≡ τ2. From [32], we have GT (χ) = −3
2χ

2 + . . . and GA(χ) = O(χ3 log(χ))

at small χ, and so we get

〈(Y1 · y(τ1))2(Y2 · y(τ2))2〉AdS2 = −3
√
λ(Y1 · Y2)2

64π4 sin4 τ12
2

= − 3
√
λ

16π4
, (6.48)

where the first equality is valid for any choice of the null polarization vectors, and in the

second equality we have specialized to the topological configuration. We can now use this

result and some elementary combinatorics to compute the 2-point functions for arbitrary

length. We find

〈ỹLỹL〉AdS2 =

(
−
√
λ

4π2

)L L!

(
1− 3L

2
√
λ

)
− 3√

λ

(
L

2

)2

(L− 2)! + . . .

 (6.49)

The first term in brackets corresponds to the generalized free field Wick contractions: there

are clearly L! such contractions, and the factor (1 − 3
2
√
λ

+ . . .)L = 1− 3L
2
√
λ

+ . . . accounts

for the one-loop correction of the boundary-to-boundary legs, as discussed above. The

second term in brackets corresponds to the diagrams involving the 4-point vertex shown in

figure 5: there are

(
L

2

)
ways of picking two y’s on each operator, and (L − 2)! free-field

contractions among the remaining y’s. This result can be simplified to

〈ỹLỹL〉AdS2 =

(
−
√
λ

4π2

)L
L!

[
1− 3

4
√
λ
L(L+ 1) + . . .

]
, (6.50)

which indeed precisely agrees with the localization result given in (6.29) and (6.35).

Similarly, the diagrams contributing to the 3-point function 〈〈: Φ̃L1 : : Φ̃L2 : : Φ̃L3 : 〉〉 are

shown in figure 6. The leading contribution is given again by free-field Wick contractions.

Let us define the number of such contractions to be

nL1,L2,L3 ≡
L1!L2!L3! dL1,L2,L3

L12|3!L23|1!L31|2!
(6.51)

with dL1,L2,L3 given in (6.10). At the subleading order, there are two topologies which

involve the 4-point vertex: one where the vertex connects two y’s belonging to two different
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FL1 FL2

FL3

FL1 FL2

FL3

FL1 FL2

FL3

Figure 6. Topology of Witten diagrams contributing to the 3-point function of general length

operators (in the picture the case L1 = L2 = 4, L3 = 2 is shown). In addition, there are one-loop

corrections to the generalized free-field diagrams shown on the left.

operators, and one where it connects two y’s from one operator and two y’s from two

separate operators, see the figure.21 The first type of diagram can be computed using (6.48).

For the second type of diagram, again taking the limit of the 4-point result (6.45) by setting

Y2 → Y1, Y3 ≡ Y2, Y4 ≡ Y3 and similarly for the τi points, one finds

〈(Y1 · y(τ1))2 Y2 · y(τ2)Y3 · y(τ3)〉AdS2 = −3
√
λ(Y1 · Y2)(Y1 · Y3)

64π4 sin2 τ12
2 sin2 τ13

2

= − 3
√
λ

16π4
, (6.52)

where we have specialized to the topological configuration in the second step, but the first

equality holds in general. Then, working out the relevant combinatorics and putting all

the contributions together, we find for general lengths

〈ỹL1 ỹL2 ỹL3〉AdS2
=

(
−
√
λ

4π2

)Ltot
2
[

nL1,L2,L3

(
1− 3(L1+L2+L3)

2
√
λ

+. . .

)
(6.53)

− 3√
λ

(
nL1−2,L2−2,L3

(
L1

2

)(
L2

2

)
+nL1−2,L2,L3−2

(
L1

2

)(
L3

2

)
+nL1,L2−2,L3−2

(
L2

2

)(
L3

2

))
− 3√

λ

(
nL1−2,L2−1,L3−1

(
L1

2

)
L2L3+nL1−1,L2−2,L3−1

(
L2

2

)
L1L3+nL1−1,L2−1,L3−2

(
L3

2

)
L1L2

)]
,

with Ltot = L1 + L2 + L3. This simplifies to

〈ỹL1 ỹL2 ỹL3〉AdS2 =

(
−
√
λ

4π2

)Ltot
2

nL1,L2,L3

[
1− 3Ltot(Ltot + 2)

16
√
λ

+ . . .

]
, (6.54)

again in complete agreement with the localization prediction (6.29) and (6.35).

In a similar way, one can compute higher-point correlation functions of : Φ̃L : insertions

to next-to-leading order at strong coupling. While for the topological operators the agree-

ment of these should follow from the agreement of 2-point and 3-point functions shown

above, to dispel any doubt we have explicitly verified in various higher-point examples

that the localization results are indeed correctly reproduced by string perturbation theory

around the AdS2 minimal surface.

21Note that there is no diagram where the 4-vertex connects three y’s on the same operator, as this

vanishes by SO(5) symmetry: in terms of the null polarization vectors, it necessarily involves a factor

Yi · Yi = 0.
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7 Emergent matrix model at large N

In this section, we reformulate our results in the planar limit as a matrix model. We follow

closely the approach in the integrability literature [25, 43], but the resulting matrix model

is slightly different. This reformulation would be useful for studying the semi-classical

limit where Li and g are both send to infinity while their ratios are kept finite. We present

preliminary results for the semi-classical limit leaving more detailed analysis for future

investigation.

7.1 DL and QL(x) as a matrix model

Using the integral representations (5.3) and (5.4), the equation (3.14) can be re-expressed as

DL =

(
L∏
k=1

∮
dµexp(xk)

)∣∣∣∣∣∣∣∣∣∣
1 X1 · · · XL−1

1

X2 X2
2 · · · XL

2
...

...
. . .

...

XL−1
L XL

L · · · X
2L−2
L

∣∣∣∣∣∣∣∣∣∣
, (7.1)

with Xi ≡ g(xi−x−1
i ). Here we used the exponential measure (5.46) for later convenience,

but the results in this subsection are equally valid if we substitute it with dµ or dµsym.

The determinant in (7.1) has the structure of the Vandermonde determinant and it can be

rewritten as ∣∣∣∣∣∣∣∣∣∣
1 X1 · · · XL−1

1

X2 X2
2 · · · XL

2
...

...
. . .

...

XL−1
L XL

L · · · X
2L−2
L

∣∣∣∣∣∣∣∣∣∣
=
∏
k

Xk−1
k

∏
i<j

(Xj −Xi) . (7.2)

Since the measure factors in (7.1) are symmetric under the permutation of the indices, we

can replace the right hand side of (7.2) with its symmetrized version,∏
k

Xk−1
k

∏
i<j

(Xj −Xi)→
1

L!

∏
i<j

(Xj −Xi)
∑
σ∈SL

(−1)|σ|
∏
k

Xk−1
σk

. (7.3)

We then realize that the sum over the permutation is precisely the definition of the Van-

dermonde determinant. We can thus replace the determinant part by∣∣∣∣∣∣∣∣∣∣
1 X1 · · · XL−1

1

X2 X2
2 · · · XL

2
...

...
. . .

...

XL−1
L XL

L · · · X
2L−2
L

∣∣∣∣∣∣∣∣∣∣
→
∏
i<j(Xi −Xj)

2

L!
(7.4)

Therefore, we obtain the multi-integral expression,

DL =
gL(L−1)

L!

(
L∏
k=1

∮
dµexp(xk)

)∏
i<j

(xi − xj)2

(
1 +

1

xixj

)2

, (7.5)
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Note that this matrix-model-like expression is similar but different from the matrix model

for m2L, derived in [43]. One notable difference is that the integral in [43] contains 2L

integration variables while the integral derived here contains only L integration variables.

As proven in section 5.3, the two determinants are related by (5.42).

One can also express the polynomial FL as a multiple integral. Applying the integral

expression (5.4) to (3.18), we get

FL[X] =
1

DL

(
L∏
k=1

∮
dµexp(xk)

)
∣∣∣∣∣∣∣∣∣∣∣∣

1 X1 · · · XL
1

X2 X2
2 · · · X

L+1
2

...
...

. . .
...

XL−1
L XL

L · · · X
2L−1
L

1 X · · · XL

∣∣∣∣∣∣∣∣∣∣∣∣
. (7.6)

Here, again, Xk ≡ xk−x−1
k . Now the determinant part in the integrand can be evaluated as∣∣∣∣∣∣∣∣∣∣∣∣

1 X1 · · · XL
1

X2 X2
2 · · · X

L+1
2

...
...

. . .
...

XL−1
L XL

L · · · X
2L−1
L

1 X · · · XL

∣∣∣∣∣∣∣∣∣∣∣∣
=
∏
k

Xk−1
k (X −Xk)

∏
i<j

(Xj −Xi) . (7.7)

Thus, after symmetrization, we get

FL(X) =
gL(L−1)

L!DL

[
L∏
k=1

∮
dµexp(xk)

(
X−g(xk−x−1

k )
)]∏

i<j

(xi−xj)2

(
1+

1

xixj

)2

. (7.8)

As can be seen from this expression, FL(X) is the analogue of the characteristic polyno-

mial of the matrix model, which is obtained by inserting det(X −M) in the integral of the

matrix M . After the change of the variables X = g(x− x−1), it can be rewritten as

QL(x) =FL(g(x−x−1))

=
gL

2

L!DL

[
L∏
k=1

∮
dµexp(xk)(x−xk)

(
1+

1

xxk

)]∏
i<j

(xi−xj)2

(
1+

1

xixj

)2

.
(7.9)

7.2 Classical limit of the matrix model

Let us now consider the limit where g and Li’s are sent to infinity while their ratios remain

finite. This limit corresponds to a classical string configuration in AdS and therefore is

called the (semi-)classical limit.

The integral expression (7.5) can be rewritten as

DL =
gL(L−1)

(4πg)LL!

∮ L∏
k=1

dxk(1 + x−2
k )

2πi
eSL(x1,...,xk) , (7.10)

where the action is given by

SL = −
L∑
k=1

2πg

(
xk +

1

xk

)
+ ag

(
xk −

1

xk

)
+ 2

L∑
i<j

log

[
(xi − xj)

(
1 +

1

xixj

)]
. (7.11)
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Figure 7. Analytic structure of pL(x). In the semi-classical limit, the function pL(x) has

two branch cuts; the one coming from the condensation of xk and the other coming from the

condensation of 1/xk.

In the classical limit, the integral can be approximated by the saddle point ∂SL/∂xk = 0.

To compare with the result from integrability, it is convenient to introduce the rapidity

variables

uk ≡ g
(
xk +

1

xk

)
. (7.12)

and express the saddle-point equation as ∂SL/∂uk = 0. We then get

1 + x2
k

1− x2
k

a
2

+
1

g

L∑
j 6=k

1

(xk − xj)
(

1 + 1
xkxj

)
 = π . (7.13)

As in the usual large N matrix models, we expect that xk’s condense into a branch

cut in the classical limit as shown in figure 7. To describe the limit, it is convenient to

introduce a function pL(x) defined by

pL(x) ≡ 1 + x2

1− x2

 a

2g
+

1

g

L∑
k=1

1

(x− xk)
(

1 + 1
xxk

)
 . (7.14)

Then, the saddle-point equation (7.13) can be rewritten as

1

2
[pL(xk + ε) + pL(xk − ε)] = π , (7.15)

where xk± ε denote the two different sides of the branch cut. Since p(x) has the symmetry

pL(x) = −pL(−1/x) , (7.16)

– 37 –



J
H
E
P
0
5
(
2
0
1
8
)
1
0
9

the branch cut of xk’s is accompanied by another branch cut that is formed by −1/xk’s.

Around this other branch cut, pL(x) satisfies

1

2

[
pL
(
−x−1

k + ε
)

+ pL
(
−x−1

k − ε
)]

= −π . (7.17)

owing to (7.16).

It turns out that the function pL(x) coincides with the quasi-momentum computed

in [43] (upon setting θ = a/2). To see this, let us rewrite (7.14) using the identity,

1 + x2

1− x2

1

(x− y)
(

1 + 1
xy

) =
x2

1− x2

(
1

x− y
+

1

x+ 1
y

− 1

x

)
. (7.18)

We then get

pL(x) = −a
2

x2 + 1

x2 − 1
+

x

x2 − 1

L

g
− x2

x2 − 1

2L∑
k=1

1

x− xk
, (7.19)

where we defined xk with k > L as

xk ≡ −
1

xk−L
(k > L) . (7.20)

The expression (7.19) coincides22 with the definition of the quasi-momentum (3.13) in [43]

if we take into account the fact that the distribution of xk’s in [43] are symmetric under

the transformation x → −1/x. Furthermore, using (7.20), the saddle-point equation can

be re-expressed as

1

2
[pL(xk + ε) + pL(xk − ε)] =

{
π 1 ≤ k ≤ L
−π L+ 1 ≤ k ≤ 2L

, (7.21)

and it agrees with (3.15) in [43] (after appropriate reordering of xk’s). These two agree-

ments guarantee that our p(x) has the same analytic properties as the quasi-momentum

in [43], which uniquely specify the function. We thus conclude that the two functions must

be the same.

Using the quasi-momentum pL(x), we can also express the semi-classical limit of QL(x).

By taking the saddle-point of the integral expression (7.9), we obtain

QL(x) ∼ gL
L∏
k=1

(x− xk)
(

1 +
1

xxk

)
, (7.22)

where xk’s are the saddle-point values of the integration variables, which satisfy (7.13).

Using the definition of pL(x), we can also rewrite (7.22) as

QL(x) ∼ gL exp

[
−g
∫ u(x)

du′

(
pL(u′) +

a

2g

u′√
(u′)2 − 4g2

)]
, (7.23)

where we introduced the rapidity variable u defined by u ≡ g(x+ 1/x).

22Precisely speaking, there is a small difference from (3.13) in [43]: in their case, the number of roots is

2L + 1 whereas it is 2L in our case, even after we doubled the number of roots by (7.20). However, this

difference does not affect the leading semiclassical answer.
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Given the match of the quasi-momentum, we can follow the argument of [43] and show

that the semi-classical limit of our matrix model correctly reproduces the Bremsstrahlung

function computed from classical string. More interesting and challenging would be to

compute the semi-classical limit of the structure constants using the integral representa-

tion (5.6) and the asymptotic formula for QL (7.23). We leave this for future investigation.

Before ending this section, let us also point out that one can study the nonplanar

corrections to DL and QL by replacing the measure dµexp in (7.5) and (7.9) with the

nonplanar measure dµ1/N given in section 5.5. It would be interesting to analyze the

classical limit of the nonplanar corrections using our matrix model and match it with a

classical string configuration.

8 Conclusion

In this paper, we computed a class of correlation functions on the 1/8 BPS Wilson

loop by relating them to the area derivatives of the expectation value of the Wilson

loop. When restricted to the 1/2 BPS loop, the results provide infinitely many defect-

CFT data. As a byproduct, we also obtained finite-N generalization of the generalized

Bremsstrahlung function.

Let us end this paper by mentioning several future directions worth exploring: firstly,

it would be interesting to generalize our analysis to include operators outside the Wilson

loop. In the absence of insertions on the loop, such correlators were computed in [18, 19]

using the relation to 2d YM. Combining their results with our method, it should be possible

to compute the correlators involving both types of operators. Work in that direction is

in progress [48]. Once such correlators are obtained, one can try to numerically solve the

defect CFT bootstrap equation [33] using these topological correlators as inputs.

Another interesting direction is to apply our method to other theories, in particular to

N = 2 superconformal theories in four dimensions, for which the Bremsstrahlung function

was recently studied in [49]. Having exact correlators for these theories would help us

understand their holographic duals, including the dual of the Veneziano limit of N = 2

superconformal QCD [50].

At large N , we have shown that the correlators are expressed in terms of simple inte-

grals. A challenge for the integrability community is to reproduce them from integrability.

In the hexagon approach to the structure constants [51, 52], the results are given by a sum

over the number of particles. At first few orders at weak coupling where the sum truncates,

it is not so hard to reproduce our results [29, 53]. A question is whether one can resum

the series and get the full results. In many respects, the topological correlators on the

Wilson loop would provide an ideal playground for the hexagon approach; one can try to

develop resummation techniques, fix potential subtleties (if any), and compute nonplanar

corrections [54, 55].

Lastly, the appearance of the Q-functions in our large-N results suggests deep relation

between localization and the Quantum Spectral Curve. It is particularly intriguing that

there is a one-to-one correspondence between the multiplication of the Q-functions and

the operator product expansion of the topological correlators. A similar observation was
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recently made in [56] in a slightly different context: they found that the correlators on

the Wilson loop in the so-called ladders limit [57], which can be computed by resumming

the ladder diagrams [30], simplify greatly when expressed in terms of the Q-functions of

the quantum spectral curve. Exploring such a connection might give us insights into the

gauge-theory origin of the Quantum Spectral Curve.
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A Explicit results for operators with L ≤ 3

In this appendix we collect some explicit results for 2-point and 3-point functions of opera-

tors with L ≤ 3. We restrict for simplicity to the case of the 1/2-BPS loop. In terms of the

area-derivatives of the Wilson loop expectation value, one gets for the 2-point functions

〈〈: Φ̃ : : Φ̃ : 〉〉 =
W(2)

W
(A.1)

〈〈: Φ̃2 : : Φ̃2 : 〉〉 =
WW(4) − (W(2))2

(W)2
(A.2)

〈〈: Φ̃3 : : Φ̃3 : 〉〉 =
W(2)W(6) − (W(4))2

WW(2)
(A.3)

and for the 3-point functions

〈〈:Φ̃2 : :Φ̃: :Φ̃:〉〉= 〈〈:Φ̃2 : :Φ̃2 :〉〉 (A.4)

〈〈:Φ̃2 : :Φ̃2 : :Φ̃2 :〉〉= 2(W(2))3−3W(2)W(4)W+W(6)(W)2

(W)3
(A.5)

〈〈:Φ̃3 : :Φ̃2 : :Φ̃1 :〉〉= 〈〈:Φ̃3 : :Φ̃3 :〉〉 (A.6)

〈〈:Φ̃3 : :Φ̃3 : :Φ̃2 :〉〉=
−(W(2))3W(6)+(W(2))2(

(
W(4))2+W(8)W

)
−2W(2)W(4)W(6)W+(W(4))3W

(W(2))2(W)2
.

(A.7)

Here W ≡< W > |A=2π and W(k) ≡ ∂k

∂Ak
< W > |A=2π (similar expressions hold for the

general 1/8-BPS loop, but they also involve derivatives of odd order). Using the Wilson

loop expectation value (2.3), one can obtain in a straightforward way the explicit finite N

results in terms of Laguerre polynomials, but the expressions are rather lengthy and we do

not report them here. In the planar large N limit, the above correlators can be expressed
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in terms of Bessel functions as

〈〈:Φ̃: :Φ̃:〉〉=−

√
λI2

(√
λ
)

4π2I1

(√
λ
) (A.8)

〈〈:Φ̃2 : :Φ̃2 :〉〉= 3λ

16π4
−

λI0

(√
λ
)

2

16π4I1

(√
λ
)

2
−

√
λI0

(√
λ
)

2π4I1

(√
λ
)+

5

4π4
(A.9)

〈〈:Φ̃3 : :Φ̃3 :〉〉=

=−
3
√
λ(5λ+72)I0

(√
λ
)

2

64π6I1

(√
λ
)
I2

(√
λ
) +

3(13λ+144)I0

(√
λ
)

32π6

(
I0

(√
λ
)
− 2I1(

√
λ)√

λ

)− 3(λ(32−3λ)+288)I1

(√
λ
)

64π6
√
λ

(
I0

(√
λ
)
− 2I1(

√
λ)√

λ

)
(A.10)

and for the 3-point functions:

〈〈:Φ̃2 : :Φ̃: :Φ̃:〉〉= 〈〈:Φ̃2 : :Φ̃2 :〉〉 (A.11)

〈〈:Φ̃2 : :Φ̃2 : :Φ̃2 :〉〉=−
λ3/2I0

(√
λ
)

3

32π6I1

(√
λ
)

3
+

51λ

32π6
−

3λI0

(√
λ
)

2

8π6I1

(√
λ
)

2
−

3
√
λ(λ+40)I0

(√
λ
)

32π6I1

(√
λ
) +

37

4π6
(A.12)

〈〈:Φ̃3 : :Φ̃2 : :Φ̃1 :〉〉= 〈〈:Φ̃3 : :Φ̃3 :〉〉 (A.13)

〈〈:Φ̃3 : :Φ̃3 : :Φ̃2 :〉〉=−
3λ(5λ+72)I0

(√
λ
)

4

256π8I1

(√
λ
)

2I2

(√
λ
)

2
−

3
√
λ(127λ+1920)I0

(√
λ
)

3

128π8I1

(√
λ
)
I2

(√
λ
)

2

+
3(λ(2λ+579)+6192)I0

(√
λ
)

2

64π8I2

(√
λ
)

2
+

3(λ(5λ−757)−6336)I1

(√
λ
)
I0

(√
λ
)

32π8
√
λ

(
I0

(√
λ
)
− 2I1(

√
λ)√

λ

)
2

+
3(λ(λ(9λ−112)+4960)+34176)I1

(√
λ
)

2

256π8λI2

(√
λ
)

2
. (A.14)

A.1 Generalized Bremsstrahlung

Let us also list the first few results for the generalized Bremsstrahlung function, focusing

on the case θ = 0 given by eq. (4.18). Using the same notation as above, the L ≤ 2 results

in terms of area-derivatives of the Wilson loop expectation value read

BL=0(0) = −W
(2)

W
(A.15)

BL=1(0) =
2W(2)

W
− W

(4)

W(2)
(A.16)

BL=2(0) = −(W(2))4 − 2(W(2))2W(4)W −W(2)W(6)(W)2 + 2(W(4))2(W)2

(W(2))3W −W(2)W(4)(W)2
. (A.17)
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Plugging in (2.3), one can find the explicit finite N results. For instance, we obtain

BL=0(0) =
λ

16π2N

(
1 +

2L2
N−2

(
− λ

4N

)
L1
N−1

(
− λ

4N

) ) (A.18)

BL=1(0) =
λ

16π2N

(
1−

4L2
N−2

(
− λ

4N

)
L1
N−1

(
− λ

4N

) +
6
(
2L3

N−3

(
− λ

4N

)
+ L2

N−2

(
− λ

4N

))
2L2

N−2

(
− λ

4N

)
+ L1

N−1

(
− λ

4N

) )
. (A.19)
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