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1 Introduction

It is one of the rather appealing features of string theory that the effective theory on D-

branes in a two-form background is given by a non-commutative (NC) Yang-Mills theory [1].

For constant two-form flux this result can be explicitly derived by quantizing the open

string and computing conformal field theory correlation functions [2]. In this case, the

non-commutative theory is governed by the associative Moyal-Weyl star-product.

From string theory it is known that there also exist consistent D-brane solutions of the

string equations of motion that wrap curved submanifolds and carry a non-constant two-

form flux, thus leading to a non-constant non-commutativity structure1 Θij . Examples are

branes in WZW models [3] or holographic duals of integrable deformations of AdS5 sigma

models [4]. In the latter case, the holographic dual gauge theory still lives on flat space

and only receives a deformation in the non-commutativity structure. Therefore, one expect

that one can formulate a non-commutative gauge theory also for such more general cases.

1In this paper we use the term non-commutativity structure for a non-constant Θij .
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Using techniques from conformal field theory, for the SU(2) WZW model it was shown

that this theory is a non-commutative matrix valued gauge theory on the fuzzy 2-sphere.

This theory is still associative, but in principle also this could be broken. Throughout this

paper we will be agnostic about this point and admit also non-associative star-products.

There have been some attempts to provide a description of such gauge theories using

the general Kontsevich [5] star-product [6–9] (for a recent application see [10]) and invoking

techniques from Hopf-algebras [11, 12]. For more information and literature on these

attempts please consult the review [13]. However, these approaches were motivated rather

mathematically while missing a clear physical guiding principle for their construction. It is

the aim of this paper, to take such a physical principle from string theory and to analyze

whether it works and gives reasonable results.

We note that more recently there have also been proposals for the appearance of non-

commutative and non-associative structures in the closed string sector [14, 15], in particular

when one has a non-geometric flux background. Let us emphasize that in this paper we

restrict to the open string case with D-branes.

In this paper we propose that the missing physically motivated guiding principle is

the existence of an L∞ (or A∞) algebra. Before we investigate this idea in more detail,

let us mention that these structures appeared for the first time in the context of string

field theory [16]. Indeed, e.g. for bosonic closed string field theory, both the action of

symmetries on the string field and their string equations of motion were governed by an

L∞ algebra. The latter can be considered as a generalization of a Lie algebra, where one

allows field dependent gauge parameters. This weakens the closure constraint and moti-

vates the introduction of in general infinitely many higher products satisfying generalized

Jacobi identities. These are quadratic expressions involving for each n finitely many higher

products. In particular, the usual Jacobi identity for the two-product (the commutator)

can be violated by “derivative” terms, thus allowing a mild form of non-associativity. For

this reason, in the mathematics literature such algebras have been called strong homotopy

algebras [17].

In [18], the authors showed that L∞ algebras do not only show up in string field

theory, but also in much simpler field theories, like Chern-Simons (CS) and Yang-Mills

(YM) theories. Here the structure is considerably truncated and only a finite number of

higher products and relations were non-trivial. It is very tantalizing that again not only

the action of the symmetry but also the dynamics of the whole gauge theory fit into such

finite L∞ algebras. The authors also proposed that every consistent gauge theory should

be governed by such an underlying L∞ algebra.

In [19, 20], motivated by the AdS3-CFT2 holographic duality, it was shown that W-

algebras, describing infinitely many global symmetries in two-dimensional conformal field

theories, also feature an underlying, highly non-trivial L∞ structure. Here, it was the non-

linearity of the W-algebra that induced higher products and relations. Turning the logic

around, if they were not already known, W-algebras could have been bootstrapped from

the L∞ algebra. Furthermore it was shown in [21] that the non-associative closed string

R-flux algebra as well as the associated M-theory R-flux algebra of the seven octonions can

be extended to a 2-term L∞ algebra.
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Thus, so far there exist a couple of physical examples that could be rewritten in terms

of L∞ algebras. The motivation for this work is to advance the symmetry concept of L∞
algebras and actually exploit it to determine the structure of the above mentioned NC gauge

theories with general NC-structure. For this purpose we will follow a bootstrap approach,

where we take some initial lower order products, like one- and two-products, and bootstrap

the remaining higher products by invoking the L∞ relations. The initial data are essentially

the first term in the gauge variation and in the equations of motion, i.e. the one resulting

from a kinetic term in the action. All of the rest follows. For a general NC-structure, we

will see that all the other higher products receive derivative (∂Θ)-corrections. In other

words, imposing the guiding principle of an underlying L∞ algebra, we can algebraically

bootstrap the derivative corrections to the action of the NC gauge symmetry onto the

gauge fields and their equations of motion.

In this paper, we explicitly show how this procedure can be carried out in detail up

to second order in Θ. For this purpose, in section 2 we review some facts about NC

gauge theories and recall the mathematical definitions of L∞ and A∞ algebras. As a first

application of L∞ algebras, we show that NC-CS and NC-YM theories on the Moyal-Weyl

plane fit into this scheme.

In section 3 we remind the reader of concrete string theory settings where NC gauge

theories with non-constant NC-structure appeared. These are branes in WZW models

and holographic duals of integrable deformations of AdS5 sigma models. For the SU(2)

WZW model, we recall that an NC matrix valued gauge theory has been derived via

CFT techniques [22]. As a compelling first result, we show that this unconventional NC

gauge theory on the fuzzy 2-sphere can be bootstrapped by imposing the existence of an

L∞ algebra.

In section 4, we apply the same technique to the more general class of NC gauge theory

on flat and curved space with non-constant NC-structure. This is done in a perturbative

approach in Θ. First, we point out the essential problem arising for non-constant Θ and

argue that it receives a natural solution in the context of L∞ algebras. We bootstrap

the derivative corrections to the action of the NC gauge symmetry onto the gauge fields.

Then, we extend the L∞ algebra to also include the equations of motion of a NC-CS and

a NC-YM theory on flat and curved space.

We show that up to second order in Θ one can even find an A∞ algebra. As expected,

the graded symmetrization of the obtained structure results in the corresponding L∞ alge-

bra. Since this involves a lengthy and tedious computation, we have delegated this part to

an appendix - not because it is less important but for not too much disturbing the main

flow of the paper.

2 Preliminaries

For self-consistency, in this section we introduce some of the salient features of known NC

gauge theories and the formal definitions of L∞ and A∞ algebras. In addition, we analyze

the NC gauge theory based on the Moyal-Weyl star product with respect to an underlying

L∞ algebra.
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2.1 Non-commutative gauge theories

First, let us recall that the conformal field theory of an open string ending on a D-brane

supporting a non-trivial gauge flux F = B+2πF features a non-commutative geometry. In

this paper we choose α′ = 1. Indeed, by computing the disc level scattering amplitude of

N -tachyons, certain relative phases appear which for constant gauge flux can be described

by the Moyal-Weyl star-product

(f ? g)(x) = exp

(
i

2
Θij ∂x1i ∂x2j

)
f(x1) g(x2)

∣∣∣
x
. (2.1)

The open string quantities governing the theory on the D-brane are related to the initial

closed string variables g and F via G−1 + Θ = (g + F)−1, where the anti-symmetric bi-

vector Θij is the one appearing in the star product (2.1). In the Seiberg-Witten limit the

OPE exactly becomes the Moyal-Weyl star-product. This non-trivial product of functions

leads to the non-commutative Moyal-Weyl plane with [xi, xj ]? = iΘij . In [5] it has been

shown that for every Poisson structure Θij that by definition satisfies

Πijk := 3 Θ[im∂mΘjk] = 0 (2.2)

one can define a corresponding associative star-product, which will also involve derivatives

of the Poisson structure. The same product can also be considered for a quasi Poisson

structure, but then leads to a non-associative star-product, which up to second order in

Θ reads

f • g = f · g +
i

2
Θij ∂if ∂jg −

1

8
ΘijΘkl ∂i∂kf ∂j∂lg

− 1

12

(
Θim∂mΘjk

)(
∂i∂jf ∂kg + ∂i∂jg ∂kf

)
+O(Θ3) .

(2.3)

For the higher order expression see [23–26]. Often we will write this as

f • g = f ? g − 1

12

(
Θim∂mΘjk

)(
∂i∂jf ∂kg + ∂i∂jg ∂kf

)
+O(Θ3) (2.4)

that separates the derivative ∂Θ-corrections from the standard Moyal-Weyl terms. The

associator for this product becomes

(f • g) • h− f • (g • h) =
1

6
Πijk ∂if ∂jg ∂kh+O(Θ3) . (2.5)

In [1], for the Moyal-Weyl case with constant open string metric and NC-parameter, it

was shown that the effective theory on a stack of N branes is given by a non-commutative

gauge theory with gauge group U(N). In the following we stick to the U(1) case. As in

usual YM theory there is a gauge field Aa(x) behaving under a gauge transformation as

δfAa = ∂af + i[f,Aa]∗ . (2.6)

Using the Leibniz rule for the star-bracket [., .]? and its associativity,2 one can show that

two gauge transformations close off-shell in the sense

[δf , δg]Aa = δ−i[f,g]?Aa . (2.7)

2Note that both assumptions might not be satisfied for non-constant Θ.
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Moreover, the field-strength

Fab = ∂aAb − ∂bAa − i[Aa, Ab]? (2.8)

transforms covariantly, i.e.

δfFab = i[f, Fab]? . (2.9)

Then, the vacuum equation of motion for the non-commutative U(1) Yang-Mills the-

ory reads

0 = Fa = ∂bFba − i[Ab, Fba]?

= �Aa − ∂a(∂ ·A)− i ∂b[Ab, Aa]? − i[Ab, ∂bAa − ∂aAb]?

− [Ab, [Ab, Aa]?]? .

(2.10)

In section 2.3 we will come back to these relations and study their implementation into an

L∞ algebra.

Similarly one can also define a non-commutative Chern-Simons theory in three-

dimensions, whose equation of motion is

0 = Fc = εc
ab

(
∂aAb −

i

2
[Aa, Ab]?

)
. (2.11)

For usual CS and YM-theory, it was explicitly shown in [18] that both their symmetries

and their dynamics are governed in an algebraic way by the objects and relations of an

L∞ algebra. Before reviewing this, in the next section we give a brief introduction into the

general notion of L∞ and also of A∞ algebras.

2.2 L∞ and A∞ algebras and gauge symmetries

Following [18], let us review the basis notion of L∞ and A∞ algebras and the generic

relation of the first to the description of gauge symmetries and their dynamics.

Definition of L∞ algebra. L∞ algebras are generalized Lie algebras where one has

not only a two-product, the commutator, but more general multilinear n-products with

n inputs

`n : X⊗n → X

x1, . . . , xn 7→ `n(x1, . . . , xn) ,
(2.12)

defined on a graded vector space X =
⊕

nXn, where n denotes the grading. These products

are graded anti-symmetric

`n(. . . , x1, x2, . . . ) = (−1)1+deg(x1)deg(x2) `n(. . . , x2, x1, . . . ) , (2.13)

with

deg
(
`n(x1, . . . , xn)

)
= n− 2 +

n∑
i=1

deg(xi) . (2.14)
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The set of higher products `n define an L∞ algebra, if they satisfy the infinitely

many relations

Jn(x1, . . . , xn) :=
∑

i+j=n+1

(−1)i(j−1)
∑
σ

(−1)σ χ(σ;x)

`j
(
`i(xσ(1) , . . . , xσ(i)) , xσ(i+1), . . . , xσ(n)

)
= 0 .

(2.15)

The permutations are restricted to the ones with

σ(1) < · · · < σ(i), σ(i+ 1) < · · · < σ(n) , (2.16)

and the sign χ(σ;x) = ±1 can be read off from (2.13). The first relations Jn with n =

1, 2, 3, . . . can be schematically written as

J1 = `1`1 , J2 = `1`2 − `2`1 , J3 = `1`3 + `2`2 + `3`1 ,

J4 = `1`4 − `2`3 + `3`2 − `4`1 ,
(2.17)

from which one can deduce the scheme for the higher Jn. More concretely, the first L∞
relations read

`1
(
`1(x)

)
= 0

`1
(
`2(x1, x2)

)
= `2

(
`1(x1), x2

)
+ (−1)x1`2

(
x1, `1(x2)

)
,

(2.18)

revealing that `1 must be a nilpotent derivation with respect to `2, i.e. that in particular

the Leibniz rule is satisfied. Denoting (−1)xi = (−1)deg(xi) the full relation J3 reads

0 = `1
(
`3(x1, x2, x3)

)
(2.19)

+`2
(
`2(x1, x2), x3

)
+ (−1)(x2+x3)x1`2

(
`2(x2, x3), x1

)
+(−1)(x1+x2)x3`2

(
`2(x3, x1), x2

)
+`3

(
`1(x1), x2, x3

)
+ (−1)x1`3

(
x1, `1(x2), x3

)
+ (−1)x1+x2`3

(
x1, x2, `1(x3)

)
and means that the Jacobi identity for the `2 product is mildly violated by `1 exact ex-

pressions.

Definition of A∞ algebras. The definition of an A∞ algebras is very similar to the

definition of an L∞ algebra. While L∞ algebras are generalized differential graded Lie

algebras with a mild violation of the Jacobi identity, A∞ algebras generalize algebras with

a mild violation of associativity. One has higher products mn(x1, . . . , xn) of degree n− 2,

where xi are again elements of a graded vector space. The quadratic relations for the higher

products are

An−1(x1, . . . , xn−1) =
n−1∑
l=1

(−1)n(l+1)ml ◦mn−l = 0 (2.20)

with the second product defined as

mp =

n−1−p∑
r=0

(−1)r(p+1) 1r ⊗mp ⊗ 1n−1−p−r . (2.21)

– 6 –
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The first three relations read

A1 = m1 ◦m1

A2 = m1 ◦m2 −m2 ◦ (m1 ⊗ 1 + 1⊗m1)

A3 = m1 ◦m3 +m2 ◦ (m2 ⊗ 1− 1⊗m2)

+m3 ◦ (m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1)

(2.22)

where whenever an odd degree mn is exchanged with an odd degree xm one gets an ex-

tra minus sign. This will become clearer in appendix B where we will consider explicit

examples. There we also need the next relation

A4 =m1 ◦m4 −m2 ◦ (m3 ⊗ 1 + 1⊗m3)

+m3 ◦ (m2 ⊗ 1⊗ 1− 1⊗m2 ⊗ 1 + 1⊗ 1⊗m2)

−m4 ◦ (m1 ⊗ 13 + 1⊗m1 ⊗ 12 + 12 ⊗m1 ⊗ 1 + 13 ⊗m1) .

(2.23)

Even though gauge theories arise for the open string and string field theory suggest that

they are related by an A∞ structure, [18] proposed that they also fit nicely into the structure

of L∞ algebras.

Gauge theories and L∞ algebras. The framework of L∞ algebras is quite flexible and

it has been suggested that every classical perturbative gauge theory (derived from string

theory), including its dynamics, is organized by an underlying L∞ structure [18]. For sure,

the pure gauge algebra, called Lgauge
∞ , of such theories satisfies the L∞ identities. To see

this, let us assume that the field theory has a standard type gauge structure, meaning that

the variations of the fields can be organized unambiguously into a sum of terms each of a

definite power in the fields. Then we choose only two non-trivial vector spaces as

X0 X−1

f Aa
. (2.24)

In this case, the only allowed non-trivial higher product are the ones with one and two

gauge parameters `n+1(f,An) ∈ X−1 and `n+2(f, g, An) ∈ X0 and the only non-trivial

relations are Jn+2(f, g, An) ∈ X−1 and Jn+3(f, g, h,An) ∈ X0. Then, the gauge variations

are expanded as

δfA =
∑
n≥0

1

n!
(−1)

n(n−1)
2 `n+1(f,A, . . . , A︸ ︷︷ ︸

n times

) . (2.25)

This allows to read off the higher products `n+1(f,An) ∈ X−1. It was shown in [18, 27, 28],

that the off-shell closure of the symmetry variations

[δf , δg]A = δ−C(f,g,A)A , (2.26)

and the Jacobi identity ∑
cycl

[
δf , [δg, δh]

]
= 0 (2.27)

– 7 –
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are equivalent to the L∞ relations with two and three gauge parameters. Here the closure

relation allows for a field dependent gauge parameter which can be written in terms of L∞
products as

C(f, g, A) =
∑
n≥0

1

n!
(−1)

n(n−1)
2 `n+2(f, g, A, . . . , A︸ ︷︷ ︸

n times

) . (2.28)

Thus, the action of gauge symmetries on the fundamental fields is governed by an Lgauge
∞

algebra. However, this is not the end of the story, as string field theory suggests that

also the dynamics of the theory, i.e. the equations of motion, are expected to fit into an

extended Lfull
∞ algebra.

For this purpose one extends the vector space to X0 ⊕X−1 ⊕X−2

X0 X−1 X−2

f Aa Ea
(2.29)

where X−2 also contains the equations of motion, i.e. F ∈ X−2. Now many more higher

products can be non-trivial and one has to check in a case by case study whether indeed

the Lfull
∞ algebra closes. The higher products `n(An) ∈ X−2 are special as they give the

equation of motion that is expanded as

F =
∑
n≥1

1

n!
(−1)

n(n−1)
2 `n(An) = `1(A)− 1

2
`2(A2)− 1

3!
`3(A3) + . . . . (2.30)

Moreover, the structure admits that the closure condition (2.26) is only satisfied on-shell,

i.e. there can be terms `n+3(f, g,F , An) ∈ X−1 on the right hand side. In case one has

off-shell closure (like for the CS and YM theories considered in this paper) all these higher

product are vanishing. Moreover, the gauge variation of F is given by

δfF = `2(f,F ) + `3(f,F , A)− 1

2
`4(f,F , A2) + . . . (2.31)

reflecting that, as opposed to the gauge field A, it transforms covariantly.

It was proposed that for writing down an action for these equations of motion one

needs an inner product

〈 , 〉 : X−1 ⊗X−2 → R (2.32)

satisfying the cyclicity property

〈A0, `n(A1, . . . , An)〉 = 〈A1, `n(A0, . . . , An)〉 (2.33)

for all Ai ∈ X−1. Then, the equations of motion follow from varying the action

S =
∑
n≥1

1

(n+ 1)!
(−1)

n(n−1)
2 〈A, `n(An)〉

=
1

2
〈A, `1(A)〉 − 1

3!
〈A, `2(A2)〉 − 1

4!
〈A, `3(A3)〉+ . . . .

(2.34)
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2.3 L∞ algebras for NC-CS and NC-YM gauge theories

Now, as two examples, we analyze how U(1) NC Chern-Simons and Yang-Mills theories fit

into the scheme of L∞ algebras. In this section, we consider the case of the Moyal-Weyl

star-product, i.e. the NC-parameter Θ is constant. In this case, the computation is very

similar to the analysis of ordinary (non-abelian) CS and YM theories discussed in [18].

L∞ structure of non-commutative CS. The vector spaces are still as in eq. (2.24)

or as in eq. (2.29). Some of the relevant relations have already been given in section 2.1.

From the gauge variation (2.6), we can read off3

`1(f) = ∂af , `2(f,A) = i[f,Aa]? (2.35)

and from the off-shell closure condition (2.7)

`2(f, g) = i[f, g]? , `3(f, g, E) = 0 (2.36)

with all higher products vanishing, e.g. `n+1(f,An) = 0 for n ≥ 2. The equation of

motion (2.11) motivates the choice for the non-vanishing products

`1(A) = εc
ab∂aAb , `2(A,B) = iεc

ab[Aa, Bb]? . (2.37)

Therefore, only `1 and `2 products are non-vanishing and one only has to check the finite

number of L∞ relations listed below

J1(f) ∈ X−2

J2(f, g) ∈ X−1 , J2(f,A) ∈ X−2,

J3(f, g, h) ∈ X0 , J3(f, g, A) ∈ X−1 , J3(f,A,B) ∈ X−2

J3(f, g, E) ∈ X−2 .

(2.38)

The first relation J1(f) = `1(`1(f)) = εc
ab∂a∂bf = 0 can be readily checked. The relation

J2(f, g) = 0 is nothing else than the Leibniz-rule for the star commutator. The full third

relation reads

`1(`2(f,A)) = `2(`1(f), A) + `2(f, `1(A)) (2.39)

which fixes the last term to be

`2(f,E) = i[f,Ea]? . (2.40)

Since all `3 are vanishing, the remaining four J3 relations do only contain `2`2-terms. As

the star commutator satisfies the Jacobi identity, these are all satisfied. Let us also mention

that the field strength can be expressed as

`1(A)− 1

2
`2(A,A) =

1

2
εc
ab
(
∂aAb − ∂bAa − i[Aa, Ab]?

)
=

1

2
εc
abFab . (2.41)

3Note that by writing `2(f,A) it is understood that the object also carries an index a like `2(f,A)a. In

order not to clutter the notation, in the following we leave this index out, as it is usually clear from the

free index on the r.h.s.
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Clearly, by setting all elements in X−2 to zero, one gets the sub-algebra Lgauge
∞ . The latter

is the same for NC-CS and NC-YM. Defining the inner product as

〈A,E〉 =

∫
d3x ηabAaEb (2.42)

one can integrate this to an action (2.34).

Thus, we have seen that the U(1) NC-CS theory fits nicely into the L∞ framework,

where the highest appearing products are `2.

L∞ structure of non-commutative YM. A similar computation can also be done for

NC-YM theory. The case of usual non-abelian YM-theory was first formulated in [29, 30].

Here we follow the same path as in the more recent paper [18].

Since the action of a gauge transformation on the fields and its closure are the same

as for NC-CS theory, the products `1(f) and `2(f,A) from (2.35) and `2(f, g) from (2.36)

are still valid. The equations of motion (2.10) allow one to read-off the higher products

`1(A) = �Aa − ∂a(∂ ·A)

`2(A,B) = i ∂b[Ab, Ba]? + i[Ab, ∂bBa − ∂aBb]? + (A↔ B)

`3(A,B,C) = [Ab, [Bb, Ca]?]? + [Bb, [Cb, Aa]?]? + [Cb, [Ab, Ba]?]?

+ [Ab, [Cb, Ba]?]? + [Cb, [Bb, Aa]?]? + [Bb, [Ab, Ca]?]? .

(2.43)

Note that `1(A) has changed from the NC-CS case and that for NC-YM there also exist a

non-vanishing `3. Therefore, besides (2.38) one also has to check the L∞ relations

J4(f, g, h,A) ∈ X0 , J4(f, g, A,B) ∈ X−1 , J4(f, g, h, E) ∈ X−1

J4(f,A,B,C) ∈ X−2 , J4(f, g, A,E) ∈ X−2 .
(2.44)

The nil-potency condition `1(`1(f)) = 0 can readily be checked. Similarly to the NC-

CS theory, the Leibniz-rule J2(f,A) fixes `2(f,E) = i[f,Ea]?. Setting now all other

higher products to zero, one realizes that the three relations J3(f, g, h) = J3(f, g, A) =

J3(f, g, E) = 0 involve only star-commutators and are satisfied by their Jacobi iden-

tity. The identity J3(f,A,B) = 0 is more non-trivial and also involves the three-product

`3(A,B,C). However, by spelling out all terms in the relation, one realizes that they indeed

all cancel. From the next order relations in (2.44) only J4(f,A,B,C) = 0 is non-trivial, but

can be checked by applying the Jacobi identity for the star-commutator. In principle also

J5 could be relevant, but due to `3(`3(A3), A2) ∈ X−3 these relations are satisfied trivially.

3 NC gauge theories arising in string theory

We just showed that both NC-CS and NC-YM on flat Minkowski space with constant

NC-structure Θ fit into the scheme of L∞ algebras. However, not all consistent D-branes

(boundary states) in string theory are of this simple type, as there do also exist D-branes

wrapping curved submanifolds and carrying a non-constant gauge flux on the brane world-

volume. Therefore, the question arises whether also the expected NC gauge theory on such
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branes fit into the scheme of L∞ algebras. In this case, the Kontsevich star product (2.3)

indicates that one gets extra derivative terms ∂Θ.

Before we continue along these lines, in this section we want to remind the reader of

a few stringy circumstances where non-commutativity with non-constant Θ does appear.

These will be branes in exactly solvable WZW models for compact groups and recent

advances related to integrable deformations of AdS5 sigma models.

3.1 D-Branes in WZW models

In this section we review some of the features of D-branes4 in WZW models relevant for us.

WZW models are exactly solvable sigma models whose target spaces are group manifolds

equipped with non-trivial NS-NS three-form fluxes. Their distinctive feature is that the

corresponding two-dimensional conformal field theories are explicitly known and given by

the unitary series of Kac-Moody algebras. As a consequence it was possible to construct

boundary states in the CFT that turned out to correspond to certain branes wrapping

conjugacy classes of the group manifold [3, 31] carrying non-constant two-form flux. In

this section, we will review the semi-classical description of these consistent branes.

Preliminaries. The starting point is the two-dimensional world-sheet action of a

WZW model

SWZW =
k

16π

∫
∂Σ
d2σTr

(
∂ih
−1∂ih

)
+

k

24π

∫
Σ
d3σ̃ εĩj̃k̃ Tr

(
(h−1∂ĩh)(h−1∂j̃h)(h−1∂k̃h)

) (3.1)

where h denotes the general element of a (simple) Lie-group G and Σ a three-manifold

whose boundary is the closed string world-sheet. From the WZW sigma model action one

can directly read off the metric

g =
k

2
Tr
(
dh−1 ⊗ dh

)
(3.2)

and the NS-NS three-form flux

H =
k

6
Tr
(

(h−1dh) ∧ (h−1dh) ∧ (h−1dh)
)
. (3.3)

Here the total derivative is with respect to the target space coordinates. Since this gives

a CFT, the metric and the H-flux satisfy the string equations of motion for the metric

and the B-field at any power in α′, it only needs some additional input to also satisfy the

dilaton equation of motion. This can be a linear dilaton ϕ(z) depending on an orthogonal

direction (like it appears for the deep throat limit of the NS5-brane solution).

The question which D-branes can be consistently introduced into these closed string

backgrounds has been under intensive investigation. Here we just focus on the most simple

4Even though we are working with the bosonic string and there are no R-R fields, we call these branes

D-branes, as their tension T ∼ g−1
s scales with string coupling in the same manner as for D-branes in type

II string theory.
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set of such branes. Since the WZW model describes a background with a non-trivial B-field,

three issues arise.

First, one expects that the effective theory for the gauge field on the brane becomes

non-commutative with the non-commutativity being controlled by an antisymmetric bi-

vector Θ = Θij∂i ∧ ∂j , which is part of the so-called open string fields,

G = g −F g−1F , Θ = (F − gF−1 g)−1 ,

e−2φ
√
G = e−2ϕ√g .

(3.4)

Here F = B + 2πF (with α′ = 1 and F = dA) denotes the gauge invariant open string

two-form and G and φ are the open string metric and dilaton.

Second, the gauge field A on the brane provides new degrees of freedom that are also

governed by equations of motion. Varying the Dirac-Born-Infeld action with respect to A,

one arrives at

0 = ∂i

(
e−ϕ

√
g + F Θij

)
= ∂i

(
e−φ
√
GΘij

)
, (3.5)

where the indices i, j are along the brane world-volume. Since the DBI action is estab-

lished only for adiabatic field configurations, there will presumably be higher derivative

corrections to this field equation. However, for constant F it includes all higher order α′

corrections.

Third, due to the non-trivial H-flux in the bulk, its restriction on the brane has to

satisfy dF = H, i.e. it is a total derivative of a globally defined two-form. Therefore, H

must be trivial in the cohomology on the brane [H|D] = 0. This is also called the Freed-

Witten anomaly cancellation condition [32]. Note that this does not mean that H|D has

to vanish identically on the brane.

Geometry of D-branes in WZW models. In this section we provide a set of branes

for which the geometric semi-classical identification is known [33–36]. Our presentation

follows the appendix of [36]. Indeed in the CFT there exist boundary states corresponding

to branes wrapping conjugacy classes

O(h) := {k−1hk, for all k ∈ G} . (3.6)

Here, for the element h one can always choose a representative from the Cartan torus

M(χ) = exp(iχ ·H). Then the position of the brane is labelled by χ and the coordinates

along the D-brane can be parametrized by angular variables ψ according to

g = N(ψ)−1M(χ)N(ψ) . (3.7)

This provides suitable coordinates for this brane configuration that admits a very explicit

description of the geometry and the fluxes. Note that the (generic) dimension of these

branes is d = dimG − rkG. Since these configurations do correspond to boundary states

in the CFT, one expects that the open string equation of motion and the Freed-Witten

anomaly condition are satisfied. Now one defines one-forms θα = θαi dψ
i on the D-brane via

dNN−1 = θαEα − θαEα + iρiHi (3.8)
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where the generators in the Cartan-Weyl basis are normalized as Tr(HiHj) = δij and

Tr(EαEβ) = δαβ . As usual, the dual vector-fields are given by θ̂α = θ̂α
i ∂i with θ̂ = (θ−1)T .

Then one can show that the metric (3.2) restricted to the brane world-volume can be

expressed in the nice way

g|D = 2k
∑
α>0

sin2
(α · χ

2

)(
θα ⊗ θα + θα ⊗ θα

)
(3.9)

where the sum is over all positive roots. This form neatly shows the separation of the

dependence on the brane positions χ and the angular coordinates ψ along the brane.

Moreover, one can choose a gauge so that the NS-NS two-form has legs only along the

brane. Indeed, Choosing

B = −ik
∑
α>0

(
α · χ− sin(α · χ)

)(
θα ⊗ θα − θα ⊗ θα

)
(3.10)

gives H = dB. Therefore, the restriction of the B-field onto the brane is also given by

this expression, i.e. B|D = B. This by itself does not satisfy the open string equation

motion (3.5), but has to be supplemented by a non-trivial gauge flux on the D-brane. This

is also known quite explicitly as

F =
ik

2π

∑
α>0

(
α · χ

)(
θα ⊗ θα − θα ⊗ θα

)
. (3.11)

The quantization of the gauge flux fixes χ = 2π(λ + ρ)/k, where ρ =
∑

α>0 α/2 denotes

the Weyl-vector and ρ an element from the weight-lattice. Thus, the total two-form flux

on the brane is given by

F = B|D + 2πF = ik
∑
α>0

sin(α · χ)
(
θα ⊗ θα − θα ⊗ θα

)
. (3.12)

Now, one can explicitly compute similar expressions for the fields in the open string

frame (3.4). For the metric we find the simple result

G = 2k
∑
α>0

(
θα ⊗ θα + θα ⊗ θα

)
(3.13)

and for the anti-symmetric bi-vector

Θ =
ik

2

∑
α>0

cot
(α · χ

2

)(
θ̂α ⊗ θ̂α − θ̂α ⊗ θ̂α

)
. (3.14)

Note that in the last expression the dual one-vectors θ̂α appear. For the dilaton in the

open string frame one gets

e−2φ = e−2ϕ(z)
∏
α>0

sin2
(α · χ

2

)
, (3.15)

which does not depend on the coordinates along the brane. As a consequence, the open

string equation of motion (3.5) is equivalent to

∇iΘij = 0 (3.16)

which involves the Levi-Civita connection with respect to the open string metric G.
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Example: SU(2) WZW. Let us discuss the most familiar case of the SU(2) WZW

model. In this case the target space is an S3 with a non-constant H-flux through it. Due

to the Freed-Witten anomaly condition, it is clear that there does not exist a D-brane

wrapping the entire S3. However, a class of D-branes is given by the orbit O(D) :=

{k−1Dk} with D denoting an element from the one-dimensional Cartan torus. Therefore,

generically this describes a brane wrapping a two-dimensional submanifold of S3.

To apply the construction from the last section, we introduce a basis of correctly

normalized generators of SU(2): H = 1√
2
σ3 and Eα(α) = 1

2(σ1± iσ2) with the positive root

α =
√

2. Here σi denote the Pauli matrices. The Cartan torus D(χ) = exp(iχH) is

D(χ) =

(
e
i χ√

2 0

0 e
−i χ√

2

)
(3.17)

and the orthogonal directions to the D-brane can be parametrized by

N(ϕ,ψ) =

(
cosϕ sinϕeiψ

− sinϕe−iψ cosϕ

)
(3.18)

so that we write an element of SU(2) as M = N−1D(χ)N . Evaluating (3.2), the metric on

the SU(2) group manifold reads

k−1 ds2 =
1

2
dχ2 + 4 sin2

(
χ√
2

)
dϕ2 + sin2

(
χ√
2

)
sin2(2ϕ) dψ2 (3.19)

with
√
g =
√

2 sin2( χ√
2
) sin(2ϕ)R3 with the radius R =

√
k. Thus, the semi-classical large

radius limit corresponds to k →∞.

Computing the total volume of the S3 and comparing to other parametrizations of the

SU(2) we can fix the ranges of the variables as 0 ≤ χ ≤
√

2π, 0 ≤ ϕ ≤ π
2 and 0 ≤ ψ ≤ 2π.

Indeed we get
∫ √

Gdχdϕdψ = 2π2R3. Next we evaluate (3.3) and obtain

H = −k
√

8 sin2

(
χ√
2

)
sin(2ϕ) dχ ∧ dϕ ∧ dψ = − 2√

k
vol(S3) (3.20)

so that the flux integral 1
(2π)2

∫
S3 H = −k is indeed quantized and the H-flux goes to zero

for large k.

For the holomorphic one-forms (3.8) on the D-brane one obtains

θα = eiψdϕ+
i

2
sin(2ϕ) eiψdψ , θα = e−iψdϕ− i

2
sin(2ϕ) e−iψdψ . (3.21)

Inserting this into (3.9), we indeed find the metric (3.19) on S3 restricted to the D-brane

world-volume

ds2|brane = k sin2

(
χ√
2

)(
4dϕ2 + sin2(2ϕ) dψ2

)
. (3.22)

This metric describes an S2 of radius r = R sin( χ√
2
). As described, for the B-field one can

choose a gauge so that it has only legs on the D-brane. For SU(2) this simply reads

B = k
(
−
√

2χ+ sin
(√

2χ
))

sin(2ϕ) dϕ ∧ dψ (3.23)
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and via H = dB indeed gives the H-flux from (3.20). Clearly, the restriction of the H-flux

to the brane is vanishing and one can also show that the restriction of the B-field (3.23)

to the D-branes does not satisfy the open string equation of motion. However, this latter

point can be reconciled by also turning on a non-trivial gauge flux on the brane

F = dA =

√
2k

2π
χ sin(2ϕ) dϕ ∧ dψ . (3.24)

The gauge flux quantization condition 1
2π

∫
F ∈ Z leads to χ = 2π

k
m√

2
with 0 ≤ m ≤ k,

which agrees with the formula below eq. (3.11) by observing that the weight lattice of SU(2)

is λ = Z/
√

2 and that its Weyl-vector reads ρ = 1/
√

2. For the two choices m = 0, k, the

co-dimension one D-brane degenerates to a point-like D-brane sitting at the north- or

south-pole of the S3, respectively.

Now, one can simply proceed by computing the globally defined two-form flux F =

B + 2πF on the brane and the open string measure as

F = k sin(
√

2χ) sin(2ϕ) dϕ ∧ dψ ,
√
g + F = 2k sin(2ϕ) sin

(
χ√
2

)
. (3.25)

Using the dual holomorphic one-vectors

θ̂α =
1

2
e−iψ∂ϕ −

i

sin(2ϕ)
e−iψ ∂ψ , θ̂α =

1

2
eiψ∂ϕ +

i

sin(2ϕ)
eiψ ∂ψ (3.26)

and evaluating (3.14), we get for the antisymmetric bi-vector Θij on the brane

Θ = − k

2 sin(2ϕ)
cot

(
χ√
2

)
∂ϕ ∧ ∂ψ . (3.27)

Multiplying this with the measure (3.25) one realizes that the ϕ dependence drops out so

that the open string equation of motion (3.5) is trivially satisfied on the D-brane.

Since the brane is two-dimensional, one trivially has Πijk = 0, as well as ∇kΘij = 0.

In appendix B we also work out the SU(3) WZW case and show that there one has a co-

dimension two D-brane supporting a non-vanishing Πijk. Therefore, not all brane solutions

of the leading order string equations of motion necessarily have Πijk = 0 so that in our

later analysis we will also admit a non-vanishing Πijk.

In the semi-classical limit, the two-dimensional world-volume of the D-brane is ex-

pected to support a non-commutative (but still associative) gauge theory. Since the world-

volume is compact, for fixed but large k, there can only be a finite number of quantum

cells so that the non-commutative gauge theory turned out not to be a field theory but

rather a matrix theory. Using the operator product expansion of the corresponding vertex

operators, this theory has been derived in [22] and, as we discuss next, provides the first

non-trivial application of our L∞ bootstrap program.

3.2 L∞ algebra for the fuzzy 2-sphere

Let us first briefly review some relevant features of this construction of the NC gauge theory

in the fuzzy sphere limit (for a little review see [37])

α′ → 0, α′k →∞ . (3.28)

This means that one takes the zero-slope and the large radius limit.
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The rational boundary states are known explicitly and the open string excitations

at lowest energy are given in terms of the ground states in the open string sector. As

discussed above, branes wrapping the conjugacy classes S2 ⊂ S3 are labelled by an integer

0 ≤ m ≤ k. This integer determines a representation of the SU(2) current algebra. In this

section, we use instead the half-integer representation labels j. The open string spectrum

can be organized into the SU(2)k representations that appear in the fusion product of m

with itself

(j)⊗ (j) = ⊕2j
j′=0 (j′) . (3.29)

Here, one was working in the large k limit, such that no truncation appears in the fusion

rules. It can now be observed that the representation (j′) contains 2j′+1 ground states |Y j′
n 〉

labeled by j′, n with n ∈ −j′, . . . , j′. Geometrically, one can think about them in terms of

spherical harmonics on S2. These finitely many states are analogous to the infinitely many

states exp(ikX) in the flat Moyal-Weyl case.

Note that the space of ground states is (2j + 1)2 dimensional. As proposed in [31],

these ground states can be identified with square matrices Mat(2j+1). SU(2) acts on these

matrices in the adjoint representation. This representation is not irreducible; decomposing

it into irreducible representations reproduces precisely the decomposition (3.29).

Furthermore, there is a product structure on the space of ground states arising from

the (truncated) operator product expansion (OPE) between the corresponding vertex op-

erators. Since their conformal weight hj = j(j + 1)/(k + 2) goes to zero in the k → ∞
limit, the boundary OPE becomes regular in this limit. As it turns out [22], the informa-

tion about these OPEs is precisely encoded in the non-commutative matrix product f · g
in Mat(2j + 1). This in particular allows to compute the correlation functions of arbitrary

vertex operators in terms of traces over products of matrices. The upshot is that one deals

with an associative matrix algebra. The matrix product plays the role of the Moyal-Weyl

star-product, so that we define

:= f · g − g · f . (3.30)

The above structure includes an action of angular momentum on the spherical harmon-

ics. It is obtained from the OPE between the WZW currents and the vertex operators

corresponding to the ground states. From this one obtains for any matrix A ∈ Mat(2j+ 1)

LaA =
1√
2

[Y 1
a , A] , a ∈ {1, 2, 3} . (3.31)

In the flat space limit, the operators La can be thought of as derivatives La → −i∂a.
However, these operators do not commute but satisfy

[La, Lb] = ifab
c Lc (3.32)

where fabc are the totally antisymmetric SU(2) structure constants.

The effective theory on N branes of type j wrapping this fuzzy 2-sphere was described

as a gauge theory with the gauge potential Aa ∈ Mat(N) ⊗Mat(2j + 1). Here Mat(N)

labels the Chan-Paton factors. This gauge field has to satisfy the physical state condition

LaAa = 0.
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Using CFT techniques, the effective action was shown to be a sum of a Yang-Mills

term and a Chern-Simons term. The two terms are separately invariant under the following

gauge transformation

δfAa = iLaf + i[Aa, f ] , (3.33)

where f is an arbitrary matrix in Mat(N)⊗Mat(2j+1). Note that the derivative operator

La only acts non-trivially on the degrees of freedom in Mat(2j + 1). The closure of two

such gauge variations gives

[δf , δg] = δi[f,g] . (3.34)

Introducing a field strength

Fab = iLaAb − iLbAa + i[Aa, Ab] + fab
cAc , (3.35)

the action can be expressed as

S =
1

4
tr
(
Fab F

ab
)
− i

2
tr
(
fabc CSabc

)
(3.36)

with

CSabc = LaAbAc +
1

3
Aa[Ab, Ac]−

i

2
fab

dAdAc . (3.37)

The resulting equation of motion can be written as

0 = LbFba + [Ab, Fba]

= iLbLbAa − iLb(LaAb)− fabcLbAc
+ iLb[Ab, Aa] + [Ab, iLbAa − iLaAb]− fabc[Ab, Ac]
+ i[Ab, [Ab, Aa]] .

(3.38)

As a first application of our approach, we now show that the form of this NC gauge

theory on the fuzzy sphere can be bootstrapped by invoking an L∞ structure. The compu-

tation turns out to be similar to the Moyal-Weyl case but includes some corrections terms

that can be traced back to the non-trivial commutator (3.32) of the derivatives. Let em-

phasize that we proceed not just by simply checking the L∞ algebra but by bootstrapping

the higher products via the L∞ relations. Of course, one needs some initial information to

get started.

As usual, we consider the graded vector space X0⊕X−1⊕X−2 with now matrix valued

gauge parameters in X0, gauge fields in X−1 and equations of motion in X−2. From the

gauge variation (3.33) and the closure condition (3.34) we read-off

`1(f) = iLaf, `2(f, g) = −i[f, g] , (3.39)

Then, imposing the L∞ relation J2(f, g) = 0 fixes

`2(f,A) = i[Aa, f ] . (3.40)

From the linear term in the equation of motion (3.38) we read-off

`1(A) = `YM
1 (A) + `CS

1 (A)

= iLbLbAa − iLb(LaAb)− fabcLbAc
(3.41)
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where, as indicated, the first two terms come from the variation of the YM action and the

last term from the variation of the CS action. First, after using (3.32) we realize that

`YM
1 (`1(f)) = −Laf , `CS

1 (`1(f)) = Laf (3.42)

so that only the combination of the two kinetic terms satisfies the relation J1(f) =

`1(`1(f)) = 0. Therefore, if one were missing the contribution to the kinetic energy from

the CS-term, one would be forced to introduce it by the nilpotency condition in the L∞
algebra. Moreover, one can further simplify

`1(A) = iLbLbAa − iLa(LbAb) (3.43)

where the second term actually vanishes by the physical state condition LbAb = 0. Next,

we consider the L∞ relation J2(f,A) = 0. A straightforward computation reveals that this

can be satisfied by defining

`2(f,E) = i[Ea, f ] (3.44)

and
`2(A,B) = −iLb[Ab, Ba]− i[Ab, LbBa − LaBb]

+ fa
bc[Ab, Bc] + (A↔ B) .

(3.45)

This looks very similar to the Moyal-Weyl case, except for the term in the second line. Note

that −1
2`2(A,A) gives precisely the order O(A2) terms in the equation of motion (3.38),

that we bootstrapped from an L∞ relation.

Next, we observe that the `2`2-terms in relations J3(f, g, h) = J3(f, g, A) =

J3(f, g, E) = 0 involve only matrix commutators so that they can directly be satisfied

by setting

`3(f, g, A) = `3(f, g, E) = `3(f,A,B) = `3(f,A,E) = 0 . (3.46)

The only non-trivial relation is J3(f,A,B) = 0. However, one can check that the extra

terms coming from the second line in (3.45) cancel against each other so that the computa-

tion is analogous to the Moyal-Weyl case presented in section 2.3. Thus, this relation fixes

`3(A,B,C) =− i[Ab, [Bb, Ca]]− i[Bb, [Cb, Aa]]− i[Cb, [Ab, Ba]]
− i[Ab, [Cb, Ba]]− i[Cb, [Bb, Aa]]− i[Bb, [Ab, Ca]]

(3.47)

which is again consistent with the order O(A3) term in the equation of motion. From

the higher order relations only J4(f,A,B,C) = 0 is not trivially satisfied, but eventually

vanishes by the Jacobi identity of the matrix commutator.

Thus, after taking the initial data `1(f), `1(A) and `2(f, g) we have bootstrapped the

remaining terms appearing in the gauge variations and the equations of motion by imposing

the relations of an L∞ algebra. In particular, we found the extra correction terms (∼fabc)
in the equations of motion. We consider this as first compelling evidence that the form of

NC gauge theories (arising from string theory) is governed by an L∞ structure. We will

continue to elaborate on this idea in section 4.
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3.3 Non-constant Θ via integrable deformations

As we have seen, branes in WZW models can lead to a non-constant Θ on a curved space.

However, for compact group manifolds the effective NC-gauge theory in the large volume

limit is rather a matrix model than a NC field theory based on a star-product with non-

constant Θ.

In this section, we recall that recently string theory examples have been identified that

are supposed to give rise to NC-field theories on flat Minkowski space with non-constant

Θ. These appeared in the context of integrable deformations of the AdS5 sigma model [4].

Here, we do not want to review the whole construction and its refinements, as we are only

interested in one of its aspects.

It was shown that from certain solutions to the classical Yang-Baxter equation one can

extract a closed string metric gij , Kalb-Ramond field Bij and dilaton φ (and R-R fields)

that satisfies the string equations of motion and, for the deformation going to zero, gives

back the AdS5 geometry. This construction can be seen as a generalization of the early

analysis [38, 39] of the supergravity background dual to the Moyal-Weyl NC-gauge theory.

Expressing the deformed solution in the open string frame [40–43] revealed that the

open string metric is still the one on AdS5, the open string dilaton is constant and the

only change is the anti-symmetric bi-vector Θ. There are cases, where the latter restricted

to the boundary R1.3 ⊂ AdS5 satisfies indeed the open string equation of motion (3.5).

Therefore, one expects that the gravity theory in the bulk is dual to a NC-gauge theory

on the flat boundary with non-constant Θij .

Here, we just present one example that we took from [42, 43]. Taking one specific solu-

tion to the classical Yang-Baxter equation, in the open string frame gives a flat metric with

Θ(x) =


0 0 −ηx1x3 ηx1x2

0 0 −ηx0x3 ηx0x2

ηx1x3 ηx0x3 0 0

−ηx1x2 −ηx0x2 0 0

 . (3.48)

Here η is the deformation parameter. One can readily check that ∂iΘ
ij = 0 is satisfied

for all j = 0, . . . , 3 and that Πijk = 0. Therefore, string theory admits solutions that are

expected to give rise to NC gauge theories on flat (or curved) spaces. Here we just cite

one comment from [40]: ’While likely technically involved, we believe it should in principle

be possible to construct (supersymmetric) gauge theories on such non-commutative spaces

using the methods developed in [1, 6, 8]’. Our proposal rather is that such theories can be

bootstrapped via L∞ algebras.

4 L∞ structures for non-constant flux

As we have just seen, the question now arises whether one can deform the Moyal-Weyl

case and formulate a consistent NC-gauge theory for non-constant Θ. Motivated also by

the previous example of branes in the SU(2) WZW model, we investigate whether the L∞
bootstrapping approach works and gives reasonable results. In this main section of the
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paper, we investigate this novel approach for flat/curved space with a completely generic

non-constant Θij(x) with even non-vanishing Πijk.

First we consider just the action of the gauge symmetry and its closure, i.e. we construct

the corresponding Lgauge
∞ algebra. In appendix B we explicitly show that this can be refined

to an Agauge
∞ algebra. First, let us explain that for non-constant flux a serious problem

appears, for which L∞ offers a new solution.

4.1 An issue for non-constant Θ

In the previous computations in section 2.2 it was essential that the non-commuta-

tivity structure Θij was constant. For non-constant Θij , even at linear order one runs

into the following issue concerning the Leibniz-rule. Consider the generic star-product

between functions

f • g = f · g +
i

2
Θij(x) ∂if ∂jg +O(Θ2) (4.1)

and apply ∂a. One finds

∂a(f • g) = ∂af • g + f • ∂ag +
i

2
(∂aΘ

ij) ∂if∂jg +O(Θ2) , (4.2)

i.e. the derivative does not satisfy the usual Leibniz-rule with respect to the star-product.

One way to resolve this issue is to generalize the co-product, leading to the general structure

of a Hopf-algebra. For this purpose one recalls that for the usual product of functions

µ : A⊗A → A with

µ(f ⊗ g) = f · g (4.3)

the enveloping algebra H of the variations δa = ∂a defines a Hopf-algebra with product

m : H⊗H → H
m(δa ⊗ δb) = δa δb (4.4)

and co-product ∆ : H → H⊗H

∆(δa) = δa ⊗ 1 + 1⊗ δa (4.5)

where we have used the action H ⊗ A → A with δa(f) = ∂af . For consistency, the

co-product should be co-associative,

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ , (4.6)

as well as admit a co-unit and an antipode, see e.g. [13] for details. Then, the Leibniz-rule

can be abstractly written as

δa(µ(f ⊗ g)) = µ ◦∆(δa)(f ⊗ g) . (4.7)

The relation (4.2) can be written in an analogous manner by defining the new product

µ?(f ⊗ g) = f • g (4.8)
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between functions and the adjusted or deformed co-product ∆?(δa) for elements in H.

Then (4.2) can still be written as

δa(µ
?(f ⊗ g)) = µ? ◦∆?(δa)(f ⊗ g) . (4.9)

Note, that the consistent definition of the deformed co-product satisfying the co-

associativity condition (4.6) and the relation (4.9) is a highly nontrivial problem. The

known solution is to use an invertible element F ∈ H⊗H, called a twist, with the help of

which the original star product can be represented as

f • g = µ?(f ⊗ g) = µ ◦F−1(f ⊗ g) . (4.10)

Then the deformed co-product is given by

∆?(δa) = F∆(δa)F
−1 . (4.11)

However, only very few examples of star products originating from a twist are known.

Another point which should be mentioned here is that the deformed co-product is

still co-associative and that is why in the Hopf-algebra approach no higher products or

brackets are needed to compensate the violation of the original Leibniz rule. This is the

key difference with our proposal in this paper. Nevertheless, we leave for the future a better

understanding of the relation between our approach and other previous approaches to the

construction of non-commutative gauge theories.

In view of the proposal that generic (gauge) symmetries in string theory are related

to L∞ structures, let us have a second look at the violation of the naive Leibniz-rule (4.2).

Recall that for NC-Yang-Mills theory we found `1(f) = ∂af . If we define `2(f, g) =

i[f, g]• = i(f • g − g • f) ∈ X0 then by anti-symmetrization the relation (4.2) is closely

related to

`1(`2(f, g)) = i[

∈X−1︷ ︸︸ ︷
`1(f), g]• + i[f,

∈X−1︷ ︸︸ ︷
`1(g)]• − (∂aΘ

ij) ∂if∂jg +O(Θ2) ,

= `2(`1(f), g) + `2(f, `1(g)) .

(4.12)

From this point of view, the correction term ∂Θ only indicates that we should better not

define `2(f,A) = i[f,A]• ∈ X−1 but instead

`2(f,A) = i[f,Aa]• −
1

2
(∂aΘ

ij) ∂ifAj +O(Θ2) . (4.13)

Note that in the L∞ algebra, `2(f, g) ∈ X0 and `2(f,A) ∈ X−1 are a priori different

products. Thus, we can still satisfy the usual L∞ Leibniz-rule by changing the action of

the NC-gauge symmetry on the gauge fields

δfA = `1(f) + `2(f,A) + . . .

= ∂af + i[f,Aa]• −
1

2
(∂aΘ

ij) ∂ifAj + . . . .
(4.14)
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By construction, this guarantees that the closure condition

A = δ−i[f,g]•A (4.15)

is indeed satisfied up to linear order in Θ.

Proceeding in this way, the higher products of the L∞ algebra will receive higher deriva-

tive corrections, leading to corrections to the action of the symmetries on the gauge fields

and eventually to the equations of motion. This latter approach seems to be completely

different from the resolution of the problem via twisted symmetries and Hopf-algebras and

much closer to the structure of symmetries in string theory. In the remainder of this section,

we will work this out in more detail and compute the corresponding derivative corrections

to Lgauge
∞ up to second order in Θ. At this order also the non-associativity enters.

4.2 Lgauge
∞ algebra at order O(Θ2)

The resolution of the Leibniz-rule was done at linear order in Θ and it is of course not clear

whether the procedure can be consistently continued to higher orders in Θ. To get some

confidence, starting with the Kontsevich star-product (2.3) at second order in Θ, in this

section we construct the corresponding Lgauge
∞ algebra.

Thus, we have the vector space X0⊕X−1 containing gauge parameters and gauge fields

still choose

`1(f) = ∂af . (4.16)

Moreover, for `2(f, g) we want to have the Kontsevich star-commutator

`2(f, g) = i(f • g − g • f) = −Θij∂if∂jg +O(Θ3) . (4.17)

Note that the even order terms in Θ drop out in the star-commutator. Therefore, the

analysis of the Leibniz rule J2(f, g) = 0 from the previous section is still valid and we get

`2(f,A) = i[f,Aa]• −
1

2
(∂aΘ

ij) ∂ifAj +O(Θ3) . (4.18)

Next, we have to impose the L∞ relations J3(f, g, h) = 0 and J3(f, g, A) = 0. The first

relation explicitly reads

0 = `2(`2(f, g), h) + `2(`2(g, h), f) + `2(`2(h, f), g)

+ `3(`1(f), g, h) + `3(f, `1(g), h) + `3(f, g, `1(h)) .
(4.19)

The first line is just the Jacobiator for the star-commutator and yields

−Πijk∂if∂jg∂kh (4.20)

that we do not require to be vanishing. Taking into account the graded symmetry of the

brackets we find

`3(A, f, g) =
1

3
ΠijkAi∂jf∂kg , (4.21)
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Next, we have to analyze the relation J3(f, g, A) = 0, which is explicitly given by

0 = `2(`2(A, f), g) + `2(`2(f, g), A) + `2(`2(g,A), f)

+ `1(`3(A, f, g))− `3(A, `1(f), g)− `3(A, f, `1(g))
(4.22)

where we used `1(A) = 0. The last two terms involve the three-product `3(A,B, f) that

needs to be determined from this relation. For this purpose, we calculate

`2(`2(A, f), g) + `2(`2(f, g), A) + `2(`2(g,A), f) + `1(`3(A, f, g))

= −1

2
Ga

ijk Ai ∂jf ∂kg −Πijk ∂iAa ∂jf ∂kg +
1

3
Πijk ∂aAi ∂jf ∂kg

+
1

3
Πijk Ai ∂a∂jf ∂kg +

1

3
ΠijkAi ∂jf ∂a∂kg

(4.23)

with

Ga
ijk =

1

3
∂aΠ

ijk −Θim∂m∂aΘ
jk − 1

2
∂aΘ

jm∂mΘki − 1

2
∂aΘ

km∂mΘij (4.24)

that apparently satisfies the relation

Ga
ijk +Ga

kij +Ga
jki = 0 . (4.25)

Taking into account the symmetry `3(A,B, f) = `3(B,A, f), (4.23) motivates to make

the ansatz
`3(A,B, f) = α(Ga

ijk +Ga
jik)AiBj∂kf

+ βΠijk(∂aAiBj∂kf −Ai∂aBj∂kf)

+ γΠijk(∂iAaBj∂kf −Ai∂jBa∂kf) .

(4.26)

Inserting this into the L∞ relation (4.19), using (4.25) and comparing coefficients we find

α = −1

6
, β =

1

6
, γ = −1

2
. (4.27)

Note that for β and γ we have 3 different equations for the two unknowns. Moreover, the

relation (4.25) was used to solve for α, and is in fact the consistency condition for the

existence of the solution of the equation (4.19), see [25] for more details. Thus, it is highly

non-trivial that indeed the L∞ relation J3(f, g, A) = 0 can be satisfied via

`3(A,B, f) = − 1

6

(
Ga

ijk +Ga
jik
)
AiBj∂kf

+
1

6
Πijk(∂aAiBj∂kf −Ai∂aBj∂kf)

− 1

2
Πijk(∂iAaBj∂kf −Ai∂jBa∂kf) .

(4.28)

Note that, as opposed to `3(A, f, g), the three-product `3(A,B, f) is non-vanishing in the

associative case, either. Recall that our computation was exact only up to second order in

Θ. Setting now all higher products to zero up to this order, all higher relations Jn = 0 for
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n ≥ 4 are automatically satisfied, as well. This is because `2`3 is already third order in Θ.

Therefore, for non-constant Θ we have constructed a consistent Lgauge
∞ algebra, for which

derivative ∂Θ corrections induce non-vanishing higher products (even in the associative

case). This is very compelling, as in the course of this computation there arose non-trivial

consistency conditions that just happened to be satisfied.

We also analyzed whether the gauge structure features an underlying A∞ algebra.

Since the higher products are not any longer graded symmetric, for that purpose one has

to determine many more individual higher products that are also constrained by more

A∞ relations. In this sense, an A∞ structure can be considered as a refinement of an

L∞ structure. Since the computations turned out to be quite lengthy and involved, we

delegated the presentation of the positive results into appendix B.

Let us proceed and extend the former Lgauge
∞ algebra for the action of a gauge symmetry

on gauge fields by a vector space X−2 that contains the equation of motion of a star-

deformed 3D Chern-Simons theory and a star-deformed U(1) Yang-Mills theory.

4.3 NC Chern-Simons theory

Let us first consider a NC-CS theory. Since a metric does not appear neither in the

Kontsevich star-product nor in the topological CS-theory, we suspect that the following

considerations are valid irrespective of a metric. Let us first consider the appearing struc-

ture up to linear order in Θ. From the former discussion, we expect to find also here ∂Θ

corrections.

As said, we have three vector spaces like

X0 X−1 X−2

f Aa Ea
(4.29)

with the following derivatives

`1(f) = ∂af , `1(A) = εc
ab ∂aAb (4.30)

that clearly satisfy `1(`1(f)) = 0. With

`2(f, g) = i[f, g]• = −Θij∂if∂jg +O(Θ2) (4.31)

we have already seen that the Leibniz-rule `1(`2(f, g)) = . . . fixes

`2(f,A) = i[f,Aa]• −
1

2
∂aΘ

ij∂ifAj +O(Θ2) . (4.32)

Next, one has to check the Leibniz rule

`1(`2(f,A)) = `2(`1(f), A) + `2(f, `1(A)) . (4.33)

By making an ansatz for `2(A,B) and `2(f,E), using that the former is symmetric and

fixing the coefficients one finds

`2(f,E) = i[f,Ea]• +O(Θ2) (4.34)
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and
`2(A,B) = εc

ab i[Aa, Bb]• − εcab∂aΘij
(
Ai∂jBb +Bi∂jAb

)
+

1

2
εc
ab∂aΘ

ij
(
Ai∂bBj +Bi∂bAj

)
+O(Θ2) .

(4.35)

Note that indeed `2(A,B) is symmetric under exchange of the two arguments and that

`2(f,E) does not receive any ∂Θ correction. The Leibniz-rules for (AA), (fE), (AE) are

trivially satisfied, as they lie in trivial vector spaces X−3 and X−4. Since all `2 products

are linear in Θ, all `2 ◦ `2 relations are trivially satisfied up to linear order in Θ.

Therefore, by requiring the consistency of an underlying L∞ algebra for the case of a

Θ deformed 3D Chern-Simons theory, we have extracted a ∂Θ correction to the equation

of motion

F = `1(A)− 1

2
`2(A,A) +O(Θ2)

= εc
ab

(
∂aAb −

i

2
[Aa, Ab]• + ∂aΘ

ij

(
Ai∂jAb −

1

2
Ai∂bAj

))
+O(Θ2) .

(4.36)

We find it tantalizing that the algebraic structure of an L∞ algebra allowed one to fix

derivative corrections to the equations of motion of a non-commutative CS theory. Of

course, so far this computation is only up to linear order in Θ, but we conjecture that it

can be extended in a consistent way to higher orders. As a non-trivial check let us now

consider the corrections at second order in Θ. This is the first instance where also the

associators appear.

NC-CS at order O(Θ2). The star commutator to this order remains unchanged, so do

the previously defined structures for `2. However, at this order there appear higher brackets

`3. The expressions for `3(A, f, g) and `3(A,B, f) were found in section 3.1. Taking into

account that now X−2 is non trivial, one may also have non-vanishing `3(E, f, g) ∈ X−1,

`3(E,A, f) ∈ X−2 and `3(A,B,C) ∈ X−2.

Let us start with `3(E, f, g). Such a term contributes to the closure condition

J3(f, g, A) = 0, which are however satisfied without it. Therefore, we can set `3(E, f, g) =

0. Next we consider J3(E, f, g) = 0

0 = `2(`2(E, f), g) + `2(`2(g,E), f) + `2(`2(f, g), E)

+ `3(E, `1(f), g) + `3(E, f, `1(g))
(4.37)

from which we derive

`3(E,A, f) =
1

2
Πijk∂iEaAj∂kf . (4.38)

It is understood, that all expressions are (only) correct up to order O(Θ2). Finally, to

determine `3(A,B,C), we consider J (A,B, f) and write is as

`3(A,B, `1(f)) = − `1(`3(A,B, f))− `3(`1(A), B, f) + `3(A, `1(B), f)

− `2(`2(A,B), f)− `2(`2(f,A), B) + `2(`2(B, f), A) .
(4.39)

The right hand side of this relation is quite involved, so we follow the same strategy as in

the section 4.2 and collect structures with the same number of derivatives acting on the
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arguments A, B and f . In principle we can get terms from one up to four derivates so that

we write

`3(A,B, `1(f)) =
4∑

N=1

`
(N)
3 (A,B, `1(f)) . (4.40)

After a tedious computation we find a couple of cancellations and simplifications. First we

obtain that two of the four terms do vanish

`
(1)
3 (A,B, `1(f)) = `

(4)
3 (A,B, `1(f)) = 0 . (4.41)

The term with two derivatives using the relation (4.25) can be written in the convenient way

`
(2)
3 (A,B, `1(f)) = −εcab

(
1

3
Θkm∂b∂mΘij − 1

6
∂bΘ

km∂mΘij + (j ↔ k)

)
(
∂aAiBj∂kf +Aj∂aBi∂kf

)
−εcab

(
−1

2
Θkm∂b∂mΘij +

1

2
∂bΘ

km∂mΘij + (j ↔
)

(
∂iAaBj∂kf +Aj∂iBa∂kf

)
−εcab

(
− 1

6
Θkm∂b∂mΘij +

1

3
∂bΘ

km∂mΘij + (j ↔ k)

)
(
AjBk∂a∂if

)
−εcab

(
1

2
∂aΘ

ij∂bΘ
kl

)
(

(∂iAk − ∂kAi)Bj∂lf +Aj(∂iBk − ∂kBi)∂lf
)
.

(4.42)

Note that this is explicitly symmetric under the exchange of the gauge fields A and B.

Moreover, the numerical prefactors are just right to directly read off a totally symmetric

three product

`
(2)
3 (A,B,C) = −εcab

(
1

3
Θkm∂b∂mΘij − 1

6
∂bΘ

km∂mΘij + (j ↔ k)

)
(
∂aAiBjCk +Aj∂aBiCk +AkBj∂aCi

)
−εcab

(
−1

2
Θkm∂b∂mΘij +

1

2
∂bΘ

km∂mΘij + (j ↔ k)

)
(
∂iAaBjCk +Aj∂iBaCk +AkBj∂iCa

)
−εcab

(
1

2
∂aΘ

ij∂bΘ
kl

)
(

(∂iAk − ∂kAi)BjCl +Aj(∂iBk − ∂kBi)Cl

+AlBj(∂iCk − ∂kCi)
)
.

(4.43)
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Next we come to the contribution with three derivatives. Here one has essentially two

terms, one proportional to Πijk and one that does not vanish in the associative case

`
(3)
3 (A,B, `1(f)) = εc

abΠijk

(
1

3
∂aAi∂bBj∂kf + ∂iAa∂jBb∂kf

+
1

6

(
∂aAiBj∂b∂kf +Aj∂aBi∂b∂kf

)
− 1

2

(
∂iAaBj∂b∂kf +Aj∂iBa∂b∂kf

)
− 1

2

(
∂iAa∂bBj∂kf + ∂bAj∂iBa∂b∂kf

))
−εcabΘkl∂bΘ

ij

(
1

2

(
∂kAaBi∂j∂lf +Ai∂kBa∂j∂lf

)
− 1

2

(
∂kAa∂lBi∂jf + ∂lAi∂kBa∂jf

)
− 1

2

(
∂lAiBj∂k∂af +Aj∂lBi∂k∂af

))
.

(4.44)

Again the relative coefficients are just right to define a totally symmetric three-product

`
(3)
3 (A,B,C) =

1

3
εc
abΠijk

(
∂aAi∂bBjCk +Ai∂aBj∂bCk + ∂bAiBj∂aCk

)
+ εc

abΠijk
(
∂iAa∂jBbCk +Ai∂jBa∂kCb + ∂iAbBj∂kCa

)
− 1

2
εc
abΠijk

(
∂iAa∂bBjCk +Ai∂jBa∂bCk + ∂bAiBj∂kCa

+ ∂aAi∂jBbCk +Ai∂aBj∂kCb + ∂iAbBj∂aCk

)
+

1

2
εc
abΘkl∂bΘ

ij
(
∂kAa(∂lBiCj −Bi∂lCj) + ∂kBa(∂lAiCj −Ai∂lCj)

+ ∂kCa(∂lAiBj −Ai∂lBj)
)
.

(4.45)

Therefore invoking the L∞ relations, in (4.43) and (4.45) we have determined a totally

symmetric three-product `3(A,B,C) = `
(2)
3 (A,B,C) + `

(3)
3 (A,B,C). Note that all the

formerly determined higher products went into this computation and that all the prefactors

just came out right to fit into the L∞ structure. This procedure works both for the

associative and the non-associative cases. Even in the associative case the three-product

is non-vanishing and receives derivative corrections.

Moreover, all higher L∞ relations are automatically satisfied at O(Θ2). This is all very

compelling and makes us believe that this procedure can be continued to higher orders in

Θ. As a consequence, up to quadratic order, the equation of motion of the NC-CS gauge

theory reads

F = `1(A)− 1

2
`2(A2)− 1

3!
`3(A3) +O(Θ3)

= εc
ab

[
∂aAb −

i

2
[Aa, Ab]• + ∂aΘ

ij

(
Ai∂jAb −

1

2
Ai∂bAj

)
+

1

6

(
Θkm∂b∂mΘij − 1

2
∂bΘ

km∂mΘij + (j ↔ k)
)(
∂aAiAjAk

)
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− 1

4

(
Θkm∂b∂mΘij − ∂bΘkm∂mΘij + (j ↔ k)

)(
∂iAaAjAk

)
(4.46)

+
1

2

(
∂aΘ

ij∂bΘ
kl
)(
∂iAkAjAl

)
− 1

2
Πijk

(
1

3
∂aAi∂bAjAk + ∂iAa(∂jAb − ∂bAj)Ak

)
− 1

2

(
Θkl∂bΘ

ij
)(

∂kAa∂lAiAj

)]
+O(Θ3) .

Let us emphasize that this is designed such that it transforms covariantly under an (∂Θ)

corrected NC gauge transformations

δfAa = `1(f) + `2(f,A)− 1

2
`3(f,A,A) +O(Θ3)

= ∂af + i[f,Aa]• −
1

2
∂aΘ

ij∂ifAj

− 1

6

(
Θim∂a∂mΘjk − 1

2
∂aΘ

im∂mΘjk

)
AiAj∂kf

− 1

2
Πijk

(
1

3
∂aAiAj∂kf − ∂iAaAj∂kf

)
+O(Θ3) .

(4.47)

Comments on an action. After we have successfully derived the equations of motion

for the NC-CY theory up to order Θ2, one can ask whether these can be integrated to an

action. Just to show what kind of issues appear, here we consider the simple case of the

equations of motion up to linear order in Θ. Recall that the equation of motion is

F = `1(A)− 1

2
`2(A,A) +O(Θ2) (4.48)

= εc
ab

(
∂aAb +

1

2
Θij∂iAa∂jAb + ∂aΘ

ij

(
Ai∂jAb −

1

2
Ai∂bAj

))
+O(Θ2) .

As mentioned in section 2.2, for defining an action one needs a inner product, which we

choose to be the same one as for the Moyal-Weyl case

〈A,E〉 =

∫
d3x ηabAaEb . (4.49)

For the action we also use the same form

S =
1

2
〈A, `1(A)〉 − 1

3!
〈A, `2(A,A)〉+O(Θ2) . (4.50)

Varying now this action with respect to the gauge field one has to do a partial integration.

In doing this, we require

∂iΘ
ij = 0 (4.51)
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which can be considered as the open string equation of motion for a flat brane or a natural

topological generalization of the latter. Thus, after variation we can express the result as

δS =

∫
d3x

[
δAc ε

abc

(
∂aAb +

1

2
Θij∂iAa∂jAb

)
+ δAc ε

abc∂aΘ
ij

(
Ai∂jAb −

1

2
Ai∂bAj

)
− δAc εabc∂aΘij

(
1

3
Ai(∂jAb − ∂bAj)−

1

6
Ab(∂jAi − ∂iAj)

)
+ δAi ε

abc∂aΘ
ij

(
1

3
Ac(∂jAb − ∂bAj)−

1

12
Aj(∂bAc − ∂cAb)

)]
.

(4.52)

Let us make two remarks: first, the first four terms are already the ones appearing in the

equation of motion. Second, from the variation one gets extra terms, e.g. those multiplying

δAi. However, all these terms explicitly contain a factor of ∂Θ and are proportional to

∂kAl − ∂lAk. Since the leading order equation of motion tells us that this combination

vanishes, all the terms like ∂Θ(∂kAl − ∂lAk) are already of order Θ2 and can be safely

dropped from the equation of motion at first order in Θ. Therefore, only after carefully

working at linear order in Θ one gets the equation of motion (4.48) from the action (4.50).

This means that the inner product itself does not satisfy the cyclicity property (2.33).

It would be interesting to see whether such a reasoning also works up to second order

in Θ or whether also the inner product receives some derivative ∂Θ corrections. We leave

this involved study for future research.

4.4 NC Yang-Mills theory

So far we have considered NC deformations of the topological CS-theory. To really get

into contact with the D-branes appearing as solutions of string theory, we finally consider

non-commutative U(1) YM theory. Since in this case, the computations turn out to be

more involved than in the CS case, we restrict ourselves in this section only to linear order

in Θ and leave the generalization to higher orders for the future.

Since the equation of motion involves the metric, we first discuss the simplest case of a

flat background with a non-constant NC-structure Θ and then generalize this to a curved

background of metric gij and non-constant Θ.

NC-YM on flat background. Recall from section 2.3 that for the Moyal-Weyl star-

product we have three vector spaces like

X0 X−1 X−2

f Aa Ea
(4.53)

with the following `-products

`1(A) = �Aa − ∂a(∂ ·A) (4.54)

`
(0)
2 (A,B) = i[∂ ·A,Ba]? + i[Ak, ∂

kBa]? + i[Ak, ∂kBa − ∂aBk]? + (A↔ B)

`3(A,B,C) = [Ak, [Bk, Ca]?]? + 5 terms .
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Note that at linear order in Θ the three-product `3(A,B,C) is vanishing. As for the NC-

CS theory, imposing the Leibniz-rule we expect to get a derivative correction `
(1)
2 (A,B).

Indeed, going through the computation we arrive at the familiar expression

`2(f,E) = i[f,Ea]? (4.55)

and the remaining term

`
(1)
2 (`1(f), A) = −�Θij

(
∂if∂jAa −

1

2
∂a∂ifAj −

1

2
∂if∂aAj

)
+
(
∂k∂aΘ

ij
)(
∂if∂jAk −

1

2
∂i∂kfAj −

1

2
∂if∂kAj

)
−
(
∂aΘ

ij
)(
∂k∂if(∂jAk − ∂kAj)− ∂if∂j(∂ ·A)

+
1

2
∂if�Aj +

1

2
�∂ifAj

)
−
(
∂kΘij

)(
2∂k∂if∂jAa + 2∂if∂k∂jAa − ∂a∂if∂jAk − ∂if∂a∂jAk

− 1

2
∂a∂k∂ifAj −

1

2
∂k∂if∂aAj

− 1

2
∂a∂if∂kAj −

1

2
∂if∂a∂kAj

)
.

(4.56)

Again, the relative coefficients are just right to be able to read off a symmetric `2(A,B)

`2(A,B) = i[∂ ·A,Ba]? + i[Ak, ∂
kBa]? + i[Ak, ∂kBa − ∂aBk]?

−�Θij

(
Ai∂jBa −

1

2
Ai∂aBj

)
+
(
∂k∂aΘ

ij
)(
Ai∂jBk −

1

2
Ai∂kBj

)
−
(
∂aΘ

ij
)(
∂kAi∂jBk −Ai∂j(∂ ·B) +

1

2
Ai�Bj

)
−
(
∂kΘij

)(3

2
∂iAk∂jBa +

1

2
∂kAi∂jBa +

1

2
∂aAi∂jBk

+ 2Ai∂k∂jBa −Ai∂a∂jBk −
1

2
Ai∂a∂kBj

)
+ (A↔ B) .

(4.57)

Then, the vacuum equation of motion for the non-commutative U(1) Yang-Mills theory up

to linear order in Θ reads

0 = �Aa − ∂a(∂ ·A)− i[∂ ·A,Aa]? − i[Ak, ∂kAa]? − i[Ak, ∂kAa − ∂aAk]?

+ �Θij

(
Ai∂jAa −

1

2
Ai∂aAj

)
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−
(
∂k∂aΘ

ij
)(
Ai∂jAk −

1

2
Ai∂kAj

)
(4.58)

+
(
∂aΘ

ij
)(
∂kAi∂jAk −Ai∂j(∂ ·A) +

1

2
Ai�Aj

)
+
(
∂kΘij

)(3

2
∂iAk∂jAa +

1

2
∂kAi∂jAa +

1

2
∂aAi∂jAk

+ 2Ai∂k∂jAa −Ai∂a∂jAk −
1

2
Ai∂a∂kAj

)
.

As we see, the linear order corrections are much more involved than for NC-CS theory so

that we stop here and leave higher order computations for future work. Here it is important

to note that so far we did not encounter any obstacle for solving the L∞ relations.

NC-YM on curved background. As we have seen in section 3, the general situation

for on-shell D-brane configurations involves a curved manifold equipped with the (open

string) metric G and a non-constant bi-vector Θ. On such a Riemannian manifold the

easiest case should be one where Θ is covariantly constant with respect to the Levi-Civita

connection. This requirement is natural from the open string equation of motion (3.16) for

the WZW branes. For instance, the two-dimensional branes for the SU(2) WZW model

really feature a covariantly constant Θ.

Clearly, here we are entering new territory, as the usual star-product is constructed with

respect to a Poisson structure only, without any mentioning of a metric or a connection. In

this section, at least up to linear order in Θ, we investigate whether one can also bootstrap

the first terms of a NC-YM theory on a curved manifold following our strategy of imposing

the L∞ algebra.

Looking at the usual abelian Yang-Mills theory on a Riemannian manifold, our starting

point is that

`1(f) = ∂af , `1(A) = ∇b∇bAa −∇b∇aAb (4.59)

where the second definition follows from varying the action

S =

∫
dnx
√
GFab F

ab (4.60)

where indices are pulled up and down with the metric Gab. Moreover, for the star-product

between two functions up to linear order we keep

f ? g = f · g +
i

2
Θij∂if∂jg +O(Θ2) (4.61)

and define

`2(f, g) = i[f, g]? . (4.62)

The Leibniz rule J2(f, g) = 0 can now be used to bootstrap the form of `2(f,A), assuming

that ∇kΘij = 0

`2(f,A) = i[f,A]? := −Θij ∇if ∇jAa +O(Θ2) (4.63)
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where of course ∇if = ∂if . Thus, we realize that from this perspective it is more natural

that indeed the covariant derivative appears when star-multiplying tensors. Since two

covariant derivatives do not commute and give

Tc = Rab,c
d Td , (4.64)

we must be prepared that there will arise curvature5 corrections to the expression we

encountered in the previous sections. Next, we impose the Leibniz rule J2(f,A) = 0 from

which we are able to read-off `2(A,B) and `2(f,E). After reordering covariant derivatives

and applying Bianchi-identities for the curvature, we finally arrive at

`2(f,E) = i[f,E]? (4.65)

and the more involved expression

`2(A,B) = ∇b
(
i[Ab, Ba]? +

1

2
ΘijRab,j

cAiBc + (A↔ B)

)
+
(
i[Ab, ∂bBa − ∂aBb]? −ΘijRjcAi (∂cBa − ∂aBc)

−ΘijRjb,a
cAi (∂cB

b − ∂bBc) + (A↔ B)
)
.

(4.66)

Here, we have used ∂[kBl] = ∇[kBl]. Note that this expression has the correct limit in the

flat case and manifestly shows the curvature corrections. Since all `2-product are at first

order in Θ, all higher order relations are satisfied up to linear order and we have succeeded

to bootstrap a NC-YM theory on a curved manifold up to linear order in a covariantly

constant Θ.

This could be continued to higher orders but we do not pursue this further here and

just state that all the discussed examples exemplify that the string theory motivated L∞
bootstrap program provides a promising novel approach to algebraically construct non-

commutative gauge theories in regimes that were not completely accessible yet.

5 Conclusions

Motivated by its appearance in string theory and first successes when applied to the ma-

trix valued NC gauge theory on the fuzzy 2-sphere, in the main part of this paper we have

successfully carried out an L∞ bootstrap program for determining higher derivative correc-

tions to NC gauge theories for non-constant and in general non-associative NC-structure

Θ. What is changed is both, the action of the gauge symmetry on the gauge fields and

their equations of motion. An interesting open question is whether one can also find an

action for them. We leave this non-trivial question for future work.

We believe that this approach is different from former attempts to solve this problem

but is based on a string theoretic well motivated guiding principle. By successively apply-

ing or solving the L∞ relations we managed to determine higher `-products. Since we were

pursuing a perturbative approach in Θ, the actual computations become more and more

5Note that the torsion vanishes for the Levi-Civita connection.
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involved. Note that at higher orders also the Kontsevich star-commutator receives deriva-

tive corrections that one needs to take into account. (For the A∞ algebra from appendix B

such corrections already appeared at second order and could consistently be handled.) But

it is promising that, up to second order in Θ, we did not encounter any obstacle, even

not in the non-associative case. To gain even more evidence for the self-consistency of this

approach, one could try to implement this bootstrap algorithm and push the computer

to iteratively produce higher and higher orders. Mathematically, one could also ask for a

proof that our algorithm always works.

When considering NC-YM theory on a curved space with covariantly constant Θ,

the L∞ structure was telling us that one should better introduce a star-product that uses

covariant derivatives when acting on tensors. It would be interesting to investigate whether

our first order results can be extended to higher orders.

Of course, generally one could contemplate on other possible problems where such an

L∞ based bootstrap approach might be worthwhile to pursue.
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A Semi classical branes in SU(3) WZW

As we have seen, the SU(2) group manifold is not rich enough to non-trivially check

whether on-shell brane configurations exist with non-vanishing Πijk. The reason was that

the boundary states describe at most two-dimensional branes on which H restricts triv-

ially. Thus, we now consider the eight-dimensional SU(3) WZW model which admit six-

dimensional branes. The non-vanishing Betti numbers of this group manifold are

b0 = b3 = b5 = b8 = 1 . (A.1)

This manifold can be considered as a S3 fibration over a five-dimensional base M5. Clearly,

in order to satisfy the Freed-Witten anomaly condition, the D-brane world-volume should

better not contain the S3.

From these topological considerations this example seems to be rich enough to provide

a non-trivial example with Πijk 6= 0. To explicitly describe the SU(3) group manifold we

introduce the matrices

D1(χ1) =

e
i√
2
χ1 0 0

0 e
− i√

2
χ1 0

0 0 1

 , D2(χ2) =


e
i√
6
χ2 0 0

0 e
i√
6
χ2 0

0 0 e
−i

√
2
3
χ2

 (A.2)
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and

M12(ϕ,ψ) =

 cosϕ sinϕeiψ 0

− sinϕe−iψ cosϕ 0

0 0 1

 (A.3)

and similarly for M13 and M23. Now we write an element of SU(3) as

M = N−1D1(χ1)D2(χ2)N (A.4)

with N = M12(ϕ1, ψ1)M23(ϕ2, ψ2)M12(ϕ3, ψ3). Thus, the six coordinates φi along the

brane are φ ∈ {ϕ1, ψ1, ϕ2, ψ2, ϕ3, ψ3} Moreover, in this normalization the positive roots are

given by

α1 = (
√

2, 0) , α2 =

(
1√
2
,

√
3

2

)
, α3 =

(
− 1√

2
,

√
3

2

)
. (A.5)

For the metric on SU(3) one obtain

k−1 ds2 =
1

2
dχ2

1 +
1

2
dχ2

2 + gij(φ) dφi ⊗ dφj (A.6)

where the second term is the metric restricted to the D-brane. The metric components

gij(φ) are partially long expressions in terms of the coordinates along the brane. There-

fore, we just list a few components to convince the reader that the expressions are indeed

very explicit

g11 = 4 sin2

(
χ1√

2

)
, g12 = g13 = g14 = 0

g15 = 4 sin2

(
χ1√

2

)
cosϕ2 cos(ψ1 − ψ3)

g16 = 2 sin2

(
χ1√

2

)
cosϕ2 sin(2ϕ3) sin(ψ1 − ψ3)

g22 = sin2

(
χ1√

2

)
sin2(2ϕ1) , . . .

(A.7)

At generic positions χ1,2 this gives a smooth metric on the D6-brane. However, at the three

boundaries αi · χ = 0 the metric degenerates to a four-dimensional metric. Therefore, at

these positions one gets D4-branes. At the intersection of two such lines the whole metric

degenerates thus yielding D0-branes. Therefore, the position moduli space has the form

displayed in figure 1.

The determinant of the metric has a simple form

√
g = 4k4

∏
α>0

sin2

(
α · χ

2

)
sin(2ϕ1) sin(2ϕ2) sin2(ϕ2) sin(2ϕ3) . (A.8)

Integrating this over the domain

0 ≤ χ1 ≤
√

2π , − χ1√
3
≤ χ2 ≤

χ1√
3
, 0 ≤ ϕi ≤

π

2
, 0 ≤ ψi ≤ 2π (A.9)

one finds for the volume of the SU(3) group manifold

V (SU(3)) =
√

3π5k4 . (A.10)
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χ2

χ1√
2π

√
2
3π

D6

D4

D4

D4

D0

D0

D0

Figure 1. Domain for position of the D6-brane.

Next, utilizing (3.10) one computes the B-field and its total derivative to get the H-

flux. To find a compact expression for the sechs-bein along the D-brane world-volume it is

useful to define the structure “constants”

FAB
C(φ) := 2 θ̂[A

i ∂iθ̂B]
j θCj (A.11)

where A,B,C ∈ {αi, αi}. There are non-zero and non-constant elements FAB
A(φ) (no sum

over A), but they do not contribute to H. The really relevant constant non-zero elements

turn out to be

F31
2 = F31

2 = F12
3 = F23

1 = F12
3 = F23

1 = 1 . (A.12)

Now, using

dθA = −1

2
FBC

A θB ∧ θC (A.13)

one can express the H-flux in a very compelling way as

H|D = h(χ)
[
θα1 ∧ θα2 ∧ θα3 − θα1 ∧ θα2 ∧ θα3

]
(A.14)

with

h(χ) = ik
3∑
i=1

(−1)i
(
αi · χ− sin(αi · χ)

)
= 2ik sin

(
χ1√

2

)[
cos

(
χ1√

2

)
− cos

(√
3

2
χ2

)]
.

(A.15)

Thus, in contrast to the former SU(2) case, the restriction of H onto the D6-brane is not

vanishing. However, the restriction onto the D4 and D0 branes at boundary of the moduli

space vanishes. Due to
∑

i(−1)iαi · χ = 0 these linear terms in χ do not contribute to the

three-form flux H|D on the brane. Taking into account (3.11), this is nothing else than the

manifestation of the fact that a pure gauge flux F = dA satisfies dF = 0. Therefore, in

accord with the Freed-Witten anomaly, the restriction of the bulk H-flux onto the brane
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can be expressed as H|D = dF . Being non-vanishing, there is a good chance to finally also

get a non-vanishing Πijk.

The quantization of the gauge flux F only admits a finite number of allowed D-branes.

These are parametrized by

χ1 =
√

2π
m1

k
, χ2 =

√
2

3
π

(2m2 −m1)

k
(A.16)

with m1,m2 ∈ Z such that they lie inside the domain in figure 1. For k = 1 one only gets

the three D0-branes but for k = 3, for the first time, also a D6 is allowed.

Next one can derive an explicit expression of the flux F and compute

√
g + F =

k3

2

∏
α>0

sin

(
α · χ

2

)
sin(2ϕ1) sin(2ϕ2) sin2(ϕ2) sin(2ϕ3) . (A.17)

Similarly, from (3.14) one can get an expression for the anti-symmetric bi-vector Θ and

explicitly check that the equation of motion (3.5) is indeed satisfied. Starting with the

general expression (3.14), one can check in more detail that the underlying reason for this

result are the relations

∂i

(√
g + F θ̂αi

)
= −

√
g + F Fααα(φ)

∂i

(√
g + F θ̂αi

)
= −

√
g + F Fααα(φ)

(A.18)

(no sum over α in Fαα
α) leading to a cancellation already for each term in the sum over

the positive roots in (3.14). Thus, as expected, the highly curved, fluxed D6-brane is a

consistent solution of the string equations of motion. Similarly to the H-flux one can write

the non-vanishing antisymmetric three-vector Π = [Θ,Θ]S in the very compelling form

Π =
k2

4
π(χ)

[
θ̂α1 ∧ θ̂α2 ∧ θ̂α3 + θ̂α1 ∧ θ̂α2 ∧ θ̂α3

]
(A.19)

with

π(χ) = cot
(α1 · χ

2

)
cot
(α2 · χ

2

)
− cot

(α1 · χ
2

)
cot
(α3 · χ

2

)
+ cot

(α2 · χ
2

)
cot
(α3 · χ

2

)
= −1 .

(A.20)

This explicitly shows that the SU(3) WZW model admits a six-dimensional brane that

carries a non-trivial Π. That means that Θ is not a Poisson structure and the related
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star-product becomes non-associative. For concreteness, we display the components of Π

Π123 =
sin(ψ1 − ψ3) sinφ3

8 sinφ2 cosφ3

Π124 =
cos(2φ1)

4 sin(2φ1) sin2(φ2)
− cos(ψ1 − ψ3)(5 + 3 cos(2φ2)) sinφ3

32 sin2(φ2) cosφ2 cosφ3

Π134 = −sin(ψ1 − ψ3) sinφ3

16 sinφ2 cosφ3

Π234 = − 1

4 sin(2φ2)
− cos(ψ1 − ψ3) cos(2φ1) sinφ3

8 sin(2φ1) sinφ2 cosφ3

Π125 =
sin(ψ1 − ψ3)(1 + 3 cos(2φ2))

32 sin2(φ2) cosφ2

Π135 = −cos(ψ1 − ψ3)

16 sinφ2

Π235 =
sin(ψ1 − ψ3) cos(2φ1)

16 sinφ1 cosφ1 sinφ2

Π145 = − sin(ψ1 − ψ3)

8 sinφ2 sin(2φ2)

Π245 =
sin(φ3)

8 sin2(φ2) cosφ3
− cos(ψ1 − ψ3) cos(2φ1)

8 sin(2φ1) sin2(φ2) cosφ2

Π345 = 0

Π126 = −cos(ψ1 − ψ3)(1 + 3 cos(2φ2))

16 sin2(φ2) cosφ2 sin(2φ3)

Π136 = − sin(ψ1 − ψ3)

8 sinφ2 sin(2φ3)

Π236 = − cos(ψ1 − ψ3) cos(2φ1)

4 sin(2φ1) sinφ2 sin(2φ3)

Π146 =
cos(ψ1 − ψ3)

16 cosφ2 sin2(φ2) sinφ3 cosφ3

Π246 = − sin(ψ1 − ψ3) cos(2φ1)

2 sin(2φ1) sinφ2 sin(2φ2) sin(2φ3)

Π346 = Π156 = 0

Π256 = − 1

8 sin2(φ2) sinφ3 cosφ3

Π356 = Π456 = 0

(A.21)

B Refinement to an Agauge
∞ algebra

Since in string theory, open-closed string field theory has an underlying A∞ algebra, one

might expect that NC-gauge theory admits an A∞ algebra, as well. Thus, in this appendix

we refine the Lgauge
∞ structure from section 4 and construct an Agauge

∞ algebra that underlies

the, in general non-associative, gauge theory up to order O(Θ2).
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Recall that we consider two non-trivial vector spaces, X0 and X−1 where X0 contains

functions (gauge parameters) and X−1 vectors (gauge fields). Moreover, to simplify the

notation, in this section we use

Θ̂ij =
i

2
Θij , Π̂ijk = −1

4
Πijk. (B.1)

Similar to the L∞ case, the first order products are defined as6

m1(f) = ∂af ∈ X−1

m2(f, g) = f ? g +
1

3
(Θ̂im∂mΘ̂jk)(∂i∂jf ∂kg + ∂i∂jg ∂kf) ∈ X0

(B.2)

where the second line is just the full Kontsevich star-product and f ? g denotes the Moyal-

Weyl part of it

f ? g = fg + Θ̂ij∂if∂g +
1

2
Θ̂imΘ̂jn ∂i∂jf ∂m∂ng +O(Θ̂3) . (B.3)

By this split, we explicitly take care of all appearing derivative ∂Θ terms. Note that

m2(f, g) is neither symmetric nor anti-symmetric under exchanging the arguments f and

g. The relation to the corresponding higher product in the L∞ algebra is given by graded

symmetrization

−i`2(f, g) = m2(f, g)−m2(g, f) . (B.4)

The A∞ relation

A2(f, g) = m1(m2(f, g))−m2(m1(f), g)−m2(f,m1(g)) = 0 (B.5)

is nothing else than the Leibniz-rule for the two-product and can be satisfied, up to order

O(Θ̂2), by defining

m2(A, g) = Aa ? g +
1

3
(Θ̂im∂mΘ̂jk)(∂i∂jAa ∂kg + ∂i∂jg ∂kAa)

+
1

2
∂aΘ̂

ij Ai ? ∂jg +
1

3
∂a(Θ̂

im∂mΘ̂jk) ∂jAi ∂kg

m2(f,A) = f ? Aa +
1

3
(Θ̂im∂mΘ̂jk)(∂i∂jf ∂kAa + ∂i∂jAa ∂kf)

+
1

2
∂aΘ̂

ij ∂if ? Aj +
1

3
∂a(Θ̂

im∂mΘ̂jk) ∂jAi ∂kf .

(B.6)

Note that the two terms in the second line are correction terms that arise for non-constant

Θ̂. These terms make the construction of the A∞ algebra much more complicated than in

the Moyal-Weyl case of constant Θ̂. Again, by anti-symmetrization we can confirm

−i`2(f,A) = m2(f,A)−m2(A, f) . (B.7)

6Like in (B.2), in the following the definitions of the higher products are put in boxes.
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Next we analyze the A∞ relation

A3(f, g, h) = m2(m2(f, g), h)−m2(f,m2(g, h)) +m1(m3(f, g, h))

+m3(m1(f), g, h) +m3(f,m1(g), h) +m3(f, g,m1(h)) = 0 .
(B.8)

For the associator one finds

m2(m2(f, g), h)−m2(f,m2(g, h)) = −2

3
Π̂ijk∂if∂jg∂kh . (B.9)

Since m1(m3(f, g, h)) ∈ X1 vanishes one can solve (B.8) by

m3(A, f, g) = α Π̂ijkAi∂jf∂kg

m3(f,A, g) = β Π̂ijkAi∂jf∂kg

m3(f, g, A) = γ Π̂ijkAi∂jf∂kg

(B.10)

with α−β+γ = 2/3. This guarantees that in the associative case, all these three-products

vanish. It is straightforward to confirm the relation to the corresponding L∞ three-product

(−i)2`3(A, f, g) = m3(A, f, g)−m3(A, g, f)−m3(f,A, g) +m3(g,A, f)

+m3(f, g, A)−m3(g, f, A) .
(B.11)

Now we proceed invoking the remaining A3 relations

A3(A, f, g) = m2(m2(A, f), g)−m2(A,m2(f, g)) +m1(m3(A, f, g))

+m3(m1(A), f, g)−m3(A,m1(f), g)−m3(A, f,m1(g)) = 0

A3(f, g, A) = m2(m2(f, g), A)−m2(f,m2(g,A)) +m1(m3(f, g, A))

+m3(m1(f), g, A) +m3(f,m1(g), A) +m3(f, g,m1(A)) = 0

A3(f,A, g) = m2(m2(g,A), f)−m2(g,m2(A, f)) +m1(m3(g,A, f))

+m3(m1(g), A, f) +m3(g,m1(A), f)−m3(g,A,m1(f)) = 0 .

(B.12)

Note the signs appearing in front of the m3m1-terms, which involve extra signs relative

to (2.22) whenever m1 is permuted through an odd element A ∈ X−1. Let us first compute

the associators

m2(m2(A, f), g)−m2(A,m2(f, g))

=

(
1

3
Θ̂im∂a∂mΘ̂jk− 1

2
Θ̂km∂a∂mΘ̂ij− 1

6
∂aΘ̂

im∂mΘ̂jk− 1

4
∂aΘ̂

km∂mΘ̂ij

)
Aa∂jf∂kg

− 2

3
Π̂ijk∂iAa∂jf∂kg

m2(m2(f, g), A)−m2(f,m2(g,A))

=

(
1

3
Θ̂im∂a∂mΘ̂jk− 1

2
Θ̂jm∂a∂mΘ̂ki− 1

6
∂aΘ̂

im∂mΘ̂jk− 1

4
∂aΘ̂

jm∂mΘ̂ki

)
Aa∂jf∂kg

− 2

3
Π̂ijk∂iAa∂jf∂kg

(B.13)
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and

m2(m2(g,A), f)−m2(g,m2(A, f))

=

(
− 2

3
Θ̂im∂a∂mΘ̂jk − 1

2
Θ̂km∂a∂mΘ̂ij − 1

2
Θ̂jm∂a∂mΘ̂ki

− 2

3
∂aΘ̂

im∂mΘ̂jk − 1

4
∂aΘ̂

km∂mΘ̂ij − 1

4
∂aΘ̂

jm∂mΘ̂ki

)
Aa∂jf∂kg

− 2

3
Π̂ijk∂iAa∂jf∂kg .

(B.14)

To solve (B.12), we first observe that m1(A) = 0 and make the general ansatz

m3(A,B, f) = ΣijkAiBj∂kf + Π̂ijk
(
x1 ∂iAaBj∂kf + x2Ai∂jBa∂kf

+ x3 ∂aAiBj∂kf + x4Ai∂aBj∂kf
) (B.15)

and similarly for m3(A, f,B) and m3(f,A,B). This gives a set of conditions that only

admit a solution iff α − β + γ = 2/3, i.e. precisely the condition that followed from the

relation A3(f, g, h) = 0 shown in (B.8). Eliminating β in favor of α and γ, the general set

of solutions is given as

m3(A,B, f) =

[
κ1 Θ̂im∂a∂mΘ̂jk + κ2 Θ̂km∂a∂mΘ̂ij + κ3 Θ̂jm∂a∂mΘ̂ki

+ λ1 ∂aΘ̂
im∂mΘ̂jk + λ2 ∂aΘ̂

km∂mΘ̂ij + λ3 ∂aΘ̂
jm∂mΘ̂ki

]
AiBj∂kf

+ Π̂ijk

[
x1 ∂iAaBj∂kf + x2Ai∂jBa∂kf

+

(
− 2

3
+ α+ γ − x1

)
∂aAiBj∂kf + (α− x2)Ai∂aBj∂kf

]
and

m3(A, f,B) =

[(
− 1

3
− α+ κ1

)
Θ̂im∂a∂mΘ̂jk + (−α+ κ3) Θ̂km∂a∂mΘ̂ij

+

(
1

2
− α+ κ2

)
Θ̂jm∂a∂mΘ̂ki

]
AiBj∂kf

+

[(
1

6
− α+ λ1

)
∂aΘ̂

im∂mΘ̂jk + (−α+ λ3) ∂aΘ̂
km∂mΘ̂ij

+

(
1

4
− α+ λ2

)
∂aΘ̂

jm∂mΘ̂ki

]
AiBj∂kf

+ Π̂ijk

[(
2

3
+ x1

)
∂iAaBj∂kf + y2Ai∂jBa∂kf

+

(
− 2

3
+ γ − x1

)
∂aAiBj∂kf + (−α− y2)Ai∂aBj∂kf

]
(B.16)
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and

m3(f,A,B) =

[
(−α− γ + κ3) Θ̂im∂a∂mΘ̂jk +

(
1

6
− α− γ + κ1

)
Θ̂km∂a∂mΘ̂ij

+

(
1

6
− α− γ + κ2

)
Θ̂jm∂a∂mΘ̂ki

]
AiBj∂kf

+

[
(−α− γ + λ3) ∂aΘ̂

im∂mΘ̂jk +

(
5

12
− α− γ + λ1

)
∂aΘ̂

km∂mΘ̂ij

+

(
5

12
− α− γ + λ2

)
∂aΘ̂

jm∂mΘ̂ki

]
AiBj∂kf

+ Π̂ijk

[(
− 2

3
+ x2

)
∂iAaBj∂kf +

(
2

3
+ y2

)
Ai∂jBa∂kf

+

(
2

3
− γ − x2

)
∂aAiBj∂kf + (−α− γ − y2)Ai∂aBj∂kf

]
where besides α, γ the κi, λi and x1, x2, y2 are still free parameters. However, when comput-

ing the graded symmetrization of these m-products, all these parameters precisely cancel

and one gets the corresponding `3-product

(−i)2`3(A,B, f) = m3(A,B, f) +m3(B,A, f)−m3(A, f,B)

−m3(B, f,A) +m3(f,A,B) +m3(B,A, f) .
(B.17)

Finally, one has to check the A∞ relation A4 (2.23). There are only two possible sets of a

priori non-trivial relations with entries A4(f, g, h,A) and A4(f, g, A,B) and permutations

thereof. The A4(f, g, h,A) relations are all satisfied up to order O(Θ2) so that we choose

a vanishing four-product m4(f, g, A,B) ∈ X0. The A4(f, g, A,B) relations are also all

satisfied in the associative case, but in the non-associative case, one needs to introduce

non-trivial four-products m4(f,A,B,C) ∈ X−1 that are proportional to Π̂ijk. As before,

we make a general ansatz

m4(f,A,B,C) = Π̂ijk
(
µ1AaBiCj + µ2AjBaCi + µ3AiBjCa

)
∂kf

+ Π̂ijkµ4∂afAiBjCk

(B.18)

and similarly for m4(A, f,B,C), m4(A,B, f, C) and m4(A,B,C, f). One realizes that there

appear consistency conditions for the existence of a solution, that are however satisfied once

the relations that we encountered before are satisfied. After all, the four parameters in

m4(f,A,B,C) remain as free parameters with the other three four-products given as

m4(A, f,B,C) =Π̂ijk

(
− µ4AaBiCj +

(
2

3
+ µ2 − x2

)
AjBaCi

+ (γ + µ3)AiBjCa

)
∂kf

+ Π̂ijk

(
− 2

3
+ γ − µ1 + x2

)
∂afAiBjCk

(B.19)
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and

m4(A,B, f, C) = Π̂ijk

((
− 2

3
+ γ − µ4 − x1

)
AaBiCj + (µ1 − x1 − x2)AjBaCi

+ (α+ γ + µ3 + y2)AiBjCa

)
∂kf

+ Π̂ijk

(
− 2

3
− α− µ2 + x2 − y2

)
∂afAiBjCk

m4(A,B,C, f) = Π̂ijk

((
− 2

3
+ α+ γ − µ4 − x1

)
AaBiCj + (µ1 − x1)AjBaCi

+

(
2

3
+ µ2 + y2

)
AiBjCa

)
∂kf

+ Π̂ijk(−α− γ − µ3 − y2)∂afAiBjCk .

We note that via graded symmetrization the corresponding `4-product is vanishing, being

consistent with our findings in section 4.

Having now a non-trivial m4-product one also has to worry about the relation A5 that

for m5 = 0 contains the order O(Θ̂2) term

A5 = m4(m2 ⊗ 13 − 1⊗m2 ⊗ 12 + 12 ⊗m2 ⊗ 1− 13 ⊗m2)

+m2(m4 ⊗ 1− 1⊗m4) +O(Θ̂3) .
(B.20)

We have checked that all ten relations of the type A5(f, g, A,B,C) are satisfied. All higher

relations are trivially satisfied up to order Θ̂2.

Let us summarize our findings: we have explicitly constructed the A∞ algebra up to

order O(Θ̂2) that underlies the non-commutative gauge theory governed by a non-constant

and in general even non-associative star-product. By constructing the higher products

in a step-by-step procedure, we encountered many derivative ∂Θ-corrections that make

the whole algebra and relations highly non-trivial. At each step, we observed that the A∞
relation under question led to some consistency conditions that were automatically satisfied

once the lower A∞ relations were already satisfied. This is very encouraging and makes

us believe that the whole procedure continues also to higher orders in Θ. Up to the level

that we were considering, we found that in the associative case, a non-constant Θ induces

non-vanishing higher products of type

m2(f, g) , m2(A, g) m3(A,B, g) . (B.21)

In the non-associative case a further three and a four-product had to be introduced

m2(f, g) , m2(A, g) , m3(A, f, g) , m3(A,B, g) , m4(f,A,B,C) . (B.22)

In the conclusion of this section we stress that both, for the consistency of the proposed

construction of A∞ and for the correct relation to the L∞, the product m2(f, g) was taken

to be the Kontsevich star product f • g. Up to second order in Θ, `2(f, g) = i[f, g]•,

coincides with the “classical” (quasi)-Poisson bracket, −{f, g}, which is not the case of the
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product m2. It contains “quantum” information in the sense of deformation quantization

corrections. A separate question is whether there exists a “classical” L∞ algebra, where

the two-product is always simply `2(f, g) = {f, g} or whether for consistency one should

necessarily take `2(f, g) as a star commutator, i.e. construct “quantum” L∞.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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