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1 The Hyperbolic mechanism

A zoo of novel top partner states [1–13] have arisen through theoretical explorations of

neutral naturalness models [1–46]. The Twin Higgs approach demonstrated the possibility

of fermionic top partners that are fully neutral under the Standard Model (SM) symmetries.

However, the state-of-the-art for scalar top partners has not changed since the introduction

of Folded Supersymmetry (SUSY) [3], where the folded stops must be charged under the

visible SU(2)W × U(1)Y in order for them to couple to the Higgs via the fundamental

superpotential. In this paper, we introduce a new paradigm for neutral naturalness — the

Hyperbolic Higgs — which realises the so-far elusive goal (see e.g. table 1 of [29]) of fully

SM neutral scalar top partners.

The Hyperbolic Higgs mechanism relies on a low-energy scalar potential that exhibits

an accidental flat direction. This results from a U(2, 2) non-compact global symmetry of

the scalar potential, in contrast to the U(4) symmetry of the Twin Higgs theory. Note

that U(2, 2) is not an accidental symmetry of the low-energy theory: although the scalar

potential respects it, the kinetic terms do not.

Explicitly, the scalar potential for the Higgs H (charged under the SM gauge group)

and the Hyperbolic Higgs HH (charged under an identical copy of the SM gauge group)

takes the form

VH = m2
(∣∣H

∣∣2 −
∣∣HH

∣∣2
)

+
λ

2

(∣∣H
∣∣2 −

∣∣HH
∣∣2
)2
. (1.1)
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The classical vacuum manifold is described by a hyperbola (with f2 ≡ m2/λ),

∣∣HH
∣∣2 −

∣∣H
∣∣2 = f2 . (1.2)

This explains the moniker “Hyperbolic Higgs.”

The flat direction Hflat is manifest after the field redefinition

H = H0 sinh
Hflat

f
, HH = H0 cosh

Hflat

f
, (1.3)

as the potential VH depends only on H0 but not on Hflat. Since eq. (1.3) corresponds to

a hyperbolic rotation but not to a unitary transformation, the form of the kinetic terms

is not preserved, signaling that U(2, 2) is not a symmetry of the full theory. On the

other hand, we can identify a massless neutral scalar state by expanding the Higgs and

Hyperbolic Higgs about their vacuum expectation values using H = (0, v + h/
√

2) and

HH = (0, vH+hH/
√

2). We find two propagating scalar radial modes, h and hH, while the

remaining degrees of freedom are eaten by the SM gauge fields and by their Hyperbolic

SU(2)H×U(1)H counterparts. The SM-like Higgs scalar hSM emerges as the massless state

hSM = h cos θ + hH sin θ , tan θ =
v

vH
. (1.4)

While the detailed Hyperbolic phenomenology is sensitive to the UV completion, the above

mixing leads to two universal features relevant for Higgs phenomenology: cos θ measures

the size of an overall modification of SM Higgs couplings, while sin θ provides a portal

into the Hyperbolic sector contributing to invisible Higgs decays. These features will be

described in more detail in section 3.

To illustrate the comparison between the Twin and Hyperbolic Higgs models, it is

useful to abuse the physics jargon and think of the Higgs as a pseudo-Goldstone of a

spontaneously broken non-compact U(2, 2) symmetry (as emphasized above, the analogy

holds for the scalar potential, but not for the kinetic terms, implying that some of the usual

relations are violated at loop level).

If we are going to solve the little hierarchy problem, we must couple the Higgs sector

to matter. The SM sector has Yukawa couplings involving fermions while the Hyperbolic

sector contains quartic interactions with scalars

L = (λtH ψQ ψUc + h.c.) + λ2
t

(∣∣HH · Q̃H
∣∣2 +

∣∣HH
∣∣2∣∣Ũ cH

∣∣2
)
, (1.5)

where λt is the top quark Yukawa coupling, ψQ and ψUc comprise the SM top quark, and Q̃H
and Ũ cH are the scalar top partners, in a notation reminiscent of SUSY. An exchange sym-

metry (properly defined in the following) guarantees the equality of λt in the two sectors.

Note that in the low-energy effective theory there are no SM charged top partner states.

The field H couples as a SM Higgs, while HH participates in an interaction analogous to

the SUSY Higgs-squark couplings. Since the UV regulator is equal for both fields due to

the exchange symmetry, the one-loop quadratic corrections from these interactions also

respect the accidental global U(2, 2) symmetry, δV ∝ (λt/4π)2 Λ2
(∣∣HH

∣∣2 −
∣∣H
∣∣2), where Λ

– 2 –
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H H†

H H†
+

etH

hH

t

t

�t �t

p
2�2

t vH<latexit sha1_base64="wZiGvTB70T/Xm+hT99ZPZ6dQOtA=">AAACDHicbVDLSsNAFJ34rPUVdekmWAUXpSRFUHdFN11WMLbQ1DCZTtuhk0mcuSmUkB9w46+4caHi1g9w5984bbPQ1gMDh3PuYe49QcyZAtv+NpaWV1bX1gsbxc2t7Z1dc2//TkWJJNQlEY9kK8CKciaoCww4bcWS4jDgtBkMryd+c0SlYpG4hXFMOyHuC9ZjBIOWfPPYUw8S0mrmlT2uY13sw33VK498L8QwIJin9cw3S3bFnsJaJE5OSihHwze/vG5EkpAKIBwr1XbsGDoplsAIp1nRSxSNMRniPm1rKnBIVSedXpNZJ1rpWr1I6ifAmqq/EykOlRqHgZ6crKjmvYn4n9dOoHfRSZmIE6CCzD7qJdyCyJpUY3WZpAT4WBNMJNO7WmSAJSagCyzqEpz5kxeJW61cVuybs1LtKm+jgA7RETpFDjpHNVRHDeQigh7RM3pFb8aT8WK8Gx+z0SUjzxygPzA+fwD1FJux</latexit><latexit sha1_base64="wZiGvTB70T/Xm+hT99ZPZ6dQOtA=">AAACDHicbVDLSsNAFJ34rPUVdekmWAUXpSRFUHdFN11WMLbQ1DCZTtuhk0mcuSmUkB9w46+4caHi1g9w5984bbPQ1gMDh3PuYe49QcyZAtv+NpaWV1bX1gsbxc2t7Z1dc2//TkWJJNQlEY9kK8CKciaoCww4bcWS4jDgtBkMryd+c0SlYpG4hXFMOyHuC9ZjBIOWfPPYUw8S0mrmlT2uY13sw33VK498L8QwIJin9cw3S3bFnsJaJE5OSihHwze/vG5EkpAKIBwr1XbsGDoplsAIp1nRSxSNMRniPm1rKnBIVSedXpNZJ1rpWr1I6ifAmqq/EykOlRqHgZ6crKjmvYn4n9dOoHfRSZmIE6CCzD7qJdyCyJpUY3WZpAT4WBNMJNO7WmSAJSagCyzqEpz5kxeJW61cVuybs1LtKm+jgA7RETpFDjpHNVRHDeQigh7RM3pFb8aT8WK8Gx+z0SUjzxygPzA+fwD1FJux</latexit><latexit sha1_base64="wZiGvTB70T/Xm+hT99ZPZ6dQOtA=">AAACDHicbVDLSsNAFJ34rPUVdekmWAUXpSRFUHdFN11WMLbQ1DCZTtuhk0mcuSmUkB9w46+4caHi1g9w5984bbPQ1gMDh3PuYe49QcyZAtv+NpaWV1bX1gsbxc2t7Z1dc2//TkWJJNQlEY9kK8CKciaoCww4bcWS4jDgtBkMryd+c0SlYpG4hXFMOyHuC9ZjBIOWfPPYUw8S0mrmlT2uY13sw33VK498L8QwIJin9cw3S3bFnsJaJE5OSihHwze/vG5EkpAKIBwr1XbsGDoplsAIp1nRSxSNMRniPm1rKnBIVSedXpNZJ1rpWr1I6ifAmqq/EykOlRqHgZ6crKjmvYn4n9dOoHfRSZmIE6CCzD7qJdyCyJpUY3WZpAT4WBNMJNO7WmSAJSagCyzqEpz5kxeJW61cVuybs1LtKm+jgA7RETpFDjpHNVRHDeQigh7RM3pFb8aT8WK8Gx+z0SUjzxygPzA+fwD1FJux</latexit>

� m2
hHp
2 vH

<latexit sha1_base64="PtpR68kRHO1TYi36VMqdkUR1Y9I=">AAACHHicbVDLSsNAFJ3UV62vqEs3wSK40JKUgroruumygrGFJobJdNIOnTycmRTKkB9x46+4caHixoXg3zhps7CtBy4czrmXe+/xE0q4MM0frbSyura+Ud6sbG3v7O7p+wf3PE4ZwjaKacy6PuSYkgjbggiKuwnDMPQp7vijm9zvjDHjJI7uxCTBbggHEQkIgkJJnt44dwIGkQw9OfScEIohglS2suyhnkmHPzIh65lzNp7zPL1q1swpjGViFaQKCrQ9/cvpxygNcSQQhZz3LDMRroRMEERxVnFSjhOIRnCAe4pGMMTcldPvMuNEKX0jiJmqSBhT9e+EhCHnk9BXnfmNfNHLxf+8XiqCS1eSKEkFjtBsUZBSQ8RGHpXRJwwjQSeKQMSIutVAQ6jSEirQigrBWnx5mdj12lXNvG1Um9dFGmVwBI7BKbDABWiCFmgDGyDwBF7AG3jXnrVX7UP7nLWWtGLmEMxB+/4F+QCjTw==</latexit><latexit sha1_base64="PtpR68kRHO1TYi36VMqdkUR1Y9I=">AAACHHicbVDLSsNAFJ3UV62vqEs3wSK40JKUgroruumygrGFJobJdNIOnTycmRTKkB9x46+4caHixoXg3zhps7CtBy4czrmXe+/xE0q4MM0frbSyura+Ud6sbG3v7O7p+wf3PE4ZwjaKacy6PuSYkgjbggiKuwnDMPQp7vijm9zvjDHjJI7uxCTBbggHEQkIgkJJnt44dwIGkQw9OfScEIohglS2suyhnkmHPzIh65lzNp7zPL1q1swpjGViFaQKCrQ9/cvpxygNcSQQhZz3LDMRroRMEERxVnFSjhOIRnCAe4pGMMTcldPvMuNEKX0jiJmqSBhT9e+EhCHnk9BXnfmNfNHLxf+8XiqCS1eSKEkFjtBsUZBSQ8RGHpXRJwwjQSeKQMSIutVAQ6jSEirQigrBWnx5mdj12lXNvG1Um9dFGmVwBI7BKbDABWiCFmgDGyDwBF7AG3jXnrVX7UP7nLWWtGLmEMxB+/4F+QCjTw==</latexit><latexit sha1_base64="PtpR68kRHO1TYi36VMqdkUR1Y9I=">AAACHHicbVDLSsNAFJ3UV62vqEs3wSK40JKUgroruumygrGFJobJdNIOnTycmRTKkB9x46+4caHixoXg3zhps7CtBy4czrmXe+/xE0q4MM0frbSyura+Ud6sbG3v7O7p+wf3PE4ZwjaKacy6PuSYkgjbggiKuwnDMPQp7vijm9zvjDHjJI7uxCTBbggHEQkIgkJJnt44dwIGkQw9OfScEIohglS2suyhnkmHPzIh65lzNp7zPL1q1swpjGViFaQKCrQ9/cvpxygNcSQQhZz3LDMRroRMEERxVnFSjhOIRnCAe4pGMMTcldPvMuNEKX0jiJmqSBhT9e+EhCHnk9BXnfmNfNHLxf+8XiqCS1eSKEkFjtBsUZBSQ8RGHpXRJwwjQSeKQMSIutVAQ6jSEirQigrBWnx5mdj12lXNvG1Um9dFGmVwBI7BKbDABWiCFmgDGyDwBF7AG3jXnrVX7UP7nLWWtGLmEMxB+/4F+QCjTw==</latexit>

�1/mh2
H

Figure 1. The one-loop fixed order corrections to the SM-like Higgs boson mass squared parameter,

where t is a SM top quark, and t̃H is a Hyperbolic stop. Vertex factors and propagator follow from

eq. (1.1) and eq. (1.5).

is the UV cutoff. The opposite sign in the loop corrections for Higgs and Hyperbolic Higgs

comes from the replacement of virtual fermions with scalars. This is the central observa-

tion of this paper, as this fact guarantees that the one-loop top contributions to the SM

Higgs mass squared parameter are insensitive to the UV: the contributions quadratic in

the cutoff that result from top quark loops are cancelled by those involving gauge neutral

top partner fields.

This UV insensitivity may equivalently be seen by integrating out the heavy radial

mode hH to yield the low energy effective theory

L = (λtH ψQ ψUc + h.c.) + λ2
t |H|2

(∣∣ t̃LH
∣∣2 +

∣∣ t̃RH
∣∣2
)
. (1.6)

The procedure is illustrated by the diagrams in figure 1 with the hH line integrated out.

The cancellation of divergences is now manifest, as it works in the same way as in ordinary

low-energy SUSY.

The key to the Hyperbolic Higgs framework is that, by moving from a scalar potential

with an approximate compact global symmetry U(4) to an approximate non-compact one

U(2, 2), the gauge singlet fermionic top partners of the Twin Higgs theory may be replaced

by gauge singlet scalar top partners. In other words, the extra minus sign due to the

loop of fermions becoming a loop of scalars is compensated by the minus sign due to

U(4)→ U(2, 2).

The way we formulated the basic ingredients of the Hyperbolic mechanism makes

clear that its most natural realization relies on a SUSY setup. Indeed, in section 2 we

introduce a realistic example that utilizes a modification of the mirror structure developed

for both SUSY Twin Higgs [16, 17, 21] and Folded SUSY [3]: the UV theory contains two

copies of identical matter content, with a Z2 exchange symmetry relating their couplings.

Specifically, the top sector of the model relies on 5D SUSY and a particular choice of

Scherk-Schwarz boundary conditions [47, 48] to lift the unwanted states from the low energy

spectrum. In section 3, we briefly discuss the novel phenomenology associated with neutral

scalar top partners and modified Higgs properties. Our conclusion and a comparison of

the Hyperbolic Higgs with other frameworks of neutral naturalness is given in section 4.

– 3 –
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A discussion of how the Hyperbolic Higgs fits within a generic IR framework is given in

appendix A, and some analytic expressions relevant for computing the symmetry breaking

pattern are provided in appendix B.

2 SUSY 5D realization of the Hyperbolic Higgs

Next we detail a UV model that realises the Hyperbolic Higgs mechanism in the IR.

2.1 SUSY breaking boundary conditions

Embedding the SM fields into SUSY multiplets implies that fermions are accompanied

by scalars. Thus to eliminate the SM charged stops from the low energy spectrum, we

must appeal to a mechanism that can make the scalars in a supermultiplet heavy without

introducing large corrections to the Higgs mass squared parameter. A similar strategy will

be required to lift the fermions in the Hyperbolic sector, leaving only the scalar partners

light. To achieve this, we start with a 5D SUSY model where the extra dimension y is

compactified on S1/Z2. The circumference of this extra dimension is taken to be not too

far from the weak scale, 1/(π R) ∼ few TeV. A Z2 symmetry is preserved which identifies

the points y → −y and can act non-trivially on the fields that propagate in the bulk of the

compactified dimension.

The Scherk-Schwarz approach is to break SUSY non-locally at the boundaries. This

amounts to a restriction on the extra-dimensional periodicity of the bulk fields, see

e.g. [49–51]. The 5D field may be decomposed into an infinite tower of 4D mass eigenstates,

where the individual modes, whether fermionic or bosonic, have mass m = (n+qφ)/R, and

qφ is known as a Scherk-Schwarz twist.

For the theory considered here (shown in figure 2), all fields live in the bulk. The

Scherk-Schwarz twists, which determine the zero modes, are denoted with the subscript

(qB, qF ), where B (F ) is the choice made for the relevant bosons (fermions). The MSSM

matter fields in the visible (Hyperbolic) sector only have fermionic (bosonic) zero modes.

Treating the Scherk-Schwarz parameters as spurions under the exchange MSSM↔MSSMH,

the matter field parameters transform as (qB, qF )MSSM ↔ (qF , qB)MSSMH , and the non-

zero value for these parameters breaks the exchange symmetry. For concreteness, we take

(qB, qF )MSSM = (1/2, 0) in the MSSM sector and (qB, qF )MSSMH = (0, 1/2) in the Hy-

perbolic sector. Exploring the parameter space as a function of the twist could provide

additional model building opportunities, for example as in the Folded SUSY study of [30].

Let us now consider the SM-charged Higgs scalar H, interacting with the individual

members of the full tower of MSSM top KK modes through a brane-localised superpotential

W located at y = 0. We may calculate the one-loop contribution of the top-stop sector

KK tower to the mass of H à la Coleman-Weinberg [52],

VCW(H) =
1

2

∑

n

∫
d4p

(2π)4

[
log

p2 + (n+ ω+
B)2/R2

p2 + (n+ ω+
F )2/R2

+ log
p2 + (n+ ω−B)2/R2

p2 + (n+ ω−F )2/R2

]
, (2.1)

where ω±B,F = qB,F ±Rmt(H).

– 4 –
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Figure 2. A schematic representation of the model. The bold font signifies full supermultiplets,

and the subscript are the Scherk-Schwarz twist parameters (qB , qF ). Note that 5D supermultiplets

are equivalent to a vector-like pair of 4D supermultiplets. The Hyperbolic sector is denoted in

red. The new U(1)X gauge group gives an interaction between the two sectors and the exchange

symmetry Z2 relates coupling constants, as well as interchanging the twists.

Even before performing the integral and summation, eq. (2.1) is sufficient to expose the

central aspect of this approach to constructing a Hyperbolic Higgs model. The transforma-

tion of the one-loop potential under the exchange qB ↔ qF , is V (H)qB ,qF = −V (H)qF ,qB .

Clearly, the one-loop induced mass terms then flip sign under this exchange. Ensuring

that the one-loop quadratic potential respects the U(2, 2) symmetry is equivalent to the

statement that V (H) and V (HH) are identical up to H ↔ HH and the flip in overall sign.

Regarding the Higgs sector, there are two, equally viable, model-building options:

either we keep the full two-Higgs doublet sector, or we adopt a SUSY one Higgs doublet-

like structure [53–56]. Noting that the essential features of our study are insensitive to

this choice, for simplicity we implement the latter. Our model includes two copies of the

MSSM Higgs sector, with boundary conditions such that N = 1 supermultiplets of Higgs

up-type doublets remain in both sectors at low energy. For simplicity, we also choose that

the Higgsinos are light so that we can neglect any quadratic corrections from electroweak

loops. We refer to the zero mode up-type Higgs in the MSSM sector as H and in the

Hyperbolic sector as HH.

2.2 Matter

All of the MSSM matter superfields and the complete Hyperbolic copy are included, such

that the exchange symmetry MSSM ↔ MSSMH is manifest in the bulk. Using eq. (2.1),

we can evaluate the Coleman-Weinberg potential that is generated by the stop-top sector

at one loop

VCW(H) = − 3Nc

32π6R4

[
Cl5
(
2π ω+

B

)
+ Cl5

(
2π ω−B

)
− Cl5

(
2π ω+

F

)
− Cl5

(
2π ω−F

)]
, (2.2)

where Nc = 3 is the number of colors and Cln(x) are Clausen functions which are related

to polylogarithms, see appendix B for explicit expressions.

– 5 –
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The brane-localized Yukawa interaction implies the presence of δ(y) factors in the

equations of motion. Integrating across the brane to arrive at a self-consistent field profile

in the bulk yields an expression for the top mass that depends non-linearly on the Higgs field

mt(H) =
1

π R
arctan

(
π Rλt |H|

)
. (2.3)

Thus the top Yukawa coupling λt is not equal to its SM value λSM
t ≡ mt/〈H〉, as we will

discuss in section 3.

For illustration, we can expand V MSSM
CW + V MSSMH

CW to quadratic order in the unbroken

phase, to expose that the scalar zero modes do not remain massless at one-loop:

VCW = − 21 ζ(3)λ2
t

32π2 (π R)2

{
Nc

(∣∣H
∣∣2 −

∣∣HH
∣∣2
)
−
∣∣Q̃H

∣∣2 − 2
∣∣Ũ cH

∣∣2
}

+ . . . , (2.4)

where Q̃H and Ũ cH are the Hyperbolic stop fields, and ζ(x) is the Riemann zeta function.

This manifestly respects the U(2, 2) symmetry, demonstrating the expected result that all

quadratic sensitivity to the cutoff obeys this approximate symmetry. Note, however, that

the contributions prefer a vev for H rather than HH. Thus, although U(2, 2)-symmetric,

these terms alone are not sufficient to achieve electroweak symmetry breaking. This will

be remedied in section 2.3.

2.3 Gauge

For minimality in the SU(3)c × SU(2)W × U(1)Y gauge sectors, we choose boundary con-

ditions such that a full N = 1 vector supermultiplet for the SU(2)W × U(1)Y gauge fields

survives in the IR, whereas we will keep only zero modes for SU(3)c gauge bosons. This lifts

the gluinos such that LHC bounds on their production are not relevant. In principle, the

heavy Hyperbolic gluinos lead to corrections for the Hyperbolic stop mass which ultimately

feeds into the Higgs mass squared parameter, but in practice these are subdominant to the

corrections already considered here.

Critical to the structure of this UV-completion is the introduction of a new U(1)X
gauge symmetry. By charging the Higgs fields as QX(H,HH) = (1,−1), the associated D-

term potential will provide the U(2, 2)-invariant quartic interaction. The gauge symmetry

must be spontaneously broken, leading to freedom in choosing charges for the matter fields.

We will assume that the U(1)X matter charge assignment is at least consistent with the

top Yukawa interaction, while other Yukawa interactions can arise as higher dimension

operators involving the U(1)X -breaking field if necessary. If any matter fields are brane-

localised, we assume that their charge assignments do not generate mixed U(1)X–SU(3)c
anomalies. If required, mixed electroweak anomalies can be removed with the addition of

anomalon fields.

We impose boundary conditions that yield a massless U(1)X gauge boson and gaug-

ino, consistent with 4D N = 1 SUSY. This symmetry is then spontaneously broken

non-supersymmetrically by an additional scalar field, thereby splitting the massive vector

supermultiplet. We also assume that the brane-localised Fayet-Iliopoulos (FI) D-term is

non-zero (this is captured by fX in eq. (2.5) below). This allows us to flip the sign of the

– 6 –
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U(2, 2) preserving soft-masses in eq. (1.1) such that the vev of HH is non-zero. Putting

it all together, the U(1)X -induced quartic interaction from integrating out the auxiliary

fields is

VU(1)X =
g2
X

2
ξ
(
|HH|2 − |H|2 − f2

X

)2
, (2.5)

and the D-term non-decoupling factor is [57–59]

ξ =

(
1− M2

X

M2
S

)
, (2.6)

where MX is the vector boson mass and MS is the physical mass of the scalar in the

massive vector multiplet. A splitting between MX and MS can be achieved with brane-

localized SUSY breaking, and this will lead to the mass correction for H and HH given in

eq. (2.10) below.

Due to the SM Higgs charge assignment, electroweak and U(1)X breaking cause the

ZX boson to mix with the SM Z boson at tree level. This shifts MZ with respect to its

SM value, changing the value of the ρ parameter as

∆ρ =
4 g2

XM
2
W

g2M2
X

⇒ MX

gX
> 8.6 TeV , (2.7)

where MW is the SM W -boson mass. This expression has been expanded to leading

order in M2
W /M

2
X , and the limit is obtained by taking the 95% CL allowed band for

∆ρ = (3.7± 2.3)× 10−4 [60].

2.4 Higgs

Without loss of generality, we only consider the neutral component of the Higgs fields. The

full scalar potential used in our analysis is

V = VCW(H) + VCW(HH) + VU(1)X + V���U(2,2) , (2.8)

where VCW(H) and VCW(HH) capture loops from the top-stop sector as given in eq. (2.2),

VU(1)X is given in eq. (2.5), and the final U(2, 2)-violating contribution to the scalar poten-

tial included in our analysis is

V���U(2,2) =
(
m̃2 + m̃2

X

)(∣∣H
∣∣2 +

∣∣HH
∣∣2
)

+
g2
Z

2

(∣∣H
∣∣4 +

∣∣HH
∣∣4
)
. (2.9)

The quartic interaction in eq. (2.9) is the usual MSSM D-term and its Hyperbolic coun-

terpart, with g2
Z = (g2 + g′ 2)/4 = M2

Z/(2 v
2) and v ' 174 GeV. Moreover, m̃2 is a brane-

localised soft term, which is the tunable parameter needed to achieve the desired SM-like

vacuum,1 and m̃2
X is the loop-induced U(1)X contribution to the soft mass discussed next.

1Any combination of two soft masses can be written as a symmetric mass plus an asymmetric mass. The

latter can be absorbed into the brane-localised FI-term of eq. (2.5), implying that the full set of possible

brane-localised soft masses is captured by assuming m̃ respects the Z2 symmetry.
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Brane-localised SUSY breaking is required to realise non-decoupling D-terms. There-

fore, there is a one-loop U(2, 2)-violating soft mass for the Higgs and Hyperbolic Higgs [61]

m̃2
X =

g2
XM

2
X

16π2
log

(1− ξ/2)4

(1− ξ)3
, (2.10)

in the R-symmetric limit. Requiring consistency with the ∆ρ constraint given in eq. (2.7)

results in an irreducible correction to the soft masses for both the Higgs and its Hyperbolic

partner

m̃2
X &

(
440 GeV

)2 (gX
0.8

)4
log

(1− ξ/2)4

(1− ξ)3
. (2.11)

This contribution highlights a central tension in the model. Taking gX or ξ small will reduce

the constraint on m̃2
X ; however, as either parameter goes to zero, the quartic interaction

required to achieve the Hyperbolic Higgs vacuum (see eq. (2.5) above) also vanishes. Noting

that this SUSY-breaking contribution is significantly smaller than the compactification

scale, we are justified in omitting it when performing the sum over KK mode masses that

yields eq. (2.2).

To explore spontaneous electroweak and Hyperbolic symmetry breaking, we shift the

vacuum to H(H) = v(H) +h(H)/
√

2, where v(H) is the vev and h(H) is the physical excitation

of H(H). The complete expressions relevant for the conditions of electroweak breaking,

which are used for the numerical analysis, are given in appendix B.

We can gain some intuition for how the relevant terms scale by taking the Hyperbolic

limit

g2
X ξ � g2

Z (2.12)

and expanding in the dimensionless parameters αt and αtH , defined as

αt(H)
≡ π Rmt

(
v(H)

)
, (2.13)

where mt(v) is given in eq. (2.3). Remarking that this expansion can break down for some

values of vH (see appendix B for a discussion), we find the following relationship between

the soft masses and the vev arising from to explicit U(2, 2)-breaking contributions

m̃2 + m̃2
X '

v2
H
2

(
Nc λ

4
t

24π2

[
11 + 21 ζ(3)− 6 log

(
λt vH π R

)]
− g2

Z

)
. (2.14)

We conclude that the total soft mass is parametrically suppressed with respect to vH by

either a loop factor (the one-loop stop-top corrections to the quartic) or a small parameter

(the electroweak gauge coupling from the D-term quartic). Numerically, however, the

former is only a suppression of ∼ 0.3. The second minimization condition determines the

FI term to be

f2
X '

(
1 +

g2
Z

2 g2
X ξ

)
v2
H +

21Nc ζ(3)λ2
t

32π4R2 g2
X ξ

. (2.15)

In order to avoid fine-tuning the U(2, 2)-symmetric terms, the second term should be

subdominant.
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Taking the Hyperbolic limit given in eq. (2.12), the SM-like Higgs mass is

m2
h ' (2− Ω)M2

Z +
Nc λ

4
t

2π2
v2 log

vH
v
, (2.16)

where Ω is defined in appendix B and has the useful property that it vanishes in the

Hyperbolic limit. Note that, in the Hyperbolic limit, the first term in eq. (2.16) exhibits

an additional factor 2 when compared to the MSSM Higgs boson tree-level mass, as has

also been noted for the SUSY Twin Higgs [21]. The parameter Ω essentially measures the

deviations from the Hyperbolic limit and eq. (2.16) reveals that, since
√

2MZ = 129 GeV,

some departure from the Hyperbolic limit is necessarily required to realise mh = 125 GeV,

and this deviation must grow as vH/v grows. The second term in eq. (2.16) is a universal

IR effect from running in the SM effective theory from the new-physics scale to the weak

scale. Noting that the ratio of the Hyperbolic stop mass to the top mass is mt̃H
/mt ' vH/v,

this term is in complete analogy with the usual MSSM expression, with Hyperbolic stop

squarks replacing the role of the usual colored stop squarks.

In conclusion, the three relevant scales of our model are the UV cutoff Λ where the

5D SUSY description becomes strongly coupled (Λ ∼ 1/R), the physical mass of the

Hyperbolic Higgs boson (mhH ∼ gXvH), and the physical mass of the SM-like Higgs boson

(mh ∼ gZv). Due to the different parametric dependences the desired separation of scales

Λ � mhH � mh is possible without excessive fine-tuning. To substantiate this claim, we

turn to a more detailed analysis of the tuning next.

2.5 Tuning

Let us consider the tuning required for the input parameters m̃2 and f2
X when they satisfy

the vacuum minimization conditions eq. (2.14) and eq. (2.15) respectively. We consider the

following standard measure of fine-tuning [62]

∆ =

√(
d log v2

d log m̃2

)2

+

(
d log v2

d log f2
X

)2

, (2.17)

which gives the tuning in input parameters required to realise the observed weak scale.

Using the derivative chain rule, we can write

d log v2

d log m̃2
=

2 m̃2
(
1 + tan2 αt

)

tanαt

(
∂m̃2

∂αt
+ ∂m̃2

∂αtH

dαtH
dαt

∣∣∣
f2X fixed

) , (2.18)

where αt(H)
is defined in eq. (2.13). The derivatives in the denominator can be readily

evaluated using the expressions in eqs. (B.12)–(B.13) and the second term in parenthesis

is necessary to properly estimate the fine-tuning, since for a fixed value of f2
X a change in

αt implies a correlated change in αtH . The same procedure is used to compute the impact

of a variation in f2
X for fixed m̃2.

For large m̃X this expression is approximately given by

∆ ' 4
m̃2
X

m2
h

. (2.19)
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Figure 3. Left panel: in the Hyperbolic spontaneous symmetry breaking scale (vH) vs colored

stop mass (mt̃) plane, contours of the fine-tuning parameter ∆ (solid grey), alongside contours

of the required value of gX (dashed red) to realise a leading order prediction of mh = 125 GeV,

taking ξ = 0.6 and large tan β. Right panel: the suppression factor (cos2 θ) of SM-like Higgs signal

strengths due to mixing (dot-dash blue), under the same assumptions of the previous panel.

Using eq. (2.11), we find a limit on the fine-tuning when mh = 125 GeV of

∆ & 50
(gX

0.8

)4
log

(1− ξ/2)4

(1− ξ)3
. (2.20)

This demonstrates to what extent this UV-completion can capture the Hyperbolic limit,

since increasing gX will increase this source of fine-tuning. This is not surprising, since any

quasi-flat direction will be lifted once SUSY is broken, and it is necessary to use SUSY

breaking to keep the U(1)X D-term potential from decoupling while also lifting the extra

gauge boson beyond the limit on the ρ parameter. A natural weak scale can only be one

loop factor below the U(1)X sector SUSY breaking scale.

Using the complete expressions given in appendix B, in the left panel of figure 3 we show

the required value of gX to realise a physical SM-like Higgs mass of 125 GeV, alongside the

fine-tuning parameter ∆ as a function of the Hyperbolic spontaneous symmetry breaking

scale (vH) and MSSM colored stop mass (mt̃). This figure corresponds to the case of large

tanβ for a two-Higgs doublet model. Varying tan β gives further flexibility in the allowed

choices for gX , vH and mt̃. We see that, for large tan β, the observed Higgs mass can be

realised for colored stops around 2–3 TeV and fine-tuning at the ∼ 1% level. Increasing

the gauge coupling gX increases the Hyperbolic quartic and thus allows for heavier colored

stop squarks. However, one cannot increase the quartic arbitrarily due to the soft mass

contribution of eq. (2.10), which comes to dominate the fine-tuning as gX becomes large.

This limits the extent to which the Hyperbolic scenario can relieve the fine-tuning. One

is also pushed to regions of larger fine-tuning by requiring that modifications of the Higgs

signal strength from Higgs portal mixing remain small.

This discussion also neglects possible tuning associated with aspects of the 5D setup

such as radius stabilisation and UV-dependent brane-localized kinetic terms. If the Scherk-
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Schwarz setup is strictly necessary to realise Hyperbolic Higgs models in the IR, then any

fundamental sources of fine-tuning that are a consequence of working with a 5D SUSY

scenario are endemic to the Hyperbolic Higgs.

3 Phenomenology

The phenomenological possibilities for Hyperbolic Higgs models are broad. As with other

models of neutral naturalness, the principal signatures involve the Higgs sector.

Much as in Twin Higgs models, the tree-level mixing between the SM and Hyperbolic

Higgs doublets leads to a universal reduction in Higgs couplings (yhPP ) compared to SM

predictions (ySM
hPP )

yhPP
ySM
hPP

− 1 = cos θ − 1 ' −ω
2 v2

2 v2
H
' −ω2

(
TeV

vH

)2

1.5% , (3.1)

where ω is a model-dependent coefficient, equal to one in the Hyperbolic limit and whose

expression in our proposed model in given in eq. (B.22). The numerical value of the

suppression with respect to SM rates, cos2 θ = (yhPP /y
SM
hPP )2, is shown in the right panel

of figure 3.

Such a universal reduction in Higgs couplings drops out of Higgs branching ratios,

but can be detected in measurements of the Higgs width and, more importantly, of Higgs

production rates. Current Higgs coupling measurements (namely the combined ATLAS

+ CMS 7+8 TeV 2σ bounds on modifications to Higgs production rates [63]) require

vH & 500 GeV. This is ultimately a weaker constraint on the natural parameter space

of the Hyperbolic Higgs than that imposed by precision electroweak limits on U(1)X . As

larger values of vH are allowed without significantly increasing fine-tuning, future LHC

Higgs coupling measurements are unlikely to place strong limits on the model.

Because of the non-linearities in eq. (2.3), the modification of the Higgs coupling to

top receives additional non-universal corrections. Taking the first derivative of mt(H) in

eq. (2.3) around H = v + hSM cos θ/
√

2, we find

yhtt
ySM
htt

− 1 =
cos θ

1 + tan2 αt
− 1 ' −ω

2 v2

2 v2
H
− π2R2 λ2

t v
2

' −ω2

(
TeV

vH

)2

1.5%−
(

5 TeV

1/R

)2

1.2% . (3.2)

Mixing between the SM and Hyperbolic Higgs doublets also induces corrections to the

Higgs self-coupling (yh3) relative to SM predictions (ySM
h3 )

yh3

ySM
h3
− 1 = cos3 θ +

v

vH
sin3 θ − 1 ' −3ω2 v2

2 v2
H
' −ω2

(
TeV

vH

)2

4.5% . (3.3)

This analytic expression is exact, once we neglect the tower of higher-dimensional operators

in the CW potential.

Mixing between the SM and Hyperbolic Higgs also imbues the SM-like Higgs with cou-

plings to light states in the Hyperbolic sector. In contrast to the Twin Higgs, there are no
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light chiral fermions in the Hyperbolic sector, while the Hyperbolic scalars all acquire soft

masses greater than, or comparable to, the electroweak scale. Consequently, the only pos-

sible light Hyperbolic degrees of freedom beneath the electroweak scale are the Hyperbolic

photon and gluon. The effective coupling to Hyperbolic photons leads to a vanishingly

small contribution to the Higgs invisible decay rate, at least an order of magnitude smaller

than the SM contribution from h→ 4 ν. The coupling to Hyperbolic gluons, on the other

hand, is more promising due to the effects of Hyperbolic confinement. Neglecting SUSY

breaking corrections to Hyperbolic stop masses and their possible mixing (which is a good

approximation as long as 1/R . 10 vH), we find

BR(hSM → gH gH) =
sin2 θ

4

α2
s,H
α2
s

v2

v2
H

BR(hSM → g g) ' ω2

(
TeV

vH

)4

2× 10−5 , (3.4)

where the factor 1/4 comes from the ratio of the loop functions (fermionic top for the

SM and scalar stops for the Hyperbolic sector) and the factor v2/v2
H comes from the ratio

between the scales of the dimension-5 operators mediating the decay. We have also kept

explicitly the factor α2
s,H/α

2
s to account for different renormalisation effects in the SM and

Hyperbolic sectors.

Assuming that there is no additional spontaneous symmetry breaking in the Hyper-

bolic sector, the phenomenology of these Hyperbolic gluons is much like those in Folded

SUSY [29] or the fraternal Twin Higgs [25]. Once produced, the Hyperbolic gluons form

Hyperbolic glueballs, the lightest of which have JPC = 0++ and decay back to the SM via

Higgs mixing, with a proper length on the order of meters to kilometers. In contrast to

Folded SUSY and the fraternal Twin Higgs, this is the only process leading to the produc-

tion of Hyperbolic glueballs from SM states, as there are no open Higgs decay modes or

Drell-Yan production channels involving additional states charged under Hyperbolic color.

In this respect, the Hyperbolic Higgs is the most predictive model of neutral naturalness

in terms of the SM production rate for dark glueball states. As with the fraternal Twin

Higgs, however, the radial Hyperbolic Higgs mode provides an additional portal into the

Hyperbolic sector.

The above glueball phenomenology assumes no additional spontaneous symmetry

breaking in the Hyperbolic sector. However, the Hyperbolic stops may obtain a vacuum

expectation value if the vacuum structure favors it. In this case Hyperbolic QCD and

electromagnetism can be spontaneously broken, removing the light gauge bosons to leave

no new light states below the weak scale. Not only does this significantly reduce collider

and cosmological signatures, but it also raises the intriguing prospect that 2/3 of the top

partner degrees of freedom would be eaten, hence the longitudinal modes of the Hyperbolic

gluons would also be top partners in this picture. The other 1/3 of the top partner degrees

of freedom would also mix with the Higgs boson, implying that the Higgs is partially its

own top partner [64].

The phenomenology of the gauge neutral Hyperbolic sfermions may be varied. They

may be stable, due to an unbroken Z2R symmetry. In this case the top partners may make

up some part of the dark matter, as suggested in [4]. In the event that some Hyperbolic

sfermions obtain vacuum expectation values, they are rendered unstable and decay back

to the visible sector through the Higgs portal.
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4 Conclusions

We have presented the first example of a neutral naturalness model with gauge neutral

scalar top partners. The key realisation was to convert the accidental U(4) symmetry of the

Twin Higgs model into an accidental non-compact flat direction, which can be interpreted

as an accidental U(2, 2) symmetry of the scalar potential. Critically, the one-loop quadratic

corrections from visible sector tops and gauge neutral Hyperbolic stops preserve the flat

direction and hence cancel at low energies.

After explaining the IR features of the mechanism, we then introduced a particular

UV-completion set in a SUSY extra dimensional scenario with an exchange symmetry

that enforced the equality of the top Yukawa couplings. Scherk-Schwarz SUSY breaking

boundary conditions for the matter fields were chosen to yield the required fermionic matter

zero modes in the MSSM sector and scalar matter zero modes in the Hyperbolic sector. A

predominantly U(2, 2)-symmetric tree-level D-flat scalar potential is generated by a new

U(1)X gauge symmetry with an FI term.

It is useful to compare the Hyperbolic Higgs to other concrete realizations of neutral

naturalness, namely the Twin Higgs and Folded SUSY. All three models feature Z2 sym-

metries, albeit acting in different ways. In the case of the Hyperbolic Higgs, the symmetry

acts only on the marginal couplings of the theory consistent with the U(2, 2) accidental

symmetry of the scalar potential, whereas the Z2 of the Twin Higgs acts on all fields and

the Z2 of Folded SUSY acts strictly on the matter fields and SU(3)c vector multiplets.

The resulting accidental symmetry structure respected by the radiative corrections to the

Higgs multiplets is U(2, 2) in the case of the Hyperbolic Higgs, in contrast to the U(4) of the

Twin Higgs and SUSY in the case of Folded SUSY. At the level of the IR effective theory,

the top partners of the Hyperbolic Higgs are scalar and couple to the SM-like Higgs via

effectively marginal interactions as in Folded SUSY (and in contrast to the Twin Higgs),

but are entirely SM-neutral as in the Twin Higgs.

With regard to the gauge sector, there are significant differences between Hyperbolic,

Twin, and Folded structures. In the Hyperbolic Higgs one can choose SUSY-preserving

boundary conditions in the SM and Hyperbolic electroweak gauge sectors to ameliorate

cutoff sensitivity through gauge loops, as done here, or one could alternatively choose

twisted boundary conditions in the Hyperbolic gauge sector such that the Hyperbolic gauge

groups are broken but quantum corrections preserve the U(2, 2) structure at the quadratic

level. However, this latter option suffers from the existence of additional unwanted pseudo-

Goldstone bosons since the gauge bosons no longer eat the Goldstone bosons living in HH.

The most significant structural differences arise in the Higgs quartic interactions. In the

Twin Higgs model the quartic interactions and kinetic terms respect the U(4) symmetry,

thus radiative corrections involving this quartic pose no risk to the mechanism. However,

in the Hyperbolic Higgs setup this is not the case, since U(2, 2) is not a true symmetry of

the Higgs sector and the quartic interactions lead to dangerous U(2, 2)-breaking sensitivity

to the cutoff. This is borne out in the UV-completion presented here, where the Higgs

sector quartic interactions arise due to a new SUSY gauge force U(1)X . SUSY must be

broken to preserve the quartic coupling and remain consistent with precision electroweak
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bounds, but once SUSY is broken there is nothing to prevent the quartic couplings from

generating U(2, 2)-breaking sensitivity to the SUSY breaking scale. Indeed, this is what

occurs in this UV-completion and presents the fundamental limitation to the efficacy of

the model with respect to fine-tuning. Thus, although the quadratic cutoff sensitivity due

to the top sector is ameliorated effectively, a little hierarchy problem associated with the

Higgs quartic interactions arises in its place.

As for phenomenology associated with the Hyperbolic Higgs mechanism, the SM-like

Higgs is an admixture of SM and Hyperbolic Higgs doublets, leading to tree-level Higgs

coupling deviations and a heavy radial mode of potential phenomenological relevance much

as in the Twin Higgs. The fine-tuning of the IR effective theory is largely analogous to that

of the Twin Higgs, though in the specific model considered here the tuning is instead dom-

inated by constraints on the UV completion that may be avoided for other realizations. All

three models share phenomenological signatures of dark QCD, though the Hyperbolic Higgs

is most akin to Folded SUSY in that no Z2-breaking is required for glueballs to dominate

the low-energy spectrum. However, for the Hyperbolic Higgs the production of Hyperbolic

glueballs arises solely through the Higgs portal to Hyperbolic glue, whereas in Folded SUSY

glueball production can additionally arise through Drell-Yan sparticle production. Overall,

within the class of neutral naturalness theories, the Hyperbolic Higgs appears as the exam-

ple most resilient to collider scrutiny. This is because SUSY breaking effects in the Hyper-

bolic sector remove most of the light states below the electroweak scale. The only possible

exceptions are Hyperbolic photons and gluons, which could also be massive if Hyperbolic

color and electromagnetism are spontaneously broken by vevs of Hyperbolic scalar fields.

The way we formulated the Hyperbolic mechanism is independent of SUSY and one

could imagine UV completions with composite Hyperbolic sectors or other variations. But

even if SUSY does not originally participate in the definition of the Hyperbolic mechanism,

it naturally embeds some of its characteristic features. There are three SUSY elements

that are ideally suited for Hyperbolic implementations. First, scalar interactions with

coupling constants related to the top Yukawa, as in eq. (1.5) and needed to preserve the

U(2, 2) symmetric structure of the potential after one-loop top corrections, appear naturally

in a SUSY context. Second, SUSY gauge D-terms under which both the SM and the

Hyperbolic Higgs are charged, can automatically give a quartic scalar interaction that

is U(2, 2) symmetric and of the form required by eq. (1.1), as well as U(2, 2) symmetric

mass terms through the FI term. Third, the Hyperbolic mechanism can take care of the

naturalness problem created by SM one-loop corrections from top Yukawa interactions and

Higgs self-couplings, but needs assistance in the multi-TeV region to deal with quadratic

divergences from the gauge sector. The SUSY completion of the Hyperbolic mechanism

propitiously provides the missing element by regulating these divergences.

In spite of this deep connection between Hyperbolic and SUSY, as far as collider

searches are concerned, the Hyperbolic Higgs is completely different from regular SUSY

models, since all the usual sparticles are pushed beyond the LHC discovery limits, at a

mild fine-tuning price. Hopes to identify Hyperbolic features at colliders mostly rely on

precision studies of Higgs properties, on exotic Higgs decays, or on the direct production

of the Hyperbolic Higgs through its mixing with the ordinary Higgs — the SM-like Higgs

boson would provide the portal into the Hyperbolic sector.
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Note added. As this paper was being completed, we became aware of the complimentary

work that will appear simultaneously [65].
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A Infrared parameterization

Although we have focused on a specific SUSY UV completion of the Hyperbolic Higgs, it

is useful to understand the parametrics of the Hyperbolic Higgs in terms of an IR effective

description that can be matched on to diverse UV completions. The low-energy potential

for the SM and Hyperbolic Higgs doublets can be put into the general form

V = λ
(
|HH|2 − |H|2 − f2

)2
+ κ

(
|H|4 + |HH|4

)
+ ρ |H|4 + σ f2 |H|2 . (A.1)

Here λ respects the approximate U(2, 2) symmetry of the theory, while κ respects the Z2

symmetry of the marginal couplings. The parameters ρ and σ constitute hard and soft

breaking of the Z2 symmetry.

From here it is straightforward to understand the vacuum parametrics in the limit of

λ� κ, ρ and f � v. In this limit, the U(2, 2) quartic λ rigidly fixes |HH|2 = f2 + |H|2 on

the Hyperbolic goldstone manifold, giving rise to the leading potential for the light doublet,

V →
(
2κ+ ρ

)
|H|4 +

(
σ + 2κ

)
f2 |H|2 ≡ −2λSM v2 |H|2 + λSM |H|4 . (A.2)

The only change relative to the compact U(4) case (as in [25]) is the flip of the sign of κ in

the mass-squared term. We can now express v in terms of the underlying parameters via

2 v2

f2
=
−σ − 2κ

2κ+ ρ
, (A.3)

while the mass of the SM-like Higgs is

m2
h = 4λSM v2 = 4

(
2κ+ ρ

)
v2 = −2

(
σ + 2κ

)
f2 . (A.4)

This provides clear conditions for both electroweak symmetry breaking and parametric

separation v � f in terms of the effective parameters of the Hyperbolic Higgs potential.

Much as in the Twin Higgs, in the goldstone approximation, we can compute the

overall tuning of the electroweak scale as the product of two tunings: the tuning of the

scale f , which is set by physics at the cutoff Λ; and the tuning of v/f , which is set by the

symmetry-breaking terms in the potential,

∆v2 = ∆f2 ×∆v2/f2 . (A.5)
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Both tunings can be straightforwardly computed in terms of the IR parameterization with

cutoff Λ, or in terms of the UV completion that fixes the IR parameters.

In order to map onto our UV parameters, we can rewrite eq. (A.4) as

m2
h = −σ + 2κ

λ
m2 . (A.6)

Taking into account both U(2, 2)-breaking quartic couplings we find

m2
h =

ct λ
2
t − g2

Z

λ
m2 + . . . , (A.7)

where the relevant loop factor is

ct =
Nc λ

2
t

48π2

[
8− 6 logαtH + 21 ζ(3)

]
. (A.8)

Thus, a naturally light SM-like Higgs requires λ to be as large as possible. Furthermore,

recalling that m can be determined from eq. (2.4) and noting that the colored top partner

fields and the stop squarks have mass mt̃ = 1/(2R), we see that unless the FI-term is

fine-tuned the quadratic sensitivity to the cutoff is given by

m2
h =

ct λ
2
t − g2

Z

λ

21 ζ(3)λ2
tNc

8π4
m2
t̃

+ . . . . (A.9)

As a result, we see that the SM Higgs boson mass is naturally a loop factor below the

mass scale of colored stop squarks, with an additional suppression factor proportional to

∼ g2
SM/λ, where gSM involves the electroweak gauge coupling or the top Yukawa. This

result is consistent with the general arguments applied to the Twin Higgs in [39].

B Analytic minimisation conditions and the Higgs mass

In this section we provide useful exact expressions for the CW potential in eq. (2.2) and its

derivatives, give analytic expansions and discuss the conditions under which these formulae

provide good approximations.

To begin, we define the Clausen functions, which are related to the nth polylogarithms

Lin(z) as

Cln(x) =





i

2

[
Lin
(
e−i x

)
− Lin

(
ei x
)]

n even;

1

2

[
Lin
(
e−i x

)
+ Lin

(
ei x
)]

n odd.

(B.1)

They can be represented as series

Cl2n(x) =
∞∑

k=1

sin k x

k2n
; Cl2n+1(x) =

∞∑

k=1

cos k x

k2n+1
, (B.2)

and their derivatives are given by

dCln+1(x)

dx
= (−)n+1Cln(x) . (B.3)
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We then define the following functions2

Fn(x) = Cln(2x)− Cln(2x+ π) . (B.4)

Useful Taylor expansions are3

F3(x) =
7

4
ζ(3) + x2

(
log x2 − 3

)
+O(x4) , (B.5)

F4(x) =
7

2
ζ(3)x+

2

9
x3
(
3 log x2 − 11

)
+O(x5) , (B.6)

F5(x) =
31

16
ζ(5)− 7

2
ζ(3)x2 +

x4

3

(
25

6
− log x2

)
+O(x6) . (B.7)

Taking qB = 1/2 and qF = 0, the CW potential in eq. (2.2) becomes

VCW(H) =
3Nc

16π6R4
F5

(
π Rmt(H)

)
. (B.8)

Its derivatives evaluated on the vacuum are

∂VCW(H)

∂H

∣∣∣∣
H=v

= −3Nc λt cos2 αt
8π5R3

F4(αt) , (B.9)

∂2VCW(H)

∂H2

∣∣∣∣
H=v

=
3Nc λ

2
t cos4 αt

4π4R2

[
tanαt F4(αt)− F3(αt)

]
, (B.10)

where we recall that αt ≡ π Rmt(v). The contributions to the CW potential from the

Hyperbolic sector are found by making the replacement

VCW(HH) = − VCW(H → HH)|αt→αtH
. (B.11)

Note that, for λt vH ∼ 1/(2π R) (a plausible size for the Hyperbolic Higgs vacuum

expectation value) the second order correction in F3(αtH) leads to a 50% reduction relative

to the leading order value, while the terms such as cos4 αtH can lead to additional reductions

of over ∼ 40%. As a result, while it is always adequate to expand in αt, the perturbative

expansion to lowest orders in αtH is not always valid over all of the parameter space that

we consider, so care must be taken when using the expanded expressions.

From the minimisation conditions of the scalar potential in eq. (2.8) with respect to

the Higgs and Hyperbolic Higgs, we can derive the required values of the soft mass and

2Equivalently, the functions Fn can be written as Fn(x) = 2[Cln(2x)− 2−n Cln(4x)].
3These expansions are obtained by using the derivative rule

dpFn(x)

dxp
= (−)p(2n−p+1)/2 2p Fn−p(x) for p ≤ n− 1 ,

while higher derivatives (p > n − 1) can be computed by using F1(x) = − log | tanx|. The values of Fn at

the expansion point are given by

Fn(0) = 0 for n even, Fn(0) = 2(1− 2−n)ζ(n) for n ≥ 3 odd, F1(x) −→
x→0
− log |x| .

– 17 –
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FI-term,

m̃2+m̃2
X =

1

2π2R2

[
−g

2
Z

λ2
t

(
T 2
H+T 2

)
+

3Ncλ
2
t

16π2

(
F4(αt)

T (1+T 2)
− F4(αtH)

TH(1+T 2
H)

)]
, (B.12)

f2
X =

1

2g2
Xξπ

2R2

[
2g2
Xξ+g2

Z

λ2
t

(
T 2
H−T 2

)
+

3Ncλ
2
t

16π2

(
F4(αt)

T (1+T 2)
+

F4(αtH)

TH(1+T 2
H)

)]
, (B.13)

where T ≡ tanαt = π Rλt v and TH ≡ tanαtH = π Rλt vH.

The entries of the 2 × 2 mass matrix, which mixes the Higgs and Hyperbolic Higgs

scalars, are given by

M2
hh = 2

(
g2
X ξ + g2

Z

)
v2 − Nc λ

4
t v

2G(T )

4π2
,

M2
hHhH

= 2
(
g2
X ξ + g2

Z

)
v2
H +

Nc λ
4
t v

2
HG(TH)

4π2
, (B.14)

M2
hhH

= −2 g2
X ξ v vH ,

where

G(x) =
3

2x2(1 + x2)2

[
F3(arctanx)− 1 + 3x2

2x
F4(arctanx)

]
(B.15)

= log x2 − c+ x2

(
23

10
c+

16

3
− 4 log x2

)
+O(x4) ,

and

c =
8

3
+ 7 ζ(3) ' 11.08 . (B.16)

Note that in the Hyperbolic limit, defined in eq. (2.12), the determinant of M2 vanishes,

as expected.

In the limit v � vH, the lighter (SM-like) Higgs boson has mass

m2
h = (2− Ω)M2

Z +
Nc λ

4
t

2π2
v2 log

vH
v

+O
(
v4

v2
H

)
, (B.17)

where

Ω =

g2Z
g2X ξ

[
1 + κtG(TH)

][
1 + κt(log T 2

H − c)
]
− κt

[
G(TH)− log T 2

H + c
]

1 +
g2Z
g2X ξ

[
1 + κtG(TH)

] (B.18)

and

κt =
Nc λ

4
t

8π2 g2
Z

. (B.19)

In eq. (B.17) we have explicitly separated the contribution from the UV matching onto

the SM effective theory (parametrized by the coefficient Ω) and the model-independent IR

contribution due to the running within the SM effective theory from the new-physics scale

to the weak scale (captured by the term proportional to (λ4
t /π

2) log v).

– 18 –
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Note that the coefficient Ω goes to zero as we approach the Hyperbolic regime

(g2
Z � g2

X), up to small κt corrections (which vanish for small RvH). On the other hand,

in the opposite limit of negligible gX and κt, we find Ω = 1, recovering the familiar UV

matching condition of minimal low-energy SUSY in the large tan β limit.

The coefficient Ω also describes the dependence of the Higgs mass on the compactifi-

cation radius R. For g2
Z/g

2
X � 1 and RvH � 1, we find

Ω =
Nc λ

6
t R

2 v2
H

g2
Z

[
log(π λtRvH)− 23

80
c− 2

3

]
+O

(
g2
Z

g2
X

, R4 v4
H

)
. (B.20)

We recall that the above approximation is not always valid in the entire parameter space

of the theory, in which case the exact expression of Ω in eq. (B.18) must be used.

The mixing angle θ which defines the SM-like eigenstate hSM according to eq. (1.4) is

given by

sin θ = ω
v

vH
+O

(
v3

v3
H

)
. (B.21)

ω =
1

1 +
g2Z
g2X ξ

[
1 + κtG

(
TH
)] (B.22)

The heavy (mostly Hyperbolic) Higgs boson has mass

m2
H =

2 g2
X ξ v

2
H

ω

[
1 +O

(
v2

v2
H

)]
. (B.23)
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