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1 Introduction

The discovery of the Higgs Boson [1, 2] is a great success of the Standard Model (SM).

However, there are still many open questions left unanswered, such as hierarchy problem,

dark matter, and cosmic baryon asymmetry. They hint at the existence of physics beyond

the SM (BSM). One of the promising venue of probing BSM physics is through measuring

the deviation of Higgs properties. This strongly motivates the construction of an electron-

positron collider as a Higgs factory within next decades to study the underlying BSM

physics. The proposed Higgs factories include the International Linear Collider (ILC,

Japan) [3–5], the Circular Electron Positron Collider (CEPC, China) [6] and the Future

Electron-Positron Circular Collider (FCC-ee, CERN) [7].
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In an effective field theory (EFT) of the SM, the leading effects of BSM physics above

the electroweak (EW) scale can be parametrized by a set of six-dimensional (6D) operators

Leff = LSM +
∑
i

ci
Λ2
Oi . (1.1)

Here LSM describes physics in the SM. ci and Λ denote dimensionless Wilson coefficients

and the cutoff scale defined by the BSM physics, respectively. Among these operators,

59 are CP-even and 17 are CP-odd. The form of the operators depends on the choice of

basis [8–13].

Since the discovery of Higgs boson, the probe of the 6D operators, particularly the ones

motivated by Higgs physics, at LHC and future e−e+ colliders has been extensively stud-

ied [14–24]. There are different strategies in analyzing the sensitivities to new physics. It

can be done with only a single operator tuning on at a time, which provides an “optimistic”

projection of the sensitivities at the future e−e+ colliders. However, new physics models

tend to generate multiple such operators. Without assuming a particular model, one could

go to the other extreme by turning on all operators simultaneously without assuming any

correlation among them. Such an analysis, a primary effort in this paper, will result in a

“conservative” interpretation on collider sensitivities due to cancellation effects among the

multiple contributions. Despite this, we should keep in mind that while this approach give

some information about potential degeneracies and correlations in interpreting the mea-

surements, it is not directly applicable to specific models. New physics models typically

generate a smaller set of independent operators, equivalently, predicts correlations between

different operators in the complete set. For that case, one can analyze the experimental

constraints or the collider sensitivities straightforwardly, utilizing the correlation matrix

predicted by the specific models. It is not necessary (and also impossible) to go through all

potential new physics models, for the purpose of qualitatively demonstrating the capability

of a future collider. As an illustration, we pursued such analyses in two benchmark models:

the holographic composite Higgs model and littlest Higgs model.

Our study partially overlaps with some recent studies on the sensitivities of probing

the SM EFT at future e−e+ colliders [21, 25–27]. The study in ref. [21] was pursued under a

yet-to-be-explicitly-established assumption that the 6D EW operators can be constrained

sufficiently well. Different from that, we incorporate the sensitivity analysis for these

6D EW operators, without making any first working assumption about them. This may

yield a significant impact for the sensitivity discussions on the triple gauge coupling (TGC)

measurement. In addition, a recently proposed operating scenario (see, e.g., [28]) is assumed

for the FCC-ee analysis. Refs. [25, 26] took similar strategies, with the results presented in

the “κ”-scheme and in the 6D operator-scheme, respectively. Compared to these analysis,

we focus more on the comparative studies on the sensitivities in the “optimistic” and

“conservative” scenarios, and the sensitivities at the CEPC, ILC and FCC-ee. More than

that, there exist some differences between the operator sets studied and the observables

applied. We include the operator O(3)l
LL (as is defined in table 1) in the analysis which was

ignored in [26]. But, unlike [26] (and also [21]), our analysis does not include the Higgs

decay observables, and correspondingly several operators which are sensitive to them. As

for the study in [27], it mainly focused on the interpretation of the collider sensitivities in

concrete benchmarks.
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OWW = g2|H|2W a
µνW

a,µν OT = 1
2 (H†

↔
DµH)2 O(3)l

L = (iH†σa
↔
DµH)(L̄Lγ

µσaLL)

OWB = gg′H†σaHW a
µνB

µν OH = 1
2 (∂µ|H|2)2 O(3)l

LL = (L̄Lγµσ
aLL)(L̄Lγ

µσaLL)

OBB = g′
2|H|2BµνBµν O6 = λ|H†H|3 OlL = (iH†

↔
DµH)(L̄Lγ

µLL)

O3W = g
εabc
3!

W aν
µ W bρ

ν W aµ
ρ OeR = (iH†

↔
DµH)(l̄Rγ

µlR)

Table 1. The 6D operators used in this study, with λ =
3m3

h

v2 in O6.

We organize this article in the following way. We will introduce the analysis formalism

and the observables applied in section 2 ad section 3, respectively. The analysis and

its results will be presented in section 4. In this section, we will pursue a χ2 fit on the

sensitivities of probing the 6D operators at CEPC, in both “optimistic” and “conservative”

interpretations. Then we will make a comparative study on the sensitivities at CEPC, FCC-

ee, ILC250 (with data at 250 GeV and below) and ILC (with full data), and look into the

operators O6 in details which is difficult to probe. We will apply the analysis to study the

theory of SILH in section 5, analyzing the collider sensitivities to probe its benchmarks:

holographic composite Higgs model [29, 30] and littlest Higgs model [31]. We conclude in

section 6. More technical details and analysis results can be found in appendix.

2 Analysis formalism

There are 13 6D operators which are relevant to the e−e+ → ZH production: 10 CP-even

and 3 CP-odd ones. In this article, we focus only on the CP-even ones. We also include

the triple gauge boson operator since it is often generated together with these ones in new

physics scenarios. These 11 operators are summarized in table 1. This is a subset of the

operators in the so called Warsaw basis [9], omitting operators with quarks.

These 11 operators can influence physics at the EW scale in four ways: (1) renormaliz-

ing wave function; (2) shifting the definition of EW parameters; (3) modifying the existing

SM couplings (including the charge shifting in the gauge boson currents) and (4) inducing

new vertices.

We begin with wave-function renormalization. OWW , OWB, OBB and OH will modify

the kinetic terms of the gauge or Higgs fields. First, we note that cWW
2Λ2 g

2v2W aµνW a
µν and

cBB
2Λ2 g

′2v2BµνBµν can be absorbed into a redefinition of SM electorweak gauge couplings.

With this, the canonically normalized SM gauge and Higgs fields are

h = Zhh
′ =

(
1− v2

2Λ2
cH

)
h′

Wµ = ZWW
′µ = W ′µ

Zµ = ZZZ
′µ =

(
1 +

v2

Λ2
cwswgg

′cWB

)
Z ′µ

Aµ = ZAA
′µ + δZXZ

′µ =

(
1− v2

Λ2
cwswgg

′cWB

)
A′µ − v2

Λ2
(c2
w − s2

w)gg′cWBZ
′µ

(2.1)
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Here g, g′ are the SU(2) and U(1) gauge couplings and cw and sw are the cosine and sine

of the Weinberg angle. Zh,W,Z,A are the rescaling factors. OWW and OBB operators can

be probed only via the newly introduced vertices like hZµνZ
µν .

Similarly, though it does not result in a renormalization of the Higgs field, the operator

O6 can modify the Higgs potential, yielding a shift in the Higgs VEV and mass. Such a

shift can be absorbed by the definition of the Fermi constant. The effect of O6 can be

probed only via its contribution to the cubic and quartic Higgs coupling.

Three input parameters of the EW sector in the SM, typically chosen to be

{α,mZ , GF }, receive shifts induced by the 6D operators

Gsm
F = G

(r)
F

1 +
2
(
c

(3)l
LL − c

(3)l
L

)
v2
sm

Λ2


msm
Z = m

(r)
Z

(
1− δZZ +

cT v
2
sm

2Λ2

)
αsm = α(r)(1− 2δZA)

(2.2)

with δZZ = ZZ − 1 and δZA = ZA − 1. Here the superscripts “sm” represents the SM

definition, and “(r)” represents the reference or the measured central value used as input

for the fit. Then the parameter shifts can be denoted as

msm
Z = m

(r)
Z

(
1 +

δmZ

m
(r)
Z

)
Gsm
F = G

(r)
F

(
1 +

δGF

G
(r)
F

)
αsm = α(r)

(
1 +

δα

α(r)

)
, (2.3)

with

δmZ

m
(r)
Z

= −δZZ +
cT v

2

2Λ2

δGF

G
(r)
F

=
2(c

(3)l
LL − c

(3)l
L )v2

sm

Λ2

δα

α(r)
= −2δZA . (2.4)

This formalism is independent of the definition of the field renormalization factors δZZ and

δZA. Hence, in addition to affect the observable directly, D6 operators can also contribution

to the deviation from SM prediction by shifting the definition of input parameters.

From here on, we will suppress the superscript (r) for the measured observables, unless

specified. Since v2
sm/Λ

2 differs with v2/Λ2 only at O( v4

Λ−4 ) order, we also replace the former

with the latter. The new physics corrections to some observables can be derived directly.

One example is

s2w = sin 2θw =

(
4πα√

2GFm2
Z

)1/2

(2.5)

We find
δs2w

s2w
=

1

2

δα

α
− 1

2

δGF
GF

− δmZ

mZ

⇒ δθw =
swcw

2(c2
w − s2

w)

(
δα

α
− δGF

GF
− 2δmZ

mZ

)
.

(2.6)

Another example is

gZ =
g

cw
=

4
√
πα

s2w
= 2(
√

2GFm
2
Z)1/2 (2.7)
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e+
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Z

Z

h

e+

e−

γ

Z

h

e+

e−

Z

h

Figure 1. Feynman diagrams for Higgsstrahlung process.

We have

δgZ
gZ

=
1

2

δGF
GF

+
δmZ

mZ
. (2.8)

Both of them receive linear corrections from OWB, OT , O(3)l
LL and O(3)l

L .

3 Observables for analysis

Throughout this paper, we will consider three classes of observables: inclusive signal rates

of Higgs events, angular observables in Higgs events, and electroweak precision observables

(EWPOs). We will not include the total width of Higgs boson and its decay branching

ratios. Correspondingly, we will not consider the operators which do not enter the inclusive

production rates at tree level, but modify the Higgs decays, such as h→ bb̄, ττ , only. The

incorporation of the Higgs decays as observables could reveal more information about

a larger set of operators. We will leave such an important analysis to a future study.

Regarding theoretical predictions, we will use “δ” to denote the shift caused by wave

function renormalization or by definition shift in the EW input parameters. We will use

“∆” to denote the total deviation from the reference value for any given observables.

3.1 Higgs events

A. Higgs strahlung process. The first important process is e+e− → Zh, as is shown

in figure 1. The signal events can be well-selected using the variable of recoiling mass. At

leading order, the relevant Lagrangian is given by

LZh ⊃
2m2

Z

v
(1 + c

(1)
ZZ)hZµZ

µ + c
(2)
ZZhZµνZ

µν + cAZhZµνA
µν + g

(1)
L ZµēLγ

µeL (3.1)

+g
(1)
R ZµēRγ

µeR + g
(2)
L hZµēLγ

µeL + g
(2)
R hZµēRγ

µeR + eAµ(ēLγ
µeL + ēRγ

µeR) ,

with the coefficients

c
(1)
ZZ =

1

2

δGF
GF

+
2δmZ

mZ
+ 2δZZ + δZh

c
(2)
ZZ =

2v

Λ2
(c2
wg

2cWW + cwswgg
′cWB + s2

wg
′2cBB)

cAZ =
2v

Λ2

(
cwswg

2cWW −
1

2
(c2
w − s2

w)gg′cWB − cwswg′2cBB
)

– 5 –
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e+

e−

ν̄e

νe

h

e+

e−

ν̄e

νe

h

e+

e−

ν̄e

νe

h

e+

e−

Z

νe

ν̄e

h

Figure 2. Feynman diagrams for W -fusion Higgs production.

g
(1)
L = gZ

(
−1

2
+ s2

w

)(
1 +

δgZ
gZ
− 2s2w

c2w
δθw + δZZ

)
− gZv

2

2Λ2
(c

(3)l
L + clL)− eδZX (3.2)

g
(1)
R = gZs

2
w

(
δgZ
gZ

+
2cw
sw

δθw + δZZ

)
− gZv

2

2Λ2
ceR − eδZX

g
(2)
L = −gZ(clL + c

(3)l
L )

v

Λ2

g
(2)
R = −gZ

ceRv

Λ2

In this Lagrangian, new vertices appear due to OlL, O(3)l
L and OeR. OWW , OWB and OBB

also give rise to a term with new Lorentz structure hZµνZ
µν . Both yield extra contributions

to the production e+e− → Zh, as is indicated in figure 1.

B.WW fusion process. Another important process is the WW fusion Higgs production

e+e− → νeν̄eh, as shown in figure 2. Here we didn’t take into account the Z associated

Higgs production, with the Z boson decaying into two neutrinos. At leading order, the

relevant Lagrangian is given by

Lννh ⊃
g2v

2
(1 + c

(1)
W )hW+

µ W
−µ + c

(2)
W hW+

µνW
−µν

+
g√
2

(1 + c
(3)
W )(W+

µ ν̄Lγ
µeL +W−µ ēLγ

µνL) + c
(4)
W (hW+

µ ν̄Lγ
µeL + hW−µ ēLγ

µνL)

+ c(5)(hZµν̄Lγ
µνL + hZµν̄Lγ

µνL) , (3.3)

with the coefficients

c
(1)
W =

δgZ
gZ
− swδθw

cw
− δGF

2GF
+ δZh c

(2)
W =

2cWW g
2v

Λ2

c
(3)
W =

δgZ
gZ
− swδθw

cw
+
c

(3)l
L v2

Λ2
c

(4)
W =

c
(3)l
L gv√
2Λ2

c(5) =
gZ
2

clL − c
(3)l
L

Λ2

(3.4)

The Wilson coefficients of OH , OT and O(3)l
LL only appear in c

(1)
W and c

(3)
W , resulting in a

rescaling of the SM couplings. OWW , OlL and O(3)l
L yield two new vertices.

C. Z-associated di-higgs process. As the beam energy increases, di-Higgs channel

switches on. An important channel is the Z association production process e−e+ → Zhh.

– 6 –
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e−

Z/γ

h

Z/γ
h

Z
e+

e−

Z/γ

Z

h h

h
e+

e−

Z/γ

Z

h

h

e+

e− h

h

Z
e+

e−

h

h

h

Z

e+

e−

Z/γ

Z

h

h

Figure 3. Feynman diagrams for di-Higgs production.

The relevant Lagrangian for this channel is

LZhh ⊃ LZh + (1 + c
(3)
ZZ)hhZµZµ + c

(4)
ZZhhZ

µνZµν + c
(2)
AZhhZ

µνAµν

+ g
(3)
L hhZµēLγ

µeL + g
(3)
R hhZµēRγ

µeR − (1 + κ3)
m2
h

2v
h3 +

2cHv

Λ2
h∂µh∂

µh
(3.5)

with the coefficients

c
(3)
ZZ =

δGF
GF

+
2δmZ

mZ
+ 2δZZ + 2δZh c

(4)
ZZ =

δZZ
v2

c
(2)
AZ =

δZX
v2

g
(3)
L = −gZ

clL + c
(3)l
L

Λ2
g

(3)
R = −gZ

ceR
Λ2

κ3 = −2λc6v
4

m2
hΛ2

+
δGF
2GF

+ 3δZh

(3.6)

3.2 Higgs production angular observables

A recent discussion on the angular observables for the process e−e+ → hZ(→ l+l−) can

be found in [32, 33]. Among the six independent angular observables, four are CP-even,

given by

Aθ1 =
1

σ

∫ 1

−1
d cos θ1 sgn(cos(2θ1))

dσ

d cos θ1

A(3)
φ =

1

σ

∫ 1

−1
dφ sgn(cos(φ))

dσ

dφ

A(4)
φ =

1

σ

∫ 1

−1
dφ sgn(cos(2φ))

dσ

dφ

Acθ1,cθ2 =
1

σ

∫ 1

−1
d cos θ1 sgn(cos(θ1))

∫ 1

−1
d cos θ2 sgn(cos(θ2))

d2σ

d cos θ1d cos θ2

(3.7)

Here the angular variables are defined as in figure 4.
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Figure 4. The kinematic process e−e+ → hZ(→ l+l−) [33].

3.3 Electroweak precision tests

A. EWPOs at Z pole. The EWPOs at Z pole which are relevant to our analysis include

Rb =
Γb

Γhad
, Rl =

Γhad

Γl
(l = µ, τ),

Ab, AfFB =
3

4
AeAf (f = b, µ),

Nν =
Γinv/Γl

(Γν/Γl)SM
, sin2 θlep

eff =
1

4

(
1− glV

glA

)
, ΓZ .

(3.8)

At tree level, the Z partial decay width and the asymmetry are given by

Γf = Nf
C

m
(r)
Z

12π

√√√√1−
4m2

f

m
(r)2
Z

[
|gfV |2 + |gfA|2 +

2m2
f

m
(r)2
Z

(|gfV |2 − 2|gfA|2)

]

Af =
2gfV

gfV + gfA

(3.9)

in terms of vector and axial couplings gfV,A, or by

Γf = Γ(Z → ff̄)

= Nf
C

m
(r)
Z

12π

√√√√1−
4m2

f

m
(r)2
Z

[
1

2
(g2
L + g2

R) +
2m2

f

m
(r)2
Z

(
−g

2
L

4
− g2

R

4
− 3

2
gLgR

)]

Af =
g2
L − g2

R

g2
L + g2

R

(3.10)

in terms of chiral couplings gL,R. Γl,ν is defined for a single flavor, whereas Γinv includes

contribution from all possible flavors. With the 6D operators turned on, the corrections to

the chiral couplings of Z boson are given by

• Charged lepton gL = gZ
(
−1

2 + s2
w

)
gR = gZs

2
w

∆gL = δgL + δḡL = gL

(
δgZ
gZ
− 2s2w

c2w
δθw + δZZ

)
− gZv

2

2Λ2
(c

(3)l
L + clL)− e δZX

∆gR = gR

(
δgZ
gZ

+
2cw
sw

δθw + δZZ

)
− gZv

2

2Λ2
ceR − e δZX

(3.11)
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• Neutrino gL = gZ
2 gR = 0

∆gL = gL

(
δgZ
gZ

+ δZZ

)
− gZv

2

2Λ2
(−c(3)l

L + clL) ∆gR = 0 (3.12)

• Up, charm quark gL = gZ
(

1
2 − 2

3s
2
w

)
gR = −2

3gZs
2
w

∆gL = gL

(
δgZ
gZ
− 8swcw

3− 4s2
w

δθw + δZZ

)
+

2

3
e δZX

∆gR = gR

(
δgZ
gZ

+
2cw
sw

δθw + δZZ

)
+

2

3
e δZX

(3.13)

• Down, strange, bottom quark gL = gZ
(
−1

2 + 1
3s

2
w

)
gR = 1

3gZs
2
w

∆gL = gL

(
δgZ
gZ
− 4swcw

3− 2s2
w

δθw + δZZ

)
− 1

3
e δZX

∆gR = gR

(
δgZ
gZ

+
2cw
sw

δθw + δZZ

)
− 1

3
e δZX .

(3.14)

Here δgZ and δθw represent the effect of the EW parameter shift; δZZ and δZX represent

the effect of field redefinition; and c
(3)l
L , clL and ceR represent the effect of the charge shift in

the leptonic Z current. The quark current operators are turned off in this paper, though

they may contribute to some of these observables, e.g., Rb, in a more general context. For

more discussions on this, see, e.g., [26].

The formulae for the operator corrections to the EWPOs are presented in appendix B,

with six Wilson coefficients involved: cWB, cT , c
(3)l
L , c

(3)l
LL , clL and ceR. As is indicated in

eq. (B.1)–(B.9), the ratio for the coefficients of cWB, cT and c
(3)l
LL in the EWPOs, Nν , Ab,

AµFB, AbFB, Rb, Rµ, Rτ and sin2 θlep
eff , is fixed to be −1.1 : 2 : 4. This is because the three

terms in these EWPOs are generated either via ∆giL/g
i
L − ∆giR/g

i
R, with i representing

charged leptons, up quarks and down quarks, or via ∆gνL/g
ν
L − ∆glR/g

l
R. Both of them

satisfy the relation

∆giL
giL
− ∆giR

giR
,

∆gνL
gνL
− ∆glR

glR
∼ s2wδθw −

e

gZ
δZX + · · · · · · ∼ 2δθw − δZX + · · · (3.15)

with the combination 2δθw − δZX fixing this ratio. This combination also contains a c
(3)l
L

term with its coefficient having a fixed ratio with the other ones, −1.1 : 2 : −4 : 4. However,

this ratio does not hold in AµFB, AbFB, Rµ, Rτ and sin2 θlep
eff due to extra contributions

proportional to c
(3)l
L +clL. Neither does it hold in Nν due to both c

(3)l
L ±clL which are caused

by the charge shift in the Z boson current. The charge shift can receive contributions from

OeR as well. So the set of EWPOs at Z pole depend on four of the six Wilson coefficients

or their linear combinations: ξ0 = −1.1cWB + 2cT − 4c
(3)l
L + 4c

(3)l
LL , ξ± = c

(3)l
L ± clL and ceR,

leaving at least two degenerate or approximately degenerate directions. More explicitly,

we have

• Nν . It depends on ξ0, ξ± and ceR.

• Ab and Rb. They only depend on ξ0.
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Current CEPC FCC-ee ILC

MZ(GeV) 91.1875± 0.0021 [34] ±0.0005 [6] ±0.0001 [35] ±0.0021 [36]

GF (10−10GeV−2) 1166378.7± 0.6 [37] — — —

α(10−13) 7297352698± 24 [37] — — —

mt[GeV](pole) 173.34± 0.76exp ± 0.5th [36, 38] ±0.6exp ± 0.25th [36] ±0.02exp ± 0.1th [36] ±0.03exp ± 0.1th [36]

Table 2. Input parameter values for the analysis.

• Ab,µFB and sin2 θlep
eff . They have the same dependence on ξ0, ξ+ and ceR.

• Rµ,τ . They have the same dependence on ξ0, ξ+ and ceR.

These degenerate or approximately degenerate directions could be lifted by ΓZ , which is

approximately proportional to ∆giLg
i
L + ∆giRg

i
R, and mW . ΓZ and mW have different

dependences on the variables beyond ξ0,± and ceR. Thus, we have totally six classes of

non-degenerate EWPOs to probe the six Wilson coefficients. The entangled dependence

of the EWPOs on the six operators also explains the relatively large magnitude for their

correlation matrix entries, as are listed in appendix C.

Though sin2 θlep
eff and s2

w are identical in the SM, they represent different measure-

ments. Hence they are influenced by these 6D operators in different ways. s2
w received

corrections via the EW parameter shift only (see eq. (2.6)), whereas sin2 θlep
eff receives extra

contributions caused by field redefinition (see eq. (3.15)).

B. W boson mass. The W boson mass mW = mZcw receives contributions via the shift

of the EW parameters only, resulting in

∆MW

MW
=
δgZ
gZ
− sw
cw
δθw −

1

2

δGF
GF

. (3.16)

C. Di-boson process. The di-boson production e−e+ → W+W− can be applied to

probe the TGC, and hence the operator O3W . It is mainly influenced by the coupling

shift in gZ due to OWB, OT , O(3)l
LL and O(3)l

L (see eq. (2.8)), and the charge shift in the

electron current of Z boson caused by OlL and OeR. Despite this, a full angular analysis

might be valuable, given that the total signal rate is dominated by forward transverse

WW production and hence less sensitive to anomalous couplings. We leave the latter to a

future work.

4 Analysis of sensitivity to new physics

Before performing a full analysis on the sensitivities of probing the 6D operators at future

e−e+ colliders, we will start with a set of analysis using CEPC as an example. We begin

with the case in which we turn on one operator at a time. This simplified approach provides

an optimistic estimation on the energy scales that could be probed. It provides a basic

idea on how the 6D operators individually contribute to the observables, but the potential

cancellations among the contributions from different operators are ignored. The latter

could dramatically change the collider sensitivities. To illustrate this point, we will consider

several cases with more operators turned on. Finally, we will study the sensitivities at all
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Observables Current

Nν 2.984 ± 0.008 [35]

Ab 0.923 ± 0.020 [34, 37]

Rb 0.21629 ± 0.00066 [35]

Rµ 20.767 ± 0.025 [35]

Rτ 20.767 ± 0.025 [35]

ΓZ(MeV) 2495.2 ± 2.3± 0.42in [35]

sin2 θlep
eff (10−5) (23153± 16± 4in) [34, 39]

Table 3. Electroweak precision measurements at LEP. The subscript “in” denotes an error caused

by the input parameter uncertainties which are summarized in table 2. This error is negligibly

small for the observables except ΓZ and sin2 θlep
eff .

Observables ILC FCC-ee CEPC

σ(Zh) 2.0% [25] 250GeV,2ab−1 0.5% [35] 240GeV,5ab−1 0.5% [6] 240GeV,5ab−1

4.2% [25] 500GeV,4ab−1 — — — —

σ(νν̄h) 3.89% [5] 250GeV,2ab−1 0.97% [19] 350GeV,1.5ab−1 2.86% [19] 240GeV,5ab−1

1.45% [5] 500GeV,4ab−1 — — — —

σ(Zhh) 15.0% [5] 500GeV,4ab−1 — — — —

σ(W+W−) 0.0200%[40] 250GeV,2ab−1 0.0136% [40] 240GeV,5ab−1 0.0136% [40] 240GeV,5ab−1

0.0191% [40] 500GeV,4ab−1 — — — —

Nν 0.0013 [4] Z lineshape,100fb−1 1.58× 10−3 [35] Z pole,150ab−1 0.0018 [19] 240 GeV, 100fb−1

AbFB — — — — (±15± 2in)× 10−4 [6] Z pole, 150fb−1

AµFB — — 7.1× 10−4 [35, 41] Z pole,150ab−1 — —

Ab 0.001 [4] Z pole,100fb−1 — — — —

Rb 6.5× 10−4 [4] Z pole,100fb−1 3.6× 10−4 [35, 41] Z pole,150ab−1 8× 10−4 [6] Z pole, 100fb−1

Rµ 2× 10−4 [36] Z pole,100fb−1 6.1× 10−5 [35, 41] Z pole,150ab−1 5× 10−4 [6] Z pole, 100fb−1

Rτ 2× 10−4 [36] Z pole,100fb−1 6.1× 10−5 [35, 41] Z pole,150ab−1 5× 10−4 [6] Z pole, 100fb−1

ΓZ(MeV) ±1± 0.21in [4, 39] Z pole,100fb−1 ±0.1± 0.08th ± 0.065in [39, 41] Z pole,150ab−1 ±0.1± 0.08th ± 0.13in [6, 39] Z pole, 150fb−1

sin2 θlep
eff (10−5) ±1.3± 1.5th ± 2.2in [4, 39] Z pole,100fb−1 ±0.3± 1.5th ± 1.6in [39, 41] Z pole,150ab−1 ±2.3± 1.5th ± 2.5in [6, 39] Z pole, 150fb−1

mW (MeV) ±2.5± 1th ± 2.8in [39, 42] 250GeV, 2ab−1 ±1.2± 1th ± 0.91in [35, 39] WW threshold,10ab−1 ±3± 1th ± 3.8in [6, 39] 240GeV,5ab−1

Aθ1 0.0083 [33] 250GeV,2ab−1 0.0060 [33] 240GeV,5ab−1 0.0060 [33] 240GeV,5ab−1

Acθ1,cθ2 0.0092 [33] 250GeV,2ab−1 0.0067 [33] 240GeV,5ab−1 0.0067 [33] 240GeV,5ab−1

A(3)
φ 0.0092 [33] 250GeV,2ab−1 0.0067 [33] 240GeV,5ab−1 0.0067 [33] 240GeV,5ab−1

A(4)
φ 0.0092 [33] 250GeV,2ab−1 0.0067 [33] 240GeV,5ab−1 0.0067 [33] 240GeV,5ab−1

Table 4. Projected precision of the Higgs and electroweak precision measurements at ILC, FCC-ee

and CEPC. A recently proposed operating scenario (see, e.g., [28]) has been assumed for the FCC-ee

analysis. A beam polarization configuration of (Pe− , Pe+) = (−0.8, 0.3) is assumed for ILC at 250

and 500 GeV. The errors presented are all relative, except the ones for MW ,ΓZ and sin2 θlep
eff . The

subscript “th” and “in” denotes errors caused by theoretical and input parameter uncertainties,

respectively. The numbers in red are obtained by rescaling the experimental errors provided in the

referred literatures, which are assumed to be statistical-error-like. As for the precision of measuring

σ(νν̄h) and σ(Zhh), we assume that the relevant Higgs decay branching ratios (such as Br(h→ bb̄))

can be precisely measured via e−e+ → Zh at future colliders.

future e−e+ colliders. For each of these future programs, multiple operating scenarios have

been suggested. We will focus on a subset of them in the analysis. The input parameter

values, and the current and projected measurement precisions used for the analysis are

summarized in table 2, table 3 and table 4, respectively. We will take into account the

impact of the input parameter uncertainties for the measurement precisions. This effect was

discussed in [39] and is denoted as an error with a subscript “in” table 3 and table 4. Also,

a running coupling α(mZ) in the MS scheme will be used in the analysis. The numerical
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OWW OBB OWB OT OH O(3)l
LL O(3)l

L OlL OeR O6 O3W

σ(Zh) 0.0222 0.305 0.0903 0.1 0.0825 0.0189 0.00797 0.00561 0.0064 4.75 —

σ(νν̄h) 2.17 — 1.01 0.0819 0.472 0.0496 0.0392 2.1 — 71.7 —

σ(W+W−) — — 0.00343 0.000801 — 0.000401 0.0018 0.0049 0.00744 — 0.197

Nν — — 0.308 0.168 — 0.0845 0.129 0.0072 0.0159 — —

AbFB — — 0.00242 0.00133 — 0.000664 0.00101 0.00193 0.00169 — —

Rb — — 0.422 0.232 — 0.116 0.116 — — — —

Rµ — — 0.0516 0.0283 — 0.0141 0.00314 0.00404 0.0046 — —

Rτ — — 0.0515 0.0283 — 0.0141 0.00313 0.00403 0.0046 — —

ΓZ — — 0.00653 0.000926 — 0.000463 0.000604 0.00647 0.00647 — —

MW — — 0.00554 0.00142 — 0.00233 0.00233 — — — —

sin2 θlep
eff — — 0.00332 0.00182 — 0.00091 0.00139 0.00262 0.0023 — —

Aθ1 0.894 12.7 3.33 — — — 140 140 163 — —

Acθ1,cθ2 0.703 2.35 0.554 0.419 — 0.208 0.318 0.598 0.515 — —

A(3)
φ 0.444 1.45 0.554 0.23 — 0.115 0.183 0.312 0.302 — —

A(4)
φ 3.33 47.2 12.4 — — — 307 307 356 — —

All 0.0222 0.296 0.00157 0.000494 0.0813 0.000262 0.00045 0.00124 0.00119 4.74 0.197

Table 5. CEPC sensitivities for measuring the Wilson coefficient, i.e., Ci

Λ2 (TeV−2), of a 6D operator

Oi at 1σ C.L., with the operators turned on individually. The numbers in red denote the best

sensitivity which could be achieved using a single observable, whereas the numbers in the last row

represent the sensitivity based on a combination of all observables.

formulae for the operator corrections to the observables are summarized in appendix B. The

effective operators are implemented using FeynRules and the cross sections are computed

using either CalcHEP or MadGraph5 [43–45].

4.1 CEPC analysis: turning on operators individually

The sensitivities for probing the 6D operators at CEPC are presented in table 5, with

them turned on individually. Each row of the table shows the sensitivity of an observable

in probing the operators, with the last row showing the combination. OWB, OT , O(3)l
LL

and O(3)l
L can be well-probed by the EWPOs, because of the EW parameter shift, the

field redefinition and the charge shift in the Z boson current that they caused. OlL and

OeR contribute to the charge shift in the Z boson current, and hence can be also probed

very well. O3W contributes to TGC directly, and can be probed by the measurement of

e−e+ → W+W−. Probing the other four operators, OWW , OBB, OH and O6, mainly

relies on the measurement of the Higgs observables, such at the signal rate of e−e+ → Zh

production. The angular observables defined in e−e+ → Zh are less sensitive in probing

the operators. As shown in the last row, the combination of the observables can sizably

improve the sensitivities to {OWB,OT ,O(3)l
LL ,O

(3)l
L ,OlL,OeR}, compared to other operators.

This implies that more than one observables are sensitive to each of these operators, as

was advertised in section 3.3.
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Figure 5. “Optimistic” (with one operator turned on at a time, denoted by “Individual”)

and “semi-conservative” (with multiple operators (instead of all operators) turned on, de-

noted by “Marginalized”) sensitivity interpretations for probing each of the set of 6D opera-

tors {OWB ,OT ,O(3)l
LL ,O

(3)l
L ,OlL,OeR}, with the EWPOs at CEPC applied. In the top panel,

{OWB ,OT ,O(3)l
LL ,O

(3)l
L } are turned on for marginalization. OlL and OeR are incorporated subse-

quently in the middle and bottom panels.
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Figure 6. “Optimistic” (with one operator turned on at a time) and “conservative” (with all oper-

ators turned on simultaneously) sensitivity projections for probing each of the set of 6D operators

at CEPC.

4.2 CEPC analysis: turning on multiple operators simultaneously

Next let us turn on more 6D operators in table 1. For a comparison with the results

shown in table 6, we need to project the allowed region in the space of Wilson coefficients

to the relevant axis, that is, to “marginalize” the irrelevant Wilson coefficients. There

is a geometric interpretation regrading this method. The χ2 defines a 10-dimensional

ellipsoid in an 11-dimensional space which is expanded by the set of Wilson coefficients.

Marginalizing 10 of the 11 Wilson coefficients is equivalent to imposing the conditions
∂χ2

∂ci
= 0, with i running over all of the 10 Wilson Coefficients. It results in a projection of

the ellipsoid to the direction defined by the 11th Wilson coefficient. This method can be also

generalized to the case with less Wilson coefficients being marginalized. An introduction

to this statistical method is given in appendix D.

We start with the set of six operators {OWB,OT ,O(3)l
LL ,O

(3)l
L ,OlL,OeR} which are ex-

pected to be constrained by the six classes of EWPOs at tree level (as is discussed in

section 3.3). The CEPC sensitivities for probing each of them are presented in figure 5,

with the EWPOs applied only, in both the “optimistic” and “semi-conservative” cases.

With the first four operators turned on (top panel), the CEPC sensitivities decrease from

dozens of TeV in the “optimistic” case to ∼ O(10) TeV. The turning on of the fifth op-

erator OlL doesn’t change the results much (middle panel). However, the turning on of

the last operator OeR causes a jump of the CEPC sensitivities for probing these operators

except O(3)l
LL . This is related to the fact that Rb (one of the six classes of the EWPOs) is

a weak observable in probing ξ0. With the sixth operator turned on, the lack of a sixth

independent strong EWPOs yields an approximately degenerate direction in the parameter

space expanded by the six operators. To break this degeneracy, extra observables (e.g.,

Bhabha scattering e−e+ → µ−µ+), need to be introduced.
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A full analysis for the CEPC sensitivities for probing the whole set of 6D operators

is presented in figure 6, with all observables in table 4 applied. The normalized correla-

tion matrix for this χ2 fit is presented in table 7 of appendix C. We have the following

observations on the “marginalization” results:

• For the set of operators {OWB,OT ,O(3)l
LL ,O

(3)l
L ,OlL,OeR}, the CEPC sensitivities are

inherited from the ones presented in figure 5. The energy scale that the CEPC is

able to probe decreases from dozens of TeV in the “optimistic” case to TeV or several

TeV, except for O(3)l
LL .

• The operator O3W can be weakly probed only via the e−e+ → W+W− production,

with the energy scale accessible to the CEPC being decreased from a couple of TeV

in the “optimistic” case to sub TeV (this feature is also shared by FCC-ee and ILC,

as will be shown below). This is a result of the concerted action of (1) the weak

dependence of the e−e+ → W+W− production on O3W due to helicity suppression

at linear level [46]; and (2) the existence of approximate degeneracy for the set of

EW operators to which the e−e+ →W+W− production is much more sensitive (see

eq. (B.19)). This effect yields a sensitivity estimation for probing O3W several times

weaker than that obtained in [21].

• The three operators {OWW ,OBB,OH} contribute to the Higgs events at tree level.

The energy scales that the CEPC is able to probe decrease from several TeV/TeV

in the “optimistic” case to TeV/sub TeV, with potential cancellation between the

operators taken into account. This is related to the fact that there is only one ob-

servable at 240 GeV which is highly sensitive to these operators, say, σ(Zh). Though

σ(νν̄h) and the e−e+ → Zh angular observables play a role in constraining the Wil-

son coefficients, they are too weak to completely break the remaining degeneracies.

Despite this, the sensitivities for probing OWW ,OBB and OWB could be improved

by a couple of times by incorporating the Higgs decay measurements. For example,

the decay width of the di-photon mode can be shifted by these operators, yielding

δΓγγ
Γγγ

∼ 2.95
cBB
Λ2
− 2.94

cWB

Λ2
+ 2.95

cWW

Λ2
− 0.0606c

(3)l
L + 0.0606c

(3)l
LL . (4.1)

As is indicated in [21, 26], including the di-photon decay measurement may push

the sensitivities of probing the OWW and OBB operators up to several TeVs (note,

fewer or no relevant EW operators were turned on in [21, 26], which may cause an

uncertainty for the estimation).

• The operator O6 contributes to the Higgs events at loop level only. The energy scales

that the CEPC is able to probe decrease from sub TeV in the “optimistic” case to

< O(0.1) TeV.

The χ2 fit sensitivities can be also projected to a 2D plane expanded by two Wilson

coefficients, using a marginalization method, as is shown in figures 11–13 in appendix E.
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Figure 7. “Optimistic” (light) and “conservative” (dark) sensitivity projections for probing each

of the set of 6D operators at CEPC, FCC-ee, ILC250, ILC500 and ILC. Here “ILC250” refers to a

combination of the ILC data at 250 GeV and the EW precision measurements at LEP (see table 3);

“ILC500” refers to a combination of “ILC250” and the ILC data at 500 GeV; and “ILC” refers to

a more optimistic operating scenario, with the LEP measurements in “ILC500” replaced by the

Giga-Z data.

4.3 Comparative study at future e−e+ colliders

Next let us make a comparison on the sensitivities of probing the 6D operators at the

future e−e+ colliders. For each machine, there exist multiple possibilities for its operating

scenario. For concreteness, we consider the measurement precisions at CEPC, FCC-ee and

ILC with a subset of possible running scenarios, shown in table 4. The “optimistic” and

“conservative” sensitivity interpretations at each machine are presented Figiure 7. Both

CEPC and FCC-ee are circular e−e+ colliders with non-polarized beams. Benefitting from

a larger integrated luminosity at Z pole, the sensitivities at FCC-ee are mildly better than

the CEPC ones, in both interpretations. The comparison with the sensitivities at ILC250,

ILC500 and ILC is more involved. The ILC250 is less capable in probing these operators

than both CEPC and FCC-ee, because of its relatively small luminosity at 250 GeV and the

lack of data at Z-pole. However, this can be improved significantly by the data expected to

be collected at a higher beam energy.1 With the data at 500 GeV, the ILC500 performance

becomes not much worse than or comparable to the CEPC and FCC-ee ones in the opti-

mistic case. In the conservative case, the ILC500 performance becomes comparable to or

even better than the CEPC and FCC-ee ones. This results in a smaller difference between

the two kinds of sensitivity interpretations at ILC, compared with the ones at CEPC and

FCC-ee, as is indicated in figure 7. On the other hand, the data at Giga-Z can slightly

improve the sensitivities only which could be achieved at ILC500.

1This feature was also noticed in [26], but an explicit comparison with the CEPC and the FCC-ee

performances was missing.
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OWW OWB OBB OT OH O(3)l
LL O(3)l

L OlL OeR O6 O3W

ILC250 1.30 0.697 0.384 1.29 0.401 9.62 2.92 1.83 1.29 0.0309 0.469

+σ(W+W−) 1.30 2.17 0.386 4.08 0.468 9.63 6.78 6.11 4.08 0.0389 0.523

+σ(Zh) 1.75 2.21 0.493 4.16 0.897 9.78 6.89 6.21 4.16 0.0895 0.531

+σ(Zhh) 1.95 3.22 0.498 6.19 1.28 12.2 8.83 8.45 6.20 0.428 0.644

+σ(ννh) = ILC500 2.01 3.29 0.498 6.34 1.97 12.3 8.90 8.60 6.36 0.428 0.647

Table 6. Projected sensitivities of Λ/
√
ci (TeV) at ILC250 and ILC500. The four extra observables

in the first column are all measured at 500 GeV.

We note that we have oversimplified the beam polarization scenario at ILC, assuming

a full-time run for the polarization configuration (Pe− , Pe+) = (−0.8, 0.3). Splitting time

between different polarization configurations can enhance the power of breaking the oper-

ator degeneracies. This effect has been discussed in [21, 25], yielding an improvement of

∼ 20–30% on the reach of the new physics scale in some of the operators.

To get a better picture about the roles played by the observables at 500 GeV, in table 6

we present the marginalized fitting results for Λ/
√
ci (TeV) in the ILC scenarios, varying

from ILC250 to ILC500 by adding one more observable at 500 GeV each time. Compared

with that at CEPC and FCC-ee, the degeneracy problem for {cWB, cT , c
(3)l
L , c

(3)l
LL , c

l
L, c

e
R}

at ILC250 is even worse, given the lack of the Z-pole data. This problem can be addressed

to some extent by the e−e+ →W+W− measurement at ILC500, as is indicated in table 6.

σ(W+W−) does not depend on {OWW ,OBB,OH ,O6} at tree level, but it has relatively

strong sensitivities to these EW operators (see eq. (B.21)). With its help, the constraints

for these operators are raised to a level compared to the ones at CEPC and FCC-ee. But

this also means that the sensitivity to O3W is still weak. A combination of the other

three observables at 500 GeV, say, σ(Zh), σ(Zhh) and σ(ννh) can help constrain three of

{OWW ,OBB,OH ,O6} which are weakly constrained at ILC250. Particularly, the ILC500

has a much better performance in probing O6, compare to CEPC and FCC-ee. This is

due to the e−e+ → Zhh production, an observable which is not available at CEPC and

FCC-ee. Though it is less important in the “optimistic” analysis, this observable plays a

crucial role in breaking the degeneracy related to O6 in the “conservative” scenario. As

for CEPC and the FCC-ee , their weakness in probing O6 could be mitigated somewhat

by combining with the LHC data for di-Higgs production, e.g., pp → hh → bb̄τ τ̄ [47–

50]. Note, the weak sensitivity to probe O6 below the Zhh thresholds (particularly in

the “conservative” scenario) may indicate that the non-linear c6 terms, e.g., the one-loop

quadratic term induced by the Higgs self-energy correction [51], need to be incorporated

in the analysis. However, this term, even if being turned on, still fails to yield a bound

clearly stronger than the perturbative unitarity one set by the hh → hh scattering, say,

|κ3| < 5.5 [52]. So, we simply neglect such terms here.

Such a comparative study can be also extended to a plane expanded by two Wilson

coefficients, as is shown in figure 14 in appendix E.
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5 Application to two benchmark composite Higgs models

In this section, we will apply our analysis to a couple of benchmark composite Higgs

models. If the composite resonances are heavy, their low energy effects can be captured

by a set of correlated EFT operators, named as a “SILH” parametrization [10]. The SILH

parametrization contains two characteristic parameters: f , the decay constant of strong

dynamics, and gρ, the strong coupling. Its Lagrangian is given by [10]

LSILH =
c̃H
f2
OH +

c̃T
f2
OT −

c̃6

f2
O6 +

c̃W
m2
ρ

OW +
c̃B
m2
ρ

OB (5.1)

+
c̃HW

16π2f2
OHW +

c̃HB
16π2f2

OHB +
c̃γg
′2

16π2f2g2
ρ

OBB +
3!g2c̃3W

16π2m2
ρ

O3W .

Here mρ = gρf defines a typical composite resonance mass. To begin with, we neglect the

loop-level operators listed in the second line, and rewrite the Lagrangian in the minimal

operator basis using the relations [12]

OW = g2

[
− 3

2
OH + 2O6 +

1

2
(Ouy +Ody +Oly + h.c.) +

1

4
O(3)l
L

]
OB = g′2

[
− 1

2
OT +

1

2

∑
f

(Y f
LO

f
L + Y f

RO
f
R)

]
.

(5.2)

Here Ou,d,ly denotes the 6D Yukawa operators, say, the product of the Yukawa term and

the H†H, and f runs over all fermions in the SM. These two relations can be further

simplified to make connection to our analysis. While substituting OW in eq. (5.1), we

omit the operator O6, considering its insensitivity to the observables used in the analysis.

The 6D Yukawa operators Ou,d,ly mainly influence the Higgs Yukawa couplings and hence

are less relevant for the inclusive observables applied. The case for OB is somewhat more

complicated. The quark current operators may nontrivially contribute to the Γhad. So

we will exclude all EWPOs involving the Z hadronic width Γhad below, in order to safely

neglect this subtlety. Then under an assumption of Λ2 = (4πf)2, the relevant Lagrangian

terms are given by

LSILH ⊃
cH
Λ2
OH +

cT
Λ2
OT +

c
(3)l
L

Λ2
O(3)l
L +

clL
Λ2
OlL +

ceR
Λ2
OeR (5.3)

with

cH = (4π)2

(
c̃H −

3g2c̃W
2g2
ρ

)
, cT = (4π)2

(
c̃T −

g′2c̃B
2g2
ρ

)
,

c
(3)l
L = (4π)2 g

2c̃W
4g2
ρ

, clL = −(4π)2 g
′2c̃B
4g2
ρ

, ceR = −(4π)2 g
′2c̃B
2g2
ρ

. (5.4)

The SILH can have different realizations, which are characterized by the values of c̃is.

Though the LHC runs are able to constrain the SILH, the experimental bounds are typically

model-dependent. One LHC probe is to measure the Higgs couplings such as

ghWW = gmW

(
1− c̃H

2

v2

f2

)
. (5.5)
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Figure 8. Sensitivities of probing the holographic composite Higgs model at future e−e+ colliders.

In the right panel, the coordinate axes are in the unit of (TeV)−2. The solid lines in color and the

dashed lines represent the contours of gρ and f in strong dynamics, respectively. The gray region

indicates the ranges defined by f > 0 and 0 < gρ < 4π.

The current LHC runs yield a lower bound f > 600− 700 GeV, for c̃H = 1 [53, 54], under

the assumption of no mixing effect with extra scalars. Such a bound could be pushed up to

∼ 1.5 TeV at HL-LHC. Another LHC probe is to search for the composite resonances. For

example, the current searches for the fermionic top partner via its pair production set up

an lower limit for the resonance mass 0.9 − 1.2 TeV [55–58], and hence yield a constraint

gρf = mρ > O(1) TeV. Below we will consider two benchmark models: holographic

composite Higgs model and littlest Higgs model.

A. Holographic composite Higgs model. The holographic Higgs model [29, 30] is

based on a theory over a slice of ADS5 space-time. This space-time, characterized by a

constant radius of curvature for its internal space, is compactified with two 4D branes as

boundaries. By matching the holographic Higgs model with the SILH EFT, one obtains

the Wilson coefficients in the Lagrangian eq. (5.2) as [10]

c̃T = 0 c̃H = 1 c̃W = c̃B ≈ 1 . (5.6)

This setup yields a coefficient cH/Λ
2 in the Lagrangian eq. (5.3) which depends on both

SILH parameters: f and gρ. As for the other coefficients, all of them are dependent on

(gρf)2 only and hence are identical up to a constant factor.

The sensitivities of probing the holographic composite Higgs model at future e−e+

colliders are presented in figure 8. According to the left panel, the parameter region

with a small f or/and a weak gρ is relatively easy to probe. This is because it yields

relatively light composite resonances and hence a lower effective interacting scale. This

observation is consistent with what one had in [27], where the “SILH” pattern is essentially

the holographic composite Higgs model discussed here, except that several more operators

were turned on in [27]. Note, as the strong coupling gρ approaches ∼ 4π, the loop-level

operators in eq. (5.2) may not be negligible in the analysis compared to OW and OB. It

is straightforward to project the sensitivities to the planes of the Wilson coefficients. For
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Figure 9. Sensitivities of probing the littlest Higgs model at future e−e+ colliders. In the panels

except the left-upper one, the coordinate axes are in the unit of (TeV)−2. The solid lines in color

and the dashed lines represent the contours of gρ and f in strong dynamics, respectively. The gray

region indicates the ranges defined by f > 0 and 0 < gρ < 4π.

illustration, the projection at the cH/Λ
2 − c(3)l

L /Λ2 plane is shown in the right panel in

figure 8. The projections at the other planes are either a single line (the ones with no axis

being defined by cH/Λ
2), or a rescaling of this panel along the c

(3)l
L /Λ2 axis (the ones with

the horizontal axis defined by cH/Λ
2).

B. Littlest Higgs model. The littlest Higgs model [31] is a composite Higgs model

with collectively symmetry breaking, with a coset group SU(5)/SO(5). By matching the

littlest Higgs model with the SILH EFT, one can figure out the Wilson coefficients in the

Lagrangian eq. (5.2) as [10]

c̃T = − 1

16
c̃H =

1

4
c̃W =

1

2
c̃B = 0 . (5.7)

This setup yields two vanishing coefficients in the Lagrangian eq. (5.3): clL/Λ
2 and ceR/Λ

2.

The other three coefficients cT /Λ
2, c

(3)l
L /Λ2 and cH are dependent on f , gρ, and both of

them, respectively.

The sensitivities of probing the littlest Higgs model at future e−e+ colliders are pre-

sented in figure 9. Similar to the holographic composite Higgs model, the parameter region

with a small f or/and a weak gρ will be probed first (left-upper panel). The sensitivity

projections to the planes expanded by cT /Λ
2, c

(3)l
L /Λ2 and cH are also presented.
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6 Conclusions

In this article we presented a systematic study on the sensitivities of probing the UV

physics at the future e−e+ colliders. The effect of new physics is parametrized by a set of

6D operators at leading order in its EFT. We turned on eleven of these operators simul-

taneously, which can be probed by Higgs physics and EW precision measurements. The

analysis provides a “conservative” projection on the collider sensitivities, complementary to

the “optimistic” projection presented where these 6D operators are turned on individually.

Then we made a comparative study on the sensitivities at CEPC, FCC-ee and ILC. Three

running scenarios at ILC were considered: “ILC250” (ILC data at 250 GeV + EWPO mea-

surements at LEP), “ILC500” (ILC250 + ILC data at 500 GeV) and “ILC” (ILC data at

250 and 500 GeV + GigaZ data). As an application, we analyzed two benchmark models

in the composite Higgs scenario. Our results can be briefly summarized as following.

• In the “optimistic” analysis at CEPC, {OWB,OT ,O(3)l
LL ,O

(3)l
L ,OlL,OeR} can be probed

up to dozens of TeV by measuring the EWPOs, because of their tree-level contribu-

tions to the field redefinition and the coupling and charge shifts in the Z boson cur-

rent. {OWW ,OBB,OH ,O3W } can be probed up to TeV or several TeVs by measuring

the Higgs observables and the e−e+ → WW production, due to their corrections to

the Higgs couplings and TGC, respectively. O6 is difficult to probe because it con-

tributes to e−e+ → Zh at loop level only. These features are shared by FCC-ee and

ILC250, ILC500, ILC (though the sensitivities to probe O6 can be improved to some

extent by measuring the e−e+ → Zhh production at ILC500 and ILC).

• In the “conservative” analysis where the set of eleven operators are turned on simul-

taneously, the energy scales that the CEPC and FCC-ee are able to probe decrease

to ∼ O(1 − 10)TeV for {OWB,OT ,O(3)l
LL ,O

(3)l
L ,OlL,OeR}. This is mainly due to an

approximate degeneracy caused by the weakness of Rb. For {OWW ,OBB,OH ,O3W },
the sensitivities decrease to TeV or sub TeV, and for O6 to < O(0.1) TeV.

• Benefitting from a larger integrated luminosity at Z pole, the sensitivities at FCC-

ee are mildly better than the CEPC ones, in both “optimistic” and “conservative”

projections.

• An ILC run with ECM = 500 GeV (ILC500) is highly beneficial. Limited by its

relatively small luminosity at 250 GeV and the lack of data at Z-pole, ILC250 is less

capable in probing these operators. However, this can be adequately compensated

by the data at 500 GeV. By combining with the 500 GeV data, the ILC performance

is comparable to or better than the CEPC and FCC-ee ones. Moreover, compared

to CEPC and FCC-ee, ILC500 performs much better in probing the O6 operator or

measuring the cubic Higgs coupling in the “conservative” analysis. This is mainly

because the e−e+ → Zhh production, an observable not available at CEPC and

FCC-ee [26], can break the degeneracy related to O6. Additionally, the ILC can also

benefit from time splitting among different polarization configurations [21, 25].
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• As an application, the “conservative” analysis is applied to the simplified model of

SILH, with the mutual dependence of the Wilson coefficients taken into account. The

analysis indicates that CEPC, FCC-ee and ILC have a potential to probe its decay

constant up to O(1− 10)TeV, with the strong coupling varying between 1 − 4π.
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A Feynman rules for the interaction vertices

The modified Feynman rules for the interaction vertices are listed as below

h

h

h

k1

k2

k3

= − 3i
m2
h

v

(
1 + 3δZh +

δGF
2GF

− 2c6v
4

λm2
hΛ2

)
− 2i

cH
Λ2
v(k1 · k2 + k1 · k3 + k2 · k3) (A.1)

Z, µ

Z, ν

k1

k2

h = igµν
[
g2
zv

2

(
1 + 2δZZ + δZh +

2δgZ
gZ

+
δGF
2GF

)
+

v

Λ2
(v2d1 − (k1 · k2)d2)

]
+ i

vd2

Λ2
kν1k

µ
2 (A.2)

Z, µ

Z, ν

k1

k2

h

h

= igµν
[
g2
z

2

(
1 + 2δZZ + δZh +

δgZ
gZ

)
+

1

Λ2
(v2d3 − (k1 · k2)d2)

]
+ i

d2

Λ2
kν1k

µ
2 (A.3)
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A, µ

Z, ν

k1

k2

h = i
vd4

Λ2
[−(k1 · k2)gµν + kν1k

µ
2 ] (A.4)

A, µ

Z, ν

k1

k2

h

h

= i
d4

Λ2
[−(k1 · k2)gµν + kν1k

µ
2 ] (A.5)

A, µ

A, ν

k1

k2

h = i
vd7

Λ2
[−(k1 · k2)gµν + kν1k

µ
2 ] (A.6)

A, µ

A, ν

k1

k2

h

h

= i
d7

Λ2
[−(k1 · k2)gµν + kν1k

µ
2 ] (A.7)

ē

e

Z

h

= i
v

Λ2
γµ(d5PL + d6PR) (A.8)

ē

e

Z

h

h

= i
1

Λ2
γµ(d5PL + d6PR) (A.9)
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ē

e

A, µ = − iγµe (A.10)

ēL

eL

Z, µ = iγµ
(
gL

(
1 + δZZ +

δgZ
gZ
− 2s2wδθw

c2w

)
− eδZX

)
(A.11)

ēR

eR

Z, µ = iγµ
(
gz sin2 θ

(
1 + δZZ +

δgZ
gZ

+
2cwδθw
sw

)
− eδZX

)
(A.12)

Here the Higgs and gauge fields have been rescaled to their canonical forms. The

relevant coefficients are defined as

d1 =
g2
Z

2

(
1

2
cH + 2cT

)
+ g4

Z(c4
wcWW + c2

ws
2
wcWB + s4

wcBB)

d2 = 4g2
Z(c4

wcWW + c2
ws

2
wcWB + s4

wcBB)

d3 = −3g2
ZcT −

g2
Z

2
cH + g4

Z(c4
wcWW + c2

ws
2
wcWB + s4

wcBB)

d4 = 2g2
Zcwsw(−2s2

wcBB − (c2
w − s2

w)cWB + 2c2
wcWW )

d5 = −gZ(c
(3)l
L + clL)

d6 = −gZceR

d7 = 4g2
Zc

2
ws

2
w(cWW + cBB − cWB)

(A.13)

B Observables for analysis: numerical formulae

The formulae for calculating the contributions of the 6D operators to the observables at

future e−e+ colliders are listed in the following. The formulae are obtained by using Mad-

Graph and CalcHEP, with the model files generated by FeynRule, or by using Mathematica

directly. The effect of renormalization group running from the cutoff to the Z pole or the
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beam energy scales has been neglected for the Wilson coefficients. In the following, we use

the simplified notation ci
Λ2 ≡ ci

(Λ/TeV)2
.

1. EWPOs.

• Nν

∆Nν

Nν
= 0.00585

cWB

Λ2
− 0.0107

cT
Λ2

+ 0.0139
c

(3)l
L

Λ2
− 0.0213

c
(3)l
LL

Λ2

− 0.250
clL
Λ2

+ 0.113
ceR
Λ2

(B.1)

• Ab
∆Ab
Ab

= −0.00781
cWB

Λ2
+ 0.0142

cT
Λ2
− 0.0285

c
(3)l
L

Λ2
+ 0.0285

c
(3)l
LL

Λ2
(B.2)

• AµFB

∆AµFB
AµFB

=− 0.101
cWB

Λ2
+ 0.184

cT
Λ2
− 0.241

c
(3)l
L

Λ2
+ 0.369

c
(3)l
LL

Λ2

+ 0.128
clL
Λ2

+ 0.146
ceR
Λ2

(B.3)

• AbFB

∆AbFB
AbFB

= − 0.625
cWB

Λ2
+ 1.14

cT
Λ2
− 1.50

c
(3)l
L

Λ2
+ 2.28

c
(3)l
LL

Λ2
(B.4)

+ 0.784
clL
Λ2

+ 0.894
ceR
Λ2

(B.5)

• Rb

∆Rb
Rb

= 0.00189
cWB

Λ2
− 0.00345

cT
Λ2

+ 0.00691
c

(3)l
L

Λ2
− 0.00691

c
(3)l
LL

Λ2
(B.6)

• Rµ

∆Rµ
Rµ

= − 0.00969
cWB

Λ2
+ 0.0177

cT
Λ2
− 0.159

c
(3)l
L

Λ2

+ 0.0353
c

(3)l
LL

Λ2
− 0.124

clL
Λ2

+ 0.109
ceR
Λ2

(B.7)

• Rτ

∆Rτ
Rτ

= − 0.00970
cWB

Λ2
+ 0.0177

cT
Λ2
− 0.160

c
(3)l
L

Λ2

+ 0.0354
c

(3)l
LL

Λ2
− 0.124

clL
Λ2

+ 0.109
ceR
Λ2

(B.8)
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• sin2 θlep
eff

∆s2
w

s2
w

= 0.0483
cWB

Λ2
− 0.0881

cT
Λ2

+ 0.115
c

(3)l
L

Λ2
− 0.176

c
(3)l
LL

Λ2

− 0.0612
clL
Λ2
− 0.0698

ceR
Λ2

(B.9)

• ΓZ

∆ΓZ
ΓZ

= − 0.0112
cWB

Λ2
+ 0.079

cT
Λ2
− 0.121

c
(3)l
L

Λ2

+ 0.158
c

(3)l
LL

Λ2
− 0.0113

clL
Λ2
− 0.0113

ceR
Λ2

(B.10)

• mW

∆mW

mW
= − 0.0111

cWB

Λ2
+ 0.0433

cT
Λ2
− 0.0264

c
(3)l
L

Λ2
+ 0.0264

c
(3)l
LL

Λ2
(B.11)

2. Total signal rates.

• e+e− → Zh

(1) Unpolarized 240 GeV

∆σ

σ0
= 0.225

cWW

Λ2
+ 0.0554

cWB

Λ2
+ 0.0164

cBB
Λ2
− 0.0500

cT
Λ2
− 0.0606

cH
Λ2

+ 0.627
c

(3)l
L

Λ2
+ 0.264

c
(3)l
LL

Λ2
+ 0.891

clL
Λ2
− 0.781

ceR
Λ2
− 0.00106

c6

Λ2
(B.12)

(2) Polarized (−0.8, 0.3) 250 GeV

∆σ

σ0
= 0.379

cWW

Λ2
− 0.0613

cWB

Λ2
− 0.0263

cBB
Λ2

+ 0.0779
cT
Λ2
− 0.0606

cH
Λ2

+ 1.12
c

(3)l
L

Λ2
+ 0.520

c
(3)l
LL

Λ2
+ 1.64

clL
Λ2
− 0.0858

ceR
Λ2
− 0.000944

c6

Λ2
(B.13)

(3) Polarized (−0.8, 0.3) 500 GeV

∆σ

σ0
= 0.666

cWW

Λ2
− 0.0617

cWB

Λ2
− 0.0532

cBB
Λ2

+ 0.0779
cT
Λ2
− 0.0606

cH
Λ2

+ 6.02
c

(3)l
L

Λ2
+ 0.520

c
(3)l
LL

Λ2
+ 6.54

clL
Λ2
− 0.343

ceR
Λ2
− 0.0000260

c6

Λ2
(B.14)

• e+e− → νeν̄eh (240 GeV)

∆σ

σ0
= − 0.0132

cWW

Λ2
− 0.0283

cWB

Λ2
+ 0.349

cT
Λ2
− 0.0606

cH
Λ2

− 0.730
c

(3)l
L

Λ2
+ 0.577

c
(3)l
LL

Λ2
+ 0.0136

clL
Λ2
− 0.000399

c6

Λ2
(B.15)
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• e+e− → νeν̄eh (250 GeV)

∆σ

σ0
= − 0.0139

cWW

Λ2
− 0.0291

cWB

Λ2
+ 0.349

cT
Λ2
− 0.0606

cH
Λ2

− 0.738
c

(3)l
L

Λ2
+ 0.577

c
(3)l
LL

Λ2
+ 0.0130

clL
Λ2
− 0.000398

c6

Λ2
(B.16)

• e+e− → νeν̄eh (350 GeV)

∆σ

σ0
= − 0.0192

cWW

Λ2
− 0.0340

cWB

Λ2
+ 0.349

cT
Λ2
− 0.0606

cH
Λ2

− 0.806
c

(3)l
L

Λ2
+ 0.577

c
(3)l
LL

Λ2
+ 0.00878

clL
Λ2
− 0.000387

c6

Λ2
(B.17)

• e+e− → νeν̄eh (500 GeV)

∆σ

σ0
= − 0.0224

cWW

Λ2
− 0.0372

cWB

Λ2
+ 0.349

cT
Λ2
− 0.0606

cH
Λ2

− 0.879
c

(3)l
L

Λ2
+ 0.577

c
(3)l
LL

Λ2
+ 0.00573

clL
Λ2
− 0.000380

c6

Λ2
(B.18)

• e+e− →W+W−

(1) Unpolarized 240 GeV

∆σ

σ0
= − 0.0287

cWB

Λ2
+ 0.170

cT
Λ2
− 0.0741

c
(3)l
L

Λ2
+ 0.338

c
(3)l
LL

Λ2

− 0.0282
clL
Λ2
− 0.0194

ceR
Λ2

+ 0.000696
c3W

Λ2
(B.19)

(2) Polarized (−0.8, 0.3) 250 GeV

∆σ

σ0
= − 0.0420

cWB

Λ2
+ 0.172

cT
Λ2
− 0.0740

c
(3)l
L

Λ2
+ 0.343

c
(3)l
LL

Λ2

− 0.0306
clL
Λ2
− 0.00115

ceR
Λ2

+ 0.000816
c3W

Λ2
(B.20)

(3) Polarized (−0.8, 0.3) 500 GeV

∆σ

σ0
= − 0.0354

cWB

Λ2
+ 0.173

cT
Λ2
− 0.0364

c
(3)l
L

Λ2
+ 0.346

c
(3)l
LL

Λ2

− 0.0690
clL
Λ2
− 0.000884

ceR
Λ2

+ 0.00119
c3W

Λ2
(B.21)

• e+e− → Zhh (polarized beam (-0.8, 0.3) at 500 GeV)

∆σ

σ0
=0.912

cWW

Λ2
+ 0.173

cWB

Λ2
+ 0.0339

cBB
Λ2
− 0.312

cT
Λ2
− 0.213

cH
Λ2

+ 1.69
c

(3)l
L

Λ2
+ 0.417

c
(3)l
LL

Λ2
+ 2.13

clL
Λ2
− 1.36

ceR
Λ2
− 0.0345

c6

Λ2
(B.22)
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3. Angular observables. Here we set the SM value of sin θlep
eff = 0.23124 [33].

• Unpolarized beam at 240 GeV

Aθ1 = − 0.448 + 0.00671
cWW

Λ2
+ 0.00180

cWB

Λ2
+ 0.000474

cBB
Λ2

− 0.0000429
c

(3)l
L

Λ2
− 0.0000429

clL
Λ2
− 0.0000369

ceR
Λ2

(B.23)

Acθ1,cθ2 = 0.00755 + 0.00953
cWW

Λ2
− 0.0121

cWB

Λ2
− 0.00285

cBB
Λ2

+ 0.0161
cT
Λ2
− 0.0211

c
(3)l
L

Λ2
+ 0.0322

c
(3)l
LL

Λ2
+ 0.0112

clL
Λ2

+ 0.0130
ceR
Λ2

(B.24)

A(3)
φ = 0.0136 + 0.0151

cWW

Λ2
− 0.0212

cWB

Λ2
− 0.00462

cBB
Λ2

+ 0.0291
cT
Λ2
− 0.0367

c
(3)l
L

Λ2
+ 0.0582

c
(3)l
LL

Λ2
+ 0.0215

clL
Λ2

+ 0.0222
ceR
Λ2

(B.25)

A(4)
φ = 0.0959 + 0.00201

cWW

Λ2
+ 0.000540

cWB

Λ2
+ 0.000142

cBB
Λ2

− 0.0000218
c

(3)l
L

Λ2
− 0.0000218

clL
Λ2
− 0.0000188

ceR
Λ2

(B.26)

• Polarized beam (-0.8, 0.3) at 250 GeV

Aθ1 = − 0.462 + 0.0148
cWW

Λ2
+ 0.000600

cWB

Λ2
+ 0.00101

cBB
Λ2

− 0.0000708
c

(3)l
L

Λ2
− 0.0000708

clL
Λ2
− 0.00000364

ceR
Λ2

(B.27)

Acθ1,cθ2 = 0.0443 + 0.00384
cWW

Λ2
− 0.0272

cWB

Λ2
− 0.000662

cBB
Λ2

+ 0.0486
cT
Λ2
− 0.0637

c
(3)l
L

Λ2
+ 0.0973

c
(3)l
LL

Λ2
+ 0.0336

clL
Λ2

+ 0.0391
ceR
Λ2

(B.28)

A(3)
φ = 0.0843 + 0.00206

cWW

Λ2
− 0.0518

cWB

Λ2
− 0.000803

cBB
Λ2

+ 0.0925
cT
Λ2
− 0.119

c
(3)l
L

Λ2
+ 0.185

c
(3)l
LL

Λ2
+ 0.0663

clL
Λ2

+ 0.0742
ceR
Λ2

(B.29)

A(4)
φ = 0.0919 + 0.00444

cWW

Λ2
+ 0.000179

cWB

Λ2
− 0.000304

cBB
Λ2

− 0.0000372
c

(3)l
L

Λ2
− 0.0000372

clL
Λ2
− 0.00000192

ceR
Λ2

(B.30)

C Normalized correlation matrices

The normalized correlation matrix for the 6D operators is defined as

Mij =
∂2χ2

∂ci∂cj

/√ ∂2χ2

(∂ci)2

∂2χ2

(∂cj)2
. (C.1)

Here ci and cj run over all Wilson coefficients. Obviously the correlation matrix is sym-

metric.
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cWW cWB cBB cT cH c
(3)l
LL c

(3)l
L clL ceR c6 c3W

cWW 1 0.0172 0.955 −0.00485 −0.981 0.0139 0.0562 0.22 −0.186 −0.995 0

cWB 1 0.0179 −0.883 −0.0169 −0.863 0.801 −0.457 −0.605 −0.0173 −0.459

cBB 1 −0.00538 −0.956 0.0128 0.0554 0.213 −0.182 −0.968 0

cT 1 0.00383 0.97 −0.877 0.0977 0.216 0.00453 0.617

cH 1 −0.0145 −0.0536 −0.217 0.183 0.994 0

c
(3)l
LL 1 −0.879 0.108 0.225 −0.0141 0.654

c
(3)l
L 1 −0.133 −0.389 −0.0555 −0.25

clL 1 0.559 −0.22 −0.252

ceR 1 0.186 −0.16

c6 1 0

c3W 1

Table 7. Normalized correlation matrix in the χ2 fit at CEPC.

cWW cWB cBB cT cH c
(3)l
LL c

(3)l
L clL ceR c6 c3W

cWW 1 0.0133 0.954 −0.00391 −0.866 0.0114 0.0278 0.0598 −0.0587 −0.971 0

cWB 1 0.0136 −0.911 −0.00988 −0.825 0.687 0.161 −0.402 −0.0123 −0.357

cBB 1 −0.00378 −0.863 0.011 0.0267 0.0579 −0.0576 −0.954 0

cT 1 −0.00264 0.894 −0.645 −0.126 0.172 0.00108 0.443

cH 1 −0.0167 −0.0159 −0.0534 0.0524 0.959 0

c
(3)l
LL 1 −0.683 −0.162 0.222 −0.0142 0.574

c
(3)l
L 1 0.752 −0.8 −0.0233 −0.123

clL 1 −0.852 −0.0589 −0.0702

ceR 1 0.0579 −0.0519

c6 1 0

c3W 1

Table 8. Normalized correlation matrix in the χ2 fit at FCC-ee.

cWW cWB cBB cT cH c
(3)l
LL c

(3)l
L clL ceR c6 c3W

cWW 1 −0.00989 −0.981 0.00315 −0.876 0.0142 0.0775 0.314 −0.0244 −0.968 0

cWB 1 0.0112 −0.992 0.00961 −0.868 0.949 0.334 −0.126 0.00988 −0.659

cBB 1 −0.00384 0.882 −0.0151 −0.0755 −0.315 0.0209 0.969 0

cT 1 −0.00604 0.88 −0.937 −0.383 0.0416 −0.00456 0.688

cH 1 −0.0164 −0.0572 −0.281 0.0228 0.966 0

c
(3)l
LL 1 −0.763 −0.519 0.0568 −0.0156 0.94

c
(3)l
L 1 0.404 −0.301 −0.0704 −0.515

clL 1 −0.307 −0.308 −0.589

ceR 1 0.0251 −0.0345

c6 1 0

c3W 1

Table 9. Normalized correlation matrix in the χ2 fit at ILC250.
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cWW cWB cBB cT cH c
(3)l
LL c

(3)l
L clL ceR c6 c3W

cWW 1 −0.0084 −0.986 0.00193 −0.565 0.00988 0.179 0.34 −0.0494 −0.452 0

cWB 1 0.00944 −0.99 0.0111 −0.886 0.902 0.542 −0.0943 0.00307 −0.732

cBB 1 −0.0032 0.601 −0.0111 −0.18 −0.35 0.0485 0.443 0

cT 1 −0.0147 0.919 −0.866 −0.619 0.0174 −0.0033 0.796

cH 1 −0.0197 −0.0273 −0.186 0.0274 0.441 0

c
(3)l
LL 1 −0.69 −0.74 0.0206 −0.0056 0.955

c
(3)l
L 1 0.466 −0.287 −0.0281 −0.477

clL 1 −0.164 −0.0812 −0.818

ceR 1 0.012 −0.042

c6 1 0

c3W 1

Table 10. Normalized correlation matrix in the χ2 fit at ILC500.

cWW cWB cBB cT cH c
(3)l
LL c

(3)l
L clL ceR c6 c3W

cWW 1 −0.00591 −0.986 0.00176 −0.565 0.00868 0.114 0.241 −0.0147 −0.452 0

cWB 1 0.00665 −0.923 0.00781 −0.882 0.938 −0.228 −0.693 0.00216 −0.516

cBB 1 −0.0029 0.601 −0.0097 −0.114 −0.248 0.0144 0.443 0

cT 1 −0.0134 0.933 −0.819 −0.121 0.381 −0.003 0.725

cH 1 −0.0173 −0.0173 −0.132 0.00815 0.441 0

c
(3)l
LL 1 −0.753 −0.138 0.441 −0.0049 0.839

c
(3)l
L 1 −0.305 −0.751 −0.0178 −0.303

clL 1 0.64 −0.0574 −0.579

ceR 1 0.00357 −0.0125

c6 1 0

c3W 1

Table 11. Normalized correlation matrix in the χ2 fit at ILC.

D Parameter marginalization in χ2

The introduction on parameter marginalization in χ2 can be found in various lecture notes

(see, e.g., [59]). Below we will simply introduce this method.

Let’s consider n independent observables O1, O2, · · · , On, with their measured values

satisfying Gaussian distribution. These observables are all linearly dependent on m pa-

rameters or Wilson coefficients CT = {c1, c2, · · · , cm}, namely, Oi = Oi(c1, c2, · · · , cm) with

i = 1, · · · , n and m ≤ n. Then their probability distribution function (PDF) is given by

f(δ1, δ2, · · · , δn) =
1

(2π)
n
2

exp

(
− 1

2

n∑
i

δ2
i

)
(D.1)

Here δi represents a normalized deviation from the measured value. f(δ1, δ2, · · · , δn) can

be converted to the PDF of the m parameters

g(c1, c2, · · · , cm) ∝ exp

(
− 1

2

n∑
i

δi(cj)
2

)
= exp(χ2) (D.2)
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with ∫
dc1dc2 · · · dcm g(c1, c2, · · · , cm) = 1 (D.3)

Here

χ2 = CTMC (D.4)

is a quadratic function of CT = {c1, c2, · · · , cm}. M is the correlation matrix of the m

parameters which is symmetric.

The marginalized distribution for a single parameter, say, cm, is defined as

gM (cm) =

∫
dc1dc2 · · · dcm−1g(c1, c2, · · · , cm) (D.5)

Separating cm from the other m− 1 paramters we have

χ2 = yc2
m + cmC

T
XZ + cmZ

TCX + CTXXCX (D.6)

with CX = (c1 c2 · · · cm−1)T . X, Z and y are the entries of the correlation matrix

M =

[
X Z

ZT y

]
. (D.7)

The (m− 1)× (m− 1) matrix X can be diagonalized by taking a unitary transformation

CX → C ′X . In the new parameter basis, we have

χ2 = yc2
m + cmC

′T
X Z

′ + cmZ
′TC ′X + C ′

T
XX

′C ′X

= yc2
m + 2cm

m−1∑
i=1

c′iz
′
i +

m−1∑
i=1

x′ic
′2
i

=

(
y −

m−1∑
i=1

z
′2
i

x′i

)
c2
m +

m−1∑
i=1

x′i

(
c′i +

cmz
′
i

x′i

)2

(D.8)

Here we define C ′X = (c′1 c′2 · · · c′m−1)T , X ′ = diag(x′1 x′2 · · ·x′m−1) and Z ′ =

(z′1 z
′
2 · · · z′m−1)T . Integrating out C ′X , we obtain

∆χ2(cm) =

(
y −

m−1∑
i=1

z
′2
i

x′i

)
c2
m . (D.9)

It defines the marginalized PDF of cm as

gM (cm) ∝ exp(∆χ2(cm)) . (D.10)

Taking a further step, let’s define the correlation matrix in the new parameter basis

(C ′TX , cm) as

M ′ =

[
X ′ Z ′

Z ′T y

]
=


x′1 z′1

. . .
...

x′m−1 z
′
m−1

z′1 · · · z′m−1 y

 . (D.11)
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The determinant of the correlation matrix M can be calculated as

detM = detM ′ =

(
y −

m−1∑
i=1

z
′2
i

x′i

)m−1∏
i=1

x′i . (D.12)

With this relation, we immediately obtain

∆χ2 = c2
m

detM

detX
. (D.13)

This relation indicates that, given a confidence level for the χ2 analysis, the constraints for

cm is completely determined by the correlation matrix M . There is a geometric interpre-

tation regrading this. Eq. (D.8) defines a (m−1)-dimensional ellipsoid in a m-dimensional

space which is expanded by CT = (CTX , cm). Integrating out C ′X is equivalent to imposing

the conditions c′i +
cmz′i
x′i

= 0 or equivalently, the conditions ∂χ2

∂c′i
= 0, for i = 1, · · · ,m − 1.

Therefore, the marginalization of CX is simply a projection of the ellipsoid to the cm axis

in the m-dimensional space.

The discussions above can be generalized to the case with multiple variables. In this

case, χ2 is defined as

χ2 = (CTX CTY )

[
X Z

ZT Y

][
CX
CY

]
(D.14)

with CX = c1, · · · , ck representing the k parameters to marginalize. Here X and Y are

k × k and (m− k)× (m− k) matrices, respectively. With this setup, we have

χ2 = CTXXCX + CTXZCY + CTY Z
TCX + CTY Y CY

= (CX +X−1ZCY )TX(CX +X−1ZCY )− CTY ZTX−1ZCY + CTY Y CY (D.15)

= (CX +X−1ZCY )TX(CX +X−1ZCY ) + CTY (Y − ZTX−1Z)CY

CX is marginalized by integrating out the first term, yielding

∆χ2 = CTY (Y − ZTX−1Z)CY (D.16)

Eq. (D.16) describes the correlation among the parameters in CY . At a given C.L., the value

of ∆χ2 depends on the number of parameters in CY . If CY contains one parameter only,

say, cm, eq. (D.16) is reduced to eq. (D.9), with ∆χ2 = 1 at 1σ C.L. Again marginalizing

CX is equivalent to imposing the conditions ∂χ2/∂ci to Eq. (D.15), with i running from 1

to k. It can be geometrically interpreted as a projection of a (m− 1)-dimensional ellipsoid

in a m-dimensional space to its (m − k)-dimensional subspace, which are expanded by

(CX , CY ) and CY , respectively.

The geometric interpretation of parameter marginalization in a simple model is pre-

sented in figure 10. In this example there are two free parameters, say, c1 and c2, with c2

being marginalized. Eq. (D.8) defines an one-dimensional ellipsoid or ellipse at the c1 − c2

plane. Integrating out c′2 is equivalent to imposing a condition ∂χ2

∂c′2
= ∂χ2

∂c2
= 0. The c2

marginalization is simply a projection of the ellipse to the c1 axis. Here the size of the

ellipse is determined by the ∆χ2 value, which is equal to one at 1σ C.L. In figure 10, the

allowed range for c1 with a marginalized c2 is indicated by the brown line ending at the

purple lines. As a comparison, if c2 is turned off, the constraint for c1 becomes stronger,

which is denoted by the brown dashed line ending at the blue ellipse.
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Figure 10. Parameter marginalization in a two-parameter model.

E 2D χ2 analysis

Figure 11. 2D sensitivity projection in the marginalized χ2 analysis. The coordinate axes are in

the unit of (TeV)−2.
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Figure 12. 2D sensitivity projection in the marginalized χ2 analysis. The coordinate axes are in

the unit of (TeV)−2.
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Figure 13. 2D sensitivity projection in the marginalized χ2 analysis. The coordinate axes are in

the unit of (TeV)−2.
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Figure 14. “Optimistic” (left panels) and “conservative” (right panels) 2D sensitivities at CEPC,

FCC-ee and ILC. The coordinate axes are in the unit of (TeV)−2. In the “optimistic” analysis, only

two 6D operators are turned on. In the “conservative” analysis, all 6D operators listed in table 1

are turned on, whereas the irrelevant Wilson coefficients are marginalized.
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[52] L. Di Luzio, R. Gröber and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling:

how large could it be?, Eur. Phys. J. C 77 (2017) 788 [arXiv:1704.02311] [INSPIRE].

– 39 –

https://doi.org/10.1140/epjc/s10052-014-3046-5
https://arxiv.org/abs/1407.3792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3792
https://arxiv.org/abs/1403.4427
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4427
https://doi.org/10.1007/JHEP09(2015)196
https://arxiv.org/abs/1411.1054
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1054
https://doi.org/10.1016/j.physrep.2013.07.004
https://arxiv.org/abs/1302.3415
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3415
https://arxiv.org/abs/1601.03849
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.03849
https://arxiv.org/abs/1310.6708
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6708
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1921
https://doi.org/10.1016/j.cpc.2013.01.014
https://arxiv.org/abs/1207.6082
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6082
https://doi.org/10.1007/JHEP06(2011)128
https://arxiv.org/abs/1106.0522
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0522
https://doi.org/10.1103/PhysRevD.95.065014
https://arxiv.org/abs/1607.05236
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05236
https://doi.org/10.1007/JHEP04(2015)167
https://arxiv.org/abs/1410.3471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3471
https://doi.org/10.1103/PhysRevD.92.035001
https://arxiv.org/abs/1502.00539
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00539
https://doi.org/10.1007/JHEP02(2015)016
https://doi.org/10.1007/JHEP02(2015)016
https://arxiv.org/abs/1412.7154
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7154
https://doi.org/10.1103/PhysRevD.93.015003
https://arxiv.org/abs/1506.03302
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03302
https://doi.org/10.1007/JHEP12(2016)080
https://arxiv.org/abs/1607.04251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04251
https://doi.org/10.1140/epjc/s10052-017-5361-0
https://arxiv.org/abs/1704.02311
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.02311


J
H
E
P
0
5
(
2
0
1
8
)
0
8
1

[53] V. Sanz and J. Setford, Composite Higgs models after Run 2, Adv. High Energy Phys. 2018

(2018) 7168480 [arXiv:1703.10190] [INSPIRE].

[54] A. Banerjee, G. Bhattacharyya, N. Kumar and T.S. Ray, Constraining composite Higgs

models using LHC data, JHEP 03 (2018) 062 [arXiv:1712.07494] [INSPIRE].

[55] ATLAS collaboration, Search for new phenomena in tt̄ final states with additional

heavy-flavour jets in pp collisions at
√
s = 13 TeV with the ATLAS detector,

ATLAS-CONF-2016-104 (2016).

[56] ATLAS collaboration, Search for pair production of vector-like top quarks in events with one

lepton and an invisibly decaying Z boson in
√
s = 13 TeV pp collisions at the ATLAS

detector, ATLAS-CONF-2017-015 (2017).

[57] CMS collaboration, Search for pair production of vector-like quarks in the bW b̄W channel

from proton-proton collisions at
√
s = 13 TeV, Phys. Lett. B 779 (2018) 82

[arXiv:1710.01539] [INSPIRE].

[58] CMS collaboration, Search for pair production of vector-like T and B quarks in single-lepton

final states using boosted jet substructure in proton-proton collisions at
√
s = 13 TeV, JHEP

11 (2017) 085 [arXiv:1706.03408] [INSPIRE].

[59] http://astronomy.swin.edu.au/∼cblake/StatsLecture3.pdf

– 40 –

https://doi.org/10.1155/2018/7168480
https://doi.org/10.1155/2018/7168480
https://arxiv.org/abs/1703.10190
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.10190
https://doi.org/10.1007/JHEP03(2018)062
https://arxiv.org/abs/1712.07494
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07494
https://doi.org/10.1016/j.physletb.2018.01.077
https://arxiv.org/abs/1710.01539
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.01539
https://doi.org/10.1007/JHEP11(2017)085
https://doi.org/10.1007/JHEP11(2017)085
https://arxiv.org/abs/1706.03408
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.03408
http://astronomy.swin.edu.au/~cblake/StatsLecture3.pdf

	Introduction
	Analysis formalism
	Observables for analysis
	Higgs events
	Higgs production angular observables
	Electroweak precision tests

	Analysis of sensitivity to new physics
	CEPC analysis: turning on operators individually
	CEPC analysis: turning on multiple operators simultaneously
	Comparative study at future e+e- colliders

	Application to two benchmark composite Higgs models
	Conclusions
	Feynman rules for the interaction vertices
	Observables for analysis: numerical formulae
	Normalized correlation matrices
	Parameter marginalization in chi**2
	2D chi**2 analysis

