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is that, while studying gravitational perturbation, the perturbed generalized scalar field

equation obtained from the perturbed action, when matched with the perturbed form of

the background scalar field equation, relates the coupling parameter and the potential ex-

actly in the same manner as the solution of classical field equations does, assuming de-Sitter

expansion. The study also reveals that the quantum theory is well behaved, inflationary pa-

rameters fall well within the observational limit and quantum perturbation analysis shows

that the power-spectrum does not deviate considerably from the standard one obtained

from minimally coupled theory.
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1 Introduction

In the early stage of evolution, between 10−36 sec–10−32 sec, the universe went through

an inflationary phase of expansion, which has been accepted as a scenario rather than

a model. What happened prior to the inflationary era can only be answered in view of

‘quantum theory of gravity’. In the absence of a complete and legitimate (unitary and

renormalizable) quantum theory of gravity, some perception regarding the evolution of the

universe in the pre-inflationary phase may be achieved through quantization of a viable

cosmological model - known as “quantum cosmology”. In this regard a cosmological model

should be chosen such that it leads to a viable inflationary era fitting the recently available

data, and also the late-time cosmic acceleration which is a great cry of the present century.

Non-minimally coupled scalar-tensor theory of gravity having an action in the form

A1 =

∫ √−g d4x

[
f(φ)R− 1

2
φ,µφ

,µ − V (φ)

]
, (1.1)
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is a strong contender for dark-energy candidature, being able to explain late-time cosmic

acceleration inclusive of presently available data [1–12]. It is therefore required to test

the theory during early phase of cosmological evolution. To accommodate cosmic inflation

in the theory, additional contribution to the above action is required. It is well known

that quantum gravity, in any of its forms (super string theory, heterotic string theory

super-gravity, M-theory, loop quantum gravity etc.) admits higher order curvature invari-

ant terms. Of particular interest is curvature squared (R2, R2
µν) term, since it leads to

renormalized theory of gravity [13]. Although, perturbatively it encounters ghost degrees

of freedom, non-perturbatively it is well behaved. Further, although unification of the

early inflation with late-time cosmic acceleration with non-minimally coupled scalar field

has recently been achieved [14], nevertheless one can’t ignore the presence of higher order

terms in the early universe, particularly because inflation without phase transition is an

essential feature of such higher order term [15, 16]. Now, in the homogeneous and isotropic

background, R2
µν and R2 terms differ only by a total derivative term, and it is therefore

sufficient to add scalar curvature squared term to the above action, which therefore reads as

A =

∫ √−g d4x

[
f(φ)R+BR2 − 1

2
φ,µφ

,µ − V (φ)

]
. (1.2)

As already mentioned, our present aim is not to establish unification, rather to study

its behaviour at the very early stage of cosmic evolution particularly, in the quantum

domain. This requires canonical formulation of the theory. There exists a host of canonical

formalisms in connection with higher order theory of gravity, which requires additional

degrees of freedom. In addition to the three space metric (hij), the extrinsic curvature

tensor (Kij) is taken as an additional basic variable for the purpose. In the process,

Cauchy data exceeds and therefore, one requires more boundary data. While, Ostrogrdski’s

technique [17],1 Dirac’s [18, 19] formalism and Horowitz’ no boundary proposal [20] insist

upon setting δhij = 0 = δKij , at the boundary, and end up with the same phase-space

Hamiltonian; a modified version of Horowitz’ technique [21–29] favours δhij = 0 = δR, at

the boundary and for a class of higher order theory of gravity, ends up with a Hamiltonian

which although different, is related under a suitable canonical transformation with the one

obtained following the known standard techniques [17–20]. It has therefore been tacitly

assumed that the canonical structure of higher order theory of gravity is independent of

the choice of boundary condition. However, such a preconceived concept has shattered in

view of a very recent work [30]. It has been found that for Gauss-Bonnet-dilatonic coupled

higher order theory of gravity,

AG=

∫ √−g d4x

[
αR+βR2+Λ(φ)G− 1

2
φ,µφ

,ν−V (φ)

]
+αΣR+βΣR2+Λ(φ)ΣG , (1.3)

(where, ΣR = 2
∮
∂V K

√
hd3x, ΣR2 = 4

∮
∂V RK

√
hd3x and ΣG = 4

∮
∂V

(
2GijK

ij+K
3

)√
hd3x

are the supplementary boundary terms known as the Gibbons-Hawking-York term cor-

responding to the linear sector, its modified version for curvature squared term and for

Gauss-Bonnet-dilatonic coupled sector respectively, α, β, and Λ(φ) are the coupling param-

eters, V (φ) is the dilatonic potential, while the symbol K stands for K = K3−3KKijKij+

1Pioneeering work by M. Ostrogradski and W.F. Donkin is quoted here.

– 2 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
8

2KijKikK
k
j , K being the trace of extrinsic curvature tensor), modified Horowitz’ formal-

ism ends up with a different phase-space Hamiltonian, which is not related to the others

under canonical transformation [30]. The most important outcome of the work is that,

the well-known standard formalisms [17–20], for which supplementary boundary terms

are not required due to the fact that δhij = 0 = δKij at the boundary, don’t produce

correct classical analogue of the theory under appropriate semi-classical approximation,

although modified Horowitz’ formalism does [30]. It is true that the choice of boundary

terms does not in any way affect classical field equations, nevertheless, the above mentioned

results prove unambiguously that it does, in the quantum domain, and the standard tech-

niques [17–20] towards canonical formulation don’t render a viable quantum description

of the theory, in general. Here, we have chosen the action (1.2) to establish in particular

the fact that, the in-equivalent phase-space structure of the Hamiltonian is an outcome of

non-minimal coupling.

It is important to repeat that, if one insists upon the boundary conditions δhij |∂V =

0 = δR|∂V , the action must be supplemented by additional boundary terms. On the con-

trary, the boundary conditions δhij |∂V = 0 = δKij |∂V take care of the total derivative

terms, and there is no need to supplement the action with additional boundary terms.

This was the main argument of Horowitz for his no boundary proposal. Horowitz [20] ar-

gued that, without the supplementary boundary term, superposition principle holds during

the transition from the initial configuration space to the final, following an intermediate

one. However, Horowitz [20] also pointed out that, the above argument does’t specifically

state that boundary terms can’t exist. Although sounds attractive, with no boundary

proposal the cherished Gibbons-Hawking-York [31, 32] term, which is responsible for the

entire contribution to the Euclidean action, also vanishes, and it is not possible to recover

it under weak field limit. Next, it is well-known that F (R) theory of gravity admits scalar

tensor equivalence, under redefinition of F (R) by an auxiliary variable to Jordan’s frame

or through conformal transformation to Einstein’s frame. Variation of such canonical La-

grangian requires to fix the scalar at the end point. This is indeed equivalent to fixing of the

Ricci scalar R at the boundary. Further, Dyer and Hinterbichler [33] have shown that the

boundary terms reproduce the expected ADM energy, and the entropy of a Schwarzschild

black hole is one-quarter of the area of the horizon in units of the effective Planck’s length,

which agrees with the Wald entropy formula [34, 35]. This clearly indicates that higher

curvature terms make no additional correction to the entropy in the result obtained from

Gibbons-Hawking-York [31, 32] term. Last but not the least important fact, as already

mentioned is that, the quantum counterpart with no boundary proposal for Gauss-Bonnet-

dilatonic coupled higher order theory of gravity does not lead to a classical limit under an

appropriate semi-classical approximation [30].

Usually, either exponential expansion in the de-Sitter form or power law expansion

as a solution to the classical field equations, is the starting point of studying inflationary

evolution. The aim of the present work is to explore the fact that for the action under

consideration (1.2), the quantum domain generically leads to de-Sitter expansion under ap-

propriate semi-classical approximation, rather than power law expansion. This is the most

important outcome of the present work. We therefore make canonical formulation of the

– 3 –
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action (1.2), in the Robertson-Walker minisuperspace, canonically quantize and show that

the semiclassical wave-function is strongly peaked around the classical de-Sitter solution.

Next we show that such a de-Sitter solution goes through to a viable inflationary phase,

and the inflationary parameters are very much consistent with currently available data.

In the following section we therefore follow modified Horowitz’ technique towards

canonical formulation of action (1.2) in the homogeneous and isotropic background. How-

ever, we encounter certain operator ordering ambiguity during quantization, which can

only be resolved after having specific knowledge on the form of the coupling parameter

f(φ). We therefore choose de-Sitter solution, and find a relation between the coupling

parameter f(φ) and the potential V (φ) in view of the (00) equation of Einstein. The other

field equation then fixes the forms of the two, uniquely. In view of the form of the coupling

parameter f(φ), we remove operator ordering ambiguity, present the quantum mechan-

ical probabilistic interpretation, and perform semiclassical approximation to explore the

already mentioned fact that, the wave-function is strongly peaked around the classical

de-Sitter solution.

Since quantum dynamics of action (1.2) admits de-Sitter solution as its generic fea-

ture, so in section 3, we study the inflationary regime, with exponential expansion. For

this purpose, we first translate our action (1.2) to the Einstein’s frame under conformal

transformation, to show that the present action involves an additional scalar field ψ. This

clarifies the reason for imposing a condition in addition to the standard slow-roll approx-

imation. However, the rest of the analysis has been performed in the original variables.

While studying gravitational perturbation, we match perturbed generalized scalar-field

equation with the perturbed background scalar-field equation and observe that the cou-

pling parameter f(φ) and the potential V (φ) must be related exactly in the same manner,

as has been found while solving classical field equations assuming de-Sitter exponential

solution. In appendix A, we prove that the effective canonical Hamiltonian is hermitian.

In appendix B, we show that the standard canonical formulation schemes following Ostro-

gradski’s [17], Dirac’s [18, 19] and Horowitz’ [20], lead to the same phase-space structure

of the Hamiltonian, which is different from the one obtained following modified Horowitz’

technique in section 2, and is not related to it under canonical transformation.

2 Canonical formulation of non-minimally coupled scalar-tensor theory

of gravity in the presence of higher order term

In accordance with the discussions in the introduction, we insist upon keeping δhij=0=δR,

at the boundary, and so it is required to supplement the action (1.2) with appropriate

boundary terms. The action (1.2) therefore reads

A =

∫ √−g d4x

[
f(φ)R+BR2 − 1

2
φ,µφ

,µ − V (φ)

]
+ΣR +ΣR2

1
+ΣR2

2
, (2.1)

where, ΣR = 2
∫
f(φ)K

√
h d3x is the modified Gibbons-Hawking-York boundary term in

the presence of non-minimal coupling, and ΣR2 = ΣR2
1
+ΣR2

2
= 4B

∫ 3
RK

√
h is the bound-

ary term associated with the scalar curvature square term (R2), which has been split into
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two parts in the manner, ΣR2
1
= 4B

∫
3RK

√
h d3x; ΣR2

2
= 4B

∫
(4R−3R)K

√
h d3x. Such

splitting is required to take care of the total derivative terms appearing under integration by

parts. This has been discussed earlier in details [21–30]. In the above, K is the trace of the

extrinsic curvature tensor, and h is the determinant of the induced three-space metric. Since

reduction of higher order theory to its canonical form requires additional degrees of free-

dom, hence, in addition to the three-space metric hij , the extrinsic curvature tensor Kij is

treated as basic variable. In the homogeneous and isotropic Robertson-Walker metric, viz.,

ds2 = −N(t)2dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
, (2.2)

we therefore choose the basic variables hij = zδij = a2δij , so that Kij = − ḣij

2N = −aȧ
N
δij =

− ż
2N δij , and hence, the Ricci scalar is expressed as,

R =
6

N2

(
ä

a
+

ȧ2

a2
+N2 k

a2
− Ṅ ȧ

Na

)
=

6

N2

(
z̈

2z
+N2k

z
− 1

2

Ṅ ż

Nz

)
, (2.3)

The action (2.1) in Robertson-Walker minisuperspace (2.2), therefore takes the form,

A =

∫ [
3f

√
z

(
z̈

N
− Ṅ ż

N2
+ 2kN

)
+

9B√
z

(
z̈2

N3
− 2Ṅ żz̈

N4
+

Ṅ2ż2

N5
− 4kṄ ż

N2
+

4kz̈

N
+ 4k2N

)

+ z
3
2

(
1

2N
φ̇2 − V N

)]
dt+ΣR +ΣR2

1
+ΣR2

2
. (2.4)

In the above, ΣR = −3f
√
zż

N
, while ΣR2

1
= −36Bkż

N
√
z

and ΣR2
2
= − 18Bż

N3
√
z

(
z̈ − żṄ

N

)
. Under

integrating by parts, the counter terms ΣR and ΣR2
1
get cancelled and the action (2.4)

reduces to

A=

∫ [(
−3f ′φ̇ż

√
z

N
− 3fż2

2N
√
z
+6kNf

√
z

)
+
9B√
z

(
z̈2

N3
− 2Ṅ żz̈

N4
+
Ṅ2ż2

N5
+
2kż2

N
+4k2N

)

+z
3
2

(
1

2N
φ̇2−V N

)]
dt+ΣR2

2
, (2.5)

where, prime denotes derivative with respect to the scalar field φ. At this stage introducing

an auxiliary variable

Q =
∂A

∂z̈
=

18B

N3
√
z

(
z̈ − Ṅ ż

N

)
(2.6)

straight into the action (2.5), as

A=

∫ [(
−3f ′φ̇ż

√
z

N
− 3fż2

2N
√
z
+6kNf

√
z

)
+Qz̈−N3√z

36B
Q2− Ṅ żQ

N
+
18Bkż2

Nz
3
2

+
36BNk2√

z

+z
3
2

(
1

2N
φ̇2−V N

)]
dt+ΣR2

2
, (2.7)
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the rest of the boundary terms is taken care of under integration by parts. Finally, the

action being free from the boundary temrs, is expressed as

A=

∫ [
−Q̇ż− 3f ′φ̇ż

√
z

N
− 3fż2

2N
√
z
+6kNf

√
z−N3√z

36B
Q2− Ṅ żQ

N
+
18Bkż2

Nz
3
2

+
36BNk2√

z

+z
3
2

(
1

2N
φ̇2−V N

)]
dt. (2.8)

The canonical momenta are

pQ = −ż (2.9a)

pz = −Q̇ − 3f ′φ̇
√
z

N
− 3fż

N
√
z
− ṄQ

N
+

36Bkż

Nz
3
2

(2.9b)

pN = − żQ
N

(2.9c)

pφ = −3f ′ż
√
z

N
+

z
3
2 φ̇

N
(2.9d)

The (00) component of Einstein’s field equation in terms of the scale factor is
[
− 6f

a2

(
ȧ2

N2
+k

)
−6

f ′ȧφ̇
N2a

− 36B

a2N4

(
2ȧ

...
a−ä2+2

ȧ2ä

a
−3

ȧ4

a2
−2ȧ2

N̈

N
−4

Ṅ

N
ȧä+5ȧ2

Ṅ2

N2
−2

ȧ3Ṅ

aN

−2kN2 ȧ
2

a2
+k2

N4

a2

)
+

(
φ̇2

2N2
+V (φ)

)]
Na3=0, (2.10)

which when expressed in terms of the phase-space variables leads to the Hamilton con-

straint equation. However, construction of the phase-space structure of the Hamiltonian is

non-trivial, since the Hessian determinant vanishes and the Lagrangian corresponding to

the action (2.8) is degenerate. This is due to the presence of the time derivative of the lapse

(which is essentially a Lagrange multiplier of the theory) in the said action, which is a typi-

cal to the higher order theory. Remember that no such time-derivative of the lapse function

appears in General Theory of Relativity. The constraint QpQ −NpN = 0, is also apparent

from the expressions of canonical momenta (2.9). Usually Dirac’s constraint analysis is in-

voked to construct the phase-space Hamiltonian. Nevertheless, we have repeatedly pointed

out [26, 27] that it is possible to bypass the issue and construct the canonical Hamiltonian

in the following manner. For this purpose, let us use the expression,

pQpz = Q̇ż +
3żf ′φ̇

√
z

N
+

3fż2

N
√
z
+

Ṅ żQ
N

− 36Bkż2

Nz
3
2

(2.11)

obtained in view of the relations (2.9a) and (2.9b), and construct the Hamiltonian con-

straint equation in terms of the phase space variables as,

Hc=3f

(
pQ2

2N
√
z
−2kN

√
z

)
−pQpz+

N3Q2√z

36B
− 18kB

N
√
z

(
pQ2

z
+2kN2

)
+
Np2φ

2z
3
2

− 3f ′pQpφ
z

+
9f ′2p2Q
2N

√
z
+V Nz

3
2 =0. (2.12)

– 6 –
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It is important to note that although the phase-space structure of the Hamiltonian corre-

sponding to the higher order theory under consideration has been produced in (2.12), it

does not establish the diffeomorphic invariance of the theory. Diffeomorphic invariance is

apparent only when the Hamiltonian is expressed in terms of the basic variables (x, z, φ)

and their canonically conjugate momenta (px, pz, pφ). In order to express the Hamilto-

nian in terms of the basic variables, we make the canonical transformations following the

replacements of Q = px
N

and pQ = −Nx, as before. The phase-space structure of the

Hamiltonian in terms of the basic variables is then expressed as,

Hc=N

[
xpz+

√
zpx

2

36B
+3f

(
x2

2
√
z
−2k

√
z

)
− 18kB√

z

(
x2

z
+2k

)
+

p2φ

2z
3
2

+
3f ′xpφ

z
+
9f ′2x2

2
√
z

+V z
3
2

]

=NH. (2.13)

Diffeomorphic invariance is now clearly established in equation (2.13). The action (2.5)

can also be expressed in the canonical form with respect to the basic variables as,

A =

∫ (
żpz + ẋpx + φ̇pφ −NHL

)
dt d3x =

∫ (
ḣijπ

ij + K̇ijΠ
ij + φ̇pφ −NHL

)
dt d3x,

(2.14)

where, πij and Πij are momenta canonically conjugate to hij and Kij respectively. This

establishes the importance of the use of appropriate basic variables, over other canonical

ones. Now, the canonical Hamiltonian (2.13) may immediately be quantized to obtain,

i~√
z

∂Ψ

∂z
= − ~

2

36Bx

(
∂2

∂x2
+

n

x

∂

∂x

)
Ψ− ~

2

2xz2
∂2Ψ

∂φ2
+

3

z
3
2

f̂ ′pφ

+

[
3fx

2z
+

9f ′2x
2z

+
V z

x
− 6kf

x
− 18kBx

z2
− 36k2B

xz

]
Ψ = ĤeΨ,

(2.15)

where, n is the operator ordering index. In the above expression (2.15) due to the presence

of coupling between f ′(φ) and pφ, there still remains some operator ordering ambiguity,

which may only be resolved after having specific knowledge regarding the form of f(φ).

2.1 In search of a form of f(φ) and canonical quantization

The nonminimally coupled action (2.1) can be re-expressed (apart from the supplementary

boundary terms) as,

A =

∫ √−g d4x

[
1

2
f(φ,R)− 1

2
φ,µφ

,µ − V (φ)

]
, (2.16)

where f(φ,R) = 2f(φ)R + 2BR2. The field equations in the homogeneous and isotropic

flat (k = 0) Robertson-Walker metric background (with N = 1), are expressed as

H2 =
1

3F

(
1

2
φ̇2 +

RF − f + 2V

2
− 3HḞ

)
, (2.17)

Ḣ = − 1

2F

(
φ̇2 + F̈ −HḞ

)
, (2.18)

φ̈+ 3Hφ̇+
1

2

(
2V ′ − f ′

)
= 0, (2.19)

– 7 –
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where F = ∂f
∂R

, H = ȧ
a
, R = 6(Ḣ + 2H2), and the scalar field equation (2.19) follows from

equations (2.17) and (2.18). It is already known that inflation is an essential feature of

higher order curvature term [15, 16]. Here our aim, as already mentioned in the introduc-

tion, is to check if the quantum dynamics of the higher-order theory under consideration in

the Trans-Planckian era, leads generically to the inflationary scenario in the post Planck’s

era. Therefore, we seek inflationary solution of the classical field equations (2.17)–(2.19)

in the following standard de-Sitter exponential form

a = a0e
Ht, φ = φ0e

−Ht, (2.20)

where, constant ‘H’ is the Hubble parameter ‘H’ in the de-Sitter regime, and R = 12H2.

Equation (2.19) relates V ′(φ) and f ′(φ,R) and in the process V (φ) and f(φ) in the following

manner,

2V ′ − f ′ = 4H2φ =⇒ V (φ)− 12H2f(φ) = H2φ2 + c, (2.21)

where c is an integration constant. In view of equation (2.17), one can also find

2V = 12H2f(φ)− 12H2f ′(φ)φ−H2φ2. (2.22)

The two equations (2.21) and (2.22) are simultaneously satisfied restricting the potential

and the coupling parameter to the following forms

V (φ) = V1 +
V0

φ
, and f(φ) = f0 +

f1

φ
− φ2

12
, (2.23)

where c = −f0R − 2BR2, and the parametric constants, V0, V1, f0, and f1 are related in

the following manner,

V0 = 12f1H
2, V1 = 6f0H

2. (2.24)

Since the form of the coupling parameter f(φ) has been explored in (2.23), we can now

proceed with our left out task regarding canonical quantization. Choosing suitable operator

ordering between f ′(φ) and pφ, equation (2.15) now takes the form

i~√
z

∂Ψ

∂z
=− ~

2

36Bx

(
∂2

∂x2
+
n

x

∂

∂x

)
Ψ− ~

2

2xz2
∂2Ψ

∂φ2
+

i~

2z
3
2

(
φ3+6f1

φ2

)
∂Ψ

∂φ
+

i~

4z
3
2

(
φ3−12f1

φ3

)
Ψ

+

[
3x

2z

(
f0+

f1

φ
−φ2

12

)
+
9x

2z

(
f1

φ2
+
φ

6

)2

+
6f0H

2z

x
+
12f1H

2z

xφ

]
Ψ, (2.25)

where Weyl symmetric ordering has been performed between f ′(φ) and pφ, appearing in

the third term on the right hand side, and the form of the potential has been supplemented

from equation (2.23) and (2.24). Now, under a change of variable, the above modified

Wheeler-de-Witt equation, takes the look of Schrödinger equation, viz.,

i~
∂Ψ

∂σ
= − ~

2

54B

(
1

x

∂2

∂x2
+

n

x2
∂

∂x

)
Ψ− ~

2

3xσ
4
3

∂2Ψ

∂φ2
+

i~

3σ

(
φ3 + 6f1

φ2

)
∂Ψ

∂φ

+
i~

6σ

(
φ3 − 12f1

φ3

)
Ψ+ VeΨ = ĤeΨ,

(2.26)
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where, σ = z
3
2 = a3 plays the role of internal time parameter. In the above equation, the

effective potential Ve, is given by,

Ve =

[
x

σ
2
3

(
f0 +

f1

φ
− φ2

12

)
+

3x

σ
2
3

(
f1

φ2
+

φ

6

)2

+
4f0H

2σ
2
3

x
+

8f1H
2σ

2
3

xφ

]
. (2.27)

2.2 Probabilistic interpretation

The hermiticity of Ĥe (see appendix A) should enable us to write the continuity equation,

which requires to find ∂ρ
∂σ

, where, ρ = Ψ∗Ψ. A little bit of algebra leads to the following

equation,

∂ρ

∂σ
= − ∂

∂x

[
i~

54Bx
(ΨΨ∗

,x −Ψ∗Ψ ,x)

]
− ∂

∂φ

[
i~

3xσ
4
3

(ΨΨ∗
,φ −Ψ∗Ψ ,φ)−

(
φ3 + 6f1
3σφ2

)
Ψ∗Ψ

]

+
(n+ 1)

x2

(
ΨΨ∗

,x −Ψ∗Ψ,x

)
(2.28)

Clearly, continuity equation can be written, only under the choice n = −1, as

∂ρ

∂σ
+∇.J = 0, (2.29)

where, ρ = Ψ∗Ψ and J = (Jx,Jφ, 0) are the probability density and the current density

respectively, and

Jx =
i~

54Bx
(ΨΨ∗

,x −Ψ∗Ψ ,x) (2.30a)

Jφ =
i~

3xσ
2
3

(ΨΨ∗
,φ −Ψ∗Ψ ,φ)−

(
φ3 + 6f1
3σφ2

)
Ψ∗Ψ. (2.30b)

It is noticeable that the existence condition of standard quantum mechanical probabilistic

interpretation, fixes the operator ordering index to n = −1.

2.3 Semiclassical approximation

Now to check the viability of the quantum equation (2.26), it is required to test its behaviour

under certain appropriate semi-classical approximation. For the purpose, it is easier to

handle equation (2.25) instead, and express it as,

− ~
2√z

36Bx

(
∂2

∂x2
+
n

x

∂

∂x

)
Ψ− ~

2

2xz
3
2

∂2Ψ

∂φ2
−i~

∂Ψ

∂z
+

i~

2z

(
φ3+6f1

φ2

)
∂Ψ

∂φ
+VΨ=0 (2.31)

where

V =

[
3x

2
√
z

(
f0+

f1

φ
−φ2

12

)
+

9x

2
√
z

(
f1

φ2
+
φ

6

)2

+
6f0H

2z
3
2

x
+
12f1H

2z
3
2

xφ
+

i~

4z

(
φ3−12f1

φ3

)]
.

(2.32)

The above equation (2.31) may be treated as time independent Schrödinger equation with

three variables (x, z, φ). Therefore, as usual, let us seek the solution of equation (2.31) as,

Ψ = ψ0e
i
~
S(x,z,φ) (2.33)
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and expand S in power series of ~ as,

S = S0(x, z, φ) + ~S1(x, z, φ) + ~
2S2(x, z, φ) + . . . . (2.34)

Now inserting the expression (2.34) in equation (2.33) and taking appropriate derivatives

of Ψ, everything may finally be inserted in equation (2.31). At the end, equating the

coefficients of different powers of ~ to zero, one obtains the following set of equations

(up-to second order)
√
z

36Bx
S2
0,x+

S2
0,φ

2xz
3

2

+S0,z−
(

φ3+6f1
2zφ2

)
S0,φ+V(x,z,φ)= 0, (2.35a)

− i
√
z

36Bx
S0,xx− in

√
z

36Bx2
S0,x− iS0,φφ

2xz
3

2

+S1,z+
√
zS0,xS1,x

18Bx
+

S0,φS1,φ

xz
3

2

−
(
φ3+6f1
2zφ2

)
S1,φ=0, (2.35b)

−i

√
zS1,xx

36Bx
−i

n
√
zS1,x

36Bx2
+
√
z
S2
1,x+2S0,xS2,x

36Bx
+

S2
1,φ+2S0,φS2,φ

2xz
3

2

−i
S1,φφ

xz
3

2

+S2,z−
(
φ3+6f1
2zφ2

)
S2,φ=0,

(2.35c)

that are to be solved successively to find S0(x, z, φ), S1(x, z, φ) and S2(x, z, φ) and so

on. Now identifying S0,x as px; S0,z as pz and S0,φ as pφ one can recover the classical

Hamiltonian constraint equation Hc = 0, given in equation (2.13) from equation (2.35a).

This is a consistency check. Thus, S0(x, z) can now be expressed as,

S0 =

∫
pzdz +

∫
pxdx+

∫
pφdφ (2.36)

apart from a constant of integration which may be absorbed in ψ0. The integrals in the

above expression can be evaluated using the classical solution for k = 0 presented in

equation (2.20), the definition of pz given in (2.9b), pφ in (2.9d) and px = Q. Further, we

recall the expression for Q given in (2.6), remember the relation, x = ż, where, z = a2,

choose n = −1, since probability interpretation holds only for such value of n, and use the

form of f(φ) presented in (2.23), to obtain the following expressions of px, pz pφ in term

of x, z and φ,

f ′ = −
(
f1

φ2
+

φ

6

)
(2.37a)

x = 2Hz (2.37b)

px = 36
√
2BH

3
2

√
x (2.37c)

pz = −72BH3√z − 6f0H
√
z − 9f1H

a0φ0
z (2.37d)

pφ =
6f1Ha

3
0φ

3
0

φ5
(2.37e)

Hence the integrals in (2.36) are evaluated as,
∫

pxdx = 24
√
2BH

3
2x

3
2 ; (2.38a)

∫
pzdz = −48BH3z

3
2 − 4f0Hz

3
2 − 9f1H

2a0φ0
z2; (2.38b)

∫
pφdφ = −3f1Ha

3
0φ

3
0

2φ4
. (2.38c)

– 10 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
8

Thus, the explicit form of S0 in terms of z is found as,

S0 =
(
48BH3 − 4f0H

)
z

3
2 − 6f1H

a0φ0
z2. (2.39)

For consistency, one can trivially check that the expression for S0 (2.39) so obtained,

satisfies equation (2.35a) identically. In fact it should, because, equation (2.35a) coincides

with Hamiltonian constraint equation (2.13) for k = 0. Moreover, one can also compute

the zeroth order on-shell action (2.8). Using classical solution (2.20) one may express all

the variables in terms of t and substitute in the action (2.8) to obtain

A = Acl =

∫ [
144BH4a30e

3Ht − 12f0H
2a30e

3Ht − 24f1H
2

φ0
a30e

4Ht

]
dt. (2.40)

Integrating we have,

A = Acl =
(
48BH3 − 4f0H

)
a30e

3Ht − 6f1H

a0φ0
a40e

4Ht, (2.41)

which is the same as we obtained in (2.39), proving S0 to be the classical action and

checking consistency yet again. Hence, at this end, the wave function is

Ψ = ψ0e
i
~

[

(48BH3−4f0H)z
3
2− 6f1H

a0φ0
z2

]

. (2.42)

2.3.1 First order approximation

Now for n = −1, equation (2.35b) can be expressed as,

−
√
z

36Bx

(
iS0,xx−2S0,xS1,x−

i

x
S0,x

)
− 1

2xz
3

2

(
iS0,φφ−2S0,φS1,φ+

x
√
z

φ2

(
φ3+6f1

)
S1,φ

)
+S1,z =0.

(2.43)

Using the expression for S0 obtained in (2.39), we can write S1,z from the above equation as

S1,z =
i
[
12D
a20φ

2
0

− 30
√
z

a30φ
3
0

− D
96BH2z

]

[
2 + D

24BH2 −
√
z

12BH2a0φ0
+ 12Dz

a20φ
2
0

+ (6f1 − 24) z
3
2

a30φ
3
0

] , (2.44)

where, D = 12BH2 − 1. On integration the form of S1 is found as,

S1 = iF (z), (2.45)

and therefore the wavefunction up to first-order approximation reads

Ψ = ψ01e
i
~

[

(48BH3−4f0H)z
3
2− 6f1H

a0φ0
z2

]

, (2.46)

where,

ψ01 = ψ0e
−F (z). (2.47)

It has been proved that S0 obeys Hamilton-Jacobi equation. Comparison with classical

constraint equation Hc = 0 (2.13), one finds px = ∂S0

∂x
, and pz = ∂S0

∂z
. So the wavefunc-

tion shows a strong correlation between coordinates and momenta. Now using the relation

between velocities and momenta and the fact that S0 obeys Hamilton-Jacobi equation, it

is apparent that the above relations define a set of trajectories in the x − z plane, which

are solutions to the classical field equations. Thus the semiclassical wave function (2.46)

is strongly peaked around classical inflationary solutions (2.20).

– 11 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
8

3 Inflation

Since the very early quantum universe smoothly transits to the de-Sitter type inflationary

era, we therefore in the following subsection 3.1, compute the inflationary parameters in

connection with the action (2.1) under consideration. It is important to note that the

potential (2.23) is flat when φ is sufficiently large, and so, the slow-roll approximation is

admissible. In the next subsection 3.2, we study classical aspect of gravitational pertur-

bation. Finally in subsection 3.3 we derive the perturbation spectra generated from the

quantum fluctuations in an early scalar field dominated accelerating (inflation) phase.

3.1 Slow roll approximation

Before we proceed, let us perform conformal transformation to demonstrate the fact that

the higher order theory of gravity with non-minimal coupling under consideration (2.16),

involves an additional degree of freedom. Under the following conformal transformation,

gµν → ĝµν = Ω2gµν and under the choice Ω2 = F ≡ ∂f(φ,R)

∂R
= e

√

2
3
ψ

(3.1)

where ψ =
√

3
2 lnF is the new dynamical variable, the Lagrangian density, associated with

action (2.16) may be transformed into [36, 37]

L̂ =
1

2
R̂− 1

2F
φ;̂µφ

;̂ν − 1

2
ψ;̂µψ

;̂ν − V̂ (φ, ψ), where, V̂ (φ, ψ) =
RF − f + 2V

2F 2
. (3.2)

In the above, we use hats to denote quantities based on the conformally transformed metric

frame. Thus, our original f(φ,R) gravity is cast into the Einstein theory with an additional

scalar field ψ, and a special potential term V̂ (φ, ψ) (3.2).2 Using the conformal equivalence

between the theories, it is possible to derive the equations for the background and the

perturbations. The general asymptotic solutions for the perturbations in the generalized

gravity from the simple results known in the minimally coupled scalar field may also be

presented [36, 37]. However, we shall not use the conformal transformation properties in the

following treatment. Rather we use the conformal transformation to realize that, along with

the standard slow-roll conditions of minimally coupled single-field inflation, viz. φ̇2 ≪ V

and |φ̈| ≪ 3H|φ̇|, it is required to impose one additional condition due to the presence

of additional field viz. 4|ḟ|H ≪ 1 [38]. As in the case of Gauss-Bonnet coupling [39–42],

instead of standard slow roll parameters, here also the introduction of a combined hierarchy

in the following manner, appears to be much suitable. Firstly, the background evolution

is described by a set of horizon flow functions (the behaviour of Hubble distance during

inflation) starting from

ǫ0 =
dH

dHi

, (3.3)

2Only in a very special case, assuming ψ = ψ(φ), one can introduce another scalar field φ̂ to express

the Lagrangian in terms of a single scalar field as in the case of minimally coupled scalar-tensor theory of

gravity as, L̂ = R̂
2
− 1

2
φ̂;̂µφ̂

;̂µ−V̂ (φ̂). However in that case, φ̂ should satisfy the relation dφ̂ =
√

1

F
dφ2 + dψ2.
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where, dH = H−1 is the Hubble distance, also called horizon in our chosen unit. We use

suffix i to denote the era at which inflation was initiated. Now hierarchy of functions is

defined in a systematic way as

ǫl+1 =
d ln |ǫl|
dN

, l ≥ 0. (3.4)

In view of the definition N = ln a
ai
, which implies Ṅ = H, one can compute ǫ1 = d ln dH

dN
,

which is the logarithmic change of Hubble distance per e-fold expansion N . It is the first

slow-roll parameter ǫ1 = ˙dH = − Ḣ
H2 , implying that the Hubble parameter almost remains

constant during inflation. The above hierarchy allows one to compute ǫ2 = d ln ǫ1
dN

= 1
H

ǫ̇1
ǫ1
,

which implies ǫ1ǫ2 = dH d̈H = − 1
H2

(
Ḧ
H

− 2 Ḣ2

H2

)
. In the same manner higher slow-roll

parameters may be computed. Equation (3.3) essentially defines a flow in space with

cosmic time being the evolution parameter, which is described by the equation of motion

ǫ0ǫ̇l −
1

dHi

ǫlǫl+1 = 0, l ≥ 0. (3.5)

One can also check that (3.5) yields all the results obtained from the hierarchy defined

in (3.4), using the definition (3.3). As already mentioned, the additional degree of freedom

appearing due to the function f(φ,R), requires to introduce yet another hierarchy of flow

parameters as

δ1 = 4ḟH ≪ 1, δm+1 =
d ln |δm|
d ln a

, with, m ≥ 1. (3.6)

Clearly, for m = 1, δ2 =
d ln |δ1|
dN

= 1
δ1

δ̇1
Ṅ
, and δ1δ2 =

4
H

(
f̈H + ḟḢ

)
, and so on. The slow-roll

conditions therefore read |ǫm| ≪ 1 and |δm| ≪ 1, which are analogous to the standard slow-

roll approximation. Now we arrange the field equations (2.17) and (2.19) in the following

manner

φ̇2 + 2V = 12H2f + 3(1 + 4H ḟ) + 144BH4

(
2 +

Ḣ

H2

)
− 72BH4

(
2 +

Ḣ

H2

)2

− 144BH4


1− 1

H2

(
Ḧ

H
− 2

Ḣ2

H2

)
− 2

(
1 +

Ḣ

H2

)2

+ 1


− 3.

(3.7)

φ̈+ 3Hφ̇ = −V ′ + 6H2f ′
(
2 +

Ḣ

H2

)
. (3.8)

In view of the slow-roll parameters, the above equations (3.7) and (3.8) may therefore be

expressed as

φ̇2 + 2V = 12H2f + 3 (1 + δ1) + 144BH4 (2− ǫ1)− 72BH4 (2− ǫ1)
2

− 144BH4f
[
(1 + ǫ1ǫ2)− 2 (1− ǫ1)

2 + 1
]
− 3,

(3.9)

φ̈+ 3Hφ̇ = −V ′ + 6H2f ′(2− ǫ1), (3.10)
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respectively, and may be approximated to

V ≃ 6H2f, (3.11)

3Hφ̇ ≃ −V ′ + 12H2f ′. (3.12)

Since the Hubble parameter H = H, remains constant during inflation, so the above pair

of equations (3.11) and (3.12) may be combined to obtain

φ̇ =
V ′

3H
. (3.13)

The number of e-folds then has to be computed in view of the following relation,

N(φ) ≃
∫ tf

ti

Hdt =

∫ φf

φi

H

φ̇
dφ ≃

∫ φf

φi

3H2

V ′ dφ, (3.14)

where, φi and φf denote the values of the scalar field at the beginning (ti) and the end (tf )

of inflation. Since we already have knowledge on the specific forms of the potential V (φ)

and the coupling parameter f(φ) in view of relations (2.23) and (2.24) it is now possible

to compute the number of e-folding, along with the other slow-roll parameters.

The number of e-folding (3.14) now reads

N(φ) =
1

4f1

∫ φi

φf

φ2dφ =
1

12f1
(φ3

i − φ3
f ). (3.15)

We take following numerical values: φi = 4.8Mp, φf = 1.2Mp, f0 = 0.4291M2
p , and,

f1 = −0.162M3
p to find that inflation halts (ǫf = 1) after N = 56 e-fold of expansion. The

slow-roll parameters take the numerical values,

ǫ=
M2

pl

2

(
V ′

V

)2

=
M2

pl

2

(
V 2
0

φ2 (V0+V1φ)
2

)
=

M2
p

φ2
i

(
2f2

1

(2f1+f0φi)2

)
=0.0007562, (3.16)

η=M2
pl

V ′′

V
=M2

pl

(
2V0

φ2(V0+V1φ)

)
=

M2
p

φ2
i

(
4f1

(2f1+f0φi)

)
=−0.0162, (3.17)

and therefore the scalar to tensor ratio and the spectral index take the values r=16ǫ=0.012;

and, ns = 1 − 6ǫ + 2η = 0.963, which are very much within the limit of recently released

data [54].

3.2 Gravitational perturbation: validating the relation between f(φ) and V (φ)

In this subsection, we study gravitational perturbation essentially to demonstrate the fact

that the perturbed form of the background scalar field equation when equated to the same

equation obtained by varying the metric-perturbed action, the relationship between the

potential V (φ) and f(φ,R) and hence between V (φ) and the coupling parameter f(φ) is

found to be the same as already obtained (2.21) in view of de-Sitter solution (2.20) of the

classical field equations (2.17) and (2.19). Although, it might appear striking, nevertheless,

it validates the semiclassical approximation performed in subsection 2.3, that ends up with

a wave-function which is oscillatory about de-Sitter expansion.
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Cosmological perturbation in Einstein’s gravitational theory [43, 44] and also in a

broad class of theories f(φ,R), often called generalized gravity theories, have been anal-

ysed thoroughly in a series of articles [36, 37, 45–49], in uniform curvature gauge, first

introduced by Mukhanov [50]. The asymptotic solutions of the scalar field equation in the

large and small scale limits have been found. Further, the primordial seed density fluc-

tuations generated from vacuum quantum fluctuations in different inflationary models for

generalized gravity theories, have also been presented [37, 43, 45]. Although our present

aim is to validate the choice of de-Sitter expansion, which relates the potential and the

coupling parameter uniquely, however, for the sake of completeness we briefly review the

work of Hwang regarding quantum perturbation, and present the expression for the power

spectrum in the generalized gravity under consideration.

As usual, we consider a spatially flat, homogeneous and isotropic Robertson-Walker

metric together with the most general scalar-type and tensor-type space-time dependent

perturbations as,

ds2 = −a2 (1 + 2α) dη2 − a2 (β,α +Bα) dηdx
α

+ a2
[
g
(3)
αβ (1 + 2ϕ) + 2γ,α|β + 2Cα|β + 2Cαβ

]
dxαdxβ ,

(3.18)

where, dt ≡ adη, η being the conformal time. While, α(x, t), β(x, t), ϕ(x, t) and

γ(x, t) characterize the scalar-type perturbations, Bα(x, t) and Cα(x, t) are trace-free

(Bα
|α = 0 = Cα

|α) and correspond to the vector-type perturbations. Finally, Cαβ(x, t) is

transverse and trace-free (Cβ
α|β = 0 = Cα

α ) and corresponds to the tensor-type perturba-

tion. Indices are based on g
(3)
αβ as the metric and the vertical bar (‘|’) indicates a covariant

derivative. Now, we decompose the energy-momentum tensor along with the scalar field

by introducing perturbation as, T a
b (x, t) = T̄ a

b (t) + δT a
b (x, t), φ(x, t) = φ̄(t) + δφ(x, t), and

F = F̄ + δF . In these expressions an over-bar indicates a background ordered quantity

and it will be omitted unless necessary. At this stage, we introduce a gauge invariant

combination as,

δφϕ = δφ− φ̇

H
ϕδφ,

δF

Ḟ
=

δφ

φ̇
, (3.19)

where H = ȧ
a
is the Hubble parameter, and since δF is related to δφ, so one can use

either as the representative. Note that δφϕ becomes δφ in the uniform-curvature gauge

which takes φ ≡ 0 as the gauge condition. The perturbed action in a unified form may be

expressed as [37, 48],

δS =
1

2

∫
a3Θ

{
˙δφϕ

2 − 1

a2
δφ|ν

ϕ δφϕ,ν +
1

a3Θ

H

φ̇

[
a3Θ

(
φ̇

H

).].

δφ2
ϕ

}
dtd3x, (3.20)

where, Θ =
1+ 3Ḟ2

2φ̇2F
(

1+ Ḟ
2HF

)2 , makes all the difference between generalized theory of gravity under

consideration and General Theory of Relativity with a minimally coupled scalar field, for

which Θ = 1. The equation of motion of δφϕ then takes the following form,

¨δφϕ +
(a3Θ)̇

a3Θ
˙δφϕ −

{
∇(3)2

a2
+

1

a3Θ

H

φ̇

[
a3Θ

(
φ̇

H

).].}
δφϕ = 0. (3.21)
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Now, the perturbed form of the background equation (2.19) can be expressed3 as,

δφ̈ϕ + 3Hδφ̇ϕ − ∇(3)2

a2
+

1

2

(
2V ′′ − f ′′

)
δφϕ = 0, (3.22)

where, ∇(3)2 is the Laplacian based on the comoving part of the background three-space

metric. Equation (3.21) reduces to the perturbed form (3.22) of the background metric

equation (2.19) under the following conditions.

(a3Θ)̇

a3Θ
= 3H (3.23)

1

a3Θ

H

φ̇

[
a3Θ

(
φ̇

H

).].

=
1

2

(
2V ′′ − f ′′

)
= θ0, (3.24)

where, θ0 is a constant. Now, the above pair of conditions (3.23) and (3.24) lead to

Θ = constant, (3.25)

2V ′ − f ′ = 2θ0φ, (3.26)

where we have set the constant of integration in (3.26) to zero. In the process we find

exactly the same relationship (2.21) between the generalized parameter f(φ,R) and the

potential V (φ), under the choice θ0 = 2H2, as was found while seeking inflationary solution

of the classical field equations in the de-Sitter exponential form. This fact proves without

ambiguity that the model under consideration (1.2), allows de-Sitter expansion in the

inflationary regime rather than the power law expansion. Further, it also proves that the

technique followed to find gravitational perturbation for non-standard models is legitimate.

This is another important finding of the present work.

Now, introducing new variables, z ≡ a
√
Θ φ̇

H
and v ≡

√
Θaδφϕ, one can express the

above equation (3.21) in terms of ϕδφ as

v,ηη +
(
k2 − z,ηη

z

)
v = 0. (3.27)

In the above, comma denotes ordinary derivative. The asymptotic solutions of equa-

tion (3.27) in the large-scale (k2 ≪ z,ηη
z
) and small-scale (k2 ≫ z,ηη

z
) limits are,

δφϕ(x, t) = − φ̇

H

[
C(x)−D(x)

∫ t

0

1

a3Θ

H2

φ̇2
dt

]
, (3.28)

δφϕ(k, η) =
1

a
√
2k

[
c1(k)e

ikη + c1(k)e
−ikη

] 1√
Θ
, (3.29)

where, C(x), D(x) are integration constants of the relatively growing and decaying modes

and c1(k), c2(k) are arbitrary integration constants, respectively. Further, as
z,ηη
z

= n
η2
,

where n = constant, the solution of equation (3.21) can be expressed in the following

form [51–53],

δφϕk(η) =

√
π|η|
2a

[
C1(k)H

(1)
ν (k|η|) +D1(k)H

(2)
ν (k|η|)

] 1√
Θ
, (3.30)

3Here, φ = φ̄+ δφϕ and φ̇ = φ,iu
i. So that φ̇ = (φ̄+ δφϕ),i(ū

i + δui).
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where C1 and D1 are integration constants, ν =
√

n+ 1
4 and the Hankel functions

H
(1,2)
ν (x) → ±Γ(ν)( 2

x
)ν

iπ
.

3.3 Perturbative semiclassical approach

In the post Planck era gravity should be treated classically, while the matter fields still

behave quantum mechanically. ‘Quantum Field Theory in Curved Space-Time’ (QFT in

CST), treats gravity classically while the energy-momentum tensor is quantized. For Gen-

eral Theory of Relativity, it is expressed as Gµν =< T̂µν >, where the quantum operator

< T̂µν > is a suitably renormalized expectation value. The perturbative semiclassical ap-

proximation under consideration in this subsection, is quite different from QFT in CST. In

this technique, the perturbed parts of the metric and matter fields are treated as quantum

mechanical operators, keeping the background parts classical [45–47]. Since, we derive

the perturbation spectra generated from the quantum fluctuations in an early scalar field

dominated accelerating (inflation) phase, therefore this approach appears to be more le-

gitimate than QFT in CST. However, we shall use the result of QFT in CST to choose

appropriate vacuum.

Instead of the classical decomposition, we are therefore required to replace the

perturbed order variables with the quantum operator in Heisenberg representation of

δφ̂(x, t) as,

φ(x, t) = φ(t) + δφ̂(x, t); δφ̂ϕ = δφ̂− φ̇

H
ϕ̂. (3.31)

Note that the background order quantities are considered as classical variables. Now, in the

flat space under consideration it is possible to expand δφ̂(x, t) in the mode expression as

δφ̂(x, t) =

∫
d3k

(2π)
3
2

[
âkδφk(t)e

ik.x + â
†
k
δφ∗

k
(t)e−ik.x

]
, (3.32)

where, the annihilation and creation operators, âk and â
†
k
satisfy standard commutation

relation:

[âk, âk′ ] = 0 =
[
â
†
k
, â

†
k
′

]
, and,

[
âk, â

†
k
′

]
= δ3(k− k′), (3.33)

while δφk(t) is the mode function, a complex solution of the classical mode evolution

equation (3.21). Equal time commutation relation must also hold for δφ̂(x, t) and its

canonical conjugate momentum, which reads
[
δφ̂ϕ(x, t), δ

˙̂
φϕ(x

′, t)
]
=

i

a3Θ
δ3(x− x′). (3.34)

In order that the commutation relations (3.33) and (3.34) hold simultaneously, the mode

function should satisfy the Wronskian condition,

δφϕkδφ̇
∗
ϕk − δφ∗

ϕkδφ̇ϕk =
i

a3Θ
. (3.35)

At this stage assuming
z,ηη
z

= n
η
, the implication of which has been discussed in details by

Hwang in [47], following solution is found

δφϕk(η) =

√
π|η|
2a

[
c1(k)H

(1)
ν (kη) + c2(k)H

(2)
ν (kη)

] 1

Θ
, (3.36)
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where, ν =
√
n+ 1

4 . Coefficients c1(k) and c2(k) are arbitrary functions of k, which are

normalized in accordance with (3.35) as

|c1(k)|2 − |c2(k)|2 = 1. (3.37)

Clearly imposing quantum condition in (3.35) does not completely fix the coefficients.

The remaining freedom depends on the choice of vacuum state. Here, we insert the result

of QFT in CST to choose adiabatic vacuum, also known as the Bunch-Davies vacuum in

de-Sitter space, which fixes c1(k) = 0 and c2(k) = 1, corresponding to positive frequency

solution in Minkowski space limit. The power spectrum therefore takes the form,

P
δφ̂ϕ

(k, t) =
k3

2π2
|δφϕk(t)|2 =

k3

2π2

∫
< δφ̂ϕ(x+ r, t)δφ̂ϕ(x, t) >vac e

−ik.rd3r, (3.38)

where, <>vac≡< vac||vac > is a vacuum expectation value and ak|vac >≡ 0 for every k.

Now, assuming adiabatic vacuum, two point function G(x′, x′′) which is defined as,

G(x′, x′′) ≡< δφ̂ϕ(x
′)δφ̂ϕ(x

′′) >vac =

∫
d3k

(2π)3
eik.(x

′−x
′′)δφk(t

′)δφ∗
k
(t′′)

=

∫ ∞

0

k2dk

2π2
J0(k|x′ − x′′|)δφk(t

′)δφ∗
k
(t′′),

(3.39)

where, x ≡ (x, t), takes the form in the exponential expansion case (η = − 1
aH

),

G(x′,x′′)=
(14−ν2)sec(πν)

16πa′a′′η′η′′
×Γ

(
3

2
+ν,

3

2
−ν; 2; 1; 1+

(η′−η′′)2−(x′−x′′)2

4η′η′′

)
1√
Θ′Θ′′ ,

(3.40)

which is valid for ν < 3
2 . At the equal time, the vacuum expectation value reads

< δ̂φ(x+ r, t)δ̂φ(x, t) >vac=

∫
d3k

(2π)3
eik.r|δφk(t)|2 =

∫ ∞

0
P
δ̂φ
(k, t)J0(kr)d ln k. (3.41)

In the small scale limit the solution (3.36) takes the form

δφϕk(η) =
1

a
√
2kΘ

e−ikη+i(ν+ 1
2
)π
2 . (3.42)

On the contrary, in the large scale limit we can write from (3.36)

δφϕk(η) = i

√
|η|Γ(ν)

2a
√
πΘ

(
k|η|
2

)−ν

, (3.43)

and the power spectrum reads

P
δφ̂ϕ

(k, η) =
Γ(ν)

π
3
2a|η|

(
k|η|
2

) 3
2
−ν 1√

Θ
. (3.44)

Since Θ is a constant in view of (3.25), so the power spectrum may deviate only by a

constant factor from the minimally coupled case for which Θ = 1.
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4 Concluding remarks

In the absence of a complete theory of gravity, quantum cosmology is studied to perceive

the evolution of the universe in the Planck regime, when gravity is quantized. Shortly after

the Plank’s era, gravity becomes classical, while the matter fields still remain quantized.

In this era, the universe went through an inflationary phase. The seed of perturbation

grows, which finally leads to the structures we observe. In this manuscript, we have found

the wave-function of a model universe which contains scalar curvature squared term. The

effective Hamiltonian operator is hermitian and standard quantum mechanical probability

interpretation holds, which prove that the wave-function is stable and well behaved. The

model universe transits smoothly to a de-Sitter type inflationary phase, and inflationary pa-

rameters have been found to be very much within the observational limit. The perturbation

analysis shows that only de-Sitter solution is allowed, since it relates the coupling parameter

and the potential in the same manner as de-Sitter solution to the classical field equations

does. Perturbative semiclassical approximation method has been pursued in which the per-

turbed parts of the metric and matter fields are treated as quantum mechanical operators,

keeping the background parts classical. In the process, we derive the perturbation spectra

generated from the quantum fluctuations in an early scalar field dominated de-Sitter phase.

The power-spectrum deviates only by a constant term from the minimally coupled case.

Regarding the canonical quantization scheme followed here and the results obtained in

the present manuscript, there are a few important issues to discuss. We have at least in one

case (G-B-dilatonic coupled gravity in the presence of scalar curvature squared term) proved

that the known standard techniques ([17–20]) regarding canonical formulation of higher

order theory of gravity do not produce a viable quantum theory, since these techniques don’t

reveal correct classical analogue under semi-classical approximation [30]. It is therefore

legitimate to follow the technique of canonical formulation, which is well behaved in all

the cases studied so far. Here, we have considered a modified (with higher order term)

non-minimally coupled scalar-tensor gravitational action, and aimed at studying the very

early universe. Canonical formulation in isotropic and homogeneous background has been

performed following modified Horowitz’ formalism, which has been extensively applied

earlier in different situations. The most important result as already mentioned may be

summarized in the following manner. The forms of the coupling parameter f(φ) and the

potential V (φ) obtained following perturbative analysis, dictates that the classical field

equations must admit de-Sitter type exponential expansion in the inflationary regime.

The wave function of the universe also admits the same de-Sitter type expansion under

semiclassical approximation. This means that the very early universe smoothly transits to

exponential expansion (inflationary) phase. This result proves overall consistency of the

present study. Finally, although we are neither the proponents of multiverse theory nor

do we oppose it as a topic of theological discourse, it should be mentioned that a stable

quantum dynamics in the Trans-Planckian era doesn’t in any way rule out the possibility of

multiverse, which may have been created during the next inflationary phase. The potential

we found is sufficiently flat when the scalar field is large enough, and therefore the possibility

of multiverse is nascent in the quantum fluctuation of such a field.
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A Hermiticity of the effective Hamiltonian Ĥe

To prove that the effective Hamiltonian is hermitian, let us split it as

Ĥe = Ĥ1 + Ĥ2 + Ĥ3 + V̂e, (A.1)

where,

Ĥ1 = − ~
2

54B

(
1

x

∂2

∂x2
+

n

x2
∂

∂x

)
,

Ĥ2 = − ~
2

3xσ
4
3

∂2

∂φ2
,

Ĥ3 =
i~

3σ

(
φ3 + 6f1

φ2

)
∂

∂φ
+

i~

6σ

(
φ3 − 12f1

φ3

)
.

(A.2)

Let us first take the very first term.

∫
(Ĥ1ψ

∗)ψdx = − ~
2

54B

∫ (
1

x

∂2ψ∗

∂x2
+

n

x2
∂ψ∗

∂x

)
ψdx = − ~

2

54B

∫ (
ψ

x

∂2ψ∗

∂x2
+

nψ

x2
∂ψ∗

∂x

)
dx

(A.3)

Under integration by parts twice and dropping the first (integrated out) term due to fall-of

condition, we obtain,

∫
(Ĥ1ψ

∗)ψdx = − ~
2

54B

∫
ψ∗

[
1

x

∂2ψ

∂x2
−
(
2 + n

x2

)
∂ψ

∂x
+

2(n+ 1)

x3
ψ

]
dx

= − ~
2

54B

∫
ψ∗

[
1

x

∂2ψ

∂x2
− 1

x2
∂ψ

∂x

]
dx =

∫
ψ∗Ĥ1ψdx,

(A.4)

under the choice n = −1. Thus, Ĥ1 is hermitian, under a particular choice of operator

ordering parameter n = −1. It is trivial to prove that Ĥ2 is hermitian. We therefore turn

our attention to Ĥ3.
∫
(Ĥ3ψ

∗)ψdφ = − i~

3σ

∫ (
φ+

6f1
φ2

)
∂ψ∗

∂φ
ψdφ− i~

6σ

∫ (
1− 12f1

φ3

)
ψ∗ψdφ. (A.5)

Again under integration by parts and dropping the integrated out terms due to fall-of

condition, it is possible to arrive at
∫
(Ĥ3ψ

∗)ψdφ =
i~

3σ

∫
ψ∗

(
φ+

6f1
φ2

)
∂ψ

∂φ
dφ+

i~

6σ

∫ (
1− 12f1

φ3

)
ψ∗ψdφ =

∫
ψ∗Ĥ3ψdφ,

(A.6)

and the Weyl symmetric ordering performed between f ′(φ) and pφ turns out Ĥ3 to be

hermitian operator, and thus the effective Hamiltonian (Ĥe) as such is hermitian operator.

B Canonical formulation following standard techniques

While in the methodology of canonical formulation of higher order theory of gravity adopted

here, we insist on fixing the three-space metric hij and the Ricci scalar R at the boundary,
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the standard methods keep hij and the extrinsic curvature tensorKij fixed at the boundary,

instead. In the process, all the boundary terms, obtained under integration by parts

vanish and there is no need to supplement the action by boundary terms as presented in

action (2.1). As a result it is legitimate to start with action (1.2). In the appendix, we show

that canonical formulation following some standard methods lead to a unique Hamiltonian.

However it is different from and is not canonically related to the one (2.13) obtained in

the manuscript.

B.1 Ostrogradski’s formalism

The Hamiltonian formulation of theories with higher derivatives was first developed by

Ostrogradski more than one and half a century ago [17], which gives special treatment to

the highest derivatives of the original Lagrangian, so that the initial higher-order regular

system be reduced to a first-order system. Ostrogradski’s theorem can be stated as follows:

if the higher order time derivative Lagrangian is non-degenerate, there is at least one linear

instability in the Hamiltonian of this system. Basically, the method [17] is adopted only to

systems described by regular Lagrangian, that is, a Lagrange function for which the associ-

ated Hessian matrix formed with respect to the highest-order time derivatives has a nonzero

determinant. The underlying idea of this method and of its subsequent generalizations con-

sist in introducing, besides the original configuration variables, a new set of coordinates

that encompasses each of the successive time derivatives of the original Lagrangian coordi-

nates so that the initial higher-order regular system be reduced to a first-order system. In

Ostrogradski’s formalism [55, 56], if a Lagrangian contains maximum order of m-th time

derivatives of the generalized coordinate qi, in the form L = L(qi, q̇i, q̈i,
...
q i . . . ,

m qi), where,
mqi = ( d

dt
)m, then one should choose m independent variables (qi, q̇i, q̈i,

...
q i . . . ,

m−1 qi) and

corresponding m generalized momenta pi,0, pi,1, pi,2 . . . pi,m−1 according to the recurrence

relations, pi,m−1 = ∂L
∂qmi

, and pi,n−1 = ∂L
∂qni

− ṗi,n, for n = 1, 2, . . .m − 1. With these new

independent coordinates and their corresponding momenta, the Legendre transformation

to express the pase-space Hamiltonian reads

HO =
N∑

i=1

m−1∑

α=

q̇αi pi,α − L. (B.1)

Starting with action (2.4), apart from the supplementary boundary terms, we therefore, for

the present purpose require two variable z and x, where x = ż
N

= −2Kij . The action (2.4)

may therefore be expressed as,

A =

∫ [
3f

√
z (ẋ+ 2kN) +

9B

N
√
z
(ẋ+ 2kN)2 + z

3
2

(
φ̇2

2N
− V N

)]
dt. (B.2)

Since, the Hessian determinant vanishes, so the corresponding Lagrangian is singular, and

as a result, canonical formulation following Ostrogradski’s formalism is not possible. How-

ever, if we make a gauge fixing N = 1 a-priori, the Hessian is non-vanishing and Ostro-
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gradski’s technique may be pursued. The canonical momenta in that case are,

px = 3f
√
z +

18B√
z

(ẋ+2k) ; pz =
∂L

∂ż
− ṗx = −18Bẍ√

z
+

9Bx

z
3
2

(ẋ+ 2k)− 3f ′φ̇
√
z − 3fx

2
√
z
;

pφ =
φ̇z

3
2

N
. (B.3)

In terms of phase space variables the Hamiltonian reads,

HO = xpz +

√
z

36B
p2x − 2kpx −

fzpx

6B
+

f2z
3
2

4B
+

p2φ

2z
3
2

+ V z
3
2 . (B.4)

B.2 Dirac’s constraint analysis

As already mentioned, for arbitrary N , the Hessian vanishes, and so canonical formulation

may be pursued following Dirac’s constraint analysis [18, 19]. We introduce ( ż
N

− x) = 0

through Lagrange multiplier λ, and the point Lagrangian corresponding to action (2.4)

therefore reads,

L = 3f
√
z (ẋ+ 2kN) +

9B

N
√
z
(ẋ+ 2kN)2 + z

3
2

(
1

2N
φ̇2 − V N

)
+ λ

(
ż

N
− x

)
. (B.5)

Canonical momenta are

px = 3f
√
z +

18B

N
√
z
(ẋ+ 2kN), pz =

λ

N
, pφ =

φ̇z
3
2

N
, pN = 0, pλ = 0 (B.6)

The constraint Hamiltonian therefore is

Hc = ẋpx + żpz + φ̇pφ + ṄpN + λ̇pλ − L (B.7)

Clearly we require three primary constraints involving Lagrange multiplier or its conjugate

viz, φ1 = pz − λ, φ2 = pλ, φ3 = pN . Since, the lapse function N is non-dynamical, so

we have safely considered the associated constraint to vanish strongly. The first two con-

straints can now be harmlessly substituted into the modified primary Hamiltonian, which

takes the form,

Hp1 =
N
√
z

36B
p2x−2kNpx−

fzNpx

6B
+

Nf2z
3
2

4B
+

Np2φ

2z
3
2

+V Nz
3
2 +λx+u1

(
Npz −λ

)
+u2pλ.

(B.8)

Here u1, u2 are the Lagrange multipliers and the Poisson bracket {x, px} = {z, pz} =

{λ, pλ} = 1, hold. Now constraint should remain preserved in time, which are exhibited in

the Poisson brackets {φi, Hp1} viz,

φ̇1 = {φ1, Hp1} = −N
∂Hp1

∂z
− u2 +Σ2

i=1φi{φ1, ui}. (B.9)

φ̇2 = {φ2, Hp1} = −x+ u1 +Σ2
i=1φi{φ2, ui} (B.10)

Consequently, all the Poisson bracket relations vanish weakly if we set,

u2 = −N
∂Hp1

∂z
and u1 = x. (B.11)
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Since, under the condition φ̇1 and φ̇2 should vanish weakly, explicit forms of u2 and u1 are

found, so the modified primary Hamiltonian is,

Hp2 =
N
√
z

36B
p2x−2kNpx−

fzNpx

6B
+
Nf2z

3
2

4B
+
Np2φ

2z
3
2

+V Nz
3
2 +Nxpz−N

∂Hp1

∂z
pλ. (B.12)

Now under the same condition that constraint should remain preserved in time, pλ vanishes

trivially. Therefore, the Hamiltonian finally takes the form,

HD = N

[
xpz +

√
z

36B
p2x − 2kpx −

fzpx

6B
+

f2z
3
2

4B
+

p2φ

2z
3
2

+ V z
3
2

]
= NHD. (B.13)

Clearly, HD is no different from HO.

B.3 Horowitz’ formalism

Instead of choosing the basic variables as {hij , Qij} together with their conjugate momenta,

{pij ,Πij}, (where, Qij = − ∂L
∂(LnKij)

), as considered by Boulware [57], Horowitz [20] took

another set of variables viz. {hij ,Kij} together with their conjugate momenta, {pij , P ij}.
Although, the resulting formalism is completely equivalent to [57], the latter appears

to be much convenient to handle. The quantized version (the modified Wheeler-deWitt

equation) in this formalism, corresponding to the positive definite action, resembles with

Schrödinger equation, where the internal parameter, viz. the three metric hij plays the

role of time. Horowitz [20] argued against supplementary boundary terms and insisted on

keeping hij and Kij fixed at the boundary. So that higher order theory is devoid of supple-

mentary boundary terms. However, treating Kij as a variable from the beginning, requires

to vary the action with respect to Kij as well, together with hij , since both are treated

on the same footing. This restricts classical solutions by and large. Therefore, in order

to obtain the canonical structure, Horowitz, started with an auxiliary variable Qij , which

is found by varying the action with respect to the highest derivative of the field variables

present in the action. The Hamiltonian so obtained, was finally expressed in terms of the

basic variables {hij ,Kij ; p
ij ,Πij}, following canonical transformation. Let us start with

the action (2.4) apart from the supplementary boundary terms to explore the situation.

Introducing the auxiliary variable

Q =
∂L

∂z̈
=

3f
√
z

N
+

18B

N
√
z

(
z̈

N2
− Ṅ ż

N3
+ 2k

)
(B.14)

straight into the action (2.4) as

A =

∫ [
Qz̈ − N3√zQ2

36B
− Nf2z

3
2

4B
+

fN2Qz

6B
+ 2kQN2 − Ṅ żQ

N
+

z
3
2 φ̇2

2N
− V Nz

3
2

]
dt,

(B.15)

and after integration by parts, resulting canonical action reads

A =

∫ [
−Q̇ż − N3√zQ2

36B
− Nf2z

3
2

4B
+

fN2Qz

6B
+ 2kQN2 − Ṅ żQ

N
+

z
3
2 φ̇2

2N
− V Nz

3
2

]
dt.

(B.16)
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Now in view of the canonical momenta

pz = −Q̇− ṄQ

N
; pφ =

z
3
2 φ̇

N
; pQ = −ż; pN = − żQ

N
(B.17)

the Hamiltonian in phase space variables is readily obtained as,

HH = −pQpz +
N3√zQ2

36B
− 2kQN2 − fN2Qz

6B
+

Nf2z
3
2

4B
+

Np2φ

2z
3
2

+ V Nz
3
2 . (B.18)

It is now required to express the Hamiltonian in terms of basic variables (z and x = ż
N
),

instead of auxiliary variable (z and Q). Since, pQ = −ż = −Nx and Q = px
N
, one therefore

is required to make the following canonical transformation with the replacements of, pQ by

−Nx and Q by px
N

in the Hamiltonian (B.18), which therefore finally results in,

HH = N

[
xpz +

√
z

36B
p2x − 2kpx −

fzpx

6B
+

f2z
3
2

4B
+

p2φ

2z
3
2

+ V z
3
2

]
= NHH. (B.19)

One can readily observe that the Hamiltonian obtained following the above three formalism,

viz., Ostrogradski (B.4), Dirac (B.13) and Horowitz (B.19)) are the same HO = HD = HH.
However, the Hamiltonian H (2.13) is different from HO (B.4), HD (B.13) or HH (B.19).

Although the set of transformations

z = Z, pz = PZ − 18B
kX

Z
3
2

+
3fX

2
√
Z
; x = X, px = PX + 36B

k√
Z

+ 3f
√
Z;

φ = Φ, pφ = PΦ + 3f ′X
√
Z,

(B.20)

relates H with the others, nevertheless, such transformations are not canonical. This

establishes the fact that different boundary conditions lead to different Hamiltonian in

general, and they are not related under canonical transformations. The reason for following

modified Horowitz’ formalism has been discussed in the introduction and in the concluding

remarks.
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