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1 Introduction

In the braneworld theory our universe can be taken as a brane embedding in the higher

dimensional spacetime. So the localization of matter fields is an very important issue.

Needless appending extra terms in the standard action the gravity can be localized on

branes [1–3] as well as scalar fields [4]. The localization of fermions can be realized by

introducing the usual Yukawa coupling [5] (or by another form of coupling [6]) with back-

ground scalar field in thick brane models [7–13]. The localization of U(1) gauge field is

more complex than above two fields, especially, in Randall-Sundrum (RSII) like model [2].

Pomarol showed in ref. [14] that U(1) gauge field can not be localized in the RSII model

with the following action

S = −1

4

∫
d5x
√−gFMNF

MN , (1.1)

where FMN = ∂MAN − ∂NAM is the field strength. But in some non-RSII models with

non-flat brane U(1) fields can be localized, for examples, the thick de Sitter (dS) brane

models [15–17], the thick Weyl brane model [18], and the thin wave brane models [19, 20].

The aim of this paper is to argue a new method to localize U(1) gauge field in 5D

RSII-like braneworld models. For a RSII-like braneworld scenario which should hold the

Z2 symmetric along the infinite extr-dimension, 5D spacetime is an (asymptotic) anti-de

Sitter (AdS5) one, and the brane is flat. There are three common methods to realize the

localization of U(1) gauge field.

The first one is to multiply FMNF
MN by a dilaton factor. For examples, in the work

of ref. [21], dilaton factor is a function of scalar dilaton field and in the work of refs. [22, 23]

the dilaton factor is a function of the background scalar field. It should be noted that the

above two works only hold in thick brane models, because the scalar fields they needed

only appears in thick brane models.
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The second one is to append a mass term to above standard action (1.1). For examples,

in the work of ref. [24] the authors appended a bulk constant mass term and a boundary

mass term into the action, and in the work of ref. [25] the authors took the non-minimally

coupling of vector and gravity into account, where the 5D scalar curvature is taken as the

mass of 5D vector. What should be noted is the scalar curvature to be taken as the mass

of 4D vector is first proposed in ref. [26] to be used in studying the inflation of our 4D

universe. But adding a mass term into the 5D vector fields action will break its gauge

invariance, so in ref. [27] the authors proposed a 5D Stueckelberg-like action to correct

this problem.

The third one is to add a topology term to the 5D vector action. In ref. [28] Oda

proposed a method by adding a 3-form potential and a topological term to the 5D vector

field action to realized the localization of zero mode.

In this work we will follow the idea of the first approach [21, 22]. But in our method

the dilaton factor is not a function of scalar fields but a function of scalar curvature. So

our method can be used not only to thick brane models but also to the thin branes models.

This paper is constructed as follows. We review our method in section 2. The local-

ization of zero and massive modes are discussed in section 3 and section 4, respectively.

Applying our method to a concrete braneworld model is shown in section 5. Finally, we

give our conclusions in section 6.

2 The method

The branes discussed here are flat and the line element of the five-dimensional space-time

is assumed to be

ds2 = gMNdxMdxN = e2α(y)ηµνdxµdxν + dy2, (2.1)

where e2α(y) is the warp factor, α(y) is only the function of extra-dimensional coordinate

y, and ηµν = diag(−1, 1, 1, 1) is the metric on the branes. The braneworld which holds an

(asymptotic) AdS5 spacetime at infinity means that the scalar curvature R satisfies

lim
y→±∞

R(y) = −CR, (2.2)

where CR > 0 is a constant. By using of the metric (2.1) one can get the expression of R:

R(y) = −20α′(y)2 − 8α′′(y). (2.3)

To be consistent with the condition (2.2), α(y) should have the following asymptotic

solution

α(y → ±∞)→ ∓ k y + C. (2.4)

where parameter k > 0 and C is a constant, without loss of generality we set C = 0 here

and after. Substituting (2.4) into (2.3) one can get

CR = 20k2. (2.5)
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The action of the five-dimensional U(1) gauge field we proposed is

S = −1

4

∫
d5x
√−gF (R)FMNF

MN , (2.6)

where F (R) is a function of scalar curvature R, against the action in ref. [25], this action

is gauge invariant.

How to confirm the form of F (R)? The rules we follow are:

1. when R→ 0 the action should return to the standard form (1.1);

2. F (R) should satisfy the positivity condition

F (R) > 0 (2.7)

and the finity condition at the same time∫ +∞

−∞
F (R) dy <∞ (2.8)

to preserve the canonical form of 4D action.

Models discussed here hold Z2 symmetrical along the extra-dimension, so α(y) is an even

function. If R(y) is monotonously decreasing as y varying form 0 to ±∞, F (R) can has

a simple form

F (R) = χ(R) = 1 +
R

20k2
(2.9)

to satisfy the positivity condition (2.7). If R(y) varies non-monotonic along the extra-

dimension the form of F (R) in (2.9) can not guarantee the positivity condition (2.7). But

a form of

F (R) =
1

N

N∑
n=1

(χ(R)2)n, (2.10)

where N > 0 and n is an integer, can hold the positivity condition (2.7), obviously.

It can be proven that the functions of F (R) in equations (2.9) and (2.10) can only

help us to obtain the localized zero mode. In order to obtain localized massive modes, we

propose the following form:

F (R) = e
C2

(
1−(χ(R)2)

−C3/2
)
, (2.11)

where C2 and C3 are under-determined positive parameters. We will show C3 is related

to the asymptotic behavior of the potential at infinity in eq. (4.5).

3 Localization of the zero mode

By means of the decomposition Aµ =
∑

n aµ(x)ρn(y) and the gauge condition ∂µA
µ = 0

and A4 = 0, the above action (2.6) is reduced to

S = −1

4

∫
dyF (R)ρn(y)2

∫
d4x(fµνf

µν − 2m2
naµa

µ), (3.1)
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where fµν = ∂µaν − ∂νaµ is the four-dimensional gauge field strength tensor, and ρn(y)

satisfies the equation

ρ′′n +

(
F ′

F
+ 2α′

)
ρ′n = −m2

nρne
−2α, (3.2)

with the boundary conditions either the Neumann ρ′n(±∞) = 0 or the Dirichlet ρn(±∞) =

0 [29], where the prime “ ′ ” stands for the derivative with respect to y in this section. The

localization of gauge field requires

I ≡
∫ +∞

−∞
dyF (R)ρ2n(y) = 1. (3.3)

For the zero mode, m0 = 0, eq. (3.2) reads

ρ′′0 +

(
F ′

F
+ 2α′

)
ρ′0 = 0. (3.4)

By setting γ′ = 2α′ + F ′/F , the above equation (3.4) reads

ρ′′0 + γ′ρ′0 = 0. (3.5)

The general solution of zero mode is

ρ0 = c0 + c1

∫
e−γdy. (3.6)

Here c0 and c1 are arbitrary constants. Models discussed here hold the Z2 symmetry along

the extra-dimension, F (R), α(y) and γ are even functions of y, so the second term in

eq. (3.6) is odd. The Dirichlet boundary conditions ρn(±∞) = 0 will lead to c0 = 0 and

c1 = 0. But the Neumann boundary conditions ρ′n(±∞) = 0 only lead to c1 = 0, so the

zero mode solution is

ρ0 = c0. (3.7)

The localization about zero mode can be realized when F (R) satisfies the finity condi-

tion (2.8), namely ∫ +∞

−∞
dyF (R)ρ20(y) = c20

∫ +∞

−∞
F (R) dy = 1. (3.8)

Because F (R) is continuous, the convergence of the above integration is determined by

the asymptotic behavior of F (R) at infinity along the extra dimension. The convergent

condition is

F (R(y → ±∞)) ∝ y−p (3.9)

with p > 1. By using the Z2 symmetry, we may only need to discuss the case of

y → +∞. The way of α(y) to its limit solution (2.4) is model dependent. In order to

discuss the asymptotic behavior of χ at infinity, we add the first order infinitesimal term

into α(y) (2.4)

α(y → +∞) ∼ − k y − Cy−q. (3.10)
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where q > 0. In order to satisfy positive condition C > 0 is need for F (R) in eq. (2.9).

Substituting (3.10) and (2.3) into (2.9) one get

χ(R(y → +∞)) ∼ 2Cq y−(q+1)

k
(3.11)

by neglecting higher order infinitesimal terms. It is easy to test that under the above

asymptotic solution, the integration of F (R), with the forms of (2.9), (2.10) and (2.11),

are convergent. This leads to the conclusion that the zero mode can be localized.

4 Localization of massive modes

To discuss the localization of massive modes, it is more convenient to do the following

coordinate transformation {
dz = e−α(y)dy

z =
∫
e−α(y)dy

(4.1)

with the boundary condition z(y = 0) = 0. The line element (2.1) is recasted to the

following conformally flat form namely,

ds2 = e2α(z)(ηµνdxµdxν + dz2). (4.2)

Further, by using of the gauge choice A4 = 0 and the decomposition Aµ =
∑

n aµ(x)ρn(z)

the action of the five-dimensional gauge field (2.6) is reduced to

S = −1

4

∑
n

∫
dzρ̃2n(z)

∫
d4x(f (n)µν f

(n)µν − 2m2
na

(n)
µ a(n)µ), (4.3)

where ρ̃n = ρn
√
F (R)eα/2, and ρ̃n(z) satisfies the following Schrödinger-like equation

− ρ̃′′n + V (z)ρ̃n = m2
nρ̃n, (4.4)

where the effective potential is given by

V (z) =
1

2
α′′(z) +

1

4
α′2(z) +

α′(z)F ′(R)

2F (R)
+
F ′′(R)

2F (R)
− F ′2(R)

4F 2(R)
. (4.5)

In this section the prime denotes the derivative with respect to the coordinate z. Equa-

tion (4.4) can be recast to(
d

dz
+ Γ′(z)

)(
− d

dz
+ Γ′(z)

)
ρ̃n = m2

nρ̃n, (4.6)

where

Γ′(z) =
1

2

(
F ′(R)

F (R)
+ α′(z)

)
, (4.7)

and without loss of the generality we can take

Γ(z) =
1

2
(lnF (R) + α(z)) . (4.8)

– 5 –



J
H
E
P
0
5
(
2
0
1
8
)
0
7
2

Equation (4.6) means that there is no tachyonic mode with m2
n < 0 in the spectrum of the

KK modes [30]. It is worth to note that in order to get the effective action (4.3) of the

four-dimensional vector field from the five-dimensional one (2.6), we have introduced the

orthonormalization condition between different massive modes:∫
dzρ̃m(z)ρ̃n(z) = 0. (m 6= n) (4.9)

So the localization condition for ρ̃n(z) is∫
dzρ̃2n(z) <∞. (4.10)

The solution of zero mass mode at the z coordinate is easy to be found from (4.6),

ρ̃0(z) = eα(z)/2
√
F (R). (4.11)

The existence of massive modes is determined by the potential V (z). Based on the

condition (2.4) we have shown the existence of zero mode, this means that at some finite

area V (z) < 0 along the extra-dimension. So a necessary condition of the existence of

localized massive modes is V (±∞) > 0. V (±∞) is determined by asymptotic behavior of

α(z) and F (R(z)). In the following we will discuss the limit of V (z) with z → +∞ only,

based on the Z2 symmetry V (−∞) is the same to V (+∞).

By using the limit solution α(y) (2.4) and the coordinate transformation (4.1), we

obtain the limit solution of α with z coordinate at infinity,

α(z)→ − ln(k z). (4.12)

For different models the ways to this limit solution are different. In order to discuss the

asymptotic behavior of V (z) at infinity, we add a first order infinitesimal term to α(z),

namely,

α(z)→ − ln(k z) + C4z
−n, (4.13)

where C4 and n are model dependent constants and n > 0. The scalar curvature R at the

z coordinate reads

R(z) = −4e2α(z)(3α′(z) + 2α′′(z)). (4.14)

Substituting (4.13) into (4.14) one can get the asymptotic solution of R,

R(z → +∞) → −20k2e−2C4z−n

−(8C4k
2n2 + 32C4k

2n)e−2C4z−n
z−n

−12C2
4k

2n2e−2C4z−n
z−2n. (4.15)

Because

lim
z→+∞

e−2C4z−n
= 1, (4.16)

and by ignoring the z−2n term, we can further reduce R(z → +∞) into

R(z → +∞)→ −20k2 + C5 z
−n, (4.17)

where C5 = −(8C4k
2n2 + 32C4k

2n).
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Substituting eq. (4.17) into eq. (2.9), one can get the asymptotic solutions of

χ(R), namely,

χ(R(z → +∞))→ C5 z
−n

20k2
. (4.18)

For the first case of F (R) in eq. (2.9), substituting eqs. (4.18) and (4.12) into eq. (4.5),

we obtain the asymptotic solution of V (z),

VI(z → +∞)→ 1

4
C2
4n

2z−2n−2 + C4n(n+ 1)z−n−2 +
n2 + 4n+ 3

4
z−2. (4.19)

For the second case of F (R) in eq. (2.10), the asymptotic solution of V (z) is

VII(z → +∞)→
(
n2 + 2n+

3

4

)
z−2, (4.20)

by ignoring the higher order infinitesimal terms. The limits of VI(z) and VII(z) are

lim
z→+∞

VI(z) = lim
z→+∞

VII(z) = 0, (4.21)

so there are no massive mode in that two cases.

For the third case of F (R) in eq. (2.11), the asymptotic solution of V (z) is

VIII(z → +∞) → C6z
2C3n−2 + C7z

C3n−2 + C8z
C3n−n−2

+
1

4
C2
4n

2z−2(n+1) +
1

2
C4n

2z−n−2 + C4nz
−n−1 +

3

4
z−2, (4.22)

where

C6 = C2
24

2C3−125C3C2
3n

2|C5|−2C3k4C3 ,

C7 = (2− C3n)C22
2C3−1C3n5C3 |C5|−C3k2C3 ,

C8 = C22
2C3−15C3C3C4n

2|C5|−C3k2C3 .

From the above asymptotic solution, we find

VIII(∞) =


+∞ C3 > 1/n infinitely deep potential

C C3 = 1/n Pöschl-Teller potential

0 0 < C3 < 1/n volcanic potential

(4.23)

where C is a positive constant.

So the condition C3 = 1/n means a finite number of localized massive modes, when

C3 > 1/n, there will be infinite number of localized massive modes, and 0 < C3 < 1/n

corresponds to no massive mode can be localized on branes.

– 7 –
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5 Concrete braneworld model

In this section only the first case (2.9) and third case (2.11) of F (R) are discussed, since the

conclusion about second case (2.10) of F (R) is the same with the first one (2.9). The model

we used is proposed in ref. [31] without scalar field, where the five-dimensional action is

S =
1

4

∫
d4xdy

√−gf(R), (5.1)

and f(R) reads

f(R) =
4

7

(
6k2 +R

)
cosh(β(w(R)))− 2

7
k2
√

480− 36R

k2
− 3R2

k4
sinh(β(w(R))), (5.2)

where β(w) is defined as

β(w) ≡ 2
√

3 arctan
(

tanh
(w

2

))
, (5.3)

with

w(R) = ±arcsech

[√
20 +R/k2

2
√

7

]
. (5.4)

With above conditions the solution of α(y) is

α(y) = − ln(cosh(k y)). (5.5)

Under the z coordinate

α(z) = −1

2
log
(
k2z2 + 1

)
, (5.6)

and

R(z) = −4e−2α(z)
(
2α′′(z) + 3α′(z)2

)
=

8k2 − 20k4z2

k2z2 + 1
. (5.7)

With the above analytic solutions of α(z) (5.6) and R(z) (5.7), one can easily get

VI(z) =
3k2(−2 + 5k2z2)

4(1 + k2z2)2
, (5.8)

and

VIII(z) =
1

4

(
25

49

)C3

k2
(

1

k2z2+1

)2−2C3
[
4C2

2C
2
3k

2z2+49C3
(
3k2z2−2

)( 1

5k2z2+5

)2C3

−4C27
C3C3

(
2(C3 − 1)k2z2 + 1

)( 1

5k2z2 + 5

)C3
]
. (5.9)

The limit of VI(z) is

lim
z→+∞

VI(z) = 0, (5.10)

– 8 –
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Figure 1. Plots of VIII(z) and ρ̃0 with C2 = 20, k = 1.

that is consistent with eq. (4.21). The asymptotic behavior of R(z) is

R(z →∞) = −20k2 + 8z−2. (5.11)

Compare eq. (5.11) with eq. (4.17), one can find that

n = 2,

which can be verified by the limit of VIII(z) (5.8), namely,

VIII(±∞) =


+∞ C3 > 1/2,

5C2
2k

2/28 C3 = 1/2,

0 0 < C3 < 1/2,

(5.12)

Equations (5.12) and (5.10) can be taken as a test of our conclusion made in section 4.

In the following we show some mode solutions with the potential VIII(z) (5.8). The

zero mode solution (4.11) reads

ρ̃0(z) =

√
e
C2−C2( 5

7)
C3

(
1

k2z2+1

)−C3

(k2z2 + 1)
−1/4

. (5.13)

The plots of VIII(z) and ρ̃0(z) (non-normalized) with some specific values of parameters of

C2, k, and C3 are shown in figure 1.

The localized massive mode solutions can be obtained by using of numerical method

in the case of C3 ≥ 1/2. For example we show some massive solutions in figure 2 with

parameters C3 = 0.5, C2 = 20, and k = 1. Another example is shown in figure 3 with

parameters C3 = 0.6, C2 = 20, and k = 1.

6 Conclusions

In order to localize U(1) gauge vector fields on branes in 5D (asymptotic) AdS5 spacetime

with infinitely extra-dimension, we propose a 5D U(1) gauge vector fields action which

include the non-minimal coupling with gravity and satisfy the gauge invariant. In this

– 9 –
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Figure 2. In the left figure, the black line represents the potential VIII(z), and colored lines

represent the position of mass spectra in the potential. The right figure shows the corresponding

solutions of ρ̃n (nomalized). Parameters C3 = 0.5, C2 = 20, and k = 1.
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Figure 3. In the left figure, the black line represents the potential VIII(z), and colored lines

represent the position of mass spectra in the potential. The right figure shows the corresponding

solutions of ρ̃n (nomalized). Parameters C3 = 0.6, C2 = 20, and k = 1.

work we propose three kinds of coupling, they all support the localization of zero mode,

but only the third one (2.11) support the localization of massive modes. With the third kind

of coupling (2.11), there is a parameter C3 which can control the localization of massive

modes, namely, when

• C3 = 1/n, there are finite number of localized massive modes,

• C3 > 1/n, there are infinite number of localized massive modes,

• 0 < C3 < 1/n, there is not localized massive mode,

where n is a positive number determined by the scalar curvature R (4.17). Moreover, our

method can exclude the massive tachyonic modes and can be used not only in the thin

braneword models but also in the thick ones.
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