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1 Introduction

The discovery of the Higgs boson [1, 2] at the Large Hadron Collider (LHC) successfully

completes the Standard Model (SM) but also accentuates its mysteries. In particular, the

well-known hierarchy between the mass of the Higgs boson and the Planck scale becomes

ever more puzzling as the LHC acquires new data. No colored top partner, that could

cancel the quadratic top loop contribution to the Higgs mass, has been found below the

TeV scale. Besides some special cases which may evade the strong experimental bounds,

this implies a serious fine tuning of the Higgs mass parameter.

These bounds have largely driven the recent interest in neutral naturalness (NN), that

is, symmetry-based solutions to the hierarchy problem where the symmetry partners of

quarks are not charged under SM color. The twin Higgs framework [3] led the way with

fermionic top partners that are complete SM singlets. This involves a new, “twin,” sector

related to the SM by a discrete Z2 symmetry, but charged under distinct gauge groups.
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The Z2 guarantees the equality of parameters necessary to cancel the leading one-loop

quantum corrections to the Higgs mass.

Scalar NN top partners first appeared in Folded Supersymmetry (FSUSY) [4]. The

realistic model is formulated in an orbifold extra dimension, with the gauge group extended

to SU(3)2× SU(2)×U(1). The matter content is doubled from that of the minimal super-

symmetric SM (MSSM), with each copy having its own SU(3) gauge group, but sharing

a single electroweak (EW) structure. A Z2 symmetry relates the SM quark and lepton

multiplets to the folded sector, as well as the two SU(3) gauge groups. SUSY is broken by

the Scherk-Schwarz [5, 6] mechanism such that within the matter multiplets only the SM

fermions and folded sector scalars have zero modes. The true top squarks (stops), which

carry SM color, have masses set by the compactification scale, assumed to be multi-TeV.

However, due to an accidental SUSY, the quadratic top loop contribution to the Higgs

potential is cut off by the folded stops, which only receive masses at one loop and remain

light. The folded stops are SM color neutral, so they are not subject to the strong ex-

perimental bounds on colored particles. They do carry SM EW quantum numbers, which

govern their collider phenomenology.

In the original FSUSY the cancelation of the top loop contribution to the Higgs mass

term is in fact too effective, which makes EW symmetry breaking difficult. This can be

fixed by some modifications of the model. For instance, ref. [7] considered twisting the

boundary conditions of the Scherk-Schwarz mechanism by an SU(2)R rotation of phase

α. For α = 0, N = 1 SUSY is preserved and there is no zero mode in the folded sector,

while the original FSUSY corresponds to α = 1/2. For 0 < α < 1/2 the folded stops have

tree-level masses and the cancelation of the one-loop top contribution to the Higgs mass is

incomplete, which provides parameter regions with the correct EW symmetry breaking.

One may ask how essential the extra dimensional setup is for color-neutral scalar

top partners, and whether it is possible to construct a four-dimensional (4D) mimic of

FSUSY. A näıve attempt is to write down a 4D SUSY model with SUSY-breaking terms

which reproduce the low-lying spectrum of FSUSY. For example, consider the following

superpotential for the top sector

WZ2 = yt
(
QHuc +QfHu

c
f

)
+M

(
QfQ

′c
f + u′fu

c
f

)
, (1.1)

where Q = (t, b)T , uc are SM quarks and H is the (up-type) Higgs, whereas the “f”

subscript denotes hidden sector fields, plus the soft SUSY-breaking masses

Vs = m̃2
(
|Q̃|2 + |ũc|2

)
− m̃2

(
|Q̃f |2 +

∣∣ũcf ∣∣2) . (1.2)

When m̃ → M , the true stops t̃, ũc become heavy while the folded stops t̃f , ũ
c
f become

light, which simulates the truncated FSUSY spectrum. However, the coupling of the light

color-neutral scalars to the Higgs is given by y2
t (1 − M2/m̃2) and vanishes in the limit

m̃ = M . As a result, there is no accidental SUSY and the light scalars cannot cancel the

top loop contribution to the Higgs potential, leaving the Higgs mass-squared quadratically

sensitive to the heavy mass scale M .

This problem can be solved by further extending the hidden sector. In this paper

we construct a 4D model based on the gauge group SU(3)3 × SU(2) × U(1), where the
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contribution to the Higgs potential from the top sector is calculable and finite, and only has

logarithmic sensitivity to the heavy mass scale M of the true stops. The 4D construction

allows more freedom compared to 5D models. The superpartners of the SM EW sector are

not governed by the same mass scale as the true stops, and can still be light. We do not

need hidden sector partners for the first two generations, since their contributions to the

Higgs potential are small. Furthermore, freedom in hidden sector hypercharge assignments

allows the top partners to be fully SM-singlet scalars, even though some new EW-charged

particles are needed for the complete model.

Detecting completely SM singlet scalar top partners provides an interesting experi-

mental challenge. While the Higgs may couple to new states beyond the SM (BSM), its

couplings to SM fields can be very SM-like. The collider phenomenology of such scenar-

ios has been explored [8, 9] using bottom-up simplified approaches, but a complete model

has not yet appeared.1 The framework outlined in this work, however, has phenomenol-

ogy determined largely by the EW-charged particles that accompany the SM singlet top

partners.

In the next section we describe the model and discuss the structure of the Higgs poten-

tial it generates. Section 3 explores a possible mechanism for obtaining the special soft mass

structure required by our construction, with additional details provided in appendix A. The

phenomenology of the model and the constraints on its parameters are analyzed in sec-

tion 4, while technical derivations of important results are given in appendices B, C, and D.

We conclude in section 5.

2 A tripled top model

We extend a supersymmetric SM by adding two copies of a “hidden” top quark sector,

which we label B and C, with A labeling the SM sector. The hidden tops are not charged

under the SM color but carry hidden colors of SU(3)B and SU(3)C respectively. Both

SU(2) doublet and singlet hidden tops have mirror partners and form vector-like pairs.

The superpotential of the three top sectors takes the form

WZ3 = yt (QAHu
c
A +QBHu

c
B +QCHu

c
C) +M(u′Bu

c
B + u′Cu

c
C) + ω(QBQ

′c
B +QCQ

′c
C) .

(2.1)

The couplings with the (up-type) Higgs respect a Z3 symmetry, which also relates the

three SU(3) gauge groups. Accordingly, we call this a “tripled top” framework. The

supersymmetric vector-like mass terms M and ω of the hidden sectors softly break Z3 to

Z2. M is taken to be multi-TeV while ω is assumed to be below 1 TeV, which we will see

keeps the Higgs mass light.

The SM fields have the usual charges under the EW SU(2)L ×U(1)Y ,

H =

(
h+

h0

)
∼ 21/2 , QA =

(
tA
bA

)
∼ 21/6 , ucA ∼ 1−2/3 , (2.2)

1An independent approach has been pursued in ref. [10].
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which also defines the component fields. For the B and C sectors we choose

QB,C =

(
tB,C
bB,C

)
∼ 2−1/2 , Q′cB,C =

(
b′cB,C
t′cB,C

)
∼ 21/2 , ucB,C , u

′
B,C ∼ 10 . (2.3)

Notice that “u” fields are SU(2)L singlets, while “t” states belong to doublets. We em-

phasize that the hypercharge assignments of the B and C fields are free, up to keeping

the Yukawa terms gauge invariant. We specifically choose the SU(2)L singlets to be com-

plete SM singlets. Their scalar components play the roles of top partners, cutting off the

quadratic top loop contribution to the Higgs potential.

The leading soft SUSY-breaking masses are assumed to take the form

Vs = m̃2
(
|Q̃A|2 + |ũcA|

2
)
− m̃2

(
|ũcB|

2 + |ũcC |
2
)
. (2.4)

The opposite-sign, equal-magnitude soft mass terms ensure the Higgs potential from the

top sectors is calculable and finite. Their possible origins are discussed in the next section.

The soft SUSY-breaking masses raise the colored stop masses and lower the masses of ũcB
and ũcC . To make ũcB and ũcC light m̃ must be close to M , so the masses of ũcB, ũcC are,

before mixing effects from the Higgs vacuum expectation value (VEV), given by

∆ ≡
√
M2 − m̃2 �M. (2.5)

At the same time the colored stop masses are raised to the multi-TeV scale.

In addition to the soft SUSY breaking masses in eq. (2.4), the A sector gluino and light

generation squarks must also have multi-TeV SUSY-breaking masses to evade LHC bounds.

All other fields can receive subleading SUSY-breaking masses of a few hundred GeV which

split the fermions and bosons in the supermultiplets, without spoiling naturalness.

2.1 Higgs potential

We now demonstrate that the one-loop quadratic contribution to the Higgs potential from

the top quark is canceled by the neutral top partners. Consequently, the Higgs potential has

no quadratic dependence on the heavy scale M . Before deriving the complete expression

of one-loop Coleman-Weinberg (CW) [11] potential for general parameters, we show the

protection of the Higgs mass in the limit m̃ → M (∆ → 0). This case is similar to the

original FSUSY, whose authors pointed out that the cancelation of divergences is tied to the

apparent supersymmetric structure of the theory when only scalar labels are exchanged.

The Higgs mass is protected by this accidental supersymmetry.

The Higgs-dependent scalar masses that arise from the superpotential of the top sector

can be divided into five groups

V1 = y2
t h

2
(
|t̃A|2 + |ũcA|+ |t̃B|2 + |ũcB|+ |t̃C |2 + |ũcC |

)
,

V2 = M2
(
|ũcB|2 + |ũcC |2

)
+M2

(
|ũ′B|2 + |ũ′C |2

)
,

V3 = ythM
(
t̃∗Bũ

′
B + t̃∗C ũ

′
C + h.c.

)
, (2.6)

V4 = ω2
(
|t̃B|2 + |t̃ ′cB |2 + |t̃C |2 + |t̃ ′cC |2

)
,

V5 = ythω
(
ũc ∗B t̃

′c
B + ũc ∗C t̃

′c
C + h.c.

)
,

– 4 –
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Figure 1. Mass spectrum in the limit ∆ → 0 (m̃ → M) and ω → 0, illustrating the accidental

SUSY that protects the Higgs mass. We have ΨB/C = cos θLu
′
B/C − sin θLtB/C and S̃B/C =

cos θLũ
′
B/C − sin θLt̃B/C , where sin θL|ω→ 0 = −yth/

√
M2 + y2t h

2 .

where we defined h ≡ Reh0. After the soft masses

Vsoft(m̃) = m̃2
(
|t̃A|2 + |ũcA|

2
)
− m̃2

(
|ũcB|2 + |ũcC |2

)
(2.7)

with m̃ = M are added, we expect that ũcB, ũcC will replace the roles of t̃A and ũcA as they

become massless. Thus, the exchange

t̃A ↔ ũcB, ũcA ↔ ũcC , (2.8)

denoted by the mapping τ , may lead to an accidental SUSY. Notice first that under this

exchange V1, V3, and V4 are invariant, that is τ [V1,3,4] = V1,3,4. Next, in the limit m̃ = M

τ [V2 + Vsoft(M)] = V2 , (2.9)

which is a completely supersymmetric scalar potential. In other words, except for V5,

in the limit m̃ → M there is an accidental supersymmetry, a potential with no SUSY-

breaking terms. In this limit we expect only V5 to contribute to the Higgs mass, yielding

∼ Ncy
2
t ω

2 lnM2/(16π2) at one loop. As long as ω is only a few hundred GeV, it does

not cause a naturalness problem. Figure 1 shows the spectrum in the limit m̃ → M and

ω → 0 : each fermion is exactly degenerate with two scalars of equal coupling to the Higgs,

ensuring that the Higgs mass parameter vanishes exactly.

This expectation is borne out by the explicit CW computation (for general m̃ 6= M).

First, we find that there are neither quadratic nor logarithmic divergences, since both

STrM2 = 0 and STrM4 = −8Nc ∆2(M2 −∆2) are field-independent. Proceeding to the

– 5 –



J
H
E
P
0
5
(
2
0
1
8
)
0
5
7

finite pieces, we find the mass term

Vh2 =− Ncy
2
t h

2

8π2

[
−
(
M2 −∆2

)
ln

(
1− ∆2

M2

)
− ∆4

ω2 −∆2
ln
M2

∆2

+
ω4(M2 −∆2)

(M2 − ω2)(ω2 −∆2)
ln
M2

ω2

]
(2.10)

≈− Ncy
2
t h

2

8π2

[
ω4

ω2 −∆2
ln
M2

ω2
− ∆4

ω2 −∆2
ln
M2

∆2
+ ∆2

]
+O

(
M−2

)
. (2.11)

Notice that Vh2 scales as ∼ ω2 lnM2/(16π2) when ∆ → 0, as expected. Hence, the Higgs

mass is set by ω, the scale of the electroweak doublets, and ∆, the scale of the singlets,

and is only logarithmically sensitive to M , the scale of colored states. We also calculate

the quartic coupling,

Vh4 =
Ncy

4
t h

4

16π2

{
3

2
+

2ω2(M2 −∆2)(M2∆2 − ω4)

(M2 − ω2)2(ω2 −∆2)2
+ ln

M2

y2
t h

2
+ ln

(
1− ∆2

M2

)
+

∆4(∆2 − 3ω2)

(ω2 −∆2)3
ln
M2

∆2
−
[
ω4(ω2 − 3M2)

(M2 − ω2)3
+
ω4(ω2 − 3∆2)

(ω2 −∆2)3

]
ln
M2

ω2

}
(2.12)

≈ Ncy
4
t h

4

16π2

{
3

2
+

2ω2∆2

(ω2 −∆2)2
+ ln

M2

y2
t h

2
+

∆4(∆2 − 3ω2)

(ω2 −∆2)3
ln
M2

∆2

−ω
4(ω2 − 3∆2)

(ω2 −∆2)3
ln
M2

ω2

}
+O(M−2). (2.13)

We see that for ∆→ 0 and at leading order in ω2/M2 � 1,

Vh4 '
Ncy

4
t h

4

16π2

(
3

2
+ ln

ω2

y2
t h

2

)
, (2.14)

which is independent of M .

To get some feeling for the numbers, recall that in the SM the parameters of the Higgs

potential,

V = m2h2 + λh4, (2.15)

take the values m2
SM ' −(88 GeV)2 and λSM ' 0.13, which yield the VEV v =

√
2 〈h〉 =√

−m2
SM/λSM ' 246 GeV and physical Higgs boson mass mh =

√
2λSM v ' 125 GeV.

From eqs. (2.10) and (2.12), setting for example M = 2 TeV, ω = 500 GeV, ∆ = 300 GeV

and neglecting the running of yt, we find m2 ' −(196 GeV)2 and λ ' 0.073 . The gauge

contribution to the Higgs potential gives an additional quartic ≤ (g2+g′ 2)/8 = m2
Z/(2v

2) '
0.069, where the maximal value is attained for tan β → ∞. Thus, the total Higgs quartic

is in the correct range to obtain mh ' 125 GeV, although a precise assessment requires the

inclusion of the leading two-loop corrections, which goes beyond the scope of this paper.

If necessary, additional contributions to the Higgs quartic may arise as in the next-to-

minimal supersymmetric SM, by adding a singlet S to the model with a superpotential

term λSHuHd. Notice also that the leading order expression of the quartic in eq. (2.13)

– 6 –
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is symmetric under ∆ ↔ ω, and the leading order expression of the mass in eq. (2.11)

is almost symmetric. Therefore, the Higgs potential does not prefer a specific hierarchy

between ∆ and ω.

While the Higgs potential has no quadratic sensitivity to the heavy colored stop mass

scale M , it requires the particular form of soft masses in eq. (2.4) and m̃ close to M , both of

which may be new sources of tuning. The possible origin of the structure of the soft masses

is discussed in the next section. The requirement ∆ =
√
M2 − m̃2 � M corresponds to a

tuning of ∼ ∆2/M2 without a physical explanation that relates the supersymmetric mass

M and the SUSY-breaking mass m̃. For M = 2 TeV, ∆ = 300 GeV we have ∆2/M2 ∼ 2%,

which is no worse than most currently surviving models. This may be improved if a

dynamical mechanism that relates M ∼ m̃ can be identified. If one uses the fine tuning

measure defined by Barbieri and Giudice [12], then the tuning of the Higgs mass relative

to ∆ and ω also needs to be considered. It may seem, after multiplying these two tunings,

that not much is gained compared to an MSSM with heavy stops, other than removing the

large logarithm. Similar situations also occur in other models with “double protections,”

such as SUSY twin Higgs or SUSY little Higgs [13–23]. Näıvely, a natural attempt to

alleviate a large hierarchy problem is to break the hierarchy into several smaller steps, by

inserting new physics at intermediate scales. Due to the chain rule, however, in this case

the Barbieri-Giudice fine tuning does not improve. This is somewhat counter-intuitive and

raises the question whether this definition is suitable to compare the fine-tuning of different

models or of different model parameters.

It is known that the Barbieri-Giudice formula actually measures sensitivity. But sensi-

tivity to a parameter does not always imply tuning. For example, the proton mass is very

sensitive to the QCD coupling, but is certainly not considered fine-tuned. Reference [24]

proposed that a better measure of fine-tuning for a set of parameters of a given model is the

ratio of the sensitivity derived from that set of parameters and the “typical” or “average”

sensitivity of that model. This fixes unambiguously the normalization of the measure and

ensures that a typical sensitivity is not penalized, which allows for a fairer comparison of

the fine-tuning of different parameter points or of different models. For instance, working

in the mSUGRA scenario the authors obtained average sensitivities of ∼ 4 for the universal

scalar mass and ∼ 10 for the gaugino mass. Thus if one obtains the same sensitivity due

to the scalar mass and the gaugino mass, the tuning due to the scalar mass should be

considered more severe. Notice that when a physical quantity receives two contributions of

opposite sign the typical sensitivity is always bigger than one, since one of the contributions

must be larger in size than the resulting observed value.

If one adopts this point of view, then dividing a large hierarchy into several steps of

small hierarchies does alleviate the fine-tuning, because at each step one should divide by

the average sensitivity of that step. In our case, the sensitivity of the Higgs mass to ∆

and ω is similar to the sensitivity of the Higgs mass to the stop mass in the MSSM. The

sensitivity of ∆ to M is M2/∆2, as mentioned earlier, and it is reasonable to assume an

average sensitivity of 2 – 3 for this second step. Then, dividing by this additional typical

sensitivity and recalling that in our model the Higgs mass is not enhanced by a large

logarithm, we expect to gain an overall factor of ∼ 5 when comparing the tuning of our

model to that of an MSSM with stop mass equal to M .

– 7 –
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3 Opposite sign soft masses

In this section we discuss possible mechanisms of obtaining soft masses for the colored

stops and ũcB and ũcC which have equal magnitude but opposite sign. This particular form

indicates the soft masses may be proportional to some charges where QA and ucA have

+1, ucB and ucC have −1, and all other top sector fields and the Higgs have zero charge.

The simplest possibility is that these leading soft masses come from a U(1) D-term, with

the various fields charged as above. However, the Yukawa terms with the Higgs field have

nonzero charges, i.e., +2 for QAHu
c
A, −1 for QBHu

c
B and QCHu

c
C . To write down these

terms one needs to insert U(1) breaking VEVs and the different charges make it difficult

to justify equal Yukawa couplings.

Alternatively, these charges may come from an accidental symmetry of some strong

dynamics, which is not necessarily respected by the Yukawa terms if they do not arise

directly from the strong dynamics. In this case, the top fields that couple to the Higgs

can be composite degrees of freedom. For example, they could be the meson fields of an

s-confining theory such as an SU(N) gauge theory with F = N + 1 flavors [25]. In such

a theory, the soft SUSY-breaking masses of the composite mesons are related to the soft

SUSY-breaking masses of their constituent fields by anomalous U(1) symmetries [26, 27].

In particular, for a confining group G with strong scale ΛG, under which the constituent

superfields Pi transform in representations ri, the soft masses of the mesons Mij = PiP j/ΛG
are obtained by generalizing the results in refs. [26, 27] (see appendix A),

m2
ij = m2

Pi +m2
P j
− 2

b

∑
k

Trk

(
m2
Pk

+m2
Pk

)
, (3.1)

where m2
Pi

and Tri are the squared soft mass and Dynkin index of the ith constituent,

respectively, and b is the coefficient of the gauge coupling beta function

d

d lnµ2

1

g2
=

b

16π2
. (3.2)

3.1 Example construction

As a concrete example consider G = SU(2) gauge theories with 6 doublets (F = 3). The

Dynkin index of the fundamental representation is T = 1/2 and the beta function coefficient

is b = 3N − F = 3. Each top field coupled to the Higgs is embedded in the mesons of a

separate SU(2) gauge theory. For the mesons to have the correct color quantum numbers,

we take the constituent quarks Pi to be color triplets or anti-triplets of the corresponding

sector while the constituent antiquarks P i only carry EW charges.2 As a result, the 3

constituent quarks must have the same soft mass, while the constituent antiquarks can

have different soft masses unless they belong to an EW doublet. Interestingly, eq. (3.1)

implies that if the 3 quarks and 3 antiquarks have universal soft masses (the soft masses

of quarks m̃2
P and antiquarks m̃2

P
do not need to be equal), the soft masses of the mesons

2For SU(2) the fundamental representation and the antifundamental representation are equivalent, but

for convenience we still distinguish quarks and antiquarks. Note that there are also mesons made of 2

quarks or 2 antiquarks.

– 8 –
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made of a quark and an antiquark vanish at leading order. Therefore, it is appropriate to

embed QB,C , which should have no soft masses at leading order, as

m̃2
P m̃2

P m̃2
P m̃2

P QB,C
m̃2
P

m̃2
P

. (3.3)

On the other hand, ucB, u
c
C and QA, u

c
A should have opposite soft masses and can be em-

bedded as
m̃2
P m̃2

P m̃2
P
m̃2

P 1
ucB,C

m̃2
P 1

m̃2
P 2

, (3.4)

m̃2
P m̃2

P m̃2
P
m̃2

P 2 QA
m̃2
P 2

m̃2
P 1

,

m̃2
P m̃2

P m̃2
P
m̃2

P 2
ucA

m̃2
P 2

m̃2
P 1

, (3.5)

where m̃2
P 1
6= m̃2

P 2
.

From the meson soft mass formula eq. (3.1) we find

m̃2
QB,C

= m̃2
P + m̃2

P
− m̃2

P − m̃2
P

= 0, (3.6)

m̃2
ucB,C

= m̃2
P + m̃2

P 1
− m̃2

P −
2

3
m̃2
P 1
− 1

3
m̃2
P 2

=
m̃2
P 1
− m̃2

P 2

3
, (3.7)

m̃2
QA,u

c
A

= m̃2
P + m̃2

P 2
− m̃2

P −
2

3
m̃2
P 2
− 1

3
m̃2
P 1

=
m̃2
P 2
− m̃2

P 1

3
= − m̃2

ucB,C
. (3.8)

This is exactly the soft mass pattern we want as long as m̃2
P 2

> m̃2
P 1

. The different

constituent antiquarks may receive the same soft mass because of a symmetry, or from

a U(1) gauge mediation where they carry the same charge up to a sign. For example,

m̃2
P 2

may be positive because the associated antiquarks have charges ±1, while all other

constituent antiquarks have no charge, so m̃2
P 1

= m̃2
P

= 0. To give large soft masses to

the A sector gluino and light flavor squarks, one can imagine there are also SM colored

messenger states which give them large gauge mediated SUSY-breaking masses. The B/C

gluinos need not be heavy, so it is not essential to have B/C colored messengers, though

they may affect the phenomenology.

This construction also produces many other composite states (including mesons made

of 2 quarks or 2 antiquarks) beyond what are needed in the superpotential. These states

can be removed from the low-energy spectrum by marrying them to elementary fields Xij

of opposite quantum numbers with superpotential terms like κXijP iPj . As long as the

– 9 –
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coupling κ is small enough to keep their masses below the confinement scale ΛG, they do

not affect the confining dynamics. The states which carry SM color must be heavier than

a few TeV to avoid experimental constraints.

Assuming the Higgs field is elementary and the top quarks are composite, the top

Yukawa couplings arise from higher dimensional superpotential operators above the com-

positeness scale ΛG
∼ gt

Λ2
UV

PPPPH , (3.9)

where ΛUV represents the ultraviolet (UV) cutoff of the theory. They are taken to respect

the Z3 symmetry to keep the 3 Yukawa couplings equal. This means that

yt ∼
gtΛ

2
G

Λ2
UV

. (3.10)

As the top Yukawa is order one, the UV cutoff and the strong scale of the confining group

G cannot be very far apart, even though the running due to the strong G gauge coupling

can increase gt at the confinement scale.

To find the constraints on ΛG (and therefore ΛUV), we first notice that eq. (3.1) is only

a leading order result and is corrected by terms of order m2
P /Λ

2
G. Consequently, we need

ΛG to be significantly larger than the soft masses, i.e., ΛG & 10 TeV. A similar requirement

follows from the masses of the colored composite mesons beyond the top sector. These

should be below ΛG, but need to be at least a few TeV to satisfy experimental constraints.

These new colored states also contribute to the running of the QCD coupling above

their masses. There are 5 additional color-triplets or anti-triplets, 3 made of PP as seen

in eq. (3.5) and 2 from PP -type mesons as the antisymmetric combination of two color-

triplets gives an anti-triplet. Together with their elementary partners they contribute 5

flavors beyond the MSSM. Above their mass (and below ΛG) the beta function coefficient

for the SM SU(3)A becomes b = 3N − F = 9− 11 = −2, so

1

αs(µ)
=

1

αs (MX)
− 2

2π
ln

(
µ

MX

)
, (3.11)

where MX is the threshold scale of these new colored degrees of freedom. Above ΛG,

there are 4 color-triplet or anti-triplet constituent quarks but one needs to subtract the

left-handed top-bottom doublet and the right-handed top. Together with the 5 elementary

colored X’s this gives F = (6 − 3/2) + 4/2 + 5/2 = 9 and b = 0. Although the coupling

becomes non-asymptotically free between MX and ΛG, the running is slow and MX and ΛG
do not need to be very far apart, so requiring that the QCD coupling remains finite does

not put a strong upper bound on ΛG. The SU(3)B,C couplings are also safe, their sectors

need not contain the light flavors so they can even be asymptotically free. However, the

different particle content in the A and B,C sectors results in different gauge coupling beta

functions. Even if the gauge couplings are equal at the cutoff scale, the running induces

differences in their values at lower energies. The different gauge couplings feed into the

running of the top Yukawa couplings of the A,B,C sectors, affecting the cancelation of

the Higgs potential. This is a three-loop effect, so we should have ΛUV . 100 TeV to avoid

large corrections to the Higgs potential.

– 10 –
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In the A sector, the large mass of the gluino affects the soft masses of the stops via

renormalization group (RG) running. The leading contribution to the beta function is

d m̃2

d lnµ2
≈ −4αs

3π
m2
g̃ , (3.12)

hence we find a correction

δm̃2(mg̃) ≡ m̃2(mg̃)− m̃2(ΛG) ≈ 8αs
3π

m2
g̃ ln

ΛG
mg̃

, (3.13)

where the running starts from the strong scale ΛG where the composite stops are formed,

with masses given by eq. (3.1). This, in turn, affects the Higgs potential. In particular,

the logarithmically divergent piece now contains an h2 term,

∆Vh2 ≈ −
Ncy

2
t

4π2
h2 δm̃

2(mg̃)

2
ln

ΛG
m̃

= −Ncy
2
tαs

3π3
h2m2

g̃ ln
ΛG
mg̃

ln
ΛG
m̃

, (3.14)

where we have approximated the running δm̃2, which vanishes at ΛG, by its “average”

value δm̃2(mg̃)/2. For m̃ ∼ mg̃ ∼ 2 TeV and ΛG ∼ 10 TeV the contribution to the Higgs

mass parameter is ∆m2 ≈ −(160 GeV)2. Notice that the largest subleading terms in the

right-hand side of eq. (3.12), which we have neglected, scale as ∼ + y2
t m̃

2/(16π2) and thus

partly reduce the gluino effect.

4 Phenomenology

This section outlines the relevant experimental bounds on the tripled top framework and

highlights some of its distinct phenomenology. We begin by defining the low-energy states.

In the A sector, above the top quark (with mass m2
tA

= y2
t h

2) we find the stops and left-

handed sbottom, whose masses are raised by the soft SUSY breaking to m2
t̃A

= m2
ũcA

= m̃2+

y2
t h

2 and m2
b̃A

= m̃2, respectively. Except for some special situations, current LHC searches

imply m̃ & 1 TeV, while the A gluino must have mass larger than about 2 TeV. Since

our construction requires m̃ ∼ M , where M is the large SUSY mass, these experimental

constraints motivate taking M & 2 TeV, while the other mass scales ω and ∆ =
√
M2 − m̃2

are typically much lower, below 1 TeV.

The B and C sectors have identical spectra, due to the residual Z2 symmetry that

relates them. In light of the above considerations about the different mass scales, below

∼ 1 TeV we expect the following BSM states:

• Hidden glueballs. The absence of light particles charged under the hidden color SU(3)

implies that the hadron spectrum is comprised of glueballs. There are several of these

states, and the lightest is known [28–30] to have JPC = 0++ and mass related to the

confinement scale by m0 ≈ 6.8 ΛQCDB,C .

• Top siblings and cousins. These are the electroweak singlet and doublet Z3 copies

of the top sector. The singlet states ũcB,C , which are scalars with mass set by ∆,

are responsible for canceling the quadratic divergence in the Higgs mass coming from

– 11 –
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the top loop. Taking our cues from the many proposals to enlarge the Higgs family,

we refer to these hidden copies of the stop as top “siblings.” The doublet states,

which include both fermion and scalar components of QB,C and Q′cB,C , have instead

masses set by ω. These particles are also related to the top, but not as closely, so

we refer to them as top “cousins.” When the Higgs gets a VEV the siblings and the

scalar cousins mix, but we still refer to them by the family title that dominates, so a

mostly-∆ state is called a sibling and a mostly-ω state is called a cousin.

Because the siblings with mass ∼ ∆ are mostly-SM-singlet states, they are difficult to probe

experimentally. They do affect the Higgs self coupling and wave function renormalization,

but even at proposed future colliders the reach on their mass through these indirect probes

is very limited [8, 9]. Since the fine tuning required to make ∆ small scales as ∆2/M2,

we restrict our analysis to ∆ > 100 GeV, neglecting the region where the tuning becomes

extreme.3 Then, as shown below, the main signals originate from the cousins, which carry

SM electroweak charges and have masses set by ω.

While light hidden color glueballs and top siblings and cousins are essential ingredients

of the model, some other SUSY particles may also be below 1 TeV as their experimental

bounds are weaker than those of SM colored particles:

• MSSM sleptons, charginos and neutralinos (collectively denoted as electroweakinos

or EWinos). These are much less constrained than the squarks and gluino, and may

have masses much below 1 TeV.

• Gluinos of the B and C sectors.

The possible spectra of these particles, see for example figure 2, lead to a rich and varied

phenomenology. In this paper we focus on a few representative scenarios, leaving a more

complete analysis for future study.

We first determine the mass eigenstates of the hidden sectors. The mass matrix for

the B sector fermions is

−
(
u′B tB

)
MF

(
ucB
t′cB

)
, MF =

(
M 0

yth ω

)
, (4.1)

which is diagonalized by R(θL)TMFR(θR) = diag (MΨ,mψ0), where the physical masses

are, assuming M > ω and M � yth ,

M2
Ψ ≈M2

(
1 +

y2
t h

2

M2 − ω2

)
, m2

ψ0
≈ ω2

(
1− y2

t h
2

M2 − ω2

)
. (4.2)

The rotations read(
u′B
tB

)
→ R(θL)

(
Ψ

ψ

)
,

(
ucB
t′cB

)
→ R(θR)

(
Ψc

ψc

)
, R(θ) ≡

(
cos θ sin θ

− sin θ cos θ

)
, (4.3)

3The region with ∆ < 100 GeV is also subject to important constraints from Z and Higgs decays.
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Figure 2. Illustrative tripled top spectrum with ∆ < ω. We show only the B sector states as the

C sector is identical, due to the residual Z2 symmetry.

with mixing angles given by

sin θL ≈ −
ythM

M2 − ω2
, sin θR ≈ −

ythω

M2 − ω2
. (4.4)

Hence ψ,ψc form an electrically neutral Dirac fermion ψ0, whereas the SU(2)L partner

states bB, b
′c †
B form a Dirac fermion ψ− with electric charge −1 and mass mψ− = ω.

The B sector scalar masses are given by

−
(
ũ′B t̃B

)∗
M2

S

(
ũ′B
t̃B

)
, M2

S =

(
M2 ythM

ythM ω2 + y2
t h

2

)
, (4.5)

−
(
ũcB t̃ ′cB

)
M2

Sc

(
ũcB
t̃ ′cB

)∗
, M2

Sc =

(
∆2 + y2

t h
2 ythω

ythω ω2

)
, (4.6)

where ∆2 = M2 − m̃2. The M2
S matrix is not affected by SUSY breaking, hence it is

diagonalized by a rotation R(φL) with φL = θL, yielding a heavy mass eigenstate S̃ with

M2
S̃

= M2
Ψ ∼ M2, and a light mass eigenstate s̃ with m2

s̃ = m2
ψ0
∼ ω2. The M2

Sc matrix

requires special attention. While the other particle mixings are suppressed by M and are

therefore small, in this case the large negative soft mass −m̃2|ũcB|2 causes more uniform

mixing. Diagonalization is achieved through the rotation(
ũcB
t̃ ′cB

)
→ R(φR)

(
s̃c∆
s̃cω

)
, sin 2φR =

2ythω

m2
2 −m2

1

sgn
(
ω2 −∆2 − y2

t h
2
)
, (4.7)

where the mass eigenvalues are

m2
2,1 =

1

2

(
ω2 + ∆2 + y2

t h
2 ±

√(
ω2 + ∆2 + y2

t h
2
)2 − 4ω2∆2

)
, (4.8)
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resulting in R(φR)TM2
ScR(φR) = diag (m2

s̃c∆
∼ ∆2,m2

s̃cω
∼ ω2), i.e., s̃c∆ is a sibling, and s̃cω is

a cousin.4 Finally, the scalars b̃B, b̃
′c
B have electric charges equal to −1 and +1, respectively,

and masses equal to ω.

From eq. (4.8), the couplings to the Higgs of the heavier and lighter neutral scalar are

y2
t

2

(
1± ω2 + ∆2

|ω2 −∆2|

)
, (4.9)

respectively (notice that in either limit of ∆ → 0 or ω → 0 the coupling to the lighter

state completely vanishes). The sum over the two states yields the usual coupling y2
t for

one stop, and this is why two copies of this structure, i.e., both the B and C sectors, are

needed to completely cancel the top loop.

We note that the scalar mass matrices in eqs. (4.5) and (4.6) only include the leading

SUSY-breaking effects. In general, additional SUSY-breaking terms should be considered,

including extra diagonal soft masses for all the fields, as well as A- and B-terms,

Vs 3 ytAtQ̃BHũ
c
B +BQQ̃BQ̃

′c
B +Buũ

′
Bũ

c
B + h.c. (4.10)

(if these mixing terms are present, M2
S and M2

Sc are combined into a single 4 × 4 mass

matrix). These extra soft terms are radiatively generated and can be much smaller than

ω and ∆, thus giving only suppressed corrections to the physical scalar masses.

For simplicity, throughout our discussion we assume that the Higgs sector is in the

decoupling limit at large tan β, which implies the VEV satisfies 〈h〉 ≈ v/
√

2.

4.1 Hidden glue dynamics

The mass of the lightest hidden glueball is related to the confinement scale by m0 ≈
6.8 ΛQCDB,C . The confinement scale can be computed using RG running, as a function of

the scale at which the strong couplings in the three sectors are assumed to be equal, ΛZ3 ,

and of the particle masses. We take ΛZ3 to be in the range of 10–100 TeV, as suggested

by the cutoff scale ΛUV of the model discussed at the end of section 3. Performing the

renormalization group (RG) running at two loops (see appendix B for details) we find a

range of ΛQCDB,C values from about 2.5 to 16 GeV. In figure 3 we show the dependence

of the confinement scale on the hidden sector masses: in most of the parameter space

we focus on, we have ΛQCDB,C & 4 GeV, which corresponds to m0 & 28 GeV. All other

glueball masses are known from the lattice [28–30] in terms of m0.

Since the lightest hidden glueball has 0++ quantum numbers, it can mix with the Higgs

boson [31] through the effective coupling

cgαd
12π

h

v
Ĝ a
µνĜ

aµν , (4.11)

where αd = g2
d/(4π) with gd denoting the strong coupling of the B or C sector, and Ĝ aµν

is the corresponding gluon field strength. The coupling cg is induced by loops of particles

4Note that for ∆2 + y2
t h

2 < ω2 (∆2 + y2
t h

2 > ω2) we have ms̃c∆
= m1 (ms̃c∆

= m2), i.e., the sibling is

lighter (heavier) than the cousin. When ∆2 + y2
t h

2 = ω2 the mixing is maximal.
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Figure 3. Contours of ΛQCDB,C
/GeV in the (∆, ω) plane. The large SUSY mass is taken to be

M = 2 TeV and the hidden gluino mass 900 GeV. Solid red (dashed blue) contours correspond to

a scale of unbroken Z3 of 10 (100) TeV. The mass of the lightest glueball is m0 ≈ 6.8 ΛQCDB,C
.

that are charged under hidden color and couple to the Higgs, i.e., the top siblings and

cousins. The operator in eq. (4.11) allows the lightest glueball to decay to SM particles

through an off-shell Higgs. Denoting a given SM state with Y , the decay width is

Γ(0++ → Y Y ) = |cg|2
(
αd
6π

f0++

v(m2
h −m2

0)

)2

Γ(h(m0)→ Y Y )SM . (4.12)

The decay constant is defined by f0++ = 〈0|Tr ĜµνĜ
µν |0++〉, whereas Γ(h(m0) → Y Y )SM

is the partial width of a SM Higgs with mass m0. Lattice results in pure-glue SU(3) give

4παdf0++ = 3.1m3
0 [29].

We can estimate the size of cg using the Higgs low-energy theorem (LET) [32, 33]

when all the particles that mediate it are heavier than
√
p2
h/2, with ph the Higgs four-

momentum. Since in the 0++ → Y Y decay we have
√
p2
h/2 = m0/2 . 50 GeV, the LET

applies throughout our parameter space. Treating the Higgs as a background field and

viewing the field-dependent mass Mi(h) of each heavy particle as a threshold for the running

of gd, we write the low-energy Lagrangian

LLET =
αd
16π

ĜaµνĜ
aµν
∑
i

δbi lnM2
i (h), (4.13)

where the beta function coefficient is δb = 2/3 (1/6) for a Dirac fermion (complex scalar)

and we have assumed that the virtual particles transform in the fundamental representation

of SU(3). Expanding to first order in h we arrive at the coupling in eq. (4.11) with

cLET
g = v

[
∂

∂h
ln detMf (h) +

1

8

∂

∂h
ln detM2

s(h)

]
〈h〉
, (4.14)
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where Mf and M2
s are the fermion and scalar mass matrix in the Higgs background,

respectively.5 The mass matrices in eqs. (4.1), (4.5), and (4.6) all have h-independent

determinants, hence eq. (4.14) vanishes. Corrections to this leading-order result arise from

subleading SUSY-breaking terms in the scalar mass matrices, as well as from subleading

terms in the expansion of the form factors. We find that the extra soft terms give the

most important effects, which we estimate by adding a universal contribution δm2 to the

scalar masses. Then the largest correction comes from M2
Sc , which to leading order in

δm2 � ω2,∆2 yields

cLET
g ' δm2m2

t

4ω2∆2
. (4.15)

From this result we estimate the glueball’s proper decay length

cτ0++ ∼ 1.2 m

(
5 GeV

ΛQCDB,C

)7 ( ω

500 GeV

)4
(

∆

300 GeV

)4(100 GeV

δm

)4

, (4.16)

where we have used the benchmark 5 GeV for the hidden confinement scale, typical for

ΛZ3 ∼ 10 TeV. For comparison, in FSUSY the glueball decay length is a few millimeters

for similar values of the parameters, so in our model the hidden glueballs are relatively

long-lived. We stress, however, that this estimate of the glueball lifetime has large un-

certainties due to the high-power dependences on the model parameters. In eq. (4.16), a

mild suppression of δm can easily push the decay length beyond 10 meters, making the

glueballs decay mostly out of the LHC detectors. Conversely, for a larger confinement scale

ΛQCDB,C ∼ 10 GeV (corresponding to a higher ΛZ3 ∼ 100 TeV) a moderate enhancement

of δm can lead to a sub-millimeter lifetime. This makes the identification of the 0++ → bb̄

displaced vertices challenging, although this may improve in the near future [34].

If m0 is smaller than mh/2, the Higgs has exotic decays into pairs of 0++ hidden

glueballs, a signature that has been carefully analyzed in the context of Neutral Natural-

ness [35–37]. The rate is again controlled by the expression of cg in eq. (4.15). The width

for decay to the gluons of one sector reads

Γ(h→ gBgB) =
αd(mh/2)2m3

h

72π3v2
|cg|2 , (4.17)

yielding a branching ratio

BR (h→gBgB + gCgC) ∼ 2 · 10−6

(
αd(mh/2)

0.17

)2( δm

100 GeV

)4(500 GeV

ω

)4(300 GeV

∆

)4

,

(4.18)

which is suppressed compared to FSUSY. The smaller branching ratio makes detection of

these exotic Higgs decays at the LHC extremely challenging, but they may be within reach

of a future 100 TeV collider, either with the main detectors or with MATHUSLA [38, 39],

depending on the glueball lifetime.

5Notice that eq. (4.14) assumes canonical normalization for the background field.
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4.2 Quirky signals from cousins

The cousin particles are composed of both fermions and scalars, all carrying electroweak

charges and with masses around ω. Because several among them have unit electric charge,

LEP2 direct constraints on charged particles (see ref. [40] for a recent appraisal) imply ω &
100 GeV. Fermions have a larger production cross section in quark-antiquark annihilation,

hence we discuss the signals from fermionic cousins first, assuming that their decays to the

sibling and cousin scalars are kinematically forbidden (e.g., ∆ > ω and δm2 > 0). The

discussion of the signals from the cousin and sibling scalars is presented in sections 4.3

and 4.4, respectively.

When a cousin fermion-antifermion pair is produced through the Drell-Yan (DY) pro-

cess, it is connected by an SU(3)B,C color flux string. Since the hidden sector has no

light matter particles that can be pair produced to break the string, the pair remains tied,

forming a highly excited “quirky” bound state (quirkonium) [41–43]. Annihilation from

bound states with ` > 0 is highly suppressed [43], so the system must de-excite down to

one of the two lowest-lying s-wave states, the spin-0 η or spin-1 Υ, before it can efficiently

annihilate.

If at least one of the quirks is electrically charged, the system can de-excite by emission

of soft photons [44, 45]. Consider a pair of quirks of mass mψ with kinetic energy K,

connected by a string with tension σ ≈ 3.6 Λ2
QCDB,C

[46]. The acceleration of the quirks

due to the constant force exerted by the string is a = σ/mψ. The power P radiated by the

accelerating charges is given by the Larmor formula,

P =
8πα

3
a2 =

8πα

3

σ2

m2
ψ

. (4.19)

The de-excitation time is obtained dividing the kinetic energy by the power,

t γde-excite ∼
K

P
=

3m2
ψK

8πασ2
. (4.20)

For a typical initial kinetic energy K ∼ mψ, we find

t γde-excite ∼ 2 · 10−19 s

(
ω

500 GeV

)3( 5 GeV

ΛQCDB,C

)4

, (4.21)

where we have used mψ ∼ ω. The charged quirk can also beta decay to the neutral one,

with width given by

Γβ '
3G2

F (∆mψ)5

5π3
. (4.22)

We have defined the mass splitting of charged and neutral quirks as

∆mψ = mψ− −mψ0 '
m2
t

2(M2 − ω2)
ω , (4.23)

which is typically a few GeV: for example, for M = 2 TeV and ω = 500 GeV we find

∆mψ ' 2.0 GeV. For our typical parameters the width in eq. (4.22) corresponds to tβ ∼
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Figure 4. Mass mixing between the quirk bound states Q00 = ψ0ψ0 and Q+− = ψ+ψ− , induced

by the exchange of a virtual W boson.

10−14 s, which is much longer than t γde-excite. Thus, soft photon emission enables ψ+ψ− and

ψ0ψ− pairs to de-excite promptly to the ground state.

The situation is different for the ψ0ψ0 pair, which does not couple directly to the

photon. In this case hidden gluons can still be radiated, but these cannot be softer than

the mass of the lightest glueball, which may lead to a kinematic suppression as large as

(
√
σ/m0)6 ∼ 5 · 10−4 [43]. Conversely, the hidden gluons couple much more strongly than

photons, αd/α ∼ 25. The resulting timescale is t glueball
de-excite . 10−17 s, which is still prompt.

However, hidden glueball radiation cannot completely de-excite the system. At first the

emission of glueballs proceeds rapidly, but as soon as the quirks reach a kinetic energy

K . m0, it becomes kinematically forbidden. For a linear potential V (r) = σr, the energy

levels are approximately given by

En ≈
(

3π

2

)2/3 σ2/3

(2µ)1/3

(
n− 1

4

)2/3

, (4.24)

where n ≥ 1 and µ = mψ/2 is the reduced mass. Hence, a quirk pair with kinetic energy

K . m0 can have n as high as

n ∼ 2

3π

m
1/2
ψ m

3/2
0

σ
+

1

4
≈ 10

( ω

500 GeV

)1/2
(

5 GeV

ΛQCDB,C

)1/2

. (4.25)

Notice that for such n the potential is safely dominated by its linear component. Equa-

tion (4.25) shows that glueball radiation alone is unlikely to reach the system’s ground state.

The Q00 ≡ ψ0ψ0 bound state does not couple to photons directly, but it is also not

a mass eigenstate. It mixes with Q+− ≡ ψ+ψ− through the t-channel exchange of a W

boson, as shown in figure 4. After this mixing is diagonalized, the resulting mostly-Q00

eigenstate inherits a non-vanishing decay width to photons. The corresponding lifetime is

estimated as (see appendix C for the calculation)

t00
γ ∼

(∆mψ)2

2G2
F ω

2Λ4
QCDB,C

Γγ
∼ 10−17 s

(
5 GeV

ΛQCDB,C

)8(2 TeV

M

)4( ω

500 GeV

)3

, (4.26)

where GF = 1/(
√

2v2) is the Fermi constant, and Γγ is the width of Q+− for photon

emission, related to the timescale in eq. (4.21) by Γγ = 1/t γde-excite. The result in eq. (4.26)

shows that the mixing between the Q00 and Q+− mesons is large enough for the former to
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Figure 5. Dominant decays of the η+0 and Υ+0 .

de-excite promptly to the ground state via soft photon emission. Glueball radiation may

accelerate the de-excitation process.

Having established that all quirk pairs promptly de-excite via photon radiation to the

ground state and annihilate, we analyze the resulting resonant signals at the LHC. We

discuss first the electrically charged channel, whose DY cross section is larger than those

of the neutral channels and electric charge conservation forbids decays to hidden gluons

only, leading to increased branching fractions to SM particles. The partonic cross section

for open production is (defining αW = g2/(4π))

σ̂(ud̄→ ψ+ψ0) '
πα2

W

6 ŝ

ŝ2

(ŝ−m2
W )2

(
1− 4ω2

ŝ

)1/2(
1 +

2ω2

ŝ

)
, (4.27)

from which we obtain the hadronic cross section by convoluting with the parton luminosi-

ties.6 For example, setting ω = 500 GeV we find σ(pp→ ψ+ψ0 +ψ0ψ−) = 59 fb at 13 TeV.

In our analysis of quirkonium production and decay we neglect the small mixing between

ψ0 and the heavy fermion Ψ, which is suppressed by the large scale M . After de-excitation

the quirk pair annihilates, giving resonant signals of invariant mass ∼ 2ω.

The phenomenology of quirky bound states was studied in several scenarios [48–52].

We find the strongest constraint comes from the vector Υ+0, which decays dominantly to

SM fermions including Υ+0 → `ν, as shown in figure 5. The pseudoscalar η+0 instead

decays mostly to Wγ and WZ, leading to weaker limits. The cross section for the resonant

Υ±0 → `ν signal is estimated as

2σ(pp→ ψ+ψ0 + ψ0ψ−)× rΥ±0 × BR(Υ±0 → `ν) , (4.28)

where the overall factor 2 accounts for the sum over the B and C sectors, BR(Υ±0 → `ν) is

the branching ratio to one family of leptons, and rΥ±0 is the fraction of events that decay

from the vector bound state at the end of the de-excitation process. A näıve estimate

from simply counting the available degrees of freedom yields rΥ±0 = 3/4. However, the

production and de-excitation of quirks is unlikely to lead to a pure singlet or triplet state,

but rather to a linear combination of the two. In this case the widths of both states affect

the decay probability as

rΥ±0 =
3Γ(Υ±0)

Γ(η±0) + 3Γ(Υ±0)
, (4.29)

6We use MSTW2008 NLO parton distribution functions [47] with factorization scale set to
√
ŝ/2.
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Figure 6. Comparison of resonant quirkonium signals in the `ν (blue) and `` (red) channels to the

experimental bounds. Solid lines indicate the theory predictions, where the probability to decay

from the vector bound state was computed according to eq. (4.29) or its analogue for the electrically

neutral bound states. Dashed lines show the effect of changing this probability to 3/4. Dotted lines

correspond to the current ATLAS 95% CL cross section limits. The resulting lower bounds on the

quirkonium mass are shown by the vertical lines.

with Γ(X) the total width of X. The multiplicity of SM fermion-antifermion final states

makes Γ(Υ±0) nearly 7 times larger than Γ(η±0), yielding rΥ±0 ' 0.95. Notice that this

estimate is affected by a small nonperturbative uncertainty due to the unknown ratio

of the wavefunctions at the origin of Υ and η, which we assume to be 1. In figure 6

we compare the signal cross section computed using eq. (4.28) to the current ATLAS

bound [53]. The two estimates for rΥ±0 , namely 3/4 and eq. (4.29), lead to similar limits

ω & 700 GeV. Using the Coulomb approximation to evaluate the wavefunction at the

origin, we find the total widths of Υ±0 and η±0 are in the 1 - 10 MeV range. This corresponds

to tann . 10−21 s � t γde-excite , confirming that annihilation takes place immediately once

the system reaches its ground state.

The electrically neutral quirkonia ψ+ψ− and ψ0ψ0 are produced in DY via Z and

photon exchange. For ω = 500 GeV the 13 TeV production cross sections are 17 fb and

15 fb, respectively. In contrast to the charged case, the neutral pseudoscalars η+− and η00

decay dominantly to two hidden gluons, which in turn hadronize into glueballs. While

this may lead to observable displaced decays in ATLAS and CMS [54], as discussed after

eq. (4.16) the estimate of the glueball lifetime suffers from large theoretical uncertainties.

A more robust signature is the dileptonic decay of Υ+− and Υ00, whose rate is given by

a formula similar to eq. (4.28). The large hadronic widths of the pseudoscalars imply a

suppression of the probability to decay from the vector states: from the analogs of eq. (4.29)

we find rΥ+− ' rΥ00 ' 0.30. In addition, numerically BR(Υ+− → ``)/BR(Υ00 → ``) ' 2.4,

hence the signal from the Υ+− dominates. The comparison of the total signal cross section

to the current ATLAS bound [55] is shown in figure 6. The resulting limit is ω & 600 GeV,
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ψ±,0

s̃c∆

χ̃±,0

Figure 7. Decay of a quirk to a light sibling and a light EWino in the case ω & ∆ +mχ̃ .

Figure 8. Summary of the current constraints on the parameter space. We do not consider the

region ∆ < 100 GeV, where the fine tuning ∼ ∆2/M2 becomes very severe. Bounds from LEP2

rule out the gray shaded region ω < 100 GeV. In purple, green, and orange we show the exclusions

coming from the `ν, `` and γγ signals of the quirkonia, respectively, see section 4.2. The quirkonium

constraints can be relaxed or removed if ∆ < ω and some EWinos are light.

weaker than the one coming from the charged channel. The η+− → γγ decay also leads to

ω & 600 GeV, as determined by comparing the signal prediction (enhanced by rη+− ' 0.70)

to the experimental limits on diphoton resonances [56].

The quirkonium bounds discussed above and illustrated in figure 6 are robust when

the siblings are heavier than the cousins, i.e., for ∆ > ω. In this case, the presence

of light EWinos or hidden gluinos may open new decay channels to these superpartners

and therefore modify the quirkonium branching ratios, but the constraints on ω are not

strongly altered.

In the opposite regime ∆ < ω, if there are light EWinos the fermionic cousins can decay

to a light sibling and an EWino, as depicted in figure 7. The quirkonium annihilation signals

are then erased and replaced by those of the light siblings, which behave as scalar quirks

(“squirks”). Their phenomenology is discussed in section 4.4. A summary of the quirk

constraints on the (∆, ω) parameter space is shown in figure 8.
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4.3 Cousin squirks

The phenomenology of the squirks shares several features with that of the fermions. The

main production process is DY, and annihilation of squirky bound states is suppressed

when ` > 0. In contrast to the fermionic case, however, there is only one s-wave state χ,

with 0++ quantum numbers. Here we consider the scenario ∆ > ω, when the siblings s̃c∆
are heavy and we can focus on the scalar cousins. The opposite regime ∆ < ω is discussed

in section 4.4.

Once a pair of scalar cousins is produced in quark-antiquark annihilation, it de-excites

by radiating soft photons. Bound states of two electrically neutral squirks radiate through

mixing with bound states composed of two charged squirks. The associated characteristic

timescale is given by a formula analogous to eq. (4.26), but with ∆mψ replaced by the

relevant splitting of the charged and neutral scalar masses. The largest splitting is the one

among b̃′cB and s̃cω, with the former heavier by ≈ 1
2m

2
tω/(∆

2 − ω2) which is typically of

few tens of GeV, i.e., an order of magnitude larger than ∆mψ. The resulting timescale for

de-excitation via photon emission is ∼ 10−15 s, leading us to conclude that all scalar pairs

promptly reach the ground state and annihilate.

The most promising signals arise from electrically charged squirkonia, that have larger

DY cross section and cannot annihilate entirely to hidden glueballs. The production cross

section is

σ̂(ud̄→ s̃ b̃∗B) '
πα2

W

24 ŝ

ŝ2

(ŝ−m2
W )2

(
1− 4ω2

ŝ

)3/2

, (4.30)

where we neglect the effects of the mixing between s̃ and S̃. Numerically, for ω = 500 GeV

we find 2σ(pp → s̃ b̃∗B + s̃∗b̃B) = 8.9 fb at 13 TeV, where the factor 2 includes also the

production of b̃′cB s̃
c ∗
ω + b̃′c ∗B s̃cω, again neglecting mixing effects. We find that the total

production cross section of the cousin scalars is suppressed by a factor ≈ 6.7 compared to

their fermionic counterparts. The annihilation patterns differ for the two doublets. Before

mixing with the singlet scalars, Q̃B couples to the Higgs with yt strength, hence s̃ b̃∗B pairs

annihilate dominantly to Wh, whereas Q̃′cB does not couple to the Higgs, so b̃′cB s̃
c ∗
ω pairs

annihilate mostly to the Wγ and WZ final states [44, 57], with BR(Wγ)/BR(WZ) '
(tan2 θw)−1 ≈ 3.3. Mixings with the singlets give O(1) modifications of the branching

ratios, but are not expected to change this picture qualitatively. Thus, the most important

constraints come from searches for Wh [58] and Wγ [59] resonances. From ref. [58] we

find the Wh → `νbb̄ cross section expected from the cousin squirks is just below the

experimental bound in the 300 GeV . ω . 500 GeV range, but currently no exclusion

applies. On the other hand, the Wγ → `νγ final state [59] yields a weak bound ω &
300 GeV, though this search has not been updated yet to 13 TeV data.

Because the mass splitting between b̃′cB and s̃cω is O(10)×∆mψ, eq. (4.22) implies the

timescale for beta decay is roughly ∼ 10−19 s, which is of the same order as de-excitation

via photon emission, eq. (4.21). Thus, beta decay may occur before de-excitation, which

would erase the Wγ/WZ resonant signals. On the other hand, b̃B and s̃ have the same

mass splitting ∆mψ as the quirks, so they de-excite and annihilate to Wh well before beta

decay becomes effective. To summarize, for ∆ > ω the squirk phenomenology is subleading

to that of the quirks.
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4.4 Light sibling squirks

The sibling scalar is dominantly a SM singlet. Its direct DY pair production only proceeds

through mixing with the cousin scalars, and is therefore suppressed. However, if ∆ < ω,

as we assume in this subsection, the light siblings can also be produced by the decays of

cousin fermions and scalars. The fermions ψ±,0 can decay to s̃c∆ and a light EWino, if

kinematically allowed, see figure 7. The scalar cousins, on the other hand, decay to s̃c∆
and a gauge boson or Higgs via mass mixing. For s̃ and b̃B, the mixing is mediated by the

subleading A- and B-terms in eq. (4.10). Thus, cousin pair production typically results in

a s̃c ∗∆ s̃c∆ squirky bound state. Due to the singlet nature of the siblings, the de-excitation of

this system is a complex process, which we now analyze in detail.

Photon radiation via mixing with the b̃′c∗B b̃′cB bound state is strongly suppressed by the

large ω − ms̃c∆
mass splitting. For ∆ � ω this de-excitation timescale is approximately

given by eq. (4.26) with ∆mψ replaced by ∼ ω, and multiplied by (sin φR)−4 due to the

reduced coupling of s̃c∆ to the W boson. The resulting lifetime of about 10−10 s shows that

photon radiation is very slow.

Turning to glueball radiation, we adapt the arguments of ref. [43] to scalar constituents.

This implies that the kinematic suppression may be as large as (
√
σ/m0)8, leading to a

timescale . 10−16 s, which is still prompt. Just like quirkonium, glueball radiation typically

does not reach the ground state, leaving a residual kinetic energy K . m0. The de-

excitation can be completed by radiating light SM fermions via an off-shell Z boson. The

corresponding timescale is estimated by applying the photon radiation formula, eq. (4.20),

with K ∼ m0 and the replacement

α →
α2
W sin4 φRNf

4π 4 cos4 θw

(
δE

mZ

)4

. (4.31)

This effective interaction strength takes into account the sin2 φR suppression of the Z-s̃c∗∆ -

s̃c∆ coupling and includes the multiplicity Nf of kinematically available SM fermions. The

powers of mZ originating from the Z propagator are compensated by the typical splitting

δE between adjacent energy levels. Averaging over the differences between the En in

eq. (4.24) (with µ = ms̃c∆
/2) below the glueball mass, we obtain

δE ≈ 3π

2

σ
√
m0ms̃c∆

. (4.32)

Combining the different pieces we arrive at the result

tZde-excite ∼
32

27π4

cos4 θw

α2
W sin4 φRNf

m4
Zm

4
s̃c∆
m3

0

σ6
∼ 4 · 10−13 s

(
5 GeV

ΛQCDB,C

)9 ( ms̃c∆

300 GeV

)4

,

(4.33)

where in the numerical estimate we take sin φR = 0.4 and Nf = 18 as typical values.

This corresponds to a proper decay length of ∼ 0.1 mm, for which the sensitivity of LHC

displaced decay searches is severely degraded. Furthermore, our lifetime estimate is con-

servative. In using the Larmor formula in eq. (4.19) we modeled the de-excitation as a
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sequence of small transitions of energy δE � K ∼ m0. This is a semi-classical picture, and

in fact eq. (4.32) may be regarded as the classical radiation frequency. However, we should

also consider direct transitions to the ground state, whose amplitudes are suppressed by

wavefunction overlap integrals, but enhanced by the larger δE ∼ m0. For example, a

dipole transition between an excited state with K ∼ m0 and ` = 1 and the ground state,

has a lifetime of ∼ 10−16 s, several orders of magnitude shorter than the multi-step process

described above. Higher multipoles with ∆` ∼ few can also accelerate the de-excitation,

despite being more suppressed. In conclusion, we expect that the s̃c∗∆ s̃
c
∆ system de-excites

promptly to its ground state and annihilates, and proceed under this assumption.

Since s̃c∆ is mostly a SM singlet, the lowest-lying bound state χ∆∆ annihilates domi-

nantly to hidden glueballs. As mentioned earlier, signals from glueball displaced decays [54]

are possible but not guaranteed, given the large uncertainty in the lifetime prediction of

eq. (4.16). A robust signature is provided by the subleading decays to SM dibosons,

χ∆∆ → WW,ZZ, hh, and fermions, χ∆∆ → tt̄, which arise due to the mass mixing in

eq. (4.7). The branching fractions of these modes are, however, at most a few percent

due to the large hidden QCD coupling, αd(ms̃c∆
) ∼ 0.1 for sibling masses of few hundred

GeV and ΛQCDB,C = 5 GeV. Assuming that all the cousins, both fermions and scalars,

decay to the light sibling plus additional particles, the total production cross section of

s̃c∗∆ s̃
c
∆ + anything is obtained by summing the production cross sections of all siblings and

cousins. The dominant contribution comes from the production of the cousin fermions

ψ±, ψ0. In figure 9 we show the total cross section multiplied by the branching ratios of

χ∆∆ decays in various SM channels, which are given in appendix D. The comparison with

the experimental bounds on resonances with mass 2ms̃c∆
(. 2∆) in the WW [60], ZZ [61],

hh [62], and tt̄ [63] final states shows that the χ∆∆ signals are at least an order of magnitude

below the current sensitivity.

We note that additional particles produced along with the sibling pair can potentially

lead to further constraints. For example, pair production of the charged quirks ψ+ψ− can

yield the final state χ∆∆ +W+W−+χ̃0χ̃0, resulting in W+W−+ missing transverse energy

(MET) if the sibling pair annihilates to invisible glueballs, or a multi-gauge-boson + MET

final state if χ∆∆ →WW or ZZ. Many other possibilities exist, but the dominant signals

and the associated bounds depend strongly on the spectra of the EWinos and the hidden

sector. We therefore defer the study of these signatures to future work.

Finally, we comment on the ∆ ∼ ω region. Even if the lightest neutralino is very light,

when the mass splitting between the cousin fermions and the sibling is small, ω −ms̃c∆
�

mW , the 4-body decay of the charged quirk ψ− → s̃c∆χ̃
−∗ → s̃c∆χ̃

0(W−∗ → ff̄ ′) can be

slower than the de-excitation via photon emission, whose timescale was given in eq. (4.21).

In this case, the quirk pair can annihilate to SM particles as discussed in section 4.2. When

kinematically allowed, a quirk pair containing one or two neutral quirks may convert into

a squirk pair by exchanging a hidden gluino, although this process is unlikely to dominate

due to the mixing angle suppression. Nevertheless, annihilation signals that originate from

ψ+ψ− pairs should survive and lead to significant bounds on ω from the Υ+− → `` and

η+− → γγ decay channels. Similarly, for small mass splitting the decays of the scalar

cousins to s̃c∆ and (off-shell) gauge or Higgs bosons can become very suppressed, and thus
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Figure 9. Cross sections for sibling squirkonium production at 13 TeV times branching ratios

for decay to SM particles, vs. the experimental bounds. We set ∆ = 300 (500) GeV in the left

(right) panel. Red, blue, orange, and green curves correspond to the WW,ZZ, hh, and tt̄ channels,

respectively. Solid curves assume that all cousins, both fermions and scalars, decay to the light

sibling, whereas dashed curves include only the contributions from all squirk pairs. Dotted curves

show the current experimental limits on resonances with mass 2ms̃c∆
(. 2∆). The tt̄ constraint is

too weak to appear in the left panel.

ineffective in preventing the annihilation of squirky cousin pairs. However, for ∆ even

moderately smaller than ω the decays dominate, and all cousins cascade down to the

light sibling.

5 Conclusions

The lack of LHC signals from new colored particles motivates the broad framework of

neutral naturalness. In this article we presented the first supersymmetric model where

the top partners are complete SM singlet scalars, which we dubbed top siblings. While

inspired by Folded SUSY, our construction differs from it in several aspects. It is purely

four dimensional, thus allowing enough parametric freedom to easily accommodate realistic

electroweak symmetry breaking. Two hidden top sectors are needed to cancel the quadratic

top-loop corrections to the Higgs mass, but no hidden light generations are necessary.

The model also requires that the soft masses of the colored stops and of the siblings are

equal in magnitude, but opposite in sign. We have provided an explicit construction that

realizes this structure, where the top superfields, both visible and hidden, arise as IR

composite degrees of freedom of strongly coupled SUSY gauge theories. The associated

UV cutoff can be as high as 100 TeV, an order of magnitude larger than in many neutral

naturalness models.

Probing directly the SM-singlet siblings is a challenge for the LHC experiments. Con-

sequently, the collider phenomenology is largely governed by the top cousins, which are

electroweak-charged fermions and scalars that accompany the siblings. When the sibling
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mass ∆ is larger than the cousin mass ω, the resonant annihilation signals of the cousin

quirks lead to a bound ω & 700 GeV. However, in the opposite regime ∆ < ω these con-

straints can be relaxed, or altogether erased, if the cousins rapidly decay down to the light

siblings. This happens if at least some of the EWinos are light. Then, the electroweak

pair production of the cousins results in the formation of squirky pairs of siblings. These

annihilate dominantly to hidden glueballs, which are relatively long lived in our model and

can decay outside the LHC detectors. Annihilation to SM particles is very suppressed, so

very light siblings are currently compatible with LHC constraints.

Several interesting variations of our model can be envisaged. One possibility is to give

the siblings nonzero hypercharge, which results in different patterns of electroweak signals.

Another appealing option is to switch the roles of SU(2)L singlets and doublets of the

hidden sectors, ucB,C ↔ QB,C and u′B,C ↔ Q′cB,C , both in the superpotential and in the

soft masses. The Higgs potential is unaffected by this transformation. In this alternative

version of the model the top partners are EW doublet scalars, whereas the cousins are

complete SM singlets. Since it is technically natural for their mass ω to be small, the

cousins could be very light, leading to exotic phenomenology. These possibilities will be

investigated in a future publication.
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A Soft masses of composite mesons

The relations between the soft SUSY-breaking masses of UV constituents and IR compos-

ites were derived in ref. [26]. In this appendix we briefly summarize those relations and

generalize the result to the case of non-universal soft masses. Consider a SUSY gauge theory

with a “quark” P transforming under the gauge group in the UV. Under the reparametriza-

tion of superfield P →
√
ZP , the rescaling anomaly generates a shift in the holomorphic

gauge coupling function S = 1
g2 − i θ

8π2 :

S(µUV)→ S(µUV) +
T

8π2
lnZ, (A.1)
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where T is the Dynkin index of the representation under which P transforms. The La-

grangian can be written as

1

4

∫
d2θ S(µUV)W 2 + h.c. +

∫
d4θZF

(
S(µUV) + S†(µUV)− T

4π2
lnZ

)
P †eV P, (A.2)

where the first term is the gauge kinetic term. The theory is invariant under the transfor-

mation

Z → Zχχ†, P → P/χ, S(µUV)→ S(µUV) +
T

4π2
lnχ . (A.3)

The functions S(µUV) and Z can be promoted to chiral and real vector superfields

respectively. One can see that lnZ plays the role of the background vector superfield of

the anomalous U(1)A symmetry of eq. (A.3). Physical quantities must be invariant under

U(1)A and renormalization group transformations. The only such quantity that can be

formed from S and Z is

I = Λ†hZ
2T/bΛh, (A.4)

where Λh = µUVe
−8π2S/b is the holomorphic dynamic scale and b is the beta function

coefficient. If there is more than one quark transforming under the gauge group, the

expression generalizes to

I = Λ†h

(∏
k

Z
2Trk/b

k

)
Λh, (A.5)

where Trk is the Dynkin index of the representation rk for the kth quark. The physical

strong scale corresponds to the θ0 component of I, Λ2 = [I]θ=θ̄=0. We may view eq. (A.5)

as indicating that I carries charges 2Trk/b under U(1)A,k.

The θ2 component of S and θ2θ̄2 component of lnZ correspond to the soft gaugino

and squark masses respectively. In particular,

m2
P (µUV) = −[lnZ]θ2θ̄2 − [lnF (µUV)]θ2θ̄2

µUV→∞
−−−−−→ −[lnZ]θ2θ̄2 , (A.6)

as the contribution from F is proportional to the anomalous dimension and its deriva-

tive [26] which vanish in the µUV →∞ limit for an asymptotically free theory.

In an s-confining theory, the low-energy degrees of freedom are mesons M and baryons

B,B. Near the origin, the Kähler potential can be expanded in power series in M,B, and

B. For the meson field Mij made of Pi and P j , its Kähler potential must start with

K ⊃ cMij

M †ijZiZj̄Mij

I
+ · · · (A.7)

to have the correct dimension and be invariant under the U(1)A symmetries. The leading

soft SUSY-breaking mass of the meson Mij can be similarly obtained. In the far IR where

the contribution from cMij vanishes (similar to that of the F function in the UV), we have

m2
Mij

= −
[
ln
ZiZj̄
I

]
θ2θ̄2

=− [lnZi]θ2θ̄2 − [lnZj̄ ]θ2θ̄2 + [ln I]θ2θ̄2 (A.8)

=m2
Pi +m2

P j
− 2

b

∑
k

Trk

(
m2
Pk

+m2
Pk

)
, (A.9)

which is eq. (3.1).
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B Estimating ΛQCDB,C

In this appendix we describe our estimation of ΛQCDB,C . At the high scale ΛZ3 the strong

coupling constants of the A, B, and C sectors are assumed to be equal, but the different

particle content of the visible and hidden sectors result in different coupling values at

lower energies, αA(µ) 6= αB,C(µ), and therefore different confinement scales. Since the

phenomenology is very sensitive to the value of ΛQCDB,C , we perform the RG running at

two loops. At this order we have [64–66]

dαi
d lnµ2

= − α2
i

4π

(
b+ b1

αi
4π

+O(α2
i )
)
, (B.1)

for i = A,B,C, with

b = 11− 1

3
nf −

1

6
ns − 2ng̃ , (B.2)

b1 = 102− 19

3
nf −

11

3
ns − 48ng̃ +

13

3
ng̃ min (nf , ns) . (B.3)

In these formulae nf and ns are the number of Weyl fermions and complex scalars, respec-

tively, transforming as fundamentals of SU(3)i. The number ng̃ is either 1 or 0, depending

on whether or not the gaugino is active in the running. Finally, the last term in b1 arises

from the SUSY gluino-fermion-scalar interactions. These interactions contribute only for

complete active SUSY multiplets, whose number we count using the minimum function.

The running between two thresholds µ1 and µ2 is determined by

α−1
i (µ1)− α−1

i (µ2) +B1 ln

(
α−1
i (µ2) +B1

α−1
i (µ1) +B1

)
= B ln

µ2
1

µ2
2

, (B.4)

where B = b/(4π) and B1 = b1/(4πb). The confinement scale is (see e.g. ref. [67])

ΛQCDi

µ
= exp

(
−1

2Bαi(µ)

)(
1

Bαi(µ)
+
B1

B

)B1
2B

. (B.5)

Given a set of input parameters M,ω,∆ and mg̃B,C , to determine ΛQCDB,C we proceed as

follows. Starting from αA(mZ) = 0.1185 with mZ = 91.1876 GeV, we run the A coupling

up to ΛZ3 , taking into account the thresholds given by the top quark with mt = 173 GeV,

the t̃A, b̃A, ũcA with mass ∼
√
M2 −∆2, and the A gluino and light generation squarks,

whose masses are taken to be M . Then the B,C couplings are run down according to

the mass spectrum of the hidden sectors. Below the mass of the lightest hidden particle,

eq. (B.5) is used to determine ΛQCDB,C .

In a more complete theory that explains the origin of the opposite sign soft masses,

additional thresholds can be present. In the example discussed in section 3, these are given

by the confinement scale ΛG and by the masses of the extra composite mesons in the visible

sector, MX , and in the hidden sectors, MB,C
X . As long as MX ∼ MB,C

X , the additional

thresholds have a mild effect on ΛQCDB,C .
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C Mixing of electrically neutral quirkonia

We describe the mixing between the two electrically neutral mesons by writing an effective

Hamiltonian matrix in the (Q00, Q+−)T space (see for example ref. [68] for a review),

H = M0 + Mmixing −
i

2
Γ = 2ω

(
1− ∆mψ

ω 0

0 1

)
+

(
0 Mmix

Mmix 0

)
− i

2

(
0 0

0 Γγ

)
. (C.1)

Here M0 contains the diagonal masses of the constituent quirks, which are split by ∆mψ

as defined in eq. (4.23). Next, Γ contains the width of Q+− for photon emission, obtained

from eq. (4.21) as Γγ = 1/t γde-excite. For our representative choice of the parameters, we

have Γγ ∼ 3 keV. Finally, Mmixing describes the mixing of the two mesons,

Mmix =
1

4ω
〈Q00|HW|Q+−〉 (C.2)

where HW is the interaction Hamiltonian generated by t-channel W exchange. The ampli-

tude for this process is

− g2

2(t−m2
W )

u−γ
µu0 v0γµv+ , (C.3)

where the contribution of the longitudinal W was neglected, because it is relatively sup-

pressed by (∆mψ)2/m2
W . To understand the expected size of t, recall that we are con-

sidering a transition from a highly excited state of Q00 to one of Q+−. The typical en-

ergy splitting among these highly excited states is of O(ΛQCDB,C ), so we take
√
−t ∼

ΛQCDB,C � mW . Then, by performing a Fierz rearrangement and neglecting an O(1)

coefficient, we obtain

HW ∼
g2

2m2
W

O , (C.4)

where O is a 4-fermion operator whose Lorentz structure depends on the type of bound

states under consideration (e.g. scalar, vector, etc.). We then obtain

Mmix ∼
1

4ω

g2

2m2
W

〈Q00|O|Q+−〉 ∼
1

4ω

g2

2m2
W

(2ω)2Λ2
QCDB,C

= 2ω
Λ2

QCDB,C

v2
, (C.5)

where again O(1) factors were neglected. The decay width into photons of the mostly-Q00

eigenstate can be extracted from the corresponding eigenvalue Ω00 as Γ00
γ = −2 Im Ω00.

Expanding to leading order in Γγ we arrive at

Γγ00 ∼
ω2Λ4

QCDB,C

(∆mψ)2v4
Γγ , (C.6)

which can be rewritten as in eq. (4.26). Notice that since Γγ is much smaller than all

the other scales in the problem, this result can be simply obtained as Γγ00 ∼ Θ2Γγ , where

Θ ∼ Mmix/(2∆mψ) ∼ ωΛ2
QCDB,C

/(∆mψ v
2) is the mixing angle computed by neglecting

Γγ in the Hamiltonian.
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D Annihilation of the light sibling squirkonium

The s̃c∗∆ s̃
c
∆ bound state χ∆∆ annihilates dominantly to gBgB, with subleading modes given

by tt̄,WW,ZZ and hh. The corresponding decay widths can be obtained by adapting the

results of e.g. ref. [69]. We have7

Γ(χ∆∆ → ij) =
|χ(0)|2

32πm2
s̃c∆

βij
1 + δij

∑
|M(ij)|2 , (D.1)

where
∑
|M(ij)|2 and βij are the spin-summed matrix element squared for s̃c∗∆ s̃

c
∆ → ij

and the final state velocity, respectively, both evaluated at threshold. The value of the

wavefunction at the origin, χ(0), is unknown but does not affect the branching ratios.

First of all, for the dominant gBgB final state we have∑
|M(gBgB)|2 = 32π2N

2
c − 1

Nc
α2
d , (D.2)

where Nc = 3. For hh we find

∑
|M(hh)|2 = Nc

λhhs̃c∆s̃c∆ +
3m2

hκhhhλhs̃c∆s̃
c
∆

4m2
s̃c∆
−m2

h

− 2
∑

i= ∆,ω

λ2
hs̃c∆s̃

c
i
v2

m2
s̃c∆

+m2
s̃ci
−m2

h

2

, (D.3)

where κhhh = 1 and the couplings between the squirks and the Higgs read

λhhs̃c∆s̃
c
∆

= y2
t cos2 φR , λhs̃c∆s̃

c
∆

= y2
t cos2 φR −

√
2
ytω

v
sinφR cosφR , (D.4)

λhs̃c∆s̃cω = y2
t sinφR cosφR +

ytω√
2 v

(cos2 φR − sin2 φR). (D.5)

For the WW and ZZ final states,

4

Ncg4

∑
|M(W+W−)|2 = 2(aTV V )2

+

4m2
s̃c∆

(m2
s̃c∆

m2
W

−1

) κ2
Ws̃c∆b̃

′c
B

m2
s̃c∆

+m2
b̃′cB
−m2

W

−
(2m2

s̃c∆

m2
W

−1

)
aTV V

2

,

4c4
w

Ncg4

∑
|M(ZZ)|2 = 2(aTV V )2

+

[
4m2

s̃c∆

(m2
s̃c∆

m2
Z

−1

) ∑
i= ∆,ω

κ2
Zs̃c∆s̃

c
i

m2
s̃c∆

+m2
s̃ci
−m2

Z

−
(2m2

s̃c∆

m2
Z

−1

)
aTV V

]2

,

(D.6)

where we defined

aTV V = κV V s̃c∆s̃
c
∆

+
λhs̃c∆s̃

c
∆
v2κhV V

4m2
s̃c∆
−m2

h

, (D.7)

7In this appendix we take ω >
√

∆2 +m2
t , where s̃c∆ is the lightest scalar. In the region ∆ < ω <√

∆2 +m2
t , which is also shown in figure 9, the lightest scalar is s̃cω. In this case we must exchange

ms̃c∆
↔ ms̃cω

, and make the replacements sinφR → cosφR and cosφR → − sinφR.
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with κV V s̃c∆s̃
c
∆

= κZs̃c∆s̃
c
∆

= sin2 φR, κZs̃c∆s̃cω = sinφR cosφR and κhV V = 1. Finally for tt̄

we find ∑
|M(tt̄ )|2 = 8N2

c (m2
s̃c∆
−m2

t )

(
mtκhttλhs̃c∆s̃

c
∆

4m2
s̃c∆
−m2

h

)2

(D.8)

with κhtt = 1.
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