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1 Introduction and summary

Surface operators were first introduced in [1, 2] as half-BPS defects of codimension two that

solve the Kapustin-Witten equations in four-dimensional N = 4 supersymmetric Yang-

Mills theories (see [3] for an overview). By giving a mass to the adjoint hypermultiplet

and flowing to the infra-red (IR), these defects naturally lead to surface operators in pure

N = 2 gauge theories in four dimensions. These surface operators have been extensively

studied from many different points of view [4–30].

The present paper contains a generalization of our previous work [28], in which we

studied surface operators in pure Yang-Mills theories with gauge group SU(N) and eight

supercharges in four and five dimensions, following two approaches. In the first approach,

we made use of the microscopic description offered by Nekrasov localization [31, 32], suit-

ably adapted to the case with surface operators [17, 26–28], and computed the (ramified)

instanton partition function. In the second approach, we considered quiver gauge the-

ories [4, 18] in two (or three) dimensions with an additional SU(N) flavour symmetry

realized by a gauge theory in four (or five) dimensions. From this standpoint, one deals
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with combined 2d/4d (or 3d/5d) systems, whose low-energy effective action is encoded in

a pair of holomorphic functions: the prepotential, which governs the dynamics in four (or

five) dimensions, and the twisted chiral superpotential, which describes the massive vacua

of the quiver theories in two (or three) dimensions. Following the general ideas of [18] and

using a careful mapping of parameters, in [28] we were able to match the twisted super-

potential computed using localization methods with the one obtained by solving the chiral

ring equations in the quiver theory approach.

In the 2d/4d case there are distinct quiver descriptions for the same surface opera-

tor [27, 28] in which the corresponding 2d theories are related to each other by Seiberg-like

dualities [33–35]. From the localization point of view, these distinct ultra-violet (UV)

descriptions correspond to different choices of the integration contours along which one

computes the integral over the (ramified) instanton moduli space to obtain the Nekrasov

partition function. When these theories are lifted to 3d/5d systems, some novel features

arise. Indeed, as we have shown in [28], suitable Chern-Simons terms in three dimensions

are needed in order to ensure the equality of the twisted superpotentials in dual descrip-

tions. This is not too surprising since the 3d quiver theories include bi-fundamental matter

multiplets that are rendered massive by twisted masses. When one integrates out these

massive chiral fields, one generates effective Chern-Simons interactions. Furthermore, since

dual pairs in three dimensions are related by Aharony-Seiberg dualities [33, 36, 37] which

typically act on the Chern-Simons levels, we expect that the Chern-Simons couplings of two

different quiver theories describing the same surface operator must be related in a precise

manner. In [28] a few examples were worked out to highlight this phenomenon. We showed

that the effective twisted chiral superpotential matched only for particular values of the 3d

Chern-Simons levels in the dual pairs. In this work, we perform a complete and systematic

analysis of coupled 3d/5d theories that have an interpretation as supersymmetric surface

operators in N = 1 gauge theories in five dimensions, allowing for both 3d as well as 5d

Chern-Simons interactions, and provide a general description of the duality relations.

We now give an overview of this paper. In section 2, we review the localization

analysis of the 5d N = 1 super Yang-Mills theory compactified on a circle and present

its instanton partition function, mainly following [38] (see also [39–44]). However, in-

stead of directly working with the Young tableaux formulation, we work with the contour

integral formulation.

In section 3, we study the 5d SU(N) theories in the presence of surface operators,

which we treat as monodromy defects [1, 2] labeled by the partitions of N of length M .

For any given partition we present the ramified instanton partition function that is obtained

by a suitable ZM orbifold projection on the instanton moduli space of the theory without

defects [5, 17, 26]. The integrand of this ramified instanton partition function has the

same set of poles as the one presented in [28] but it has additional exponential factors

that depend on M new parameters, which we denote mI , whose sum plays the role of the

Chern-Simons coupling k5d of the five dimensional SU(N) gauge theory. To obtain explicit

results, one must specify the integration contours in the instanton partition function, which

can be conveniently classified by a Jeffrey-Kirwan reference vector [45] (see [27, 28] for

details). Here we present two choices which are complementary to each other and are
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simple extensions of those discussed in the pure 5d theory. For these two choices we

compute the twisted chiral superpotential by explicitly evaluating the residues over the

poles selected by the integration contours.

In section 4, we go on to study surface operators as coupled 3d/5d systems and identify

two quiver descriptions with (M − 1) 3d gauge nodes and an SU(N) flavour node that is

gauged in five dimensions, which are dual to each other. The identification proceeds as

follows: for a given 3d/5d quiver theory, we solve the twisted chiral ring equations about a

particular classical vacuum as a power series expansion in the strong coupling scales of the

quiver theory. Then, we show that there is a one-to-one map between the choice of classical

vacuum and the choice of discrete data that label a Gukov-Witten defect. In particular,

the strong coupling scales of the 3d/5d quiver are mapped on to the Nekrasov instanton

counting parameters, while the Chern-Simons levels of the 3d nodes of the quiver theory

are related to the first (M − 1) parameters mI of the localization calculation. However,

the precise map depends on the choice of the contour prescription. In fact, with one

prescription, these parameters are related to the Chern-Simons levels, but with the other

they are related to the negative of the Chern-Simons levels.

In section 5, we revisit the conditions under which the two contour prescriptions yield

equal results and interpret them as Aharony-Seiberg dualities [33, 36] between pairs of

quiver theories. In this correspondence we find that the 3d Chern-Simons levels are integral

or half-integral, depending on the ranks of the 3d/5d quiver. These constraints coincide

with those derived in [46–48] by requiring the absence of a parity anomaly. Further, we

find that the bounds on the 3d Chern Simons levels are the same as the ones obtained

in [49] for what are called maximally chiral theories. While Aharony-Seiberg dual pairs

exist for other types of 3d quivers also, it is only for the maximally chiral ones that the

twisted masses (induced by the 5d Coulomb vacuum expectation values) completely lift the

3d Coulomb moduli space and render the 3d theory completely massive. This is consistent

with the general analysis of [4] where it was shown that only the 2d (or 3d) massive theories

can be embedded as surface operators in four (or five) dimensions. We therefore conclude

that it is precisely such maximally chiral theories that have avatars as surface operators in

5d theories.

Finally, we collect some technical material in the appendices.

2 5d gauge theories

In this section we describe the derivation of the instanton partition function for a gauge

theory with a Chern-Simons term in five dimensions, following the analysis of [38] that relies

on the use of localization methods. This partition function has already been extensively

studied in the literature (see for example [39–44]) but we review it here to set the stage

for the analysis in the following sections. We then consider the resolvent of the 5d theory

from the point of view of the Seiberg-Witten curve and establish a connection with the

localization methods.
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2.1 Localization

Let us consider an N = 1 SU(N) gauge theory defined on R4 × S1, and denote by β the

length of the circumference S1 and by k5d the coefficient of the Chern-Simons term. We

study this theory in a generic point in the Coulomb branch parameterized by the vacuum

expectation values au (with u = 1, · · · , N) of the adjoint scalar field Φ in the vector

multiplet, that satisfy the SU(N) tracelessness condition

N∑
u=1

au = 0 (2.1)

but are otherwise arbitrary. Being at a generic point of the Coulomb branch, according to

the analysis of [50], we must take

k5d ∈ Z and | k5d | ≤ N . (2.2)

The integrality constraint is a consequence of analyzing the non-compact 5d theory on the

Coulomb branch and imposing gauge invariance of the resulting cubic prepotential, while

the bound on k5d comes from requiring that the 5d gauge theory has an interacting UV

fixed point on the entire Coulomb branch.1

After deforming R4 by an Ω-background [31, 32] parametrized by ε1 and ε2, we use

localization methods to compute the partition function in the instanton sector. This can

be written as

Zinst = 1 +
∞∑
k=1

(−q)k

k!

∫
C

k∏
σ=1

(
β
dχσ
2πi

)
zk(χσ) (2.3)

where

zk(χσ) = e−β k5d
∑
σ χσ

k∏
σ,τ=1

[
g
(
χσ − χτ + ε1 + ε2

)
g
(
χσ − χτ + ε1

)
g
(
χσ − χτ + ε2

)] k∏
σ,τ=1
σ 6=τ

g
(
χσ − χτ

)

×
k∏

σ=1

N∏
u=1

[
1

g
(
χσ − au + ε1+ε2

2

)
g
(
− χσ + au + ε1+ε2

2

)] .

(2.4)

and [31, 32, 38, 53]

g(x) = 2 sinh

(
β x

2

)
. (2.5)

We observe that the Chern-Simons coefficient k5d only appears in the exponent of the

prefactor in (2.4). The instanton counting parameter q is given by

q = (−1)N (βΛ)2N (2.6)

1See also the recent work [51, 52] in which the results of [50] have been generalized by requiring that

only a subspace of the Coulomb moduli space be physical. It would be interesting to investigate if the

localization approach we are describing can be applied also to this case where novel massless degrees of

freedom occur, but this is beyond the scope of this paper.
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where Λ is the (complexified) strong-coupling scale. It is easy to check that in the limit

β → 0 the above expressions reduce to those appropriate for a pure N = 2 super Yang-Mills

theory in four dimensions with SU(N) gauge group and dynamically generated scale Λ.

The integral in (2.3) is performed on a closed contour C in the complex χσ-plane which

has to be suitably chosen in such a way that it surrounds a finite number of singularities

of the integrand function. If we make the standard choice for the imaginary part of the

Ω-background parameters, namely

1� Im ε1 � Im ε2 > 0 , (2.7)

and take au to be real for simplicity, the poles of (2.4) lie either in the upper or in the

lower-half complex χσ-plane, and can be put in correspondence with an N -array of Young

tableaux {Yu} such that the total number of boxes is equal to the instanton number k [31].2

More precisely, the poles of (2.4) are located at

χσ = au ±
(
i− 1

2

)
ε1 ±

(
j − 1

2

)
ε2 +

2πi

β
n (2.8)

where (i, j) run over the rows and columns of the Young tableau Yu and the last term,

proportional to the integer n, is due to the periodicity of the sinh-function of a complex

variable. Notice that the Chern-Simons coupling k5d does not affect the location of the

poles and it only adds additional multiplicative factors to the residue at each pole.

When we restrict to a fundamental domain by setting n = 0 in (2.8), we have only

two sets of poles:3 those that are just above the real axis and those that are just below it.

Each of these two sets leads precisely to the results of [38, 40–44]. The poles in the region

0 < Imχσ <
π

β
(2.9)

are selected by the contour C(σ)
+ as in figure 1 for the SU(3) theory at k = 1. Instead, the

poles in the region

− π

β
< Imχσ < 0 (2.10)

are selected by the contour C(σ)
− as in figure 2, again for the SU(3) theory at k = 1.

In both cases, the contours extend all the way to infinity along the horizontal direc-

tion, since the positions of the poles can have arbitrary real parts because the vacuum

expectation values au are only subject to the condition (2.1) but are otherwise arbitrary.

Another issue is the fact that the two integration contours C(σ)
± may lead to different results.

To illustrate the main ideas, it suffices to consider the 1-instanton term of the partition

function, namely

Z1−inst = −q
g
(
ε1 + ε2

)
g
(
ε1
)
g
(
ε2
)∫
C

(
β
dχ

2πi

)
e−β k5d χ

N∏
u=1

1

g
(
χ− au + ε1+ε2

2

)
g
(
− χ+ au + ε1+ε2

2

) .
(2.11)

2For further details we refer for example to [44, 54].
3We observe that these two sets of poles are the same that are considered in the corresponding calculation

in four dimensions [32].

– 5 –



J
H
E
P
0
5
(
2
0
1
8
)
0
4
6

Re(χσ)

Im(χσ)

2π
β

3π
β

−3π
β

−2π
β

−π
β

C(σ)
+

Figure 1. For each integration variable χσ, the fundamental domain is the region −∞ < Reχσ <∞
and −πβ < Imχσ <

π
β . The poles in the fundamental domain are shown in colour. The contour C(σ)+

selects those poles in the fundamental domain that are in the upper half plane. In this picture we

have explicitly shown the 1-instanton case for the SU(3) gauge theory at k = 1.

Re(χσ)

Im(χσ)

2π
β

3π
β

−2π
β

−3π
β

π
β

C(σ)
−

Figure 2. For each integration variable χσ, the contour C(σ)− selects those poles in the fundamental

domain that are in the lower half plane. Once again, the poles that are shown in this picture are

those for the SU(3) gauge theory at k = 1.
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Re(χ)

Im(χ)

C+

Re(X)

Im(X)

Figure 3. Map of the contour C+ from the χ-plane to the X-plane.

We find it convenient to perform the following change of variables

χ =
1

β
logX , au =

1

β
logAu, ε1 =

1

β
logE1 , and ε2 =

1

β
logE2 , (2.12)

and rewrite (2.11) as

Z1−inst =− q E1E2 − 1

(E1 − 1)(E2 − 1)

∫
C

dX

2πi
XN−1−k5d

N∏
u=1

√
E1E2(

X
√
E1E2 −Au

)(
Au
√
E1E2 −X

) .
(2.13)

Here we have exploited the tracelessness condition (2.1), which in the new variables becomes

N∏
u=1

Au = 1 . (2.14)

Under the map (2.12) the regions 0 < Imχ < π
β and −π

β < Imχ < 0 transform, respectively,

onto the regions ImX > 0 and ImX < 0, and thus the fundamental domain of the χ-plane

is mapped onto the entire X-plane. Furthermore, the original integration contours C±
are mapped to the (infinite) semi-circles as shown in figure 3 and figure 4. Therefore,

choosing the contour C+ or C− corresponds to choosing the poles of the integrand of (2.13),

respectively in the upper- or in lower-half complex X-plane, that is

X = Au
√
E1E2 for C+ ,

X =
Au√
E1E2

for C− .
(2.15)

In this formulation it is evident that the constraint k5d ∈ Z implies the absence of

branch cuts in X; furthermore if

| k5d | ≤ N − 1 , (2.16)

one can easily see that the instanton partition function receives contributions only from

the physical poles (2.15) or, equivalently, it has no contributions from X = 0 and X =∞.

Therefore, when the condition (2.16) is satisfied, the two different integration prescriptions

lead to the same result for the partition function since the contours C+ and C− can be

smoothly deformed into each other.
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Re(χ)

Im(χ)

C−

Re(X)

Im(X)

Figure 4. Map of the contour C− from the χ-plane to the X-plane.

Notice that in the original χ-variable, imposing the condition k5d ∈ Z is equivalent to

requiring that the integrand function be periodic with period 2π
β . When this is the case,

the two contours C± are equivalent to each other provided the contributions of the vertical

segments at Reχ = ±∞ vanish. This happens precisely when (2.16) is satisfied. It is

interesting to observe that when |k5d| = N , the two contours C± are not equivalent to each

other due to the presence of a residue either at X = 0 for k5d = N , or at X = ∞ for

k5d = −N . However, these residues are independent of Au and N since the singularities

are simple poles. They are related to the partition function of an “ SU(1) ” theory at

level ±1 [40, 41],4 and thus can be interpreted as the contribution of a continuum in the

Coulomb branch which has to be suitably taken into account and decoupled in order to

properly define the SU(N) theory at k5d = ±N [40–44]. In this way we recover via the

contour analysis that the five dimensional Chern-Simons coupling satisfies the constraint

obtained by [50]. For simplicity, in the following we will restrict ourselves to k5d as in (2.16).

2.2 Seiberg-Witten curve and resolvent

We now review the Seiberg-Witten geometry [55, 56] of an SU(N) gauge theory on R4×S1

and propose an all-order expression for the resolvent which we shall verify using explicit

localization methods. The Seiberg-Witten curve can be derived from different approaches.

One way is to study M-theory on the resolution of non-compact toric Calabi-Yau spaces, the

so-called Y p,q manifolds, which give rise to SU(p) gauge theories with k5d = q [53, 57, 58].5

The corresponding Seiberg-Witten curve is identified with the mirror curve of the local

(toric) Calabi-Yau space [53, 61]. In most of the literature, the Y p,q spaces are defined

with 0 < q < p and thus only positive values of the Chern-Simons level are considered.6

However, as we will see momentarily, the form of the resulting Seiberg-Witten curve is

also valid for negative values of k5d, although there are interesting subtleties that arise

while comparing with localization analysis. An alternative approach is to use the NS5-D4

4This can be easily seen by taking (2.13) and (2.14) for N = 1 and k5d = ±1.
5One can also study the gauge theories using 5-brane webs that are dual to the toric Calabi-Yau [59, 60].
6The boundary values q = 0 and q = p are discussed in [57, 58].
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brane set up [62] to engineer the classical gauge theory and study its M-theory lift [63].

Both approaches give identical results and the Seiberg-Witten curve for a 5d SU(N) gauge

theory with Chern-Simons level k5d takes the following form

Y 2 = P 2
N (Z)− 4(βΛ)2NZ−k5d (2.17)

where

PN (Z) = Z−
N
2

(
ZN +

N−1∑
i=1

(−1)i ZN−i Ui(k5d) + (−1)N
)
. (2.18)

Here Ui(k5d) are the gauge invariant coordinates on the Coulomb branch of the 5d theory.

They are the quantum completion of the classical symmetric polynomials

U class
i =

N∑
u1 6=u2···6=ui=1

Au1Au2 · · ·Aui (2.19)

in the vacuum expectation values Au subjected to the tracelessness condition (2.14), and

explicitly depend on the Chern-Simons level. Notice that if we use (2.19) in (2.18), we

simply obtain

P class
N (Z) = Z−

N
2

N∏
u=1

(Z −Au) , (2.20)

which is the expected classical expression for PN . If we now impose the condition that

the right hand side of (2.17) is a doubly monic Laurent polynomial in Z, it follows that

the absolute value of the Chern-Simons level |k5d| has to be an integer smaller than N .

We thereby recover the constraint (2.16) from the geometry of the Seiberg-Witten curve.

While the curve (2.17) was derived for positive values of k5d, it is easy to realize that it

holds for negative values as well. Indeed, from the brane-web construction, one can show

that changing the sign of the Chern-Simons coupling amounts to a π-rotation of the brane

configuration. In our explicit realization this corresponds to

Z → 1

Z
and Au →

1

Au
. (2.21)

Let us start from the curve (2.17) with a positive k5d and perform the above map.

This yields

Y 2 = Z−N
(
ZN +

N−1∑
i=1

(−1)i ZN−i ŨN−i(k5d) + (−1)N
)2

− 4(βΛ)2NZk5d (2.22)

where Ũi is obtained from Ui under the inversion of Au. By setting

ŨN−i(k5d) = Ui(−k5d) , (2.23)

we can rewrite (2.22) as

Y 2 = Z−N
(
ZN +

N−1∑
i=1

(−1)i ZN−i Ui(−k5d) + (−1)N
)2

− 4(βΛ)2NZ−(−k5d) (2.24)
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and interpret it as the curve describing an SU(N) theory with Chern-Simons coupling

−k5d, since it has exactly the same form of (2.17). At the classical level, i.e. for βΛ → 0,

it is trivial to check that Ũ class
N−i = U class

i . Indeed, it suffices to perform the inversion of Au
in (2.19) and use the tracelessness condition (2.14). What is less obvious is to check the

relation (2.23) at the quantum level, i.e. when the non-perturbative corrections are taken

into account. In appendix A we explicitly verify this relation exploiting the localization

calculation of the chiral correlators at 1-instanton. This provides a clear confirmation of

the fact that the Seiberg-Witten curve takes the form (2.17) for negative Chern-Simons

levels also. As a bonus, we see that the constraint (2.16) has a natural interpretation also

from the point of view of the Seiberg-Witten curve.

We now turn to the resolvent of the 5d gauge theory. This is the generating function

of all the chiral correlators and is defined as the following expectation value [64]:

T =

〈
Tr coth

β(z − Φ)

2

〉
=

2

β

∂

∂z

〈
Tr log

(
2 sinh

β(z − Φ)

2

)〉
(2.25)

where Φ is the complex scalar field of the adjoint vector multiplet. Setting

z =
1

β
logZ (2.26)

and expanding for large Z, we find

T = N + 2

∞∑
`=1

V`
Z`

(2.27)

where

V` =

〈
Tr e` βΦ

〉
. (2.28)

Of course, due to the SU(N) condition (2.14), only the correlators V` with ` = 1, · · · , N−1

are independent of each other.

We propose that the integral of the resolvent is given by〈
Tr log

(
2 sinh

β(z − Φ)

2

)〉
= log

(
PN (Z) + Y

2

)
(2.29)

where Y satisfies the Seiberg-Witten curve in (2.17), and z is related to Z as in (2.26).

This proposal is suggested by the fact that the quantity appearing on the right hand side

is closely related to the Seiberg-Witten differential of the 5d gauge theory [58]. Differ-

entiating (2.29) with respect to z, after a straightforward calculation we obtain the ex-

plicit expression for the resolvent in terms of the function appearing in the Seiberg-Witten

curve, namely

T =
2

β

∂

∂z

[
log

(
PN (Z) + Y

2

)]
= 2Z

P ′N (Z)

Y
− k5d

(
1− PN (Z)

Y

)
(2.30)

where ′ stands for the derivative with respect to Z. The first term is precisely the 5d lift

of the classic result from [65], which was already used in [28] for the case k5d = 0. The

second term is the modification due to the Chern-Simons coupling.
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Inserting (2.17) and (2.18) into the right hand side of (2.30) and expanding for large

Z, we obtain an expression for the resolvent in terms of the gauge invariant coordinates

Ui(k5d). This can then be compared with (2.27) to establish a relation with the chiral

correlators V`. Proceeding this way, we find for example

U1(k5d) = V1 − (βΛ)2N δ k5d,1−N . (2.31)

Similar relations can be found for the higher Ui(k5d)’s as we show explicitly in appendix A.

There, we also show that the correlators V` can be calculated order by order in the in-

stanton expansion using localization methods involving the partition function (2.3) with

suitable insertions. Thus, our proposal for the resolvent provides a systematic way to ob-

tain the explicit non-perturbative expressions for Ui(k5d) in terms of the Coulomb vacuum

expectation values of the 5d gauge theory. These can be used to check the relation (2.23),

thus confirming the consistency of the whole construction. Furthermore, as we will see in

the next section, this knowledge will prove to be an essential ingredient to study surface

operators as coupled 3d/5d gauge theories.

3 5d gauge theories with surface operators

We now turn to the study of SU(N) gauge theories on R4×S1 in the presence of a surface

operator extended along a plane R2 ⊂ R4 and wrapped around S1. We treat such surface

operators as monodromy defects, also known as Gukov-Witten defects [1, 2]. The discrete

data that label these defects are the partitions of N , i.e. the sets of positive integers

~n = [n1, n2, . . . , nM ] such that
∑M

i=1 ni = N . They are related to the breaking pattern (or

Levi decomposition) of the gauge group near the defect as follows,

SU(N) −→ S
[
U(n1)× . . .×U(nM )

]
. (3.1)

The instanton partition function in the presence of such a defect can be obtained by

generalizing the pure five-dimensional analysis presented in the previous section with the

addition of a ZM orbifold projection [17], along the lines discussed in [28] in the absence

of Chern-Simons interactions. The result is the partition function for the so-called rami-

fied instantons.

3.1 Ramified instantons

Let us introduce a partition of order M and, for each sector I = 1, · · · ,M , consider dI
ramified instantons.7 The partition function for such a configuration can be written as

Zinst[~n] =
∑
{dI}

Z{dI}[~n] (3.2)

where

Z{dI}[~n] =

M∏
I=1

[
(−qI)dI
dI !

∫
C

dI∏
σ=1

(
β
dχI,σ
2πi

)
e−βmIχI,σ

]
z{dI} (3.3)

7Here and in the following, the index I is always taken modulo M .
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with

z{dI} =
M∏
I=1

[ dI∏
σ,τ=1

1

g
(
χI,σ − χI,τ + ε1

) dI∏
σ,τ=1
σ 6=τ

g
(
χI,σ − χI,τ

)]

×
M∏
I=1

dI∏
σ=1

dI+1∏
ρ=1

g (χI,σ − χI+1,ρ + ε1 + ε̂2)

g (χI,σ − χI+1,ρ + ε̂2)
(3.4)

×
M∏
I=1

[ dI∏
σ=1

nI∏
s=1

1

g
(
aI,s − χI,σ + 1

2(ε1 + ε̂2)
) nI+1∏
t=1

1

g
(
χI,σ − aI+1,t + 1

2(ε1 + ε̂2)
)] .

Here qI is the instanton weight in the I-th sector, and ε̂2 = ε2/M as a consequence of the

ZM orbifold projection. Note that these expressions are the same as those in [28], apart

from a minor modification in the integrand of (3.3) represented by exponential factors that

introduce a coupling to TrχI with coefficient mI . Anticipating the description of surface

operators from the point of view of 3d/5d coupled theories [4, 18], we propose (3.2) and (3.3)

to be the generalization of the results of [28] when Chern-Simons terms are included in

the 3d gauge theories defined on the world-volume of the defects. We will provide strong

evidence for this in the following sections.

We now describe how to evaluate the integrals (3.3) over χI,σ. The procedure is quite

similar to what we saw in the previous section. The first step is the choice of the integration

contour and the prescription to pick up the poles of the integrand (3.4). A convenient way

to classify the possible contours of interest is via the Jeffrey-Kirwan (JK) parameter η [45].

Different choices of η correspond to picking different sets of poles in (3.3), which may lead

to different results for the instanton partition function. Such issues become even more

subtle once we introduce the parameters mI , since non-trivial residues at zero or infinity,

and even branch cuts may appear. We now describe the two choices of contour that were

already introduced in [27, 28].

Prescription JKI. In our first prescription for the integration contour, the JK param-

eter is8

η = −
M−1∑
I=1

χI + ξ χM (3.5)

with ξ an arbitrary large positive number. Using (2.7), one can see that this choice is

equivalent to selecting the poles for χI,σ as follows

0 < ImχI,σ <
π

β
for I = 1, . . . ,M − 1 and σ = 1, . . . , dI ,

−π
β
< ImχM,σ < 0 for σ = 1, . . . , dM .

(3.6)

This corresponds to choosing the contour C+ for the first M−1 sets of integration variables

and the contour C− for the Mth set. The two contours C+ and C− are shown, respectively,

in figure 5 and figure 6, for the SU(3) theory in the presence of the [1,2] surface operator,

at the 1-instanton level.
8For details see for example [27, 28].

– 12 –



J
H
E
P
0
5
(
2
0
1
8
)
0
4
6

Re(χI,σ)

Im(χI,σ)

2π
β

3π
β

4π
β

−π
β

−2π
β

C+

Figure 5. The contour C+ for the case of the [1, 2] surface operator in SU(3) at 1-instanton.

Re(χI,σ)

Im(χI,σ)

2π
β

3π
β

4π
β

−2π
β

π
β

C−

Figure 6. The contour C− for the case of the [1, 2] surface operator in SU(3) at 1-instanton
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Prescription JKII. In our second prescription the JK parameter is given by

η̃ =

M−1∑
I=1

χI − ξ χM (3.7)

where again ξ is an arbitrary large positive number. This corresponds to choosing the poles

as follows

−π
β
< ImχI,σ < 0 for I = 1, . . . ,M − 1 and σ = 1, . . . , dI ,

0 < ImχM,σ <
π

β
for σ = 1, . . . , dM .

(3.8)

Equivalently we can say that one selects the contour C− (see figure 6) for the first M − 1

sets of χ-variables and the contour C+ (see figure 5) for the Mth set. This prescription is

clearly complementary to the first one.

Our goal is to understand how and when the two prescriptions JKI and JKII can be

related by contour deformation so that the partition functions obtained via the two match.

To illustrate this point it suffices again to focus on the 1-instanton case.

3.2 The 1-instanton partition function

Let us consider the 1-instanton contribution to the partition function for a general surface

operator of type ~n = [n1, n2, . . . , nM ]. To express the formulas in a compact form, it is

convenient to introduce the integers

rI =

I∑
J=1

nJ (3.9)

which will be used also in section 4. We also choose an ordering such that the Coulomb

vacuum expectation values are partitioned as follows{
a1, . . . , ar1 | . . .

∣∣arI−1+1, . . . arI
∣∣arI+1, . . . arI+1

∣∣ . . . |arM−1+1, . . . , aN
}
. (3.10)

From the definition (3.9), it is clear that each partition is of length nI . Compared to the

notation we have used in (3.3), this ordering corresponds to

aI,s = arI−1+s for s = 1, . . . nI (3.11)

with the understanding that r0 = 0. Using this notation, the 1-instanton partition function

in the presence of a generic surface operator becomes

Z1−inst = − 1

g(ε1)

M∑
I=1

qI

∫
C

(
β
dχI
2πi

)
e−βmIχI

rI∏
`=rI−1+1

1

g
(
a` − χI + 1

2(ε1 + ε̂2)
)

×
rI+1∏

j=rI+1

1

g
(
χI − aj + 1

2(ε1 + ε̂2)
) . (3.12)
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We now perform a change of variables as in (2.12) to obtain XI , E1 and Ê2 from χI , ε1
and ε̂2 respectively. In these new variables, after some simple manipulations, (3.12) can be

brought into the following form

Z1−inst = −
M∑
I=1

qI
E

nI+nI+1
4

+ 1
2

1 Ê
nI+nI+1

4
2

E1 − 1

∫
C

dXI

2πi
X

nI+nI+1
2

−mI−1

I

×
rI∏

`=rI−1+1

1(
A`

√
E1Ê2 −XI

) × rI+1∏
j=rI+1

1(
Aj −XI

√
E1Ê2

) .

(3.13)

From this explicit expression it is clear that, besides the simple poles at

XI = A`

√
E1Ê2 and XI =

Aj√
E1Ê2

, (3.14)

the integrand may possess branch cuts as well as singularities at XI = 0 and XI = ∞
depending on the value of mI . If this is the case, the two contours are obviously not

equivalent to each other. To avoid branch cuts we must require that

mI +
nI + nI+1

2
∈ Z for I = 1, . . . ,M (3.15)

where nM+1 = n1 (see footnote 7). Furthermore, to avoid contributions from the nonphys-

ical singularities at XI = 0 and XI =∞, we must constrain mI such that

|mI | ≤
nI + nI+1

2
− 1 for I = 1, . . . ,M . (3.16)

When conditions (3.15) and (3.16) are satisfied, the two JK prescriptions lead to the same

result because the contours C+ and C− can be smoothly deformed into each other.

The above analysis can be repeated at higher instanton levels, but the explicit expres-

sions quickly become rather involved and not very illuminating. We have performed several

explicit calculations up to three instantons in theories with low rank gauge groups and have

encountered no other constraints on mI other than those in (3.15) and (3.16) in order to

obtain results that are independent of the prescription used to evaluate the integrals.

3.3 Parameter map

Once the instanton partition function is computed, one can extract from it the non-

perturbative prepotential Finst and the twisted superpotential Winst according to [5, 7]

logZinst = −Finst

ε1ε̂2
+
Winst

ε1
+ regular terms . (3.17)

The prepotential governs the dynamics of the bulk 5d theory and depends on the parameters

of this theory, namely the vacuum expectation values of the adjoint scalars, the Chern-

Simons coupling k5d and the instanton counting parameter q. The twisted superpotential,

instead, controls the dynamics on the surface operator and in addition to these depends on
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the parameters that label the defect. From our explicit results we have verified that Finst

depends only on the vacuum expectation values, the sum of all mI , and the product of all

qI . In particular these latter combinations play the role, respectively, of k5d and q; thus,

comparing with what we have seen in section 2, we are led to

k5d =

M∑
I=1

mI , (3.18)

q =

M∏
I=1

qI = (−1)N (βΛ)2N . (3.19)

We recall that the instanton counting parameters qI are related to the monodromy

properties of the SU(N) gauge connection once the breaking pattern (3.1) is enforced by

the presence of the defect. Building on earlier works [7, 17], this fact was explicitly shown

in [26] for the N = 2? theories, and already used in [28] for the pure N = 2 theories

(see for instance, eq. (2.48) in [28]). Notice that only the product of all qI ’s has a global

5d interpretation as is clear from (3.19). Similarly, the parameters mI describe how the

Chern-Simons level k5d of the 5d SU(N) theory is split among the M factors in the Levi

decomposition (3.1) and as such they are part of the data that specify the defect. From (3.4)

we see that these parameters appear like Chern-Simons couplings for the U(nI) factors, even

though one should take into account that the ramified instanton partition function (3.3)

is not factorizable into a product of M partition functions. Finally, we observe that the

constraints (3.15) and (3.16) imply that

k5d ∈ Z and | k5d| ≤ N −M . (3.20)

3.4 Simple surface operators

For the purpose of illustration, we now consider in detail the case of the simple surface

operator of type [1, N−1] in the SU(N) theory. This case corresponds to setting M = 2 and

splitting the classical vacuum expectation values as
{
a1

∣∣a2, . . . , aN
}

. Using this in (3.12),

the 1-instanton contribution to the partition function becomes

Z1−inst =− q1

g(ε1)

∫
C

(
β
dχ1

2πi

)
e−βm1χ1

g
(
a1 − χ1 + 1

2(ε1 + ε̂2)
) N∏

i=2

1

g
(
χ1 − ai + 1

2(ε1 + ε̂2)
)

− q2

g(ε1)

∫
C

(
β
dχ2

2πi

)
e−βm2χ2

g
(
χ2 − a1 + 1

2(ε1 + ε̂2)
) N∏

i=2

1

g
(
ai − χ2 + 1

2(ε1 + ε̂2)
) (3.21)

We now evaluate the integrals over χ1 and χ2 using the two JK prescriptions described

above. In the first prescription JKI, according to (3.6), the contributing poles are located at

χ1 = a1 +
1

2
(ε1 + ε̂2) and χ2 = a1 −

1

2
(ε1 + ε̂2) . (3.22)

Calculating the corresponding residues, extracting the twisted superpotential by means

of (3.17), and expressing the results in terms of the variables (2.12), we find

W (I)
1−inst =

1

β

(
q1A

N
2
−m1−1

1 + (−1)N−1q2A
N
2
−m2−1

1

) N∏
i=2

(A1 −Ai)−1 . (3.23)
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r1 r2 . . . rM−1 N

Figure 7. The quiver that describes the generic surface operator in pure SU(N) gauge theory.

Next we consider the second prescription JKII; according to (3.8), the contributing poles

are located at

χ1 = au −
1

2
(ε1 + ε2) and χ2 = au +

1

2
(ε1 + ε2) for u = 2, 3, . . . , . (3.24)

The corresponding twisted superpotential is

W (II)
1−inst = − 1

β

N∑
i=2

[(
q1A

N
2
−m1−1

i + (−1)N−1q2A
N
2
−m2−1

i

) N∏
j=1 , j 6=i

(Ai −Aj)−1

]
. (3.25)

Comparing the two expressions (3.23) and (3.25), we see that they are very different

from each other. However, if we use the SU(N) condition (2.14) and impose the con-

straints (3.15) and (3.16), which for M = 2 are

m1,2 +
N

2
∈ Z and |m1,2 | ≤

N

2
− 1 , (3.26)

one can verify that W (I)
1−inst and W (II)

1−inst match. We have explicitly checked that the

match continues to hold at higher instanton levels (up to three instantons for the low

rank SU(N) theories).

4 3d/5d quiver theories with Chern-Simons terms

We now study surface operators from the point of view of 3d/5d coupled systems com-

pactified on a circle of radius β, by extending the analysis of [28] to explicitly include

Chern-Simons interactions.9 We then derive and solve the resulting twisted chiral ring

equations.

4.1 The linear quiver and its twisted chiral ring equations

Our proposal is that the 3d/5d system that corresponds to a surface operator labeled by

the partition ~n = [n1, n2, . . . , nM ] and treated with the first JK prescription (3.5), is the

quiver theory described in figure 7. Here, the circular nodes represent 3d U(rI) gauge

theories, the rightmost node represents a 5d SU(N) gauge theory, and the arrows denote

bifundamental matter fields. The ranks rI of the 3d gauge groups are related to the surface

operator data nI as in (3.9).

The gauge degrees of freedom in each node can be organized in an adjoint twisted

chiral multiplet Σ(I), which for notational simplicity we will often denote by its lowest

9The brane construction of 3d gauge theories with Chern Simons interactions has been studied in [66, 67].
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scalar component σ(I). The low-energy effective action on the Coulomb moduli space is

parameterized by the diagonal components of σ(I):

σ(I) = diag
{
σ

(I)
1 , σ

(I)
2 , . . . , σ(I)

rI

}
. (4.1)

This can be obtained by integrating out the matter multiplets corresponding to the arrows

of the quiver, which are generically massive when σ(I) and the adjoint scalar field Φ of

the SU(N) theory acquire non-vanishing vacuum expectation values [68]. Supersymmetry

implies that the effective action can be encoded in a twisted chiral superpotential, which

takes the form (see [28] for details):

W0 =

M−1∑
I=1

rI∑
s=1

bI log(βΛI)σ
(I)
s −

M−2∑
I=1

rI∑
s=1

rI+1∑
t=1

`
(
σ(I)
s − σ

(I+1)
t

)
−
rM−1∑
s=1

〈
Tr `

(
σ(M−1)
s − Φ

)〉
(4.2)

where ΛI is the (complexified) IR scale of the I-th node and

bI = rI+1 − rI−1 (4.3)

for I = 1, · · · ,M − 1.10 The expectation value in the last term of (4.2) is taken in the 5d

SU(N) gauge theory and the function `(z) obeys the relation

∂z`(z) = log

(
2 sinh

βz

2

)
. (4.4)

In each 3d node of the quiver we can turn on a Chern-Simons term with coupling kI . Upon

circle compactification, these Chern-Simons terms give rise to an additional term in the

superpotential which is [69]11

W(I)
CS = −β kI

2
Tr
(
σ(I)

)2
. (4.5)

Thus the complete twisted superpotential governing the 3d/5d quiver theory of figure 7 is

W =W0 +

M−1∑
I=1

W(I)
CS . (4.6)

The vacuum expectation values of the 5d fields appear in this twisted superpotential

W in such a way that extremizing the latter leads to a discrete set of massive vacua, thus

completely lifting the 3d Coulomb branch. We now derive the so-called twisted chiral ring

equations which identify these massive vacua and study specific solutions with the aim of

checking our proposal. We will show that the twisted chiral superpotential evaluated in

these (massive) vacua coincides with the one obtained using the first JK prescription in

the localization analysis.

The extremization equations of the superpotential W take the following form [70, 71]:

exp

(
∂W
∂σ

(I)
s

)
= 1 . (4.7)

10Here and in the following we understand that r0 = 0 and rM = N .
11This differs from the conventions in our previous paper [28] by a sign.
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These equations were analyzed in great detail in [28], and we will be brief in reviewing

their derivation. We first introduce the functions

QI(z) =

rI∏
s=1

(
2 sinh

β(z − σ(I)
s )

2

)
, (4.8)

or, equivalently,

QI(Z) = Z−
rI
2

rI∏
s=1

(
S(I)
s

)− 1
2
(
Z − S(I)

s

)
(4.9)

where

σ(I)
s =

1

β
logS(I)

s and z =
1

β
logZ . (4.10)

Then, for I = 1, . . . ,M − 2, the twisted chiral ring equations (4.7) become

QI+1(Z) = (−1)rI−1 (βΛI)
bIZ −kI QI−1(Z) (4.11)

for Z = S
(I)
s . Here we understand that Q0 = 1. For the last 3d gauge node in the quiver,

i.e. for I = M − 1, we obtain

exp

〈
Tr log

(
2 sinh

β(z − Φ)

2

)〉
= (−1)rM−2 (βΛM−1)bM−1 Z−kM−1 QM−2(Z) , (4.12)

for z = σ
(M−1)
s or, equivalently, Z = S

(M−1)
s . This equation clearly shows that the coupling

between the 3d and the 5d theories occurs via the integral of the resolvent of the SU(N)

gauge theory (see (2.25)). Using (2.29), after some simple algebraic manipulations, we can

rewrite (4.12) as

PN (Z) = (−1)rM−2 (βΛM−1)bM−1 Z−kM−1QM−2(Z) + (−1)rM−2
(βΛ)2NZ−k5d+kM−1

(βΛM−1)bM−1 QM−2(Z)
(4.13)

where PN is defined in (2.18).

We now follow the same method described in [28] and recursively solve the chiral ring

equations (4.11) and (4.13) in a semi-classical expansion around

S
(I)
?,class = diag(A1, . . . , ArI ) , (4.14)

using the perturbative ansatz

S
(I)
? = S

(I)
?,class + δS

(I)
? = diag

(
A1 +

∑
`

δS
(I)
1,` , · · · , ArI +

∑
`

δS
(I)
rI ,`

)
(4.15)

where the increasing values of the index ` in (4.15) correspond to corrections of increasing

order in the compactification radius β. Inserting this ansatz into (4.11) and (4.13), we

can explicitly work out the solution S
(I)
? to the desired perturbative order in β, and show

that the twisted superpotential evaluated on this solution, which we denote by W?, can be

matched with the twisted superpotential for the corresponding surface defect obtained via
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1 N

Figure 8. The quiver diagram for the simple surface operator of type [1, N−1] in the SU(N) theory.

localization using the JKI prescription. For this purpose, it is more convenient to consider

the logarithmic derivatives ofW? with respect to ΛI which have a simple expression, namely

ΛI
dW?

dΛI
=
bI
β

tr logS
(I)
? . (4.16)

As we will see, in order to obtain agreement we need a precise map between the IR pa-

rameters ΛI and Λ of the 3d/5d coupled system and the instanton counting parameters qI
and qM , and also a specific identification between the Chern-Simons levels of the 3d and

5d nodes with the parameters mI introduced in the localization integrand.

We now give some details, starting from the case of simple operators, which were

already analyzed in section 3.4 from the localization point of view.

Simple surface operators. In this case there is only one 3d gauge node, and the quiver

diagram is represented in figure 8.

Correspondingly, we have just one variable σ(1), or S(1), and one chiral ring equation

which is

PN (S(1)) = (βΛ1)N
(
S(1)

)−k1 +
(βΛ)2N

(βΛ1)N
(
S(1)

)−k5d+k1 . (4.17)

This follows from (4.13) with M = 2, which implies b1 = N . The first non-trivial order is

easy to extract. Indeed, we can start from the ansatz (4.14), namely from S
(1)
?,class = A1,

and use the classical approximation of PN given in (2.20) to write

PN (S(1)) =
(
S(1)

)−N
2

N∏
u=1

(
S(1) −Au

)
+O

(
(βΛ)2N

)
. (4.18)

Inserting this in (4.17), we find

S
(1)
? = A1

[
1 +

(
(βΛ1)N A

N
2
−k1−1

1 +
(βΛ)2N

(βΛ1)N
A
N
2
−k5d+k1−1

1

) N∏
i=2

1

(A1 −Ai)
+ · · ·

]
(4.19)

where the ellipses stand for terms of order (βΛ)4N and higher. Finally, from (4.16) we

obtain

1

N
Λ1
dW?

dΛ1
=

1

β
logS

(1)
? (4.20)

=
1

β
logA1+

1

β

(
(βΛ1)N A

N
2
−k1−1

1 +
(βΛ)2N

(βΛ1)N
A
N
2
−k5d+k1−1

1

)
×

N∏
i=2

1

(A1 −Ai)
+ . . . .
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The non-perturbative part of this expression can be related to the superpotential W (I)
1−inst

obtained via localization with the JKI prescription and given in (3.23). Indeed, upon

making the following identifications

q1 = (βΛ1)N , q2 = (−1)N
(βΛ)2N

(βΛ1)N
, (4.21)

and

m1 = k1 , m2 = k5d − k1 , (4.22)

we find

1

N
Λ1
dW?

dΛ1
=

1

β
logA1 + q1

dW (I)
1−inst

dq1
+ · · · , (4.23)

where on the right hand side the derivative with respect to q1 is taken by keeping the

product q1q2 fixed, i.e. at a fixed 5d scale Λ. We remark that the identifications (4.21)

and (4.22) imply

q1q2 = (−1)N (βΛ)2N (4.24)

and

k5d = m1 + m2 , (4.25)

in perfect agreement, respectively, with (3.19) and (3.18) for M = 2.

A similar analysis can be carried out at higher instanton levels. For instance, the

two-instanton correction to (4.20) reads

1

β

[
A
N−2(k1+1)
1

(
N − 1

2
− k1 −

N∑
j=2

A1

A1 −Aj

) N∏
i=2

1

(A1 −Ai)2

]
(βΛ1)2N (4.26)

+
1

β

[
A
N−2(k5d−k1+1)
1

(
N − 1

2
− k5d + k1 −

N∑
j=2

A1

A1j

) N∏
i=2

1

(A1 −Ai)2

]
(βΛ)4N

(βΛ1)2N
,

and agrees with the two-instanton term of the logarithmic q1-derivative of the superpoten-

tial W (I)
inst computed using localization methods with the first JK prescription described in

section 3, provided | k5d | < N .

We have made numerous checks at higher instanton numbers and for various values of

N , always finding a perfect match between localization and chiral ring analysis provided

the relations (4.21) and (4.22) are used.

Generic surface operators. We now consider a generic surface operator. In order to

test the correspondence between the solution of the chiral ring equations and the local-

ization results, it is crucial to connect the parameters used in the two descriptions and

generalize (4.21) and (4.22). To this purpose, it is useful to recall that in deriving these re-

lations it is was sufficient to consider the 1-instanton result. Moreover, in comparing (4.20)

and the q1-logarithmic derivative of the superpotential (3.23), we kept fixed the scale of

the 5d theory. If we temporarily set Λ = 0, and thus freeze the 5d dynamics, it becomes

feasible to explicitly compute the 1-instanton contribution to the solution of the chiral ring

equations for a generic surface operator and then compare with the localization results.
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N r̃1
. . . r̃M−2 r̃M−1

Figure 9. The quiver theory which is dual to the one in figure 7.

Once this is done, it is possible to reinstate the dependence on Λ in a rather simple man-

ner, and find the generalization of the maps (4.21) and (4.22). Since the derivation is a

bit lengthy, we discuss it in appendix B. Here we simply report the final result which is

quite simple:
qI = −(−1)rI (βΛI)

bI for I = 1, . . . ,M − 1 ,

qM = (−1)N (βΛ)2N

(M−1∏
I=1

qI

)−1

,
(4.27)

and
mI = kI for I = 1, . . . ,M − 1 ,

mM = k5d −
M−1∑
I=1

kI .
(4.28)

Using these maps, we have investigated many different surface operators at the first few

instanton orders and found that the relation

1

bI
ΛI
dW?

dΛI
=

1

β
tr logS

(I)
?,class + qI

dW (I)
inst

dqI
, (4.29)

which generalizes (4.23), is always obeyed if | k5d | < N .

4.2 The dual linear quiver and its twisted chiral ring equations

We now address the question of whether it is possible to establish a connection between

the chiral ring equations and the localization results for the other JK prescription. This

analysis will allow us to clarify the map between different residue prescriptions and distinct

quiver realizations of the same surface operator.

Building on the results of [28], we propose that the quiver theory that is relevant

to match the localization prescription with the JK parameter η̃ given in (3.7) is the one

represented in figure 9. Here the ranks r̃I of the 3d gauge groups are related to the partition

~n = [n1, n2, . . . , nM ] that labels the surface operator according to [27, 28]

r̃I = N −
I∑

J=1

nJ = N − rI . (4.30)

As for the original quiver of figure 7, in the present case the low-energy effective theory on

the Coulomb moduli space is parameterized by the diagonal components of the complex

scalar fields in the adjoint twisted chiral multiplets, which we denote as

σ̃(I) = diag
{
σ̃

(I)
1 , σ̃

(I)
2 , . . . , σ̃

(I)
r̃I

}
(4.31)
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for I = 1, · · · ,M − 1. The twisted chiral superpotential corresponding to this quiver takes

the form

W̃ =

M−1∑
I=1

r̃I∑
s=1

b̃I log(βΛ̃I) σ̃
(I)
s −

M−1∑
I=2

r̃I∑
s=1

r̃I−1∑
t=1

`
(
σ̃

(I−1)
t − σ̃(I)

s

)
−

r̃1∑
s=1

〈
Tr `

(
Φ− σ̃(1)

s

)〉

−
M−1∑
I=1

β k̃I
2

Tr
(
σ̃(I)

)2
(4.32)

where Λ̃I is the (complexified) strong-coupling scale of the I-th node and the last term

accounts for the Chern-Simons interactions on the 3d nodes with couplings k̃I . The pa-

rameters b̃I are defined as12

b̃I = r̃I+1 − r̃I−1 (4.33)

and, because of (4.30), they are related to the analogous parameters bI introduced in the

earlier quiver as:

b̃I = −bI . (4.34)

The chiral ring equations, obtained by extremizing W̃, can be concisely expressed in terms

of the functions

Q̃I(Z) = Z−
r̃I
2

r̃I∏
s=1

(
S̃(I)
s

)− 1
2
(
Z − S̃(I)

s

)
(4.35)

where S̃
(I)
s = eβ σ̃

(I)
s in complete analogy with (4.9). Indeed, for I = 2, · · · ,M − 1 we find

Q̃I−1(Z) = (−1)r̃I−1 (βΛ̃I)
−b̃I Z k̃I Q̃I+1(Z) , (4.36)

for Z = S̃
(I)
s , while the chiral ring equation of the first node (I = 1) involves the resolvent

of the 5d SU(N) theory and reads

PN (Z) = (−1)N (βΛ̃1)−b̃1 Z k̃1 Q̃2(Z) + (−1)N
(βΛ)2N

(βΛ̃1)−b̃1

Z−k5d−k̃1

Q̃2(z)
(4.37)

for Z = S̃
(1)
s .

The classical vacuum around which we perturbatively solve the above equations is

S̃
(I)
?,class = diag (AN−r̃I+1, . . . , AN ) . (4.38)

This corresponds to simply choosing for each node I the complement set of Au that appear

in the classical vacuum (4.14) for the corresponding node in the original quiver. Using an

ansatz analogous to the one in (4.15) and expanding in powers of β around (4.38), we can

obtain the solution S̃
(I)
? of the chiral ring equations to the desired perturbative order and,

in analogy with (4.16), relate it to the logarithmic derivative with respect to Λ̃I of the

twisted superpotential evaluated on this solution, namely

Λ̃I
dW̃?

dΛ̃I
=
b̃I
β

tr log S̃
(I)
? . (4.39)

We now give some details in the case of the simple operators of type [1, N − 1].

12Here and in the following we understand that r̃0 = N and r̃M = 0.
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N N − 1

Figure 10. The dual quiver for the [1, N − 1] defect in the SU(N) theory.

Simple surface operators. In this case the quiver has a single 3d gauge node and is

as depicted in figure 10. Correspondingly, using b̃1 = −N and Q̃2 = 1, we see that the

twisted chiral ring equations (4.37) take the following form:

PN (Z) = (−1)N (βΛ̃1)N Z k̃1 + (−1)N
(βΛ)2N

(βΛ̃1)N
Z−k5d−k̃1 (4.40)

for Z = S̃
(1)
s with s = 1, · · · , N − 1. To leading order these equations are solved by

S̃
(1)
?,s = As+1

[
1 + (−1)N

(
(βΛ̃1)NA

N
2

+k̃1−1

s+1 +
(βΛ)2N

(βΛ̃1)N
A
N
2
−k5d−k̃1−1

s+1

)

×
N∏
j=1
j 6=s+1

1

(As+1 −Aj)
+ . . .

]
.

(4.41)

Exploiting (4.39), we get

1

N
Λ̃1
dW̃?

dΛ̃1

= − 1

β
tr log S̃

(1)
?

= − 1

β

N∑
i=2

logAi −
1

β

N∑
i=2

[
(−1)N

(
(βΛ̃1)NA

N
2

+k̃1−1

i +
(βΛ)2N

(βΛ̃1)N
A
N
2
−k5d−k̃1−1

i

)

×
N∏
j=1
j 6=i

1

(Ai −Aj)

]
+ . . . . (4.42)

The quantity in square brackets has the same structure of the (logarithmic derivative of

the) twisted superpotential (3.25) computed using the second JK prescription. Indeed, if

make the following identifications

q1 = (−1)N (βΛ̃1)N , q2 =
(βΛ)2N

(βΛ̃1)N
, (4.43)

and

m1 = −k̃1 , m2 = k5d + k̃1 , (4.44)

we obtain

1

N
Λ̃1
dW̃?

dΛ̃1

= − 1

β

N∑
i=2

logAi + q1

dW̃ (II)
1−inst

dq1
+ · · · , (4.45)
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where on the right hand side the derivative with respect to q1 is taken by keeping the

product q1q2 fixed. This is clearly the counterpart in the dual quiver of the relation (4.23)

that we found in the original theory. Notice that the identifications (4.21) and (4.22)

continue to hold, but the map between the localization parameter m1 and the 3d Chern-

Simons coupling has an opposite sign as compared to the original quiver. We have checked

in several examples that the higher-instanton corrections to the left hand side of (4.45)

fully agree with those of the logarithmic derivative of W (II)
inst , computed using localization

with the second JK prescription, provided | k5d | < N .

Generic surface operators. The above procedure can be applied to a generic surface

operator. The details are given in appendix B. Here we merely report the maps between

the parameters used in the localization calculations and those appearing in the chiral

ring equations:

qI = −(−1)r̃I (βΛ̃I)
−b̃I for I = 1, . . . ,M − 1 ,

qM = (−1)N (βΛ)2N

(
M−1∏
I=1

qI

)−1

,
(4.46)

and

mI = −k̃I for I = 1, . . . ,M − 1 ,

mM = k5d +

M−1∑
I=1

k̃I .
(4.47)

Using these maps, we have checked in several examples at the first few instanton orders

that the relation

1

b̃I
Λ̃I
dW̃?

dΛ̃I
=

1

β
tr logS

(I)
?,class − qI

dW (II)
inst

dqI
, (4.48)

which generalizes (4.45) to a generic surface operator, is always satisfied provided |k5d| < N .

4.3 Summary

We have discussed in detail how two different realizations of a surface defect encoded in the

two quiver diagrams of figure 7 and figure 9 correspond, respectively, to the two different JK

prescriptions used in the localization approach. We stress that the integrand in the ramified

instanton partition function remains the same, and in particular that the parameters mI

do not change; what changes is the map between these parameters and the Chern-Simons

coefficients of the 3d nodes in the two quiver theories. Our results can be summarized in

– 25 –



J
H
E
P
0
5
(
2
0
1
8
)
0
4
6

the following diagram.

M∏
I=1

[
(−qI)dI
dI !

∫
C

dI∏
σ=1

(
β
dχI,σ
2πi

)
e−βmIχI,σ

]
z{dI}

JKI

JKII
r1

m1

r2

m2

. . . rM−1

mM−1

N

k5d

N

k5d

r̃1

−m1

r̃2

−m2

. . . r̃M−1

−mM−1

(4.49)

In the next section we discuss how the two quiver theories are related to each other by IR

Aharony-Seiberg dualities.

5 Relation to Aharony-Seiberg dualities

In section 3.1, we studied surface operators realized as Gukov-Witten defects by means of

localization techniques and computed the ramified instanton partition function from which

the twisted chiral superpotential can be extracted. Besides the instanton counting param-

eters qI , our results depend on the parameters mI that were introduced as counterparts of

the Chern-Simons couplings that may appear when the surface defects are represented as

coupled 3d/5d systems. Localization requires a residue prescription, usually specified by

means of a Jeffrey-Kirwan parameter, in order to select the poles contributing to the inte-

gral over the instanton moduli space. We have computed the twisted superpotential using

two different (and complementary) prescriptions and shown that only when the parameters

mI satisfy the constraints (3.15) and (3.16) the two results agree.

On the other hand, in section 4, we considered the realization of the defect by means of

two different coupled 3d/5d quiver theories. They give rise to twisted chiral superpotentials

that exactly match those arising from the two localization residue prescriptions, provided

the parameters mI are mapped to the 3d and 5d Chern-Simons levels kI and k5d according

to (4.28) or (4.47). Therefore, the conditions on mI under which the two localization

prescriptions yield the same result must correspond to the conditions that the Chern-

Simons parameters must obey in order for the two quiver theories to be dual to each other.

In the following, we explore the physical content of these constraints and their connection

with related work in the literature.

Let us first consider the quiver theory of figure 7, and for simplicity turn off the 5d

dynamics on the rightmost node in order to have a purely 3d theory. This corresponds to
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setting the 5d scale Λ to zero and to considering SU(N) as a global flavour symmetry.13

For I = 1, . . . ,M − 1 the constraints (3.15) and (3.16) become

kI +
bI
2
∈ Z , (5.1)

and

| kI | ≤
bI
2
− 1 . (5.2)

Here we have used the fact that bI = rI+1 − rI−1 and, as before, understood that r0 = 0

and rM = N . These constraints and their physical interpretation are well known. The

integrality condition (5.1) is a requirement on the absence of the Z2 parity anomaly in

three dimensions [47, 48], and is related to the fact that integrating out an odd number

of chiral fermions leads to a half-integer Chern-Simons term at one-loop. Indeed, bI is the

effective number of chiral (fundamental) matter at the I-th node. The inequality (5.2) is

the constraint found in [49] (see in particular eq. (3.51) of this reference) for the so-called

“maximally chiral theories”. Notice that the 3d gauge theory at each node of the quiver

belongs to this class, since the ranks rI are monotonically increasing with I.

When the constraint (5.2) is satisfied, the U(rI)kI theory at the I-th node admits an

Aharony-Seiberg dual, which is a U(rI+1−rI)−kI theory14 possessing additional (mesonic)

fields with a superpotential term [33, 36, 37]. By performing subsequent duality transfor-

mations, one may obtain many distinct dual quiver theories. In particular, one can check

that by successively applying such dualities to the quiver of figure 7, starting from the

node with I = M − 1 and proceeding all the way to the left-most node with I = 1, one

ends up with precisely the linear quiver of figure 9 without any additional mesonic fields

and superpotential terms. In fact, with the first duality transformation the U(rM−1)kM−1

node becomes a U(N−rM−1)−kM−1
theory with mesons that behave as N multiplets in the

fundamental of U(rM−2)kM−2
. Dualizing the latter, we obtain a U(N−rM−2)−kM−2

theory

along with N mesons that transform in the fundamental of U(rM−3)kM−3
. Continuing in

this dualization process, all superpotential terms cancel and we obtain the linear quiver of

figure 9.

According to the analysis of [49], theories with 3d Chern-Simons levels outside the

range (5.2) still admit Aharony-Seiberg duals, but the ranks of the gauge groups for the

latter depend on the Chern-Simons levels and in certain cases exceed the rank of the global

flavour symmetry. If this is the case, turning on twisted masses for the flavours would

not completely lift the Coulomb branch and the resulting 3d low-energy effective theory is

not massive. Thus, these dual models cannot represent Gukov-Witten defects in a higher

dimensional theory since the general picture of surface operators as coupled gauge theories

proposed in [4] necessarily assumes the fibration of a discrete set of vacua, namely the

solutions to the twisted chiral rings of the lower dimensional theory, over the Coulomb

moduli space of the higher dimensional theory.

13From the localization point of view, setting the 5d scale to zero reduces the ramified instanton partition

function to a 3d vortex partition function.
14In more general situations, the dual rank is max(s, s′) − rI , where s and s′ are the numbers of chiral

and anti-chiral matter multiplets charged with respect to the I-th gauge group.
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Let us now consider the case when the five dimensional gauge coupling is turned on.

From the localization point of view, we now have to take into account the case I = M

in (3.15) and (3.16). This leads to the condition (3.20) on the 5d Chern-Simons coupling,

i.e.

| k5d | ≤ N −M . (5.3)

The same bound can be derived from the twisted chiral ring relations. Consider for simplic-

ity the surface operator of type [1, N − 1], corresponding to M = 2, for which the twisted

chiral ring equation (see (4.17)) is

Z
N
2 PN (Z) ≡ ZN +

N−1∑
i=1

(−1)i ZN−i UN−i(k5d) + (−1)N

= (βΛ1)NZ
N
2
−k1 +

(βΛ)2N

(βΛ1)N
Z
N
2
−k5d+k1 , (5.4)

with Z = S(1). In our analysis we assumed that it was possible to find a solution of

this equation as a power series expansion around a classical vacuum specified by S
(1)
?,class =

eβ au , with au being one of the N vacuum expectation values of the 5d adjoint scalar Φ.

Following the discussion in [4] for the (dimensionally reduced) 2d/4d case, one can analyze

the fibration of these discrete solutions over the moduli space of the higher dimensional

gauge theory and, from the geometry of the total space, recover the form of the Seiberg-

Witten curve of the compactified 5d theory. This can be seen by defining [58]

Y = (βΛ1)NZ−k1 − (βΛ)2N

(βΛ1)N
Z−k5d+k1 , (5.5)

and noting that from (5.4) we have Y 2 = P 2
N − 4(βΛ)2NZ−k5d .

However, the chiral ring equations are related to the twisted superpotential that arises

in presence of the defect, and contain more information than the Seiberg-Witten curve,

which encodes the prepotential of the pure 5d theory. It is easy to check that demand-

ing (5.4) to be a monic polynomial in Z of degree N , whose constant term is set to be

(−1)N by the SU(N) condition, implies, beside the conditions (5.1) and (5.2), also the

relation | k5d | ≤ N − 2, which is the bound (5.3) for M = 2. The same kind of analysis

in the case with no defect, i.e. M = 1, leads to the standard relation | k5d | ≤ N − 1 in

agreement with [50] (see the discussion after (2.20)).

We pause to remark that for |k5d| < N , there is perfect agreement between the twisted

chiral superpotentials calculated using localization and the chiral ring analysis. Thus in

this range of the 5d Chern-Simons level, one can study the surface operator either as a

monodromy defect or as a coupled 3d/5d system. However, what the constraint (5.3)

implies is that, for N −M < | k5d | < N , due to a non vanishing contribution from the

residue at zero or infinity, the superpotentials calculated using the two contour prescriptions

differ. It is possible that in this range of k5d one might need to modify the contour integral

description of the defect and/or take into account extra light degrees of freedom in order to

relate the two contour prescriptions. On the quiver side, this would require a more detailed
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understanding of Aharony-Seiberg dual theories. It would be very interesting to explore

these possibilities.

In this work we have focused on the two linear quivers at the end of a chain of duality

transformations. It would be nice to better understand the twisted chiral rings and the

superpotentials of the intermediate quivers obtained along the way. It would also be

important to understand the map between such 3d/5d theories and the different residue

prescriptions that can be considered in the localization integral. We leave these issues to

future work.

Acknowledgments

We thank Sourav Ballav, Madhusudhan Raman, Sujoy Mahato, and especially Amihay

Hanany for many useful discussions.

The work of M.B., M.F., R.R.J. and A.L. is partially supported by the MIUR PRIN

Contract 2015MP2CX4 “Non-perturbative Aspects Of Gauge Theories And Strings”.

A Chiral correlators in 5d gauge theories

In this appendix we outline the method of calculating the quantum chiral correlators in

a 5d gauge theory, generalizing the discussion in [28] to include a non-zero Chern-Simons

coupling. The key idea is to start from the formula for the chiral correlators in 4d theo-

ries [72–75], and suitably generalize it to the 5d case, namely

V` =

〈
Tr e`βΦ

〉
=

N∑
u=1

A`u −
1

Zinst

∞∑
k=1

qk

k!

∫
C

(
k∏

σ=1

dχσ
2πi

)
zk(χσ)O`(χσ) . (A.1)

Here, Zinst is the instanton partition function defined in (2.3), zk(χσ) is the integrand (2.4),

and O` is the following combination [28]

O`(χσ) =
k∑

σ=1

e ` β χσ
(
1− e ` β ε1

)(
1− e ` β ε2

)
. (A.2)

At the 1-instanton level, by performing explicitly the integral over χ in (A.1) we find

V` =
N∑
u=1

A`u + `2(βΛ)2N
N∑
u=1

[
AN−2+`−k5d
u∏

u 6=v
(Au −Av)2

]
+O

(
(βΛ)4N

)
. (A.3)

The generating function for the V` is the resolvent of the SU(N) gauge theory:

T = N + 2
∑
`

V`
Z`

(A.4)

for which in section 2 we proposed an explicit formula in terms of the functions appearing

in the Seiberg-Witten curve of the theory (see (2.30)). Working out the large Z expansion,
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we obtain

T = N + 2
U1(k5d)+(βΛ)2Nδ k5d,1−N

Z

+ 2
U2

1 (k5d)−2U2(k5d)+
(
4(βΛ)2NU1(k5d)+3(βΛ)4N

)
δ k5d,1−N+2(βΛ)2Nδ k5d,2−N

Z2

+O(Z−3) (A.5)

where Ui(k5d) are the gauge invariant coordinates on the Coulomb branch of the 5d theory

with Chern-Simons coupling k5d. Comparing with (A.4), we deduce

U1(k5d) = V1 − (βΛ)2Nδ k5d,1−N ,

U2(k5d) =
1

2

(
V 2

1 − V2

)
+ (βΛ)2N

(
V1 δ k5d,1−N + δ k5d,2−N

)
.

(A.6)

Similar formulas can be easily worked out for higher Ui(k5d) without any difficulty. How-

ever, since they are a bit involved we do not report them here. Instead, as an illustrative

example, we consider the explicit expression of the above formulas in the case of the SU(3)

theory for which U1(k5d) and U2(k5d) are the two independent coordinates of the quantum

Coulomb branch. In this case, using (A.3) into (A.6) and taking into account the SU(3)

condition, we find

U1(k5d) =

3∑
u=1

Au + (βΛ)6

[
3∑

u=1

A2−k5d
u∏

u 6=v 6=w
(Au −Av)2 (Au −Aw)2

− δ k5d,−2

]
+O

(
(βΛ)12

)
,

U2(k5d) =
3∑

u 6=v=1

AuAv + (βΛ)6

[
3∑

u=1

A−k5du∏
u 6=v 6=w

(Au −Av)2 (Au −Aw)2
− δ k5d,2

]
+O

(
(βΛ)12

)
.

(A.7)

From these expressions, one can check that

Ui(−k5d) = Ũ3−i(k5d) , (A.8)

where Ũi is obtained from Ui through the inversion Au → 1/Au. This is a particular case

of the relation (2.23) discussed in section 2.2. We have checked this relation also for groups

of higher rank at the 1-instanton level, confirming its validity.

B Map of parameters for the generic surface operator

In this appendix we consider a generic surface operator and calculate the 1-instanton

contribution to its twisted chiral superpotential using the two JK prescriptions discussed in

the main text, with the purpose of finding the map between the parameters introduced in

the localization calculations and those appearing in the quiver theory, focusing in particular

on the 3d gauge nodes.
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The twisted superpotential. We start from the 1-instanton partition function Z1−inst..

This is given in (3.13), which we rewrite here for convenience

Z1−inst = −
M∑
I=1

qI
E

nI+nI+1
4

+ 1
2

1 Ê
nI+nI+1

4
2

E1 − 1

∫
C

dXI

2πi
X

nI+nI+1
2

−mI−1

I

×
rI∏

`=rI−1+1

1(
A`

√
E1Ê2 −XI

) × rI+1∏
j=rI+1

1(
Aj −XI

√
E1Ê2

) .

(B.1)

Since our main goal is to find the 3d interpretation of the parameters, we can set qM = 0,

which in view of (4.27) and (4.46) is equivalent to put Λ = 0 and hence freeze out the

quantum dynamical effects in the 5d theory. Then we remain only with the integrals over

XI with I = 1, · · · ,M − 1.

In the JKI prescription only poles in the upper-half complex plane of XI are chosen.

In our case they are

XI = A`

√
E1Ê2 (B.2)

for ` = rI−1 + 1, . . . rI . Evaluating the residues and extracting the twisted chiral superpo-

tential according to (3.17), we obtain

W (I)
1-inst =− 1

β

M−1∑
I=1

(−1)nI qI

nI∑
i=1

[
(ArI−1+i)

nI+nI+1
2

−mI− 1
2

nI∏
j=1
j 6=i

A
1
2
rI−1+j

nI+1∏
s=1

A
1
2
rI+s

×
nI∏
`=1
6̀=i

1

(ArI−1+i −ArI−1+`)

nI+1∏
t=1

1

(ArI−1+i −ArI+1−t+1)

]
. (B.3)

With the JKII prescription, one makes the complementary choice of poles, namely

those located at

XI =
Aj√
E1Ê2

(B.4)

for j = rI + 1, . . . , rI+1. Computing the corresponding residues yields

W (II)
1-inst =

1

β

M−1∑
I=1

(−1)nI qI

nI+1∑
i=1

[
(ArI+i)

nI+nI+1
2

−mI− 1
2

nI∏
j=1

A
1
2
rI−1+j

nI+1∏
s=1
s 6=i

A
1
2
rI+s

×
nI∏
`=1

1

(ArI+i −ArI−1+`)

nI+1∏
t=1
t 6=i

1

(ArI+i −ArI+t)

]
. (B.5)

As we have seen in section 3.2, these two expressions are in general different, unless the

parameters mI satisfy the conditions (3.15) and (3.16).
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r1 r2 . . . rM−1 N

Figure 11. The 3d quiver which lifts to the generic surface operator upon gauging the SU(N)

flavour symmetry represented by the square node at the right.

Linear quiver. We now study the twisted chiral ring equations whose solutions are the

vacua of the 3d quiver represented in figure 11. Here the SU(N) node on the right is not

gauged, since our objective is to find the map between the 3d parameters that include the

Chern-Simons levels and the strong coupling scales of the gauge theory. In particular, this

means that the 5d scale Λ is set to 0, as we did before in the localization calculations. All

chiral ring equations for this quiver are given by

QI+1(S(I)
s ) = (−1)rI−1(βΛI)

bI
(
S(I)
s

)−kIQI−1(S(I)
s ) (B.6)

for I = 1, · · · ,M − 1. Here we understand that Q0(Z) = 1 and QM (Z) = PN (Z) where

PN is defined in (2.18). Therefore, for I = M −1 the above expression gives the chiral ring

equation (4.13) in the limit when Λ = 0. Using the explicit form of the functions QI given

in (4.9), we can rewrite (B.6) as

rI+1∏
t=1

(
S(I)
s − S

(I+1)
t

)
= (−1)rI−1(βΛI)

bI
(
S(I)
s

) bI
2
−kI

×
rI+1∏
t=1

(
S

(I+1)
t

) 1
2

rI−1∏
u=1

(
S(I−1)
u

)− 1
2

rI−1∏
u=1

(
S(I)
s − S(I−1)

u

) (B.7)

where we have used bI = rI+1−rI−1. We now solve these equations for S(I) using the ansatz

S
(I)
? = diag

(
A1, . . . , ArI−1 , ArI−1+1 + δArI−1+1, . . . , ArI + δArI

)
. (B.8)

Inserting this into (B.7), after some simple algebra we get

δAs

rI+1∏
t=1
t 6=s

(As −At) = (−1)rI−1(βΛI)
bI (As)

bI
2
−kI

rI+1∏
t=1

(At)
1
2

rI−1∏
u=1

(Au)−
1
2

rI−1∏
u=1

(As −Au
)

(B.9)

for s = rI−1 + 1, . . . , rI . This leads to

δAs = (−1)rI−1(βΛI)
bI (As)

bI
2
−kI

rI+1∏
t=rI−1+1

(At)
1
2

rI+1∏
t=rI−1+1

t 6=s

1

(As −At)
. (B.10)

Using this in (B.8), we find that tr log S
(I)
? is a sum of nI terms, each of which looks very

similar to the qI -derivative of the localization result (B.3). Notice that the denominator

of the latter is split into two products with nI − 1 and nI+1 factors respectively, while
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N r̃1
. . . r̃M−2 r̃M−1

Figure 12. The quiver which is dual to the one in figure 11.

the last product in (B.10) is written in terms of the ranks of the adjacent nodes and

contains rI+1− rI−1−1 terms. However, using the relation between nI and rI , we see that

rI+1 − rI−1 = nI + nI+1, and thus the two structures agree. Actually, one can explicitly

check that the chiral ring results fully match those from localization with the first JK

prescription if

qI = −(−1)rI (βΛI)
bI and mI = kI (B.11)

for I = 1, · · · ,M − 1.

Dual quiver. In a similar vein, we can treat the twisted chiral ring equations of the dual

quiver which is represented in figure 12.

In this case, the chiral ring equations take the form

Q̃I−1(S̃(I)
s ) = (−1)r̃I−1 (βΛ̃I)

−b̃I
(
S̃(I)
s

)k̃I Q̃I+1(S̃(I)
s ) (B.12)

for I = 1, · · · ,M − 1, where we understand that Q̃0(Z) = PN (Z) and Q̃M (Z) = 1. Again

we notice that for I = 1, the above formula reproduces the chiral ring equation (4.37)

when Λ = 0.

The analysis proceeds along the same lines as before. We first use the explicit expres-

sion of the functions Q̃I and get

r̃I−1∏
t=1

(
S̃(I)
s − S̃

(I−1)
t

)
= (−1)r̃I−1(βΛ̃I)

−b̃I
(
S̃(I)
s

) bI
2

+k̃I (B.13)

×
r̃I−1∏
t=1

(
S̃

(I−1)
t

) 1
2

r̃I+1∏
u=1

(
S̃(I+1)
u

)− 1
2

r̃I+1∏
u=1

(
S̃(I)
s − S̃(I+1)

u

)
.

Next, using the fact that r̃I = N − rI , we solve this equation for S̃
(I)
s with the ansatz

S̃
(I)
? = diag

(
ArI+1 + δArI+1 , . . . ArI+1 + δArI+1 , ArI+1+1 . . . ArI+r̃I

)
(B.14)

and find

δArI+s = (−1)r̃I−1(βΛ̃I)
−b̃I (ArI+s)

bI
2

+k̃I

r̃I−1∏
t=1

(ArI−1+t)
1
2

r̃I+1∏
u=1

(ArI+1+u)−
1
2

×
r̃I+1∏
u=1

(ArI+s −ArI+1+u)

r̃I−1∏
t=1

t 6=s+nI

1

(ArI+s −ArI−1+t)
.

(B.15)
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There are lot of cancellations that take place between the products in the second line above,

and in the end only nI+nI+1−1 of the terms survive as one can check by a careful analysis.

Thus, we finally obtain

δArI+s = (−1)r̃I−1(βΛ̃I)
−b̃I (ArI+s)

bI
2

+k̃I

rI+1∏
t=rI−1+1

(At)
1
2

rI+1∏
t=rI−1+1
t 6=s+nI

1

(ArI+s −At)
. (B.16)

Computing tr log S̃
(I)
? , we find it agrees with (negative of) the qI -derivative of the twisted

chiral superpotential (B.5) obtained using the second JK prescription, provided we identify

qI = −(−1)r̃I (βΛ̃I)
−b̃I and mI = −k̃I (B.17)

for I = 1, · · · ,M − 1.

This completes the identification of the parameters mI with the Chern-Simons levels

of the dual pair of 3d quiver gauge theories studied in this work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[54] M. Billó et al., Non-perturbative gauge/gravity correspondence in N = 2 theories, JHEP 08

(2012) 166 [arXiv:1206.3914] [INSPIRE].

[55] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and

confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[56] N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys.

B 531 (1998) 323 [hep-th/9609219] [INSPIRE].

[57] A. Hanany, P. Kazakopoulos and B. Wecht, A new infinite class of quiver gauge theories,

JHEP 08 (2005) 054 [hep-th/0503177] [INSPIRE].

[58] A. Brini and A. Tanzini, Exact results for topological strings on resolved Y**p,q singularities,

Commun. Math. Phys. 289 (2009) 205 [arXiv:0804.2598] [INSPIRE].

[59] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl.

Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

[60] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[61] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

[62] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166] [INSPIRE].

[63] A. Brandhuber et al., On the M-theory approach to (compactified) 5−D field theories, Phys.

Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].

[64] M. Wijnholt, Five-dimensional gauge theories and unitary matrix models, hep-th/0401025

[INSPIRE].

[65] F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in

supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].

[66] T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations

with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].

[67] O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in

three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].

[68] A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513

(1998) 119 [hep-th/9707192] [INSPIRE].

[69] H.-Y. Chen, T.J. Hollowood and P. Zhao, A 5d/3d duality from relativistic integrable system,

JHEP 07 (2012) 139 [arXiv:1205.4230] [INSPIRE].

– 37 –

https://doi.org/10.1016/S0550-3213(97)00279-4
https://arxiv.org/abs/hep-th/9702198
https://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
https://arxiv.org/abs/1705.05836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05836
https://arxiv.org/abs/1801.04036
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.04036
https://doi.org/10.1088/1126-6708/2008/03/069
https://arxiv.org/abs/hep-th/0310272
https://inspirehep.net/search?p=find+EPRINT+hep-th/0310272
https://doi.org/10.1007/JHEP08(2012)166
https://doi.org/10.1007/JHEP08(2012)166
https://arxiv.org/abs/1206.3914
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3914
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://inspirehep.net/search?p=find+EPRINT+hep-th/9407087
https://doi.org/10.1016/S0550-3213(98)00436-2
https://doi.org/10.1016/S0550-3213(98)00436-2
https://arxiv.org/abs/hep-th/9609219
https://inspirehep.net/search?p=find+EPRINT+hep-th/9609219
https://doi.org/10.1088/1126-6708/2005/08/054
https://arxiv.org/abs/hep-th/0503177
https://inspirehep.net/search?p=find+EPRINT+hep-th/0503177
https://doi.org/10.1007/s00220-009-0814-4
https://arxiv.org/abs/0804.2598
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2598
https://doi.org/10.1016/S0550-3213(97)00472-0
https://doi.org/10.1016/S0550-3213(97)00472-0
https://arxiv.org/abs/hep-th/9704170
https://inspirehep.net/search?p=find+EPRINT+hep-th/9704170
https://doi.org/10.1088/1126-6708/1998/01/002
https://arxiv.org/abs/hep-th/9710116
https://inspirehep.net/search?p=find+EPRINT+hep-th/9710116
https://arxiv.org/abs/hep-th/0002222
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002222
https://doi.org/10.1016/S0550-3213(97)00416-1
https://doi.org/10.1016/S0550-3213(97)00416-1
https://arxiv.org/abs/hep-th/9703166
https://inspirehep.net/search?p=find+EPRINT+hep-th/9703166
https://doi.org/10.1016/S0370-2693(97)01249-5
https://doi.org/10.1016/S0370-2693(97)01249-5
https://arxiv.org/abs/hep-th/9709010
https://inspirehep.net/search?p=find+EPRINT+hep-th/9709010
https://arxiv.org/abs/hep-th/0401025
https://inspirehep.net/search?p=find+EPRINT+hep-th/0401025
https://doi.org/10.1088/1126-6708/2002/12/071
https://arxiv.org/abs/hep-th/0211170
https://inspirehep.net/search?p=find+EPRINT+hep-th/0211170
https://doi.org/10.1016/S0550-3213(98)00726-3
https://arxiv.org/abs/hep-th/9808111
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808111
https://doi.org/10.1088/1126-6708/1999/10/036
https://arxiv.org/abs/hep-th/9908075
https://inspirehep.net/search?p=find+EPRINT+hep-th/9908075
https://doi.org/10.1016/S0550-3213(97)00754-2
https://doi.org/10.1016/S0550-3213(97)00754-2
https://arxiv.org/abs/hep-th/9707192
https://inspirehep.net/search?p=find+EPRINT+hep-th/9707192
https://doi.org/10.1007/JHEP07(2012)139
https://arxiv.org/abs/1205.4230
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4230


J
H
E
P
0
5
(
2
0
1
8
)
0
4
6

[70] N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog.

Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].

[71] N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional

gauge theories, in the proceedings of the 16th International Congress on Mathematical

Physics (ICMP09), August 3–8, Prague, Czech Republic, August (2009), arXiv:0908.4052

[INSPIRE].

[72] U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant

cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

[73] A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free

fermions, hep-th/0302191 [INSPIRE].

[74] R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matone’s relation in the presence of

gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].

[75] S.K. Ashok et al., Chiral observables and S-duality in N = 2∗ U(N) gauge theories, JHEP

11 (2016) 020 [arXiv:1607.08327] [INSPIRE].

– 38 –

https://doi.org/10.1143/PTPS.177.105
https://doi.org/10.1143/PTPS.177.105
https://arxiv.org/abs/0901.4748
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4748
https://arxiv.org/abs/0908.4052
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
https://doi.org/10.1088/1126-6708/2003/05/054
https://arxiv.org/abs/hep-th/0211108
https://inspirehep.net/search?p=find+EPRINT+hep-th/0211108
https://arxiv.org/abs/hep-th/0302191
https://inspirehep.net/search?p=find+EPRINT+hep-th/0302191
https://doi.org/10.1088/1126-6708/2004/04/008
https://arxiv.org/abs/hep-th/0403057
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403057
https://doi.org/10.1007/JHEP11(2016)020
https://doi.org/10.1007/JHEP11(2016)020
https://arxiv.org/abs/1607.08327
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.08327

	Introduction and summary
	5d gauge theories
	Localization
	Seiberg-Witten curve and resolvent

	5d gauge theories with surface operators
	Ramified instantons
	The 1-instanton partition function
	Parameter map
	Simple surface operators

	3d/5d quiver theories with Chern-Simons terms
	The linear quiver and its twisted chiral ring equations
	The dual linear quiver and its twisted chiral ring equations
	Summary

	Relation to Aharony-Seiberg dualities
	Chiral correlators in 5d gauge theories
	Map of parameters for the generic surface operator

