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1 Introduction

In some recent papers [1–3], we explored the rôle of the supermanifolds and their integration

theory for applications to gauge theories, supergravity and string theories.

The superspace technique has been invented to describe supersymmetric theories with

manifestly supersymmetric actions. This is achieved by adding fermionic coordinates to

the bosonic manifold and using Berezin integration. Nonetheless the geometric point of

view needs further clarification. During the recent years, due to progress in fundamental

string theory [4, 5] and due to progress in the understanding of integration theory on
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supermanifolds (see for ex. [5, 6]), a more solid and fruitful framework for superspace

actions has been built.

A convenient way to write a supersymmetric action in superspace, as an integral of

integral forms on supermanifolds M(n|m), is the following

S =

∫

M(n|m)

L(n|0) ∧ Y
(0|m) (1.1)

where the Lagrangian L(n|0) is a superfield (n|0) superform and Y
(0|m) is a Picture Changing

Operator (PCO), or using a proper mathematical identification (see for ex. [7]), is the

Poincaré dual form of the embedding of a n-dimensional bosonic submanifold into the

supermanifold M(n|m). Y(0|m) belongs to the super de Rham cohomology H(0|m)(M(n|m)).

The choice of the PCO determines the representation for the supersymmetric theory:

the simplest PCO constructed in terms of the fermionic coordinates θα (with α = 1, . . .m),

and their corresponding one-forms ψα = dθα, is given by θmδm(ψ). When inserted into (1.1)

it reproduces the component action. When instead a supersymmetric PCO is used, it

yields a superfield action with manifest supersymmetry. Different choices of the PCO’s

produce different representations of the same theory with different amounts of manifest

supersymmetry and passing from one to another leads to equivalent theories when the

PCO’s differ by exact terms and L(n|0) is closed.

The purpose of the present paper is to study the four dimensional case, with different

amounts of supersymmetry. In particular, we will study the case N = 1 and N = 2. The

cases D = 1, D = 2 and D = 3 are treated in [7–9].

The paper is organized as follows:

1. In section 2, we review the Wess-Zumino model for a chiral field from the superspace

point of view. This is the usual construction of the textbooks and we use it to set

the stage. Then, we consider the geometric formulation of the rheonomic formalism.

That framework uses only geometric ingredients: superforms, exterior differential

and wedge product. Finally, we rewrite the action using the integral form formu-

lation which projects the geometric action to the superspace action. We perform

the computation explicitly to illustrate all steps and we postpone the mathematical

construction of the PCO in later sections.

2. In section 3, we review the N = 1 super Yang-Mills theory in the superspace frame-

work. Differently from the usual prepotential construction (see for example the text-

books [10, 11]), suitable only for D = 4, we use the form language (see [12–14]) and

we discuss the solution of the constraints. This allows us to write both the super-

space action and the geometric action in terms of the gaugino field strength Wα, W̄ α̇.

The dependence of the geometric action upon the rigid gravitinos ψα, ψ̄α̇ admits a

straightforward generalization to supergravity couplings and it encodes all possible

information. The geometric action is built and the equations of motion are given.

Finally, we explore two possible choices of the PCO’s leading either to the component

action or to the well-kwown superspace action.
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3. As a further example, in section 4 we consider the case of N = 2 super-Yang-Mills.

We briefly review the N = 2 superspace action (which consists of only one term

integrated over the full superspace) and we discuss the rheonomic action. In the

long and complicated rheonomic action displayed in the textbook [12–14], only one

term is relevant in order to reproduce the superspace action. The relation with the

N = 2, D = 4 action is achieved by changing the PCO, using the closure of the

rheonomic action.

4. In section 5, we summarize the mathematical aspects of the derivation. We review the

structure of the integral superspace, considering the full complex of integral forms and

of superforms. We review the action of different operators and the notion of picture

number. An important issue is the Lorentz symmetry for integral forms, discussed

in section 5.2. The volume forms and the PCO’s are built in the subsequent sections

with detailed derivations. The final two theorems are needed for the supergravity

extension of the present framework.

2 D=4 N=1 integral Wess-Zumino model

It is important to clarify the integral form formulation of the most well-known example of

supersymmetric model, namely the Wess-Zumino model. It describes a chiral multiplet and

the field content is given by a complex scalar φ, two fermions λα, λ̄α̇ and a complex auxiliary

field f . The auxiliary field f guarantees the closure of the off-shell supersymmetry. On

shell, f is set to zero and the degrees of freedom of the fermions are halved by the equations

of motion, so that they match the bosonic degrees of freedom.

In section 2.1 we review the superspace action in the conventional Weyl/anti-Weyl

notation. We give the action in component fields. In section 2.2 we review the geometric

(rheonomic) action described in the book [12–14], rewriting it into chiral notation. In

section 2.3 we construct the action on the supermanifold M(4|4) and show how to reproduce

the superspace action and the component action. For that we need suitable PCO’s to

project the geometric action along different supersymmetry realizations. The relevant

PCO’s will be described later in section 5.

2.1 WZ superspace action

The spinors are taken in the Weyl/anti-Weyl representation in order to compare our for-

mulas with the usual D=4 N=1 superspace [10, 11]. In that framework the supermultiplet

is described by a single complex superfield Φ(x, θ, θ̄) satisfying

D̄α̇Φ = 0 . (2.1)

where D̄α̇ = ∂θ̄α̇ − iθα∂xαα̇ (see also section 5.1 for notations, differential operators and

their algebra). Equations (2.1) are easily solved by introducing the chiral coordinates

(yαα̇ ≡ xαα̇ − iθαθ̄α̇, θα, θ̄α̇). The chiral superfield Φ is independent of θ̄ and can be
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decomposed as follows

Φ(y, θ) = φ(y) + λα(y)θ
α + f(y)

θ2

2
(2.2)

= φ+ λαθ
α +

(

1

2
fθ2 − iθαθ̄α̇∂αα̇φ

)

−
i

2
θ2θ̄α̇∂α̇αλ

α +
1

8
θ2θ̄2∂2φ . (2.3)

where θ2 = θαǫαβθ
β, θ̄2 = θ̄α̇ǫα̇β̇ θ̄

β̇, and the components φ, λα and f in the last line

depend on x. The free equations of motion (we comment later on the introduction of a

superpotential) are

D̄2D2Φ = 0 . (2.4)

In components they read

∂αα̇∂αα̇φ = 0 , i∂αα̇λ
α = 0 , f = 0 , (2.5)

with analogous equations for the conjugated fields. They derive from the superspace action

S =

∫

[d4xd2θd2θ̄]ΦΦ̄ . (2.6)

As explained in [2, 5], the symbol [d4xd2θd2θ̄] is not a measure in the usual sense. The form

of the integral, where both θ and θ̄ are present, is known as non-chiral superspace integral.

There are two ways to derive the equations of motion (2.5) from (2.6):

1) compute the Berezin integral over θ’s and θ̄’s to obtain the component action:

S =

∫

d4x

(

1

2
∂αα̇φ̄∂αα̇φ+ iλ̄α̇∂αα̇λ

α + ff̄

)

, (2.7)

Then, derive eqs. (2.4) by considering the variations with respect to φ̄, λ̄ and f̄ .

2) vary the action with respect to the superfield Φ or Φ̄. This must be done with care

since they are constrained fields. First one performs a Berezin integration over θ̄

leading to

S =

∫

[d4xd2θ] (D̄2Φ̄)Φ
∣

∣

θ̄=0
(2.8)

where both Φ and D̄2Φ̄ are computed at θ̄ = 0. Notice that due to D3 = 0 and

D̄3 = 0 (valid in the case D = 4), the superfield D̄2Φ̄ is also a chiral field. The

variation with respect to Φ gives the equations of motion (2.4).

Likewise, one could also integrate with respect to θ to get another version of the action

S =

∫

[d4xd2θ̄] Φ̄(D2Φ)
∣

∣

θ=0
(2.9)

which is the anti-chiral version. Again, the equations of motion are given by (2.4).

In (2.6), (2.8) or (2.9) the supersymmetry is manifest since they are written in terms

of superfields. Any variation of the Lagrangian under supersymmetry is a total derivative

and then the variation of the action vanishes.
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In superspace, the supersymmetric transformations are implemented by the supersym-

metry generators Qα = ∂θα + iθ̄α̇∂αα̇ and Q̄α̇ = ∂θ̄α̇ + iθα∂αα̇ (which commute with the

superderivatives Dα and D̄α̇) as follows

δǫΦ = (ǫαQα + ǭα̇Q̄α̇)Φ , δǫDαΦ = Dα(δǫΦ) . (2.10)

In order to add interactions, we need to introduce the superpotential. The super-

field W(Φ) is an holomorphic function of Φ (for a renormalizable theory a polynomial of

maximum degree = 3) and the full action is written as (see [11] and [10])

S =

∫

[d4xd2θd2θ̄]ΦΦ̄ +

∫

[d4xd2θ]W(Φ) +

∫

[d4xd2θ̄]W(Φ̄) . (2.11)

The contribution of the superpotential is automatically supersymmetric invariant and its

holomorphicity w.r.t. Φ implies the non-renormalization properties of the WZ action. The

equations of motion are computed as above, by converting the first integral into a chiral

or antichiral integral (see eqs. (2.8) or (2.9)) and then varying with respect to Φ (or w.r.t.

Φ̄) to get

D2Φ+W
′
(Φ̄) = 0 , D̄2Φ̄ +W ′(Φ) = 0 . (2.12)

As a consistency check observe that acting with Dα on the l.h.s. of the first equation, both

terms vanish and, similarly acting with D̄α̇ on the second equation. Acting with D̄2 on the

l.h.s. of the first equation we get

D̄2D2Φ = W ′(Φ)W
′′
(Φ̄) + D̄α̇Φ̄D̄

α̇Φ̄W
′′′
(Φ̄) , (2.13)

which reduces to (2.4) in absence of W and its conjugate.

The generalization to multiple superfields ΦI with I = 1, . . . , N is straightforward.

The superpotential W becomes a generic polynomial in the superfields ΦI , and the kinetic

term becomes a quadratic form Φ̄Φ → gĪJ Φ̄
ĪΦJ .

To couple the superfields to abelian gauge fields by minimal coupling, one promotes

to local superfield the chiral parameter Λ of the rigid symmetry

ΦI → eieIΛΦI , Φ̄Ī → e−ieIΛΦ̄Ī , (2.14)

of the action. The gauge fields are introduced by modifying the action as follows

S =
∑

I

∫

[d4xd2θd2θ̄]gĪJ Φ̄
IeV ΦJ +

∫

[d4xd2θ]W(ΦI) +

∫

[d4xd2θ̄]W(Φ̄Ī) . (2.15)

Here V is the prepotential of the gauge fields (see [10] for more details) which transforms

as V → V + i(Λ− Λ).

As a final remark, one can convert the action (2.11) into an integral on the complete

superspace:

S =

∫

[d4xd2θd2θ̄]
(

Φ̄Φ +W(Φ)θ̄2 +W(Φ)θ2
)

. (2.16)

where we have inserted the θ-terms. Integrating the second term with respect to θ̄ we

obtain again the chiral integral, and likewise for the third term.
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In the following, we need some algebraic relations between superderivatives. In par-

ticular, given a superfield Fαα̇(x, θ, θ̄), we need the relation

D2D̄2
(

Fαα̇θ
αθ̄α̇

)
∣

∣

∣

θ=θ̄=0
= DαD̄α̇Fαα̇

∣

∣

θ=θ̄=0
+ total deriv. (2.17)

This implies
∫

[d4xd2θd2θ̄]
(

Fαα̇θ
αθ̄α̇

)

=

∫

[d4x] DαD̄α̇Fαα̇

∣

∣

θ=θ̄=0
. (2.18)

2.2 Geometric WZ action

In the geometrical formulation, we start again from the complex scalar superfield Φ and

we impose the following condition

dΦ = V αα̇∂αα̇Φ+ ψαDαΦ+ ψ̄α̇D̄α̇Φ

= V αα̇∂αα̇Φ+ ψαWα , (2.19)

where (V αα̇, ψα, ψ̄α̇) is the supervielbein (see also section 5.1). The differential d is the

usual super-differential (it is an anticommuting operator and therefore we assume it anti-

commutes with θ and θ̄ as well). Comparing the two lines, we get

D̄α̇Φ = 0 , DαΦ = Wα . (2.20)

The new superfield Wα of (2.19) has as first component the fermion of the supermultiplet

λα. Applying d on the left hand side, we have a consistency condition on Wα leading to

dWα = V αα̇∂αα̇Wα − 2iψ̄α̇∂αα̇Φ+ ψαF , (2.21)

where the new superfield F has as first component the auxiliary field f and ψα = ǫαβψ
β .

On Wα, we have the conditions

DαWβ = −ǫαβF , D̄α̇Wα = −2i∂αα̇Φ . (2.22)

Again, applying the differential d, we find the differential of F

dF = V αα̇∂αα̇F + 2iψ̄α̇∂α̇αW
α , (2.23)

and the constraints

DαF = 0 , D̄α̇F = 2i∂αα̇W
α , F =

1

2
ǫαβDαWβ =

1

2
ǫαβDαDβΦ , (2.24)

where φ, λα, f are the fields of the Wess-Zumino multiplet. It can be checked that no

additional superfields are needed. The first components of the superfields Φ,Wα, F are

Φ = φ+O(θ) , Wα = λα +O(θ) , F = f +O(θ) . (2.25)

In terms of these superfields, the equations of motion are

∂αα̇∂αα̇Φ = 0 , ∂αα̇W
α = 0 , F = 0 , (2.26)

– 6 –
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and their conjugates. These equations reduce to the spacetime equations, by setting θ =

θ̄ = 0. Note that all components in the θ, θ̄ expansion satisfy the same equations, for

example, by expanding the superfield at second order Φ = φ+θαλα+ θ̄α̇λ̄α̇+O(θ2) we find

∂αα̇∂αα̇Φ = ∂αα̇∂αα̇φ+ θβ
(

∂αα̇∂αα̇λβ

)

+ θ̄β̇
(

∂αα̇∂αα̇λ̄β̇

)

+O(θ2) (2.27)

and ∂αα̇∂αα̇λβ = 0 and ∂αα̇∂αα̇λ̄β̇ = 0 which follow from the Dirac equations (the second

eq. in (2.26) and its conjugate) by acting with ∂β̇α on ∂αα̇W
α = 0.

We can write the free Lagrangian L
(4|0)
kin for the kinetic terms as follows

L
(4|0)
kin = (V 4) (ξ̄αα̇ξαα̇ + F̄F ) (2.28)

+ (V 3)αα̇
[

(dΦ− ψβWβ)ξ̄αα̇ + (dΦ̄− ψ̄β̇W̄β̇)ξαα̇ + a1(W̄α̇dWα + dW̄α̇Wα)
]

+ (V 2
+)

αβ
[

a2(WαψβdΦ̄) + a3(WαψβW̄
γ̇ψ̄γ̇)

]

+ (V 2
−)

α̇β̇
[

a2(W̄α̇ψ̄β̇dΦ) + a3(W̄α̇ψ̄β̇W
γψγ)

]

+ V αα̇
[

a4(Φ̄dΦ− dΦ̄Φ)ψαψ̄α̇

]

.

where we have adopted the following definitions (see also appendix B)

V 4 =
1

4!
Vαα̇ ∧ V α̇β ∧ Vβγ̇ ∧ V γ̇α , (V 3)αα̇ =

1

3!
V αβ̇ ∧ V γ̇β ∧ V ρα̇ǫβ̇γ̇ǫβρ (2.29)

(V 2
+)

αβ =
1

2!
V αβ̇ ∧ V β̇βǫα̇β̇ , (V 2

−)
α̇β̇ =

1

2!
V α̇α ∧ V ββ̇ǫαβ ,

for the wedge products of the vielbeins V αα̇.

The Lagrangian is organized in powers of V ’s. The first line, proportional to the volume

form V 4, contains two terms: one with the auxiliary fields F and F̄ and the other with the

first-order-formalism field ξαα̇ and its conjugate. The latter are needed in order to write

the action without using the Hodge dual operator. This is required for the Lagrangian to

be a pure 4-form built exclusively with fields, their differentials and the supervielbeins. We

have written all possible terms compatible with the scaling dimensions and with the form

degree. The constants a1, a2, a3, a4 are fixed by requiring the closure of the Lagrangian and

the correct equations of motion.

We have four fields F, ξαα̇,Φ,Wα and their conjugates. Therefore, we need four equa-

tions of motion.

The equation of F is obtained by varying L
(4|0)
kin with respect to F̄ . This simply gives

(V 4)F = 0 (2.30)

which is the free equation of the auxiliary field. The equation for the auxiliary field ξαα̇ is

(V 4)ξαα̇ + (V 3)αα̇
(

ψβDβΦ+ V ββ̇∂ββ̇Φ− ψβWβ

)

= 0 (2.31)

which implies

Wβ = DβΦ , D̄β̇Φ = 0 , ξαα̇ = ∂αα̇Φ . (2.32)

– 7 –
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These relations identify the superfield Wα and the auxiliary field ξαα̇ with derivatives of Φ .

In addition, the second equation establishes the chirality of the superfield Φ. The equation

of motion for Φ is obtained by taking the functional derivative of the action with respect

to the superfield Φ̄. After integration by parts it becomes

i
(

ψα(V 2
−ψ̄)

α̇ − ψ̄α̇(V 2
+ψ)

α
)

ξαα̇ − (V 3)αα̇dξαα̇

+a2

(

−2iψ(α(V ψ̄)β)
)

Wαψβ + a2(V
2
+)

αβdWαψβ + 2a4(ψV ψ̄)dΦ = 0 (2.33)

where (ψV ψ̄) = ψαV ββ̇ψ̄α̇ǫαβǫα̇β̇ . This equation implies

∂αα̇ξαα̇ = 0 =⇒ ∂2Φ = 0 , a4 = −
i

2
a2 , a2 = 1 =⇒ a4 = −

i

2
. (2.34)

Finally, the equation for Wα is given by

(V 3)αα̇ψ̄β̇ξαα̇−2a1(V
3)αβ̇dWα+a1 d(V

3)αβ̇Wα+(V 2
−)

α̇β̇
(

ψ̄α̇dΦ+ a3 ψ̄α̇W · ψ
)

= 0 (2.35)

(where W · ψ = Wαǫαβψ
β) yielding the equations of motion for the spinor superfield Wα.

We fix the remaining coefficients a1 and a3

∂αβ̇Wα = 0 , a1 =
1

2
, a3 = 1 . (2.36)

One can check the consistency among the four equations (2.30), (2.31), (2.33), and (2.35).

To complete the Lagrangian we need the interaction and the superpotential terms.

These are written as follows

L(4|0)
sup =

(

W ′(Φ)F −
1

2
W ′′(Φ)WαW

α

)

(V 4) +W ′(Φ)Wαψ̄α̇(V 3)αα̇ (2.37)

+W(Φ)ψ̄α̇ψ̄β̇(V 2
−)α̇β̇ + h.c.

where W(Φ) is the superpotential introduced in the previous section and W ′(Φ),W ′′(Φ)

are the first and the second derivative of W(Φ) with respect to Φ.

The Lagrangian L(4|0) = L
(4|0)
kin + L

(4|0)
sup is closed as can be verified by using the defi-

nitions of the curvatures dΦ, dWα, dF as in (2.19), (2.21), (2.23) and the algebraic equa-

tions (2.31).

2.3 WZ action on the supermanifold M(4|4)

Now we show that the action (2.16) can be obtained from the supermanifold integral

S =

∫

SM(4|4)
L(4|0)(Φ,W, F ) ∧ Y

(0|4) , (2.38)

where the Lagrangian L(4|0) is given in the previous section.

The PCO Y
(0|4) is a (0|4)-form which depends upon the superspace data. As the

Lagrangian is d-closed, we can shift Y
(0|4) → Y

(0|4) + dΛ(−1|4) by an exact term without

changing the action. The PCO’s are discussed in section 5.1 (see also [1–3, 7]).

– 8 –
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The first PCO we consider is given by

Y
(0|4)
s.t. = θ2δ2(ψ) ∧ θ̄2δ(ψ̄) , (2.39)

which is closed, not exact and Lorentz invariant. It is not supersymmetric, but its variation

under supersymmetry is d-exact. The Dirac delta functions δ(ψ) and δ(ψ̄) are needed to

set ψ and ψ̄ in L(4|0) to zero and the factor θ2θ̄2 sets θ = θ̄ = 0. Thus the integrand (2.38)

takes the form

L(4|0) ∧ Y
(0|4)
s.t. =

[

(ξ̄αα̇ξαα̇ + f̄f)d4x (2.40)

+

(

dφξ̄αα̇ + dφ̄ξαα̇ +
i

2
(λ̄α̇dλα + dλ̄α̇λα)

)

(d3x)αα̇

+

(

W ′(φ)f −
1

2
W ′′(φ)λαǫαβλ

β

)

d4x+ h.c.

]

θ2θ̄2δ2(ψ)δ2(ψ̄) ,

where (d3x)αα̇ = dxαβ̇dx
β̇γdxγα̇ By solving the algebraic equations of motion for ξαα̇ and

its conjugate, and using

dφ ∧ δ2(ψ)δ2(ψ̄) = dxαα̇∂αα̇φ ∧ δ2(ψ)δ2(ψ̄) , (2.41)

one ends up with the component Lagrangian given in (2.11). The choice of the PCO (2.39)

represents the trivial embedding of the bosonic submanifold M4 into the supermanifold

M(4|4).

To derive an action with manifest supersymmetry, we need a different PCO. That will

be discussed in the forthcoming section 5.1, and here we report the main result:

Y
(0|4)
s.s. =

(

− 4(θV ῑ) ∧ (θ̄V ι) + θ2(ιV ∧ V ι) + θ̄2(ῑV ∧ V ῑ)
)

δ4(ψ) (2.42)

where ι = ∂ψ (and similar for ῑ). Notice that it still depends upon θ and θ̄. This is needed

to produce the superspace action in the usual form. In addition, we notice that the first

term is non-chiral and the other two are chiral and anti-chiral, respectively.

With this PCO, the action becomes

S =

∫

M(4|4)

L(4|0) ∧ Y
(0|4)
s.s. (2.43)

=

∫

M(4|4)

(

WV ψ)(ψ̄V W ) +W(Φ)(ψ̄V ∧ V ψ̄) +W(Φ̄)(ψV ∧ V ψ)
)

∧ Y
(0|4)
s.s.

=

∫

M(4|4)

(

W
α̇
θ̄α̇Wαθ

α +W(Φ)θ̄2 +W(Φ̄)θ2
)

V 4δ4(ψ)

=

∫

[d4xd2θd2θ̄]
(

W
α̇
θ̄α̇Wαθ

α +W(Φ)θ̄2 +W(Φ̄)θ2
)

.

and, using the algebraic relations among superderivatives given in (2.17) and (2.18), re-

calling Wα = DαΦ, W̄α̇ = D̄α̇Φ̄, and

(DαΦ)θ
α = Dα(Φθ

α) + 2Φ , (2.44)
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and integrating by parts, one arrives at the usual superspace action (2.16). Notice that the

three pieces of the PCO Y
(0|4)
s.s. in (2.42) are essential to get the complete action since the

terms for the kinetic part and for the superpotential have completely different algebraic

structures. Notice also the unusual form of the kinetic term which has a non-chiral structure

as said above.

3 D=4 N=1 integral super Yang-Mills

Using the same strategy, we now study the SYM action in this framework. In section 3.1,

we review SYM in the superspace formulation (see [10] for further details). In section 3.2

we review the geometric (rheonomic) formulation of SYM and we discuss the equations of

motion. In section 3.3, we prove that both the component action and the superspace action

can be retrieved from the same supermanifold action by changing the PCO; the same PCO

given in (2.42) produces the superspace action.

3.1 SYM superspace action

It is convenient to adopt again a Weyl/anti-Weyl notation in order to describe the super-

space action in its most common formulation [10]. The gauge field is identified with the

(1|0)-superconnection

A(1|0) = Aαα̇V
αα̇ +Aαψ

α +Aα̇ψ̄
α̇ , (3.1)

and the field strength is

F = dA(1|0) +A(1|0) ∧A(1|0) (3.2)

= Fαα̇ββ̇V
αα̇ ∧ V ββ̇ + Fαα̇βV

αα̇ ∧ ψβ + Fαα̇β̇V
αα̇ ∧ ψ̄β̇

+ Fαβψ
α ∧ ψβ + Fαβ̇ψ

α ∧ ψ̄β̇ + Fα̇β̇ψ̄
α̇ ∧ ψ̄β̇ .

The superfield A(1|0) contains several independent components exceeding the physical ones.

Therefore, to reduce that number one needs additional constraints. It is customary to set

all spinorial field strengths to zero

Fαβ = 0 , Fαβ̇ = 0 , Fα̇β̇ = 0 . (3.3)

Consequently, the Bianchi identities dF + A(1|0) ∧ F = 0 imply some constraints on the

remaining field strengths which can be easily solved.

The parametrizations of the curvatures are

F = F+
αβ(V

2
+)

αβ + F−

α̇β̇
(V 2

−)
α̇β̇ + 2iW α̇(V ψ)α̇ + 2iWα(V ψ̄)α (3.4)

∇Wα = V ββ̇∇ββ̇Wα − (F+ψ)α +D ǫαβψ
β ,

∇W α̇ = V ββ̇∇ββ̇W α̇ − (F−ψ̄)α̇ −D ǫα̇β̇ψ̄
β̇ ,

∇D = V αα̇∇αα̇D − ψ̄α̇∇αα̇W
α − ψα∇αα̇W

α̇

where (F+ψ)α = F+
αβψ

β , (F−ψ̄)α̇ = F−

α̇β̇
ψ̄β̇ , Wα = ǫαβWβ and W̄ α̇ = ǫα̇β̇W̄β̇ . The

real scalar field D is an auxiliary field needed to close the algebra off-shell. Notice that
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setting D = 0, the last line implies the Dirac equations for Wα and W̄α̇: ∂αα̇W̄
α̇ = 0 and

∂αα̇W
α = 0.

The Bianchi identities for the curvatures F , dWα, dW̄α̇, dD together with their

parametrization (3.4) yield the constraints

F+
αβ = D(αWβ) , Dα̇W

β = 0 , D = DαW
α , (3.5)

F−

α̇β̇
= D(α̇W β̇) , DαW

β̇
= 0 , D = Dα̇W

α̇
,

and

DρF
−

α̇β̇
= −2i ∂ρ(α̇W β̇) , Dρ̇F

−

α̇β̇
= −2i ǫρ̇(α̇∂β̇)ρW

ρ ,

Dρ̇F
+
αβ = −2i ∂ρ̇(αWβ) , DρF

+
αβ = −2i ǫρ(α∂β)ρ̇W

ρ̇
, (3.6)

The latter can be verified by using (3.5) together with the algebra of superderivatives and

with the Schouten identities ǫραǫ
τσ = (δταδ

σ
ρ − δτρδ

σ
α) and ǫρ̇α̇ǫ

τ̇ σ̇ = (δτ̇α̇δ
σ̇
ρ̇ − δτ̇ρ̇δ

σ̇
α̇).

The second equation of the first line of (3.5) implies that the superfield Wα is chiral

and therefore can be decomposed as follows

Wα = λα + (fαβ + ǫαβD̂)θβ +
1

2
∂αα̇λ

α̇
θ2 (3.7)

where λα(x), λα̇(x) are the Weyl/anti-Weyl components of the gaugino, fαβ(x), fα̇β̇(x) are

the self-dual and anti-self dual part of the Maxwell tensor and D̂ is the real auxiliary field

(the first component of D = D̂(x) +O(θ)).

In terms of these fields the superspace action can be written as

S =

∫

[d4xd2θ]WαWα +

∫

[d4xd2θ̄]W̄α̇W̄
α̇ (3.8)

separating the chiral and the antichiral part. Again, as in the WZ case, we can rewrite the

action as an integral on the full superspace (non-chiral integral) as follows

S =

∫

[d4xd2θd2θ̄]
(

WαWαθ̄
2 + W̄α̇W̄

α̇θ2
)

(3.9)

where the powers of θ and θ̄ are needed to reproduce the correct action. The last equa-

tion (3.9) will be useful for the comparison with the supermanifold approach.

3.2 Geometric SYM action

Following the method described in the book [12–14], based on scaling dimensions of the

fields, form degree, Lorentz invariance and gauge invariance, the geometric (rheonomic)

– 11 –



J
H
E
P
0
5
(
2
0
1
8
)
0
4
0

Lagrangian for N=1 super Yang-Mills is found to be

L(4|0) = Tr(FF+
αβ)∧(V

2
+)

αβ +Tr(FF−

α̇β̇
)∧(V

2
−)

α̇β̇

− Tr

(

F+
αβF

+αβ + F−

α̇β̇
F−α̇β̇ +

1

2
D2

)

(V 4)

−
1

2
Tr(W̄α̇∇Wα +∇W̄α̇Wα)∧(V

3)α̇α

− 4i
(

Tr(F+
αβW̄σ̇)(V

3)ασ̇∧ψ
β − Tr(F−

α̇β̇
W̄ β̇)(V 3ψ)α̇

− Tr(F+
αβW

β)(V 3ψ̄)α +Tr(F−

α̇β̇
Wσ)(V

3)α̇σ∧ψ̄
β̇
)

+

+ 2i
(

Tr(FW̄α̇)∧(V ψ)α̇ +Tr(FWα)∧(V ψ̄)α
)

+ 2
(

Tr(WαWβ)ǫ
αβ(ψ̄V 2

−ψ̄) + Tr(W̄α̇W̄β̇)ǫ
α̇β̇(ψV 2

+ψ)
)

(3.10)

The Lagrangian is closed, by using the parametrization of curvatures (3.4) and the alge-

braic equation for F+
αβ and for F−

α̇β̇
. The closure of L(4|0) implies also the supersymmetry

invariance of the action since ℓǫL(4|0) = dιǫL(4|0).

The first three lines contain those terms which reduce to the component action by

using the simplest PCO

Y
(0|4)
s.t. = θ2θ̄2δ2(ψ)δ2(ψ̄) . (3.11)

The action is

S =

∫

M(4|4)

L(4|0)(A,F±,W, W̄ ) ∧ Y
(0|4)
s.t. . (3.12)

The Dirac delta’s for ψ and ψ̄ set the last four lines to zero, whereas the factor θ2θ̄2 extracts

the lowest components of the superfields F ,Wα and W̄α̇. These coincide with the curvature

of the gauge field (after using the algebraic equations of motion for F+
αβ , F

−

α̇β̇
) and with the

gauginos, respectively.

3.3 SYM action on the supermanifold M(4|4)

The way to get the superspace action is to consider the following supermanifold integral

SSYM =

∫

M(4|4)

L(4|0) ∧ Y
(0|4)
s.s. (3.13)

where the integral is extended to the full supermanifold M(4|4). Now, in order to reproduce

the superspace action, we use the real PCO discussed in section 2.3 (see also section 5.1

for the computational details).

Y
(0|4) =

(

− 4(θV ῑ) ∧ (θ̄V ι) + θ2(ιV ∧ V ι) + θ̄2(ῑV ∧ V ῑ)
)

δ4(ψ) (3.14)

The last two terms in the Lagrangian (3.10) can be rewritten as follows

2

∫

(

Tr(WαWβ)ǫ
αβ(ψ̄V 2

−ψ̄) + Tr(W̄α̇W̄β̇)ǫ
α̇β̇(ψV 2

+ψ)
)

∧ Y
(0|4) = (3.15)

=

∫

(

WρW
ρω(4|2)θ̄2δ2(ψ̄) + h.c.

)

=

∫

[d4xd2θ]WαWα +

∫

[d4xd2θ̄]W α̇W
α̇

– 12 –
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where ω(4|2) = V 4δ2(ψ) is the chiral volume form discussed in section 5.3. The last two

integrals are computed with respect to the chiral superspaces (x, θ) and (x, θ̄). The final

answer coincides with the usual superspace Lagrangian. Notice that there is no other con-

tribution from the complicated action (3.10) because of the power of V ’s and the derivatives

of delta functions.

4 D=4 N=2 integral SYM

4.1 N=2 vector superfields

To discuss the N=2 case, we consider the simplest case, namely the N=2 vector multi-

plet. This contains 4 ⊕ 4 on-shell degrees of freedom. The superspace is described by the

coordinates (xa, θαA, θ̄
α̇
A) with A = 1, 2.

These degrees of freedom are easily understood in terms of N=1 superfields: one chiral

superfield Φ and one real superfield V (better expressed in terms of the chiral superfield

Wα). The off-shell degrees of freedom are 3 bosonic d.o.f. for the gauge field (with one

gauge degree of freedom), 1 d.o.f. for the auxiliary field D, a complex scalar φ and the

complex auxiliary field F ; on the other side, there are 8 fermions for the N = 2 gaugino.

We define a N=2 chiral superfield as a complex scalar superfield Ψ constrained by the

conditions

D̄α̇,AΨ = 0 , A = 1, 2 (4.1)

where Dα̇A is the superderivative with the algebra {DA
α , D

B
β } = 0 and {DA

α , D̄Bβ̇} =

2iδABγ
a
αβ̇

∂a. Solving the constraints, we get the expression

Ψ(x, θA) = Φ(x, θ1) +Wα(x, θ1)θ
α
2 + F (x, θ1) (θ2)

2 (4.2)

where F is related to the complex conjugate of Φ and of Wα (see [15, 16]).

In (4.2), we expanded the superfield Ψ in terms of θα2 . The components Φ,Wα, F are

superfields depending on (xa, θα1 ). The action for the vector superfield Ψ reads

S = Im
1

2

∫

[d4xd2θ1d
2θ2] Ψ

2 (4.3)

Performing the Berezin integral over θa2 produces the action of N=1 superfield Wα coupled

to a chiral superfield Φ.

Let us move to the rheonomic action. We should consider the rheonomic parametriza-

tion. The first equation is

dΨ = ∂aΨV a + λA
αψ

α
A , (4.4)

where we have denoted by λA
α = DA

αΨ the gauginos. In the same way we define the Maxwell

tensor F+, F− and the scalar Φ = A+ iB

F+
αβ = ǫABD

A
(αλ

B
β) , F

−

α̇β̇ = ǫABD
(α̇
A λ

β̇)
B , (4.5)

Φ = ǫABǫ
αβDA

αλ
B
β , Φ = ǫABǫα̇β̇D

α̇
Aλ

β̇
B
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In terms of those fields, the rheonomic action is given in the book [12–14] (in eq. II.9.34).

Here we reproduce only the relevant terms

L
(4|0)
rheo = · · ·+

i

4
(A2 −B2)ǫABǫCDψAψBψCγ5ψD +

1

4
ABǫABǫCDψAψBψCψD + . . . (4.6)

where the ellipsis stand for other terms of the action which do not contribute. The super-

fields A and B are the real and imaginary part of the chiral superfield Φ. We selected those

terms of the action which contain four gravitinos ψA. All other terms contain at least one

power of V a.

Now we study the PCO. As discussed in the above sections, we have the simplest PCO

Y
(0|8) = θ8δ8(ψ) (4.7)

where

θ8 = (ǫACǫBDǫαβǫγδθ
α
Aθ

β
Bθ

γ
Cθ

δ
D)(ǫ

α̇β̇ǫγ̇δ̇ǫACǫBDθ̄
A
α̇ θ̄

B
β̇
θ̄Cγ̇ θ̄

D
δ̇
) (4.8)

and equivalently for δ8(ψ). The PCO is closed and not exact. Computing the action

S =

∫

M(4|8)

L
(4|0)
rheo ∧ Y

(0|8) (4.9)

we get the component action for N = 2 SYM in d = 4. Since the Lagrangian L
(4|0)
rheo

is closed we can change the PCO at will (in the same cohomology class). In particular,

we can choose a supersymmetric PCO. For this we notice that we can construct such an

operator by multiplying two PCO’s of the N = 1 type given in section 5.3:

Y
(0|4)
A = V a ∧ V b(θ̄2AιAγabιA + h.c.)δ4(ψA) , A = 1, 2 (4.10)

where ιAα = ∂/∂ψαA and we obtain

Y
(0|8) = V a ∧ V b(θ̄21ι1γabι1 + h.c.) ∧ V c ∧ V d(θ̄22ι2γcdι2 + h.c.)δ8(ψ) (4.11)

= V 4ǫabcd
(

θ̄4ι1γabι1ι2γcdι2 + h.c.
)

δ8(ψ)

which is closed and not exact. Notice that closure is easily verified by using the MC

equations dV a = ψ̄AγaψA. The presence of the factor θ̄4 is essential for the non-exactness.

The other terms are needed to have a real PCO.

The main issue is the overall factor V 4. This is due to the two factors V a in the factor-

ized PCO’s Y
(0|4)
A and to their anti-symmetrization. That factor is essential to provide the

bosonic part of the volume integral form. On the other side, the four derivatives ιAα must

act on four gravitino terms in the action. Thus the four-gravitino terms of the action (4.9)

are selected, giving a term proportional to the scalar (A+ iB)2 = (A2−B2)+2iAB. In ad-

dition, the PCO selects the chiral part of the superfields leading to the correct action (4.3).

5 The geometry of D=4 N=1 supermanifolds

The integral forms are the crucial ingredients to define a geometric integration theory for su-

permanifolds inheriting all the good properties of integration theory in conventional (purely
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bosonic) geometry. In this section we briefly describe the notations and the most relevant

definitions (see [5] and also [1–3, 7]). We introduce the complexes of superforms, of integral

forms and of pseudo-forms. These complexes are represented in the figure 1 below. Horizon-

tally the operator is the usual odd differential, vertically (up and down) the picture changing

operators (PCO’s) map cohomology classes into cohomology classes. The PCO’s are not

coboundary operators, so figure 1 does not represent a double complex. The complexes are

filtered by two numbers (the form number and the picture number) as described below.

The present section is organized as follows: 1) we first review some of the properties

of the complex of superforms and the differential operators acting on it, 2) we discuss the

properties of forms under Lorentz and linear transformations, 3) we discuss the space of

superfields and of the volume forms, 4) we construct a few new cohomology classes needed

for applications, 5) we build the PCO of type Y (raising the picture number) with manifest

supersymmetry, 6) we check that by consistency the action of the PCO of type Z (lowering

the picture number) indeed maps cohomology into cohomology. In section 5.7 we rederive,

in the integral form framework, two well-known theorems for superspace field theories.

5.1 Flat D=4 N=1 integral superspace

Let us first discuss the D = 4 N = 1 supermanifold M(4|4). Locally it is described in terms

of the coordinates (xαα̇, θa, θ̄α̇ with α, α̇ = 1, 2) of the superspace R
(4|4). We recall that

xa = xαα̇γaαα̇ (a = 1 . . . 4, see appendix A for details on the relations between vectorial

and chiral notations). We will use the notation (4|4) to denote quantities in the real

representation, and the notations (4|2, 0) and (4|0, 2) for chiral (or anti-chiral) quantities.

Let us fix our conventions. We define the flat supervielbeins

V αα̇ = dxαα̇ + i(θαdθ̄α̇ + dθαθ̄α̇) , ψα = dθα , ψ̄α̇ = dθ̄α̇ , (5.1)

which satisfy

dV αα̇ = 2 iψα ∧ ψ̄α̇ , dψα = 0 , dψ̄α̇ = 0 . (5.2)

We also denote the derivatives as follows

∂αα̇ , Dα =
∂

∂θα
− iθ̄α̇∂αα̇ , D̄α̇ =

∂

∂θ̄α̇
− iθα∂αα̇ , (5.3)

with the commutation relations

{Dα, Dβ} = 0 , {D̄α̇, D̄β̇} = 0 , {Dα, D̄α̇} = −2i∂αα̇ , (5.4)

while ∂αα̇ commutes with the other differential operators. We introduce the contraction

operators

ιαα̇ = ι∂αα̇
, ια ≡ ιDα

= ι∂α − iθ̄α̇ιαα̇ , ῑα̇ = ιD̄α̇
= ῑ∂α̇ − iθαιαα̇ , (5.5)

where ι∂α ≡ ∂
∂ψα and ι∂α̇ = ∂

∂ψ̄α̇ . The following relations hold:

ιαα̇V
ββ̇ = δ β

α δ β̇
α̇ , ιαψ

β = δβα , ια̇ψ̄
β̇ = δ β̇

α̇ , (5.6)

ιαα̇ψ
β = ιαα̇ψ̄

β̇ = 0 , ιαV
ββ̇ = ιαψ̄

β̇ = 0 , ῑα̇V
ββ̇ = ῑα̇ψ

β = 0 ,
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Ω(0|0) d
−→ Ω(1|0) d

−→ Ω(2|0) d
−→ Ω(3|0) d

−→ Ω(4|0)

l l l l l

Ω(0|1) d
−→ Ω(1|1) d

−→ Ω(2|1) d
−→ Ω(3|0) d

−→ Ω(4|0)

l l l l l

Ω(0|2) d
−→ Ω(1|2) d

−→ Ω(2|2) d
−→ Ω(3|2) d

−→ Ω(4|2)

l l l l l

Ω(0|3) d
−→ Ω(1|3) d

−→ Ω(2|3) d
−→ Ω(3|3) d

−→ Ω(4|3)

l l l l l

Ω(0|4) d
−→ Ω(1|4) d

−→ Ω(2|4) d
−→ Ω(3|4) d

−→ Ω(4|4)

Figure 1. The complex of pseudoforms for the supermanifold M(4|4).

The contraction operator ιαα̇ is an odd differential operator, while ια and ῑα̇ are even.

Their (anti)commutation relations are all vanishing.

The first row in figure 1 is the complex of superforms and the last one is the complex

of integral forms (the pseudoforms of maximal picture). The differential d is the usual odd

differential. Along the vertical line (up and down), the picture changing operators (PCO’s)

act by increasing or decreasing the picture (i.e.the number of delta forms).

We denote by Ω the space of all pseudoforms. It is filtered by two integers numbers p

and q:

Ω =
⊕

p,q

Ω(p|q)
(

M(4|4)
)

(5.7)

where q denotes the picture number and p is the form number. The picture q ranges

between 0 ≤ q ≤ 4. The range of values for p depends on q. At picture zero (q = 0), we

have the space of superforms Ω(p|0). A generic element ω(p|0) is given by:

ω(p|0) =
∑

r,s,t,r+s+t=p

ω[a1...ar](α1...αs)(α̇1...α̇t)V
a1 . . . V arψα1 . . . ψαsψ̄α̇1 . . . ψ̄α̇t (5.8)

where the coefficients ω[a1...ar](α1...αs)(α̇1...α̇t)(x, θ, θ̄) are superfields. There is no upper

bound in the number of ψ’s and ψ̄’s, therefore p ≥ 0 for q = 0. However, it will be

seen that there are no nontrivial cohomology classes for p > 4. The total form number is

p = r + s+ t . (5.9)

At maximal picture we have the space of the integral forms Ω(p|4). A generic element

ω(p|4) is given by:

ω(p|4) =
∑

r

∑

β1β2

∑

γ1γ2

ω[a1...ar]V
a1 . . . V arδ(β1)(ψ1)δ(β2)(ψ2)δ(γ1)(ψ̄1̇)δ(γ2)(ψ̄2̇) (5.10)

where δ(β1)(ψ1) = (ι1)
β1δ(ψ1) = ∂β1

∂(ψ1)β1
δ(ψ1) denotes the β1− th derivative of δ(ψ1) with

respect to its argument (and analogously for the other terms in the monomial). The
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derivatives of the delta’s carry negative form degree and therefore the total form number

of ω(p|4) is

p = r − (β1 + β2 + γ1 + γ2) . (5.11)

Thus the complex of integral forms is bounded from above, but it is unbounded from

below. Notice that δ(ψ) and δ(ψ̄) carry zero form degree and that ψ1ι1δ(ψ
1) = −δ(ψ1)

(and analogously for the other terms).

For p > 4, Ω(p|4) = 0, but we can have any negative-degree integral form in the spaces

Ω(−p|4) with p > 0. It is important to notice that each space Ω(p|4) for any p is finitely

generated and that its dimension increases when the form degree decreases. This parallels

the case of superforms whose complex is also finitely generated with a dimension that

increases with higher ψ and ψ̄ powers. That is the basis for establishing the Hodge dual

correspondence between the two complexes

⋆ : Ω(p|0)(M) −→ Ω(4−p|4)(M) (5.12)

as discussed in [3] and [17].

Finally, we have the spaces of pseudoforms with 0 < q < 4. Each space Ω(p|q) is not

finitely generated and these complexes are unbounded from above and from below. Since

there are no nontrivial cohomology classes in Ω(p|q) with p > 4 and p < 0 (as discussed for

example in [18]), we restrict our analysis to the square box formed by the complexes Ω(p|q)

with 0 ≤ q ≤ 4 and 0 ≤ p ≤ 4. Note that even for pseudoforms there is a Hodge duality

operator

⋆ : Ω(p|q) −→ Ω(4−p|4−q) (5.13)

We consider now some operators. The odd differential d acts horizontally

d : Ω(p|q) −→ Ω(p+1|q) (5.14)

increasing the form degree and leaving unmodified the picture number. We have already

introduced the contraction operators ιa, ια, ια̇ and consequently the Lie derivatives La =

iad+ dia etc. The d−cohomology is well-defined in the present framework and we denote

by Hd(Ω
(p|q)) de Rham cohomology classes of (p|q) pseudoforms.

Following the discussion in [2, 7], we need also the Picture Changing Operators Y
(0|1)
k .

They act multiplicatively (using the graded wedge product of pseudoforms) on the spaces

Ω(p|q):

Y
(0|1)
k : Ω(p|q) −→ Ω(p|q+1) , (5.15)

with ω(p|q+1) = ω(p|q) ∧ Y
(0|1)
k . There are here four possible independent directions along

which Y
(0|1)
k can act, labelled by the index k. This means, for example, that Y

(0|1)
α is

proportional to δ(ψα), and Y
(0|1)
α̇ is proportional to δ(ψ̄α̇). We denote by Y

(0|4) the product

of four PCO’s along the four possibile independent directions. As discussed for example

in [5] and [18], the product of two delta’s is anticommuting (e.g. for δ(ψ1) ∧ δ(ψ̄2̇) =

−δ(ψ̄2̇) ∧ δ(ψ1)), guaranteeing that no singularity arises when multiplying two or more

PCO’s. Thus Y
(0|1)
1 ∧ Y

(0|1)
1 = 0, etc.
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As discussed in [2, 7], the PCO’s of type Y represent the Poincaré form dual to the

embedding of the reduced bosonic submanifold M(4|0) into the supermanifold M(4|4). They

are elements of the de Rham cohomology with the properties

dY
(0|1)
k = 0 , Y

(0|1)
k 6= dη

(−1|1)
k , δY

(0|1)
k = dΛ

(−1|1)
k (5.16)

The last equation means that any variation (under a diff.) of the PCO is d-exact. This

gives

dω(p|q+1) = d
[

ω(p|q) ∧ Y
(0|1)
k

]

= dω(p|q) ∧ Y
(0|1)
k (5.17)

which implies also that Y
(0|1)
k maps cohomology classes into cohomology classes:

Y
(0|1)
k : Hd(Ω

(p|q)) −→ Hd(Ω
(p|q+1)) (5.18)

The explicit form of Y
(0|1)
k is important in the applications and we will elaborate on it in

the forthcoming sections. In particular there are choices with manifest symmetries, playing

a crucial rôle in building manifestly supersymmetric actions.

To decrease the picture, we use a different PCO operator denoted by Z
(0|−1)
k , acting

as a double differential operator on the space of pseudoforms

Z
(0|−1)
k : Ω(p|q) −→ Ω(p|q−1) (5.19)

These operators act along different directions k by removing the corresponding delta forms

of type δ(ψα) or δ(ψ̄α̇). A convenient way to represent Z
(0|−1)
k is given by

Z
(0|−1)
k = [d,Θ(ιk)] = δ(ιk)ℓk (5.20)

(see for examples again [7]) where Θ(ιk) is the Heaviside step function and ιk is the con-

traction along the ψα or ψ̄α̇. Notice that Θ(ιk) is not a compact-support distribution and

therefore it has to be treated carefully. Nonetheless the explicit form of (5.20) shows that

Z
(0|−1)
k is expressed only in terms of compact-support distributions. ℓk is the Lie derivative

along one of the vector fields Dα or D̄α̇. The form (5.20) is computationally convenient

when it acts on closed forms as will be seen later. In addition, we also notice that the

formula (5.20) shows that the operator Z
(0|−1)
k is “closed” but it fails to be “exact” since

Θ(ιk) is not a compact-support distribution.

5.2 Lorentz transformations on Ω(p|q)

Before discussing in detail some of the relevant spaces Ω(p|q) , we would like to clarify how

the Lorentz symmetry is implemented in the complex of pseudoforms. This is a crucial

point in order to understand how the covariance is recovered at any picture number.

Let us consider an infinitesimal Lorentz transformation Λa
b of SO(3, 1). It acts on the

coordinates xa, θα,θ̄α̇ linearly according to vector and spinor representations

δxa = Λa
bx

b , δθα =
1

4
Λab(γ

ab)αβθ
β , δθ̄α̇ =

1

4
Λab(γ

ab)α̇
β̇
θ̄β̇ . (5.21)
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In the same way, the (1|0)-superforms (V a, ψα, ψ̄α̇) transform, respectively, in the vector

and in the spinor representations. Thus, all forms belonging to the complex with zero pic-

ture, namely Ω(p|0), transform in the tensorial representations of each single monomial. For

example, given ω[ab](α1...αn)V
aV bψα1 . . . ψαn , the components ω[ab](α1...αn)(x, θ) transform

in the anti-symmetrized product of the vector representation tensored with n-symmetrized

spinor representation.

If we consider the complex of integral forms Ω(p|4), and we perform an infinitesimal

Lorentz transformation, we have to use distributional relations as for example

δ(aψ1 + bψ2)δ(cψ1 + dψ2) = det

(

a b

c d

)−1

δ(ψ1)δ(ψ2) , (5.22)

implying that the product of δ(ψ1)δ(ψ2) transforms as the inverse of a density. Therefore

each monomial of the complex Ω(p|4) transforms according to a tensorial representation

of the Lorentz group. For example, a finite variation of an integral top form ω(4|4) =

f(x, θ)V 4δ2(ψ)δ2(ψ̄) gives

ω(4|4) −→
det(Λa

b)

det(Λα
β) det(Λ̄

α̇
β̇
)
f
(

Λa
bx

a,Λα
βθ

β, Λ̄α̇
β̇
θ̄β̇

)

V 4δ2(ψ)δ2(ψ̄) (5.23)

where Λα
β = 1

4Λab(γ
ab)αβ and Λ̄α̇

β̇
= 1

4Λab(γ
ab)α̇

β̇
. Since Λ is a Lorentz transformation, i.e.

Λ ∈ SO(3, 1), all determinants appearing in the front factor are equal to one and the top

form is invariant if

f
(

Λa
bx

a,Λα
βθ

β , Λ̄α̇
β̇
θ̄β̇

)

= f(x, θ, θ̄) (5.24)

Let us now consider the complexes of pseudoforms, for example at picture one: Ω(p|1)

for any p ∈ Z. As seen above, it is unbounded from above and from below and each

space is infinite dimensional. For a single Dirac delta function δ(ψ1), we cannot use the

distributional identity (5.22), but we observe that

δ(ψ1) −→ δ
(

ψ1 +
1

4
Λab(γ

ab)1βψ
β
)

(5.25)

=

(

1−
1

4
Λab(γ

ab)11

)

δ(ψ1) +
1

4
Λab(γ

ab)12ψ
2δ(1)(ψ1) +O(Λ2)

where δ(1)(ψ1) is the first derivative of δ(ψ
1) and we have neglected the infinitesimal terms.

The first term is obtained by using the rule ψ1δ(1)(ψ1) = −δ(ψ1) and the second term comes

from the Taylor expansion of the delta function. Then, in order to implement the Lorentz

symmetry in the space of pseudoforms Ω(p|1), all the components in the expansion of a

generic superform in Ω(p|1) are needed, and span an infinite dimensional space.

5.3 Superfields, volume forms and chiral volume forms

A superfield Φ is a (0|0)-superform and it has the conventional superfield properties. Its

supersymmetry transformations are deduced from its differential

δΦ = ℓǫΦ = ιǫdΦ . (5.26)

where ǫ is the constant supersymmetry parameter.
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An important ingredient for the subsequent sections are the volume forms, necessary to

build integral forms and therefore integrable quantities on the entire supermanifold without

referring to a specific coordinate system. As in general relativity, where the use of differ-

ential forms is a powerful tool to construct diff. invariant objects, here the construction of

integral forms is needed to have superdiff. invariant objects, that are in turn also invariant

under rigid supersymmetry. For this reason, we provide here some remarks concerning the

real and the chiral volume forms.

The top integral forms of Ω(4|4) are represented by

ω(4|4) = Φ(x, θ, θ̄)ǫabcdV
a ∧ V b ∧ V c ∧ V dǫαβδ(ψ

a)δ(ψβ)ǫα̇β̇δ(ψ
α̇)δ(ψβ̇) (5.27)

Rewriting the supervielbein EA = (V a, ψα, ψ̄α̇) on a curved basis:

V a = Ea
mdxm + Ea

µdθ
µ + Ea

µ̇dθ̄
µ̇

ψa = Ea
mdxm + Ea

µdθ
µ + Ea

µ̇dθ̄
µ̇

ψ̄α̇ = Eα̇
mdxm + Eα̇

µdθ
µ + Eα̇

µ̇dθ̄
µ̇ (5.28)

we find also:

ω(4|4) = Φ(x, θ, θ̄)V 4δ4(ψ) ≡ ǫabcdV
a ∧ V b ∧ V c ∧ V dǫαβδ(ψ

a)δ(ψ)ǫα̇β̇δ(ψ
α̇)δ(ψβ̇)

= Φ(x, θ, θ̄)Sdet(E)d4xδ4(dθ) (5.29)

This (4|4) form is trivially closed (being a top integral form), and not exact if

Φ(x, θ, θ̄)Sdet(E) 6= constant. Its supersymmetry variation is

δω(4|4) = ℓǫω
(4|4) = d

(

ιǫω
(4|4)

)

(5.30)

Notice that if ΦSdet(E) = 1, the top form ω(4|4) cannot be regarded as the true volume

form. Indeed

ω̃(4|4) ≡ V 4δ4(ψ) = ǫabcdV
a ∧ V b ∧ V c ∧ V dǫαβδ(ψ

α)δ(ψβ)ǫα̇β̇δ(ψ̄
α̇)δ(ψ̄β̇) . (5.31)

is closed, but it is also exact as can be shown using the relation

ǫα̇β̇δ(ψ̄
α̇)δ(ψ̄β̇) = d

[

θ̄α̇ῑα̇δ
2(ψ̄)

]

(5.32)

to write ω̃(4|4) as

ω̃(4|4) = d
[

V 4δ2(ψ) ∧ θ̄α̇ῑα̇δ
2(ψ̄)

]

. (5.33)

so that ∫

M(4|4)

ω̃(4|4) = 0 (5.34)

by Stokes theorem.1 Nevertheless the form ω̃(4|4) can be used to construct integral forms

that can be integrated on the entire supermanifold. Given a superfield Φ(x, θ, θ̄) we have:
∫

M(4|4)

Φ(x, θ, θ̄)ω̃(4|4) =

∫

M(4)

d4x D2D̄2Φ
∣

∣

θ=θ̄=0
(5.35)

1For notations and the integration theory of superfields and integral forms we refer mainly to [5, 7].

Stokes theorem for integral forms integration is discussed in reference [5].
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which in general does not vanish if Φ is not constant.

We can construct the chiral volume forms as follows. Given ω(4|2) = V 4δ2(ψ) , ω(4|2̄) =

V 4δ2(ψ̄) and the PCO’s Y(0|2) = θ2δ2(ψ) and Y
(0|2)

= θ̄2δ2(ψ̄), we have

ω
(4|4)
C = V 4δ2(ψ) ∧ Y

(0|2)
, ω

(4|4)
C = Y

(0|2) ∧ V 4δ2(ψ̄) , (5.36)

They are conjugated to each other. They are closed, and in fact are exact. This can be

easily seen by using again the equation (5.32). The differential of V a produces one ψα —

annihilated by the contraction ια — and one ψ̄α̇ which however is not cancelled by the

Dirac deltas δ2(ψ̄) which are present in ω(4|4), but not in ω(4|2). Then, we have
∫

M(4|4)

Φ(x, θ, θ̄)
(

V 4δ2(ψ) ∧ Y
(0|2)

+ Y
(0|2) ∧ V 4δ2(ψ̄)

)

[

d4xd2θd2θ̄d2ψd2ψ̄
]

=

=

∫

M(4|2,0)

Φ(x, θ, 0)V 4δ2(ψ)
[

d4xd2θd2ψ
]

+

∫

M(4|0,2)

Φ(x, 0, θ̄)V 4δ2(ψ̄)
[

d4xd2θ̄d2ψ̄
]

=

=

∫

M(4)

d4x D2Φ
∣

∣

θ=0
+

∫

M(4)

d4x D̄2Φ
∣

∣

θ̄=0
(5.37)

The result is a sum of a chiral and an anti-chiral term integrated over the reduced bosonic

submanifold of the supermanifold.

5.4 Chevalley-Eilenberg cohomology

The next step is to analyze some other interesting sectors of the cohomology. In particular

those which are relevant for Wess-Zumino and super-Yang-Mills actions. It turns out

that the crucial ingredients for the forthcoming sections are elements of the cohomology

Hd(Ω
(4|0)) with two vectorial vielbeins and two spinorial vielbeins, i.e. with the generic form:

ω(4|0) ∼ θ̄θ ψ̄ ∧ ψ ∧ V ∧ V + θ2ψ̄2 ∧ V ∧ V + h.c. (5.38)

These differential forms are dual to the PCO’s listed in (5.52), in the sense that:

ω(4|0) ∧ Y
(0|4) ∼ θ̄2θ2V 4δ4(ψ) . (5.39)

The factor θ̄2θ2 appearing in the r.h.s. is crucial in order to have a closed, but not exact,

integral form.

Now, in order to find the appropriate expression for ω(4|0) we list the possible Lorentz

invariant forms with two θ’s and two ψ’s:

ω1 =
1

2

(

θαθ̄α̇ψβψ̄β̇ − θβ θ̄β̇ψαψ̄α̇

)

V αα̇ ∧ V ββ̇ = (θV θ̄)(ψV ψ̄) , (5.40)

ω2 =
1

2

(

θαθ̄β̇ψβψ̄α̇ − θβ θ̄α̇ψαψ̄β̇

)

V αα̇ ∧ V ββ̇ = (θV ψ̄)(ψV θ̄) ,

ω3 =
1

2
(θγψ

γ)
(

θ̄α̇ψ̄β̇ + θ̄β̇ψ̄α̇

)

ǫαβV
αα̇ ∧ V ββ̇ = (θ · ψ)(θ̄V 2

−ψ̄) ,

ω4 =
1

2
(θ̄γ̇ψ̄

γ̇) (θαψβ + θβψα) ǫα̇β̇ V
αα̇ ∧ V ββ̇ = (θ̄ · ψ̄)(θV 2

+ψ) ,

ω5 = θγǫγρθ
ρ(ψ̄α̇ψ̄β̇)ǫαβV

αα̇ ∧ V ββ̇ = θ2(ψ̄V 2
−ψ̄)

ω6 = θ̄γ̇ǫγ̇ρ̇θ̄
ρ̇(ψαψβ)ǫα̇β̇V

αα̇ ∧ V ββ̇ = θ̄2(ψV 2
+ψ) ,
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We have defined:

(θV θ̄) = θαV ββ̇ θ̄α̇ǫαβǫβ̇α̇ , (ψV ψ̄) = ψαV ββ̇ψ̄α̇ǫαβǫβ̇α̇ , (5.41)

(θV ψ̄) = θαV ββ̇ψ̄α̇ǫαβǫβ̇α̇ , (ψV θ̄) = ψαV ββ̇ θ̄α̇ǫαβǫβ̇α̇ ,

(θ · ψ) = θαψβǫαβ , (θ̄V 2
−ψ̄) = θ̄α̇(V 2

−)
β̇γ̇ψ̄δ̇ǫα̇β̇ǫγ̇δ̇ ,

(θ̄ · ψ̄) = θ̄α̇ψ̄β̇ǫα̇β̇ , (θV 2
+ψ) = θα(V 2

+)
βγψδǫαβǫγδ ,

θ2 = θαθβǫαβ , θ̄2 = θ̄α̇θ̄β̇ǫα̇β̇ ,

(ψ̄V 2
−ψ̄) = ψ̄α̇(V 2

−)
β̇γ̇ψ̄δ̇ǫα̇β̇ǫγ̇δ̇ , (ψV 2

+ψ) = ψα(V 2
+)

βγψδǫαβǫγδ

whose differentials are

d(θV θ̄) = (ψV θ̄) + (θV ψ̄)− 2i(θ · ψ)(ψ̄ · θ̄) (5.42)

d(θV ψ̄) = (ψV ψ̄) , d(ψV θ̄) = −(ψV ψ̄)

d(ψV ψ̄) = 0 , d(ψV 2
+ψ) = 0 ,

d(ψ̄V 2
−ψ̄) = 0 , d(θ · ψ) = 0 , d(θ̄ · ψ̄) = 0 ,

The linear combination

ω(4|0) = aω1 + b ω2 + c ω3 + dω4 + e ω5 + f ω6 (5.43)

is closed if a = c−d, e = f and b = 1
2(c+d)+2e. If, in addition, we require the hermiticity

of ω, one finds c = d and therefore a = 0. Then, we find that the combination

ω(4|0) = c(ω2 + ω3 + ω4) + e(2ω2 + ω5 + ω6) , (5.44)

is closed, real, and depends upon the two parameters c and e. Furthermore, we have to

check whether this expression is exact. We observe that there is only one real candidate

(with r a real parameter):

γ(3|0) = r
(

θ2(ψ̄V 2
−θ̄) + θ̄2(ψV 2

+θ)
)

. (5.45)

such that dγ(3|0) has a structure similar to the ones listed in (5.40). Computing dγ(3|0) and

adding it to ω(4|0), we finally end up with the expression

ω(4|0) = (c+ 2e)ω2 + (c− 2r)(ω3 + ω4) + (e+ r)(ω5 + ω6) (5.46)

and we can use the parameter r to set one of the two combinations to zero. If we choose

c = 2r, we see that the full expression is proportional to (c + 2e). In the same way by

choosing r = −e, we obtain again an expression which is proportional to the combination

(c+ 2e). Therefore, after subtracting the exact piece, we get a single representative in the

cohomology class.

Notice that ω(4|0) is not manifestly supersymmetric since it depends upon θ and θ̄. This

is the reason why this cohomology was never used. However, its supersymmetry variation

is d-exact.
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5.5 The PCO’s Y
(0|1)

The easiest example of PCO that we can build is the one that projects the theory on the

bosonic submanifold by switching off the θ coordinates and their differentials. For each

coordinate we have the following four PCO’s acting along the θ-directions

Y
(0|1)
1 = θ1δ(ψ1) , Y

(0|1)
2 = θ2δ(ψ2) , Y

(0|1)

1̇
= θ̄1̇δ(ψ̄1̇) , Y

(0|1)

2̇
= θ̄2̇δ(ψ̄2̇) . (5.47)

Each of them increases by one the picture of the form and projects to zero the corresponding

coordinate. Notice that they have a non-trivial kernel, for example the kernel Y
(0|1)
1 consists

of linear functions of θ1, ψ1 and δ(ψ1) (due to the anticommutation properties of the

deltas). All PCO’s in (5.47) are closed and not exact. They are invariant under partial

supersymmetry (for example Y
(0|1)
1 is invariant under the supersymmetries along θ2, θ̄1̇ and

θ̄2̇). As already noticed, its supersymmetry variation is exact. The wedge product of all

four PCO’s produces a single operator (up to an overall sign) which we denote by

Y
(0|4) = θ2δ2(ψ)θ̄2δ2(ψ̄) (5.48)

This PCO is trivially closed, it is not exact and it is not manifestly supersymmetric.

Nonetheless, its supersymmetry transformation is d-exact. Therefore, given a closed su-

perform L(4|0), we can write an action

S =

∫

M(4|4)

L(4|0) ∧ Y
(0|4) (5.49)

which reduces to the component action (which means the integral of L(4|0) computed at

θ = θ̄ = 0 and ψ = ψ̄ = 0 over M(4)).

The closure of L(4|0) guarantees the supersymmetry invariance of the action up to

boundary terms. A milder condition can be imposed on L(4|0) in order for S to be super-

symmetric invariant:

ιǫdL
(4|0) = dξ (5.50)

i.e. the differential along the supersymmetry directions must be exact. The computation

of the integral in (5.49) along the θ’s and the ψ’s leads to

S =

∫

M(4)

L(4|0)
∣

∣

∣

θ=0,ψ=0
, (5.51)

which is the component action and it is supersymmetric invariant if the supersymmetry

variation of the Lagrangian L(4|0)
∣

∣

θ=0,ψ=0
is an exact differential.

To rewrite the action in a manifestly supersymmetric way, we need another PCO which

is manifestly supersymmetric. It should have picture number equal to 4 and zero form

degree. To get from the Lagrangian L(4|0) a top integral form, the PCO should be closed,

not exact, and possibly invariant under supersymmetry. For that purpose, we consider the
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following six combinations

Y1 = V αα̇ ∧ V ββ̇
(

θαθ̄α̇ιβ ῑβ̇ − θβ θ̄β̇ιαῑα̇

)

δ4(ψ) ,

Y2 = V αα̇ ∧ V ββ̇
(

θαθ̄β̇ιβ ῑα̇ − θβ θ̄α̇ιαῑβ̇

)

δ4(ψ) ,

Y3 = V αα̇ ∧ V ββ̇ǫαβ

(

θ̄α̇ῑβ̇ + θ̄β̇ ῑα̇

)

θγιγδ
4(ψ) ,

Y4 = V αα̇ ∧ V ββ̇ǫα̇β̇ (θαιβ + θβια) θ̄
γ̇ιγ̇δ

4(ψ) ,

Y5 = V αα̇ ∧ V ββ̇ǫαβ(θ̄γ̇ θ̄
γ̇) ῑα̇ῑβ̇δ

4(ψ) ,

Y6 = V αα̇ ∧ V ββ̇ǫα̇β̇(θγθ
γ) ιαιβδ

4(ψ) . (5.52)

The six possible forms reproduce the terms appearing in the Lagrangian (2.28) (see the

ψψ̄WW̄V V terms in section 2).

They are indeed the terms needed to reproduce the full superspace action. The two

contraction operators ιῑ appearing in the operators act on the Lagrangian by selecting

the terms proportional to the combination ψ̄ψ. In addition, the factors θθ̄ are needed to

prevent the PCO being exact.

By adjusting the six constants ai we can make the combination

Y
(0|4) =

6
∑

i=1

aiYi , (5.53)

closed. Let us first impose the hermiticity by setting a3 = a4 and a5 = a6. This reduces

the structures to the four combinations Y1, Y2, Y3 + Y4, Y5 + Y6. Imposing the closure, we

get a1 = 0, a2 = −2(a3 + a5). Therefore, there are two independent structures which are

closed. However, there is a combination which is also exact.

This can be easily derived by computing the variation of

η(−1|4) =
(

θ2θ̄ · ῑ(ιV 2
+ι) + θ̄2θ · ι(ῑV 2

−ῑ)
)

δ4(ψ) . (5.54)

Therefore, to select a representative of the cohomology class we fix one of the coefficients,

avoiding the exact combination. For example we can set a3 = 0 to simplify the structure

as much as possible:

Y
(0|4) =

(

− 4(θV ῑ) ∧ (θ̄V ι) + θ2(ιV ∧ V ι) + θ̄2(ῑV ∧ V ῑ)
)

δ4(ψ) (5.55)

Notice that there is a single non-chiral and two chiral and anti-chiral terms. This already

suggests how the three terms of the action in superspace emerge from the geometrical

action.

5.6 The PCO’s Z
(0|−1)

We have seen that the complexes of pseudoforms are connected by the picture changing

operators. In the previous section we also observed that there are some non-trivial co-

homology classes needed for physics applications. We check here that these cohomology

classes are related by the PCO’s.
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Let us first analyze the action of Z(0|−1) on the chiral forms.

They are supersymmetric invariant and we can apply the PCO’s Zα = [d,Θ(ια)] to get

the image in Ω(4|0). Since this computation is very instructive we report it here in some

detail. We have to act with the PCO’s as follows:

Z1

(

V 4δ2(ψ)
)

= [d,Θ(ι1)]V
4δ2(ψ) = d

[

Θ(ι1)V
4δ2(ψ)

]

(5.56)

= d

[

V 4

ψ1
δ(ψ2)

]

=
(

ψ̄1̇V 12̇V 21̇V 22̇ − ψ̄2̇V 11̇V 21̇V 22̇
)

δ(ψ2) . (5.57)

Notice that the result does not contain inverse powers2 of ψ’s. In the same way, we have

Z2 = [d,Θ(ι2)] and

Z2

(

ψ̄1̇V 12̇V 21̇V 22̇ − ψ̄2̇V 11̇V 21̇V 22̇
)

δ(ψ2) (5.58)

= d

[

1

ψ2

(

ψ̄1̇V 12̇V 21̇V 22̇ − ψ̄2̇V 11̇V 21̇V 22̇
)

]

(5.59)

=
[

ψ̄1̇ψ̄2̇(V 12̇V 21̇ + V 11̇V 22̇)− (ψ̄1̇)2V 12̇V 22̇ − (ψ̄2̇)2V 11̇V 21̇
]

(5.60)

= V αα̇ ∧ V ββ̇ǫαβψ̄α̇ψ̄β̇ . (5.61)

(with ψ̄α̇ = ǫα̇β̇ψ̄
β̇). This form is closed, supersymmetric invariant and polynomial in

V a, ψa and ψ̄α̇ (this means that it is indeed a superform). Notice that we get only the

chiral part of the cohomology of Ω(4|0). Starting from the antichiral integral form V 4δ2(ψ̄),

we would get the other class in H
(4|0)
d .

We consider now the following volume form where we have chosen Φ(x, θ, θ̄) in (5.27)

to be equal to the product of the θ’s and θ̄’s,

Vol(4|4) = V 4θ1θ2θ̄1̇θ̄2̇ δ2(ψ)δ2(ψ̄) (5.62)

and where we have written the spinorial indices explicitly to simplify the derivation. We

use the notations in appendix B for the product of the vielbeins.

We act with the PCO Z1 = [d,Θ(ιD1)] on the volume form:

Z1Vol
(4|4) = [d,Θ(ιD1)]Vol

(4|4) = d
[

Θ(ιD1)Vol
(4|4)

]

(5.63)

= d

[

V 4θ1θ2θ̄1̇θ̄2̇
1

ψ1
δ(ψ2)δ

2(ψ̄)

]

= V 4θ2θ̄1̇θ̄2̇ δ(ψ2)δ
2(ψ̄) . (5.64)

Acting with Z2 = [d,Θ(ιD2)], we find

Z2Z1Vol
(4|4) = [d,Θ(ιD2)]V

4θ2θ̄1̇θ̄2̇ δ(ψ2)δ
2(ψ̄) = V 4θ̄1̇θ̄2̇ δ2(ψ̄)

2Negative powers of the forms ψ exist and are well defined only in picture 0. In this case the inverses of

the ψ′s are closed and exact and behave as negative degree superforms. The enlarged modules that contain

also these inverses extend to the left the complex of superforms (the first line in figure 1). In picture 6= 0

negative powers are not defined because of the distributional relation ψδ (ψ) = 0.
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This form is the chiral volume form which is closed and not exact. To proceed, we can act

with the PCO removing the δ’s depending on ψ̄’s:

Z̄1Z2Z1Vol
(4|4) = d

[

V 4θ̄1̇θ̄2̇
1

ψ̄1̇

δ(ψ̄2̇)

]

(5.65)

=

[

ψα(V3)
αα̇ψ̄α̇ θ̄

2̇ 1

ψ̄1̇

δ(ψ̄2̇) + V 4θ̄θ̄2̇δ(ψ̄2̇)

]

=
[

ψα(V3)
α1̇θ̄2̇δ(ψ̄2̇) + V 4θ̄2̇δ(ψ̄2̇)

]

where all the inverse powers of ψ̄’s disappeared. For the last step, we act with Z̄2, and we

have

Z̄2Z̄1Z2Z1Vol
(4|4) = d

[

ψα(V3)
α1̇θ̄2̇

1

ψ̄2̇

+ V 4θ̄2̇
1

ψ̄2̇

]

(5.66)

= −
i

2
(ψV 2

+ψ)θ̄
2 + ψα(V3)

αα̇θ̄α̇ + V4

where θ̄α̇ = ǫα̇β̇ θ̄
β̇.

One obtains a covariant expression since all indices are suitably contracted. In the

same way, one could act first with the Z̄’s and then with the Z’s to find

Z2Z1Z̄2Z̄1Vol
(4|4) =

i

2
(ψV 2

−ψ)θ
2 + ψ̄α̇(V3)

αα̇θα + V4 (5.67)

where θα = ǫαβθ
β.

Note that we can relate the two formulae above by observing that:

d[θα(V3)
αα̇θ̄α̇] = iθα(V3)

αα̇θ̄α̇ − iψα(V3)
αα̇ψ̄α̇ + i(θ · ψ)(θ̄V 2

−ψ̄)− i(θ̄ · ψ̄)(θV 2
+ψ) (5.68)

which allows us to rewrite the second term in (5.66) as the second term in (5.67). Combining

the two expressions we end up with the final result

Z̄2Z̄1Z2Z1Vol
(4|4) + Z2Z1Z̄2Z̄1Vol

(4|4) = ω(4|0) + dη (5.69)

where ω(4|0) is in the Chevalley-Eilenberg cohomology class discussed above. Thus, we have

shown that acting with the PCO’s Z on the volume form (5.62) reproduces the Chevalley-

Eilenberg cohomology discussed in the previous sections. Notice that the presence of θ’s

and θ̄’s is essential to reconstruct the cohomology by acting with PCO’s.

5.7 Two useful theorems

As an application of the previous discussions, we illustrate in this section two theorems

playing an important rôle in the superspace analysis of physical theories (see also [19]).

The first is an application of Stokes theorem to supermanifolds with torsion, and is very

useful in manipulating the superspace Lagrangians since it simplifies many computations.

The use of integral forms is very well adapted to such manipulations since Stokes’ theorem

is valid for integral forms (and is a strong motivation for their integration theory) and

well-known techniques can be employed here.

– 26 –



J
H
E
P
0
5
(
2
0
1
8
)
0
4
0

The second theorem is very useful for treating supergravity theories. In that frame-

work some important quantities, such as the Ricci scalar or the Riemann tensor, appear

in the superspace expansion of some superfields. Therefore, disentangling those physical

components from a given superfield is crucial for building actions. One important example

is the relation between curved chiral and anti-chiral volume forms with the Ricci scalar of

the manifold and the non-chiral volume form. We show that this is very natural in the

context of integral forms where the volume form plays an essential rôle.

In studying the relation between the chiral volume forms and the non-chiral one, we

face the problem of computing the variation of the superdeterminant of the supervielbein.

For that purpose, we use the integral forms for a straight derivation.

We recall that, if we denote by ∇A the supercovariant derivative (w.r.t. the spin con-

nection ωab), we have the equations

∇AV
a = T a

AbV
b + T a

Aβψ
β , (5.70)

∇Aψ
α = Tα

AbV
b + Tα

Aβψ
β ,

∇Aω
ab + ωa

A,cω
cb = Rab

AcV
c +Rab

Aβψ
β ,

where TA
BC are the components of the torsion T a = 1

2T
a
ABE

A ∧ EB and where EA =

(V a, ψα) (we do not impose any constraints and we use the greek indices to denote the 4

spinors components in the Majorana representation).

We act with ∇A on ω(4|4) as follows

∇Aω
(4|4)=∇A

(

ǫabcdV
a . . .V bδ4(ψ)

)

(5.71)

= 4ǫabcd(∇AV
a) . . .V dδ4(ψ)+ǫabcdV

a . . .V d(∇Aψ
α)ιαδ

4(ψ)

= 4ǫabcd

(

T a
AeV

e+T a
Aβψ

β
)

. . .V dδ4(ψ)+ǫabcdV
a . . .V d

(

Tα
AeV

e+Tα
Aβψ

β
)

ιαδ
4(ψ)

= ǫabcd

(

T a
AeV

e
)

. . .V dδ4(ψ)+ǫabcdV
a . . .V d

(

Tα
Aβψ

β
)

ιαδ
4(ψ)

where we have used ψαδ4(ψ) = 0 and V 1 ∧ · · · ∧ V 5 = 0. In addition, using ψαιβδ
4(ψ) =

−δαβ δ
4(ψ) and V a ∧ · · · ∧ V d = ǫabcd(V )4, we finally find

∇Aω
(4|4) = (−1)BTB

BAω
(4|4) (5.72)

This guarantees, for TB
BA = 0 the integration by parts formula

∫

M(4|4)

ω(4|4)∇AΦ
(0|0) = −

∫

M(4|4)

(∇Aω
(4|4))Φ(0|0) = 0 (5.73)

for a superfield Φ(0|0).

Now we consider again the top integral form ω(4|4) and we express it in terms of curved

coordinates as

ω(4|4) =
(

ǫabcdV
a . . . V bδ4(ψ)

)

(5.74)

= (ǫabcdE
a
m . . . Eb

p)(ǫαβγδE
α
µ . . . Eδ

σ)dx
m . . . dxp δ(dθµ) . . . δ(δθσ)

= E d4xδ4(dθ) .
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where E = Sdet(EA
M ) is the superdeterminant of the supervielbein. E is a function of

(x, θ, θ̄) using the chiral/anti-chiral decomposition. Then, we can expand it according to θ

or θ̄ as follows

ω(4|4) = E d4xδ4(dθ) =
(

E|θ̄=0 + θ̄α̇ D̄α̇E
∣

∣

θ̄=0
+ θ̄2 D̄2E

∣

∣

θ̄=0

)

d4xδ4(dθ) + h.c. (5.75)

Using (5.74), we can set

ω(4|4) = E d4xδ4(dθ) = dΞ + D̄2E
∣

∣

θ̄=0
d4xδ2(dθ)θ̄2δ2(dθ̄) + h.c. (5.76)

where the first and the second terms in the expansion in eq. (5.75) are cohomologically triv-

ial, while the third term provides the factor θ̄2 needed to construct the PCO. In eq. (5.76)

we have collected the exact terms into dΞ.

Looking at the superdeterminant Sdet(E), by choosing a gauge such that Ea
µ̇ = 0 (no

mixing between the chiral and the anti-chiral representation), we have:

Sdet(E) =
det

(

Ea
m − Ea

µ(E
−1)µβE

β
m − Ea

µ̇(Ē
−1)µ̇

β̇
Eβ̇

m

)

det(Ea
µ)det(Ē

α̇
µ̇ )

=
SdetC(Ê)

det(Ēα̇
µ̇ )

(5.77)

where SdetC(Ê) is the chiral super determinant written in terms of a redefined vielbein

Êa
m = Ea

m − Ea
µ̇(Ē

−1)µ̇
β̇
Eβ̇

m. It can be proved that, by a suitable gauge fixing (chiral

representation) SdetC(Ê) is chiral, namely D̄α̇SdetC(Ê) = 0. We can than rewrite the

above expression as follows:

ω(4|4) = E d4xδ4(dθ) = dΩ+ SdetC(Ê) D̄2

(

1

det(Ēα̇
µ̇ )

)∣

∣

∣

∣

∣

θ̄=0

d4xδ2(dθ)θ̄2δ2(dθ̄) + h.c.

= ω(4|2) D̄2

(

1

det(Ēα̇
µ̇ )

)∣

∣

∣

∣

∣

θ̄=0

θ̄2δ2(dθ̄) (5.78)

and using the notations of [11] we set R = D̄2
(

det(Ēα̇
µ̇ )
)−1

∣

∣

∣

∣

θ̄=0

. The superfield R con-

tains the auxiliary fields and the Ricci scalar and it appears in the commutation relation

{∇α,∇β} = −R̄Mαβ, namely it is one of the components of the torsion TA.

Finally, recalling that ω(4|2) = SdetC(Ê)d4xδ2(dθ) we have:

ω(4|4) =
1

R
ω(4|2) ∧ Y

(0|2̄) + h.c. (5.79)

which reproduces Siegel chiral integration formula in terms of integral forms [11].
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A Gamma matrix conventions and two-component formalism

Clifford algebra.

{γa, γb} = 2ηab, ηab = (1,−1,−1,−1) (A.1)
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Matrix representation.

γ0 =

(

0 12×2

12×2 0

)

, γi=1,2,3 =

(

0 σi
−σi 0

)

, γ5 = −iγ0γ1γ2γ3 =

(

12×2 0

0 −12×2

)

(A.2)

where σi are the Pauli matrices. The Weyl projectors P± = (1±γ5)/2 are therefore given by

P+ =

(

12×2 0

0 0

)

, P− =

(

0 0

0 12×2

)

(A.3)

Two-component formalism. The four dimensional spinor index is decomposed into

α=1,2, α̇=1,2. Thus

γ0 =

(

0 δα
β̇

δα̇β 0

)

, γi=1,2,3 =

(

0 σ α
i β̇

−σ α̇
i β 0

)

, γ5 =

(

δαβ 0

0 −δα̇
β̇

)

(A.4)

A four-component spinor gets decomposed into two two-component spinors ψ = (ψα
+, ψ

α̇
−),

where the ± subscripts remind us that they are the P± projected parts of ψ. These

subscripts may be omitted when the α or α̇ indices suffice to identify ψ+ or ψ−.

A compact way to express γa=0,1,2,3 is

γa =

(

0 σ α
a β̇

−σ α̇
a β 0

)

, with σ α
a β̇

= (1, σi)
α
β̇
, σ α̇

a β = (−1, σi)
α̇
β (A.5)

The matrices σa satisfy the completeness and the trace relations

ηabσ α
a β̇

σ γ̇
b δ = 2 δαδ δγ̇

β̇
, T r(σaσb) = 2ηab (A.6)

Charge conjugation. In the above matrix representation, the charge conjugation takes

the form

C =

(

ǫαβ 0

0 −ǫα̇β̇

)

(A.7)

where ǫ is the usual Levi-Civita symbol in two dimensions. One can check that

γTa = −CγaC
−1 (A.8)

so that Cγa, Cγab are symmetric, while C, Cγ5, Cγabγ5 are antisymmetric.

Majorana condition. We can impose the Majorana condition on the spinor ψ:

ψ†γ0 = ψTC (A.9)

relating ψα
+, ψ

α̇
− to the components of the conjugated spinor (ψ∗

+)α, (ψ
∗
−)α̇ as follows:

ψα
+ǫαβ = (ψ∗

−)β , ψα̇
−ǫα̇β̇ = −(ψ∗

+)β̇ (A.10)

Note that a spinor cannot be both Majorana and Weyl in 4 dimensions, since the Majorana

condition mixes the ψ+ and ψ− components.
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Raising and lowering spinor indices. The charge conjugation matrix C and its inverse

C−1 can be used to lower and raise spinor indices. Correspondingly ǫαβ and ǫα̇β̇ , and their

inverses, are used to lower and raise two-component spinor indices with the “upper left to

lower right” convention. Thus for example

Aα = Aβǫβα, Aα = ǫαβAβ (A.11)

Note that AαBα = −AαB
α and similar for dotted indices. We can also define σa matrices

with both indices up or down:

σ αβ̇
a ≡ ǫβ̇γ̇σ α

a γ̇ , σa αβ̇ ≡ σ γ

a β̇
ǫγα, σ α̇β

a ≡ ǫβγσ α̇
a γ , σa α̇β ≡ σ γ̇

a β ǫγ̇α̇ (A.12)

With these definitions one finds

σ αβ̇
a = σ β̇α

a , σa αβ̇ = σa β̇α (A.13)

i.e. the σa matrices with both indices up or down are symmetric.

Converting vector into spinor indices. Finally, the σa matrices can be used to convert

a 4-dim vector index into a couple of two-component spinor indices, and viceversa:

V αα̇ ≡ V aσ αα̇
a =⇒ V a =

1

2
σa

αα̇V
αα̇ (A.14)

The second formula can be deduced from the first, and from the trace relation

σa αα̇σ
αα̇

b = 2ηab (A.15)

Examples. i) the current ψ̄γaψ (ψ Majorana spinor 1-form) becomes, in two-component

formalism:

ψ̄γaψ = ψTCγaψ = ψαǫαβσ
β

a γ̇ψ
γ̇ + ψα̇ǫα̇β̇σ

β̇
a γψ

γ = −ψασa αγ̇ψ
γ̇ − ψα̇σa α̇γψ

γ (A.16)

= −ψασa αγ̇ψ
γ̇ − ψγ̇σa γ̇αψ

α = −2ψαψγ̇σa αγ̇ (A.17)

having used σa γ̇α = σa αγ̇ . Converrting the vector index into two-component spinor indices

yields:

ψ̄γaψ σ βδ̇
a = −2ψαψγ̇σa

αγ̇σ
βδ̇

a = 4ψβψδ̇ (A.18)

using the completeness relation. Thus the flat superspace Cartan-Maurer equation dV a =
i
2 ψ̄γ

aψ becomes dV αα̇ = 2iψαψα̇.

ii) chiral and antichiral projections of V V :

(V 2
+)

αβ ≡ [P+(V V )]αβ = V aV b[P+γab]
αβ = V aV bσα

a β̇
σ β̇β
b

= V aV bσ αα̇
a σ β̇β

b ǫα̇β̇ = V αα̇V ββ̇ǫα̇β̇ (A.19)

and similarly (V 2
−)

α̇β̇ = V αα̇V ββ̇ǫαβ .
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Pros and cons. Pros: two-component formalism can simplify calculations, since gamma

matrices disappear in most cases (see the examples above), and Fierz rearrangements

are automatically implemented. Cons: the notation is less compact (two spinor indices

replace one vector index), and it is necessary to remember minus signs in relations like

AαBα = −AαB
α.

B Some useful formulas

We consider the supervielbeins (V αα̇, ψα, ψ̄α̇) such that

dV αα̇ = 2iψαψ̄α̇ , dψα = 0 , dψ̄α̇ = 0 . (B.1)

We define the following combinations

(V 2
+)

αβ =
1

2!
V αα̇ ∧ V ββ̇ǫα̇β̇ , (B.2)

(V 2
−)

α̇β̇ =
1

2!
V αα̇ ∧ V ββ̇ǫαβ ,

(V 3)αα̇ =
1

3!
V αβ̇ ∧ V γ̇γ ∧ V βα̇ǫβ̇γ̇ǫγβ ,

(V 4) =
1

4!
V αα̇ ∧ V γ̇γ ∧ V ββ̇ ∧ V σ̇σǫα̇γ̇ǫγβǫβ̇σ̇ǫσα = det(V αα̇) ,

The first two combinations V 2
± are the self-dual and anti-self dual part of the wedge product

of two vielbeins V αα̇. The last one is the singlet combination (corresponding to the deter-

minant) of the vielbein. By multiplying with V αα̇ we find the following relations (recall

that eαβǫ
βγ = δγα and eαβǫ

αβ = −2)

V αα̇ ∧ V ββ̇ = −ǫαβ(V 2
−)

α̇β̇ − ǫα̇β̇(V 2
+)

αβ ,

V αα̇ ∧ V ββ̇ ∧ V γγ̇ = 2ǫβ̇γ̇ǫα(β(V 3)γ)α̇ + 2ǫβγǫα̇(β̇(V 3)γ̇)α ,

V αα̇ ∧ (V 2
+)

βγ = −2ǫα(β(V 3)γ)α̇ ,

V αα̇ ∧ (V 2
−)

β̇γ̇ = −2ǫα̇(β̇(V 3)γ̇)α ,

V αα̇ ∧ (V 3)ββ̇ = ǫαβǫα̇β̇(V 4) ,

V αα̇ ∧ V ββ̇ ∧ V γγ̇ ∧ V σσ̇ = tαα̇ββ̇γγ̇σσ̇(V 4) ,

(V 2
+)

αβ ∧ (V 2
+)

γδ = (ǫαγǫβδ + ǫαδǫβγ)(V 4) ,

(V 2
−)

α̇β̇ ∧ (V 2
−)

γ̇δ̇ = (ǫα̇γ̇ǫβ̇δ̇ + ǫα̇δ̇ǫβ̇γ̇)(V 4) ,

(V 2
+)

αβ ∧ (V 2
−)

γ̇δ̇ = 0 , (B.3)

where A(αβ) = 1
2(A

αβ +Aβα) and the tensor

tαα̇ββ̇γγ̇σσ̇ = −ǫαβǫβ̇γ̇ǫγσǫσ̇α̇ + ǫαγǫγ̇β̇ǫβσǫσ̇α̇ − ǫασǫσ̇γ̇ǫγβǫβ̇α̇ + ǫασǫσ̇β̇ǫβγǫγ̇α̇

= ǫα̇β̇ǫγ̇σ̇ǫαγǫβσ + ǫα̇β̇ǫγ̇σ̇ǫασǫβγ + ǫα̇γ̇ǫβ̇σ̇ǫαβǫγσ + ǫα̇σ̇ǫβ̇γ̇ǫαβǫγσ (B.4)
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respects all properties of form multiplication. The second line is obtained by using relations

like

ǫαβǫγδ + ǫαγǫδβ + ǫαδǫβγ = 0 .

This invariant tensor is obtained by contracting with the Dirac gamma matrices the Levi-

Civita tensor

tαα̇ββ̇γγ̇σσ̇ =
1

4!
ǫabcd(γ

a)αα̇(γb)ββ̇(γc)γγ̇(γd)σσ̇ . (B.5)

The differentials are

dV αα̇ = 2iψαψ̄α̇ , (B.6)

d(V 2
+)

αβ = −2iψ(α(V ψ̄)β) ,

d(V 2
−)

α̇β̇ = −2iψ̄(α̇(V ψ)β̇) ,

d(V 3)αα̇ = i
(

ψα(V 2
−ψ̄)

α̇ − ψ̄α̇(V 2
+ψ)

α
)

,

d(V 4) = 2iψα(V
3)αα̇ψ̄α̇ ,

where

(V ψ̄)α = V αα̇ǫα̇β̇ ψ̄
β̇ , (B.7)

(V ψ)α̇ = V α̇αǫαβ ψ
β ,

(V 2
−ψ̄)

α̇ = (V 2
−)

α̇β̇ǫβ̇γ̇ ψ̄
γ̇ ,

(V 2
+ψ)

α = (V 2
+)

αβǫβγ ψ
γ ,

with

d(V ψ̄)α = 2iψαψ̄α̇ǫα̇β̇ ψ̄
β̇ = 0 ,

d(V ψ)α̇ = 2iψαψ̄α̇ǫαβ ψ
β = 0 ,

d(V 2
−ψ̄)

α̇ = iψ̄α̇(ψV ψ̄) ,

d(V 2
+ψ)

α = iψα(ψV ψ̄) .

d(ψ̄V 2
−ψ̄) = 0 ,

d(ψV 2
+ψ) = 0 ,

d(ψV ψ̄) = 0 . (B.8)

C The curved supermanifold Osp(1|4)

Let us consider the case of curved supermanifolds, for example the supercoset manifold

Osp(1|4)/SO(1, 3) ∼ (AdS4|4)

which is a supermanifold whose bosonic submanifold is 4d anti-de Sitter and with 4

fermionic coordinates. We have

∇V αα̇ = 2iψα ∧ ψ̄α̇ , (C.1)

∇ψα = iΛV αα̇ψ̄α̇ , (C.2)
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∇ψ̄α̇ = −iΛV αα̇ψα . (C.3)

Rαβ
+ = 4Λ2(V 2

+)
αβ + 2Λψαψβ , (C.4)

Rα̇β̇
− = −4Λ2(V 2

−)
α̇β̇ − 2Λψ̄α̇ψ̄β̇ , (C.5)

where Rab, decomposed into the self-dual and the anti-self dual parts (Rαβ
+ and Rα̇β̇

− ), is the

curvature of the supermanifold and ∇ is the covariant derivative w.r.t. to the connection

of SO(1, 3). It is easy to check the Bianchi identities using these definitions.

In addition, by using (C.3), we can verify that

d
(

(V 4)δ4(ψ)
)

= ∇
(

(V 4)δ4(ψ)
)

(C.6)

= 2iψα(V
3)αα̇ψ̄α̇δ

4(ψ) + (V 4)iΛV αα̇
(

ψ̄α̇ια − ψαῑα̇
)

δ4(ψ) .

where the first equality follows from the Lorentz invariance of the volume form V 4δ4(ψ)

and the last follows from the distributional law ψδ(ψ) = 0 and the properties of top forms.

For the curved case, we have that

∇
(

V aψ̄γaψ
)

= iΛV a ∧ V b
(

ψγabψ − ψ̄γabψ̄
)

(C.7)

and since
(

V aψ̄γaψ
)

is a scalar, we find ∇2
(

V aψ̄γaψ
)

= 0. This means that only the class

iV a ∧ V b
(

ψγabψ − ψ̄γabψ̄
)

is closed. In the limit Λ → 0, one recovers the flat case.

Let us now consider the same problem in the curved space. We start with Osp(1|4)

case. We use the relations given in (C.3) and the volume form has the expression

ω(4|4) = ǫabcdV
a ∧ · · · ∧ V d ∧ δ4(ψ) , (C.8)

which is closed (the variation of V a is cancelled because of the Dirac delta’s, while the

variation of ψ’s is cancelled by the presence of four V ’s. Using the definitions

V a = V a
mdxm + V a

µ dθ
µ , ψa = ψa

mdxm + ψa
µθ

µ , (C.9)

we find

ω(4|4) = Sdet(E)ǫabcddx
a ∧ · · · ∧ dxdδ4(dθ) (C.10)

with E =

(

V a
m V a

µ

ψα
m ψα

µ

)

. The bosonic space is Sp(4)/SO(1, 3), namely the curved space AdS4,

and therefore we have

VolOsp(1|4)/SO(1,3) =

∫

AdS4

d4x D4Sdet(E)
∣

∣

θ=0
(C.11)

where D4 = ǫα1...α4D
α1 . . . Dα4 . In the present case the (4|4)-integral form ω(4|4) is closed,

but it is not exact since Sdet(E) has a non-trival θ-dependence.
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