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Abstract: Any (d + 1)-dimensional CFT with a U(1) flavor symmetry, a BPS bound

and an exactly marginal coupling admits a decoupling limit in which one zooms in on the

spectrum close to the bound. This limit is an Inönü-Wigner contraction of so(2, d+1)⊕u(1)

that leads to a relativistic algebra with a scaling generator but no conformal generators.

In 2D CFTs, Lorentz boosts are abelian and by adding a second u(1) we find a contraction

of two copies of sl(2,R) ⊕ u(1) to two copies of P c
2 , the 2-dimensional centrally extended

Poincaré algebra. We show that the bulk is described by a novel non-Lorentzian geometry

that we refer to as pseudo-Newton-Cartan geometry. Both the Chern-Simons action on

sl(2,R) ⊕ u(1) and the entire phase space of asymptotically AdS3 spacetimes are well-

behaved in the corresponding limit if we fix the radial component for the u(1) connection.

With this choice, the resulting Newton-Cartan foliation structure is now associated not

with time, but with the emerging holographic direction. Since the leaves of this foliation

do not mix, the emergence of the holographic direction is much simpler than in AdS3
holography. Furthermore, we show that the asymptotic symmetry algebra of the limit

theory consists of a left- and a right-moving warped Virasoro algebra.
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1 Introduction

The idea of holography has become the most powerful tool in understanding theories of

quantum gravity. Its most celebrated realization is seen in the AdS/CFT correspondence [1,

2] which relates a general relativistic quantum gravity theory on an asymptotically anti-

de Sitter (AdS) spacetime to a conformal field theory (CFT) living on the boundary of

AdS. While this duality has led to amazing progress in the last decades, with impact

on a wide range of areas in theoretical physics, there are many fundamental questions

that remain unanswered. One widely studied route towards gaining deeper insight is by

taking consistent limits of the correspondence, therewith simplifying both sides while still

retaining non-trivial features. Examples include the BMN limit [3], the limit considered

by Kruczenski [4] as well as the closely related Spin Matrix Theory limit of ref. [5]. Other
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actively pursued directions are to consider i). non-AdS vacua within Einstein gravity [6–8]

or ii). bulk theories that are Chern-Simons, higher spin or non-Einsteinian gravity theories

like Hořava-Lifshitz gravity.1

In this paper we will study a decoupling limit of the AdS3/CFT2 correspondence that

can be formulated in the bulk as a Chern-Simons theory that is not equivalent to Einstein

gravity. On the field theory side, the limit utilizes a U(1) flavor symmetry, for example an

R-symmetry of a superconformal field theory, and zooms in on the spectrum close to the

lightest charged state of the theory on the cylinder. Thus we are zooming in on the sector

of the theory near a BPS bound, much in the spirit of the Spin Matrix Theory proposal

of [5] which considers limits to critical points of N = 4 supersymmetric Yang-Mills theory,

keeping only one-loop corrections to the BPS states. On the gravity side, the limit results in

a Chern-Simons (CS) action that is defined on an algebra that can be viewed as a different

real form of the complexified versions of the algebras used in the Chern-Simons (Newton-

Cartan) gravity theories of [11–13]. In particular, our CS theory describes a novel version

of non-Lorentzian geometry, which we call pseudo-Newton-Cartan (pseudo-NC) geometry.

These theories have the feature that the holographic direction emerges in a much simpler

way than in AdS because there is a special foliation structure associated with it.

While our primary focus will be on AdS3/CFT2, the limit we consider is quite general,

as any d+1 dimensional CFT with a U(1) flavor symmetry, a BPS bound and a free coupling

constant admits a limit in which one zooms in on the spectrum close to the lightest charged

state of the theory on R×Sd. In further detail, after using the state-operator map, the BPS

operators have a conformal weight that is equal to the energy of the lightest charged state

in units of the sphere radius. Using the BPS condition this energy in turn is equal to a U(1)

charge Q. We assume that the theory has a free marginal coupling constant g that can be

used to compute the one-loop corrections to the conformal dimension away from the BPS

bound. By turning on a ‘chemical potential’2 for the charge Q we can offset the dilatation

operator D to D−Q which still has a nonnegative spectrum. This new dilatation operator

has order g corrections when we turn on the interactions perturbatively. The limit zooms

in on this 1-loop piece of the dilatation operator. The symmetry algebra in this limit is

an Inönü-Wigner contraction of so(2, d+1)⊕ u(1) that leads to a relativistic algebra with

scale but no conformal generators.

1For the discussion in this paper it is relevant to note that Hořava-Lifshitz gravity [9] can be reformulated

as a theory of dynamical Newton-Cartan geometry [10], and, moreover in three dimensions these theories

and generalizations thereof can be formulated [11] (see also [12, 13]) as Chern-Simons theories on non-

Lorentzian kinematical algebras, such as the Bargmann or Newton-Hooke algebra. Chern-Simons theories

also play a role in another avatar of non-AdS holography [14] involving warped CFTs (see for example [15–

20]) as boundary field theories. Torsional Newton-Cartan geometry was first observed in the context of

non-AdS holography in refs. [21–23]. It is worth emphasizing that non-AdS holography is a vast subject,

including for example also non-UV conformal models (see [24, 25] for recent reviews). However, for the

purposes of this paper, we focus on the subset of theories that have nonrelativistic symmetries.
2We write ‘chemical potential’ in quotation marks since this is not a usual chemical potential corre-

sponding to a time component of a background U(1) gauge field. Rather, it is the radial component of a

background U(1) potential in radial quantization.
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For the specific case of 2D CFTs the Lorentz generator is abelian and it turns out to be

useful to add a second u(1). One then considers an Inönü-Wigner contraction of so(2, 2)⊕

u(1)⊕ u(1), i.e. two copies of sl(2,R)⊕ u(1). The resulting contracted algebra is then two

copies of P c
2 , the two-dimensional centrally extended Poincaré algebra. This algebra admits

an infinite-dimensional extension, namely a left- and right-moving warped Virasoro algebra,

which turns out to appear as the asymptotic symmetry of our novel bulk gravity dual. We

show that the CS action on two copies of P c
2 can be obtained by applying our contraction to

the CS action on two copies of sl(2,R)⊕ u(1). We then demonstrate that the entire phase

space of asymptotically AdS3 solutions of the so(2, 2)⊕ u(1) ⊕ u(1) Chern-Simons theory

can be mapped to the phase space of the limit theory. This procedure requires a fixed radial

chemical potential for one of the two u(1) connections which is related to the background

‘chemical potential’ needed to offset the dilatation operator close to a BPS bound.

We emphasize that since we can reach the full phase space of the P c
2 theory from

the sl(2,R)⊕ u(1) theory, we can study many well-understood aspects of the AdS3/CFT2

correspondence in this limit. For example, this procedure allows us to find the vacuum

of the theory. Following the coset procedure for homogeneous nonrelativistic spacetimes

proposed in [26] we show that this three-dimensional vacuum geometry corresponds to the

coset (Pc
2 ×Pc

2)/(P
c
2 × U(1)), where Pc

2 stands for centrally extended 2D Poincaré group.

We demonstrate that for this background 6 of the 8 generators of the P c
2 ⊕ P c

2 algebra are

realized in terms of Killing vectors while the two central extensions are visible only once

we study matter fields on these backgrounds.

Our limiting procedure of contracting so(2, 2)⊕u(1)⊕u(1) by turning on a radial chem-

ical potential to zoom in on the lightest charged state of the theory on the cylinder bears

a strong resemblance to viewing nonrelativistic limits as contractions of Poincaré⊕u(1).

There, one turns on a chemical potential to offset the Hamiltonian of the relativistic the-

ory (splitting off the rest mass) before sending the speed of light to infinity [27, 28]. In [13]

a contraction was studied along these lines of a CS theory on the relativistic algebra

iso(2, 1)⊕u(1)⊕u(1). In the large speed of light limit the two u(1) gauge fields correspond

to two quantum numbers of a nonrelativistic particle, the rest mass and rest spin [12]. This

limit can be generalized in the presence of a cosmological constant leading to CS theory

on what is known as the extended Newton-Hooke algebra. For a negative cosmological

constant this algebra is isomorphic to Ec
2 ⊕ Ec

2, with Ec
2 the two-dimensional centrally ex-

tended algebra of the Euclidean two-plane. The CS action on the extended Newton-Hooke

algebra was considered in [11, 29]. The limit of so(2, 2)⊕u(1)⊕u(1) we take in this paper

leads to the algebra P c
2 ⊕P c

2 . This can be viewed as a different real form of a complexified

version of the Ec
2 ⊕ Ec

2 algebra.

We know from the CS theory on Ec
2 ⊕ Ec

2 that the geometry is described by Newton-

Cartan geometry in which time plays a special role. Essentially Newton-Cartan geometry

is a covariant description of a special foliation structure where each leaf corresponds to a

certain instant of time. In the case of the CS theory on P c
2 ⊕ P c

2 , the bulk geometry is a

version of Newton-Cartan (NC) geometry that we call pseudo-Newton-Cartan geometry. In

this case the leaves are those corresponding to constant values of the emerging holographic

coordinate and each such hypersurface has a two-dimensional Lorentzian signature. This
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suggests that pseudo-Newton-Cartan geometry in the bulk provides, in some sense, a much

simpler realization of the holographic paradigm than the one that employs Riemannian

geometry. Since the limit can be generalized to higher dimensions on the level of the algebra,

we can speculate that the corresponding geometry (obtained by gauging the algebra) will

appear more generally as a bulk dual in any dimension when zooming in on the spectrum

close to the BPS bound. Just like NC geometry can be obtained by gauging the Bargmann

algebra [11, 30, 31] in its usual real form, pseudo-NC geometry can be obtained by gauging

a different real form of the complexified Bargmann algebra that we discuss here.

It is interesting to put the holographic correspondence that we obtain in this paper in

the larger context of non-AdS holography. So far, we have encountered roughly three classes

of dualities. In its original form, the AdS/CFT correspondence relates a relativistic bulk

gravity to a corresponding dual (conformal) relativistic field theory living on the boundary.

For non-AdS holography, using for example asymptotically Schrödinger or Lifshitz space-

times, there are setups with relativistic theories in the bulk, e.g. Einstein-Maxwell-dilaton

or Einstein-Proca-dilaton theories, and nonrelativistic field theories living on the boundary.

These boundary theories naturally couple to nonrelativistic geometries [32–34], such as (tor-

sional) NC geometry, as first shown in the holographic context in [21–23, 35]. Additionally,

it has been suggested that the latter field theories have perhaps a more natural holographic

realization with nonrelativistic gravity theories in the bulk [11, 14, 36, 37]. What we see

here, somewhat unexpectedly, is that there is a fourth situation in which one has a nonrel-

ativistic bulk gravity theory but a scale invariant relativistic field theory on the boundary.

It is natural to wonder how these scale invariant two-dimensional field theories that

appear in our novel holographic correspondence relate to standard 2D CFTs. Local uni-

tary 2D scale invariant relativistic field theories for which the dilatation operator is diag-

onalizable and has a non-negative discrete spectrum admit currents for special conformal

generators [38], i.e. the charge algebra of symmetries of the theory is sl(2,R) ⊕ sl(2,R)

which enhances to two commuting Virasoro algebras. This infinite dimensional symmetry

appears as the asymptotic symmetry algebra in AdS3 gravity, as shown in the seminal

paper [39]. In our case we will show that likewise the theory has a symmetry algebra that

contains two copies of a warped Virasoro algebra and so has the symmetries of a CFT.3

To understand the nature of the two-dimensional field theory better one would have to

work out the unitary irreducible representations of the two copies of the warped Virasoro

groups. We leave a more detailed analysis of this for the future and comment on related

aspects in the discussion.

Outline and brief summary. This paper is organized as follows. In section 2 we present

the various algebras that play a role in our holographic construction and also present the CS

action that appears in our limit. In particular, in section 2.1 we discuss the Inönü-Wigner

contraction of so(2, 2)⊕ u(1)⊕ u(1) and show how this gives P c
2 ⊕ P c

2 . We also present its

alternative form in terms of the three-dimensional extended Newton-Hooke algebra with a

non-standard real form. We then perform in section 2.2 the same contraction at the level

3See also [40] for recent related work. Note that these theories are different from the chiral warped CFTs

studied in [15], since we have two copies of a warped Virasoro algebra.
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of the CS theory, resulting in a CS action for two copies of P c
2 , which inherits a chiral

structure from its relativistic parent action. This action thus describes pseudo-Newton-

Cartan gravity in three dimensions. To put our limit in a broader perspective, we also

discuss in section 2.3 the Inönü-Wigner contraction of so(2, d+1)⊕u(1). From the boundary

point of view, this results in a novel algebra that contains relativistic and scale symmetries,

but no conformal symmetries. From the bulk perspective we show that it corresponds to

a different real form of the complexified (d+ 2)-dimensional Newton-Hooke algebra.

We then turn in section 3 to studying the phase space of our limit theory by relating

it to the phase space of the parent theory. To this end, we first show in section 3.1 how we

can obtain the most general P c
2 connection as a limit of the most general sl(2,R) ⊕ u(1)

connection. We then continue to show how the limit of the phase space of the so(2, 2) ⊕

u(1)⊕u(1) CS theory acts in terms of metric data. In section 3.2 we examine what happens

to the Poincaré and global AdS3 geometries after the limit and study the symmetries of

the resulting vacua. Finally, in section 3.3 we consider a bulk scalar field model where all

symmetries, including central extensions, are explicitly realized.

In section 4, we then study the asymptotic symmetry algebra after the limit. The main

result is presented in section 4.1 where we show that in the limit theory one obtains a chiral

and antichiral warped Virasoro algebra. To elucidate the appearance of this particular

infinite-dimensional algebra, we repeat the same procedure in section 4.2 at finite value

of the contraction parameter and obtain a more general form of the algebra in that case.

We then discuss in section 4.3 how this more general result relates to the naively expected

asymptotic symmetry algebra consisting of an uncoupled Virasoro and affine u(1). We end

with a discussion and outlook in section 5.

Two appendices are included. Appendix A reviews a number of useful elements of

so(2, 2) CS theory that we will draw on in the main parts of the paper, while appendix B

gives a detailed derivation of the asymptotic symmetries that one obtains from sl(2,R) CS

theory. This should aid the reader in following our derivations of the asymptotic symmetry

algebra for the CS theory on P c
2 ⊕ P c

2 .

2 Near-BPS limit of AdS Chern-Simons theory

Three-dimensional Einstein gravity is simple due to the absence of local degrees of free-

dom. On the other hand, it is also rich in boundary symmetries [39]. Thus, it provides a

useful arena to study holographic correspondences. Furthermore, three-dimensional Ein-

stein gravity can be formulated as a Chern-Simons (CS) theory [41, 42] which simplifies its

boundary analysis.4 The Lagrangian of three-dimensional CS theory is

LCS =

〈

A, dA−
2

3
iA ∧A

〉

. (2.1)

Here, the connection A is a Lie algebra-valued one-form. The bracket denotes an invariant

bilinear form on the algebra. For a given basis TA of Hermitian generators of the Lie

4Much work has been done to make this identification more precise. In particular, subtleties arise at the

quantum level, see for example [43–45], but we will not touch upon these issues here.
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algebra, we denote its components by ΩAB = 〈TA, TB〉. The structure constants of the

algebra are defined by [TA, TB] = if C
AB TC . Invariance of the bilinear form corresponds to

〈TA, [TB, TC ]〉 = 〈[TA, TB], TC〉.

Three-dimensional Einstein gravity with negative cosmological constant corresponds

to CS theory with gauge algebra so(2, 2). This algebra splits in two simple sl(2,R) factors.

Each of these factors has a unique invariant bilinear form given by its Killing form, which

is fixed up to an overall constant. See appendix A for further conventions and a detailed

review of so(2, 2) CS theory.

In this paper, we will be concerned with a non-semisimple algebra. In that case,

there can be multiple parameters characterizing the invariant bilinear form. However, our

algebras will be such that ΩAB can always be chosen to be nondegenerate and we will

subsequently adopt this choice. This means that all components of the connection enter

in (2.1). Some earlier examples of Chern-Simons theory with non-semisimple algebras

include [12, 46], see [11, 13] for more recent work.

2.1 Contraction of 2D conformal algebra with abelian charges

From the boundary perspective, our starting point is a two-dimensional conformal field

theory with two u(1) flavor symmetries. We are interested in an Inönü-Wigner contraction

of the global symmetry algebra so(2, 2) ⊕ u(1) ⊕ u(1) that zooms in on the state with

lowest charge under the flavor symmetries.5 As we will see, the resulting algebra has

a nondegenerate bilinear form, and can therefore be used to construct a Chern-Simons

theory. After identifying the correct limit of the algebra in the following, we will proceed

to studying the contraction of the corresponding bulk gravity.

Relativistic conformal algebra. In AdS3/CFT2, the so(2, 2) symmetry algebra has

two interpretations. First of all, it is the global conformal algebra of the conformal field the-

ory living on the boundary of AdS3. In this incarnation, we will exhibit it using the standard

basis of translations, boosts, dilatation and special conformal transformations, which satisfy

[Pa,Kb] = −2iDηab − 2iMǫab , [D,Pa] = iPa , [D,Ka] = −iKa ,

[M,Pa] = iǫa
bPb , [M,Ka] = iǫa

bKb .
(2.2)

Here and in the following, we will use a lowercase Latin index a = (0, 1) for boundary com-

ponents, so ηab and ǫab are the 2-dimensional Minkowski metric and Levi-Civita symbol,

respectively. Boundary indices are raised and lowered with ηab and we set ǫ01 = +1.

From a bulk gravity perspective, so(2, 2) is also the isometry algebra of AdS3. For this

purpose, the natural generators are the bulk translations TA and bulk rotations JA given by

Ta =
1

2l
ǫa

b(Pb +Kb) , T2 =
1

l
D , Ja =

1

2
(Pa −Ka) , J2 = M . (2.3)

They satisfy the following commutation relations,

[TA, TB] =
i

l2
ǫ C
AB JC , [JA, JB] = iǫ C

AB JC , [JA, TB] = iǫ C
AB TC , (2.4)

5Note that our initial algebra so(2, 2)⊕u(1)⊕u(1) is the bosonic part of the N = (2, 2) superconformal

algebra, where the abelian currents correspond to the R-charge current in each chiral sector.
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where A = (a, 2) = (0, 1, 2). The parameter l is the radius of curvature. The bulk tan-

gent space metric ηAB = diag(−1, 1, 1) is used to raise and lower bulk indices and we set

ǫ012 = +1.

Finally, the so(2, 2) generators can be split into two chiral copies of sl(2,R),

[Ln, Lm] = i(n−m)Ln+m , [L̄n, L̄m] = i(n−m)L̄n+m . (2.5)

The left- and right-moving generators Lm and L̄m are given by

L−1 =
1

2
(P1 + P0) , L0 =

1

2
(D +M) , L1 =

1

2
(K1 −K0) , (2.6)

L̄−1 =
1

2
(P1 − P0) , L̄0 =

1

2
(D −M) , L̄1 =

1

2
(K1 +K0) . (2.7)

Upon Wick rotation (t = itE) the left- and right-moving coordinates (x+, x−) become

the complex coordinates (z, z̄). Additionally, we assume that the 2D CFT has two flavor

u(1) symmetries generated by Q1 and Q2. For future convenience, we define the following

combinations of u(1) generators,

N0 :=
1

2
(lQ1 +Q2), N̄0 :=

1

2
(lQ1 −Q2). (2.8)

We will see in the following that these combinations naturally appear in the chiral decom-

position of the contracted algebra. We parametrize the invariant bilinear form on the left-

and right-moving sl(2,R)⊕ u(1) by

2〈L0, L0〉 = −〈L−1, L1〉 = γs , 〈N0, N0〉 =
1

2
γu , (2.9)

2〈L̄0, L̄0〉 = −〈L̄−1, L̄1〉 = −γ̄s , 〈N̄0, N̄0〉 = −
1

2
γ̄u . (2.10)

Let Φ be a field that transforms in a representation of the total symmetry group

so(2, 2)⊕ u(1)⊕ u(1). At the level of the algebra, a representation is given by

PaΦ = −i∂aΦ ,

MΦ = −i
(

ǫa
bxa∂b + s

)

Φ ,

DΦ = −i (xa∂a +∆)Φ , (2.11)

KaΦ = −i
(

2ηacx
cxb∂b − x2∂a + 2ηabx

b∆− 2ǫabx
bs
)

Φ ,

Q1Φ = q1Φ ,

Q2Φ = q2Φ .

The field Φ thus carries the labels ∆ (conformal dimension), s (spin) and q1, q2 (charges).

Contracted algebra. There exists a general procedure for obtaining nonrelativistic al-

gebras from a contraction of relativistic ones, which is loosely referred to as Inönü-Wigner

contraction (see for example [28] for a review). In fact, this procedure does not exclusively

yield nonrelativistic algebras, and has also been applied to studying the flat space limit of

AdS holography [47–49].
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The procedure is as follows. Define a basis for the initial algebra that depends on some

parameter α. In this basis, the structure constants now depend on α but the algebra is still

fundamentally unchanged. However, by taking α → ∞ one obtains a contracted algebra

that is generically not isomorphic to the initial algebra.

Starting from so(2, 2) ⊕ u(1) ⊕ u(1), we want to consider the following contraction.6

Define the generators Pa, Ka, D, M, N and S by setting

Pa = αPa , Ka = αKa ,

D =
1

2
D + α2N , Q1 = −

1

2
D + α2N , (2.12)

M =
1

2
M+ α2S , Q2 = −

1

2
M+ α2S .

From (2.2) we find that they satisfy the following commutation relations,

[Pa,Kb] = −2i

(

D

2α2
+N

)

ηab − 2i

(

M

2α2
+ S

)

ǫab,

[D,Pa] = iPa, [D,Ka] = −iKa,

[M,Pa] = iǫ b
a Pb, [M,Ka] = iǫ b

a Kb,

[N ,Pa] =
iPa

2α2
, [N ,Pa] = −

iKa

2α2
,

[S,Pa] =
iǫ b

a Pb

2α2
, [S,Ka] =

iǫ b
a Kb

2α2
.

(2.13)

At this point, we have only performed a basis transformation and the algebra is still

unchanged. However, by sending α → ∞, we obtain an inequivalent algebra with

[Pa,Kb] = −2iNηab − 2iSǫab ,

[D,Pa] = iPa , [D,Ka] = −iKa , (2.14)

[M,Pa] = iǫa
bPb , [M,Ka] = iǫa

bKb .

All other commutators vanish and one observes that N and S are now central elements.

This algebra, which we will call the scaling nonconformal algebra, will be the central object

of study in this paper. The generators M and Pa form a 2D Poincaré subalgebra and

D is a dilatation generator. However, the Ka can no longer be thought of as conformal

generators. A representation of this algebra on a field Φ is given by

PaΦ = −i∂aΦ ,

MΦ = −i
(

ǫa
bxa∂b + σ

)

Φ ,

DΦ = −i (xa∂a + δ) Φ , (2.15)

KaΦ =
(

2ηabx
bN − 2ǫabx

bS
)

Φ ,

NΦ = NΦ ,

SΦ = SΦ .

6This is not the only possible contraction. For other options, see [50].
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Like so(2, 2), the algebra (2.14) can be split in two factors. Here, the factors are given

by a 2D Poincaré algebra with central extension, which we denote by P c
2 . To see this we

define

L−1 =
1

2
(P1 + P0) , L0 =

1

2
(D +M) , N0 = N + S , N1 =

1

2
(K1 −K0) , (2.16)

L̄−1 =
1

2
(P1 − P0) , L̄0 =

1

2
(D −M) , N̄0 = N − S , N̄1 =

1

2
(K1 +K0) . (2.17)

The nonzero commutators of these generators are

[L−1 ,L0] = −iL−1 , [L−1 ,N1] = −iN0 −
i

α2
L0 , [L0 ,N1] = −iN1 ,

[N0 ,L−1] =
i

α2
L− , [N0 ,N1] = −

i

α2
N1

(2.18)

and likewise for the barred generators. At finite α, this is just a redefinition of sl(2,R)⊕u(1),

but in the limit α → ∞ these are the commutation relations of P c
2 ,

[L−1 ,L0] = −iL−1 , [L−1 ,N1] = −iN0 , [L0 ,N1] = −iN1 . (2.19)

One can think of L−1 and N1 as translation generators in a two-dimensional Poincaré

plane, with Lorentz boost L0. The central extension is given by N0. This algebra can be

viewed as a different real form of the complexified centrally extended 2D Euclidean algebra

Ec
2. The latter is sometimes referred to as the Nappi-Witten algebra [46]. We parametrize

the most general invariant bilinear form on the two copies of P c
2 using

〈L0,L0〉 =
1

2
γ1 , 〈L0,N0〉 = −〈L−1,N1〉 = γ2 , (2.20)

〈L̄0, L̄0〉 = −
1

2
γ̄1 , 〈L̄0, N̄0〉 = −〈L̄−1, N̄1〉 = −γ̄2 . (2.21)

We will later see that (2.19) has an infinite dimensional lift with generators (Lm, L̄m). In

terms of sl(2,R)⊕ u(1) generators, the basis transformation above corresponds to

L−1 = αL−1 , L0 =
1

2
L0 +

α2

2
N0 , L1 = αN1 , N0 = −

1

2
L0 +

α2

2
N0 . (2.22)

Then it follows that the coefficients of the P c
2 and sl(2,R)⊕u(1) bilinear forms are related

by

γs =
1

2
γ1 + α2γ2 , γu =

1

2
γ1 − α2γ2 , (2.23)

and likewise for the barred sector. This means that at finite α, the bilinear form satisfies

〈L−1,N1〉 = −γ2 −
γ1
2α2

, 〈L0,N0〉 = γ2, 〈L0,L0〉 =
γ1
2
, 〈N0,N0〉 =

γ1
2α4

. (2.24)

In the above, we have discussed the limit of so(2, 2)⊕ u(1)⊕ u(1) as a conformal sym-

metry algebra. There is also a bulk perspective on this contraction. Define Ta and Ra by

Ta =
1

2
(Pa +Ka) , Ra =

1

2
(Pa −Ka) . (2.25)
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Rescaling Ta, D and N by l, the algebra (2.14) can be written as

[Ta,Rb] = iNηab , [M, Ta] = iǫa
bTb , [M,Ra] = iǫa

bRb ,

[D,Ra] = iTa , [D, Ta] =
i

l2
Ra , (2.26)

[Ta, Tb] = −
i

l2
Sǫab , [Ra,Rb] = iSǫab .

Since the generator S corresponds to a central extension, and since ηab has Minkowski

signature, we will refer to this algebra as the extended pseudo-Newton-Hooke algebra. For

l → ∞, the first two lines of this algebra provide a different real form of the complexified

Bargmann algebra.7 The analogy with the Bargmann algebra becomes clear if we view D

as the Hamiltonian, M as the generator of rotations, Ta as the momenta, Ra as the Galilei

boosts and N as the mass generator. For finite l, the first two lines of (2.26) are a different

real form of the Newton-Hooke algebra.8 The addition of the central element S ensures

that we can construct a non-degenerate invariant bilinear form on the algebra.

2.2 Chern-Simons action after contraction

As we review in appendix A, the Chern-Simons Lagrangian with gauge algebra so(2, 2)

reproduces the three-dimensional Einstein-Hilbert Lagrangian with cosmological con-

stant [42]. We now want to add the u(1) connections, whose components we parametrize

by

Au(1) = Z1Q1 + Z2Q2 = UN0 + ŪN̄0 . (2.27)

The relation between (Q1, Q2) and (N0, N̄0) is given in (2.8). Using the bilinear form

in (2.9) their contribution to the CS Lagrangian is

〈

Au(1), dAu(1)

〉

=
γu − γ̄u

2

(

1

l2
Z1 ∧ dZ1 + Z2 ∧ dZ2

)

+
γu + γ̄u

l
Z1 ∧ dZ2 . (2.28)

The total so(2, 2)⊕ u(1)⊕ u(1) connection then consists of the following components,

A = EATA +ΩAJA + Z1Q1 + Z2Q2. (2.29)

Recall that EA is the vielbein, ΩA is the spin connection and Z1 and Z2 are two bulk u(1)

gauge fields. In terms of these components, the total Chern-Simons Lagrangian is

LCS=
γs+ γ̄s

2l

(

2EA∧dΩBηAB+ǫABCE
A∧ΩB∧ΩC+

1

3l2
ǫABCE

A∧EB∧EC

)

+
γs− γ̄s

2

(

ΩA∧dΩBηAB+
1

3
ǫABCΩ

A∧ΩB∧ΩC+
1

l2
EA∧dEBηAB (2.30)

+
1

l2
ǫABCE

A∧EB∧ΩC

)

+
γu− γ̄u

2

(

1

l2
Z1∧dZ1+Z2∧dZ2

)

+
γu+ γ̄u

l
Z1∧dZ2.

7The Bargmann algebra would be obtained by replacing the 2D Minkowski metric ηab with the Euclidean

metric δab.
8The contraction we take is not one of the kinematical algebras classified by Bacry and Leblond (see

also [51–53] for a recent classification). Instead, it is a different real form of the complexified extended

Newton-Hooke algebra, which is isomorphic to two copies of Ec

2 as opposed to P c

2 . The Chern-Simons

theory for extended Newton-Hooke has been studied in [11, 29].
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Now let us determine the relation between the connection components in the standard

algebra and the contracted algebra. We use the l-rescaled bulk algebra in (2.26) and also

scale the Q1 generator correspondingly. The contracted connection can then be written as

A = τD + eaTa +mN + ωM+ ωaRa + ζS. (2.31)

Here, τ and ea are Newton-Cartan vielbeine and ωa and ω play the role of boost/spin

connections. The components m and ζ correspond to the central extensions of the algebra.

Taking into account that Ta, D and N have been rescaled by a factor of l, the basis

transformation in (2.12) then leads to the following identifications,

E2 = τ +
m

2α2
, Ea =

1

α
ǫb

aeb , Z1 = −τ +
m

2α2
,

Ω2 = ω +
ζ

2α2
, Ωa =

1

α
ωa , Z2 = −ω +

ζ

2α2
.

(2.32)

Using this in the action (2.30) and taking the limit α → ∞, the action on the contracted

algebra P c
2 × P c

2 becomes

L =
1

2l
(γ2 + γ̄2)

(

2τ ∧ dζ + 2ǫabe
a ∧ dωb + 2m ∧ dω −

1

l2
τ ∧ ǫabe

a ∧ eb

+τ ∧ ǫabω
a ∧ ωb + 2ηabe

a ∧ ωb ∧ ω

)

(2.33)

+
1

2
(γ2 − γ̄2)

(

ηabω
a ∧ dωb −

1

l2
ηabe

a ∧ deb +
2

l2
m ∧ dτ + 2ω ∧ dζ

+
2

l2
ηabτ ∧ ea ∧ ωb −

1

l2
ǫabe

a ∧ eb ∧ ω + ω ∧ ǫabω
a ∧ ωb

)

+
1

l
(γ1 + γ̄1)τ ∧ dω +

1

2
(γ1 − γ̄1)

(

1

l2
τ ∧ dτ + ω ∧ dω

)

.

This is the CS action for two copies of P c
2 , using the connection (2.31) and the metric (2.20).

This action was first derived in [11] for extended Newton-Hooke, which is a different real

form of the complexification of our contracted algebra. Since the vielbein ea now involves a

Lorentzian structure, we will refer to the bulk geometry as pseudo-Newton-Cartan gravity.

In the next section we will see that, in order for the limit to be properly defined on the

full phase space of AdS3 gravity, the distinguished vielbein τ has to correspond to the radial

direction. In contrast to the usual Fefferman-Graham procedure in AdS, which is simply a

choice of coordinates, the vielbein τ therefore defines an (absolute) radial foliation which

is intrinsic to the geometry. It would be very interesting to investigate the consequences

of this phenomenon on the RG flow of the corresponding field theories.

2.3 Generalization to higher-dimensional algebra

The Inönü-Wigner contraction of the 2D conformal algebra shown above can in fact be

achieved for any dimension. Consider the conformal algebra so(d+1, 2) in d+1 dimensions,

[D,Pa] = iPa, [D,Ka] = −iKa, [Pa,Kb] = −2iDηab − 2iMab ,

[Mab,Kc] = i (ηacKb − ηbcKa) , [Mab, Pc] = i (ηacPb − ηbcPa) ,

[Mab,Mcd] = i (ηacMbd + ηbdMac − ηadMbc − ηbcMad) , (2.34)
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where a, b = 0, . . . , d and ηab is the Minkowski metric. We add to this a u(1) generator

Q. We can also introduce another so(d, 1) algebra generated by Zab whose commutation

relations are

[Zab, Zcd] = i (ηacZbd + ηbdZac − ηadZbc − ηbcZad) . (2.35)

The total algebra is thus so(d+1, 2)⊕u(1)⊕ so(d, 1). In two spacetime dimensions we can

write Zab = Zǫab and then Q and Z are the Q1 and Q2 generators of section 2. Now let us

make the following α-dependent basis transformation,

Pa = αPa, Ka = αKa, D =
D

2
+ α2N , Q = α2N −

D

2
,

Mab =
Mab

2
+ α2Sab, Zab =

Mab

2
− α2Sab . (2.36)

We then see that for α → ∞ we obtain the algebra

[Pa,Kb] = −2iNηab − 2iSab, [D,Pa] = iPa, [D,Ka] = −iKa ,

[Mab,Kc] = i (ηacKb − ηbcKa) , [Mab,Pc] = i (ηacPb − ηbcPa) ,

[Mab,Mcd] = i (ηacMbd + ηbdMac − ηadMbc − ηbcMad) , (2.37)

[Mab,Scd] = i (ηacSbd + ηbdSac − ηadSbc − ηbcSad) .

If we had not included the Zab generators we would have found the algebra that is obtained

by setting Sab = 0. The latter algebra is the scaling nonconformal algebra in general

dimensions.

Importantly, the contraction of so(d + 1, 2) ⊕ u(1) leads to a (d + 1)-dimensional rel-

ativistic algebra with dilatation generators but no conformal generators. Instead of the

conformal generators we have the Ka generators and a central element N . By defining

Ta =
1

2
(Pa +Ka) , Ra =

1

2
(Pa −Ka) (2.38)

and by rescaling Ta, N and D using a length scale l, we obtain the algebra

[Ta,Rb] = iNηab, [D, Ta] =
i

l2
Ra, [D,Ra] = iTa,

[Mab, Tc] = i (ηacTb − ηbcTa) , [Mab,Rc] = i (ηacRb − ηbcRa) , (2.39)

[Mab,Mcd] = i (ηacMbd + ηbdMac − ηadMbc − ηbcMad) ,

For l → ∞ this is a different real form of the complexified Bargmann algebra in d dimen-

sions.

The algebra (2.39) is the d-dimensional generalization of (2.26) without the central

element S. Gauging this algebra leads to d-dimensional pseudo-Newton-Cartan geometry.

It is tempting to speculate that (2.39) governs the bulk gravity theory for near-BPS limits

of CFTs in any dimension.
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3 Phase space of the limit theory

Asymptotically AdS3 spacetimes can be described using the sl(2,R) Wess-Zumino-Witten

(WZW) theory corresponding to sl(2,R) Chern-Simons theory, see appendix A or [54] for

a review. In this section, we study the limit of the phase space corresponding to the WZW

model of so(2, 2)⊕ u(1)⊕ u(1) and show that it reproduces the full P c
2 ⊕ P c

2 WZW phase

space. We then write down the metric components in terms of the original WZW currents.

Next, we study the symmetries of the limit of the Poincaré and global AdS3 vacua and

show that these vacua can be written as a coset space. Finally, we show that the full

contracted symmetry algebra, including the central extensions, can be realized on a scalar

field coupled to a pseudo-Newton-Cartan background.

3.1 Mapping relativistic phase space to contracted phase space

In appendix A, we review the standard parametrization of the classical phase space of

so(2, 2) Chern-Simons theory on a manifold with a boundary in terms of the currents of a

WZW model. This involves a choice of radial component Aρ as well as a choice of chirality

and results in the expression (A.27), which reads

A = eiρ(L0+L̄0)
(

id+ F a(x+)Ladx
+ + F̄ a(x−)L̄a dx

−
)

e−iρ(L0+L̄0). (3.1)

The WZW phase space is parametrized by the three current components F a(x+). We

now want to include two u(1) factors. Following appendix A.3, we also have to choose a

chirality for these generators. In terms of the generators (Q1, Q2) and (N0, N̄0) introduced

in (2.27), we choose the following parametrization of the u(1)⊕ u(1) connection,

U = FNdx+ + Uρdρ , Ū = F̄ N̄dx− + Ūρdρ, (3.2)

UN0 + ŪN̄0 = Z1Q1 + Z2Q2. (3.3)

Here, we have defined

Z1
ρ =

l

2

(

Uρ + Ūρ

)

, Z2
ρ =

1

2

(

Uρ − Ūρ

)

, (3.4)

Z1 =
l

2

(

FNdx+ + F̄ N̄dx−
)

+ Z1
ρdρ, Z2 =

1

2

(

FNdx+ − F̄ N̄dx−
)

+ Z2
ρdρ. (3.5)

We allow for a contribution UρN0+ ŪρN̄0 coming from u(1)⊕u(1) in the radial component

of the connection. We will see below that such a contribution is crucial in order to have a

well-defined limit of the phase space.

We would like the full WZW phase space to be finite and nonzero in the α → ∞ limit.

This can be achieved by scaling the currents F a(x+) and F̄ a(x+) appropriately. For clarity,

we focus on the unbarred sector in the following,

A = eiρL0
(

id+
(

F+L+ + F 0L0 + F−L−

)

dx+
)

e−iρL0 + FNN0dx
+ + UρN0dρ. (3.6)

Plugging in the algebra redefinition (2.22) for sl(2,R)⊕ u(1),

L− = αL−, L+ = αN+, L0 =
1

2
L0 +

α2

2
N0, N0 = −

1

2
L0 +

α2

2
N0,

– 13 –
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the resulting connection can be written as

A =
1

2
(1− Uρ)L0dρ+

α2

2
(1 + Uρ)N0dρ

+

(

eραF+N+ +
1

2

(

F 0 − FN
)

L0 +
α2

2

(

F 0 + FN
)

N0 + e−ραF−L−

)

dx+.

(3.7)

For A to be finite as α → ∞, we have to set Uρ = −1. This means that the radial

component of this sl(2,R)⊕ u(1) factor of the full connection has to be set to

Aρ = L0 = L0 −N0. (3.8)

Furthermore, the following combinations have to be finite in the α → ∞ limit,

F+ := αF+, F0 :=
1

2

(

F 0 − FN
)

, F− := αF−, FN :=
α2

2

(

F 0 + FN
)

. (3.9)

With those redefinitions, the connection is now

A = L0dρ+ eρF+N+dx
+ + F0L0dx

+ + FNN0dx
+ + e−ρF−L−dx

+

= eiρL0
(

id+
(

F+N+ + F0L0 + FNN0 + F−L−

)

dx+
)

e−iρL0 . (3.10)

This is the most general P c
2 connection, which we obtain as a limit of the most general

sl(2,R) ⊕ u(1) connection! In other words, we can reach the full phase space of the P c
2

theory from a limit of the phase space of the sl(2,R) ⊕ u(1) theory. The total radial

component is

Aρ = L0 + L̄0 = L0 + L̄0 −N0 − N̄0 = L0 + L̄0 − lQ1, Z1
ρ = −l, Z2

ρ = 0. (3.11)

This background radial chemical potential offsets the dilatation generator L0 + L̄0 and

leads to the new dilatation generator L0 + L̄0.

Let us now study what the limit of the so(2, 2)⊕u(1)⊕u(1) Chern-Simons phase space

looks like in terms of the metric data. In appendix A we recall how metric data maps to

so(2, 2) connections, which are flat if the metric is on-shell. The map from the most general

sl(2,R) ⊕ sl(2,R) current components F a introduced in (A.27) to the vielbein and spin

connection data is laid out in (A.29).

We now want to show explicitly that the identification of the connection components

in (2.32) implies that the components of the contracted connection are nonzero and finite

in the α → ∞ limit. The vielbeine ea on the leaves of the foliation are given by

e0 = αE1 =
αl

2

(

−eρ
(

F+dx+ − F
+
dx−

)

+ e−ρ
(

F−dx+ − F
−
dx−

))

=
l

2

(

−eρ
(

F+dx+ −F
+
dx−

)

+ e−ρ
(

F−dx+ −F
−
dx−

))

, (3.12a)

e1 = αE0 =
αl

2

(

eρ
(

F+dx+ + F
+
dx−

)

+ e−ρ
(

F−dx+ + F
−
dx−

))

=
l

2

(

eρ
(

F+dx+ + F
+
dx−

)

+ e−ρ
(

F−dx+ + F
−
dx−

))

. (3.12b)
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Next, τ and m can be expressed in terms of the currents as follows.

τ =
1

2

(

E2 − Z1
)

=
1

2

[

ldρ+
l

2

(

F 0dx+ + F̄ 0dx−
)

− Z1

]

= ldρ+
l

2
F0dx+ +

l

2
F

0
dx−,

m = α2
(

E2 + Z1
)

= α2

[

ldρ+
l

2

(

F 0dx+ + F̄ 0dx−
)

+ Z1

]

= lFNdx+ + lF̄ N̄dx−. (3.13)

Note that knowledge of the components we have listed so far specifies all functions (F a, F̄ a).

In particular, the remaining components can be integrated out. Explicitly, ω and ζ are

ω =
1

2

(

Ω2 − Z2
)

=
1

2

[

1

2

(

F 0dx+ − F̄ 0dx−
)

− Z2

]

=
1

2
F0dx+ −

1

2
F

0
dx−,

ζ = α2
(

Ω2 + Z2
)

= α2

[

1

2

(

F 0dx+ − F̄ 0dx−
)

+ Z2

]

= FNdx+ − F̄ N̄dx−. (3.14)

Finally, the ωa can be expressed as

ω0 = αΩ0 =
1

2

(

eρ
(

F+dx+ −F
+
dx−

)

+ e−ρ
(

F−dx+ −F
−
dx−

))

, (3.15a)

ω1 = αΩ1 =
1

2

(

−eρ
(

F+dx+ + F
+
dx−

)

+ e−ρ
(

F−dx+ + F
−
dx−

))

. (3.15b)

We thus see that all the metric data is manifestly finite in the α → ∞ limit.

3.2 Solutions and Killing symmetries

We now want to study the limit of the Poincaré and global AdS3 connections in more

detail. In particular, we want to find the equivalent of the Killing symmetries for the

pseudo-Newton-Cartan metric data.

Let us use M to denote a bulk spacetime world index. Consider a local gauge trans-

formation with parameter Λ = ξMAM +Σ. Since the translation generators couple to the

vielbeine, A contains all translation generators. Without loss of generality, we can there-

fore choose ξM such that Σ contains no translation generators. For our contracted bulk

algebra (2.26) this means that Σ can be parametrized by

Σ = λaRa + λM+ σN + βS . (3.16)

On-shell, the connection A then transforms as follows under Λ,

δAM = LξAM + ∂MΣ− i[AM ,Σ] . (3.17)

We see that ξM corresponds to a diffeomorphism of the three-dimensional base manifold,

while Σ generates internal transformations in the tangent bundle. Using the connection

components defined in (2.31), we see that the Newton-Cartan metric data τM , mM and

hMN = −ηabe
a
MebN transforms as9

δτM = LξτM , (3.18)

δhMN = LξhMN − λa (e
a
MτN + eaNτM ) , (3.19)

δmM = LξmM + ∂Mσ + λae
a
M . (3.20)

9Note that we use a nonstandard sign in the definition of hMN to compensate for the exchange of indices

that occurs in (3.12). This exchange is ultimately due to the fact that we have defined Ta = (Pa +Ka)/2l

without the ǫ b

a factor in the uncontracted generator Ta = ǫ b

a (Pb +Kb)/2l.
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First, consider the connection corresponding to pure Poincaré AdS3, which has van-

ishing Virasoro and affine u(1) currents. The corresponding Newton-Cartan metric data is

τ =
dr

r
, m = 0 , e0 =

dx

r
, e1 =

dt

r
,

hMNdxMdxN =
(

e0Me0N − e1Me1N
)

dxMdxN =
1

r2
(

−dt2 + dx2
)

.

(3.21)

The Killing vectors of this solution can be found by solving (3.18)–(3.20),

ξt = ct+ µx+ at +
1

2
btr2 , ξx = cx+ µt+ ax +

1

2
bxr2 , ξr = cr , (3.22)

λ0 = bxr , λ1 = −btr , σ = btt− bxx . (3.23)

Here, aa and ba are arbitrary (constant) two-vectors. Note that the internal transforma-

tions parametrized by λ drop out. They are internal Lorentz transformations of the frame

defined by ea which are always present but not necessary for our present considerations,

so we will set λ = 0 in the following.

We can collect six Killing vectors in the following diffeomorphism generators,

Pa = −i∂a , Ka = −ir2∂a , D = −i(r∂r + xa∂a) , M = −iǫa
bxa∂b . (3.24)

They form a representation of the generators in (2.14) without central elements in terms

of bulk diffeomorphisms. Here, r is a radial coordinate and xa = (t, x) parametrize the

boundary. Using x± = x± t the Killing vectors split into two commuting sets,

L−1 = −i∂+ , L0 = −i
(

x+∂+ +
r

2
∂r

)

, N1 = −ir2∂− , (3.25)

L̄−1 = −i∂− , L̄0 = −i
(

x−∂− +
r

2
∂r

)

, N̄1 = −ir2∂+ , (3.26)

These are three out of four generators of P c
2 . Note that the central elements are not visible

at the level of Killing vectors. As we will show in the next subsection, they only act as

internal symmetries on fields.

Second, the contraction of global AdS3 with vanishing u(1) currents leads to

τ = dρ , hMNdxMdxN = − cosh2 ρdτ2 + sinh2 ρdϕ2 , m = 0 , (3.27)

where ϕ is periodic with period 2π. As in Einstein gravity, this solution can be related to

the Newton-Cartan metric data of the Poincaré solution we studied above. Consider (3.18)–

(3.20) and leave out the diffeomorphisms. These transformations can be exponentiated to

the following finite transformations,

τ ′M = τM ,

m′
M = mM + ∂Mσ + λae

a
M +

1

2
λaλ

aτM , (3.28)

h′MN = hMN − λae
a
MτN − λae

a
NτM − λaλ

aτMτN .

We first perform the coordinate transformation

t =
1

2
(R2 + 1)τ , x =

1

2
(R2 − 1)ϕ , r = R (3.29)
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where R = eρ so that hMNdxMdxN in (3.21) matches hMNdxMdxN in (3.27) up to terms

involving dR. Then we find a λa such that the transformed h′MNdxMdxN is exactly (3.27),

which can be achieved by taking

λ0 = −Rϕ , λ1 = −Rτ . (3.30)

Finally, to make sure that the transformed m connection remains equal to zero, we set σ to

σ =
1

4
(R2 + 1)τ2 −

1

4
(R2 − 1)ϕ2 . (3.31)

Now that we have related the pseudo-Newton-Cartan contractions of global and

Poincaré AdS3, we can also identify their Killing vectors. Two manifest Killing vectors

in the global vacuum (3.27) are ∂τ and ∂ϕ. Using the coordinate transformation (3.29) we

see that the global AdS3 time and cylinder rotation generators correspond to

∂τ =
1

2
(r2+1)∂t =

1

2
(K0+P0) = T0 , ∂ϕ =

1

2
(r2−1)∂x =

1

2
(K1−P1) = −R1 . (3.32)

We see that T0 and R1 are the contracted versions of the global AdS3 generators T1 and J1
defined in (2.3), respectively. Note that the AdS algebra (2.3) has an inner automorphism,

corresponding to a rotation in the 1-2 plane, which sends (T0, T1, T2) 7→ (T0, T2,−T1) and

(J0, J1, J2) 7→ (J0, J2,−J1). In global AdS3, T1 is the generator of global AdS time. The

inner automorphism means that in the AdS3 geometry, a Killing vector for T1 can equally

be viewed as a generator for dilatations T2 = D/l. Put differently, there are coordinate

transformations, generated by the isometry corresponding to the inner automorphism, that

map global AdS3 back to global AdS3 and map ∂τ from T1 to T2. This automorphism,

which is important for the state-operator map in AdS/CFT, is no longer present after we

take the contraction.

Coset description. The vacuum solutions (3.21) and (3.27) are homogeneous space-

times. Just as one can think of AdS3 as the coset SO(2, 2)/SO(2, 1), we could expect to be

able to write these solutions as a coset space. Indeed, this can be done using the description

of nonrelativistic geometries as coset spaces recently studied in [26].

For a general Lie group G with subgroup H, we denote its coset by M = G/H. We split

the Lie algebra g in the subalgebra h and its complement m. Note that m is generically

not a Lie algebra, and M is generically not a Lie group. Choose a basis of g that splits in

elements of the subalgebra h, which we denote by TI , and elements of the coset m, which

we denote by Ta. We will use I, J,K . . . for indices of h and a, b, c, . . . for indices of m.

The coset space M is a manifold of dimension |m|, which we can parametrize using

coordinates xa. Now choose a coset representative

g =

|m|−1
∏

a=0

exp (xaTa) ∈ G. (3.33)

To construct an H-invariant metric on M, we have to find a symmetric bilinear form Ω on

g/h that is invariant under the adjoint action of h. If we want to describe non-Riemannian
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geometries, the bilinear form Ω is degenerate and the corresponding construction has been

worked out in [26]. Instead of a non-degenerate bilinear form, one has to use a pair of

degenerate bilinear forms (Ωab,Ω
ab) that are h-invariant,

f c
aI Ωcb + f c

bI Ωca = 0, Ωacf b
cI +Ωbcf a

cI = 0 . (3.34)

It can be shown that for an appropriate choice of m and h, the degenerate pair of bilinear

forms (Ωab,Ω
ab) on the coset m exactly induces the degenerate (pseudo)-Newton-Cartan

metric on the coset M. The form Ωab, which turns out to be of rank one, is used to define

the one-form τ , while Ωab turns out to be rank two for three-dimensional spacetime and

defines the inverse spatial metric hµν . For more details, we refer the reader to [26].

For the case we are interested in we start with the group G = Pc
2 ⊗ Pc

2. To obtain

a three-dimensional pseudo-Newton-Cartan manifold we have to quotient out a subgroup

with five generators. A natural candidate is Pc
2 ⊗U(1) where Pc

2 is the diagonal subgroup

of Pc
2 ⊗Pc

2.

Using the basis in (2.26), the diagonal subgroup plus the U(1) of Pc
2⊗Pc

2 is generated

by h = {R1,R0,M,S,N} while the coset generators are m = {D, T0, T1}.
10 The corre-

sponding h-invariant bilinear forms are Ωab ∝ diag{1, 0, 0} and Ωab ∝ diag{0,−1, 1}. By

expanding the Maurer-Cartan 1-form g−1dg as follows

g−1dg = iTae
a + iTIm

I (3.35)

we can read off the coset vielbeine ea. The metrics are then τMτN = Ωabe
a
MebN and

hMN = ΩabeMa eNb . We can generalize this construction to higher dimensions using the

contracted algebra in section 2.3.

Now let us turn to the two solutions considered above. For the Poincaré AdS3 limit,

we choose the following coset representative

g = ei(T1+R1)xei(T0+R0)teiDρ . (3.36)

The Maurer-Cartan 1-form is

g−1dg = eρ(T1 +R1)idx+ eρ(T0 +R0)idt+ iDdρ . (3.37)

The corresponding vielbeine are

τ = dρ, e0 = eρdt, e1 = eρdx . (3.38)

By defining r = e−ρ, we reproduce the pseudo-Newton-Cartan geometry in Poincaré coor-

dinates (3.21). If we instead choose the coset representative to be

g = eiR1ϕeiT0τeiDρ (3.39)

we reproduce the limit of the global AdS3 solution (see appendix A.2)

g−1dg = iT0 cosh ρdτ + iT1 sinh ρdϕ+ iDdρ+ iR0 sinh ρdτ + iR1 cosh ρdϕ . (3.40)

All these solutions locally have an algebra of Killing symmetries isomorphic to the centerless

two-dimensional Poincaré algebra in (3.25). In order to see the central extensions, it is cru-

cial to add matter fields which we now show using the simple example of a bulk scalar field.

10Here, we have used the automorphism T0 ↔ R1, D ↔ M and N ↔ S.
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3.3 Central extension on bulk scalar field

Consider the following bulk action of a complex scalar field coupled to pseudo-NC geometry,

S =

∫

d3xe
[

ivM (ψDMψ∗ − ψ⋆DMψ)− hMNDMψDNψ⋆
]

. (3.41)

The covariant derivative is DMψ = (∂M − imM )ψ and e is the determinant of the matrix

(τM , eaM ). The inverse metric hMN is defined as hMN = ηabeMa eNb where the square matrix

(vM , eMa ) is the inverse of (τM , eaM ), so we have vMτM = 1, vMeaM = 0, eMa τM = 0 and

eMa ebM = δba. Using these inverse relations, (3.28) implies that vM and hMN transform as

h′MN = hMN , v′M = vM − λaeMa . (3.42)

This transformation together with (3.28) leaves the action (3.41) invariant if ψ transforms as

ψ = e−iσψ′ . (3.43)

Since the action (3.41) is invariant under the local pseudo-NC gauge symmetries it is

guaranteed that it is invariant under the Killing symmetries of the background geometry.

What is interesting is that some of these will act in a nontrivial manner on ψ giving rise to

central extensions of the algebra of Killing symmetries. For example, if we evaluate (3.41)

on the background (3.21), we obtain the action

S =

∫

dρdx−dx+
[

i (ψ∂ρψ
∗ − ψ⋆∂ρψ)− 2e2ρ (∂+ψ∂−ψ

⋆ + ∂−ψ∂+ψ
⋆)
]

. (3.44)

This action is invariant under the following transformations

x′± = x± + a± ,

ρ′ = ρ+
1

2
log λ+ , x′+ = λ+x

+ , ψ(ρ, x−, x+) = λ
1/2
+ ψ′(ρ′, x′−, x′+) ,

ρ′ = ρ+
1

2
log λ− , x′− = λ−x

− , ψ(ρ, x−, x+) = λ
1/2
− ψ′(ρ′, x′−, x′+) , (3.45)

x′+ = x+ + e2ρv+ , ψ(ρ, x−, x+) = eiv
+x′−

ψ′(ρ′, x′−, x′+) ,

x′− = x− + e2ρv− , ψ(ρ, x−, x+) = eiv
−x′+

ψ′(ρ′, x′−, x′+) ,

ψ(ρ, x−, x+) = eiqψ′(ρ, x−, x+) ,

where a±, λ±, v
± and q are constants. These transformations form the group Pc

2 ⊗ Pc
2

where the two extensions are identified. In other words we have under N and S

Nψ = ψ , Sψ = 0 . (3.46)

The infinitesimal version of (3.45) is given by the Killing vectors (3.25) together with an

additional internal transformation of the form

L−1ψ = −i∂+ψ , L0ψ = −i

(

x+∂+ +
1

2
∂ρ +

1

2

)

ψ , N1ψ = −i
(

e2ρ∂− + ix+
)

ψ ,

L̄−1ψ = −i∂−ψ , L̄0ψ = −i

(

x−∂− +
1

2
∂ρ +

1

2

)

ψ , N̄1ψ = −i
(

e2ρ∂+ + ix−
)

ψ .

(3.47)

It would be interesting to see if this scalar field couples to an operator on the boundary

and to work out the representation of this operator under the global symmetry group.
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4 Asymptotic symmetry algebras

In so(2, 2) Chern-Simons theory, the asymptotic Virasoro symmetries of AdS3 can be un-

derstood in terms of a Drinfeld-Sokolov reduction of the corresponding boundary sl(2,R)

WZW model. The reduction arises from a Dirichlet constraint on the leading radial com-

ponents of the metric. See appendix B for a review. In terms of the Newton-Hooke metric

data, we can see from (3.12) that constraining the leading-order behavior of ea corresponds

to setting F+ ≡ 1. The P c
2 connection is then

a+ = N+ + F0L0 + F−L− + FNN0. (4.1)

This restriction corresponds to adding a constraint χ to the initial Hamiltonian H0,

χ =

∫

dxΛ(x)
(

F+(x)− 1
)

, HT = H0 + χ. (4.2)

Here, Λ is an arbitrary function which acts as a Lagrange multiplier imposing F+(x) ≡ 1.

This constraint generates gauge transformations through the Poisson bracket (B.6) on the

WZW phase space,

{Fa(x+),Fb(y+)} = −
1

2
fab

cF
c(x+)δ(x+ − y+) +

1

2
∂x+δ(x+ − y+)Ωab. (4.3)

The structure constants are defined via [Ta, Tb] = if c
ab Tc and indices should be raised and

lowered using the invariant bilinear form Ωab = 〈Ta, Tb〉. Since we consider a nondegenerate

form, its inverse exists and is denoted by Ωab. Using the bilinear form in (2.24) and the

structure constants from (2.18), we find that the constraint χ generates the following gauge

transformations on the currents in (4.1),

δΛF
0(x) = {χ,F0(x)} =

Λ(x)F+(x)

γ1 + 2α2γ2
≡

Λ(x)

γ1 + 2α2γ2
, (4.4a)

δΛF
−(x) = {χ,F−(x)} =

∂Λ(x) + Λ(x)F0(x) + Λ(x)FN (x)/α2

2γ2 + γ1/α2
, (4.4b)

δΛF
N (x) = {χ,FN (x)} =

Λ(x)F+

2γ2 + γ1/α2
≡

Λ(x)

2γ2 + γ1/α2
. (4.4c)

One could use these transformations to set part of the currents to zero. However, to

make sure that no information is lost in the contraction, we will not do any gauge fixing.

Instead, we will work with what we refer to as physical currents, which are combinations

of the currents in (4.1) that are invariant under the gauge transformations generated by

the constraint. This method is reviewed in appendix B for the reduction to Virasoro.

In this section, we will first compute the asymptotic symmetry algebra (ASA) at infinite

contraction parameter α in section 4.1. This gives a warped Virasoro-affine u(1) algebra.

We then work out explicitly the finite α ASA in section 4.2, where we also show that its

limit is well-defined and reproduces the α → ∞ result.

However, at finite α the Chern-Simons algebra is equivalent to sl(2,R) ⊕ u(1), as

we discussed in the previous section. Its natural ASA is an uncoupled Virasoro-affine u(1)

algebra, as we demonstrate in section 4.3. We then show explicitly how the coupled algebra

at finite α can be obtained from a redefinition of the uncoupled algebra.
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4.1 Warped Virasoro algebra in limit theory

Only certain combinations of the Fa in (4.1) correspond to a physical, conserved current

with nontrivial boundary charges. Such ‘physical’ currents should be invariant under the

gauge transformations in (4.4). In the limit α → ∞, the following combinations are

invariant,

F− −F0FN − ∂FN , F0 . (4.5)

The physical currents should be made up out of such invariant building blocks. Recall that

the infinitesimal boundary charges for Chern-Simons theory are given by (B.4),

δQλ = −2

∮

∂Σ
〈λ, δλa〉. (4.6)

We contracted the Chern-Simons algebra, but the manifold on which the Chern-Simons

connections are defined is unchanged. In other words, the fibers are different but the base

manifold is still a cylinder, so we parametrize the boundary cycle ∂Σ = S1 using a periodic

coordinate ϕ. For a gauge parameter λ to preserve the constrained form of the connection

in (4.1), we need

λ0 = F0λ+ − ∂λ+. (4.7)

Then the infinitesimal charge is given by

δQλ = −2

∮

dϕ〈λ, δa+〉 =

∮

dϕ
(

−γ1λ
0δF0 + 2γ2

(

λ+δF− − λ0δFN − λNδF0
))

(4.8)

=

∮

dϕ
(

λ+
(

−γ1
[

F0δF0 + ∂δF0
]

+ 2γ2
[

δF− −F0δFN − δ∂FN
])

− 2γ2λ
NδF0

)

.

But now we have a problem: the F0δFN -term is not a total variation, so the infinitesimal

charge is not integrable as it stands. To fix this, we can define a new parameter λ̄N via

λN = λ̄N + FNλ+. (4.9)

Then the infinitesimal charge integrand is integrable and can be written as

−2〈λ, δa+〉 = λ+ δ

(

−γ1

[

1

2
(F0)2 + ∂F0

]

+ 2γ2
[

F− −F0FN − ∂FN
]

)

− λ̄N δ
(

2γ2F
0
)

= λ+δT + λ̄NδJ . (4.10)

Here, we have defined the two physical currents T and J ,

T = −γ1

[

1

2
(F0)2 + ∂F0

]

+ 2γ2
[

F− −F0FN − ∂FN
]

, (4.11)

J = −2γ2F
0. (4.12)

Indeed, these currents are composed out of the combinations in (4.5) and are therefore

invariant under the constraint gauge transformations. Under the residual transformations

satisfying (4.7), the physical currents transform as follows,

δT = λ+∂T + 2T ∂λ+ + γ1∂
3λ+ + J ∂λ̄N − 2γ2∂

2λ̄N , (4.13)

δJ = λ+∂J + J ∂λ+ + 2γ2∂
2λ+. (4.14)
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The Poisson bracket of the boundary charges can be determined using the WZW Poisson

bracket (4.3). First, it is useful to split Qλ into a Virasoro and affine u(1) charges,

Qλ =

∮

dϕ
(

λ+T + λ̄NJ
)

= QVir[λ+] +Qu(1)[λ̄N ] . (4.15)

They satisfy the following algebra,

{QVir[λ+], QVir[µ+]} = QVir
[

µ+∂λ+ − λ+∂µ+
]

+ γ1

∮

dϕµ+∂3λ+ , (4.16)

{QVir[λ+], Qu(1)[µ̄N ]} = −Qu(1)
[

λ+∂µ̄N
]

+ 2γ2

∮

dϕµ̄N∂2λ+ . (4.17)

Following (B.21), if we expand the Virasoro and affine u(1) charges in terms of the modes

Lm = −QVir[eimϕ] , Nm = −Qu(1)[eimϕ] , (4.18)

we find that these modes satisfy the following commutation relations

{Lm,Ln} = −i(m− n)Lm+n − 2πiγ1m
3δm+n,0, (4.19)

{Lm,Nn} = inNm+n − 4πγ2m
2δm+n,0. (4.20)

Replacing i{·, ·} by [·, ·], and shifting the zero modes of the algebra using Lm → Lm +

πγ1δm,0 and Nm → Nm + 4πγ2iδm,0, this yields

[Lm,Ln] = (m− n)Lm+n + 2πγ1m(m2 − 1)δm+n,0, (4.21a)

[Lm,Nn] = −nNm+n − 4πiγ2m(m+ 1)δm+n,0. (4.21b)

This is a warped Virasoro algebra with an extension in the Virasoro-affine u(1) commu-

tator and vanishing level of the affine u(1). It appeared before in the context of Rindler

holography [55] with vanishing Virasoro central charge. Here, we find it using a systematic

Drinfeld-Sokolov reduction of a P c
2 WZW model.

4.2 Asymptotic symmetries from contraction

In fact we can do more. As we explained for the Chern-Simons algebra in section 2, the

Inönü-Wigner-type contraction is nothing but a basis transformation until we take α → ∞.

We now want to demonstrate that this is also true on the level of the asymptotic symmetry

algebra. To do that we first repeat the above computation at finite α. Again we start with

a+ = N+ + F0L0 + F−L− + FNN0. (4.22)

We now use the finite α commutation relations from (2.18). The constrained connection is

then preserved by

λ0 =

(

F0 −
FN

α2

)

λ+ − ∂λ+ −
λN

α2
. (4.23)
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Now let us write out the expression for infinitesimal charges. As before, we will see that a

redefinition of λN will be necessary to obtain an integrable expression. Using the bilinear

form at finite α in (2.24), we find

δQλ=−2

∮

dϕ〈λ,δa+〉 (4.24)

=−2

∮

dϕ
(

−λ+
(

γ2+
γ1
2α2

)

δF−+λ0
(

γ2δF
N +

γ1
2
δF0

)

+λN
( γ1
2α4

δFN +γ2δF
0
))

=−2

∮

dϕλ+

[

−
(

γ2+
γ1
2α2

)

δF−+

(

F0+
FN

α2

)

(

γ2δF
N +

γ1
2
δF0

)

+γ2δ∂F
N

+
γ1
2
δ∂F0

]

−2

∮

dϕλN
(

γ2−
γ1
2α2

)

(

δF0−
δFN

α2

)

.

Again, we see that the infinitesimal charge is not integrable, which we fix by setting

λ+ = λ+, λN = λ̄N + FNλ+. (4.25)

The boundary charges can then be written as Qλ =
∮

dϕ
(

λ+T + λ̄NJ
)

with currents

T = γ1

(

F−

α2
−

1

2
(F0)2 − ∂F0 −

1

2α4

(

FN
)2
)

+ 2γ2
(

F− −FNF0 − ∂FN
)

, (4.26)

J =
(

2γ2 −
γ1
α2

)

(

F0 −
FN

α2

)

. (4.27)

Their variation is given by

δT = λ+∂T + 2T ∂λ+ + γ1∂
3λ+ + J ∂λ̄N − 2

(

γ2 −
γ1
2α2

)

∂2λ̄N , (4.28)

δJ = λ+∂J + J ∂λ+ +
(

2γ2 −
γ1
α2

)

(

∂2λ+ +
2∂λ̄N

α2

)

. (4.29)

As before we can write the charge algebra in terms of the Fourier modes

Ln = −

∮

dϕ einϕT (x+), Nn = −

∮

dϕ einϕJ (x+). (4.30)

They satisfy the following commutation relations,

[Lm,Ln] = (m− n)Lm+n + 2πγ1m
3δm+n,0, (4.31a)

[Lm,Nn] = −nNm+n − 2πim2
(

2γ2 −
γ1
α2

)

δm+n,0, (4.31b)

[Nm,Nn] = −
4πm

α2

(

2γ2 −
γ1
α2

)

δm+n,0. (4.31c)

This is a Virasoro algebra with coupled affine u(1) algebra and nonzero affine u(1) level.

The contracted algebra can be obtained by sending α → ∞, and we indeed reproduce the

asymptotic symmetry algebra at infinite α in (4.21).
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4.3 Relation to uncoupled algebra

This result may seem confusing. One would expect that the asymptotic symmetry algebra

of an sl(2,R) ⊕ u(1) Chern-Simons theory would be an uncoupled Virasoro and affine

u(1) algebra. In fact, we can easily include a u(1) generator N0 in the computation of

appendix B and show that this is the case. The constrained connection, residual gauge

transformations and boundary charges are then

a+ = L+ + F 0L0 + F−L− + FNN0 , (4.32)

λ = λ+L+ + (F 0λ+ − ∂λ+)L0 + λ−L− + λNN0 , (4.33)

Qλ = −2

∮

〈λ, δa+〉 =

∮

dϕ
(

λ+T + λNJ
)

= QVir[λ+] +Qu(1)[λN ] . (4.34)

Here, we have defined the physical currents

T = 2γs

(

F− −
1

4
(F 0)2 −

1

2
∂F 0

)

, J = −γuF
N . (4.35)

Indeed, they transform as Virasoro and affine u(1) currents,

δT = λ+∂T + 2T∂λ+ + γs∂
3λ+, δJ = −γu∂λ

N . (4.36)

Again, we can decompose these currents in Fourier modes,

Ln = −

∮

dϕ einϕ T (x+), Nn = −

∮

dϕ einϕJ(x+). (4.37)

These charges satisfy an uncoupled Virasoro-affine u(1) algebra with nonzero affine level,

[Lm, Ln] = (m− n)Lm+n + 2πγsm
3δm+n,0, (4.38a)

[Lm, Nn] = 0, (4.38b)

[Nm, Nn] = 2πγumδm+n,0. (4.38c)

In fact, there is no contradiction here. The uncoupled symmetries can be transformed

into the coupled algebra at finite α in (4.31). It is easiest to see this on the level of the

current transformations. The first step is to match δJ with δJ . For this, define

− γuλ
N = λ+J −

2γu
α2

(

∂λ+ +
2λ̄N

α2

)

. (4.39)

Then δJ reproduces (4.29). To obtain the correct Virasoro transformations, define

T = T −
α4

8γu
J2 −

α2

2
∂J. (4.40)

This current satisfies the coupled transformation relation (4.28). The identification between

the coupled and uncoupled modes (Ln,Nn) and (Ln, Nn) then follows by expanding the

above. As generators of symmetries on a classical phase space, the coupled and uncoupled

algebras are therefore equivalent.
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5 Discussion and outlook

We conclude with a discussion and perspectives for further work.

The results of this paper show that many of the features of the AdS3/CFT2 correspon-

dence can be realized in a novel holographic correspondence, involving a pseudo-Newton-

Cartan theory in the bulk and a particular near-BPS limit on the boundary. This provides

a concrete model of beyond-AdS/CFT holography, opening up many avenues of further

exploration in terms of generalizing other well-studied aspects of AdS/CFT.

As one possible direction, we note that the two copies of the Virasoro spacetime algebra

in AdS3/CFT2 can be induced from a sl(2,R) ⊕ sl(2,R) current algebra on the string

worldsheet [56]. Here, the spacetime chirality is closely related to worldsheet chirality. For

example, the left moving chiral algebra in spacetime is lifted from left movers on the string

worldsheet and vice versa. Moreover, the string worldsheet analysis can give a microscopic

interpretation of the central charge in terms of string winding modes. It is expected that

similar string theory analyses should be valid even after we take the Inönü-Wigner limit.

One would expect the corresponding world-sheet theory to be a WZW model on P c
2 , similar

to what is studied in [46, 57]. In connection to this, it is interesting to note that the target

space of such a model can easily be inferred from the results of [46] by replacing Ec
2 with

P c
2 . This leads precisely to a pp-wave like geometry with signature (−1,−1, 1, 1), i.e. two

‘times’, such that after a null reduction one obtains a pseudo-NC geometry in the same

way that pp-waves connect to NC geometry after null reduction [22, 58–60].

Moreover, it would be interesting to study string theory on pseudo-Newton-Cartan

gravity, using the AdS3/CFT2 results of ref. [56], while one could also examine whether

the Wakimoto representation of sl(2,R) ⊕ u(1) on the worldsheet [61] can reproduce the

representations of [57] by taking our contraction limit. Moreover, in a recent work [62] it was

shown that NC geometry appears as the target space in nonrelativistic string theory, which

may also be of use to understand strings on pseudo-NC geometry. In connection to this,

it also seems relevant to note that the nonrelativistic limit of AdS/CFT considered in [63]

shows that the resulting nonrelativistic string action has the supersymmetric Newton-

Hooke group as a symmetry group.

Another worthwhile direction to pursue is to employ the concrete AdS/CFT model

coming from the D1-D5 brane system in type IIB superstring theory, which provides a

duality betweenN = (4, 4) superconformal field theory and string theory in AdS3 [1, 56, 64].

Thus our gravity theory should have a supersymmetric extension, which is related to an

appropriate limit of N = (2, 2) supergravity in three dimensions [65]. In fact, the bosonic

sector of this supergravity theory exactly has two u(1) gauge fields as R-charge currents so

directly fits into the symmetry algebra we took as our starting point. Understanding this

string theory and supergravity embedding after our limit should provide a rich structure

as well.

At the level of solutions of pseudo-NC gravity, we have focused on the vacuum but an

obvious next step is to examine the limit of the BTZ black hole [66] and its physics. Another

class of solutions that could shed further light on the theory are the BPS supergravity

solutions of [67–74] which are dual to CFT chiral primaries. More generally, one may wish
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to address bulk reconstruction in our setup. While for AdS3/CFT2 the entire relativistic

bulk should be reconstructed from the boundary conformal field theory, pseudo-NC gravity

represents in some sense a more minimal setup. In this case, we only need to reconstruct

a foliation structure, namely two-dimensional pseudo-Riemannian geometry fibered over a

dilatation one-form. Another, related direction would be to see if there is an analogue of

holographic entanglement entropy [75] for our correspondence. For this, a minimal setup

can be constructed using Chern-Simons theory [76, 77]. It would also be very interesting to

investigate the implications of the radial fibration on the RG flow of the dual field theories.

More generally, it will be important to better understand the field theory that is dual

to pseudo-NC gravity. In this connection it is worth remarking that our limit has a strong

resemblance to the limit that gives rise to Spin Matrix Theory [5], which follows from the

correspondence between AdS5/CFT4. To see this, define a coupling constant g = α−2 and

identify the energy E and charge J as E = α−2D = N + g
2D and J = −α−2Q1 = N − g

2D

respectively. By the state-operator map the dilatation operator corresponds to the energy

of states of the theory on the cylinder. In Spin Matrix Theory, N is the length of the

spin chain and D is the one-loop dilatation operator of the spin chain. The limit α → ∞

zooms in on states close to E = J which is the lowest lying state in the spectrum, so

by unitarity we have E ≥ J . The Spin Matrix Theory limit [5] corresponds to sending

g → 0 while keeping (E − J)/g fixed, which is precisely what happens in our limit for the

operators D and Q1 as we take α → ∞. This connection with Spin Matrix Theory seems to

suggest that the symmetry of Spin Matrix Theory might be related to an another real form

of the complexified Newton-Hooke algebra. On the other hand, applied to AdS3/CFT2,

especially in relation to the N = (4, 4) superconformal field theory and its possible spin

chain interpretation (see [78] for recent progress), this suggests that there might be some

form of two-dimensional Spin Matrix Theory.

Regarding the field theory interpretation, it is important to emphasize that the finite

α identifications we have made in section 4.3 are entirely classical. We have found an

infinite-dimensional algebra of conserved charges for classical Chern-Simons theory, which

correspond to real-valued functions on the phase space. Upon quantization, these charges

should lead to unitary operators on a Hilbert space of states. However, our classical

computations do not tell us what the inner product or Hermitian conjugate on this Hilbert

space should be. We have only obtained the algebra of symmetries that should be realized

on it. Unitary representations of the coupled algebra do exist, and [55] has explained how

to construct induced representations using its semidirect product structure. It would be

very interesting to study their consequences from a field theory perspective. While the

bulk may have allowed us to identify the relevant symmetries, we believe that field theory

will be our guide towards their representations.

Finally, it could be interesting to find analogues of our holographic correspondence,

such as higher spin and/or higher-dimensional generalizations. Following the higher spin

AdS3 work of e.g. [79], and its Chern-Simons theory construction [80, 81], it is possible to

find connections between the non-AdS higher spin holography of [82, 83], TMG hologra-

phy [84–89] and nonrelativistic higher spin works of [90] to the higher spin generalization

of our work.
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A Review of so(2, 2) Chern-Simons theory

Here we review some facts from the standard so(2, 2) relativistic AdS3 Chern-Simons theory

that will be of use in the main text. In particular, we recall the identification with Einstein

gravity with negative cosmological constant and find the connection corresponding to the

global AdS3 metric. We also see how the fact that so(2, 2) splits in two copies of sl(2,R)

allows for a simple way to deal with the boundary terms in the variational problem of the

Chern-Simons action.

A.1 Connection and action

The so(2, 2) Chern-Simons (CS) connection consists of the vielbein and spin connection,

A = EATA +ΩAJA = AASA + ĀAS̄A , AA = ΩA +
1

l
EA , ĀA = ΩA −

1

l
EA . (A.1)

where SA, S̄A are so(2, 1) generators. In terms of the so(2, 2) generators in (2.4),

SA =
1

2
(JA + lTA) , S̄A =

1

2
(JA − lTA) . (A.2)

We work with Hermitian generators, which satisfy the commutation relations

[SA, SB] = iǫ C
AB SC ,

[

S̄A, S̄B

]

= iǫ C
AB S̄C . (A.3)

The invariant Killing metric is given in the SA basis by

〈SA, SB〉 =
1

2
γsηAB, 〈S̄A, S̄B〉 = −

1

2
γ̄sηAB, 〈SA, S̄B〉 = 0 . (A.4)

Here, γs is an arbitrary real constant.11 With this decomposition, the so(2, 2) Chern-

Simons Lagrangian density can be split into two so(2, 1) factors

LCS =

〈

A, dA−
2i

3
A ∧A

〉

= LCS[A] + LCS[Ā] ,

LCS[A] =
1

2
γs

(

ηABA
A ∧ dAB +

1

3
ǫABCA

A ∧AB ∧AC

)

. (A.5)

11For so(2, 1) ≃ sl(2,R), it is usually parametrized by k/4π.
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The factor of −i in the CS action on the right hand side of the first equality is due to the

fact that we work with Hermitian generators. In terms of the metric data, this gives

LCS =
γs + γ̄s

2l

(

2EA ∧ dΩBηAB + ǫABCE
A ∧ ΩB ∧ ΩC +

1

3l2
ǫABCE

A ∧ EB ∧ EC

)

+
γs − γ̄s

2

(

ΩA ∧ dΩBηAB +
1

3
ǫABCΩ

A ∧ ΩB ∧ ΩC +
1

l2
EA ∧ dEBηAB

+
1

l2
ǫABCE

A ∧ EB ∧ ΩC

)

. (A.6)

The term proportional to γs − γ̄s is the Einstein-Hilbert Lagrangian density with negative

cosmological constant Λ = −1/l2. The term proportional γs − γ̄s is the Lorentz-Chern-

Simons term. In this paper, we will only consider the Einstein term and set γs = γ̄s.

A.2 Global AdS3 solution

The curvature of a Hermitian connection A is given by

F = dA− iA ∧A. (A.7)

Its JA and TA components give the torsion-free condition and the 3D Einstein equation,

0 = dEA + ǫABCΩ
B ∧ EC , (A.8)

0 = dΩA +
1

2
ǫABC

(

ΩB ∧ ΩC +
1

l2
EB ∧ EC

)

. (A.9)

For a given metric, we can solve the spin connection ΩA in terms of the corresponding

vielbein EA using the torsion-free condition. The second equation is then a constraint on

the curvature of this spin connection. In the case of global AdS3, we can take

ds2 = ℓ2
(

− cosh2 ρdt2 + sinh2 ρdϕ2 + dρ2
)

,

E0 = ℓ cosh ρdt, E1 = −ℓ sinh ρdϕ, E2 = ℓdρ. (A.10)

Solving (A.8) then leads to

Ω0 = cosh ρdϕ, Ω1 = − sinh ρdt, Ω2 = 0. (A.11)

Following (A.1), the corresponding so(2, 1) connections are

A = 2 cosh ρS0dx
+ − 2 sinh ρS1dx

+ + S2dρ, (A.12)

Ā = 2 cosh ρ S̄0dx
− + 2 sinh ρ S̄1dx

− − S̄2dρ. (A.13)

Here we have introduced the null coordinates x± = 1
2(ϕ± t). In Fefferman-Graham coor-

dinates with r = eρ the global AdS3 metric reads

ds2 =
dr2

r2
−
(

r2 + 2 + r−2
) 1

4
dt2 +

(

r2 − 2 + r−2
) 1

4
dϕ2 . (A.14)
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Now let us move on to the sl(2,R) basis. We define L−1, L0, L1 as

L−1 = S0 + S1 , L0 = S2 , L1 = S0 − S1 . (A.15)

Likewise we define L̄−1, L̄0, L̄1 as

L̄−1 = −(S̄0 − S̄1) , L̄0 = −S̄2 , L̄1 = −(S̄0 + S̄1) . (A.16)

The Lm and L̄m generators with m,n = −1, 0, 1 both satisfy the sl(2,R) algebra

[Lm, Ln] = i(m− n)Lm+n . (A.17)

Using the definitions (A.15) and (A.16), the global AdS3 connection (A.12) becomes

A = L0dρ+
(

eρ L1 + e−ρ L−1

)

dx+ = eiρL0
(

id+ (L1 + L−1)dx
+
)

e−iρL0 , (A.18)

Ā = L̄0dρ−
(

eρ L̄1 + e−ρ L̄−1

)

dx− = eiρL̄0
(

id− (L̄1 + L̄−1)dx
−
)

e−iρL̄0 .

Since the two sl(2,R) sectors commute, we can write this concisely as

AAdS3
= eiρ(L0+L̄0)

(

id+ (L1 + L−1)dx
+ − (L̄1 + L̄−1)dx

−
)

e−iρ(L0+L̄0). (A.19)

This is the so(2, 2) connection corresponding to a global AdS3 background.

A.3 Variational problem

In the above, we found flat connections by solving F = 0. However, we still need to do

some work to show that this is actually the equation of motion of Chern-Simons theory.

This discussion is not particular to so(2, 2), so in this subsection we will use A to denote a

general connection with curvature F , both valued in a Lie algebra g. The problem is that

the variation of the Chern-Simons action

δSCS = 2

∫

M
〈δA, F 〉+

∫

∂M
〈A, δA〉 (A.20)

can be nonzero around flat connections on a manifold M with boundary. Thus we cannot

claim that F = 0 is the equation of motion unless the boundary term vanishes. There are

various ways to achieve this, and we will choose the simplest solution. More complicated

solutions allow us to construct a boundary phase space with nonzero chemical potentials.

Let us choose coordinates x± = ϕ ± t on the boundary ∂M , and parametrize the

transverse direction by ρ. We can expand the connection A as follows,

A = Aρdρ+A−dx
− +A+dx

+. (A.21)

Using a gauge transformation, Aρ can be set to an arbitrary constant (see for example [80]).

The simplest way to obtain a well-defined variational problem is to make sure that the

boundary term in (A.20) vanishes. We can do this by requiring

A−|∂M = 0 =⇒ 〈A, δA〉 = (〈A+, δA−〉 − 〈A−, δA+〉) dx
+ ∧ dx− = 0. (A.22)
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With such a boundary condition, F = 0 is a well-defined equation of motion. In fact,

Fρ− = 0 propagates the constraint A− = 0 on the boundary all the way into the bulk. We

then end up with a connection of the form

A = b(ρ)−1db(ρ) + b(ρ)−1a(x+)b(ρ), a = Ja(x+)Tadx
+. (A.23)

The currents Ja parametrize a Wess-Zumino-Witten affine g-phase space on the boundary

∂M , where g the same Lie algebra as was used to write down the Chern-Simons algebra.

Split algebra and chirality. While (A.22) solves the variational problem, we do not

want to set the dx− component to zero for the entire so(2, 2) connection A. As we can see

from (A.1), this would mean that the vielbein EA cannot contain dx− components so the

resulting metric is degenerate in the x− coordinate, which is clearly undesirable.

However, if the algebra in which A is valued splits, one can impose the above boundary

conditions and at the same time have a nondegenerate metric. Returning to so(2, 2), using

so(2, 2) ≃ sl(2,R)⊕ sl(2,R), (A.24)

we can demand that the dx+ respectively the dx− component of either factor vanishes.

This choice is compatible with the AdS3 background connection (A.19). In other words,

we choose the following chirality for the sl(2,R)⊕ sl(2,R) connection,

Ladx
+, L̄adx

−. (A.25)

A.4 General flat connections and their metric data

Furthermore, the background connection (A.19) also motivates us to set the so(2, 2) coef-

ficients of the radial component to

Aρ = L0 + L̄0. (A.26)

With the chirality choice in (A.25), we can then write the most general flat connection as

A = eiρ(L0+L̄0)
(

id+ F a(x+)Ladx
+ + F̄ a(x−)L̄a dx

−
)

e−iρ(L0+L̄0). (A.27)

Now let us expand (A.27) and write it in terms of the so(2, 1) generators SA and S̄A

in (A.2),

A =
(

L0 + L̄0

)

dρ+
(

eρF+L1 + F 0L0 + e−ρF−L−1

)

dx+

+
(

eρF̄+L̄1 + F̄ 0L̄0 + e−ρF̄−L̄−1

)

dx−

=
(

dρ+ F 0dx+
)

S2 +
(

−dρ− F̄0dx
−
)

S̄2 (A.28)

+
(

eρF+dx+ + e−ρF−dx+
)

S0 +
(

−eρF+dx+ + e−ρF−dx+
)

S1

+
(

−eρF̄+dx− − e−ρF̄−dx−
)

S̄0 +
(

−eρF̄+dx− + e−ρF̄−dx−
)

S̄1.

– 30 –



J
H
E
P
0
5
(
2
0
1
8
)
0
1
6

We can then use the relation to JA and PA in (A.2) to write down the vielbein and spin

connection corresponding to the flat connection (A.27),

E0 =
l

2

(

eρ
(

F+dx+ + F̄+dx−
)

+ e−ρ
(

F−dx+ + F̄−dx−
))

, (A.29a)

E1 =
l

2

(

−eρ
(

F+dx+ − F̄+dx−
)

+ e−ρ
(

F−dx+ − F̄−dx−
))

, (A.29b)

E2 = l

(

dρ+
1

2
F 0dx+ +

1

2
F̄ 0dx−

)

, (A.29c)

Ω0 =
1

2

(

eρ
(

F+dx+ − F̄+dx−
)

+ e−ρ
(

F−dx+ − F̄−dx−
))

, (A.29d)

Ω1 =
1

2

(

−eρ
(

F+dx+ + F̄+dx−
)

+ e−ρ
(

F−dx+ + F̄−dx−
))

, (A.29e)

Ω2 =
1

2

(

F 0dx+ − F̄ 0dx−
)

. (A.29f)

Requiring that such a connection agrees with the AdS3 connection (A.19) at leading radial

order leads to the constraints

F+ ≡ 1, F
+
≡ −1. (A.30)

As we will see in the following, these constraints reduce the boundary WZW model to the

Brown-Henneaux asymptotic Virasoro symmetries.

B Review of Chern-Simons asymptotic symmetries

The purpose of this section is to give a detailed review of the reduction of the boundary

Wess-Zumino-Witten model of sl(2,R) Chern-Simons under the AdS3 constraint (A.30).

This procedure, which is also known as Drinfeld-Sokolov reduction, will produce a Virasoro

algebra of asymptotic charges, which is (one chiral half of) the usual Brown-Henneaux

asymptotic symmetry algebra.

Gauge transformations. We work with the sl(2,R) generators La defined in (2.5).

Following (A.27), we can write the most general connection for a single sl(2,R) factor as

A = b
(

id+ a+dx
+
)

b−1. (B.1)

Here, we have introduced two sl(2,R)-valued functions

b(ρ) = eiρL0 , a+(x
+) = F a(x+)La. (B.2)

The curvature F = dA − iA ∧ A transforms covariantly with respect to the gauge trans-

formation δΛA = dΛ − i[A,Λ]. The form (B.1) is preserved by gauge transformations of

the form Λ = bλ(x+)b−1. Under such a gauge transformation, the reduced connection a

transforms as

δλa = dλ− i[a, λ]. (B.3)

The fact that the residual symmetries of connections of the form (B.1) take such an easy

form simplifies our analysis. Once we have agreed on a choice of Aρ, we only have to concern
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ourselves with the reduced connection a+(x
+)dx+ and its symmetries λ(x+). In fact, these

transformations are symmetries only up to boundary terms, which lead to boundary charges

δQλ = −2

∮

∂Σ
〈λ, δλa〉. (B.4)

If they are integrable, these boundary charges satisfy the following Poisson bracket

{Qλ, Qµ} = δλQµ = −2

∮

∂Σ
〈µ, δλa〉 = −iQ[λ,µ] + 2

∮

∂Σ
〈λ, dµ〉. (B.5)

For a general Lie algebra with generators Ta, let us denote the invariant bilinear metric by

Ωab = 〈Ta, Tb〉. We only consider nondegenerate bilinear forms, whose inverse exists and

is denoted by Ωab. Furthermore, we define real structure constants f c
ab using [Ta, Tb] =

if c
ab Tc. With these conventions, the Poisson bracket on the currents F a(x+) is given by

{F a(x+), F b(y+)} = −
1

2
fab

cF
c(x+)δ(x+ − y+) +

1

2
∂x+δ(x+ − y+)Ωab. (B.6)

Constraint. Imposing the asymptotically AdS3 constraint (A.30), we restrict ourselves

to

a+ = L+ + F 0L0 + F−L−. (B.7)

The most general residual transformations that preserves this form is given by

λ = λaLa, λ0 = −∂λ+ + λ+F 0. (B.8)

In the following, we will see that λ+ is the transformation parameter for a Virasoro algebra

of boundary charges. Now we must find the corresponding current.

Invariant polynomials. We imposed a constraint but did not gauge fix the correspond-

ing degrees of freedom. The remaining degrees of freedom in the connection (B.7) therefore

only correspond to one physical current. One way to understand what the building blocks

are that make up the physical current is as follows.

The constraint F+ ≡ 1 generates gauge transformations in the phase space (B.7),

which is parametrized by the functions F 0 and F−. Using the Poisson bracket (B.6), we

see that these functions transform under the constraint gauge transformations as follows,

δΛF
0(x) =

∫

dy
{

Λ(y)(F+(y)− 1), F 0(x)
}

=
1

γs
Λ(x)F+(x) ≡

1

γs
Λ(x), (B.9)

δΛF
−(x) =

∫

dy
{

Λ(y)(F+(y)− 1), F−(x)
}

=
1

2γs

(

Λ(x)F 0(x) + ∂xΛ(x)
)

. (B.10)

This shows us how to make an invariant combination out of these current components that

parametrizes the physical current on the constrained phase space,

F inv = F− −
1

4
(F 0)2 −

1

2
∂F 0, δΛF

inv = 0. (B.11)

We will see below that this combination transforms as a Virasoro current.
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Charge integrand and current transformations. The infinitesimal boundary charges

can be obtained as follows. We will see that they can be expressed in terms of the invariant

current we found above. Integrating over constant time slices, we find that the usual

expression for Chern-Simons boundary charges evaluates to

δQλ = −2

∮

dϕ 〈λ, δa+〉

= −2γs

∮

dϕ

(

−λ+δF− +
1

2
λ0δF 0

)

(B.12)

= −2γs

∮

dϕ

(

−λ+δF− +
1

2

(

−∂λ+ + λ+F 0
)

δF 0

)

(B.13)

=

∮

dϕλ+δT . (B.14)

This corresponds to a charge with parameter λ+ and current

T = 2γs

(

F− −
1

4
(F 0)2 −

1

2
∂F 0

)

= 2γsF
inv. (B.15)

Indeed, the physical current corresponds to the invariant current we found above. These

infinitesimal charges are clearly integrable and we denote the finite charges by

Qλ =

∮

dϕλ+T = QVir[λ+]. (B.16)

Under an allowed gauge transformation (that is, one satisfying (B.8)), the connection

components transform as

δF 0 = λ+∂F 0 + F 0∂λ+ − ∂2λ+ + 2λ− − 2F−λ+,

δF− = ∂λ− + F−∂λ+ − F−F 0λ+ + F 0λ−. (B.17)

The physical current then transforms as a Virasoro current,

δT = λ+∂T + 2T∂λ+ + γs∂
3λ+. (B.18)

Asymptotic symmetry algebra. We can compute the Poisson bracket of the charges

as follows,

{Qλ, Qµ} = δλQµ = −2

∮

dϕ 〈µ, δλa+〉 =

∮

dϕµ+δλT

=

∮

dϕµ+
(

λ+∂T + 2T∂λ+ + γs∂
3λ+

)

(B.19)

= QVir
[

µ+∂λ+ − λ+∂µ+
]

+ γs

∮

dϕµ+∂3λ+.

Indeed, this is the Virasoro charge algebra. To obtain the usual expression in terms of the

Fourier modes of these charges, we can expand

T (ϕ) = −
1

2π

∑

n

Lne
−inϕ. (B.20)
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Note that we assume that the current is a 2π-periodic functions. The generators are

obtained by choosing the corresponding Fourier modes as symmetry parameter,

Ln = −

∮

dϕ einϕ T (ϕ) = −QVir[einϕ] . (B.21)

Then the Poisson bracket in (B.19) leads to the following Poisson brackets and commutators

for the Fourier modes,

{Lm, Ln} = −i(m− n)Lm+n − 2πiγsm
3δm+n,0, (B.22)

[Lm, Ln] = i {Lm, Ln} = (m− n)Lm+n + 2πγsm
3δm+n,0, (B.23)

Our definition of the bilinear form is related to the usual Chern-Simons level by γs = k/4π.

Recall that Einstein gravity corresponds to k = ℓ/4G. Therefore, the above reproduces the

Brown-Henneaux central charge

c = 24πγs = 6k =
3l

2G
. (B.24)

To get the usual form of the Virasoro algebra, one has to shift Lm → Lm + cδm,0/24.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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