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1 Introduction

Now it has been firmly established by a number of elegant neutrino oscillation experi-

ments in the past two decades that neutrinos are actually massive and lepton flavors are

significantly mixed [1]. In the framework of three generations of massive neutrinos, the

phenomena of lepton flavor mixing can well be described by the 3 × 3 unitary matrix U ,

which is conventionally parametrized in terms of three flavor mixing angles {θ12, θ13, θ23}
and one CP-violating phase δ.1 In the standard parametrization of U , we have [1]

U =



Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


=




c12c13 s12c13 s13
−c12s13s23 − s12c23e−iδ −s12s13s23 + c12c23e

−iδ c13s23
−c12s13c23 + s12s23e

−iδ −s12s13c23 − c12s23e−iδ c13c23


 , (1.1)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23) have been introduced. The latest

global-fit analysis of neutrino oscillation data yield [2] the best-fit values of four flavor

mixing parameters θ12 ≈ 33.6◦, θ13 ≈ 8.5◦, θ23 ≈ 47.2◦ and δ ≈ 234◦, and those of two

independent neutrino mass-squared differences ∆21 ≡ m2
2 − m2

1 ≈ 7.40 × 10−5 eV2 and

∆31 ≡ m2
3 −m2

1 ≈ 2.49× 10−3 eV2. Although there exists currently a slight preference for

the normal neutrino mass ordering (NO, i.e., ∆31 > 0), the inverted mass ordering (IO,

i.e., ∆31 < 0) is still allowed. Some preliminary hints on the maximal CP-violating phase

δ ≈ 270◦ arise from the long-baseline accelerator neutrino experiments [3, 4], which needs

to be confirmed when more data are available in the near future.

The determination of neutrino mass ordering and leptonic CP-violating phase δ in

the long-baseline accelerator neutrino oscillation experiments calls for an excellent under-

standing of the Mikheyev-Smirnov-Wolfenstein (MSW) matter effects [5–7], which becomes

1Throughout this work we do not consider the possible Majorana phases, simply because they are

irrelevant to neutrino oscillations in both vacuum and matter.
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crucially important when the neutrino beam propagates in the Earth matter for a long dis-

tance. For the three-flavor neutrino oscillations in matter, the effective Hamiltonian reads

Hm =
1

2E


U



m2

1 0 0

0 m2
2 0

0 0 m2
3


U † +



a 0 0

0 0 0

0 0 0





 ≡ 1

2E
V



m̃2

1 0 0

0 m̃2
2 0

0 0 m̃2
3


V † , (1.2)

where a ≡ 2
√

2 GFNeE with GF = 1.166× 10−5 GeV−2 being the Fermi constant, Ne the

net electron number density and E the neutrino beam energy. For antineutrino oscillations

in matter, one may simply replace U by U∗ and a by −a in the effective Hamiltonian. In

eq. (1.2) the effective flavor mixing matrix V and neutrino masses m̃i (for i = 1, 2, 3) in

matter have been defined. For any realistic profile of the matter density, it is possible to

numerically calculate neutrino oscillation probabilities by solving the evolution equations of

neutrino flavor states. However, the analytical relations or identities between the effective

mixing parameters in matter and the fundamental ones in vacuum are very helpful. For in-

stance, the well-known Naumov [8–11] and Toshev [12] relations can be summarized as [13]

J̃
J =

∣∣∣∣
Ve1
Ue1

∣∣∣∣
∣∣∣∣
Ve2
Ue2

∣∣∣∣
∣∣∣∣
Ve3
Ue3

∣∣∣∣ =
∆12∆23∆31

∆̃12∆̃23∆̃31

, (1.3)

where ∆̃ij ≡ m̃2
i − m̃2

j (for ij = 12, 23, 31), and the Jarlskog invariant in vacuum [14] and

its counterpart in matter are defined via

Im
(
UαiUβjU

∗
αjU

∗
βi

)
= J

∑

γ

∑

k

εαβγεijk ,

Im
(
VαiVβjV

∗
αjV

∗
βi

)
= J̃

∑

γ

∑

k

εαβγεijk , (1.4)

with εαβγ and εijk being totally antisymmetric tensors, and (α, β, γ) and (i, j, k) being

cyclic permutations of (e, µ, τ ) and (1, 2, 3), respectively. Moreover, some interesting sum

rules for m̃2
i and the matrix elements of V have been derived in ref. [11] and used to study

the unitarity triangles of V in matter [15–17].

In this paper we emphasize that the dependence of the effective mixing parameters Vαi
and m̃2

i (for α = e, µ, τ and i = 1, 2, 3) on the matter term a can perfectly be described

by a complete set of differential equations, which are analogous to the renormalization-

group equations (RGEs) associated with the dependence of fundamental parameters on

the renormalization energy scale or distance in quantum field theories [18, 19], solid-state

physics [20, 21] and other fields of modern physics [22].2 Although this interesting analogy

has already been pointed out in refs. [23, 24], it deserves some highlights and a further

study. We argue that the introduction of effective neutrino mass-squared differences and

effective flavor mixing parameters guarantees the form invariance of neutrino oscillation

probabilities in vacuum and in a medium with arbitrary values of a. Such a form invariance

2Although E in a denotes the kinetic energy of a neutrino beam, it is also a reflection of the energy scale

associated with weak charged-current interactions between the electron neutrino (or antineutrino) flavor

and the electrons in matter. In this sense it should be reasonable to treat a as a scale-like variable.
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(or self-similarity) exactly reflects the spirit of the RGEs [18–20], and thus it implies the

validity of the RGE-like approach for neutrino oscillations in matter.

It is worth remarking that our present work differs from refs. [23, 24] in several nontriv-

ial aspects. First, we explain why the RGE language can be applied to the description of

neutrino oscillation parameters in matter changing with the scale-like variable a. With this

key point in mind, we derive the RGEs for neutrino masses m̃i, the squared-moduli of flavor

mixing matrix elements |Vαi|2 and even the matrix elements Vαi themselves. Second, we

demonstrate that the standard parametrization of V is most convenient for the derivation

of the RGEs of three flavor mixing angles and one CP-violating phase, because it makes the

first row of V so simple that the coherent forward scattering between electrons and electron

neutrinos (or antineutrinos) via weak charged-current interactions can be described in a

very simple way. The RGEs of such mixing parameters will also be numerically solved,

and the salient features of their evolution with respect to the matter parameter a will be

discussed. Third, the RGEs of J̃ and some other interesting quantities, such as the partial

µ-τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V ,

are derived as a by-product. Fourth, we compare the newly obtained differential results

with some previously obtained integral results, and highlight the complementarity of both

approaches in describing and understanding matter effects on neutrino oscillations.

In particular, we highlight that the RGEs for neutrinos running in matter may hope-

fully provide a meaningful possibility that the genuine (or fundamental) flavor quantities

in vacuum can be extrapolated from their matter-corrected (or effective) counterparts to

be measured in some realistic neutrino oscillation experiments.

The remaining part of our paper is structured as follows. In section 2, we derive

the RGEs of the effective mixing parameters and neutrino masses explicitly and establish

our conventions and notations. Adopting the standard parametrization of V , we further

present the explicit expressions of the RGEs for the mixing parameters {θ̃12, θ̃13, θ̃23, δ̃} in

section 3. Section 4 is devoted to further discussions on the RGEs of other phenomenolog-

ically interesting quantities. Finally, we summarize our main results in section 5.

2 Renormalization-group equations

The essential idea of ours is to study the dependence of the flavor mixing parameters on

the scale-like matter term a by following the normal RGE approach. Differentiating both

sides of eq. (1.2) with respect to a, we immediately obtain

Ḋ +
[
V †V̇ , D

]
= V †




1 0 0

0 0 0

0 0 0


V =



|Ve1|2 V ∗e1Ve2 V

∗
e1Ve3

V ∗e2Ve1 |Ve2|2 V ∗e2Ve3
V ∗e3Ve1 V

∗
e3Ve2 |Ve3|2


 , (2.1)

where the derivatives are denoted by overhead dots, D ≡ diag{m̃2
1, m̃

2
2, m̃

2
3} and [A,B] ≡

AB−BA is the commutator of two matrices A and B. Since the diagonal matrix elements

of the commutator are always vanishing, it is straightforward to get

dm̃2
i

da
= |Vei|2 , (2.2)
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for i = 1, 2, 3 by equating the diagonal elements on both sides of eq. (2.1); and

∑

α

V ∗αiV̇αj = V ∗eiVej∆̃
−1
ji , (2.3)

for i 6= j by identifying the off-diagonal elements. In addition, we have a few useful

identities from the normalization and orthogonality conditions for the unitary matrix V ,

namely,

∑

i

(
V ∗αiV̇αi + V̇ ∗αiVαi

)
=
∑

α

(
V ∗αiV̇αi + V̇ ∗αiVαi

)
= 0 , (2.4)

which can be recast into
∑

i

Re
(
V ∗αiV̇αi

)
=
∑

α

Re
(
V ∗αiV̇αi

)
= 0, where i = 1, 2, 3 and

α = e, µ, τ are implied; and

∑

i

(
V ∗αiV̇βi + V̇ ∗αiVβi

)
=
∑

α

(
V ∗αiV̇αj + V̇ ∗αiVαj

)
= 0 , (2.5)

where α 6= β and i 6= j should be noticed in the first and second identities, respec-

tively. With the help of the above equations, we are now ready to derive the RGEs for

the matrix elements of V and the relevant rephasing invariants. The main results are

summarized below:

• Starting with the orthogonality condition V ∗α1Vβ1 + V ∗α2Vβ2 + V ∗α3Vβ3 = 0, or equiva-

lently,

∑

j 6=i
V ∗αjVβj = δαβ − V ∗αiVβi , (2.6)

we multiply both sides of eq. (2.6) by V̇αi and sum over the flavor index α. Then, by

using eq. (2.3), we arrive at

V̇βi =
∑

α

V̇αiV
∗
αiVβi +

∑

j 6=i
VeiV

∗
ejVβj∆̃

−1
ij . (2.7)

Note that the first term on the right-hand side of eq. (2.7) is rephasing-dependent,

and it can be arranged to vanish in a special phase convention without altering any

physical results [24], as one has noticed in deriving the RGEs of quark flavor mixing

parameters [25]. We shall confirm that the terms associated with
∑

α

V̇αiV
∗
αi can

always be cancelled out in our subsequent calculations.

• Since there will be unphysical phases in the mixing matrix V , it is more interesting

to present the RGEs for the rephasing invariants. The simplest ones are just the

squared-moduli |Vαi|2, whose RGEs can be directly derived from eq. (2.7):

d

da
|Vαi|2 =

(
d

da
V ∗αi

)
Vαi + V ∗αi

(
d

da
Vαi

)
= 2

∑

j 6=i
Re
[
VeiVαjV

∗
ejV

∗
αi

]
∆̃−1ij , (2.8)
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where the second identity in eq. (2.4) has been used. In principle, the RGEs in

eqs. (2.2) and (2.8) are sufficient to investigate the evolution of all physical quantities

with respect to the matter term a, since the moduli |Vαi| of four independent matrix

elements can unambiguously determine all three mixing angles and one CP-violating

phase. Specifying α = e and i = 1, 2, 3 in eq. (2.8), we explicitly have

d

da
|Ve1|2 = 2|Ve1|2

(
|Ve2|2∆̃−112 − |Ve3|2∆̃−131

)
,

d

da
|Ve2|2 = 2|Ve2|2

(
|Ve3|2∆̃−123 − |Ve1|2∆̃−112

)
,

d

da
|Ve3|2 = 2|Ve3|2

(
|Ve1|2∆̃−131 − |Ve2|2∆̃−123

)
, (2.9)

together with

d

da
∆̃12 = |Ve1|2 − |Ve2|2 ,

d

da
∆̃23 = |Ve2|2 − |Ve3|2 ,

d

da
∆̃31 = |Ve3|2 − |Ve1|2 , (2.10)

from eq. (2.2). Note that the RGEs in eqs. (2.9) and (2.10) are closed for {|Ve1|2,
|Ve2|2, |Ve3|2} and {∆̃12, ∆̃23, ∆̃31}, and completely symmetric under the cyclic per-

mutations among the subscripts (1, 2, 3). Due to the normalization condition |Ve1|2 +

|Ve2|2 + |Ve3|2 = 1 and the identity ∆̃12 + ∆̃23 + ∆̃31 = 0, there are only four indepen-

dent differential equations in eqs. (2.9) and (2.10). However, two redundant equations

have been included in order to put them in a more symmetric form. For comparison,

we quote the existing sum rules for |Vei|2 and |Uei|2 (for i = 1, 2, 3) from ref. [16]:

|Ve1|2 =
∆̂21∆̂31

∆̃21∆̃31

|Ue1|2 +
∆̂11∆̂31

∆̃21∆̃31

|Ue2|2 +
∆̂11∆̂21

∆̃21∆̃31

|Ue3|2 ,

|Ve2|2 =
∆̂22∆̂32

∆̃12∆̃32

|Ue1|2 +
∆̂12∆̂32

∆̃12∆̃32

|Ue2|2 +
∆̂12∆̂22

∆̃12∆̃32

|Ue3|2 ,

|Ve3|2 =
∆̂23∆̂33

∆̃13∆̃23

|Ue1|2 +
∆̂13∆̂33

∆̃13∆̃23

|Ue2|2 +
∆̂13∆̂23

∆̃13∆̃23

|Ue3|2 , (2.11)

where ∆̂ij ≡ m2
i − m̃2

j . Note that eq. (2.11) can be regarded as the formal (integral)

solutions to the RGEs of |Vei|2 in eq. (2.9) with the mixing matrix elements |Uei|2 and

neutrino masses m2
i in vacuum as initial conditions. Substituting |Vei|2 in eq. (2.11)

into eq. (2.10), one can in principle obtain the solutions for ∆̃ij .

Given eqs. (2.9) and (2.10), it is also straightforward to prove [24]

d

da

[
ln
(
|Ve1|2|Ve2|2|Ve3|2∆̃2

12∆̃
2
23∆̃

2
31

)]
=

3∑

i=1

d

da

(
ln |Vei|2

)
+
∑

j>k

d

da

(
ln ∆̃2

jk

)
= 0 ,

(2.12)
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which reproduces the second identity in eq. (1.3). In fact, eq. (2.12) indicates that

the product |Ve1||Ve2||Ve3|∆̃12∆̃23∆̃31 is a differential invariant, so its value in matter

and that in vacuum (i.e., corresponding to a = 0) should be equal to each other. This

identity has previously been proved in ref. [26] by using a different approach.

• Then we come to the Jarlskog invariant J̃ , whose RGE can be found by starting

with its original definition in eq. (1.4) and implementing the derivatives of the mixing

matrix elements in eq. (2.7). For instance, we have J̃ = Im
[
Ve1Vµ2V

∗
e2V

∗
µ1

]
and thus

its derivative

d

da
J̃ = +Im

[
V̇e1Vµ2V

∗
e2V

∗
µ1

]
+ Im

[
Ve1Vµ2V

∗
e2V̇

∗
µ1

]

+Im
[
Ve1V̇µ2V

∗
e2V

∗
µ1

]
+ Im

[
Ve1Vµ2V̇

∗
e2V

∗
µ1

]
. (2.13)

According to eq. (2.7) and its complex conjugate, we can get

V̇e1 = |Ve2|2Ve1∆̃−112 − |Ve3|2Ve1∆̃−131 +
∑

α

V̇αiV
∗
αiVe1 ,

V̇ ∗e2 = |Ve3|2V ∗e2∆̃−123 − |Ve1|2V ∗e2∆̃−112 +
∑

α

V̇αiV
∗
αiV

∗
e2 ,

V̇ ∗µ1 = V ∗µ2V
∗
e1Ve2∆̃

−1
12 − V ∗µ3V ∗e1Ve3∆̃−131 +

∑

α

V̇αiV
∗
αiV

∗
µ1 ,

V̇µ2 = Vµ3Ve2V
∗
e3∆̃

−1
23 − Vµ1Ve2V ∗e1∆̃−112 +

∑

α

V̇αiV
∗
αiVµ2 . (2.14)

After inserting eq. (2.14) into eq. (2.13), one can immediately observe that the first

and second lines on the right-hand side of eq. (2.13) become

Im
[
V̇e1Vµ2V

∗
e2V

∗
µ1

]
+ Im

[
Ve1Vµ2V

∗
e2V̇

∗
µ1

]
= J̃

[
+|Ve2|2∆̃−112 −

(
|Ve3|2 − |Ve1|2

)
∆̃−131

]
,

Im
[
Ve1V̇µ2V

∗
e2V

∗
µ1

]
+ Im

[
Ve1Vµ2V̇

∗
e2V

∗
µ1

]
= J̃

[
−|Ve1|2∆̃−112 −

(
|Ve2|2 − |Ve3|2

)
∆̃−123

]
,

(2.15)

leading to the following simple result

d

da
J̃ = −J̃

[(
|Ve1|2 − |Ve2|2

)
∆̃−112 +

(
|Ve2|2 − |Ve3|2

)
∆̃−123 +

(
|Ve3|2 − |Ve1|2

)
∆̃−131

]
.

(2.16)

Combining eq. (2.10) and eq. (2.16), one arrives at

d

da
ln
[
J̃ ∆̃12∆̃23∆̃31

]
= 0 , (2.17)

implying the well-known Naumov relation [8]. The corresponding identity

J̃ ∆̃12∆̃23∆̃31 = J∆12∆23∆31 has previously been derived in the literature by im-

plementing the commutators of effective lepton mass matrices [9, 10]. In addition to

the Naumov relation, it is easy to verify that
∑

i

m̃2
iV
∗
αiVβi =

∑

i

m2
iU
∗
αiUβi holds for

arbitrary α and β except for α = β = e.

– 6 –
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• For completeness, we explicitly write down the RGEs of |Vµi|2, which can also be

expressed in terms of |Vαi|2 and ∆̃ij . Based on eq. (2.8) and the results from ref. [24],

one can find

d

da
|Vµ1|2 = |Vµ1|2

[
|Ve2|2
∆̃12

− |Ve3|
2

∆̃31

]
+ |Ve1|2

[
|Vµ2|2

∆̃12

−
|Vµ3|2

∆̃31

]
−
[
|Vτ3|2
∆̃12

− |Vτ2|
2

∆̃31

]
,

d

da
|Vµ2|2 = |Vµ2|2

[
|Ve3|2
∆̃23

− |Ve1|
2

∆̃12

]
+ |Ve2|2

[
|Vµ3|2

∆̃23

−
|Vµ1|2

∆̃12

]
−
[
|Vτ1|2
∆̃23

− |Vτ3|
2

∆̃12

]
,

d

da
|Vµ3|2 = |Vµ3|2

[
|Ve1|2
∆̃31

− |Ve2|
2

∆̃23

]
+ |Ve3|2

[
|Vµ1|2

∆̃31

−
|Vµ2|2

∆̃23

]
−
[
|Vτ2|2
∆̃31

− |Vτ1|
2

∆̃23

]
.

(2.18)

The RGEs of |Vτi|2 can be obtained from eq. (2.18) by simply exchanging |Vµi|2
with |Vτi|2 for i = 1, 2, 3. It is now evident that the evolution of |Vµi|2 (or |Vτi|2)
is governed not only by |Vµi|2 (or |Vτi|2) and ∆̃ij , but also by |Vτi|2 (or |Vµi|2) and

|Vei|2. Comparing between eq. (2.9) and eq. (2.18), one can easily notice the special

role played by the electron flavor in studying the matter effects on the neutrino flavor

mixing parameters.

The central results for the RGEs of the leptonic flavor mixing matrix V and neutrino

masses m̃i in matter are given in eqs. (2.2) and (2.8). For illustration, we show the evolution

of |Vαi|2 against the dimensionless parameter a/∆21 in figures 1 and 2, where the best-fit

values of all the neutrino mixing parameters from ref. [2] have been used in our numerical

calculations. Throughout this paper, the blue solid (dashed) curves are referred to the re-

sults for neutrino (antineutrino) oscillations in the NO case, whereas the red solid (dashed)

curves to those for neutrino (antineutrino) oscillations in the IO case. The main features

of the evolution of |Vαi|2 can be understood by using the RGEs in eqs. (2.9) and (2.10)

together with the general properties of matter effects themselves:

1. First of all, it should be stressed that the evolution of |Vµi|2 is qualitatively identical

to that of |Vτi|2 for i = 1, 2, 3, comparing the plots in the second row and those in the

third row of figure 1. This behavior can be well understood by noticing that the muon

and tau flavors are indistinguishable, since muon and tau neutrinos (antineutrinos)

experience only the universal neutral-current interactions in ordinary matter. In

addition, the initial values of |Vµi|2 and |Vτi|2 at a = 0, namely, the mixing matrix

elements in vacuum, approximately respect the µ-τ symmetry |Uµi|2 = |Uτi|2 for i =

1, 2, 3. The slight breaking of this symmetry will be responsible for the quantitative

difference between the evolution of |Vµi|2 and that of |Vτi|2. This conclusion is also

applicable to antineutrinos. For this reason, we shall only concentrate on the electron

and muon flavors.

2. As the matrix elements have to fulfill the unitarity condition |Vei|2+|Vµi|2+|Vτi|2 = 1

for i = 1, 2, 3, it is then necessary to consider only |Vei|2 in the first row of figure 1.

First, the evolution of |Ve1|2 is governed by the first equation in eq. (2.9). At the
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Figure 1. The evolution of the effective mixing matrix elements in matter |Vαi|2 (for α = e, µ, τ

and i = 1, 2, 3) with respect to the parameter a/∆21, where the best-fit values of neutrino mixing

parameters from ref. [2] in the NO case are input and the blue solid (dashed) curves correspond to

the results of neutrino (antineutrino) oscillations.

beginning, we have ∆̃12 = −∆21 < 0 and ∆̃31 = ∆31 � ∆21, so the derivative of |Ve1|2
is approximately given by −2|Ue1|2∆−121 < 0, indicating that |Ve1|2 decreases with the

increasing a. Similarly, one can observe from the second equation in eq. (2.9) that

|Ve2|2 is increasing. On the other hand, at the early stage, the evolution of |Ve3|2 is

highly suppressed by both |Ve3|2 = |Ue3|2 itself and the large neutrino mass-squared

difference ∆31 ≈ ∆32, as one can see from the third equation of eq. (2.9). Then, the

resonance corresponding to ∆21 is reached around a/∆21 = 1, where |Ve1|2 = |Ve2|2 is

satisfied and the changing rates of |Ve1|2 and |Ve2|2 maximize. Looking at again the

RGE of |Ve2|2, we find that as |Ve1|2 decreases and ∆̃21 increases, the right-hand side

of the second equation of eq. (2.9) first approaches zero and then changes its sign.

This means that |Ve2|2 reaches its maximum and decreases to zero afterwards. The

decreasing rate is maximal around the MSW resonance corresponding to ∆31, namely,

a/∆21 ≈ ∆31/∆21 ≈ 30. Finally, since both |Ve1|2 and |Ve2|2 become vanishing for

an extremely large a, we have |Ve3|2 close to one due to the unitarity condition

|Ve1|2 + |Ve2|2 + |Ve3|2 = 1.

3. Now we consider the results for antineutrinos in the NO case, as represented by the

dashed curves in figure 1. It is worth emphasizing that the replacements U → U∗

and a → −a have been made and thus the matter term a itself keeps positive for
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Figure 2. The evolution of the effective mixing matrix elements in matter |Vαi|2 (for α = e, µ, τ

and i = 1, 2, 3) with respect to the matter term a/∆21, where the best-fit values of neutrino mixing

parameters from ref. [2] in the IO case are input and the red solid (dashed) curves correspond to

the results of neutrino (antineutrino) oscillations.

both neutrinos and antineutrinos. As a consequence, the right-hand sides of the

RGEs in eqs. (2.9) and (2.10) should be multiplied by a negative sign when applied

to antineutrinos. Furthermore, in the NO case, there are no MSW resonances for

antineutrinos, so the evolution of |Ve1|2 and |Ve2|2 seems to be milder and in the

opposite directions, compared with the results for neutrinos. In particular, |Ve3|2 is

monotonically decreasing from the initial value to zero in the end.

The numerical results for neutrinos and antineutrinos in the IO case have been given in

figure 2. One can analyze the evolution of |Vei|2 in a very similar way to the NO case.

The difference between these two cases is the location of the MSW resonances. As is

well known, the ∆21-driven resonance remains for neutrinos in the IO case, while the

∆31-driven resonance is absent. But the opposite is true for antineutrinos. Bearing these

general features in mind, one can easily understand the behaviors of |Vαi|2 evolving with

an increasing a/∆21.

The running behavior of the Jarlskog invariant J̃ , normalized by its vacuum value J , is

given in figure 3 in both NO and IO cases. For neutrinos, as we have mentioned, both ∆21-

and ∆31-driven resonances take place in the NO case, corresponding to two local maxima

of J̃ /J . The existence of these two maxima can be partly understood by examining the

right-hand side of eq. (2.16). In the early stage of evolution, e.g., a . ∆21 � ∆31, one

can safely assume ∆̃32 = ∆̃31 � ∆̃21 and thus ignore the last two terms. This leads to

– 9 –



J
H
E
P
0
5
(
2
0
1
8
)
0
1
5

0.01 0.10 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.10 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

e J
/J

NO� IO�

a/�21

Figure 3. The evolution of the Jarlskog invariant J̃ , normalized by its vacuum value J , with

respect to a/∆21. The numerical results in the NO and IO cases are given in the left and right

panel, respectively, where the same input values as before are adopted.

d(ln J̃ )/da ≈ (|Ve1|2 − |Ve2|2)/∆̃21, which is vanishingly small at the resonance around

a/∆21 ≈ 1 and |Ve1|2 ≈ |Ve2|2. On the other hand, when a/∆21 ∼ 10, one can read from

the first row of figure 1 that |Ve1|2 ≈ 0 and |Ve2|2 ≈ 1−|Ve3|2. The term (|Ve2|2−|Ve3|2)/∆̃32

becomes dominant at the late stage as ∆̃32 → ∆21 and ∆̃21 ≈ ∆̃31, so the second maximum

of J̃ is obtained at the ∆31-driven resonance with |Ve2|2 ≈ |Ve3|2. However, the explicit

expressions of |Vei|2 and ∆̃ij are needed to figure out the exact values of a for the local

maxima. See, e.g., ref. [13], for the discussions about the first local maximum. The

numerical results in the IO case or those for antineutrinos in both cases can be understood

by studying the appearance of the MSW resonances.

3 Mixing angles and CP-violating phase

Although the RGEs for the mixing matrix elements Vαi are sufficient to explore their de-

pendence on the matter term a, it will be instructive to derive the RGEs for the effective

mixing angles {θ̃12, θ̃13, θ̃23} and the CP-violating phase δ̃ in the standard parametriza-

tion [1]. The motivation for such an investigation is two-fold. First of all, the RGEs

of neutrino mixing parameters due to radiative corrections have been extensively stud-

ied [27]. A detailed comparison between the RGEs arising from quantum corrections and

those from matter effects in neutrino oscillations will be very helpful. Second, as neutrino

oscillation behaviors are usually understood in terms of neutrino mixing parameters and

neutrino mass-squared differences, the impact of matter effects on neutrino oscillations can

be conveniently represented by the effective flavor mixing angles and CP-violating phase

in matter.

The effective mixing matrix V , which is a 3 × 3 unitary matrix, can in general be

parametrized in terms of three mixing angles and six phases, namely, V = Q · U ′ · P with

Q ≡ diag{eiϕ1 , eiϕ2 , 1} and P ≡ diag{eiφ1 , eiφ2 , eiφ3}. The unitary matrix U ′ takes on

the same form as in eq. (1.1) with the mixing angles and CP-violating phase replaced by

{θ̃12, θ̃13, θ̃23} and δ̃. As V DV † = Q · U ′DU ′† · Q†, it is obvious that the diagonal phase

matrix P disappears from eq. (2.1). Therefore, we can just ignore P , but have to retain

Q, in which two unphysical phases ϕ1 and ϕ2 are involved. Taking V = QU ′ and noticing
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V †V̇ = U ′†
(
Q†Q̇

)
U ′ + U ′†U̇ ′, we arrive at

∑

α

U ′∗αiU̇
′
αj + i

[
ϕ̇1U

′∗
eiU
′
ej + ϕ̇2U

′∗
µiU

′
µj

]
= U ′∗eiU

′
ej∆̃

−1
ji , (3.1)

for ij = 12, 13, 23. The diagonal elements give rise to ˙̃m2
i = |U ′ei|2 as before. It is worthwhile

to stress that eq. (3.1) resembles the salient features of the ordinary RGEs for quantum

corrections to the lepton flavor mixing parameters in the case of massive Dirac neutrinos,

particularly in the limit of so-called tau-lepton dominance [28]. In comparison with the tau-

lepton dominance due to y2e � y2µ � y2τ , where yα (for α = e, µ, τ) stand for the charged-

lepton Yukawa couplings, the case of matter effects under consideration corresponds to the

electron dominance, since the coherent forward scattering of neutrinos in the normal matter

singles out the electron flavor. As a consequence, the standard parametrization and the

original Kobayashi-Maskawa parametrization [29, 30] with the simplest matrix elements in

the first row will be most convenient for us to derive the RGEs of relevant flavor mixing

parameters.

Adopting the standard parametrization of U ′, we get the equation array for the deriva-

tives of the flavor mixing parameters { ˙̃
θ12,

˙̃
θ13,

˙̃
θ23,

˙̃
δ, ϕ̇1, ϕ̇2} from both imaginary and real

parts of eq. (3.1) for ij = 12, 13, 23. After a lengthy but straightforward calculation, we

find the RGEs for four physical mixing parameters

˙̃
θ12 =

1

2
sin 2θ̃12

(
cos2 θ̃13∆̃

−1
21 − sin2 θ̃13∆̃21∆̃

−1
31 ∆̃−132

)
,

˙̃
θ13 =

1

2
sin 2θ̃13

(
cos2 θ̃12∆̃

−1
31 + sin2 θ̃12∆̃

−1
32

)
,

˙̃
θ23 =

1

2
sin 2θ̃12 sin θ̃13 cos δ̃∆̃21∆̃

−1
31 ∆̃−132 ,

˙̃
δ = − sin 2θ̃12 sin θ̃13 sin δ̃ cot 2θ̃23∆̃21∆̃

−1
31 ∆̃−132 ; (3.2)

and those for two unphysical phases

ϕ̇1 = −1

2
sin 2θ̃12 sin θ̃13 sin δ̃ tan θ̃23∆̃21∆̃

−1
31 ∆̃−132 ,

ϕ̇2 = − sin 2θ̃12 sin θ̃13 sin δ̃ csc 2θ̃23∆̃21∆̃
−1
31 ∆̃−132 . (3.3)

Using the last two equations in eq. (3.2), one can easily verify

d

da

(
sin 2θ̃23 sin δ̃

)
=
(

2 cos 2θ̃23 sin δ̃
)

˙̃
θ23 +

(
sin 2θ̃23 cos δ̃

)
˙̃
δ = 0 , (3.4)

which is just the Toshev relation sin 2θ̃23 sin δ̃ = sin 2θ23 sin δ in the standard parametriza-

tion. Some comments in the RGEs in eqs. (3.2) and (3.3) are in order.

• If there exists a µ-τ symmetry in the lepton flavor mixing matrix U in vacuum,

namely, |Uµi|2 = |Uτi|2 for i = 1, 2, 3, the mixing parameters should satisfy θ23 = π/4

and δ = ±π/2. As has been proved in ref. [31], the matter effects preserve the µ-

τ symmetry |Vµi|2 = |Vτi|2 (for i = 1, 2, 3), i.e., θ̃23 = π/4 and δ̃ = ±π/2. This
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conclusion can be understood via the RGEs of θ̃23 and δ̃ in eq. (3.2). For instance,

the initial conditions θ̃23|a=0 = θ23 = π/4 and δ̃|a=0 = δ = ±π/2 guarantee that the

beta functions of
˙̃
θ23 ∝ cos δ̃ and

˙̃
δ ∝ cos 2θ̃23 are vanishing, indicating that the µ-τ

symmetry with θ̃23 = π/4 and δ̃ = ±π/2 is fully stable against matter effects.

• Furthermore, let us look for possible fixed points of other flavor mixing parameters

in their running with a. First, starting from the mixing angles and CP-violating

phase in vacuum, we can see that
˙̃
θ12 ≈ sin 2θ̃12 cos2 θ̃13∆̃

−1
21 /2 is positive, where the

other term tan2 θ̃13∆̃
2
21/(∆̃31∆̃32) � 1 at a = 0 has been neglected. Therefore, θ̃12

increases as the matter density or neutrino energy becomes larger. Second, if θ13 = 0

is assumed, then one can observe
˙̃
θ13 = 0 and

˙̃
θ23 = 0. In this case, only the mixing

angle θ̃12 will be affected by matter effects, and the CP-violating phase δ̃ is not well-

defined and thus irrelevant. Third, we assume δ = 0 or π in vacuum, corresponding

to the case of CP conservation, and then obtain
˙̃
δ ∝ sin δ̃ = 0, implying that the

CP-violating phase δ̃ is fixed. However, the CP asymmetries between neutrino and

antineutrino oscillation probabilities could exisit since the mass-squared differences

for neutrinos and antineutrinos will be different due to the opposite signs in front of

a. This is just the fake CP violation induced by matter effects.

We can numerically solve the RGEs of the mixing parameters {θ̃12, θ̃13, θ̃23, δ̃} and

the neutrino mass-squared differences {∆̃21, ∆̃31}. However, as the evolution of |Vαi|2
(for α = e, µ, τ and i = 1, 2, 3) have been obtained, we extract the results of mixing

parameters from the calculations of |Vαi|2 for figures 1 and 2 and summarize them in

figures 4 and 5, where the input values are the same as before. The running behaviors of θ̃12
and θ̃13 are directly extracted from those of |Ve2|2 = cos2 θ̃13 cos2 θ̃12 and |Ve3|2 = sin2 θ̃13
in the standard parametrization. For instance, we have tan2 θ̃12 = |Ve2|2/|Ve1|2. Note

that θ̃12 → 0 or 90◦ after crossing the first MSW resonance, while θ̃13 → 0 or 90◦ after

crossing the second resonance no matter how small the value of θ13 in vacuum is. As for

θ̃23 and δ̃, since current neutrino oscillation data prefer nearly-maximal mixing angle and

CP-violating phase, the matter effects have very little influence on their values in matter,

which is well consistent with the Toshev relation.

As shown in figures 4 and 5, all the effective mixing angles become constant in the limit

a/∆21 → +∞. In other words, the infinity serves as a special fixed point of the RGEs of

mixing angles. In both NO and IO cases, one can observe that θ̃13 always approaches either

0 or 90◦ for both neutrinos and antineutrinos in this limit. These values are asymptotically

stable because
˙̃
θ13 vanishes at either θ̃13 = 0 or 90◦. However, the limits of θ̃12 and

θ̃23 depend upon the asymptotic value of θ̃13. Following the perturbation calculations in

refs. [32, 33] in the limit of ∆21 � ∆31 � a, we obtain

cot θ̃12 →
∆21

∆31

· c12s12
c213s13

, tan θ̃23 →
∣∣∣∣tan θ23 + eiδ

∆21

∆31
· c12s12
c223s13

∣∣∣∣ , (3.5)

for neutrinos in the NO case. For antineutrinos in the IO case, the results can be obtained

by replacing cot θ̃12 by tan θ̃12 but keeping tan θ̃23 unchanged. In the NO case for neutrinos,
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Figure 4. The evolution of the effective flavor mixing parameters in matter, namely, three mixing

angles {θ̃12, θ̃13, θ̃23}, one CP-violating phase δ̃ and two mass-squared differences {∆̃21, ∆̃31}, with

respect to a/∆21 in the NO case. The same convention and input values as in figure 1 are taken.

with the best-fit values of the mixing angles and the CP-violating phase in vacuum, one

can figure out the asymptotic values θ̃12 ≈ 84.6◦ and θ̃23 ≈ 44.3◦ in the limit a/∆21 → +∞,

which are in excellent agreement with the numerical results in the first row of figure 4.

For the mass-squared differences in the NO case, their evolution can be understood by

using the RGEs in eq. (2.10):

• For ∆̃21, the beta function is given by |Ve2|2 − |Ve1|2, which is initially negative

but turns to be positive after crossing the first MSW resonance. This is why the

ratio ∆̃21/∆21 gets its minimum at about a/∆21 = 1. As |Ve2|2 increases rapidly to

1− |Ue3|2 afterwards and becomes stable until the second resonance is reached, ∆̃21

is linearly proportional to a during this stable region. The ultimate value of ∆̃21 is

fixed to ∆31 for a/∆21 → +∞.

• For ∆̃31, the beta function is |Ve3|2 − |Ve1|2, which is negative as |Ue3|2 � |Ue1|2 at

the beginning, so ∆̃31 decreases for the increasing a. But |Ve1|2 is reduced to zero

quickly, while |Ve3|2 keeps almost unchanged, so the evolution of ∆̃31 is negligible. The

situation changes when the second resonance is encountered and |Ve3|2 approaches

one rapidly. Hence, ∆̃31 turns out to be linearly proportional to a ultimately.
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Figure 5. The evolution of the effective flavor mixing parameters in matter, namely, three mixing

angles {θ̃12, θ̃13, θ̃23}, one CP-violating phase δ̃ and two mass-squared differences {∆̃21, ∆̃31}, with

respect to a/∆21 in the IO case. The same convention and input values as in figure 2 are taken.

The results for antineutrinos and the IO case can be discussed in a similar way. As in-

dicated in figure 3, the Jarlskog invariant J̃ will be vanishing as a/∆21 → +∞. This

can be explained via the Naumov relation J̃ = J∆21∆31∆32/(∆̃21∆̃31∆̃32), in which the

denominator is approaching infinity. On the other hand, as θ̃13 → π/2 for a/∆21 → +∞,

the Jarlskog invariant is J̃ ∝ sin 2θ̃13 cos θ̃13 → 0 in the standard parametrization.

Finally, one may wonder whether the RGEs in eq. (3.2) can be analytically solved,

so as to express θ̃12, θ̃13, θ̃23 and δ̃ in terms of θ12, θ13, θ23, δ and the relevant neu-

trino mass-squared differences. This will be a challenge if the matter density is arbitrarily

varying. Given a constant matter profile, however, the exact analytical relations between

{θ̃12, θ̃13, θ̃23, δ̃} and {θ12, θ13, θ23, δ} have been established in refs. [34–36] in a different

approach. But those relations are so complicated that they are not very helpful for un-

derstanding the behaviors of neutrino oscillations in matter. That is why some useful and

more transparent analytical approximations have been made in the literature for long-

and medium-baseline neutrino oscillation experiments (e.g., ref. [13] for E . 1 GeV and

refs. [32, 33] for E & 0.5 GeV).
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4 Some further discussions

In this section we demonstrate that the RGEs derived in the previous sections can also be

utilized to analyze the matter effects on several phenomenologically interesting observables.

Let us begin with the partial µ-τ asymmetries of V [37],

Ai ≡ |Vµi|2 − |Vτi|2 (4.1)

(for i = 1, 2, 3) and the off-diagonal asymmetries of V ,

AL ≡ |Ve2|2 − |Vµ1|2 = |Vµ3|2 − |Vτ2|2 = |Vτ1|2 − |Ve3|2 ,
AR ≡ |Ve2|2 − |Vµ3|2 = |Vµ1|2 − |Vτ2|2 = |Vτ3|2 − |Ve1|2 . (4.2)

The phenomenological implications of the partial symmetry |Uµ1|2 = |Uτ1|2 or |Uµ2|2 =

|Uτ2|2 for the leptonic CP-violating phase and mixing angles in vacuum have been inves-

tigated in ref. [37], in which it has been shown that the leptonic CP-violating phase δ

is correlated with three mixing angles if such a symmetry is imposed. In the standard

parametrization, |Uµ3|2 = |Uτ3|2 leads to the maximal mixing angle θ23 = π/4. On the

contrary, |Uµ1|2 = |Uτ1|2 or |Uµ2|2 = |Uτ2|2 allows for an appreciable deviation of θ23 from

π/4 and that of δ from ±π/2, which are compatible with current neutrino oscillation data.

Unlike the full µ-τ symmetry |Vµi|2 = |Vτi|2, the partial symmetry is not preserved by

matter effects, which can be seen from the following RGEs:

d

da
Ai =

d

da
|Vµi|2 −

d

da
|Vτi|2 =

∑

j 6=i

(
|Vµi|2|Vµj |2 − |Vτi|2|Vτj |2

)
∆̃−1ji , (4.3)

where eq. (2.8) has been used. It is evident that if Ai = 0 (for i = 1, 2, 3) hold exactly

in vacuum (namely, |Uµi|2 = |Uτi|2), they remain to be vanishing in matter. This point

has also been emphasized in the previous section with the standard parametrization of

V . However, if only the partial µ-τ symmetry (say A1 = 0 or |Uµ1|2 = |Uτ1|2) is valid in

vacuum, then we have

d

da
A1 = 2|Vµ1|2

[(
|Vµ2|2 − |Vτ2|2

)
∆̃−121 +

(
|Vµ3|2 − |Vτ3|2

)
∆̃−131

]
, (4.4)

which is in general nonzero for |Vµ2|2 6= |Vτ2|2 and |Vµ3|2 6= |Vτ3|2. Therefore, the predic-

tions from |Uµ1|2 = |Uτ1|2 in vacuum are invalidated in matter. In a similar way, one can

calculate the RGEs for the off-diagonal asymmetries,

d

da
AL = 2

[
Re (Vτ1Ve2V

∗
τ2V

∗
e1) ∆̃−112 − |Ve2|2|Ve3|2∆̃−123 + Re

(
Vµ3Ve1V

∗
µ1V

∗
e3

)
∆̃−131

]
,

d

da
AR = 2

[
|Ve1|2|Ve2|2∆̃−112 − Re (Vτ2Ve3V

∗
τ3V

∗
e2) ∆̃−123 − Re

(
Vµ3Ve1V

∗
µ1V

∗
e3

)
∆̃−131

]
. (4.5)

The latest neutrino oscillation data indicate that both AL and AR are nonzero for the

flavor mixing matrix in vacuum.

We present the running behaviors of the partial µ-τ asymmetries and the off-diagonal

asymmetries in figures 6 and 7, respectively. Assuming the initial values of neutrino mixing
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Figure 6. The evolution of the partial µ-τ asymmetries Ai ≡ |Vµi|2 − |Vτi|2 for i = 1, 2, 3 with

respect to a/∆21, where the same convention and input values as in figure 3 are taken.

parameters in vacuum to be the best-fit numbers, one can find that the asymmetries |Ai| .
0.1, which are indeed modified by the matter effects, but only slightly. On the other hand,

however, the off-diagonal asymmetries can be significantly enhanced or suppressed during

the evolution with respect to a/∆21. It is straightforward to explain the primary features

of the evolution of these asymmetries by using the numerical results in figures 1 and 2.

Next, we focus on the sides of six leptonic unitarity triangles of V , which are defined

by the orthogonality conditions in the complex plane [38]:

4e : Vµ1V
∗
τ1 + Vµ2V

∗
τ2 + Vµ3V

∗
τ3 = 0 ,

4µ : Vτ1V
∗
e1 + Vτ2V

∗
e2 + Vτ3V

∗
e3 = 0 ,

4τ : Ve1V
∗
µ1 + Ve2V

∗
µ2 + Ve3V

∗
µ3 = 0 ; (4.6)

and

41 : Ve2V
∗
e3 + Vµ2V

∗
µ3 + Vτ2V

∗
τ3 = 0 ,

42 : Ve3V
∗
e1 + Vµ3V

∗
µ1 + Vτ3V

∗
τ1 = 0 ,

43 : Ve1V
∗
e2 + Vµ1V

∗
µ2 + Vτ1V

∗
τ2 = 0 . (4.7)
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Figure 7. The evolution of the off-diagonal asymmetries AL and AR with respect to a/∆21,

where the same convention and input values as in figure 3 are taken.

Taking the unitarity triangle 4τ for example, one may figure out

d

da

(
Ve1V

∗
µ1

)
= Ve1V

∗
µ1

(
|Ve2|2∆̃−112 − |Ve3|2∆̃−131

)
+ |Ve1|2

(
Ve2V

∗
µ2∆̃

−1
12 − Ve3V ∗µ3∆̃−131

)
,

d

da

(
Ve2V

∗
µ2

)
= Ve2V

∗
µ2

(
|Ve3|2∆̃−123 − |Ve1|2∆̃−112

)
+ |Ve2|2

(
Ve3V

∗
µ3∆̃

−1
23 − Ve1V ∗µ1∆̃−112

)
,

d

da

(
Ve3V

∗
µ3

)
= Ve3V

∗
µ3

(
|Ve1|2∆̃−131 − |Ve2|2∆̃−123

)
+ |Ve3|2

(
Ve1V

∗
µ1∆̃

−1
31 − Ve2V ∗µ2∆̃−123

)
, (4.8)

where eq. (2.7) has been utilized to compute the derivatives of the matrix element and its

complex conjugate. From eq. (4.8), we can observe how the three sides of 4τ are changing

with the matter term. Since the evolution of all the six leptonic unitarity triangles has

been systematically studied in refs. [15, 16], we do not elaborate on this issue here.

Last but not least, we give some remarks on the parameter a/∆21, which has been

chosen as an arbitrary dimensionless scale-like variable. Based on the definition a ≡
2
√

2 GFNeE, it is convenient to rewrite a/∆21 as follows:

a

∆21

= 0.02

(
Ne

NA cm−3

)
·
(

E

10 MeV

)
, (4.9)

where NA = 6.022 × 1023 is the Avogadro constant, and the electron number density

Ne is related to the matter density ρ through Ne = NA cm−3 Ye [ρ/(1 g cm−3)]. In

figure 8 the contours of a/∆21 have been shown in the plane of (E,Ne), and three typ-

ical neutrino oscillation experiments have been indicated on the plot for the purpose of

illustration: JUNO reactor antineutrinos at (4 MeV, 1.5NA/cm3) [39], solar neutrinos at

(10 MeV, 102NA/cm3) [1] and DUNE with accelerator neutrinos at ( GeV, 1.5NA/cm3) [40].

For the reactor- and accelerator-based experiments, the matter density is usually taken to
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Figure 8. The contours of a/∆21 = 0.02 · [Ne/(NA cm−3)] · [E/(10 MeV)] in the plane of

neutrino energy E and the net electron number density Ne, where the yellow disk stands for JUNO

at (E,Ne) = (4 MeV, 1.5NA/cm3), the blue square for solar neutrinos at (10 MeV, 102NA/cm3),

and the black triangle for DUNE at (2 GeV, 1.5NA/cm3).

be ρ = 3 g cm−3, i.e., the average density of the Earth crust or mantle. Thus, the evolution

with respect to a can be realized by changing the neutrino beam energy or the matter

density.

As a potentially interesting application of the RGE approach developed above, one may

first express the neutrino oscillation probabilities relevant for those realistic experiments in

terms of the effective mixing parameters and then extract their values directly from the cor-

responding experimental data. The exact RGEs of those effective mixing parameters can

subsequently be implemented to run the measured values to a common scale of a/∆21. In

particular, the fundamental oscillation parameters (i.e., two neutrino mass-squared differ-

ences and four flavor mixing parameters) can be extrapolated from their matter-corrected

counterparts in the vacuum limit of a/∆21 → 0. It is still unclear whether this procedure

will work better than the usual treatment of matter effects in the present neutrino oscilla-

tion experiments with reasonable analytical approximations, but its principle is definitely

on solid ground because the language of RGEs itself is completely model-independent.

5 Concluding remarks

It is well known that the RGE approach has been serving as a powerful tool in a num-

ber of aspects of theoretical physics to systematically describe the changes of a physical

system as viewed at different distances or energy scales, and its success in quantum field
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theory is especially marvelous. In the present work we have applied this language to the

description of neutrino masses and flavor mixing parameters in a medium, which evolve

with the arbitrary scale-like matter parameter a ≡ 2
√

2 GFNeE, and highlighted a striking

possibility that the genuine neutrino flavor quantities in vacuum can be extrapolated from

their matter-corrected counterparts to be measured in some realistic neutrino oscillation

experiments.

To be explicit, we have clearly demonstrated that the dependence of the effective flavor

mixing parameters Vαi and m̃2
i on the matter parameter a can perfectly be described by

a complete set of differential equations, which are just referred to as the RGEs of those

quantities. The point is that the introduction of effective neutrino mass-squared differences

and flavor mixing parameters guarantees the form invariance or self-similarity of neutrino

oscillation probabilities in vacuum and in matter, and hence the RGE-like approach for

describing neutrino oscillations in matter works well. In addition to the RGEs for m̃i and

|Vαi|2 [23, 24], we have also derived the RGEs of three flavor mixing angles and one CP-

violating phase in the standard parametrization of V , and numerically illustrated some

salient features of their evolution with respect to the matter parameter a. The RGEs of J̃
and some other interesting quantities, such as the partial µ-τ asymmetries, the off-diagonal

asymmetries and the sides of unitarity triangles of V , have been derived and discussed as

a by-product of this work. The Naumov and Toshev relations are reformulated too.

In the long run, the RGE-like approach that we have developed may hopefully pro-

vide a generic framework for the systematic study of neutrino masses and flavor mixing

parameters in any possible matter environments. Although such a tool might be “scien-

tifically indistinguishable” from the conventional methods of dealing with matter effects

on neutrino oscillations, “they are not psychologically identical” in making the underlying

physics more transparent [41]. In particular, tracing an analogy between the evolution

of neutrino masses and flavor mixing parameters in matter and their evolution with the

energy scale is theoretically interesting. We therefore expect that our work can find some

useful applications in neutrino phenomenology.
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