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1 Introduction

The parity-violating (chiral) gauge symmetries and spontaneous/explicit breaking of these

symmetries for the hierarchy of fermion masses have been at the center of a conceptual

elaboration that has played a major role in donating to mankind the beauty of the SM for

particle physics. The Nambu-Jona-Lasinio (NJL) model [1] of dimension-6 four-fermion

operators at high energies and its effective counterpart, the phenomenological model [2–

7] of the elementary Higgs boson and its Yukawa-coupling to fermions at low energies,

provide an elegant and simple description for the electroweak symmetry breaking and

intermediate gauge boson masses. After a great experimental effort for many years, using

data recorded at
√
s = 7, 8TeV experiments of pp collision at the Large Hadron Collider

(LHC), the ATLAS [8] and CMS [9] collaborations have shown the first observations of a

125GeV scalar particle in the search for the SM Higgs boson. This far-reaching result begins

to shed light on this most elusive and fascinating arena of fundamental particle physics.

Recently, in the Run-2 of the upgraded LHC, the preliminary results on
√
s = 13TeV

pp collision data are prepared by ATLAS [10] and CMS [11] to search for new (beyond

the SM) resonant and/or nonresonant phenomena that might manifest themselves in the

high-energy regime with final states of diboson, dilepton, dijet and so forth. The diphoton

channel preliminarily showed the trace of a new resonance at the diphoton invariant mass

Mγγ , which however has not been further confirmed by increasing the integrated luminosity

and energy of pp collisions.

– 1 –
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1.1 Weak-interacting four-fermion operators and symmetry-breaking phase

The dynamics of new physics at high energies may be represented by an effective theory

of high-dimensional operators of fermion fields, e.g., dimension-6 four-fermion operators,

preserving at least the SM gauge symmetries. The strong technicolor dynamics of extended

gauge theories at the TeV scale was invoked [22–27] to have a natural scheme incorporating

the relevant four-fermion operator G(ψ̄ia
L tRa)(t̄

b
RψLib) of the 〈t̄t〉-condensate model [28], to

generate the top-quark mass via spontaneous symmetry breaking (SSB). On the other

hand, these relevant operators can be constructed on the basis of phenomenology of the

SM at low-energies. In 1989, several authors [28–33] suggested that the SM symmetry

breakdown could be a dynamical mechanism of the NJL type that intimately involves the

top quark at the high-energy scale Λ. Since then, many models based on this idea have been

studied [34, 35]. In the scenes of renormalization group (scaling) invariance and resultant

renormalization-group (RG) equations, there is a scaling region (IR-domain) of the infrared

(IR) stable fixed point of four-fermion operators, the low-energy SM physics was supposed

to be achieved by the RG equations in the IR-domain with the electroweak scale v ≈
239.5GeV [25–28, 33]. It is in this IR-domain, we recently present the detailed study of

hierarchy mass spectrum of SM fermions: from top quark to electron neutrino [12, 13],

on the basis of effective four-fermion operators of Einstein-Cartan type, as will be shown

in section 2.

1.2 Strong-interacting four-fermion operators and gauge-symmetric phase

In addition to the IR-domain of weak-coupling four-fermion operators in the SSB phase

where the low-energy SM is realized, we find a scaling region (UV-domain) of the ultraviolet

(UV) stable fixed point of strong-coupling four-fermion operators in the gauge-symmetric

phase. In this UV-domain at high energies, it realizes an effective theory of composite

bosons and fermions composed by SM elementary fermions, these composite particles and

their interactions preserving the SM gauge symmetries [14–20]. This is the issue that we

would like to focus in this article.

In refs. [20, 21], we have already presented discussions on the possible decay channels

of composite bosons and fermions into final states of jets and leptons in the framework of

effective four-fermion operators in high energies. In this article, we focus on the discussions

on the possible channels of composite bosons decaying into two SM gauge bosons, and com-

posite fermions decaying into two SM gauge bosons (diboson) and a quark/lepton, as well

as their experimental implications. It is preliminarily shown that the diphoton channel of

composite bosons decay should have the largest branching ratio, however other diboson

channels should also contribute to the invariant mass M of possible composite-boson reso-

nance. Instead, composite fermions decay into a composite boson and a quark/lepton, the

former is an intermediate state, which then decays into two bosons, i.e., a quark-diboson or

lepton-diboson channel. These final states and their kinematic relations of such a quark-

diboson or lepton-diboson channel are peculiar. This provides a possibility/criterion to

verify the effective theory of composite particles in high-energy experiments.

– 2 –
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1.3 Article arrangement

In section 2, we present the SM gauge-symmetric operators of four-fermion interactions of

Einstein-Cardan type and the brief discussion of their possible origin. Some explanations

and clarifications of the low-energy IR-domain for the SM and the high-energy UV-domain

for an effective field theory of composite particles are given in section 3. After showing the

composite particle spectrum and effective Lagrangian in sections 4 in the framework of SM

fermion content and gauge symmetries, we discuss in sections 5 and 6.1 the main results

that the composite boson and fermion decay into SM gauge bosons and/or elementary

fermions in connection with high-energy experiments. In the final section, we present some

discussions and speculations on the possible channels of composite particles interacting

with SM particles, that could be relevant to some experiments at the energy scale of

composite particles.

2 Four-fermion operators beyond the SM

In order for a self-contained and self-consistent article, as well as for readers’ convenience,

we include this section of describing effective four-fermion operators at the cutoff Λ that

was similarly presented in ref. [13] for discussing the hierarchy spectrum of SM fermions in

the IR-domain. It is also necessary to present these effective four-fermion operators at the

cutoff Λ to clarify its induced Lagrangian of the composite particle spectra and interactions

in the UV-domain.

2.1 Regularization and quantum gravity

Up to now the theoretical and experimental studies tell us the chiral gauge-field interac-

tions to fermions in the lepton-quark family that is replicated three times and mixed. The

spontaneous breaking of these chiral gauge symmetries and generating of fermion masses

are made by the Higgs field sector. In the IR-fixed-point domain of weak four-fermion cou-

pling or equivalently weak Yukawa coupling, the SM Lagrangian with all relevant operators

(parametrizations) is realized and behaves an effective and renormalizable field theory in

low energies. To achieve these SM relevant operators, a finite field theory of chiral-gauge in-

teractions should be well-defined by including the quantum gravity that naturally provides

a space-time regularization (UV cutoff). As an example, the finite superstring theory is

proposed by postulating that instead of a simple space-time point, the fundamental space-

time “constituents” is a space-time “string”. The Planck scale is a plausible cut-off, at

which all principle and symmetries are fully respected by gauge fields and particle spectra,

fermions and bosons.

In this article, we do not discuss how a fundamental theory at the Planck scale induces

high-dimensional operators. Instead, as a postulation or motivation, we argue the pres-

ence of at least four-fermion operators beyond the SM from the following point view. A

well-defined quantum field theory for the SM Lagrangian requires a natural regularization

(UV cutoff Λ) fully preserving the SM chiral-gauge symmetry. The quantum gravity nat-

urally provides a such regularization of discrete space-time with the minimal length ã ≈

– 3 –
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1.2 apl [36–39], where the Planck length apl ∼ 10−33 cm and scale Λpl = π/apl ∼ 1019GeV.

However, the no-go theorem [40–42] tells us that there is no any consistent way to regularize

the SM bilinear fermion Lagrangian to exactly preserve the SM chiral-gauge symmetries,

which must be explicitly broken at the scale of fundamental space-time cutoff ã. This

implies that the natural quantum-gravity regularization for the SM should lead us to con-

sider at least dimension-6 four-fermion operators originated from quantum gravity effects

at short distances.1 As a model, we adopt the four-fermion operators of the torsion-free

Einstein-Cartan Lagrangian within the framework of the SM fermion content and gauge

symmetries. We stress that a fundamental theory at the UV cutoff is still unknown.

2.2 Einstein-Cartan theory with SM gauge symmetries and fermion content

The Lagrangian of torsion-free Einstein-Cartan (EC) theory reads,

LEC(e, ω, ψ) = LEC(e, ω) + ψ̄eµDµψ +GJdJd, (2.1)

where the gravitational Lagrangian LEC = LEC(e, ω), tetrad field eµ(x) = e a
µ (x)γa, spin-

connection field ωµ(x) = ωab
µ (x)σab, the covariant derivative Dµ = ∂µ − igωµ and the axial

current Jd = ψ̄γdγ5ψ of massless fermion fields. The four-fermion coupling G relates to

the gravitation-fermion gauge coupling g and fundamental space-time cutoff ã.

In the context of the SM one-family fermion content and gauge symmetries, we con-

sider massless, two-component, left- and right-handed Weyl fermions ψf
L
(doublets) and

ψf
R
(singlets) carrying the quantum numbers of the SM SUL(2)×UY (1) chiral gauge sym-

metries, where “f” is the fermion-family index, as well as three right-handed Weyl sterile

neutrinos νf
R
and their left-handed conjugated fields νf c

R
= iγ2(νR

)∗, which do not carry

any quantum number of SM gauge symmetries. Analogously to the EC theory (2.1), we

obtain a torsion-free, diffeomorphism and local gauge-invariant Lagrangian

L = LEC(e, ω) +
∑

f

ψ̄f
L,R

eµDµψ
f
L,R

+
∑

f

ν̄fc
R
eµDµν

fc
R

+G
(

Jµ
L
J

L,µ
+ Jµ

R
J

R,µ
+ 2Jµ

L
J

R,µ

)

+G
(

jµ
L
j
L,µ

+ 2Jµ
L
j
L,µ

+ 2Jµ
R
j
L,µ

)

, (2.2)

where the SM gauge fields Aµ are present in the co-variant derivative Dµ to preserve the

SM gauge symmetries, and axial currents read

Jµ
L,R

≡
∑

f

ψ̄f
L,R

γµγ5ψf
L,R

, jµ
L
≡

∑

f

ν̄fc
R
γµγ5νfc

R
. (2.3)

The four-fermion coupling G is unique for all four-fermion operators and high-dimensional

fermion operators (d > 6) are neglected.

1In the regularized and quantized EC theory [36–39] with a basic space-time cutoff, in addition to

dimension-6 four-fermion operators, there are high-dimensional fermion operators (d > 6), e.g., ∂σJ
µ∂σJµ,

which are suppressed at least by O(ã4).

– 4 –
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By using the Fierz theorem [43, 44], the dimension-6 four-fermion operators in eq. (2.2)

can be written as [21]

+ (G/2)
(

Jµ
L
J

L,µ
+ Jµ

R
J

R,µ
+ jµ

L
j
L,µ

+ 2Jµ
L
j
L,µ

)

(2.4)

−G
∑

ff ′

(

ψ̄f
L
ψf ′

R
ψ̄f ′

R
ψf

L
+ ν̄fc

R
ψf ′

R
ψ̄f ′

R
νfc
R

)

, (2.5)

which preserve the SM gauge symmetries. Equations (2.4) and (2.5) represent repulsive and

attractive operators respectively. The former (2.4) are suppressed by the cutoff O(Λ−2),

and cannot become relevant and renormalizable operators of effective dimension-4. Thus

the torsion-free EC theory with the attractive four-fermion operators reads,

L = LEC +
∑

f

ψ̄f
L,R

eµDµψ
f
L,R

+
∑

f

ν̄fc
R
eµDµν

fc
R

−G
∑

ff ′

(

ψ̄f
L
ψf ′

R
ψ̄f ′

R
ψf

L
+ ν̄fc

R
ψf ′

R
ψ̄f ′

R
νfc
R

)

+ h.c., (2.6)

where the two component Weyl fermions ψf
L
and ψf

R
respectively are the SUL(2)× UY (1)

gauged doublets and singlets of the SM. For the sake of compact notations, ψf
R
are also

used to represent νfR, which have no any SM quantum numbers. All fermions are massless,

they are four-component Dirac fermions ψf = (ψf
L+ψf

R), two-component left-handed Weyl

neutrinos νfL and four-component sterile Majorana neutrinos νfM = (νfcR +νfR) whose kinetic

terms read

ν̄f
L
eµDµν

f
L
, ν̄f

M
eµDµν

f
M

= ν̄f
R
eµDµν

f
R
+ ν̄fc

R
eµDµν

fc
R
. (2.7)

In eq. (2.6), f and f ′ (f, f ′ = 1, 2, 3) are fermion-family indexes summed over respectively

for three lepton families (charge q = 0,−1) and three quark families (q = 2/3,−1/3).

Equation (2.6) preserves not only the SM gauge symmetries and global fermion-family

symmetries, but also the global symmetries for fermion-number conservations. We adopt

the effective four-fermion operators (2.6) in the context of a well-defined quantum field

theory at the high-energy scale Λ.

2.3 Fermion-family symmetry and mass eigenstate

As argued in the introduction section 2.1, the origin of effective four-fermion operators in

eqs. (2.1)–(2.6) is due to the quantum gravity that couples to all fermion fields and provides

a natural regularization for chiral gauge field theories, like the SM, at the UV cutoff Λ.

Therefore, there is no any reason to assume different four-fermion coupling G’s for different

fermions that equally couple to the gravitational field in the torson-free Einstein-Cartan

theory (2.1).

It should be further clarified that in the effective Lagrangian (2.6) at the cutoff Λ, (i) the

massless SM fermion fields are interacting gauge eigenstates of the SM gauge symmetries

SUc(3)× SUL(2)× UY (1); (ii) due to the unique four-fermion coupling G, there are exact

global fermion-family UL(3) × UR(3) chiral symmetries, i.e., flavor or horizon symmetries

with respect to different charges q = 0,−1, 2/3,−1/3 of fermions in different families.

– 5 –
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In order to study the gauge-boson-fermion and four-fermion interactions in terms of

fermion mass-energy spectra and currents, measured as physical final states, we adopt

the energy-mass eigenstates of fermions in the following discussions of entire article. The

unitary chiral transformations UL ∈ UL(3) and UR ∈ UR(3), where UL and UR are related

by a unitary matrix V , can be performed from gauge eigenstates to mass eigenstates (up-

and down-quark sectors as example):

ψu
L → Uu

L ψu
L, ψu

R → Uu
R ψu

R; Uu
L,R ∈ Uu

L,R(3), (2.8)

and

ψd
L → Ud

L ψd
L, ψd

R → Ud
R ψd

R; Ud
L,R ∈ Ud

L,R(3), (2.9)

so that in eq. (2.6) the fermion-family indexes f = f ′, i.e., δff ′ respectively for the u-

quark sector and the d-quark sector. As a result, all quark fields are mass eigenstates, the

four-fermion operators (2.6) are “diagonal” only for each quark family without fermion-

family mixing,

−G
∑

f=1,2,3

[

ψ̄f
L
ψf

R
ψ̄f

R
ψf

L

]up

2/3
−G

∑

f=1,2,3

[

ψ̄f
L
ψf

R
ψ̄f

R
ψf

L

]down

−1/3
. (2.10)

In the following, we adopt this representation and our notations will be only for the first

SM family, however, they are the same for the second and third families.

In this representation, bilinear fermion-mass operators 〈ψf
R
ψ̄f

L
〉+h.c., i.e., quark-mass

matrices are diagonalized in the fermion-family space by the biunitary transformations

Mu ⇒ Mu
diag = (mu

1 ,m
c
2,m

t
3) = Uu†

L MuUu
R, (2.11)

Md ⇒ Md
diag = (md

1,m
s
2,m

b
3) = Ud†

L MdUd
R, (2.12)

where all quark masses (eigenvalues) are positive, UL and UR are related by

Uu,d
L = Vu,dUu,d

R , (2.13)

and Vu,d is a unitary matrix, see for example [45, 46]. Using unitary matrices Uu
L,R (2.8)

and Ud
L,R (2.9), up to a diagonal phase matrix we define the unitary quark-family

mixing matrices,

Uu†
L Ud

L, Uu†
L Ud

R,

Uu†
R Ud

L, Uu†
R Ud

R. (2.14)

where the first element is the CKM matrix U = U q
L ≡ Uu†

L Ud
L. The similar discussions for

the lepton sector can be found in ref. [13].

In the IR effective theory in the IR-domain, the nonzero and different expectational

values of fermion-mass operators 〈ψf
R
ψ̄f

L
〉 ∝ mf 6= 0 (2.11) and fermion-family hierarchy

mf 6= mf ′

can be developed due to both spontaneous-symmetry and explicit-symmetry

breaking of chiral symmetries [12]. In this case, apart from the breaking of the SM chiral

gauge symmetries, fermion-family (flavor) UL(3) × UR(3) symmetries are broken to the

– 6 –
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U(1) symmetry for each fermion family, i.e., U1(1) × U2(1) × U3(1) for the four-fermion

operators (2.10), two-fermion operators (2.11) and (2.12). However, the mass eigenstates

of the SM elementary fermions are different from their chiral-gauge eigenstates, i.e., the

interaction vertexes of the chiral-gauge-boson W± and massive fermions are not diagonal

in the fermion-family space based on the mass eigenstates of fermions, as can be seen in

the kinetic terms of the effective Lagrangian (2.6).

In the UV effective theory in the UV-domain, instead, the chiral and flavor symmetries

are preserved for mf = 0, indicating that gauge and mass eigenstates of composite particles

are the same. In sections 3.1.3 and 4.2.3, we will come back to the discussions of the flavor-

changing-neutral-current (FCNC) processes, considering the chiral- and flavor-symmetries

breaking (preserving) of IR (UV) effective theory in the IR (UV) domain respectively.

2.4 SM gauge-symmetric four-fermion operators

Using eq. (2.10) and we explicitly show SM gauge symmetric four-fermion operators. In

the quark sector, the four-fermion operators are

G
[

(

ψ̄ia
L tRa

)

(

t̄bRψLib

)

+
(

ψ̄ia
L bRa

)

(

b̄bRψLib

)]

+ “terms”, (2.15)

where a, b and i, j are the color and flavor indexes of the top and bottom quarks, the quark

SUL(2) doublet ψia
L = (taL, b

a
L) and singlet ψa

R = taR, b
a
R are the eigenstates of electroweak

interaction. The first and second terms in eq. (2.15) are respectively the four-fermion

operators of top-quark channel [28] and bottom-quark channel, whereas “terms” stands

for the first and second quark families that can be obtained by substituting t → u, c and

b → d, s [20, 50, 51].

In the lepton sector with three right-handed sterile neutrinos νℓR (ℓ = e, µ, τ), the

four-fermion operators in terms of gauge eigenstates are,

G
[

(

ℓ̄iLℓR
) (

ℓ̄RℓLi
)

+
(

ℓ̄iLν
ℓ
R

)(

ν̄ℓRℓLi

)

+
(

ν̄ℓ cR νℓR

)(

ν̄ℓRν
ℓc
R

)]

, (2.16)

preserving all SM gauge symmetries, where the lepton SUL(2) doublets ℓiL = (νℓL, ℓL),

singlets ℓR and the conjugate fields of sterile neutrinos νℓcR = iγ2(ν
ℓ
R)

∗. Coming from the

second term in eq. (2.6), the last term in eq. (2.16) preserves the symmetry Ulepton(1) for

the lepton-number conservation, although (ν̄ℓRν
ℓc
R ) violates the lepton number of family “ℓ”

by two units.

Similarly, from the second term in eq. (2.6) there are following four-fermion operators

G
[(

ν̄ℓ cR ℓR

)(

ℓ̄Rν
ℓ c
R

)

+
(

ν̄ℓ cR uℓa,R

)(

ūℓa,Rν
ℓc
R

)

+
(

ν̄ℓ cR dℓa,R

)(

d̄ℓa,Rν
ℓc
R

)]

, (2.17)

where quark fields uℓa,R = (u, c, t)a,R and dℓa,R = (d, s, b)a,R.

2.5 Four-fermion operators of quark-lepton interactions

Although the four-fermion operators in eq. (2.6) do not have quark-lepton interactions,

we consider the following SM gauge-symmetric four-fermion operators that contain quark-

lepton interactions [12, 13, 47],

G
[(

ℓ̄iLeR
) (

d̄aRψLia

)

+
(

ℓ̄iLν
e
R

)

(ūaRψLia)
]

+ (· · ·), (2.18)

– 7 –
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where ℓiL = (νeL, eL) and ψLia = (uLa, dLa) for the first family. The (· · ·) represents for

the second and third families with substitutions: e → µ, τ , νe → νµ, ντ , and u → c, t

and d → s, b. The four-fermion operators (2.18) of quark-lepton interactions are not

included in eq. (2.6), since leptons and quarks are in separated representations of SM

gauge groups. They should be expected in the framework of Einstein-Cartan theory and

SO(10) unification theory [48, 49].

3 IR-stable and UV-stable fixed points and their scaling regions

Apart from what is possible new physics at the UV scale Λ explaining the origin of these

effective four-fermion operators, it is essential and necessary to study: (i) the phase diagram

in the space of these effective four-fermion operator couplings; (ii) which dynamics of these

operators undergo in terms of their couplings as functions of running energy scale µ; (iii)

associating to these dynamics where infrared (IR) and/or ultraviolet (UV) stable fixed

point of physical couplings locates; (iv) in the IR and/or UV domains (scaling regions) of

these stable fixed points, which operators become physically relevant and renormalizable

following RG equations (scaling laws), and other irrelevant operators are suppressed by the

cutoff at least O(Λ−2).

3.1 Symmetry-breaking phase and the IR-domain of the IR-stable fixed point

In the NJL symmetry-breaking phase of weak coupling G > Gc,
2 where Gc is the weak

critical coupling of the NJL dynamics, the low-energy SM physics was supposed to be

achieved in the IR-domain (G & Gc) of IR-stable fixed point [25–28, 33]. Bardeen, Hill

and Lindner (BHL) proposed the effective Lagrangian of the tt̄-condensate model [28],

L = Lkinetic + gt0(ψ̄LtRH + h.c.) + ∆Lgauge

+ ZH |DµH|2 −m2
0HH†H − λ0

2
(H†H)2, (3.1)

with a massive composite Higgs boson H = (t̄t) and massless Goldstone bosons (t̄γ5t)

and (t̄γ5b), which are the longitudinal modes of massive intermediate gauge bosons. The

composite Higgs’ bare form-factor (wave-function renormalization) ZH and masss m
0H ,

as well as its Yukawa gt0 and quartic λ0 couplings are defined at an intermediate scale

E (v < E < Λ), that will be clear below (3.12). Renormalized quantities, like Yukawa

coupling ḡt(µ
2) and quartic couplings λ̄(µ2) are defined at the running energy scale µ and

satisfy the RG equations in the IR-domain,

16π2dḡt
dt

=

(

9

2
ḡ2t − 8ḡ23 −

9

4
ḡ22 −

17

12
ḡ21

)

ḡt, (3.2)

16π2dλ̄

dt
= 12

[

λ̄2 + (ḡ2t −A)λ̄+B − ḡ4t
]

, t = lnµ (3.3)

2In the symmetric phase of extremal weak coupling G < Gc, all four-fermion interacting amplitudes are

suppressed by the cutoff Λ.
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β(G)

⇐ ←→
G

symmetry-breaking phase gauge-symmetric phase

I II

IIIGc

IR

Gcrit

UV

Figure 1. This is a sketch [20] to qualitatively show the behavior of the β-function in terms of

the four-fermion coupling G. We indicate the IR-stable fixed point Gc and a possible UV-stable

fixed point Gcrit, the latter separates the symmetry-breaking phase (positive β(G)-function) from

the gauge-symmetric phase (negative β(G)-function). We also indicate the different parts of β(G)-

function: the positively increasing part “I” and the IR-domain where RG flow approaches (thick

left arrow) to the IR-fixed point, as energy scale µ decreases; (ii) the positively decreasing part “II”

and the negative part “III”, as well as the UV-domain where RG flow approaches (thin right and

left arrows) to the UV-fixed point, as the running energy scale µ increases.

where one can find A, B and RG equations for running gauge couplings g21,2,3 in eqs. (4.7),

(4.8) of ref. [28].

This IR-domain of IR-stable fixed point Gc can be illustrated by a positive β(G)-

function for G & Gc. Taking into account one fermion-loop contribution (tadpole diagram)

from the SSB-relevant top-quark channel (2.15), we calculate the gap equation for top-

quark mass mt 6= 0, and obtain the β-function

β(G) ≡ µ
dG

dµ
≈ 2

G2

Gc

(µ

E
)2

[

1 + ln

(E
µ

)2
]

> 0, (3.4)

for G & Gc ≡ 8π2/(NcE2) and intermediate energy scale E > µ & v, where Nc = 3 is the

number of colors. The positive β-function of eq. (3.4) indicates that an IR-stable fixed

point Gc and the IR-domain G → Gc + 0+ as the running energy scale µ → v, as shown

the part “I” of the β(G)-function in figure 1. As the energy scale µ decreases, indicated

by a thick arrow in figure 1, the RG flow is attracted to the IR-stable fixed point, and the

effective SM of particle physics in low energies is realized in this IR-domain (vicinity) of

IR-stable fixed point.

3.1.1 Resolution to the tt̄-condensate model

Both experimental mt and m
H
values of top-quark and Higgs-boson masses were unknown

in the early 1990s. In order to find low-energy values mt and m
H

close to the IR-stable

fixed point, BHL [28] imposed the compositeness conditions Z̃H(µ) = 1/ḡ2t (µ) → 0 and

λ̃ = λ̄(µ)/ḡ4t (µ) → 0, as energy scale µ → Λ for different values of the high-energy cutoff Λ

as the boundary conditions to solve the RG equations (3.2) and (3.3). As a result, masses

mt,mH
and Higgs-decay width obtained do not agree with experimental values, thus the

BHL tt̄-condensate model was firmly excluded. From the theoretical point of view, the

compositeness conditions implies that the BHL composite Higgs boson is a loosely bound
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λ̃(µ)ḡt(µ)

Figure 2. Using experimentally measured SM quantities (including mt and m
H
) as boundary

values, we uniquely solve the RG equations for the composite Higgs-boson model [28], we find [20, 51]

the effective top-quark Yukawa coupling ḡt(µ) (left) and effective Higgs quartic coupling λ̃(µ) (right)

in the range 1.0 GeV . µ . 13.5 TeV. Note that λ̃(E) = 0 at E ≈ 5.14 TeV and λ̃(µ) < 0 for µ > E .

state of top and anti-top-quark pair (t̄t) because its wave-function renormalization Z̃H(µ)

goes to zero as µ → Λ.

Instead, we adopted [20, 51] the experimental values of the top-quark and Higgs-boson

masses,

m
H
= 126± 0.5GeV; mt = 172.9± 0.8GeV, (3.5)

and used the mass-shell conditions mt = ḡt(mt)v/
√
2 and m2

H
/2 = λ̃(m

H
)v2, as infrared

boundary conditions to integrate the RG equations (3.2) and (3.3) so as to uniquely de-

termine the functions of top-quark Yukawa ḡt(µ) and Higgs-quartic λ̃(µ) couplings (see

figure 2), as well as to obtain the finite values Z̃H(E) ≈ 1.26 and the intermediate energy

scale E ≈ 5.1TeV for λ̃(E) = 0. Our results (figure 2) are radically different from the BHL

results,3 not only the completely different behaviors and numerical values of the Yukawa

ḡt(µ) and quartic λ̃(µ) couplings that will be discussed in next subsection 3.1.2, but also (i)

the composite Higgs boson is a tightly bound state of t̄t pair for finite values Z̃H(µ), as if it

is an elementary Higgs boson; (ii) the phase transition from the symmetry-breaking phase

to the symmetric phase is indicated by λ̃(µ) → 0+ as µ → E + 0−, will be discussed in

section 3.3.1; (iii) the drastically fine-tuning (hierarchy) problem can be resolved, since the

intermediate scale E (v < E ≪ Λ) replaces the high-energy cutoff Λ and sets into eq. (3.4),

the gap-equation
1

Gc
− 1

G
=

1

Gc

(mt

E
)2

ln

( E
mt

)2

> 0, (3.6)

giving rise to a soft chiral-symmetry breaking scale mt . v and the pseudoscalar decay

constant,

f2
π ≈ Nc

32π2
m2

t ln
E2

m2
t

=
Nc

32π2
E2

(

1− Gc

G

)

, (3.7)

for more detailed discussions, see ref. [51].

In the IR-domain (G & Gc) of unique four-fermion coupling G, it seems that the four-

fermion operators (2.15) undergo the SSB, leading to the fermion-condensation Mff ′ =

3Using the compositeness conditions Z̃H(µ) = 1/ḡ2t (µ) → 0, µ → Λ, we reproduced the BHL results:

figures 4 and 5; tables I and II of ref. [28].
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−G〈ψ̄fψf ′〉 = mδff ′ 6= 0, two diagonal mass matrices of quark sectors q = 2/3 and

q = −1/3 satisfying 3 + 3 mass-gap equations, see eqs. (2.11) and (2.12). It was demon-

strated [50] that as an energetically favorable solution of the SSB ground state of the SM,

only top-quark is massive (msb
t = −G〈ψ̄tψt〉 6= 0), otherwise in addition to those become

the longitudinal modes of massive gauge bosons, there would be more Goldstone modes

contributing the SSB-ground-state energy. In other words, among four-fermion opera-

tors (2.15) and (2.16), the 〈t̄t〉-condensate model (3.1) is the unique channel undergoing

the SSB of SM gauge symmetries, for the reason that this is energetically favorable, i.e.,

the ground-state energy is minimal when the maximal number of Goldstone modes are

three and equal to the number of the longitudinal modes of massive gauge bosons in the

SM. Moreover, the four-fermion operators (2.16) of the lepton sector do not undergo the

SSB leading to the lepton-condensation Mff ′ = −G〈ℓ̄f ℓf ′〉 = mℓδff ′ 6= 0, i.e., two diagonal

mass matrices of the lepton sector (q = 0 and q = −1). The reason is that the effective

four-lepton coupling (GNc)/Nc is Nc-times smaller than the four-quark coupling (GNc),

where the color number Nc = 3. In the IR-domain (G & Gc) of the IR-stable fixed point

Gc, the effective four-quark coupling is above the critical value and the SSB occurs, whereas

the effective four-lepton coupling is below the critical value and the SSB does not occur

for the lepton sector.

As a result, only the top quark acquires its mass via the SSB and four-fermion oper-

ator (3.1) of the top-quark channel becomes the relevant operator following the RG equa-

tions in the IR domain [28]. While all other quarks and leptons do not acquire their masses

via the SSB and their four-fermion operators (2.15), (2.16), (2.17), (2.18) are irrelevant

dimension-6 operators, whose tree-level amplitudes of four-fermion scatterings are highly

suppressed O[(µ/Λ)2], thus their deviations from the SM are nowadays experimentally

inaccessible [21].

3.1.2 Experimental indications of tightly-bound composite Higgs boson?

The wave-function renormalization Z̃H(µ) = 1/ḡ2t (µ) represents the form-factor of com-

posite Higgs boson. In the BHL case, the compositeness condition Z̃H(µ) → 0, µ → Λ

is adapted, this implies that the BHL loosely-bound composite Higgs boson behaves very

differently from the elementary Higgs boson, and significant deviations from the SM are

expected. In theoretical calculations, the BHL Yukawa-coupling ḡBHL
t (µ) increases with

energy µ, and Higgs-quartic coupling λ̃BHL(µ) increases for M
Z

< µ . 5TeV (see fig-

ures 4 and 5 of ref. [28]), which are completely different from our results of figure 2. In

experimental fact, the BHL results are firmly excluded by the measured values of Higgs

mass and decay rate (width). Instead, in our case the non-vanishing Z̃H(µ) means that

after conventional wave-function and vertex renormalizations, the tightly-bound composite

Higgs boson behaves as if an elementary particle. The deviations from the SM with an

elementary Higgs boson are expected to be very small.

However, the effective top-Yukawa ḡt(µ) and Higgs-quartic λ̃(µ) couplings monotoni-

cally and slightly decrease as the energy scale µ increases over the range (M
Z
< µ < E),

see figure 2. In the range m
H

< µ < E , these might imply some effects on the rates

or cross-sections of the following three dominate processes of Higgs-boson production and
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decay [8, 9] or other relevant processes. Two-gluon fusion produces a Higgs boson via a

top-quark loop, which is proportional to the effective Yukawa coupling ḡt(µ). Then, the

produced Higgs boson decays into the two-photon state by coupling to a top-quark loop,

and into the four-lepton state by coupling to two massive W -bosons or two massive Z-

bosons. Due to the t̄ t-composite nature of Higgs boson, the one-particle-irreducible (1PI)

vertexes of Higgs-boson coupling to a top-quark loop, to two massive W -bosons and to two

massive Z-bosons are proportional to the effective Yukawa coupling ḡt(µ). As a result, both

the Higgs-boson decaying rate ΓH→f to each of these three channels and total decay rate

Γtotal
H =

∑

f ΓH→f are proportional to ḡ2t (µ), however the branching ratio (ΓH→f/Γ
total
H ) of

each Higgs-decay channel is not changed. The energy scale µ is actually the Higgs-boson

energy, representing the total energy of final states, e.g., two-photon state and four-lepton

states, into which the produced Higgs boson decays.

These discussions imply that the resonant amplitude (number of events) of two-photon

invariant mass mγγ ≈ 126GeV and/or four-lepton invariant mass m4l ≈ 126GeV is ex-

pected to become smaller as the produced Higgs-boson energy µ increases, i.e., the energy

of final two-photon and/or four-lepton states increases, when the CM energy
√
s of LHC

p p collisions increases with a given luminosity. Suppose that the total decay rate or each

channel decay rate of the SM Higgs boson is measured at the Higgs-boson energy µ = mt

and the SM value of Yukawa coupling ḡ2t (mt) = 2m2
t /v ≈ 1.04, see figure 2. In the scenario

of tightly-bound composite Higgs boson, as the Higgs-boson energy µ increases to µ = 2mt,

the Yukawa coupling ḡ2t (2mt) ≈ 0.98, the variation of total decay rate or each channel de-

cay rate is expected to be 6% for ∆ḡ2t ≈ 0.06. Analogously, the variation is expected to

be 9% at µ = 3mt, ḡ
2
t (3mt) ≈ 0.95 or 11% at µ = 4mt, ḡ

2
t (4mt) ≈ 0.93, as shown in

figure 2. These variations are still too small to be clearly distinguished by the present LHC

experiments. Such scenario of tightly-bound composite Higgs boson has not been found so

far any tension with electroweak precision variables. Nevertheless, it certainly needs more

detailed analysis of the tightly-bound composite Higgs phenomenology in comparison with

electroweak precision variables in future work.

In addition, the nonresonant new phenomena, stemming from four-fermion scattering

amplitudes of diemnsion-6 irrelevant operators in effective Lagrangian (2.6), are hightly

suppressed O(Λ−2) and thus hard to be identified [21] in high-energy processes of LHC p p

collisions (e.g., the Drell-Yan dilepton process, see ref. [52]), e−e+ annihilation to hadrons

and deep inelastic lepton-hadron e− p scatterings at TeV scales. Nonetheless, these effects

are the nonresonant new signatures of low-energy collider that show the deviations of such

scenario from the SM.

3.1.3 Yukawa couplings and FCNC’s in IR-domain

The SSB generated top-quark mass mt ∝ ḡtv breaks chiral symmetries, fermion-family

mixing matrices (2.14) become relevant for coupling different fermion families. As a con-

sequence, other quarks and leptons acquire their masses ḡfv, because Schwinger-Dyson

(SD) equations for their self mass-energy functions acquire the explicit symmetry breaking

(ESB) terms induced by the W±-boson vector-like couplings and quark-lepton interactions

at high energies, via the fermion-family mixing matrices like the CKM (2.14) and PMNS
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matrices in the SM. References [12, 13] show in details how the top quark acquires its

mass together with Higgs boson mass by the SSB in terms of ḡt(µ) and λ̃(µ) couplings

(figures 2), and other SM fermions acquire their masses mf ∝ ḡfv by the ESB, as functions

of the top-quark mass mt or Yukawa coupling ḡt(µ), and mixing-matrix elements of the

CKM and PMNS types in the SM, which are intrinsic parameters fixed by experiments.

The hierarchy patterns of fermion masses and mixing-matrix elements are closely related.

As a consequence, the SM chiral gauge symmetries and global fermion-family (flavor)

symmetries are broken at a soft energy scale mf = ḡtv ≪ E ≪ Λ. The latter fermion-family

UL(3)× UR(3) symmetries are broken to the U(1) symmetry for each fermion family, i.e.,

U1(1) × U2(1) × U3(1). Thus the quadrilinear four-fermion operators (2.10), bilinear two-

fermion operators (2.11) and (2.12) are “diagonal”, namely they are for each fermion family

without any fermion-family mixing in the fermion-family space based on mass eigenstates

of fermions. Given a definite electric charge, the U(1)-symmetry for each fermion flavor

is still preserved and the quantum number of each fermion flavor is conserved. This com-

pletely prohibits any four-fermion-interacting process that violates fermion-flavor-number

conservation, such as the FCNC process converting from one elementary fermion flavor ψf

to another ψf ′

with the same electric charge.

However, such prohibition is relaxed as perturbatively turning on the interactions (2.6)

between chiral-gauge-boson W± and massive fermions in addition to the four-fermion in-

teractions (2.10). The reason is that these chiral-gauge interactions are not diagonal in

the fermion-family space based on the mass eigenstates of fermions (2.11) and (2.12), at-

tributed to the fact that the mass eigenstates of the SM elementary fermions are different

from their chiral-gauge eigenstates. As a result, a 1PI-interacting vertex that violates the

fermion-flavor-symmetry U1(1)×U2(1)×U3(1) is induced via the mixing matrices of CKM

type (2.14) and interactions among SM gauge bosons, e.g. W± and photon, at one-loop

level. Such 1PI vertex allows the FCNC processes of changing one elementary fermion

ψf flavor [mass eigenstate (2.8) or (2.9)] to another elementary fermion ψf ′

flavor [mass

eigenstate] with the same electric charge. This situation is the same as that of the SM with

an elementary Higgs boson.

Nevertheless, such W±-boson contributions of SM-type to the FCNC processes are

highly suppressed, since they come from the loop-level contributions of the SM W±-boson

via the fermion-family mixing matrix of the CKM type (2.14) in its gauge coupling vertexes.

In conclusion, apart from the SM-type suppressed contributions to FCNC, the effective

Lagrangian (2.6) with four-fermion operators (2.10) in the IR-domain does not contain any

additional unsuppressed 1PI vertexes that contribute to the FCNC processes.

3.2 Gauge-symmetric phase of strong four-fermion coupling

We turn to the brief recall on the gauge-symmetric phase of strong four-fermion coupling G,

−Gψ̄
L
ψ

R
ψ̄

R
ψ

L
, (3.8)

preserving SUL(2) gauge symmetry, where two-component Weyl fermion ψ
L
(ψ

R
) is an

SUL(2) doublet (singlet). The strong-coupling expansion was adopted to calculate two-

point functions of composite boson and fermion fields [14, 15], and the vertex functions of
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their couplings to the SUL(2)-gauge bosons [16–19]. Detailed calculations can be found

in these references and their appendices. In the lowest non-trivial order, we obtained the

propagators of the massive composite bosons A = (ψ̄RψL) and composite Dirac fermions:

ΨD = (ψL,AψR) and ΨS = (A†ψL, ψR),

〈A(0)A†(x)〉 ⇒ Z
S

B

q2 +M2
B

; 〈ΨD,S(0)Ψ̄D,S(x)〉 ⇒ Z
S

D,S

ipµγµ +MD,S

p2 +M2
D,S

, (3.9)

where the pole MB,D,S and residue Z
S

B,D,S respectively represent mass and form factor

of composite particles. As long as their form-factors are finite, these composite particles

behave as elementary particles. The propagators of renormalized composite particles (3.9)

give their mass-shell conditions,

EB =
√

q2 +M2
B ≈ MB, ED,S =

√

p2 +M2
D,S ≈ MD,S , for q2, p2 ≪ M2

B,D,S . (3.10)

The vertex functions of their SUL(2)-couplings were obtained by Ward identities

from propagators (3.9), because the composite-particle spectra preserve the SUL(2)-

gauge symmetry.

These massive composite particles formed by the such strong-coupling dynamics in the

gauge-symmetric phase are completely different from the composite particles like massive

Higgs boson and massless Goldstone bosons formed by the weak-coupling NJL dynamics

in the symmetry-breaking phase where the SSB takes place.

3.3 Strong critical coupling and the UV-stable fixed point

This indicates that there are two distinct phases: (i) the symmetry-breaking phase Gc <

G < Gcrit for the SM of elementray particles; (ii) the gauge-symmetric phase G > Gcrit for

an effective theory of composite particles, and the second-order phase transition from one

phase to another at the strong critical coupling Gcrit.

3.3.1 Strong critical coupling

In the symmetric phase, we indeed found [14, 15] the existence of strong critical coupling

Gcrit by using strong four-fermion coupling expansion to approximately calculate the two-

point Green function (3.9) of composite boson and examine sign change of quadratic term

M2
BAA†(x). Instead, based on the symmetry-breaking phase of weak four-fermion coupling,

see section 3.1, we show the existence of strong critical point Gcrit of the second-order phase

transition from the symmetry-breaking phase to gauge-symmetric phases.

In refs. [20, 51], we solve the full one-loop RG equations [28] for running couplings

ḡt(µ
2) and λ̄(µ2) with the top-quark and Higgs-boson mass-shell conditions

mt = ḡt(mt)v/
√
2, m2

H
/2 = λ̃(m

H
)v2, (3.11)

mt ≈ 172.9GeV and m
H

≈ 126GeV fixed by experiments. As a result, we uniquely

determine the renormalized form factor Z̃H(µ) and quartic coupling λ̃(µ) of the composite
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Higgs particle. We also find the intermediate energy scale E , at which the effective quartic

coupling λ̃(E) = 0, and the finite value of form-factor Z̃H(E),

E ≈ 5.1 TeV, Z̃H(E) ≈ 1.26, λ̃(E) = 0, (3.12)

otherwise the effective theory would run into an instability (λ̃ ∼ 0−) beyond E . These are

certainly preliminary and qualitative results, since we use one-loop RG equations in low-

energy and weak-coupling region and extrapolate their solutions to high-energy and strong-

coupling region. Nevertheless, the solution (3.12) implies the following three important

features. (i) In the effective Lagrangian of quadratic term m2
H
HH†/2, the squared Higgs-

boson mass m2
H

= 2λ̃(µ)v2 changes its sign at µ = E , indicating the second-order phase

transition Gcrit from the symmetry-breaking phase to a gauge-symmetric phase of high-

energy and strong-coupling region. (ii) The form-factor Z̃H(µ) 6= 0 shows that the tightly

bound composite Higgs particle behaves as if an elementary particle for µ ≤ E . (iii) The

effective form-factor Z̃H(E) of composite Higgs boson is finite, implying the formation of

massive composite fermions Ψ ∼ (Hψ) in the gauge-symmetric phase.

To close this subsection, it is worthwhile to mention that in ref. [53] it is shown in

the elementary Higgs-boson model that the quadratic term from high-order quantum cor-

rections has a physical impact on the SSB and the phase transition to a symmetric phase

occurs at the scale of order of TeV.

3.3.2 UV-stable fixed point

In order to show that this critical point Gcrit of the second-order phase transition can

be a UV-fixed point, we calculated the β-function in the symmetric phase of strong four-

fermion coupling. Up to the lowest non-trivial order of the strong coupling expansion,

i.e., the two-fermion-loop contribution (sun-set diagrams), and we obtained the negative

β-function [20]

β(G) = p2
∂G(p)
∂p2

≈ 6

G
∂Φ(p2/Λ2)

∂ ln(p2/Λ2)
< 0, (3.13)

where G ≡ G× (Λ/π)2 and the dimensionless Lorentz-scalar function Φ(p2/Λ2) is positive

and finite, monotonically decreases as the energy scale p2/Λ2 increases. On the basis of

the β(G)-function being positive (3.4) and becoming negative (3.13), as sketched as “I”,

“II” and “III” in figure 1, we infer there must be at least one zero-point of the β(G)-

function, i.e., β(Gzero) = 0 and β′(Gzero) < 0. This zero-point Gzero is a UV-stable fixed

point, which should coincide with the strong critical coupling Gzero ≈ Gcrit for the reason

that a UV-stable fixed point should be the candidate of the critical point Gcrit for the

second-order phase transition from the symmetry-breaking phase to the symmetric phase.

As the running energy scale µ increases, the effective coupling G(µ) → Gcrit ± 0 (thin

right and left arrows, see figure 1) is attracted to this UV-stable fixed point from both

symmetry-breaking and symmetric phases. In the scaling region (vicinity) of UV-stable

fixed point Gcrit, i.e., UV-domain, RG flow approaches to the UV-fixed point, as energy

scale µ increases, in the scenes of renormalization group (scaling) invariance and resultant

RG equations.
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This is analogous to non-linear σ models [54], which contain a dimensionful coupling

constant and are thus not perturbatively renormalizable. Nevertheless, the nonperturbative

critical coupling of these σ models shows the second-order phase transition from the ordered

(symmetry-breaking) phase to the disordered (symmetric) phase, and exhibits a non-trivial

UV-fixed point and UV-scaling domain of the renormalization group both in the lattice

formulation [55, 56] and in the 2 + ǫ formulation [57, 58].

However, due to the lack of a non-perturbative method to effectively approach to

the critical coupling Gcrit and its neighborhood, we have not been able to quantitatively

determine the Gcrit value and properties of its scaling region i.e., the UV-domain, which

will be qualitatively discussed and recalled in next section.

3.4 The UV-domain of UV-stable fixed point

3.4.1 Energy threshold of composite particles

As the running energy scale µ decreases in the vicinity of UV-stable fixed point Gcrit, the

β(µ) function (see figure 1) shows that the RG flows take the effective theory of com-

posite particles away from the UV fixed point towards the IR-domain of the IR-fixed

point Gc, where the low-energy SM of elementary particle physics is realized. This im-

plies the existence of the energy threshold Ethre, below which µ < Ethre composite particle

dissolves into its constituents of SM elementary particles. As discussed in sections V

and VI of refs. [17, 18], when the energy scale µ decreases to the energy threshold Ethre
and G(µ) → Gcrit(Ethre), the phase transition occurs from the symmetric phase to the

symmetry-breaking phase, all composite particles (poles) dissolve into their constituents,

which are represented by three-fermion, fermion-boson and two-fermion cuts in the energy-

momentum plane, as their form factor and binding energy vanish [59–62]. Actually, the

energy threshold Ethre represents the symmetry-breaking scale at the second-order phase

transition Gcrit.

The composite-particle masses M (3.10) contain the negative binding energy −B[G(µ)]

and positive kinetic energies K of their constituents. The energy threshold Ethre is deter-

mined by B[G(µ)]µ→Ethre → K and vanishing form factors of composite particles in the

symmetric phase. These calculations require non-perturbative approaches that need to

be developed in future. Nevertheless, we gain some physical insight into the symmetry-

breaking scale Ethre & E ≈ 5.1GeV, since the approximate E-value (3.12) is obtained in

symmetry-breaking phase by extrapolating the solutions of the one-loop RG-equations of

low-energy (v) region to high-energy (E) region.

3.4.2 Characterisic energy scale

In the IR-domain of the fixed point Gc where the effective Lagrangian of the SM is realized,

the correlation length ξv corresponding to the electroweak scale v = 239.5GeV that is

attributed to the SSB dynamics in symmetry-breaking phase sets the physical energy scale

of IR-domain. This characteristic energy scale is much smaller than the cutoff (v ≪ Λ),

leading to the renormalization group (scaling) invariance and resultant RG equations in

the IR-domain. This characteristic electroweak scale v is determined by the experimental

measurements of intermediate gauge bosons W± and Z0 masses.
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Analogously, as discussed in ref. [20], in the UV-domain (scaling region) of the UV-

fixed point (critical point) Gcrit of the second-order phase transition, the correlation length

ξ or characteristic energy Eξ = ξ−1 sets the physical scale. The correlation length ξ is much

larger than the cutoff a ≈ Λ−1, i.e., ξ ≫ a or Eξ ≪ Λ leads to the renormalization group

(scaling) invariance and resultant RG equations in the UV-domain. In this scaling domain,

the running coupling G(a/ξ) can be expanded as a series,

G(a/ξ) = Gcrit

[

1 + a0(a/ξ)
1/ν +O[(a/ξ)2/ν ]

]

→ Gcrit + 0+, (3.14)

for a/ξ ≪ 1, leading to the β-function

β(G) = (−1/ν)(G−Gcrit) +O[(G−Gcrit)
2] < 0 . (3.15)

The correlation length ξ follows the scaling law

ξ = c0a exp

∫ G dG′

β(G′)
=

c0a

(G−Gcrit)ν
, (3.16)

where the coefficient c0 = (a0Gcrit)
ν and critical exponent ν need to be determined by

non-perturbative numerical simulations. The physical scale Eξ ≡ ξ−1 in the UV-domain is

attributed to the strong-coupling dynamics of forming composite particles. This implies

the masses of composite particles (3.9) and (3.10)

M ∝ Eξ = ξ−1, (3.17)

and the running coupling G(µ)|µ→Ethre+0+ → Gcrit,

G(µ) ≃ Gcrit

[

1− 1

ν
ln

(

µ

Eξ

)]−1

, µ/Eξ = ξ/(aaν0) > 1 , (3.18)

and the scale µ indicates the energy transfer between constituents inside composite parti-

cles.

On the basis of these discussions and observations, we advocate the following relation

for (i) the energy scale E ≈ 5 TeV of eq. (3.12) extrapolated by the RG equations in the

IR-domain for the SM, (ii) the energy threshold Ethre corresponding to the phase-transition

scale from symmetric to symmetry-breaking phases and (iii) the characteristic energy scale

Eξ in the UV-domain for the effective theory of composite particles

E . Ethre . Eξ ≪ Λ, E ≈ 5TeV. (3.19)

The values of these characteristic scales of UV-domain need some experimental knowledge

in high energies, analogously to the electroweak scale (v) of IR-domain.

3.5 Relevant and irrelevant operators in IR- and UV-domains

In the weak-coupling IR-domain, as an energetically favorable solution for the SSB ground

state [50], among four-fermion operators (2.6) the top-quark channel G(ψ̄ia
L tRa)(t̄

b
RψLib) [28]

is the only physically relevant and renormalizable operators of effective dimension-4, due
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to the NJL-dynamics for the SSB. Namely, it becomes the effective SM Lagrangian (3.1)

with bilinear top-quark mass term and Yukawa coupling to the composite Higgs boson H,

which obeys the RG equation approaching to the low-energy SM physics characterized by

the energy scale v ≈ 239.5GeV. Other four-fermion operators in eq. (2.6), as well as repul-

sive four-fermion operators (2.4), do not undergo the SSB and are irrelevant dimension-6

operators, whose tree-level amplitudes of four-fermion scatterings are suppressed O(Λ−2),

thus their deviations from the SM could not be experimentally accessible today.

In the strong-coupling UV-domain, all attractive four-fermion operators (2.6) are phys-

ically relevant operators associating to the strong-coupling dynamics and formation of

composite bosons and fermions (3.9). Due to the unique four-fermion coupling G, this

strong-coupling dynamics of forming composite particles occurs in all channels of eq. (2.6)

for each SM fermion family. These composite particles on mass-shells behave as if they

were elementary, as long as their form factors are finite. All 1PI functions Γ[µ,G(µ)] of the

quantum field theory (2.6) at the UV-cutoff scale Λ evolve to either irrelevant or relevant

1PI functions, as the running energy scale µ increases. The irrelevant 1PI functions are

suppressed by powers of (Eξ/Λ)n and thus decouple from the effective theory. Instead,

the relevant 1PI functions follow the scaling law (RG equations), therefore are effectively

dimension-4 and renormalizable, for example the propagators of composite fermions and

bosons and their vector-like coupling vertexes to the SM gauge bosons. The effective field

theory in this UV-domain is expected to contains the massive composite particle spectrum

preserving the SM chiral gauge symmetries, and relevant operators of effective dimension-4

following the RG equations. Compared with the SM in the IR-domain, the effective theory

of composite particles in the UV-domain has the same chiral gauge symmetries (quantum

numbers) and couplings to gauge bosons (γ,W±, Z0 and gluon), but the different vector-

like spectra and coupling vertexes, apart from massive composite particles being comprised

by SM elementary particles. Some of these peculiar features and their possible experimen-

tal implications were studied in refs. [12, 20, 21]. These are the properties of effective

composite-particle theory in the UV-domain that we attempt to study in this article and

in future.

To end this section, it is worthwhile to note that the repulsive four-fermion opera-

tors (2.4) are irrelevant operators of dimension-6, and thus suppressed O(Λ−2) for the

reasons that they are neither associated with the NJL dynamics of the SSB in the IR-

domain, nor associated with the strong-coupling dynamics of forming composite particles

in the UV-domain.

It is also worthwhile to mention that these discussions are reminiscent of the asymptotic

safety [63, 64] that quantum field theories regularized at UV-cutoff Λ might have a non-

trivial UV-stable fixed point, RG flows are attracted into the UV-stable fixed point with

a finite number of physically renormalizable operators. The weak and strong four-fermion

coupling G brings us into two distinct domains. This lets us also recall the quantum

chromodynamics (QCD): asymptotically free quark states in the domain of a UV-stable

fixed point and bound hadron states in the domain of a possible IR-stable fixed point.4

4The references on this issue can be found in the recent paper: Z.-Y. Zheng and G.-L. Zhou, “A method

for getting well-defined coupling constant in all region”, arXiv:1705.07430.
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4 Composite particles and effective Lagrangian in UV-domain

In the gauge symmetric phase of an SUL(2)-chiral gauge theory containing the four-fermion

operator (3.8), the composite particles and 1PI vertex functions, as well as their properties

in the UV-domain were analyzed by using the approach of strong-coupling expansion to

the dynamics of four-fermion operators at the cutoff Λ [14, 15, 17–21]. In this section,

however, based on the effective Einstein-Cartan Lagrangian (2.6) in the SM framework,

see section 2.4, we are going to show the composite-particle spectrum and 1PI interaction

(effective Lagrangian) in terms of the quantum numbers of SM gauge symmetries. The

purpose is that we shall go further to discuss composite particles decay and other processes

into SM elementary gauge bosons and fermions, relevantly to possible high-energy exper-

iments. These are the main results of this article presented in this section and following

sections 5, 6 and 7.

4.1 Composite particles in UV-domain

4.1.1 Quark sector

Performing strong-coupling calculations similar to those detailedly presented in the

refs. [14, 15] and their appendices, we obtain the following results. For the u-quark channel,

the massive composite boson is an SUL(2)-doublet

Ai = [Z
S

Π]
−1/2(ūRaψ

ia
L ) (4.1)

of the hypercharge Y = −1/2 and i(a) being the weak isospin (color) index. This composite

boson combines with an elementary two-component Weyl quark to form the composite two-

component Weyl-fermion states (three-fermion states),

Ψib
R = (Z

S

R)
−1AiubR ; Ψb

L = (Z
S

L)
−1Ai†ψb

iL, (4.2)

and to form the massive composite four-component Dirac-fermion states: the SUL(2) dou-

blet Ψib
D and the SUL(2) singlet Ψ

b
S ,

5

Ψib
D = (ψib

L ,Ψ
ib
R), Ψb

S = (Ψb
L, u

b
R). (4.3)

The form factors [Z
S

Π]
1/2 (4.1) and Z

S

R,L (4.2) are generalized wave-function renormaliza-

tions of the composite boson and fermion operators.

The four-component composite Dirac fermions are vector-like spectra, fully preserv-

ing the parity symmetry. The composite SUL(2) doublets Ψib
D carry the same UY (1)-

hypercharge as the SM elementary and left-handed SUL(2) doublets ψib
L . The compos-

ite SUL(2) singlets Ψb
S carry the same UY (1)-hypercharge as the SM elementary and

right-handed SUL(2) singlets ubR. These composite particles have the SM-gauge symme-

tric masses

M2
ΠAi†Ai, MF Ψ̄

ib
DΨ

ib
D, and MF Ψ̄

b
SΨ

b
S . (4.4)

5A four-component composite Dirac fermion composes an elementary Weyl fermion and a composite

Weyl fermion, each of them is two-component, either left- or right-handed (a definite chirality ) [14, 15],

similar discussions for massive composite bosons, see ref. [20].
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For the d-quark channel, the composite particles are represented by eqs. (4.1)–(4.3) with

the replacement uRa → dRa. In this case, Ai has the UY (1)-hypercharge Y = 1/2. Ψb
L and

Ψb
S have the same UY (1)-hypercharge as the quark field dbR. Ψib

R and Ψib
D have the same

UY (1)-hypercharge, i.e., the UY (1)-hypercharge of the SM quark fields ψib
L .

This represents the first family of the composite particles composed by the SM elemen-

tary particles (quarks) in the first family. The composite boson and fermion states (4.1)–

(4.3) are the eigenstates of both the SM gauge interactions and mass operators (4.4), due

to the SM gauge symmetries are preserved by the massive spectra of composite particles.

The same discussions also apply for the second and third quark families by substituting

the SUL(2) doublet (uLa, dLa) into (cLa, sLa) or (tLa, bLa) and singlet uRa into tRa or cRa,

as well as singlet dRa into bRa or sRa.

4.1.2 Lepton sector

In the lepton sector, the composite boson and Weyl-fermion states formed by the first term

(ℓR-channel) of eq. (2.16) are:

Ai = [Z
S

H ]−1/2(ℓ̄Rℓ
i
L); Ψi

R = [Z
S

R]
−1AiℓR , ΨL = [Z

S

L]
−1Ai†ℓiL, (4.5)

and the massive composite Dirac fermions Ψi
D = (ℓiL,Ψ

i
R) and ΨS = (ΨL, ℓR). The

composite boson doublets Ai = [Z
S

H ]1/2(ℓ̄Rℓ
i
L) carry the hypercharge Y = 1/2, the dou-

blets Ψi
D = (ℓiL,Ψ

i
R) carry the UY (1) hypercharge of the SM field ℓiL and the singlets

ΨS = (ΨL, ℓR) carry the UY (1) hypercharge of the SM field ℓR. Compared with their

counterparts (4.1)–(4.3) in the quark sector, these massive composite particles have dif-

ferent quantum numbers of the SM gauge symmetries. The composite particles formed

by the second term (νℓR-channel) of eq. (2.16) are obtained by eq. (4.5) with the replace-

ment ℓR → νℓR. In this case, Ai has the UY (1)-hypercharge Y = −1/2. ΨL and ΨS

have the UY (1) hypercharge of the right-handed neutrino νR. Ψi
L and Ψi

D have the same

UY (1) hypercharge, i.e., the UY (1) hypercharge of the SM lepton field ℓiL.

4.1.3 Quark-lepton sector

Analogously, we present for the d a
R- and eR-channel of quark-lepton interactions (2.18),

the massive composite Dirac fermions: SUL(2) doublet Ψ
i
D = (ℓiL,Ψ

i
R) and singlet ΨS =

(ΨL, eR), where the renormalized composite boson and composite Weyl-fermion states are:

Ai = [Z
S

H ]−1/2(d̄ a
Rψ

i
La); Ψi

R = [Z
S

R]
−1AieR , ΨL = [Z

S

L]
−1Ai†ℓiL, (4.6)

which respectively carry the UY (1)-hypercharge: Y = 1/2, Y = −1/2 and Y = −1. For

the ν e
R-channel, the composite particles are represented by eq. (4.6) with the replacements

eR → ν e
R and d a

R → u a
R. In this case, the counterparts of the composite states (4.6)

respectively carry the UY (1)-hypercharge: Y = −1/2, Y = −1/2 and Y = 0.

The composite particles from the second and third lepton families can be obtained

by substitutions: e → µ, τ , νe → νµ, ντ , and u → c, t and d → s, b. In general, the

UY (1)-hypercharge Y and Uem-electric charge Qi of the composite particle is the sum of

its constituents’ hypercharges and electric charges, obeying the relation Qi = Y + ti3L in

units of e, where ti3L is the diagonal third component of SUL(2)-isospin, t
1
3L = 1/2 for the

neutrino and up quarks, and t23L = −1/2 for the electron and down quarks.
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4.1.4 Discussions and three-family replication

In the quark and lepton sectors, the massive composite boson Ai, the massive compos-

ite Dirac fermions SUL(2) doublet Ψi
D and singlet ΨS carry an electric charge Q =

(2/3,−1/3,−1, 0) for uaR- and daR-quark channels, eR- and νR-lepton channels respectively.

In the quark-lepton sector, the massive composite boson Ai, the massive composite Dirac

fermions SUL(2) doublet Ψ
i
D and singlet ΨS carry an electric charge Q = (2/3,−1/3,−1, 0)

for the daR-eR channel and uaR-νR channel respectively. It should be mentioned that the

composite bosons Ai carry neither the baryon number nor the lepton number, whereas

the composite fermions Ψi
D and ΨS carry the baryon or the lepton number of the SM

elementary fermions.

These first-family composite particles are composed only by the SM elementary par-

ticles in the first family, and there are no extra elementary gauge bosons and fermions,

except the right-handed sterile neutrino νR. The second-family (third-family) composite

particles are composed only by the SM elementary particles in the second (third) family.

The three families of composite particles are replicated corresponding to the three families

of elementary fermions in the SM.

Though composite particles are massive, they carry the quantum numbers of the SM

chiral gauge symmetries, which are the sum of quantum numbers of their constituents of

the SM elementary particles. The propagators of these composite particles have poles and

residues that respectively represent their masses and form factors [14–18]. As long as their

form factors are finite, these composite particles behave as elementary particles. It should

be mentioned that the gauge symmetric masses MΠ,F and form factors ZS
Π,L,R of composite

particles, e.g., (4.1)–(4.4) can be different from one to another, due to some other effects

that we do not study here.

To end this section, we present some discussions on the third-family composite

bosons (4.1) by the top and bottom quarks, compared with the composite Higgs and

Goldstone bosons. The former comprises of the massive bound states (t̄t)s, (t̄γ5t)
s and

(t̄γ5b)
s formed by the strong-coupling dynamics in the UV-domain of the symmetric phase.

They are different from the composite massive Higgs boson H = (t̄t) and massless Gold-

stone bosons (t̄γ5t) and (t̄γ5b) [28] formed by the NJL dynamics in the IR-domain of the

symmetry-breaking phase. Nevertheless, at the strong critical point Gcrit of second-order

phase transition that may occur around the scale Eξ, see eq. (3.12), from the point view of

the different ground states of the symmetric phase and the symmetry-breaking phase, we

expect some relationships of the binding energies and form factors between two types of

composite bosons, e.g., (t̄t)s and (t̄t), with the same SM quantum numbers. We will study

this issue and its experimental implications in future.

4.2 Effective Lagrangian of composite particles in UV-domain

4.2.1 SM effective Lagrangian of elementary particles in IR-domain

To compare and contrast with the effective Lagrangian of composite particles in the UV-

domain of the symmetric phase, we also present the effective SM Lagrangian in the IR-

domain of the symmetry-breaking phase. The well-studied SM effective Lagrangian of
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elementary fermions in the first family reads

LSM =
∑

i

ψ̄i(iγµ∂µ −mi −miH/v)ψi − e
∑

i

Qiψ̄
iγµψiAµ

− g2

2
√
2

∑

i

ψ̄iγµ(1− γ5)(T
+W+

µ + T−W−
µ )ψi

− g2
2 cos θW

∑

i

ψ̄iγµ(giV − giAγ5)ψ
iZµ + Higgs sector, (4.7)

for the both quark and lepton sector in one SM family, where i is the SUL(2)-isospin index,

T± is the weak isospin raising and lowering operators giV = ti3L −Qi sin
2 θW and giA = ti3L.

The weak angle θW = tan−1(g1/g2) and the electron electric charge e = g2 sin θW . These

massive fermions couple to the massless photon Aµ, massive intermediate gauge bosons

W±
µ and Zµ. The gauge and mass eigenstates of the SM elementary fermions are different,

leading to the fermion-family mixing, when three fermion families are considered. The

phenomenological Yukawa couplings ḡi = mi/v of Higgs boson and elementray fermion

ψi of mass mi are related to the top-quark Yukawa coupling ḡt of eq. (3.1) discussed in

section 3.1, and see refs. [12, 13] for some details.

4.2.2 Effective Lagrangian of composite particles in UV-domain

In the UV-domain of the symmetric phase, massive composite bosons and fermions (see

section 4.1) have the quantum numbers of SM chiral gauge symmetries SUc(3)×SUL(2)×
UY (1), couplings g1, g2, g3 to SM gauge bosons γ,W±, Z0 and gluon. The spectrum of these

massive composite bosons and fermions preserves the SM chiral gauge symmetries. The

gauge and mass eigenstates of massive composite bosons and fermions are the same. The in-

teracting 1PI vertexes of composite particles and SM gauge bosons can be obtained byWard

identities associating to SM gauge symmetries.6 As a result, at tree-level we obtain the fol-

lowing effective Lagrangian for the first-family composite particles (4.1), (4.3), (4.5), (4.6).

For the massive composite Dirac fermions Ψi
D and ΨS (4.1)–(4.4) the uR-quark channel

in the quark sector, the effective Lagrangian reads

L =
∑

i

Ψ̄i
D(iγ

µ∂µ −M i
D)Ψ

i
D + Ψ̄S(iγ

µ∂µ −MS)ΨS

− e
∑

i

Qi(Ψ̄
i
Dγ

µΨi
D)Aµ − (2/3)e(Ψ̄Sγ

µΨS)Aµ

− g2√
2

∑

i

Ψ̄i
Dγ

µ(T+W+
µ + T−W−

µ )Ψi
D

− g2
2 cos θW

{

∑

i

Ψ̄i
Dγ

µ(giV + giA)Ψ
i
D + Ψ̄Sγ

µ(g1V − g1A)ΨS

}

Zµ, (4.8)

6Calculations can be found in refs. [16–18] and their appendices for the simple case of the four-fermion

operator (3.8), where composite particles carry the definite quantum numbers of the SUL(2)-gauge symme-

try, and their tree-level gauge-couplings to the SUL(2)-gauge bosons can be obtained by the Ward identity

associating to the SUL(2)-gauge symmetry in the UV-domain of the symmetric phase.
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where i remains as the SUL(2)-isospin index. For the dR-quark channel, the compos-

ite particles made by uRa → dRa, the coupling g1V,A → g2V,A and (2/3)e → (−1/3)e.

These massive composite fermions couple to the gauge bosons W±
µ = (W 1

µ ∓ iW 2
µ)/

√
2,

Aµ = Bµ cos θW + W 3
µ sin θW and Zµ = −Bµ sin θW + W 3

µ cos θW . The Lagrangian (4.8)

shows that the massive spectrum and interacting vertex are vector-like fully preserving

the parity symmetry. Namely, each left-handed (right-handed) SM elementary fermion has

its counterpart of right-handed (left-handed) composite fermion with the same quantum

numbers of the SM chiral gauge symmetries. They form a massive Dirac composite fermion

vectorially coupling to the SM gauge bosons.

For the massive composite bosons SUL(2)-doublet Ai (4.1) for the uR channel, i.e.,

the neutral component A1 ∼ (ūRau
a
L) and charged component A2 ∼ (ūRad

a
L) of the UY (1)-

hypercharge Y = −1/2, the effective Lagrangian reads

L =
∑

i

[

|DAi|2 +M2
Π|Ai|2

]

, (4.9)

where

DAi = (∂µ + ig2σ ·Wµ/2 + ig1Y Bµ)Ai (4.10)

=

[

∂µ + i
g2√
2

(

T+W+
µ + T−W−

µ

)

+ ie

(

sin−1 2θWZµ 0

0 − tan−1 2θWZµ −Aµ

)]

Ai

and σ is the Pauli matrix in the isospin space. Instead, for the massive composite bosons

SUL(2)-doublet Ai for the dR channel, i.e., the charged component A1 ∼ (d̄Rau
a
L) and

neutral component A2 ∼ (d̄Rad
a
L) of the UY (1)-hypercharge Y = 1/2, Equation (4.10)

becomes

DAi = (∂µ + ig2σ ·Wµ/2 + ig1Y Bµ)Ai (4.11)

=

[

∂µ + i
g2√
2

(

T+W+
µ + T−W−

µ

)

+ ie

(

tan−1 2θWZµ +Aµ 0

0 − sin−1 2θWZµ

)]

Ai.

The last matrix-terms in eqs. (4.10) and (4.11) respectively show that the isospin com-

ponents A1 ∼ ūRuL and A2 ∼ d̄RdL have no electric charge, but the UY (1) hypercharge

coupling to Z0. The gauge couplings in the effective Lagrangian (4.8), (4.10) and (4.11) are

consistent with SM gauge bosons couplings to the elementary fermions inside the composite

particles, see figure 3.

The effective Lagrangian (4.8), (4.10) and (4.11) can be generalized to the lepton sector

and lepton-quark sector. Note that in the effective Lagrangian (4.8) and (4.9), we only

present the spectra (kinetic terms or propagators) of massive composite particles and their

tree-level gauge-coupling to the elementary SM gauge bosons.

To the leading order of the expansion in the powers of the perturbative SM gauge

couplings (the tree-level), the interacting vertexes of composite bosons and fermions cou-

pling to SM gauge bosons (γ,W±, Z0) are represented by the tree-level Feynman diagrams,

see figure 3, which show gauge bosons interacting with one of elementary particles inside

– 23 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
6

Figure 3. We sketch the vertexes of composite boson (left) and fermion (right) interacting with

SM gauge bosons (wave line), and the SM elementary fermion is represented by a solid line. In

general, these vertexes should be understood as one-particle-irreducible vertexes of SM gauge bosons

interacting with the entire composite particle as an elementary particle. At the lowest tree-level

order of perturbative SM gauge couplings, the vertexes can be represented by the sum of possible

gauge couplings to an SM elementary particle inside a composite particle. Note that we do not

show the vertexes of composite boson (left) interacting with two SM gauge bosons that are present

in the effective Lagrangian (4.9).

composite particles. Therefore, this implies that at the tree level, some calculations of

Feynman diagrams are similar to those in the SM, however, the fermion spectra and cou-

pling vertexes are vectorlike, see eqs. (4.7) and (4.8). The final results are characterized by

the mass scales MΠ,F (4.4) of composite fermions

MF > MΠ ∝ Eξ, (4.12)

in the UV domain and functions of the SM gauge couplings g1, g2, g3 at this mass scale

MΠ,F , rather than the electroweak scale v ≈ 239.5GeV in the IR domain.

Since the propagators of massive composite particles are obtained from the lowest

nontrivial contribution of the strong-coupling expansion [14, 15], it cannot be precluded

that there could be the interacting vertexes between massive composite particles, e.g., the

Yukawa-type interactions of composite bosons and fermions, stemming from the high-order

contributions of the strong-coupling expansion. In this article, we do not attempt to discuss

the interacting vertexes among composite particles and their relevance in the UV-domain.

4.2.3 Some discussions on FCNC and anomalies in UV-domain

We attempt to have some discussions on the analogical FCNC processes of the UV effec-

tive Lagrangian (4.8) and (4.9) of composite particles in the UV-domain. The composite-

fermion case is considered as an example for discussions that apply also to the composite-

boson case. Recall that (i) composite fermions Ψf are composed by the SM elementary

fermions ψf in the same family “f”; (ii) the fermion-family “diagonalized” effective La-

grangian (4.8), (4.9) of massive composite particles Ψf is obtained from the fermion-family

“diagonalized” four-fermion operators (2.10) in the mass eigenstates of the SM elementary

fermions ψf ; (iii) the mass eigenstates of composite fermions coincide with the mass eigen-

states of the SM elementary fermions in the scenes that composite fermions are composed

by elementary fermions in their mass eigenstates, see section 4.1; (iv) the mass and gauge

eigenstates of composite fermions are identical, due to the exact conservation of the SM

chiral gauge symmetries.
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In the representation of mass eigenstates of composite fermions, totally contrary to

the IR effective Lagrangian for the SM in the IR domain, see section 3.1 and in partic-

ular section 3.1.3, the UV effective Lagrangian (4.8) and (4.9) are realized in the scaling

UV-domain of the symmetric phase, where the expectational values of two-fermion op-

erators (2.11) 〈ψf
R
ψ̄f

L
〉 ∝ mf ≡ 0, f = 1, 2, 3, identically vanish. The strong-coupling

dynamics that forms massive composite particles in the symmetric phase is totally inde-

pendent of the SM elementary fermion masses mf in the symmetry-breaking phase. The

SM chiral-gauge symmetries and global fermion-family symmetry are exactly preserved by

the strong-coupling dynamics and massive spectrum of composite fermions. More precisely,

in the representation of mass eigenstates of composite fermions, the fermion-family number

associating to the symmetry Uf
L(1)×Uf

R(1) f = 1, 2, 3 for the composite fermion Ψf in each

family is exactly conserved. Therefore, any process violating fermion-family number is im-

possible, namely any FCNC process is completely prohibited. Here the notation FCNC

refers to the process of changing one composite fermion Ψf flavor to another composite

fermion Ψf ′

flavor with the same electric charge, which is different from the notion FCNC

of the IR effective Lagrangian for the SM elementary fermions in the IR-domain.

However, as perturbatively turning on chiral-gauge-boson interactions to composite

fermions, does the interactions between the chiral-gauge-bosonW± and composite fermions

introduce a suppressed 1PI vertex for the FCNC at loop level, analogous to that of the

SM effective Lagrangian in the IR domain? The answer is no, for the reason that the

mass and gauge eigenstates of composite fermions are identical, and fermion-family mix-

ing matrices (2.14) do not associate to the interacting vertexes of the W± boson and

composite fermions (4.8). In conclusion, fermion-family-number violating processes like

FCNC are impossible for the effective Lagrangian (4.8) and (4.9) in the UV-domain. The

remained question is how the suppressed 1PI vertexes of the FCNC from the SM W±-

boson loop and CKM-type mixing matrices in the IR-domain is induced, when composite

fermions decay into SM elementary fermions, a phase transition occurs from symmetric

phase (mf = 0) to symmetry-breaking phase (mf 6= 0). This is deserved to study in

another article.

In the SM Lagrangian (4.7) of chiral-gauge symmetries and chiral-gauged fermion spec-

tra, the chiral-gauge anomalies associating to the SUL(2)×UY (1) chiral-gauge symmetries

are canceled, because of the SUL(2) Lie algebra and the SM fermion content of quarks

and leptons in each fermion family, and the non conservation of fermion number (B − L)

is given by the instanton contribution. In the effective Lagrangian (4.8) of composite par-

ticles, although the gauge symmetries are still chiral, i.e., SUL(2) × UY (1), the spectra

of composite fermions ΨD and ΨS are vector-likely gauged. As a result, the chiral-gauge

anomalies from the left-handed composite fermions are exactly canceled by the anoma-

lies from their right-handed counterparts. In the effective Lagrangian (4.8) of composite

fermions, we obtained [16] the non conservation of fermion number (B−L) by considering

the mixing anomaly [65].

As the running energy scale µ decreasing, and composite particle’s form factor and

binding energy vanishing, the composite particles become unstable and dissolve (decay) to

their constitutes of SM elementary particles as final states. In the following, we discuss
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the decay and annihilation channels of the composite particles into the SM elementary

particles, in particular two gauge bosons, as final states.

5 Composite pesudo scalar bosons decay

This section 5 and next section 6 discuss the decays and other relevant processes of com-

posite bosons and fermions interacting with SM gauge bosons described by the effective

Lagrangians (4.8) and (4.9) of the effective theory of composite particles in UV-domain.

These results provide possible connections with the diboson and other channels in ATLAS

and CMS experiments.

5.1 Low-energy QCD pions and their decays

First let us recall the low-energy hadronic physics of mesons (baryons) that are the bound

states of two quarks (three quarks) due to the confinement dynamics of the local SU(3)-

color gauge theory (QCD). This can be approximately described by the effective low-energy

Lagrangian of baryons and mesons, which could be realized in the possible low-energy IR-

domain of the QCD theory. On the other hand, asymptotically-free states of quarks and

gluons are realized in the high-energy UV-domain of the QCD theory. In both bound states

and asymptotically-free states, elementary quarks have the same electroweak couplings to

the SM gauge bosons W±, Z0 and γ.

To effectively study the non-perturbative nature of low-energy QCD theory, the

global chiral-symmetric Lagrangian (σ-model) was adopted to describe the massless QCD-

bound states of elementary u and d quarks: proton p(uud), neutron n(ddu) and pions

π0,±(uu,dd,ud). The spontaneous breaking of the SUL(2) × SUR(2) chiral symmetries

leads to the massive doublet baryon fields (p, n) and massless triplet pion fields πk as three

Goldstone bosons. The explicit breaking induced by the u and d quark masses leads to

massive pion fields πk and the partial conservation of the axial current (PCAC)

∂µAj
µ(x) = m2

πfππ
j(x) (5.1)

where the quark doublet ψi = (u, d) and the axial current Aj
µ(x) = ψ̄γµγ5(σ

j/2)ψ. The

latter couples to the pion fields πj(x) due to the spontaneous breaking of chiral symmetries,

leading to the nontrivial matrix elements between the pion state |πk(p)〉 and the vacuum

〈0|Aj
µ(x)|πk(p)〉 = ipµfπδ

jke−ipx, 〈0|∂µAj
µ(x)|πk(p)〉 = m2

πfπδ
jke−ipx. (5.2)

The first matrix element defines the pion decay constant (form factor) fπ, the second matrix

element and the mass-shell condition p2 = m2
π defines the pion mass mπ. The charged pions

π± = (π1 ∓ iπ2)/2 = d̄γ5u, ūγ5d and neutral pion π0 = π3/2 = (ūγ5u − d̄γ5d)/2. For the

isospin j, k = 1, 2 components in eq. (5.1), the first matrix element determines the rate of

the decay π+(ūd) → µ+ + νµ and experimental value fπ ≈ 93MeV. In addition, for the

isospin j = k = 3 component in eq. (5.1) reads

∂µA3
µ = m2

πfππ
0 − α

8π
ǫµνρσF

µνF ρσ, (5.3)
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Figure 4. We show the triangle diagram (a quark loop of solid line) of a composite boson (two

parallel solid lines associating to a pseudo-scalar vertex γ5) decaying into the two SM gauge bosons

(two wave lines associating to two vector-like vertexes γµ and γν).

receiving an axial anomaly in terms of the gauge field (photon) strength F and fine-

structure constant α, contributed from the triangle diagram shown in figure 4. This axial

anomaly dominates the π0-decay rate,

Γπ0→γγ =

(

αNc

3πfπ

)2 m3
π0

64π
, (5.4)

in excellent agreement with the experimental value.

5.2 Scalar and pesudo scalar composite bosons

We attempt to study the decays of composite bosons Ai in the UV-domain, discussed in

sections 4.1 and 4.2. For the sake of simplicity, we adopt the first quark family ψi
L = (u, d)L

and ψR = uR, dR for illustrations. For the u-channel, the massive composite boson Ai =

(ūRψ
i
L) (4.1), which is an SUL(2) doublet and UY (1) charged Y = −1/2, can expressed in

terms of scalar and pseudo scalar fields,

Ai = (ūRψ
i
L) = (1/2)

[

(ūψi)− (ūγ5ψ
i)
]

. (5.5)

where the form factor [Z
S

Π]
−1/2 is omitted for simplifying notations. There are four com-

ponents

S0 = ūu, S− = ūd ; Π0 = ūγ5u, Π− = ūγ5d (5.6)

where the isospin index i = 1, 2 are relabeled as i′ = 0,± indicating the neutral or charged

component. For the d-channel, by the substitution u → d in eqs. (5.5) and (5.6), we have

Ai = (d̄Rψ
i
L) = (1/2)

[

(d̄ψi)− (d̄γ5ψ
i)
]

,

S0 = d̄d, S+ = d̄u ; Π0 = d̄γ5d, Π+ = d̄γ5u. (5.7)

The neutral state Π0 has the contributions from eqs. (5.6) and (5.7) that can be mixed up,

but is different from the normal pion π0 = (ūu− d̄d)/
√
2 in the SU(3) quark model where

the minus sign comes from the isospin τ3 = (1,−1). The discussions can be generalized

to other families including leptons. The second and third families of composite bosons are

simply replicated by the replacements u → c, t and d → s, b. There is no mixing among

three families of composite bosons. The gauge interactions at the leading order (tree-level)

of gauge couplings (4.10) and (4.11) do not introduce the mixing of composite bosons (5.6)

with its counterparts in the second or third family.
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These composite bosons Π0,± (5.6) and (5.7) are bound by the strong-coupling dy-

namics in the UV domain, differently from the QCD-bound mesons. They have the same

chiral-invariant mass MΠ (4.4). Instead the three pion fields π0,± have the chiral-variant

mass mπ. The vectorial and axial currents associating to the global SUL(2) × UY (1) chi-

ral symmetries are exactly conserved because these chiral symmetries are preserved, apart

from the chiral gauge anomaly (axial anomaly). Instead the axial current associating

to the global chiral symmetries of the effective low-energy Lagrangian of the QCD-bound

states are partially conserved because of spontaneous and explicit chiral-symmetry-breaking

(PCAC). However, the massive pseudo scalar fields Π0,± (5.6), (5.7) and the QCD pion

fields π0,± have the same quantum numbers of the SM symmetries. Moreover, we shall

show the pseudo-scalar fields Π0,± decay into SM elementray particles, in particular the

Π0-decay into two SM gauge bosons, analogously to the decay π0 → γγ, attributing to the

axial anomaly (5.4).

5.3 Composite particle Π0 decay into two SM gauge bosons

5.3.1 Π0 decay into two photons

Suppose the vacuum state is |0〉 in the UV domain, the composite-boson momentum state

|Ai(q)〉 on the mass shell can be defined by the field operator Ai(q) or Ai(x) as follow

|Ai(q)〉 ≡ 1

FΠ
Ai†(q)|0〉 = 1

FΠ

∫

d4xe−iqxAi†(x)|0〉, (5.8)

with the normalization

〈Ai(q)|Ai′(q′)〉 = δii
′

(2π)4δ4(q − q′), (5.9)

or equivalently

〈0|Ai(x)|Ai′(q)〉 = FΠδ
ii′eiqx, (5.10)

where F−1
Π = F−1

Π (q2) relates to the form factor [Z
S

Π]
−1/2 (4.1), as discussed in section 4.

As will be seen soon, FΠ is in fact the composite-boson decay constant. From eq. (5.10),

the matrix element reads

〈0|∂µAi(x)|Ai′(q)〉 = iqµFΠδ
ii′eiqx. (5.11)

The effective Lagrangian (4.9) gives the equation of motion and the mass-shell condition

q2 = M2
Π of the composite boson Ai(x). From eq. (5.11), we have

〈0|(∂µ)2Ai(x)|Ai′(q)〉 = M2
ΠFΠδ

ii′eiqx. (5.12)

The matrix element (5.10) relates to the composite-boson propagator,

〈0|Ai(0)|Ai′(q)〉 = 1

FΠ

∫

d4x〈0|Ai(0)Ai′†(x)|0〉e−iqx =
δii

′

F−1
Π (q2)

q2 −M2
Π

. (5.13)

The matrix element of composite particle Π0 in eqs. (5.6) and (5.7) reads,

〈f(p′)|Π0(0)|f(p)〉 =
g
Π0

−q2 +M2
Π

ūf (p
′)γ5uf (p), q = p′ − p (5.14)
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where the g
Π0

= g
Π0
(q2) is the Π0-coupling to its constituent fermions f = u, d quarks of

mass mf and wave function uf . Actually, the coupling g
Π0
(q2) is the 1PI vertex function

of composite particle Π0 and its constituent fermions and we parametrize it by the form

factor F−1
Π (q2) and constituent mass mf

g
Π0
(q2) = mfF

−1
Π (q2), (5.15)

and g
Π0

is finite as mf → 0, see for example [66]. These definitions and equations apply

also for scalar composite bosons Si and pseudo scalar composite bosons Πi, see eqs. (5.6)

and (5.7).

We are in the position of discussing the rate of the neutral Π0 decay into two SM gauge

bosons, i.e., diboson channels:

Π0 → G+G′, (5.16)

where G and G′ represent the SM gauge bosons W±, Z0 and γ. The amplitude of the

decay (5.16) is defined by the matrix element

F(q2)
∣

∣

∣

q2→M2

Π0

= ǫµ1 (k1)ǫ
ν
2(k2)Tµν(k1, k2, q)

∣

∣

∣

q2→M2

Π0

, q = k1 + k2 (5.17)

and

Tµν(k1, k2, q) = (q2 −M2
Π0)(gg

′)

∫

d4xd4yeik1x+ik2y〈0|T (Jµ(z)J ′
ν(y)Π

0(0))|0〉, (5.18)

where k1,2 and ǫ1,2 are four momenta and polarizations of the SM gauge bosons G and G′,

and Jµ(z) [J ′
ν(y)] is fermion current coupling g [g′] to the SM gauge boson G [G′]. The

amplitude Tµν(k1, k2, q) has the symmetry (k1, µ) ↔ (k2, ν).

The lowest one-loop contribution to the vertex function (5.18) is represented by the

triangle Feynman diagram, see figure 4. Considering eqs. (5.14) and (5.15), the Π0-decay

amplitude Tµν (5.18) computed at this one-loop level is given by

Tµν(k1,k2, q)=T (1)
µν (k1,k2, q,mf )+T (2)

νµ (k2,k1, q,mf ), (5.19)

T (1)
µν (k1,k2, q,mf )=−(gg′)NcmfF

−1
Π (q2)×

×
∫

d4p

(2π)4
tr[(/q+/p−/k1+mf )Γµ(/q+/p+mf )γ5(/p+mf )Γ

′
ν ]

[(q+p−k1)2−m2
f ][(q+p)2−m2

f ](p
2−m2

f )
, (5.20)

where the coupling vertexes gΓµ and g′Γ′
ν to the SM gauge bosons G and G′ are given by

the SM Lagrangian (4.8), and the trace “tr” is over the spinor space. Equation (5.20) is

not well-defined because of the linear divergence of the momentum integral. Introducing

the Pauli-Villars mass M that plays the role of the UV cutoff Λ, we adopt the Pauli-Villars

regularization,

T (1)
µν (k1, k2, q,mf ) → T (1)

µν (k1, k2, q,mf )− T (1)
µν (k1, k2, q,M) (5.21)

to make the momentum integral to be finite and well-defined. Note that the Pauli-Villas

regularization M explicitly breaks chiral gauge symmetries of effective Lagrangian.
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For the process Π0 → γ + γ, g = g′ = e Qi, Γµ = γµ and Γ′
ν = γν in eq. (5.20).

The Jµ(z) and J ′
ν(y) in eq. (5.18) are vector-like and conserved fermion currents coupling

with two on-shell photons k1 and k2. The trace in the numerator of eq. (5.20) is equal to

4imf ǫµνρσk
σ
1 k

ρ
2 . With the on-shell conditions k21 = 0, k22 = 0 and 2k1 · k2 = q2, the two

contributions (5.19) to the amplitude (5.17) of Π0 decaying into two photons is given by

F(q2)
∣

∣

∣

q2→M2

Π0

=
(gg′)Nc

2π2FΠ
ǫµνρσǫ

µ
1 ǫ

ν
2k

ρ
1k

σ
2

×
∫ 1

0
dx

∫ 1−x

0
dy

[

M2

M2 − xyq2
−

m2
f

m2
f − xyq2

]

q2→M2

Π0

(5.22)

=
(gg′)Nc

4π2FΠ
ǫµνρσǫ

µ
1 ǫ

ν
2k

ρ
1k

σ
2 . (5.23)

The second term in eq. (5.22) is suppressed for MΠ0 ≫ mf and the first term for M → ∞
leading to the final result (5.23). The result is just the axial anomaly of the triangle

Feynman diagram (figure 4) with one axial vertex “γ5” and two vector-like (AVV) vertexes

“γ5γµγν”. This axial-anomaly result (5.23) is due to the regularization that does not

preserve chiral gauge symmetries of effective Lagrangian, and it is independent of high-

order contributions, constituent fermion mass mf and UV cutoff M. Equation (5.23)

shows that the FΠ value at q2 = M2
Π0 is the Π0-decay constant. For the first quark family,

there are two Π0 channels (5.6) and (5.7) with Qi = (2/3,−1/3), i.e., g2 = e2(4/9, 1/9).

The total amplitude of Π0 → γ + γ reads,

F(q2)
∣

∣

∣

Π0→γ+γ

q2→M2

Π0

=
∑

i

(Qi)2
e2Nc

4π2FΠ
ǫµνρσǫ

µ
1 ǫ

ν
2k

ρ
1k

σ
2 =

(

5

9

)

F (5.24)

F ≡ e2Nc

4π2FΠ
ǫµνρσǫ

µ
1 ǫ

ν
2k

ρ
1k

σ
2 . (5.25)

The amplitude (5.24) should be multiplied by a factor Nc = 3, if we consider three

quark families.

It needs some more clarifications on the amplitude (5.24). Both the composite pseudo-

scalar boson Π0 and the composite scalar Higgs boson H decay into the two-photon state,

however these two channels are not mixed. They have different parities, masses (invariant

masses) and decay constants. The former composed by the strong-coupling dynamics in

the UV-domain decay into two photons via the pseudo-scalar coupling (see figure 4) to

the loop of u and d quarks. Whereas the latter composed by the NJL-dynamics in the

IR-domain via the scalar coupling t̄tH (4.7) to a top-quark loop. In the LHC pp collision,

the first family of composite particles made of u and d quarks are more probably produced,

compared with other families of composite particles that are produced by small SM gauge

interacting vertexes.

5.3.2 Π0 decay into γ + Z0,W+ + W− and Z0 + Z0

Let us study other possible decay channels Π0 → γ + Z0, Π0 → W+ + W− and Π0 →
Z0 +Z0. Suppose that the pseudo scalar composite field Π0(x) is heavy and its mass MΠ0
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is much larger than the W± and Z0 masses, the intermediate gauge bosons W± and Z0 are

considered to be approximately massless, k21 ≈ 0, k22 ≈ 0 and 2k1 ·k2 ≈ q2. In addition, the

coupling-vertexes gΓµ and g′Γ′
ν in eq. (5.20) are given in the SM Lagrangian (4.7), they

contain both axial and vector-like vertexes. We consider the vector-like vertexes so that

the triangle Feynman diagram (figure 4) and the amplitude (5.18) has the AVV structure,

whose nontrivial axial-anomaly amplitude can be compared with the amplitude (5.24) of

the channel Π0 → γ + γ. As a result, for the process Π0 → γ + Z0, the couplings g = eQi

and g′ = g2g
i
V /(2 cos θW ), we obtain from eq. (5.23) the amplitude,

F(q2)
∣

∣

∣

Π0→γ+Z0

q2→M2

Π0

=
1

sin 2θW

∑

i

(QigiV )F

=
1

sin 2θW

(

1

2
− 5

9
sin θ2W

)

F . (5.26)

For the process Π0 → W+ + W−, the couplings g = g′ = g2/(2
√
2) and we obtain from

eq. (5.23) the amplitude,

F(q2)
∣

∣

∣

Π0→W++W−

q2→M2

Π0

=
1

8 sin2 θW

∑

i

F =
1

8 sin2 θW
F , (5.27)

where the sum over isospin “i” gives one in this case, see eq. (4.7). For the process

Π0 → Z0 + Z0, the couplings g = g′ = g2g
i
V /(2 cos θW ) and we obtain from eq. (5.23)

the amplitude,

F(q2)
∣

∣

∣

Π0→Z0+Z0

q2→M2

Π0

=
1

sin2 2θW

∑

i

(giV )
2F

=
1/2− sin2 θW + (5/9) sin4 θW

sin2 2θW
F . (5.28)

Their differences from the two-photon amplitude (5.24) are only attributed to the different

eletroweak couplings of the SM (4.7).

5.4 Ratios of different channels of Π0 decay into two SM gauge bosons

The numerical rate of the neutral Π0(q) decay (5.16) at the mass shell (q2 = M2
Π0) is given

by integrating the squared amplitude (5.17) over the phase space of two gauge bosons,

ΓΠ0→G+G′ =
1

2MΠ0

∑

ǫ1,ǫ2

∫

d3k1d
3k2

4(2π)6ω1ω2

∣

∣

∣
F(q2)

∣

∣

∣

2

Π0→G+G′

× (2π)4δ4(q − k1 − k2)
∣

∣

∣

q2=M2
Π

= CΠ0→G+G′ Γ, (5.29)

Γ ≡
(

αNc

3πFΠ

)2 M3
Π0

64π
, (5.30)

where the massMΠ0 and decay constant FΠ of the composite boson Π0 are totally unknown,

while the coefficients CΠ0→G+G′ are completely determined from eqs. (5.24), (5.26), (5.27)
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and (5.28) in terms of SM gauge couplings. Note that the decay rates (5.29) depend

on the Π0 mass MΠ0 and decay constant FΠ determined by the strong-coupling dynamics,

analogously to the pion mass mπ and decay constant fπ determined by the QCD dynamics.

In the rest frame of the composite meson Π0, the final states of two body decay follow

the energy-momentum conservations p1 = −p2, |p1| = |p2| and have the invariant mass

Minv = MΠ0 . The rates of the composite meson Π0 decaying into two SM gauge bosons G

and G′ are given by eq. (5.29), we then obtain the rates of diboson channel decay (5.16):

ΓΠ0→γ+γ =

(

5

9

)2

Γ, (5.31)

ΓΠ0→γ+Z0 =
1

sin2 2θW

(

1

2
− 5

9
sin2 θW

)2

Γ, (5.32)

ΓΠ0→W++W− =

(

1

8 sin2 θW

)2

Γ, (5.33)

ΓΠ0→Z0+Z0 =

(

1/2− sin2 θW + (5/9) sin4 θW

sin2 2θW

)2

Γ. (5.34)

The diphoton channel (5.31) is expected to have the largest branching ratio, analogously

to the QCD pion decay π0 → γγ. Suppose that the possible resonance of the dipho-

ton channel (5.31) of the invariant mass Mγγ is observed in high-energy experiments, it

implies that the composite meson mass MΠ0 & Mγγ , since there are other decay chan-

nels (5.32), (5.33), (5.34) into two gauge bosons of γZ0, W+W− and Z0Z0. The channel

γZ0 corresponds to the final states of a photon and two leptons or a “fat” jet of two quarks.

The channels W+W− and Z0Z0 correspond to the final states of (i) two “fat” jets of four

quarks for W and Z hadronic decays or (ii) four leptons for W and Z leptonic decay, or a

“fat” jet and two leptons in the combination of cases (i) and (ii).

For the reasons that the properties of composite particles, e.g., form-factors and masses

(or the binding-energy depth) due to the strong-coupling dynamics, are unknown, we have

not been able to calculate the total rate Γtotal
Π0 and width of the composite boson Π0 that

decays into the final states of the SM elementary particles including the channel of two

gauge bosons or two fermions.7 Nevertheless, at the leading order (tree-level) of gauge

interactions, we are able to calculate the rates ΓΠ0→γγ,γZ,··· (5.29) of the composite boson

Π0 decaying into two gauge bosons as diboson final states,

Π0 → γγ, γZ0,W+W−, Z0Z0, · · ·. (5.35)

These diboson channels (5.35) are expected to be the most energetically favorable and

largest branching ratio,

BΠ0→γγ,γZ0,W+W−,Z0Z0 =
ΓΠ0→γγ,γZ0,W+W−,Z0Z0

Γtotal
Π0

. (5.36)

Moreover, in high-energy experiments, the diboson final state and its kinematics might be

more easily identified than the final state of two fermions (quarks or two jets) due to the

background of the QCD dynamics.

7In ref. [20], we have some discussions of composite boson decaying into the final state of two quarks.
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The total decay rate and width of the composite boson, as well as the branching ratios

of decay channels, are very important for the collider phenomenology of the composite

boson. However, the following ratios of the branching ratios (5.36) for different decay

channels (5.35), “relative branching ratio”

ΓΠ0→γγ,γZ0,W+W−,Z0Z0

ΓΠ0→γγ
=

BΠ0→γγ,γZ0,W+W−,Z0Z0

BΠ0→γγ
=

ΓΠ0→γγ,γZ0,W+W−,Z0Z0/Γtotal
Π0

ΓΠ0→γγ/Γ
total
Π0

,

(5.37)

depend only on the SM gauge couplings g and g′ at the energy scale MΠ, given by the

effective Lagrangian (4.8). Following these discussions and using eqs. (5.31)–(5.34), we can

approximately estimate the decay-rate ratios (5.37)

ΓΠ0→γZ0/ΓΠ0→γγ =

(

9/10− sin2 θW
)2

sin2 2θW
≈ 0.63,

ΓΠ0→W+W−/ΓΠ0→γγ ≈
(

9

40 sin2 θW

)2

≈ 0.96,

ΓΠ0→Z0Z0/ΓΠ0→γγ =

(

(9/10)− (9/5) sin2 θW + sin4 θW

sin2 2θW

)2

≈ 0.58, (5.38)

where the value sin2 θW ≈ 0.23 is approximately adopted to obtain numbers. These re-

lations provide a possibility to verify the validity of such an effective theory of composite

particles, if the resonance of diphoton channel and other diboson channels are also ob-

served and measured in high-energy experiments, for instance the on-going ATLAS and

CMS experiments in the LHC pp collisions.

It is also possible that the composite boson Π0 decays into the dijet final state of two

quarks which was already discussed in refs. [20, 21]. Suppose that the neutral composite

meson Π0 is produced by pp collisions at the LHC, its resonance location Mall channels =

MΠ0 , and the rate of each decay channel depends on the values of the mass MΠ0 , decay

constant FΠ and SM gauge couplings at these scales. Which channel is more relevant for

detections, depending not only on its theoretical branching ratio in principle, but also on

its experimental measurement in practice.

The same analysis and discussion can be generalized to the decay rates of neutral

composite bosons Π0 made of charged lepton and/or neutrino pair (4.5) in the lepton

channel. Their decay constants and masses should be approximately at the same scale of

the Π0 decay constant FΠ and mass MΠ0 . Their decay rates can be obtained by eqs. (5.24)–

(5.30) for Nc = 1, couplings Qi and giV of the lepton sector in the SM Lagrangian (4.7).

As an example for the two-photon final state, the rate should be (5/9)2N2
c = 25/9 time

smaller than the rate (5.31) of the quark channel. However, the ratios of branching ratios

for different diboson channels are similar to eq. (5.38), but modified accordingly to the

leptonic Qi and giV values. Beside, in the LHC pp collision, the production probability

of leptonic composite bosons is smaller than hadronic one, due to the leptonic production

rate is proportional to the small fine-structure constant α.
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5.5 Π± and other composite boson decays

Equations (5.1) and (5.2) of the PCAC are not applicable for the charged composite bosons

Π± decay. Therefore, we cannot use the analogy of the QCD charged pion π± decays obtain

the rates of Π± decay to either two quarks (jets) or two leptons,

Π+ → t+ b, · · ·; τ+ + ντ , · · ·, (5.39)

and charge-conjugated processes. In the quark case, the composite bosons Π± are made of

quarks (4.1), and in the lepton case the composite bosons Π± are made of leptons (4.5).

Nevertheless, it is expected that the Π±-decay channel to the heaviest fermions, top quark

or tau lepton, should be most favorable. Suppose that the charged composite meson

Π± is produced by pp collisions at the LHC, its resonance locates at the invariant mass

Mqq ≈ MΠ± of the dijet final state or other possible final states produced by two quarks

(two jets). Whereas the charged lepton channel implies the final state of τ± lepton of

energy ∼ MΠ±/2 and missing energy carried away by ντ -neutrino.

In eqs. (5.6) and (5.7), the scalar bosons form composite quarkonium states ūu and

d̄d that carry the same quantum numbers of QCD quarknium states, however, have much

larger masses ∼ MΠ0 . It is expected that apart from different kinematic threshold, these

composite quarkonium states in principle undergo all decay channels of QCD quarkonium

states. Recall that the direct decays of composite bosons Π± and quarkonium states into

dijets or dilepton without an intermediate state were preliminarily discussed [20, 21]. On

the basis of the SM chiral gauge symmetries and vector-like composite fermion content,

there are also other possible final decay channels, analogously to those studied in the

effective theory of QCD at low energies. These will be issues in future studies.

6 Composite fermion decay and annihilation channels

In this section 6, we turn to discussions of decay and annihilation channels of composite

fermions, see section 4.1, on the basis of the effective Lagrangian (4.8) of their kinetic terms

and interactions to SM gauge bosons. We show the peculiar characteristics of composite

fermions decay. It could be a possibility and possible criterion for the experimental veri-

fication or falsification of the effective theory of composite particles in the UV-domain of

strong four-fermion couplings.

6.1 Composite fermions decay

6.1.1 Decay into two gauge bosons and a quark

For the sake of simplicity, we adopt the first quark family (4.1)–(4.3) to discuss the decay

of composite Dirac fermions, and discussions can be generalized to other families includ-

ing leptons. The composite Dirac fermions ΨD (4.3) should be more massive than their

constituents of composite boson Ai (4.1), i.e., MF > M0,±
Π . They decay into the SM ele-

mentary particles via the intermediate composite-boson states Π0 (neutral decay channel)

or Π± (charged decay channel) or quarkonium states in eqs. (5.6) and (5.7). Suppose that

at the present energy of pp collisions at the LHC, composite Dirac fermions produced are
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non-relativistic particles, and we consider them to be approximately at rest in the CM

frame of pp collision. The neutral decay channels are, see figure 5, for the u-quark channel

ΨD → Π0 + [ūL, uR] → (γγ, γZ0,W+W−, Z0Z0) + a jet, (6.1)

and the d-quark channel given by u → d. This indicates that a composite Dirac fermion ΨD

decays into a composite meson Π0 and a fundamental Dirac fermion, u-quark [ūL, uR] or

d-quark [d̄L, dR]. The latter is an ultra-relativistic quark, Ef ≈ |pf |, ending as a jet in the

final states. And the former is a composite meson, E
Π0

= (p2
Π0

+M2
Π0
)1/2, appearing as an

intermediate and metastable state for a short time ∼ 1/M
Π0

then decays into two photons

of the energy Eγ = |pγ | or other diboson channels (5.35) of two SM gauge bosons G and

G′. In the CM frame of the pp collision, the composite fermion is approximately at rest,

and decays into a quark (jet) and a composite boson moving apart in opposite directions

(p
f
= −p

Π0
). The kinematic distribution of final states is described by the invariant mass

Minv ≈ MF ,

MF = Ef + E
Π0

≈ |p
Π0
|+ (p2

Π0
+M2

Π0
)1/2,

p
f
= −p

Π0
= −(pγ1 + pγ2)

|p
Π0
| ≈

[

|pγ1 |2 + |pγ1 |2 + 2|pγ1 ||pγ2 | cos θγ1γ2
]1/2

, (6.2)

where θγ1γ2 is the angle between the momenta pγ1 and pγ2 of two photons or other diboson

states (6.1). The rate ΓΨD→GG′+jet of composite fermion decay (6.1) should be the product

of Π0-decay rate ΓΠ
Π0→GG′ (5.31)–(5.34) and the rate ΓΨD→Π0+a quark of ΨD decaying into

a quark and Π0, namely

ΓΨD→GG′+a quark ∝ ΓΨD→Π0+a quark × ΓΠ
Π0→GG′ . (6.3)

This implies the ratios:

ΓΨD→γZ0+a quark/ΓΨD→γγ+a quark ∝ ΓΠ0→γZ0/ΓΠ0→γγ ,

ΓΨD→W+W−+a quark/ΓΨD→γγ+a quark ∝ ΓΠ0→W+W−/ΓΠ0→γγ ,

ΓΨD→Z0Z0+a quark/ΓΨD→γγ+a quark ∝ ΓΠ0→Z0Z0/ΓΠ0→γγ . (6.4)

are similar to the ratios (5.38). If the bosonic resonance (5.35) is observed and its invariant

mass is determined, the resonance of composite fermion decay (6.1) could possibly be

identified by measuring such a peculiar final-state kinematics (6.2) of a single jet and two

photons or other diboson states G and G′.

6.1.2 Decay into two gauge bosons and a lepton

Due to the four-fermion interaction of quark-lepton sector, see eq. (2.18) and section 4.1.3,

the composite fermions (4.6) composed by a hadronic composite boson and a lepton are

also formed in the UV-domain. We generalize the analysis and discussion in the previous

section 6.1.1 to the decay of composite fermion (4.6) composed by a hadronic composite
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pγ1

pγ2

PF Π0

pf

Figure 5. We show the diagram of a composite fermion (three parallel solid lines) decaying to

an SM elementary quark or lepton (the solid line with an arrow) and a composite boson, the

latter decays into two SM gauge bosons (wave lines), see figure 4. The composite boson Π0 is an

intermediate state. pf represents the energy momentum of quark or lepton. pγ1
and pγ2

represent

the energy momentum of two photons or two gauge bosons G and G′. The composite fermion is

heavier than composite boson Π0, MF > MΠ0 , and the energy-momentum of composite fermion

EF = MF at its rest frame (PF = 0), as described in eq. (6.2).

boson Π0 and a charged lepton (or a neutrino). The decay process is also represented by

figure 5. For the e-lepton channel,

ΨD → Π0 + [ēL, eR] → (γγ, γZ0,W+W−, Z0Z0) + an electron, (6.5)

and the νe-lepton channel is given by e → ν. This indicates that a composite Dirac fermion

ΨD (4.6) decays into a composite meson Π0 and a fundamental Dirac fermion, a charged

lepton ℓ = [ℓ̄L, ℓR] or a neutrino νℓ. The latter is an ultra-relativistic lepton. The kinematic

threshold and distribution are the same as the one (6.1) in pure hadronic channel (6.2).

However, the neutrino in the final states carries away mixing energy and momentum. The

rate ΓΨD→GG′+a lepton of composite fermion decay (6.5) should be the product of Π0-decay

rate ΓΠ
Π0→GG′ (5.31)–(5.34) and the rate ΓΨD→Π0+a lepton of ΨD decaying into a lepton

and Π0, namely

ΓΨD→GG′+a lepton ∝ ΓΨD→Π0+a lepton × ΓΠ
Π0→GG′ . (6.6)

This implies the ratios:

ΓΨD→γZ0+a lepton/ΓΨD→γγ+a lepton ∝ ΓΠ0→γZ0/ΓΠ0→γγ ,

ΓΨD→W+W−+a lepton/ΓΨD→γγ+a lepton ∝ ΓΠ0→W+W−/ΓΠ0→γγ ,

ΓΨD→Z0Z0+a lepton/ΓΨD→γγ+a lepton ∝ ΓΠ0→Z0Z0/ΓΠ0→γγ . (6.7)

are similar to the ratios (5.38).

The decay processes (6.1) and (6.5) discussed in this section show the peculiar char-

acteristics of the effective theory of composite bosons and fermions in the UV-domain of

strong four-fermion couplings. These processes are relevant to and can be checked by the

on-going high-energy experiments in the LHC pp collision.
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6.1.3 Other channels of composite fermion decay

In addition, the decay channels of composite fermions via the intermediate meson state of

charged composite bosons Π± (5.39) read

ΨD → Π+ + [ūL, dR], (6.8)

and its charge conjugate. The Weyl fields [ūL, dR] do not form a Dirac fermion of u- or

d-quark, but pick up uR and d̄L quarks from the vacuum, and end as u and d-quark (jets) in

final states. On the other hand, the charged composite mesons Π±, see eqs. (5.6) and (5.7),

most probably decay into two quarks (5.39). Therefore, the most probable final state of

composite fermion (6.8) decay is expected to be four jets formed by four quarks, which was

already discussed in refs. [20, 21].

These discussions can be generalized to the decay channels whose intermediate state is

a composite quarkonium state S0±, instead of a composite meson state Π0±, see eqs. (5.6)

and (5.7). Also, these discussion can be generalized to the second and third families of

composite fermions.

To end this section, we mention other possible channels of composite fermion decay.

Analogously to composite-fermion decay channel (6.8), the composite fermions (4.6) formed

the quark-lepton interaction decay via the intermediate meson state Π± (5.39)

ΨD → Π+ + [ν̄L, ℓR], (6.9)

and its charge conjugate. The final states are a lepton pair and a jet pair. As for the decay

of leptonic composite fermions (4.5), final states are: (i) two gauge bosons and a lepton for

the neutral channel via the intermediate Π0 state; (ii) four leptons for the charged channel

via the intermediate Π± state. However these decay rates are much smaller due to the

“missing” of the factor N2
c and the smallness of the fine-structure constant α relating to

the production of leptons in the LHC pp collision.

6.2 Annihilation of two composite fermions

We turn to qualitative discussions of two composite fermions annihilation into two SM

gauge bosonsG andG′, which should be less measurable process compared with a composite

fermion decay, in the experimental view of producing two massive composite fermions and

detecting final states. Analogously to the annihilation of electron and positron into two

photons in the QED, a composite Dirac fermion and its antiparticle annihilates to two

photons, and other massive gauge bosons, see figure 6,

ΨD +Ψc
D → γγ, γZ0,W+W−, Z0Z0, · · · (6.10)

where the composite Dirac fermion ΨD has an electric chargeQ = (2/3,−1/3,−1) and mass

MF . Apart from the diphoton final state, the final states of energetic dibosons W+W−

and Z0Z0 are two “fat” jets in opposite directions, each of them is made by two energetic

quarks, or these two bosons can decay into the final states of two lepton pairs. While in

the channel ΨD + Ψc
D → γZ0, the final states are an energetic photon and a “fat” jet or

an energetic photon and a lepton pair.
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Figure 6. These diagrams show the annihilation of two composite fermions (three solid lines) into

two SM gauge bosons (two wave lines).

Given by the mass-energy of two annihilating composite Dirac fermions, the kinematic

mass-energy of final states must be larger than 2MF . This is not an invariant energy-

mass representing the resonance of an unstable composite particle. Suppose that massive

composite Dirac fermions produced by the LHC pp-collision at present energies are non-

relativistic particles,

EF = (|pF |2 +M2
F )

1/2 ≈ MF + |pF |2/(2MF ), (6.11)

assuming the mass MF is large enough. Two SM gauge bosons G and G′ in the final

state (6.10) are ultra-relativistic, the cross-section σD of annihilating channel (6.10) can

be approximately estimated by using the Dirac rate of point-like electron and positron

annihilating to two photons with the replacement me → MF and α → Q2α,

σD ∼ πr20/v, r0 = Q2α/MF , v = |pF |/MF ≪ 1, (6.12)

up to the form-factors Z
S

L,R (4.2) of composite Dirac fermions. The annihilation rate ΓD

per unit time

ΓΨDΨc
D
→γγ ≈ σDvn ∼ 2πr20n ∼ (Q2α)2MF (6.13)

where the number density of the produced composite fermions n ∼ M3
F /π is assumed.

Analogously to the positronium state of electron and positron pair in the QED, it is possible

that the composite fermion and its antiparticle form an intermediate unstable Coulomb

bound state, then decaying into photons or other massive gauge bosons. The spin singlet

of the bound state decays into two photons (even number of photons) with the probability

∼ (Q2α)5MF , The spin triplet of the bound state decays into three photons (odd number

of photons) with the probability ∼ (Q2α)6MF . In these discussions, we adopt two-photon

final state. As for other channels of two SM gauge bosons G and G′ (6.10), in terms of their

SM gauge couplings in the effective Lagrangian (4.8), we can obtain the ratios of different

annihilation processes:

ΓΨDΨc
D
→γZ0/ΓΨDΨc

D
→γγ , ΓΨDΨc

D
→W+W−/ΓΨDΨc

D
→γγ , ΓΨDΨc

D
→Z0Z0/ΓΨDΨc

D
→γγ ,

(6.14)

depending only on the SM gauge couplings g and g′ (4.8) at the mass scale MF , similarly

to the ratios (5.38).

The following annihilation channels of two composite fermions with different charges

or zero charge are also possible,

Ψ
−1/3
D +Ψ

c2/3
D → W−γ,W−Z0, · · ·

Ψ0
D +Ψ0

D → W+W−, Z0Z0, · · · (6.15)
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and their charged conjugates. In addition, it is known that the annihilation of electron and

positron, through an intermediate γ-photon or Z0-boson, produce a pair of particle and

antiparticle in the SM. Analogously, a composite fermion and its antiparticle annihilates,

through an intermediate photon or Z0-boson, and produce a pair of SM elementary particle

and its antiparticle,

ΨD +Ψc
D → f + f c, (6.16)

where the final state is an energetic lepton pair or quark pair, the former is the dilepton

channel and the latter is the dijet channel. Similarly to the channels (6.15) two composite

Dirac fermions with different charges or zero charge can annihilate, through an intermediate

charged boson W± or neutral boson Z0, to the pair of two SM elementary fermions.

The analogous discussions on these possible processes can be also made for the case of

the composite fermion ΨS (singlet) coupling to the γ and Z0, see eq. (4.8); as well as for the

case of composite bosons Ai coupling to the γ, Z0 and W±, see eq. (4.9). In the effective

Lagrangian (4.8) and (4.9), we neglect the interactions between the composite particles,

e.g., the composite fermion and boson interaction of the Yukawa type. Thus we skip the

discussions on two composite Dirac fermions annihilate to two composite bosons A and

A†. Limited by the lengthy of this article, it is impossible to discuss even qualitatively

all possible processes of the effective Lagrangian (4.8) and (4.9), thus we are led to some

considerations and speculations possibly relevant to experiments and /or observations.

7 Some speculative considerations for experiments

In this article, for readers’ convenience, we first give a very brief review of effective four-

fermion operators and effective theories of elementary and composite particles in IR and

UV scaling domains. We then focus the discussions on the decay and annihilation channels

of composite bosons and fermions into the final states of the SM gauge bosons, leptons and

quarks, in connection with the searches of high-energy experiments, like the ATLAS and

CMS. The possibilities and possible criteria are provided for the verification or falsification

of such an effective theory of massive composite particles and SM gauge couplings in the

UV-domain of strong four-fermion couplings. Obviously, in addition to those processes

discussed in this article, there are other possible experimentally relevant processes of effec-

tive four-fermion operators (2.6), we end this lengthy article by making some speculative

considerations for experiments.

7.1 Some speculative considerations for LHC experiments

In the LHC pp collisions, the most probably channels of producing composite particles

are the composite bosons and fermions (4.1)–(4.4) in the first family via the four-fermion

operators [20, 21]

G
[

(ψ̄ia
L uRa)(ū

b
Rψ

i
Lb) + (ψ̄ia

L dRa)(d̄
b
Rψ

i
Lb)

]

+G(ψ̄ia
L νR)(ν̄Rψ

ia
L ), (7.1)

and the channels of producing composite particles by other quark and lepton families have

smaller rate because of involving small SM gauge interactions. The last term of eq. (7.1)
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represents the interaction of quarks and dark-matter particle νR, which stands for the

right-handed sterile neutrino of the first fermion family.

These composite bosons and fermions could be experimentally verified by possibly

observing their resonances and measuring their invariant masses (Minv) and kinematic

distributions of relevant final states. If the CM energy
√
s of LHC pp-collisions is close to the

masses MΠ0 and MF of composite boson and fermion (
√
s & MΠ0 ,MF ), then the invariant

mass Minv ∼ MΠ0 or Minv ∼ MF . The mass scales MΠ0 and MF can only be determined

by high-energy experiments, though we have the theoretical relation MF > MΠ ∝ Eξ of

eq. (4.12) and preliminary theoretical estimation (3.19) on the characteristic energy scale

Eξ & 5TeV of the UV-domain.

Suppose that the recent ATLAS and CMS preliminary results [69, 70] of diboson

resonances (dijets tagged by two bosons) with invariant masses in the energy range from 1.3

to 3.0TeV could be further confirmed. These resonances are expected to be also seen in the

channels of four quark jets, whose invariant mass and event rate should be larger, provided

that these resonances are attributed to massive composite Dirac fermions at this energy

range. The CMS result [71] of resonances with final states being two jets could include

the event of four quark jets, two of them are geometrically close together to form a “wide

jet”, which should be tagged through a study of its substructure and flavor. Moreover,

if composite Dirac fermions are formed by the last operator in eq. (7.1), in addition to

jets in final state, dark-matter particles νR carry away missing energy-momentum [72, 73].

Similar discussions are applied for the case of composite bosons.

Due to the W±- and Z0-boson couplings g2 to two constituent quarks (u, d) of compos-

ite fermions, in particular W±-boson coupling to SUL(2) doublet ψ
ia
L = (uaL, d

a
L), massive

composite Dirac fermions have the following decay channels of final states: (i) dijets tagged

by two highly boosted bosons WW, WZ or ZZ produced by high-energy constituent quarks

(u, d) of composite fermions, together with additional quark jets; (ii) four quark jets formed

by four high-energy constituent quarks (u, d) of a composite fermion with a peculiar kine-

matic distribution [20, 21]. It is expected that the former should have smaller rate because

of the SM gauge coupling g2, although we have not yet been able to calculate the rates of

these channels. In these two aforementioned channels (i) and (ii), the final states can also

be high-energy leptons, however the branching ratio of W± and Z0 decaying into leptons

is about several times smaller than that to hadrons (jets) [67]. The composite fermion can

also decay in the channel of W and Higgs (WH) bosons [68], where the Higgs boson is

produced by u, d-quarks fusing into a top-quark pair via a gluon, and its production rate

is then related to the QCD coupling αs = g23/4π. Similar discussions are applied for the

case of composite bosons.

7.2 Sterile neutrinos interacting with SM particles at high energies

Last but not least, all sterile neutrinos (νiR, ν
ic
R ) and SM gauge-singlet (neutral) states of

massive composite fermions, e.g., ΨD ∼ [ν̄ℓR, (ℓ̄
i
Lν

ℓ
R)ℓLi], can be possible candidates of warm

and cold dark matter [19, 21]. They can couple or decay into the SM elementary particles

in the following ways. (i) SM gauge-singlet (neutral) states of composite Dirac fermions

become unstable and decay into SM elementary particles. (ii) Sterile neutrinos interact

– 40 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
6

with SM elementary particles via the last term of eq. (7.1) for ψi
L being quark or lepton

SUL(2)-doublets. (iii) The terms in eqs. (2.16) and (2.17) give the interactions

G
[

(ℓ̄iLν
ℓ
R)(ν̄

ℓ
RℓLi) + (ν̄ℓ cR ℓR)(ℓ̄Rν

ℓ c
R ) + (ν̄ℓ cR uℓa,R)(ū

ℓ
a,Rν

ℓc
R ) + (ν̄ℓ cR dℓa,R)(d̄

ℓ
a,Rν

ℓc
R )

]

, (7.2)

among sterile neutrinos νℓR, ν
ℓc
R (dark matter) and SM elementary particles, where the lepton

SUL(2) doublets ℓiL = (νℓL, ℓL), singlets ℓR and the conjugate fields of sterile neutrinos

νℓcR = iγ2(ν
ℓ
R)

∗ (ℓ = e, µ, τ), and quark fields uℓa,R = (u, c, t)a,R and dℓa,R = (d, s, b)a,R.

The four-fermion coupling G in eqs. (7.1) and (7.2) is unique. Therefore, it is expected

that at the same energy scale MF > MΠ ∝ Eξ (4.12), at which composite boson and

fermion (4.1)–(4.4) appear as resonances in the LHC pp collisions, leptonic composite boson

(ēRν
ec
R ) or (ν̄eReL) and composite fermion [ν̄ecR , (ēRν

ec
R )eR] or [ēL, (ν̄

e
ReL)ν

e
R] should be formed

by high-energy sterile neutrino inelastic collisions, e.g. νeR + ν̄eR → e− + e+ via the first

or second interaction in eq. (7.2). Then these leptonic composite particles decay and

produce electrons and positrons. This may account for an excess of cosmic ray electrons

and positrons around TeV scale [74–77] in space laboratories. In addition, recent AMS-02

results [78] show that at TeV scale the energy-dependent proton flux changes its power-law

index. This implies that there would be “excess” TeV protons whose origin could be also

explained by the resonance of composite bosons and fermions due to the interactions (7.1)

and (7.2) of dark-matter and normal-matter particles.

We also expect that at the same energy scale MF > MΠ ∝ Eξ (4.12), the four-fermion

interactions of the last term in eq. (7.1), the third and fourth terms in eq. (7.2) form

composite fermions made by u, d-quarks and sterile neutrino νR, e.g., [ψ̄
i
La, (ν̄Rψ

i
La)νR],

[ν̄ℓcR , (ūaRν
ℓc
R )uaR] or [ūaL, (ν̄

ℓ
RuaL)ν

ℓ
R]. These composite states should appear as resonances

by high-energy sterile neutrinos inelastic collisions with nucleons (xenon) at the largest

cross-section, then resonances decay and produce some other detectable SM particles in

underground laboratories [79]. Similarly, in the ICECUBE experiment [80], we expect

the events that neutrinos change (lose) their directions (energies) by the first term of the

interaction (2.16) to form the resonances of composite bosons and fermions at the same

energy scale MF > MΠ ∝ Eξ (4.12). In these inelastic collisions, if the accessible CM

energy
√
s > MΠ,F , the cross section for the allowed inelastic processes forming massive

composite bosons and fermions will be geometrical in magnitude, of order σcom ∼ 4π/M2
Π,F

in the CM frame where massive composite bosons and fermions are approximately at rest.

7.3 Further studies

By contrast with the low-energy effective theory of SM elementary particles in the IR-

domain of weak four-fermion coupling, we have to confess that the present analysis of the

effective theory of composite particles in the UV-domain of strong four-fermion coupling are

completely preliminary, due to its non-perturbative nature from the theoretical point view.

Adequate non-perturbative methods both analytical approaches and numerical algorithms

are necessary. This is analogous to the theoretical aspects of low-energy hadron physics of

non-perturbative QCD. On the other hand, from experimental point of view, it is nontrivial

to proceed physically sensible final-state selection and relevant data analysis in high-energy
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experiments, in addition to searching for high-energy collisions and accumulating enough

data for significant analysis. However, without high-energy experiments, the characteristic

energy scale MF > MΠ ∝ Eξ (4.12) of effective composite-particle theory cannot even be

determined at all. It is worthwhile to mention that similar to the analogy between the Higgs

mechanism and Bardeen-Cooper-Schrieffer (BCS) superconductivity, we are studying an

analogy between the effective theory discussed in this article and the BCS-BEC (Bose-

Einstein condensate) crossover and unitary Fermi gas of strong-interacting electrons [81],

which is expected to observe in optical lattice.
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