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1 Introduction

The conformal bootstrap [1–3], the idea that a conformal field theory can be determined

entirely based on (possibly extended) conformal symmetry, unitarity, and simple assump-

tions about the spectrum, has proven to be remarkably powerful. Such methods have been

implemented analytically to solve two-dimensional rational CFTs [4–7], and later extended

to certain irrational CFTs [8–11]. The numerical approach to the conformal bootstrap has

been applied successfully to higher dimensional theories [12–29], as well as putting non-

trivial constraints on the spectrum of two-dimensional theories that have been previously

unattainable with analytic methods [30–32].

In this paper, we analyze c = 6 (4, 4) superconformal field theories using the conformal

bootstrap. Our primary example1 is the supersymmetric nonlinear sigma model with the

K3 surface as its target space. We refer to this theory as the K3 CFT. The conformal

manifold and BPS spectrum of the K3 CFT has been well known [34–39]. Much less was

known about the non-BPS spectrum of the theory, except at special solvable points in the

moduli space [40–42], and in the vicinity of points where the CFT becomes singular [43–45].

To understand the non-BPS spectrum of the K3 CFT is the subject of this paper.

There are two essential technical ingredients that will enable us to bootstrap the K3

CFT. The first ingredient is an exact relation between the BPS N = 4 superconformal

block at central charge c = 6 and the bosonic Virasoro conformal block at central charge

c = 28 discussed in section 3. More precisely, we consider the sphere four-point block of the

small N = 4 super-Virasoro algebra, with four external BPS operators of weight and spin

(h, j) = (1
2 ,

1
2) in the NS sector or (h, j) = (1

4 , 0) in the R sector, and a generic non-BPS

intermediate primary of weight h. This N = 4 block will be equal to, up to a simple factor,

the sphere four-point bosonic Virasoro conformal block of central charge 28, with external

weights 1 and internal primary weight h + 1. This relation is observed by comparing

the four-point function of normalizable BPS operators in the N = 4 A1 cigar CFT to

correlators in the bosonic Liouville theory, through the relation of Ribault and Teschner

that expresses SL(2) WZW model correlators in terms of Liouville correlators [46, 47].

We generalize the above argument to establish an exact equivalence between a class

of BPS N = 2 superconformal blocks of c = 3(k + 2)/k with bosonic Virasoro conformal

blocks of c = 13 + 6k + 6/k in section 4.

The second ingredient is the exact moduli dependence of certain integrated four-point

functions Aijk` of 1
2 -BPS operators (corresponding to marginal deformations) in the K3

CFT. They are obtained from the weak coupling limit of the non-perturbatively exact

results on 4- and 6-derivative terms in the spacetime effective action of type IIB string

theory compactified on the K3 surface [48, 49]. This allows us to encode the moduli of the

K3 CFT directly in terms of CFT data applicable in the bootstrap method, namely the

four-point function.

The numerical bootstrap then proceeds by analyzing the crossing equation, where

the N = 4 blocks, re-expressed in terms of Virasoro conformal blocks, are evaluated using

Zamolodchikov’s recurrence relations [8, 50]. The reality condition on the OPE coefficients,

1For noncompact target spaces, there are other interesting c = 6 (4,4) non-linear sigma models including

the ALF CFT [33], for which our bootstrap method also applies.
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which follows from unitarity, leads to two kinds of bounds on the scaling dimension of non-

BPS operators, which we refer to as the gap dimension ∆gap and a critical dimension

∆̂crt. ∆gap is the scaling dimension of the lowest non-BPS primary that appear in the

OPE of a pair of 1
2 -BPS operators. ∆̂crt is defined such that, roughly speaking, the OPE

coefficients of (and contributions to the four-point function from) the non-BPS primaries

at dimension ∆ > ∆̂crt are bounded from above by those of the primaries of dimension

∆ ≤ ∆̂crt. A consequence is that, when the four-point function diverges at special points on

the conformal manifold, the CFT either develops a continuum that contains ∆̂crt or some of

its OPE coefficients diverge. In the case when the OPE coefficients are bounded (which is

not always true as we will discuss in section 7.4), ∆̂crt provides an upper bound on the gap

below the continuum of the spectrum that is developed when the CFT becomes singular.

We will see that the numerical bounds on ∆̂crt and ∆gap are saturated by the free

orbifold T 4/Z2 CFT, as well as the A1 cigar CFT, and interpolate between the two as we

move along the moduli space. The moduli dependence is encoded in the integrated four-

point function of 1
2 -BPS operators Aijk`, which has been determined as an exact function

of the moduli. Our results provide direct evidence for the emergence of a continuum in the

CFT spectrum, at the points on the conformal manifold where the K3 surface develops ADE

singularities, using purely CFT methods (as opposed to the knowledge of the spacetime

BPS spectrum of string theory [38, 43, 51]). Our bounds are also consistent with, but not

saturated by, the OPE of twist fields in the free orbifold CFT.

We further discuss analytic and numerical bounds on ∆̂crt in general CFTs in 2,3, and

4 dimensions. Using crossing equations, we derive a crude analytic bound ∆̂crt ≤
√

2∆φ,

where ∆φ is the scaling dimension of the external scalar operator. This bound on ∆̂crt is

then refined numerically, and we observe that it meets at the unitarity bound for ∆φ . 1

in 3 dimensions and ∆φ . 2 in 4 dimensions, thus giving universal upper bounds on the

four-point functions for this range of external operator dimension.

In the large volume limit of the K3 target space, the spectrum of the CFT is captured

by the eigenvalues of the Laplacian on the K3. Using a positivity condition on the q-

expansion of conformal blocks and four-point functions [52, 53], we will derive an upper

bound on the gap in the spectrum, or equivalently on the first nonzero eigenvalue of the

scalar Laplacian on the K3, that depends on the moduli and remains nontrivial in the large

volume limit. Namely, it scales with the volume V as V −
1
2 and thereby provides a bound

on the first nonzero eigenvalue of the scalar Laplacian on the K3.

We summarize our results and discuss possible extensions of the current work in

the concluding section. Various technical details are presented in the appendices. In

appendix A, we fix the normalization of the integrated four-point function by comparing

with known results at the free orbifold point. In appendix B, we review the q-expansion of

the Virasoro conformal blocks and Zamolodchikov’s recurrence relations. In appendix C,

we explain the subtle technical details on how to incorporate the integrated four-point

function Aijk` into the bootstrap equations, and also derive a bound on the integrated

four-point function by the four-point function evaluated at z = 1
2 . In appendix D, we dis-

cuss how the critical dimension ∆̂crt gives an upper bound on the gap below the continuum

when the integrated four-point function diverges at some points on the moduli space.
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BPS non-BPS

NS h = `, 0 ≤ ` ≤ k′

2 h > `, 0 ≤ ` ≤ k′−1
2

R h = k′

4 , 0 ≤ ` ≤ k′

2 h > k′

4 , 1
2 ≤ ` ≤ k′

2

Table 1. N = 4 superconformal primaries in BPS and non-BPS representations.

2 Review of N = 4 superconformal representation theory

The small N = 4 superconformal algebra (SCA) with central charge c = 6k′, current

algebra SU(2)R and outer-automorphism SU(2)out is generated by a energy-momentum

tensor T , super-currents GαA transforming as (2,2) under SU(2)R × SU(2)out and the

SU(2)R current J i. In terms of their Fourier components Ln, GαAr and J i, the small N = 4

SCA is captured by the commutation relations

[Lm, Ln] = (m− n)Lm+n +
k′

2
(m3 −m)δm+n,

[Lm, G
αA
r ] =

(m
2
− r
)
GαAm+r, [Lm, J

i
n] = −nJ im+n,

{GαAr , GβBs } = 2εαβεABLr+s + 2(r − s)εABσαβi J ir+s +
k′

2
(4r2 − 1)εαβεABδr+s,

[J im, G
αA
r ] = −1

2
(σi)

α
βG

βA
m+r, [J im, J

j
n] = iεijkJkm+n +m

k′

2
δijδm+n

(2.1)

where (σi)
α
β are the Pauli matrices and (σi)

αβ = (σi)
α
γε
βγ with ε+− = ε+− = +1. Here we

are focusing on the left-moving (holomorphic) part. The subscripts r, s take half-integer

values for the NS sector and integer values for the R sector.

The N = 4 SCA enjoys an inner automorphism known as spectral flow, which

acts as [54],

J3
n → J3

n + ηk′δn,0, J±n → J±n±2η

Ln → Ln + 2ηJ3
n + η2k′δn,0, G±Ar → G±Ar∓η

(2.2)

where η ∈ Z/2. In particular, spectral flow with η ∈ Z+ 1
2 connects the NS and R sectors.

To obtain a unitary representation of the N = 4 SCA, k′ must be a positive integer.

Furthermore, if the highest weight state (N = 4 superconformal primary) has weight h and

SU(2)R spin ` ∈ Z/2, unitarity imposes the constraints h ≥ ` in the NS sector and h ≥ k′

4

in the R sector. There are two classes of unitary representations of N = 4 SCA: the BPS

(massless or short) representations and the non-BPS (massive or long) representations,

which are summarized in table 1. In the full N = (4, 4) SCFT, operators which are BPS

on both the left and right sides are called 1
2 -BPS; the operators which are BPS on one side

and non-BPS on the other are 1
4 -BPS. We should emphasize that our terminology of BPS

operators exclude the currents which will be lifted at generic moduli of the K3 CFT.
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The character for the BPS representation in the NS sector is

chBPS
h=` (q, z, y) = q`

∞∏
n=1

(1+yzqn−
1
2 )(1+y−1zqn−

1
2 )(1+yz−1qn−

1
2 )(1+y−1z−1qn−

1
2 )

(1− qn)2(1− z2qn)(1− z−2qn)
(2.3)

×
∞∑

m=−∞

q(k′+1)m2+(2`+1)m

1− z−2

[
z2((k′+1)m+`)

(1+yzqm+ 1
2 )(1+y−1zqm+ 1

2 )
− z−2((k′+1)m+`+1)

(1+yz−1qm+ 1
2 )(1+y−1z−1qm+ 1

2 )

]
,

while the non-BPS NS sector character is

chnon-BPS
h,` (q, z, y) = qh

∞∏
n=1

(
1+yzqn−

1
2

)(
1+y−1zqn−

1
2

)(
1+yz−1qn−

1
2

)(
1+y−1z−1qn−

1
2

)
(1− qn)2(1− z2qn)(1− z−2qn)

×
∞∑

m=−∞
q(k′+1)m2+(2`+1)m z

2((k′+1)m+`) − z−2((k′+1)m+`+1)

1− z−2
, (2.4)

where z and y are the fugacities for the third components of SU(2)R and SU(2)out, respec-

tively. The Ramond sector characters are related to the above by spectral flow.

We will now specialize to the K3 CFT which admits a small N = 4 SCA containing

left and right moving SU(2)R R-current at level k′ = 1. In this case, the 1
2 -BPS primaries

in the (NS,NS) sector consist of the identity operator (h = ` = h̄ = ¯̀ = 0) and 20 others

labelled by O±±i with h = ` = h̄ = ¯̀ = 1
2 which correspond to the 20 (1, 1)-harmonic

forms on K3 (i = 1, · · · , 20). In particular, the weight- 1
2 BPS primaries O±±i correspond

to exactly marginal operators of the K3 CFT. Under spectral flow, the identity operator

is mapped to the unique h = h̄ = 1
4 , ` = ¯̀ = 1

2 ground state O±±0 in the (R,R) sector,

whereas O±±i give rise to 20 h = h̄ = 1
4 , ` = ¯̀ = 0 (R,R) sector ground states denoted by

φRRi . The K3 CFT also contains 1
4 BPS primaries of weight (s, 1

2) and (1
2 , s), for integer

s ≥ 1.2 The weight (s, 1
2) 1

4 -BPS primaries have left SU(2)R spin 0 and right SU(2)R
spin 1

2 . They are captured by the K3 elliptic genus (NS sector) decomposed into N = 4

characters [35, 55, 56],

ZNS
K3 = 20chBPS

1
2

+ chBPS
0 − chnon-BPS

0 (90q + 462q2 + 1540q3 + · · · ), (2.5)

where the (s, 1
2) BPS primaries are counted by the character

90q + 462q2 + 1540q3 + · · · . (2.6)

We assume the absence of currents at generic moduli of the K3 CFT, which may be justified

by conformal perturbation theory, so that the 1
4 BPS primaries are the only contributions

to the non-BPS character terms in the elliptic genus (2.5). While the currents (of general

spin) may appear at special points in the moduli space, they can be viewed as limits of

non-BPS operators and therefore do not affect our bootstrap analysis.

We are interested in the four-point function of O±±i (or φRRi by spectral flow). Below

we will make a general argument, based on N = 4 superconformal algebra at general

2Note that the 1
4
-BPS primaries are fermionic with half integer spin, and are themselves projected out

in the spectrum of the K3 SCFT. Rather, their integer spin (4, 4) SCA descendants comprise the true 1
4

BPS operators of the K3 SCFT.
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c = 6k′, that the OPE of two BPS primaries φ`1,m1
1 and φ`2,m2

2 with SU(2)R spin `1 and

`2 respectively can only contain superconformal primaries O`,m (and descendants of), with

SU(2)R spin ` within the range |`1 − `2|, |`1 − `2|+ 1, . . . , `1 + `2 − 1, `1 + `2 and m labels

its J3
R charge.3,4 In particular, this will imply at k′ = 1 for K3 CFT, only (descendants of)

the identity operator and non-BPS operators can appear. Consequently, only the identity

block and non-BPS blocks contribute to the four-point function of 1
2 -BPS primaries O±±i .

We start with the 3-point function

〈φ`1,m1
1 (x1)φ`2,m2

2 (x2)[W−m1−m2−m,O`,m(x3)]〉 (2.7)

where W−m−m1−m2 is an arbitrary word with J3
0 = −m−m1 −m2 under left SU(2)R and

composed of raising operators L−n, J i−n, GαA−r with n > 0, r > 1/2, and J+
0 , G−A−1/2. We

would like to argue by N = 4 superconformal invariance that such a correlator vanishes

identically. The main idea is to perform contour deformation a number of times to strip

off W−m−m1−m2 completely while either leaving behind a GαA1/2 which annihilates Oj,m
or just the correlator of the superconformal primaries themselves which vanish due to

SU(2)R invariance.

Let us suppose ` does not belong to |`1 − `2|, |`1 − `2|+ 1, . . . , `1 + `2 − 1, `1 + `2. By

inserting an appropriate number of J±0 at x1 and x2 in (2.7), and redistributing them by

contour deformations, we can reduce the correlator (2.7) to

〈φ`1,`11 (x1)φ`2,−`22 (x2)[W `2−`1−m,O`,m(x3)]〉. (2.8)

We can immediately strip off all Virasoro generators L−n in W `2−`1−m by deforming

the contour of
∮

dz
2πi(z − x3)1−nT (z). This will relate the original three-point correla-

tor to the derivatives of those without L−n. Similarly, we can deform the contour of∮
dz
2πi(z − x3)−nJ3(z) to move J3

−n on φ`1,`11 to J3
0 on φ`1,`11 and φ`2,−`22 . As for J+

−n =∮
dz
2πi(z − x3)−nJ+(z), we can replace its insertion by

(x3 − x2)J+
−n = −J+

−n+1 +

∮
dz

2πi
J+(z)(z − x3)−n(z − x2) (2.9)

and deforming the contour. Note that the second term in (2.9) has a vanishing contribution

when we deform the contour to encircle either φ`1,`11 or φ`2,−`22 , hence the original three-

point function with J+
−n in W `2−`1−m is related to another with the operator replaced by

J+
−n+1 in W `2−`1−m. Repeating this procedure a number of times, we can be replace J+

−n
by J+

0 .5 Similarly we can substitute J−−n by J−0 . By commuting J i0 all the way to right,

we obtain a bunch of three point correlators of the form (2.8) with W `2−`1−m purely made

of GαA−r . Consider for example the case when G+A
−n−1/2 =

∮
dz
2πi G

+A(z)(z − x3)−n is the

leftmost letter in W−. As before for J+
−n, we can replace this insertion in the three-point

function by G+A
−n+1/2 for n ≥ 0 using

(x3 − x2)G+A
−n−1/2 = −G+A

−n+1/2 +

∮
dz

2πi
G+A(z)(z − x3)−n(z − x2). (2.10)

3We will focus on the holomorphic part in this argument.
4Similar contour arguments have been used in [57, 58] to argue that the three point functions of BPS

primaries are covariantly constant over the moduli space.
5Note that we do not have contributions when deforming the contour past infinity for n ≥ 0.
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Iterating this a number of times, we can replace G−A−n−1/2 by G−A1/2.6 Now we can commute

G−A1/2 all the way to the right which will produce L−n and J i−m via anti-commutators and

reduce the number of GαA−r ’s in W `2−`1−m by two. Therefore we have reduced the correlator

to that of the form (2.8) with W `2−`1−m being either GαA−r or removed completely. In the

former case, we can perform the replacement (2.10) and contour deformation again and

conclude the reduced three-point function vanishes. In the latter case, the resulting 3-point

correlator also vanishes due to SU(2)R invariance. This completes the argument.

3 N = 4 superconformal blocks

For the purpose of bootstrapping the K3 CFT, we will need the sphere four-point super-

conformal block of the small N = 4 superconformal algebra of central charge c = 6, with

the four external primaries being those of BPS representations with (h, j) = (1
2 ,

1
2) in the

NS sector, or equivalently by spectral flow, BPS representations with (h, j) = (1
4 , 0) in the

R sector. The intermediate representation will be taken to be that of a non-BPS primary

of weight h (and necessarily SU(2)R spin 0). Let us denote the NS BPS primary by O±
(exhibiting the left SU(2)R doublet index only), and the Ramond BPS primary by φR. We

shall denote the chiral-anti-chiral N = 4 superconformal block7 associated with an NS sec-

tor BPS correlator of the form 〈O+(z)O−(0)O+(1)O−(∞)〉 by FN=4,NS
h (z) (see figure 1),

and the corresponding block with R sector external primaries, associated with a correlator

of the form 〈φR(z)φR(0)φR(1)φR(∞)〉, by FN=4,R
h (z). The NS and R sector blocks are

related by

FN=4,NS
h (z) = z−

1
2 (1− z)

1
2FN=4,R

h (z). (3.1)

Note that the j = 1
2 BPS representation does not appear in the superconformal block

decomposition of the BPS four-point function in the K3 CFT, because neither the 1
2 -BPS

nor the 1
4 -BPS operators appear in the OPE of a pair of 1

2 -BPS primaries, as demonstrated

in the previous section. The identity representation superconformal block, on the other

hand, can simply be obtained by taking the h→ 0 limit of FN=4
h (z).

Claim. The chiral-anti-chiral c = 6 N = 4 superconformal block with BPS external pri-

maries and internal non-BPS primary of weight h is identified with the bosonic Virasoro

conformal block of central charge c = 28, with external primaries of weight 1, and shifted

weight h+ 1 for the internal primary, through the relation

FN=4,R
h (z) = z

1
2 (1− z)

1
2FVir

c=28(1, 1, 1, 1;h+ 1; z). (3.2)

Here FVir
c (h1, h2, h3, h4;h′; z) denotes the sphere four-point Virasoro conformal block with

central charge c, external weights hi, and internal weight h′.8,9

6One can apply a similar procedure if G+A
−r is the leftmost letter in W−.

7By a contour argument similar to the one in section 2, one can show there is only one independent

OPE coefficient between two BPS superconformal primaries.
8We will omit the N = 4 superscript for the N = 4 superconformal blocks from now on, but keep the

superscript V ir for the bosonic Virasoro conformal blocks.
9A similar relation between superconformal blocks and non-SUSY blocks with shifted weights was found

in [29, 59–61] for SCFTs in d > 2.
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FN=4,NS
h (z) = h

O+(z)

O+(1) O−(∞)

O−(0)

Figure 1. The chiral-anti-chiral c = 6 NSN = 4 superconformal block with external BPS primaries

O± and intermediate non-BPS primary of weight h.

We will discuss an explicit check of (3.2) on the z-expansion coefficients of the confor-

mal block in section 4.

3.1 N = 4 Ak−1 cigar CFT

We will justify the above claim by inspecting the N = 4 A1 cigar CFT, which can be

described as a Z2 orbifold of the N = 2 superconformal coset SL(2)/U(1) at level k = 2.10

This is a special case of the N = 4 Ak−1 cigar CFT, constructed as a Zk orbifold of the

product of N = 2 coset SCFTs [43, 62, 63],

SL(2)k/U(1)× SU(2)k/U(1). (3.3)

The N = 4 Ak−1 cigar theory has 4(k − 1) normalizable weight ( 1
2 ,

1
2) BPS primaries, cor-

responding to 4(k−1) exactly marginal deformations,11 and a continuum of delta function

normalizable non-BPS primaries above the gap

∆cont =
1

2k
(3.4)

in the scaling dimension. Later when we consider a sector of primaries with nonzero

R-charges, the continuum develops above a gap of larger value and there may also be

discrete, normalizable non-BPS primaries below the gap. The continuum states are in

correspondence with those of the supersymmetric SU(2)k × Rφ CFT, where Rφ is a linear

dilaton, with background charge 1/
√
k, which describes the asymptotic region of the cigar.

3.2 Four-point function and the Ribault-Teschner relation

Let us recall the computation of the sphere four-point function of the BPS primaries in

the Ak−1 cigar CFT, studied in [47]. The weight ( 1
4 ,

1
4) 1

2 -BPS RR sector primaries lie in

the twisted sectors of the Zk orbifold, labeled by an integer `+ 1, with ` = 0, 1, · · · , k − 2.

Note that `+ 1 is also the charge with respect to a Z̃k symmetry that acts on the twisted

sectors, and is conserved modulo k. They can be constructed from SL(2) and SU(2) coset

primaries as either

V +
R,` = V

s`,(− 1
2
,− 1

2
)

`
2
, `+2

2
, `+2

2

V
su,( 1

2
, 1
2

)
`
2
, `
2
, `
2

, (3.5)

10The k of the N = 4 Ak−1 cigar CFT is not to be confused with the level k′ of the N = 4 algebra. In

particular, the Ak−1 cigar CFT has c = 6 and hence k′ = 1 for its N = 4 algebra.
11In the 6d Ak−1 IIA little string theory, they parametrize the Coulomb branch moduli space R4(k−1)/Sk.

– 7 –



J
H
E
P
0
5
(
2
0
1
7
)
1
2
6

or

V −R,` = V
s`,( 1

2
, 1
2

)
`
2
,− `+2

2
,− `+2

2

V
su,(− 1

2
,− 1

2
)

`
2
,− `

2
,− `

2

. (3.6)

Here V
s`,(η,η̄)
j,m,m̄ (z, z̄) and V

su,(η′,η̄′)
j′,m′,m̄′ (z, z̄) are the spectral flowed primaries in the SL(2)/U(1)

and SU(2)/U(1) coset CFTs, respectively. η, η̄ and η′, η̄′ are the spectral flow parameters in

theN = 2 SL(2)/U(1) and SU(2)/U(1). The holomorphic weight of theN = 2 SL(2)k/U(1)

coset primary V sl,η
j,m (z) is

−j(j + 1) + (m+ η)2

k
+
η2

2
, (3.7)

while the holomorphic weight of the N = 2 SU(2)k/U(1) coset primary V su,η′

j′,m′ (z) is

j′(j′ + 1)− (m′ + η′)2

k
+
η′2

2
. (3.8)

We have the identification V −R,` = V +
R,k−2−`.

The correlator of interest is〈
V +
R,`(z, z̄)V +

R,`(0)V −R,`(1)V −R,`(∞)
〉
, (3.9)

where the operators are arranged so that the Z̃k charge is conserved. The SL(2)/U(1) part

of the correlator was determined in [47], using Ribault and Teschner’s relation [46] between

the bosonic SL(2) WZW and Liouville correlators. The result is of the form (see (3.37)

and (3.39) of [47])12

N|z|
(`+1)2

k
+ 1

2 |1− z|`+ 3
2
− (`+1)2

k

×
∫ ∞

0

dP

2π
C

(
α1, α2,

Q

2
+ iP

)
C

(
α3, α4,

Q

2
− iP

)
|FVir(h1, h2, h3, h4;hP ; z)|2.

(3.10)

Here FVir(h1, · · · ;hP ; z) is the Virasoro conformal block with central charge c = 1 + 6Q2.

N is a normalization constant. Q is the background charge of a corresponding bosonic Liou-

ville theory, and αi are the exponents labeling Liouville primaries of weight hi = αi(Q− αi).
They are related to k (labeling the Ak−1 cigar theory) and ` (labeling the BPS primaries) by

Q = b+
1

b
, b2 =

1

k
,

α1 = α2 =
`+ 2

2
b, α3 = α4 =

k − `
2

b,

h1 = h2 =
(`+ 2)(2k − `)

4k
,

h3 = h4 =
(k + `+ 2)(k − `)

4k
.

(3.11)

12Note that the identity block does not show up in the cigar CFT four-point function because the identity

operator is non-normalizable. This can also be understood from the normalization when compared with

the K3 CFT discussed in section 6.2.
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Note that the Liouville background charge Q is not the same as the background of the

asymptotic linear dilaton in the original cigar CFT (which is 1/
√
k). The weight of the

intermediate continuous state in the Liouville theory is

hP = αP (Q− αP ), αP =
Q

2
+ iP, P ∈ R. (3.12)

C(α1, α2, α3) is the structure constant of Liouville theory [8, 64],

C(α1, α2, α3) = µ̃
Q−

∑
αi

b
Υ0
∏3
i=1 Υ(2αi)

Υ(
∑
αi −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)

,

(3.13)

where µ̃ = πµγ(b2)b2−2b2 is the dual cosmological constant to µ with γ(x) = Γ(x)/Γ(1−x),

Υ0 ≡ Υ′(0), and

Υ(α) =
Γ2(Q/2|b, b−1)2

Γ2(α|b, b−1)Γ2(Q− α|b, b−1)
. (3.14)

Here Γ2(x|a1, a2) is the Barnes double Gamma function [65]. Υ(α) has zeroes at

α = −nb−m/b and α = (n+ 1)b+ (m+ 1)/b, for integer n,m ≥ 0.

The integration contour in (3.10) is the standard one if αi lie on the line Q
2 +iR. We need

to analytically continue αi to the real values given above. In doing so, the integral may pick

up residues from poles in the Liouville structure constants. These residue contributions, if

present, correspond to discrete intermediate state contributions [66]. We will have more to

say about these discrete intermediate state contributions to the four-point function (3.10)

in the N = 4 Ak−1 cigar CFT in section 7.4.

3.3 Four-point function of the N = 4 A1 cigar CFT

Now we shall specialize to the A1 theory (i.e. k = 2). In this case, the asymptotic region of

the cigar CFT is simply given by one bosonic linear dilaton Rφ, with background charge 1√
2
,

and 4 free fermions. Note that the non-BPS N = 4 character with c = 6 (and necessarily

with SU(2)R spin j = 0) is identical to the oscillator partition function of one chiral boson

and 4 free fermions. Thus, the non-BPS superconformal primaries of the N = 4 A1 cigar

CFT are in one-to-one correspondence with exponential operators in the bosonic part of

the asymptotic linear dilaton CFT, of the form

Vα = e2αφ, with α =
1

2
√

2
+ iP, P ∈ R. (3.15)

Importantly, these non-BPS primaries are labeled by the same quantum number, a real

number P , as the intermediate Liouville primaries in (3.10).

The result (3.10) that expresses the BPS four-point function in terms of Virasoro

conformal blocks labeled by the Liouville primaries Vα then strongly suggests that in the

A1 theory, the N = 4 superconformal block decomposition is identical to the decompo-

sition (3.10) in terms of Virasoro conformal blocks. Here, the Virasoro block is that of

central charge

c = 1 + 6Q2 = 28, (3.16)
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with external weights hi = 1 ((3.11) with k = 2, ` = 0). Next, we want to relate the

intermediate Liouville primary with weight hP to the corresponding N = 4 non-BPS

primaries in the A1 cigar CFT. The non-BPS N = 4 primary, in the SL(2)/U(1) coset

description, would be constructed from an SL(2) primary of spin13

j = −1

2
− i
√

2P, P ∈ R, (3.17)

with conformal weight

h = −j(j + 1)

k
=

1

8
+ P 2. (3.18)

On the other hand, by the relation of Ribault and Teschner (see also (3.17) of [47]), the

intermediate Liouville primary in (3.10) is labeled by the exponent αP given by

αP = −bj +
1

2b
=
Q

2
+ iP. (3.19)

Using (3.12), we obtain the weight of the intermediate Liouville primary in terms of P

labeling the SL(2)k/U(1) coset states in (3.17),

hP =
9

8
+ P 2. (3.20)

This leads us to identify the relation between the Virasoro primary weight hP and the

weight of the non-BPS primary in the corresponding N = 4 superconformal block,

hP = h+ 1. (3.21)

Including the z-dependent prefactor in (3.10) in (the k = 2, ` = 0 case), and matching the

normalization in the z → 0 limit, we then deduce the relation (3.2).

4 N = 2 superconformal blocks

The c = 6 N = 4 superconformal block with BPS external primaries is in fact identical to

the chiral-anti-chiral channel superconformal block of the N = 2 subalgebra.14 This follows

from the fact that a non-BPS weight h representation of the N = 4 SCA decomposes into

an infinite series of N = 2 non-BPS representations of weight h + m2

2 and U(1)R charge

m [67], with m = 0, 1, · · · . By a similar contour argument as in section 2, only the U(1)R
neutral N = 2 primaries and their descendants can appear in the OPE of the external

chiral operator φ+ and anti-chiral operator φ−,15 hence the claim.

13The
√

2 is introduced to match with the convention in (3.10).
14We thank Sarah Harrison for a discussion on this issue.
15One can in fact reach a more general statement based on N = 2 SCA. The OPE of two (anti)chiral

primaries with U(1)R charge q1 and q2 can only contain a primary (and descendants of) with U(1)R charge

q3 if q1 ≤ 0 and q1 + q2 − q3 ≤ 0 or q1 ≥ 0 and q1 + q2 − q3 ≥ 0. In particular when we consider the OPE

of one chiral and one antichiral primaries with opposite U(1)R charges, only the U(1)R neutral primaries

(and descendants) can appear.

– 10 –



J
H
E
P
0
5
(
2
0
1
7
)
1
2
6

FN=2,c=
3(k+2)

k
,NS

q,−q,q,−q|h (z) = h

φ+(z)

φ+(1) φ−(∞)

φ−(0)

Figure 2. The chiral-anti-chiral c = 3(k+2)
k NS N = 2 superconformal block with external

chiral/anti-chiral primaries φ± of weight |q|2 and U(1)R charge ±q = ±
(
`+2
k

)
, and intermediate

U(1)R neutral non-BPS primary of weight h.

More generally, one can extract the chiral-anti-chiral NS superconformal block (see

figure 2) of a general N = 2 SCA with central charge c = 3(k+2)
k from the N = 2

SL(2)k/U(1) cigar CFT. For instance, by a similar argument as in sections 3.2 and 3.3,

one can show that the c = 3(k+2)
k N = 2 superconformal block with external chiral or

anti-chiral operators of weight |q|2 and U(1)R charge q, −q, q, −q, with16

q =
`+ 2

k
, ` = 0, 1, · · · , k − 2, (4.2)

and the internal U(1)R neutral non-BPS primary with weight h, is related to the bosonic

Virasoro conformal block of central charge c = 13 + 6k + 6
k by

FN=2, c=
3(k+2)
k

,NS

q,−q,q,−q|h (z) = z
(`+2)(k−`−2)

2k (1− z)
(`+2)(3k−2`−4)

2k

× FVir
c=13+6k+ 6

k

(
hq, h−q, hq, h−q;h+

k + 2

4
; z

)
,

(4.3)

where

hq =
(`+ 2)(2k − `)

4k
, h−q =

(k − `)(k + `+ 2)

4k
. (4.4)

Note that in the special case when k = 2 and ` = 0, the N = 2 block becomes identical

to the N = 4 block as argued above and (4.3) reduces to the claim (3.2). The shift in

the intermediate weight hP = h+ k+2
4 comes from the difference between Q2/4 and 1/4k,

similar to (3.18) and (3.20) in the k = 2 case. We have checked directly using Mathematica

that (4.3) (and therefore (3.2) as a special case) holds up to level 4 superconformal descen-

dants with various values of q in (4.2). We expect (4.3) to hold for (anti)chiral primaries

with general U(1)R charges and central charge c = 3(k + 2)/k by analytic continuation

in ` and k.

The details of extracting the BPS N = 2 superconformal blocks of general central

charge from the cigar CFT will be presented elsewhere.

16Under spectral flow, the NS sector chiral primaries are mapped to R sector ground states with R-charges

q =
`+ 1

k
− 1

2
, ` = 0, 1, · · · , k − 2. (4.1)
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5 The integrated four-point functions

In this section we discuss the integrated four-point function of 1
2 -BPS operators, whose

exact moduli dependence will be later incorporated into the bootstrap equations (see

section 7.3 and appendix C). The integrated sphere four-point functions Aijkl and Bij,kl
are defined as [49]17∫

d2z|z|−s−1|1− z|−t−1
〈
φRRi (z, z̄)φRRj (0)φRRk (1)φRR` (∞)

〉
(5.1)

= 2π

(
δijδk`
s

+
δikδj`
t

+
δi`δjk
u

)
+Aijk` +Bij,k`s+Bik,j`t+Bi`,jku+O(s2, t2, u2),

where φRRi are the RR sector 1
2 -BPS primaries of weight ( 1

4 ,
1
4) that are related to NS-NS 1

2 -

BPS primaries O±±i by spectral flow, and the variables s, t, u are subject to the constraint

s + t + u = 0. Aijkl by definition is symmetric in (ijkl). Bij,kl is symmetric in (ij),

(kl), and under the exchange (ij) ↔ (kl). Furthermore, Bij,kl is subject to the constraint

Bij,kl + Bik,lj + Bil,jk = 0. Aijk` is also known as the tree-level N = 4 topological string

amplitude [68, 69].

The first term in (5.1) is related to the tree-level amplitude of tensor multiplets in type

IIB string theory compactified by K3 at two-derivative order. In particular, it captures

the Riemannian curvature of the Zamolodchikov metric on the K3 CFT moduli space.

Moreover Aijkl and Bij,kl can be identified as the tree level amplitudes of tensor multiplets

in the 6d (2, 0) supergravity at 4- and 6-derivative orders respectively. They can be obtained

from the weak coupling limit of the exact results for the 4- and 6-derivative order tensor

effective couplings determined in [48, 49]. In this paper, we will make use of

Aijk` =
1

16π2

∂4

∂yi∂yj∂yk∂y`

∣∣∣∣
y=0

∫
F
d2τ

ΘΛ(y|τ, τ̄)

η(τ)24
, (5.2)

where F is the fundamental domain of PSL(2,Z) acting on the upper half plane, Λ is the

even unimodular lattice Γ20,4 embedded in R20,4, which parameterizes the moduli of the

K3 CFT, and the theta function ΘΛ is defined to be

ΘΛ(y|τ, τ̄) = e
π

2τ2
y2 ∑

`∈Λ

eπiτ`
2
L−πiτ̄`2R+2πi`L·y. (5.3)

Here `L and `R are the projection of the lattice vector ` onto the positive subspace R20 and

negative subspace R4 respectively. The lattice inner product is defined as ` ◦ ` = `2L − `2R.

y is an auxiliary vector in the R20, whose components are in correspondence with the 20

BPS multiplets of the K3 CFT. Note that in (5.2), the integral is modular invariant only

after taking the y-derivatives and restricting to y = 0.

The expression (5.2) is obtained from the weak coupling limit of (1.3) in [49] (by

decomposing Γ21,5 = Γ20,4 ⊕ Γ1,1, and taking a limit on the Γ1,1). The normalization can

be fixed by comparison with an explicit computation of twist field correlators in the T 4/Z2

17More precisely, this integral is defined by analytic continuation in s, t from the region where it converges.
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free orbifold CFT, as shown in appendix A. There is an analogous formula for Bij,kl as an

integral of ratios of modular forms over the moduli space of a genus two Riemann surface.

If we assume that all non-BPS primaries have scaling dimension above a gap ∆,18 one

can derive an inequality between the integrated four-point function A1111 of a single 1
2 -BPS

primary φ1, and the four-point function f(z, z̄) itself evaluated at a given cross ratio, say

z = 1
2 , of the form (see appendix C.1)

A1111 ≤ 3A0 +M(∆) [f(1/2)− f0] . (5.4)

Here A0 and f0 are constants, and M(∆) is a function of ∆ that goes like 1/∆ in the

∆→ 0 limit. Since A1111 is known as an exact function of the moduli, this inequality will

provide a lower bound on f(1
2) over the moduli space. In particular, it can be used to show

that f(1
2) diverges in the singular CFT limits.

6 Special loci on the K3 CFT moduli space

Some loci on the moduli space of the K3 CFT are more familiar to us, such as near the

free orbifold points19 and where ADE singularities develop. This section reviews certain

properties of the K3 CFT at these special points, that will allow us to check the consistency

of our bootstrap results in section 7. In fact, some of the examples we discuss here will

saturate the bounds from bootstrap analysis.

6.1 T 4/Z2 free orbifold

There is a locus on the K3 CFT moduli space that corresponds to the Z2 free orbifold of

a rectangular T 4 of radii (R1, R2, R3, R4). Let us first consider the twisted sector ground

state in the RR sector σ(z, z̄), associated with one of the Z2 fixed points. Its OPE with

itself will receive contributions from all states in the untwisted sector with even winding

number [70], which has a gap of size 1/max(Ri)
2 (here we adopt the convention α′ = 2).

The four-point function of σ(z, z̄) is [71, 72]

f(z, z̄) =
|z(1− z)|−1

|F (z)|4
∑

(pL,pR)∈Λ

q(z)
p2L
2 q̄(z̄)

p2R
2 , (6.1)

where20 q(z) = exp(iπτ(z)), τ(z) = iF (1− z)/F (z), F (z) = 2F1(1
2 ,

1
2 , 1|z) = [θ3(q(z))]2,

and the lattice Λ = {(piL, piR) = {( niRi +miRi
2 , n

i

Ri
−miRi

2 )|ni ∈ Z,mi ∈ 2Z} which is
√

2 times

the (4, 4) Narain lattice for a rectangular T 4 with different radii R′i =
√

2Ri. Note again

that the untwisted sector operators with odd winding numbers are absent in (6.1) due to the

selection rule in the orbifold theory [70]. The map z → q(z) is due to Zamolodchikov [8, 50]

and is explained further in appendix B. The range of this q-map is shown in figure 3.

18Note that the assumption of a nonzero gap holds in the singular CFT limits where the K3 develops

ADE type singularities, but obviously fails in the large volume limit.
19Free T 4 orbifold points on the moduli space of the K3 CFT fall in the following classes: T 4/Z2, T 4/Z3,

T 4/Z4 and T 4/Z6. They share similar qualitative features and we will only discuss the T 4/Z2 case in

detail here.
20Our convention for θ3(q) is θ3(q) =

∑
n∈Z q

n2

, with q = eiπτ .
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Figure 3. The eye-shaped region bounded by the dashed line is the range of q(z) under one branch

of the q-map (B.2). The regions D1, D2 and D3 each contains two fundamental domains of the S3

crossing symmetry group. See appendix B.

The four-point function evaluated at z = 1/2 has a particularly simple expression

f(1/2, 1/2) =
4

|F (1/2)|4
4∏
i=1

|θ3(e−πR
2
i )θ3(e−π/R

2
i )| ≥ 4. (6.2)

The minimal value is achieved by a square T 4 at radius Ri = 1 (or R′i =
√

2). Note that

Ri = 1 is not the self-dual point for the T 4 since we set α′ = 2. Later in section 7.2

and section 7.3, we will compare the twisted sector four-point function with our bootstrap

bounds on the gap in the spectrum.

Next let us consider the four-point function of untwisted sector operators. The NS

sector 1
2 -BPS operators in the untwisted sector can be built from the free fermions ψαA(z),

which satisfy the OPE

ψαA(z)ψβB(0) ∼ εαβεAB

z
. (6.3)

From the bilinears of ψαA we have either the SU(2)R current ψαAψβBεAB which is an

N = 4 descendant of identity or the current ψαAψβBεαβ which is a weight (1, 0) non-BPS

superconformal primary.

Consider a single 1
2 -BPS operator in the untwisted sector of the free orbifold theory

O±± = 1
2ψ
±Aψ̃±BεAB. Its four-point function is,

f(z, z̄) = 〈O++(z, z̄)O−−(0)O++(1)O′−−(∞)〉 =
1

zz̄
+ 1− 1

2z
− 1

2z̄
. (6.4)

In the OPE between O++ and O−−, the lowest non-identity primary is εABεCD :

ψ+Aψ̃+Bψ−Cψ̃−D : of weight (1,1). This will show up as a special example in section 7.2

and section 7.3 when we study the bootstrap constraint on the gap in the spectrum. Note

that the integrated four-point function A1111 at the free orbifold point T 4/Z2 is zero as can

be checked explicitly from (5.1) and (C.1).
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More generally, we can consider two 1
2 -BPS operators φ±±1 and φ±±2 in the untwisted

sector,

φ±±1 ≡ ψ±Aψ̃±BMAB, φ±±2 ≡ ψ±Aψ̃±BMAB, (6.5)

where MAB and MAB are some independent general 2 × 2 complex matrices. Below we

will show that if the identity block is absent in the OPE of a 1
2 -BPS primary φ±±i in the

untwisted sector with itself, the (1, 0) non-BPS primary must appear in the OPE of φ±±i
with any other 1

2 -BPS primary φ±±j in the untwisted sector if the identity block appears

there. The OPE coefficient of the identity block in the φ1φ1 OPE is proportional to

det(M), whereas that in the φ1φ2 OPE is proportional to εABεCDMACMBD. Therefore,

we require det(M) = 0 but εABεCDMACM̄BD 6= 0 to exclude the identity in the φ1φ1 OPE

but not in the φ1φ2 OPE. If the (1, 0) primary is absent in the φ1φ2 channel, we require

εCDMACM̄BD ∝ εAB with a nonzero proportionality constant. This is in contradiction

with det(M) = 0.

In this case, the lowest primary in the φiφi OPE would be a (1, 1) non-BPS primary

which combines the holomorphic (1, 0) primary with its antiholomorphic counterpart. In

other words, if the φiφi channel does not contain identity whereas the φiφj channel contains

identity, ∆gap = 1 in the φiφj channel and ∆gap = 2 in the φiφi channel. As we will see

in subsection 7.4, if we take φj to be the complex conjugate of φi, this corresponds to a

special kink on the boundary of the numerical bound for the 〈φφφ̄φ̄〉 correlator.

6.2 N = 4 Ak−1 cigar CFT

We have already introduced the N = 4 Ak−1 cigar CFT in section 3. Here we will focus

on its continuous spectrum and divergent OPE coefficients.

We will consider the RR sector 1
2 -BPS primaries V +

R,` and V −R,` ((3.5) and (3.6)) [49,

73, 74] with Z̃k charge (` + 1). Here ` ranges from 0 to bk−2
2 c. For ` between bk−2

2 c + 1

and k − 2 we use the identification V −R,` = V +
R,k−2−`.

Continuum in the cigar CFT. As already mentioned in (3.4), in the OPE between

V +
R,` and V −R,`, there is a continuum of delta function normalizable non-BPS primaries above

∆φφ̄
cont =

1

2k
. (6.6)

Here we have adopted the notation that will be used in subsection 7.4 where we denote

V +
R,` by φ and V −R,` by φ̄.

Let us move on to the lowest weight operator that lies at the bottom of the continuum

in the OPE between V +
R,` and V +

R,`. This operator can be factorized into the SL(2)k/U(1)

and SU(2)k/U(1) parts. Let us denote the lowest holomorphic weights of the operators in

the two parts by hsl and hsu, respectively.

hsl can be determined by studying the four-point function (3.10) together with the

fusion rule in the N = 2 SU(2)k/U(1) coset. The leading z power in (3.10) is[
(`+ 1)2

2k
+

1

4

]
+ hP − h1 − h2, with hP =

Q2

4
, h1 = h2 =

(`+ 2)(2k − `)
4k

, (6.7)
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where we have used (3.11) and hP = αP (Q−αP ) with αP = Q/2 for the lowest dimension

state in the continuum. Recall that Q =
√
k + 1√

k
is the background charge of the corre-

sponding bosonic Liouville theory in the Ribault-Teschner relation. Writing the four-point

function (3.10) in the conformal block expansion, (6.7) is the power of z in the N = 4 su-

perconformal block with intermediate state being the bottom state in the continuum and

external states being V
sl,(− 1

2
,− 1

2
)

`
2
, `+2

2
, `+2

2

(the SL(2)/U(1) part of V +
R,`). The holomorphic weight

of the latter is given by (3.7) to be 1
4k + 1

8 . Hence,

hsl =

[
(`+ 1)2

2k
+

1

4

]
+

(k + 1)2

4k
− (`+ 2)(2k − `)

2k
+ 2

(
1

4k
+

1

8

)
. (6.8)

As for the SU(2)/U(1) part, the lowest dimension intermediate operator in the OPE

between two V
su,( 1

2
, 1
2

)
`
2
, `
2
, `
2

is V
su,(1,1)
`,`,` , whose holomorphic weight is given by (3.8),

hsu = −`+ 1

k
+

1

2
. (6.9)

Adding hsl and hsu together, we obtain the lowest scaling dimension ∆φφ
cont in the continuum

of the OPE channel between V +
R,` and V +

R,`,

∆φφ
cont = 2(hsl + hsu) =

(k − 2`− 1)2

2k
. (6.10)

As we will show below, in addition to the continuum, there are generally discrete states

contributing to the four-point function (3.10) of the cigar CFT with divergent structure

constant when normalized properly.

Discrete Non-BPS primaries. As mentioned in section 3, the discrete state contri-

butions come from the poles in the Liouville structure constants C(α1, α2, αP ) when we

analytically continue the external states, labeled by their exponents αi, from Q
2 + iR to

their actual values on the real line given in (3.11) [66]. The relevant factor in the Liouville

structure constant is Υ(α1 + α2 − αP ) in the denominator of (3.13),21 where Υ(x) has

zeroes at

x = − n√
k
−m
√
k, and x =

n+ 1√
k

+ (m+ 1)
√
k, n,m ∈ Z≥0. (6.11)

The argument of Υ(α1 + α2 − αP ) is deformed from Q/2 + iR to `+2√
k
− Q

2 + iR. By noting

that Q =
√
k + 1√

k
, the question of identifying the poles is equivalent to asking whether

the interval (
1√
k

(
`+

3

2
− k

2

)
,

1√
k

(
k

2
+

1

2

))
(6.12)

21The factor Υ(α1 + α2 + αP −Q) in (3.13) will give other discrete states with the same weights. The

structure constant C(α3, α4,
Q
2
− iP ) yields an identical analysis with ` replaced by k − 2 − `, and hence

gives the same set of poles.
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contains any of the poles in (6.11). It is not hard to see that the only possible poles in (6.11)

that lie in the above interval are

x = − n√
k
, n = 0, 1, · · · ,

⌊ k
2
− `− 2

⌋
. (6.13)

Note that k ≥ 4 for these poles to contribute.22 These poles occur at

1√
k

(
`+

3

2
− k

2

)
+ iP = − n√

k
, (6.14)

or, in other words,

P = i
1√
k

(
`+

3− k
2

+ n

)
. (6.15)

The imaginary shift of the momentum shifts the scaling dimension of the discrete non-BPS

primary of question from the continuum gap by the amount of 2P 2, to

(k − 2`− 1)2

2k
+ 2P 2 = 2(n+ 1)− 2(n+ 1)(2 + 2`+ n)

k
. (6.16)

The lowest scaling dimension ∆φφ
discrete of such a discrete state (with divergent structure

constant) is given by choosing n = 0,

∆φφ
discrete = 2− 4(1 + `)

k
, for k ≥ 4. (6.17)

The normalization of structure constants. We now argue these discrete non-BPS op-

erators, when viewed as a limit of those in the K3 CFT (that is described by the cigar CFT

near a singularity), have divergent structure constants with the external 1
2 -BPS primaries.

Let us first clarify the normalization of operators in the cigar CFT versus in the K3

CFT. In comparing the cigar CFT correlators to the K3 CFT correlators, there is a

divergent normalization factor involving the length L of the cigar. That is, let V be some

operator in the cigar CFT, then an n-point function 〈V V · · ·V 〉 in the cigar CFT of order

1 really scales like 1/L when viewed as part of the K3 CFT in the singular limit. In

particular, the two-point function 〈V V 〉 goes like 1/L, thus the normalized operator in the

K3 CFT is φ ∼
√
LV , so that 〈φφφφ〉 goes like L, which diverges in the infinite L limit,

for generic cross ratio.

The discrete non-BPS states discussed above contribute to the four-point func-

tion (3.10) by an amount that is a finite fraction of the continuum contribution, and

both diverge in the singular cigar CFT limit. Consequently, these discrete states in the

OPE of two 1
2 -BPS operators φRR have divergent structure coefficients in this limit.

22For k = 3 and ` = 0, the pole lies precisely at the new contour but the contribution to the four-

point function is cancelled by poles from other factors in the Liouville structure constant. In any case, the

potential discrete state lies at the bottom of the continuum and therefore does not affect the distinction

between ∆discrete with ∆cont.
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7 Bootstrap constraints on the K3 CFT spectrum: gap

7.1 Crossing equation for the BPS four-point function

Let us consider the four-point function f(z, z̄) ≡ 〈φRR(z, z̄)φRR(0)φRR(1)φRR(∞)〉 of iden-

tical R sector ground states (the four-point function in the NS sector is related by spectral

flow). Decomposed into c = 6 N = 4 R sector superconformal blocks FRh (z) (in the

z → 0 channel),

f(z, z̄) =
∑
hL,hR

C2
hL,hR

FRhL(z)FRhR(z), (7.1)

where

FRh (z) = z
1
2 (1− z)

1
2FVir

c=28(1, 1, 1, 1;h+ 1; z), (7.2)

and FVir
c (h1, h2, h3, h4;h; z) is the sphere four-point conformal block of the Virasoro algebra

of central charge c. Crossing symmetry relates the decomposition in the z → 0 channel to

that in the z → 1 channel

0 =
∑
hL,hR

C2
hL,hR

[
FRhL(z)FRhR(z)−FRhL(1− z)FRhR(1− z)

]
. (7.3)

This is equivalent to the statement that

0 =
∑
∆,s

C2
hL,hR

α
[
FRhL(z)FRhR(z)−FRhL(1− z)FRhR(1− z)

]
(7.4)

for all possible linear functionals α [12]. In particular, we can pick our basis of linear

functionals to consist of derivatives evaluated at the crossing symmetric point

αm,n = ∂mz ∂̄
n
z

∣∣
z=1/2

. (7.5)

Since αm,n[H∆,s(z, z̄)] trivially vanishes for m + n even, we want to consider functionals

that are linear combinations of αm,n for m+n odd. Restricting to this subset of functionals,

the crossing equation becomes

0 =
∑
∆,s

C2
hL,hR

α[H∆,s(z, z̄)] , (7.6)

where for convenience we define

H∆,s(z, z̄) ≡ FRhL(z)FRhR(z) . (7.7)

Using the crossing equation, we will constrain the spectrum of intermediate primaries

appearing in the φRRφRR OPE, by finding functionals that have certain positivity prop-

erties. In particular, we will be interested in bounding the gap in the non-BPS spectrum,

as well as the lowest scaling dimension in the continuum of the spectrum in the singular

K3 limits.
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7.2 The gap in the non-BPS spectrum as a function of f(1/2)

We first bound the gap in the non-BPS spectrum in the OPE of identical BPS operators.

Fix a ∆̂gap, and search for a nonzero functional α satisfying23

α[H∆,s(z, z̄)] > 0 for ∆ = s = 0 and ∆ > ∆̂gap, s ∈ 2Z , (7.8)

If such a functional exists, then there must be a contribution to the four-point function

from a primary with scaling dimension below ∆̂gap that is not the identity. In other words,

we obtain an upper bound on the gap in the spectrum,

∆̂gap ≥ ∆gap . (7.9)

The search of positive functionals can be effectively implemented using semidefinite pro-

gramming [15, 17, 75, 76], and the optimal bound is obtained by minimizing ∆̂gap.

Over certain singular loci on the moduli space of the K3 CFT, for example, the N = 4

cigar CFT points, the four-point function at generic cross ratios diverge (away from the

singular loci, the primary operators are always taken to be normalized by the two-point

function). Since the four-point function is unbounded above on the moduli space of the

K3 CFT, this motivates us to look for a more refined ∆̂gap that depends on the four-point

function. Let us first discuss how to improve ∆̂gap using the four-point function evaluated

at the crossing symmetric point f(1/2). In the next section, we will explore an alternative,

which is to bound ∆gap conditioned on the integrated four-point function A1111, whose

dependence on the K3 CFT moduli is explicitly known (see section 5). In appendix C.2,

we bound f(1/2) below by A1111.

The information of f(1/2) can be easily incorporated into semidefinite programming.

DefineH′∆,s(z, z̄) ≡ FRhL(z)FRhR(z)−f(1/2)δ∆,0, so that αm,n[H′∆,s(z, z̄)] = αm,n[H∆,s(z, z̄)]

for m+ n odd as before, and

0 =
∑
∆,s

α0,0[H′∆,s(z, z̄)] (7.10)

is equivalent to the conformal block decomposition of f(1/2). An optimal ∆̂gap can be

obtained by scanning over functionals acting on H′∆,s(z, z̄), except that now the functionals

are linear combinations of αm,n with m+ n odd as well as m = n = 0.

A word on numerics. The results of semidefinite programing depend on a set of pa-

rameters. The conformal block is evaluated to qN order using Zamolodchikov’s recurrence

relations (see appendix B) [8, 50], and we scan over functionals that are linear combina-

tions of derivatives evaluated at the crossing symmetric point, up to d derivative orders,

namely, αm,n for m+n ≤ d. Moreover, the positivity condition is in practice only imposed

for spins lying in a finite range s ≤ smax (but for all scaling dimensions ∆ ≥ ∆̂gap). The

truncation on spin is justified by the unitarity bound ∆ ≥ s and the convergence rate of the

sum over intermediate states in the four-point function [77]. There are subtle interplays

between these parameters. For example, if we go up to d derivative order, then we need N

23Here and henceforth, the unitarity bound ∆ ≥ s is implicit. That is, positivity is enforced for

∆ > max(s, ∆̂gap).
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Derivative order d ∆̂gap f(1/2)min

8 2.04892 2.97672

10 2.03414 2.98401

12 2.01089 2.99507

14 2.01080 2.99513

16 2.00449 2.99806

18 2.00408 2.99823

20 2.00179 2.99923

22 2.00134

24 2.00063

26 2.00056

28 2.00030

30 2.00024

T 4/Z2 free orbifold: untwisted sector ∆gap = 2 f(1/2) = 3

Table 2. The bound on the gap in the identical primary OPE, and the minimal value of the four-

point function evaluated at the crossing symmetric point, as the derivative order of the basis of

functionals is increased. Also shown are the values of the untwisted sector correlator at the T 4/Z2

free orbifold point computed in section 6.1, which within numerical error saturate the bounds.

to be larger than d; empirically we find that N = d+ 10 gives a good approximation that

is stable as N is further increased. Also, as d is increased, smax should also be increased,

otherwise the bound may violate physical examples [78]. The default setting in this paper

is N = 30, smax = 40, and up to d = 20, unless noted otherwise.

Numerical results. The first two columns of table 2 show the numerical results for

the optimal ∆̂gap without the information of f(1/2), for up to d = 30 derivative orders.

The conformal block is evaluated to q40 order to accommodate the high derivative or-

ders. Within numerical error, ∆̂gap approaches 2 as we increase the derivative order. This

bound is saturated by a free fermion correlator at the free orbifold point, as was explained

in section 6.1.

After incorporating the information of f(1/2) (reverting to the default setting of pa-

rameters), we find that f(1/2) less than a certain threshold f(1/2)min is completely ruled

out (∆̂gap = 0). Above this threshold, ∆̂gap starts from ∆̂gap ≈ 2 at f(1/2) = f(1/2)min

and then monotonically decreases. Table 2 shows the values of f(1/2)min, which seem to

asymptote to f(1/2)min ≈ 3 at infinite derivative order. Figure 4 plots the dependence of

∆̂gap on f(1/2). It is observed that the limiting value ∆̂gap as f(1/2)→∞ is approximately

equal to another quantity ∆̂crt ≈ 1/4 that we will introduce in the next section. Note that

for smaller values of f(1/2), the numerical bound ∆̂gap appears to converge exponentially

with the derivative order d, while for larger values of f(1/2) the convergence is much

slower and we extrapolate the bound to infinite d using a quadratic fit. There seems to be

a crossover between the exponential convergence and power law convergence as f(1/2) in-

creases. Since ∆̂gap approaches ∆̂crt in the large f(1/2) limit, a quadratic fit (rather than,

for example, a linear fit) is justified in this limit as it works well for the latter (see table 3).
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T4/Z2 free orbifold: untwisted sector

Square T4 with Ri=1

10 100 1000
f(1/2)

0.5

1.0

1.5

2.0

Δgap

Bound: quadratic fit

T4/Z2 free orbifold: twisted sector

Figure 4. The dots indicate the upper bound ∆̂gap on the gap versus f(1/2), the four-point

function evaluated at the crossing symmetric point, at derivative orders ranging from 8 to 20. The

solid line plots the extrapolation to infinite order using a quadratic fit. The minimal f(1/2) and

maximal gap are simultaneously saturated by an untwisted sector correlator at the free orbifold

point. The shaded region represents the gap in the OPE of twist fields at a fixed point of T 4/Z2

with a rectangular T 4, where the minimal f(1/2) and maximal gap are achieved by a square T 4 at

radii Ri = 1 (1/
√

2 times the self-dual radius).

The value f(1/2)min ≈ 3 with ∆gap ≈ 2 agrees with the four point function (6.4) of

untwisted sector BPS primaries at the T 4/Z2 orbifold point where the numerical bound

on the gap is saturated. Furthermore, it appears that the gap in the OPE of the twisted

field σ(z, z̄) at the orbifold point lies close to, but does not quite saturate the numerical

bound. It remains to be understood whether our numerical bound can be further improved

or there exist other operators in the OPE of BPS primaries at other points on the moduli

space that saturate the bound.

7.3 The gap in the non-BPS spectrum as a function of A1111

A more desirable constraint to impose is the integrated four-point function A1111, since

its dependence on the K3 CFT moduli is explicitly known (see section 5). Using crossing

symmetry, A1111 can be decomposed into a sum of conformal blocks integrated over the

cross ratio in some finite domain. We then incorporate the equation

0 = (3A0 −A1111) + 3
∑

non−BPS O
C2

11OA(∆, s) (7.11)

into bootstrap, where the integrated blocks are

A(∆, s) =

∫
D

d2z

|z(1− z)|F
R
∆+s

2

(z)FR∆−s
2

(z), A0 = lim
∆→0

[
A(∆, 0)− 2π

∆

]
. (7.12)
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qmax=e
- π

2

D'\D1E

-0.10 -0.05 0.05 0.10

-0.10

-0.05

0.05

0.10

D'\D1

E

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

Figure 5. The integration region D = D′ \ E. The left is in the q-plane, and the right in the

τ -plane. The entire region enclosed by the solid line is D′. The region between the solid and dashed

lines is D′ \ D1, and the shaded region is its image E under z → 1 − z for the right half and

z → 1/z for the left half. The entire unshaded region inside solid line is the integration region D.

See appendix C.1.

Using semidefinite programming, if we can find a set of coefficients a > 0 and am,n such

that (m+ n odd)

a(3A0 −A1111) +
∑
m,n

am,nαm,n[H0(z, z̄)] > 0,

3aA(∆, s) +
∑
m,n

am,nαm,n[H∆,s(z, z̄)] > 0 for ∆ > ∆̂gap, s ∈ 2Z
(7.13)

are satisfied, then the gap in the non-BPS spectrum ∆gap must be bounded above by ∆̂gap.

However, the region of integration D has to be carefully chosen so that the integrated

blocks obey certain positivity properties at large weights, otherwise the bound cannot be

improved below ∆̂gap ≈ 2. More specifically, D should contain two fundamental domains

of the S3 crossing symmetry group, and have a maximal |q(z)| value on the real axis.

See appendix C.1 for a detailed discussion and a specific choice of D, and figure 5 for

an illustration.

Figure 6 shows the dependence of the numerical bound ∆̂gap on A1111; the data points

are bounds obtained at 20 derivative order, which we observe to already stabilize with in-

crementing the derivative order. We verified by testing that the bounds are not sensitive to

the choice of D.24 The results indicate that A1111 must be non-negative. Above A1111 ≈ 0,

∆̂gap starts from ≈ 2 and monotonically decreases with A1111. The point A1111 ≈ 0 and

∆̂gap ≈ 2 is saturated by the integrated four-point function (6.4) of untwisted sector BPS

24We found that for a given “good” choice of D (see appendix C.1 for restrictions on D), there is a

minimum derivative order d∗ below which the bound is the same as that without the input of A1111,

namely ∆̂gap ≈ 2. Above d∗, the bound suddenly exhibits the nontrivial dependence on A1111 that is shown

in figure 6. The choice of D given in appendix C.1 is made for simplicity, and has d∗ = 16; other choices

may give smaller d∗. However, the bound is not sensitive to the choice of D, as long as we look at derivative

orders larger than the respective d∗.
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T4/Z2 free orbifold: untwisted sector

Square T4 with Ri=1

20 40 60 80 100
A1111

0.5

1.0

1.5

2.0

Δgap

Bound

T4/Z2 free orbifold: twisted sector

Figure 6. The solid line shows the upper bound ∆̂gap on the gap versus the integrated four-point

function A1111, at 20 derivative order, which we observe to already stabilize with increment of the

derivative order in the range of A1111 shown here; the dots are the actual data points. The minimal

A1111 and maximal gap are simultaneously saturated by an untwisted sector correlator at the free

orbifold point. The shaded region represents the gap in the OPE of twist fields at a fixed point of

T 4/Z2 with a rectangular T 4, where the minimal A1111 and maximal gap are achieved by a square

T 4 at radii Ri = 1 (1/
√

2 times the self-dual radius).

primaries at the T 4/Z2 free orbifold point. In the limit A1111 → ∞, ∆̂gap approaches

∆̂crt ≈ 1/4, a quantity we define in the next section.25 Note that A1111 is related to the

tree-level H4 coefficient in the 6d (2,0) supergravity effective action of IIB string theory

compactified on K3. The consistency of string theory requires that this coefficient be non-

negative, because otherwise it leads to superluminal propagation [79]. Amusingly, here this

non-negativity follows from unitarity constraints on the CFT correlator. Again, the gap in

the OPE of the twisted field σ(z, z̄) at the orbifold point lies close to, but does not quite

saturate the numerical bound.

7.4 Constraints on the OPE of two different 1
2
-BPS operators

By considering the four-point function 〈φRRφRRφ̄RRφ̄RR〉 of two different RR sector 1
2 -BPS

primaries φRR and φ̄RR, we will be able to detect the gap ∆gap and ∆crt in two different

OPEs. The two RR primaries are chosen so that the identity block only appears in the

φRR× φ̄RR OPE but not in φRR×φRR or φ̄RR× φ̄RR. Taking φRR and φ̄RR to be complex

conjugates of each other, the two crossing equations are26

0 =
∑
O∈φ×φ̄

|Cφφ̄O|2
[
FRhL(z)FRhR(z)−FRhL(1− z)FRhR(1− z)

]
,

0 =
∑
O∈φ×φ̄

(−1)s|Cφφ̄O|2FRhL(z)FRhR(z)−
∑
O∈φ×φ

|CφφO|2FRhL(1− z)FRhR(1− z).
(7.14)

25Since A1111 is bounded above by f(1/2) assuming a finite gap (5.4), and we already observed that

∆̂gap→∆̂crt≈1/4 in the large f(1/2) limit, it follows that ∆̂gap→∆̂crt≈1/4 in the large A1111 limit as well.
26This is not what is usually meant by “mixed correlator bootstrap”, where the crossing equation for

〈φφφ̄φ̄〉, 〈φφφφ〉, 〈φ̄φ̄φ̄φ̄〉 are all considered at the same time as in [75].
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T4/Z2 free orbifold: untwisted sector

0.5 1.0 1.5 2.0
Δgap
ϕϕ

0.5

1.0

1.5

2.0

Δgap
ϕϕ

Maximum Δgap
ϕϕ

Figure 7. The dots indicate upper bounds (∆̂φφ
gap, ∆̂

φφ̄
gap) on the gap in the respective OPEs,

at derivative orders ranging from 8 to 20. We find that ∆φφ
gap is bounded above by 2, beyond

which ∆φφ̄
gap = 0. The point (2, 1) is realized by an untwisted sector correlator at the T 4/Z2 free

orbifold point.

By defining G±∆,s(z, z̄) = FRhL(z)FRhR(z)±FRhL(1− z)FRhR(1− z), and the vectors

~V φφ̄
∆,s(z, z̄) =

 G−∆,s(z, z̄)

(−1)sG−∆,s(z, z̄)

(−1)sG+
∆,s(z, z̄)

 , ~V φφ
∆,s =

 0

G−∆,s(z, z̄)

−G+
∆,s(z, z̄)

 , (7.15)

we can write the crossing equations compactly as

~0 =
∑
O∈φ×φ̄

|Cφφ̄O|2~V φφ̄
∆,s(z, z̄) +

∑
O∈φ×φ

|CφφO|2~V φφ
∆,s(z, z̄). (7.16)

By symmetry, only odd derivative order functionals act nontrivially on G−∆,s(z, z̄), and only

even derivative order ones act nontrivially on G+
∆,s(z, z̄).

To bound the gap in the two channels, we seek linear functionals ~α such that

~α · ~V φφ̄
∆,s > 0 for ∆ = s = 0 and ∆ > ∆̂φφ̄

gap, s ∈ Z,

~α · ~V φφ
∆,s > 0 for ∆ = s = 0 and ∆ > ∆̂φφ

gap, s ∈ 2Z,
(7.17)

for some (∆̂φφ̄
gap, ∆̂

φφ
gap). Note that only even integer spin primaries appear in the φRR×φRR

OPE. The crossing equation (7.16) implies that

either ∆̂φφ̄
gap ≥ ∆φφ̄

gap or ∆̂φφ
gap ≥ ∆φφ

gap. (7.18)

Figure 7 shows the numerical results for the allowed region of (∆φφ̄
gap,∆

φφ
gap). We find

that both ∆φφ̄
gap and ∆φφ

gap are bounded above by ≈ 2, and the point with (∆φφ
gap,∆

φφ̄
gap)≈(2, 1)

is realized by the OPE of untwisted sector primaries at the T 4/Z2 free orbifold point.
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8 Bootstrap constraints on the critical dimension ∆̂crt

Over certain singular loci on the moduli space of the K3 CFT, the following two phenomena

can occur:

• The density of states diverges, leading to a continuum in the spectrum.

• The structure constants of some discrete states diverge.

At the singular loci, some components of the integrated four-point function Aijk` di-

verge. The latter may occur in two different ways: (1) The four-point function remains

finite at generic cross ratio z, with divergent contribution to Aijk` localized at z = 0, 1,∞
due to a vanishing gap in the spectrum. This occurs in the large volume limit. (2) The

gap in the spectrum remains finite (i.e., away from the large volume limit), but the whole

four-point function diverges at generic z. This is demonstrated in appendix C.2.

In higher dimensions, there exist absolute upper bounds on OPE coefficients coming

from crossing symmetry and unitarity [80]. In the following subsections, we take a moment

to study these bounds. Our discussion will motivate us to introduce a critical dimension

∆̂crt, which is roughly the dimension above which OPE bounds exist.27

Let ∆crt be the lowest scaling dimension at which either a continuum develops or an

OPE coefficient diverges. For example, at the N = 4 A1 cigar CFT point, there is a

continuum of states starting from ∆crt = 1/4. We show in appendix D that

∆crt ≡ min(∆cont,∆discrete) ≤ ∆̂crt (8.1)

in the notations of section 6.2. In the following, we describe how to use crossing symmetry

to derive a numerical upper bound on ∆̂crt that is universal across the moduli space.

We will see that ∆̂crt > 0, so that it is possible to have unbounded contributions to the

conformal block expansion from operators below ∆̂crt.

8.1 A simple analytic bound on OPE coefficients and ∆̂crt

We begin with a simple analytic bound on OPE coefficients. Consider a four-point function

of scalars φ with dimension ∆φ, in any number of spacetime dimensions d. For the moment,

we set z = z̄ = x. The four-point function can be written as a positive linear combination

of “scaling blocks” x∆−2∆φ ,28

f(z = x, z̄ = x) =
∑
∆

p∆x
∆−2∆φ , p∆ ≥ 0. (8.2)

Positivity of p∆ is a consequence of unitarity. The expansion in scaling blocks ignores

relations between primaries and descendants due to conformal symmetry.

27These are relative bounds, namely, the OPE coefficients above ∆̂crt are bounded by the OPE coefficients

below ∆̂crt, in contrast to the absolute bounds in [80]. We define ∆̂crt more rigorously in (8.17) below.
28Here we adopt the convention, common in 2d, where (zz̄)−2∆φ is included in the conformal blocks.
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Crossing symmetry implies

f(x) = f(1− x)

−(x−2∆φ − (1− x)−2∆φ) =
∑
∆>0

p∆

(
x∆−2∆φ − (1− x)∆−2∆φ

)
1 =

∑
∆>0

p∆

(
x∆−2∆φ − (1− x)∆−2∆φ

−x−2∆φ + (1− x)−2∆φ

)
, (8.3)

where in the second line we separated out the contribution of the unit operator on the left

hand side, and on the last line we divided by it. Evaluating (8.3) at x = 1
2 , we obtain

1 =
∑
∆>0

p∆

(
1

2

)∆ ∆− 2∆φ

2∆φ
. (8.4)

In particular, suppose all operators have dimension ∆ ≥ 2∆φ. (This happens, for example,

in the 2d and 3d Ising models). Then we obtain an upper bound on the contribution of

any individual scaling block

p∆

(
1

2

)∆−2∆φ

≤ 21+2∆φ∆φ

∆− 2∆φ
. (8.5)

When all ∆ are bounded away from 2∆φ, there is also an upper bound on the contribution

of multiple blocks, and also on the value of the four-point function itself at x = 1
2 ,

f

(
1

2

)
≤ 21+2∆φ∆φ

∆min − 2∆φ
, (8.6)

where ∆min is the lowest dimension appearing in the conformal block expansion. As we

show in section C.2, if the four-point function is bounded at x = 1
2 , it is bounded everywhere

by a known function of z.

To obtain (8.5), we had to assume that only operators with dimension ∆ ≥ 2∆φ appear

in the four-point function. When operators lie below 2∆φ, it may be possible to have

unbounded contributions to the conformal block expansion.29 Let ∆̂crt be the dimension

above which general bounds on OPE coefficients exist. We have shown ∆̂crt ≤ 2∆φ.

8.2 Improved analytic bounds on ∆̂crt

There are two ways to obtain stronger bound on OPE coefficients and ∆̂crt. Firstly, we can

include more information about conformal symmetry by writing the four-point function as

29A simple toy example using scaling blocks is

1

|z|2∆φ
+

1

|1− z|2∆φ
+ P (8.7)

where P can be arbitrarily large. This expression is crossing-symmetric and has a positive expansion in

scaling blocks. Because there exists a scaling block with ∆ = 2∆φ, namely the constant P , the four-point

function can be arbitrarily large. (However, this example does not have a positive expansion in conformal

blocks.) We thank Petr Kravchuk for this example.
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a positive sum over more sophisticated blocks. For example, in any spacetime dimension,

we have

f(x) = x−2∆φ
∑

p′∆ρ(x)∆, p′∆ ≥ 0, (8.8)

where

ρ(x) ≡ x

(1 +
√

1− x)2
(8.9)

is the radial coordinate of [77, 81]. Evaluating the crossing equation at x = 1
2 then gives

p′∆ρ
(

1

2

)∆

≤ ∆−
√

2∆φ√
2∆φ

. (8.10)

This implies that OPE bounds exist whenever ∆ ≥
√

2∆φ. In other words,30

∆̂crt ≤
√

2∆φ, (d ≥ 2). (8.11)

In two-dimensional theories, we can write the four-point function in terms of a positive

expansion in q∆, where q is the elliptic nome [8, 50, 53]. This leads to stronger bounds on

OPE coefficients and the result

∆̂crt ≤
π − 3

12π
c+

4∆φ

π
, (d = 2), (8.12)

where c is the central charge. (This bound is worse than (8.11) when ∆φ is small

compared to c.)

The best possible OPE bound comes from using the full conformal block expansion —

either global blocks in d > 2 or the appropriate Virasoro blocks in 2d.

8.3 Numerical bounds on ∆̂crt

The second way to improve these bounds is to consider more general linear functionals,

other than simply evaluating the crossing equation at x = 1
2 . Consider the conformal block

expansion

f(z, z̄) =
∑
∆,s

p∆,sF∆,s(z, z̄). (8.13)

Fix a dimension ∆̂ and search for a nonzero functional α with the property

α[F∆,s(z, z̄)−F∆,s(1− z, 1− z̄)] > 0 for ∆ ≥ max(unitarity bound, ∆̂), s ∈ 2Z.
(8.14)

This is the same procedure as placing upper bounds on ∆gap, with exception that we do

not impose positivity for α acting on the unit operator F0,0. In fact, it is sometimes helpful

to use the normalization condition

α[F0,0(z, z̄)−F0,0(1− z, 1− z̄)] = −1. (8.15)

30The estimates 2∆φ (coming from x blocks) and
√

2∆φ (coming from ρ blocks) are the same as the

reflection-symmetric points in the discussion of [82].
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Now suppose there exists α exists satisfying (8.14), (8.15), and suppose further also that

only operators with dimension ∆ ≥ ∆̂ appear in the conformal block expansion. Then we

find a general OPE bound

p∆,s ≤ α[F∆,s(z, z̄)−F∆,s(1− z, 1− z̄)]−1. (8.16)

We can now give a more rigorous definition of ∆̂crt:

∆̂crt ≡ the smallest ∆̂ such that there exists nonzero α satisfying (8.14). (8.17)

If all operators in the conformal block expansion have dimension above ∆̂crt, then their

OPE coefficients obey universal bounds. By contrast, if some operators are above and some

operators are below, then the contributions above are bounded in terms of the contributions

below. See appendix D for a more detailed discussion.

8.4 ∆̂crt in 2, 3, and 4 spacetime dimensions

In higher dimensional theories, we will use a slightly modified definition of ∆̂crt. The

reason is that the stress-tensor always appears in the conformal block expansion, so it is

nonsensical to impose that spin-2 operators must have dimension greater than d. The same

is true in 2d theories when using global SL(2,R)×SL(2,R) conformal blocks. By contrast,

Virasoro blocks include the contribution of the stress tensor, so the constraint (8.14) makes

sense in that case.

In higher dimensions (and for global blocks in 2d), we instead define

∆̂scalar
crt ≡ the smallest ∆̂ such that there exists nonzero α satisfying

α[F∆,s(z, z̄)−F∆,s(1− z, 1− z̄)] > 0 for ∆ ≥
{

∆̂ s = 0

unitarity bound s ≥ 0.
(8.18)

The quantity ∆̂scalar
crt agrees with ∆̂crt when ∆̂crt ≤ d, and may differ when ∆̂crt > d.

We plot ∆̂scalar
crt in 2 dimensions (using global blocks), 3 dimensions, and 4 dimensions

in figure 8. In all cases, the bounds are consistent with the analytic estimate ∆̂crt ≤
√

2∆φ

in the regime ∆̂crt < d, where ∆̂crt and ∆̂scalar
crt agree. Beyond this regime, ∆̂scalar

crt eventually

jumps to a large value, and we have not explored its behavior.

Interestingly, in 3d and 4d, there are ranges of ∆φ where ∆̂crt coincides with the

unitarity bound: roughly ∆φ . 1 in 3d and ∆φ . 2 in 4d. For ∆φ in this range, there

always exist universal bounds on OPE coefficients and the size of the four-point function,

independent of any assumptions about which operators appear in the four-point function.

Outside of these special cases, ∆̂crt is nontrivial.31

8.5 ∆̂crt for the K3 CFT

Now, let us finally return to the K3 CFT. Table 3 shows the numerical results for ∆̂crt

for several derivative orders, where we use the N = 4 conformal blocks appropriate to the

31The fact that there are universal OPE bounds when ∆φ . 1.7 in 4d was mentioned in [80]. We thank

Petr Kravchuk for pointing this out.
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Figure 8. Upper bounds on ∆̂scalar
crt as a function of ∆φ in 2 dimensions (using global conformal

blocks), 3 dimensions, and 4 dimensions. The blue line shows the analytic bound
√

2∆φ on ∆̂crt.

The red bounds are computed numerically with derivative order 12, 20, 28, with the darkest line

and strongest bound corresponding to derivative order 28. For ∆φ . 1 in 3d and ∆φ . 2 in 4d, the

red bounds meet at the unitary bounds, thus giving universal OPE bounds in this range of ∆φ.

K3 CFT. Our results show rigorously that ∆crt in the K3 CFT must lie below 0.29321, at

every point on the moduli space. By extrapolating to infinite order, we find that ∆̂crt is

saturated, within numerical error, by the A1 cigar whose continuum lies above ∆crt = 1/4.

As in section 7.4, we can consider a correlator 〈φRRφRRφ̄RRφ̄RR〉 for two different RR-

sector 1
2 -BPS operators that are complex conjugate of each other, and bound the divergent

operator of the lowest scaling dimension in the φRR × φ̄RR and φRR × φRR channels. We

fix (∆̂φφ̄
crt, ∆̂

φφ
crt), and search for nonzero functionals ~α that satisfy

~α · ~V φφ̄
∆,s > 0 for ∆ > ∆̂φφ̄

crt, s ∈ Z ,

~α · ~V φφ
∆,s > 0 for ∆ > ∆̂φφ

crt, s ∈ 2Z .
(8.19)

If such a functional exists, then

either ∆̂φφ̄
crt ≥ ∆φφ̄

div or ∆̂φφ
crt ≥ ∆φφ

div . (8.20)

Figure 9 shows the allowed region of (∆φφ̄
crt,∆

φφ
crt) obtained at various derivative orders.

For any fixed ∆φφ
crt, the bound on ∆φφ̄

crt cannot be worse than the single correlator bound

∆φφ̄
crt . 0.25. For ∆φφ

crt . 1.5, extrapolating to infinite order gives bounds on ∆φφ̄
crt that lie

close to the single correlator bound. For ∆φφ
crt & 1.5, the bound on ∆φφ̄

crt decreases until it

reaches 0 at ∆φφ
crt ≈ 2.
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Derivative order d ∆̂crt

8 0.39111

10 0.36693

12 0.35011

14 0.33768

16 0.32822

18 0.32037

20 0.31407

22 0.30886

24 0.30447

26 0.30075

28 0.29742

30 0.29321

quadratic fit 0.252

A1 cigar 0.25

0.02 0.04 0.06 0.08 0.10 0.12 0.14

1

d

0.30

0.35

0.40

Δ crt

Table 3. Upper bound ∆̂crt on the divergent operator of the lowest scaling dimension, as the

derivative order is increased, as well as the extrapolation to infinite order using a quadratic fit.

Also shown is the value of ∆crt for the A1 cigar.
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■
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0.5 1.0 1.5 2.0
Δcrt
ϕϕ

0.1

0.2

0.3

0.4

Δcrt
ϕϕ

■ A1⊕A1 and Ak-1 (k⩾3) cigar

Single correlator bound

Figure 9. The circle dots indicate upper bounds (∆̂φφ
crt, ∆̂

φφ̄
crt) on the divergent operator of the

lowest scaling dimension in the respective OPEs, at derivative orders ranging from 8 to 20. At

infinite order, the bound cannot be worse than the single correlator bound 0.25 indicated by the

dashed line. We also find that ∆φφ
crt is bounded above by 2, beyond which ∆φφ̄

crt = 0. The square

dots indicate the values for the A1 ⊕A1 (at (1/4, 1/4)) and Ak−1 (k ≥ 3) cigar theories.

Ak−1 cigar CFT. Let us comment on where the Ak−1 cigar CFTs analyzed in section 6.2

sit in figure 9. For the cigar CFT, we take φRR and φ̄RR to be RR sector 1
2 -BPS primaries

V +
R,` and V −R,` ((3.5) and (3.6)). The continua of the Ak−1 cigar CFT in φRR × φRR and

φRR × φ̄RR start at ∆φφ
cont = (k − 2` − 1)2/2k and ∆φφ̄

cont = 1/2k, respectively (see (6.10)

and (6.6)). For k ≥ 4, there are discrete state contributions to the four-point function in
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the channel φRR × φRR starting at ∆discrete = 2 − 4(1 + `)/k. As argued in section 6.2,

their OPE coefficients are divergent when compared with a generic K3 CFT. Since ∆crt is

defined as the lowest scaling dimension such that either a continuous spectrum appears or

the structure constants of some states in the discrete spectrum diverge, we have

∆φφ
crt = min

(
∆φφ

cont,∆
φφ
discrete

)
=

{
(k−2`+1)2

2k , if k = 2, 3,

2− 4(1+`)
k , if k ≥ 4,

(8.21)

in the OPE channel between V +
R,` and V +

R,` in the Ak−1 cigar CFT. On the other hand, in the

OPE channel between V +
R,` and V −R,`, ∆φφ̄

crt = ∆φφ̄
cont = 1/2k as in (6.6). We would like to em-

phasize that the presence of these R-charge non-singlet discrete states below the continuum

is crucial for the consistency with the bootstrap bound derived from the crossing equations.

In figure 9, the point (1/4, 1/4) in the OPE of φφ and φφ̄ can be realized at an A1⊕A1

point on the moduli space, and the other black dots at Ak−1 points with k ≥ 3 which

asymptote to (2, 0) at large k.32

9 The large volume limit

In this section we consider the gap in the OPE of 1
2 -BPS operators in the large volume

regime of the K3 CFT. Based on unitarity constraints on the superconformal block de-

composition of the BPS 4-point function (but without making direct use of the crossing

equation), we will derive an upper bound on the gap, which remains nontrivial in the

large volume regime, and leads to an interesting inequality that relates the first nonzero

eigenvalue of the scalar Laplacian on the K3 to an integral constructed from a harmonic

2-form, and data of the lattice Γ19,3 that parameterize the K3 moduli. The eigenvalues of

the Laplacian on K3 can be studied using the explicit numerical metric in [84, 85].

9.1 Parameterization of the K3 moduli

The quantum moduli space of the K3 CFT can be parameterized by the embedding of the

lattice Γ20,4 into R20,4, or equivalently, the choice of a positive 4-dimensional hyperplane

in the span of Γ20,4. Let us write Γ20,4 as Γ1,1 ⊕ Γ19,3, with the Γ19,3 identified with the

cohomology lattice H2(K3,Z) [86]. Let u, v be a pair of null basis vectors of the Γ1,1, with

u2 = v2 = 0, u · v = 1. Let Ωi (i = 1, 2, 3) be a triplet of H2(K3,R) classes associated

with the hyperkähler structure of the K3 surface, normalized so that Ωi ·Ωj = δij . We will

denote by B the cohomology class of a flat B-field, and by V the volume of the K3 surface

(more precisely it is (2π)4 times the volume in units of α′2). An orthonormal basis of the

32The minimal resolution of an ADE singularity of rank µ gives µ exceptional divisors which are dual to

self-dual elements of H1,1(K3), thus µ ≤ 19. In particular, the K3 surface can develop an Ak singularity

only for k ≤ 19. However our bound on ∆̂crt is insensitive to the identity superconformal block contribution,

and applies to noncompact theories as well, such as nonlinear sigma model on ALE spaces [83] and the

N = 4 cigar CFTs.
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4-dimensional positive hyperplane is [86]

E0 =
(V − B2

2 )u+ v +B√
2V

,

Ei = −B · Ωiu+ Ωi, i = 1, 2, 3.

(9.1)

Now an orthonormal basis of the 20-dimensional negative subspace can be constructed as

e0 =
−
(
V + B2

2

)
u+ v +B√

2V
,

eα = B ·Wαu+Wα, α = 1, · · · , 19,

(9.2)

where Wα ∈ span(Γ19,3) are a set of orthonormal vectors that are orthogonal to Ωi, and

correspond to a basis of anti-self-dual harmonic 2-forms on the K3 surface.

A general lattice vector of Γ20,4 can be written as

` = nu+mv + α, (9.3)

where α ∈ H2(K3,Z) ' Γ19,3. Let α+ be the self-dual projection of α, or equivalently,

α+ =
∑3

i=1(α · Ωi)Ωi. We have

` ◦ ` = −`2L + `2R = α2 + 2nm, (9.4)

and

`2R = (` · E0)2 +

3∑
i=1

(` · Ei)2

= (α−mB)2
+ +

[
α ·B + n+m

(
V − B2

2

)]2

2V
.

(9.5)

We can now write the theta function

ΘΓ20,4(τ, τ̄ |y) = e
π

2τ2
y2 ∑
n,m∈Z, α∈Γ19,3

q
`2L
2 q̄

`2R
2 e2πi`L·y, (9.6)

where y ∈ R20, and `L ·y ≡
∑19

a=0(−` ·ea)ya. In the large volume V limit, we can restrict to

the sum to m = 0 term, and replace the summation over n by an integral. The integrated

4-point function of BPS operators (5.2) associated with deformations of Γ19,3 (as opposed

to the overall volume modulus, parameterizing the embedding of Γ1,1) becomes

Aαβγδ →
√
V

16π2

∫
F

d2τ

τ
1
2

2 η(τ)24

∂4

∂yα∂yβ∂yγ∂yδ

∣∣∣∣
y=0

Θ19,3(τ, τ̄ |y). (9.7)

Note that this result does not apply to the integrated 4-point function of the BPS operator

associated to the volume modulus, which in fact vanishes in the large volume limit.
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9.2 Bounding the first nonzero eigenvalue of the scalar Laplacian on K3

Let us write the four-point function of a given 1
2 -BPS, weight (1

4 ,
1
4) operator in the RR

sector φRR, which is related to a weight ( 1
2 ,

1
2) NS-NS primary by spectral flow, as〈

φRR(z, z̄)φRR(0)φRR(1)φRR(∞)
〉

= f(z, z̄). (9.8)

We have

A ≡ lim
ε→0

∫
|z|,|1−z|,|z|−1>ε

d2z

|z(1− z)|f(z, z̄) + 6π ln ε

=
1

16π2

∂4

∂y4

∣∣∣∣
y=0

∫
F
d2τ

ΘΓ20,4(τ, τ̄ |y)

η(τ)24
.

(9.9)

f(z, z̄) admits a conformal block decomposition (in the z → 0 channel) of the form

f(z, z̄) = |FR0 (z)|2 +
∑
hL,hR

C2
hL,hR

FRhL(z)FRhR(z), (9.10)

where according to our claim (3.2)

FRh (z) = z
1
2 (1− z)

1
2FVir

c=28(1, 1, 1, 1;h+ 1; z), (9.11)

and FVir
c (h1, h2, h3, h4;h; z) is the sphere four-point conformal block of the Virasoro algebra

of central charge c. We can write

FRh (z) = (z(1− z))−
1
3 θ3(q)−2gh(q), (9.12)

where the function gh(q) takes the form

gh(q) = qh−
1
6

∞∑
n=0

anq
n, an ≥ 0. (9.13)

Positivity of the an follows from reflection positivity of the theory on the pillowcase [53].

In particular, we learn that FRh (z) obeys the inequality∣∣∣∣∣ FRh (z)

(z(1− z))−
1
3 θ3(q)−2qh−

1
6

∣∣∣∣∣ ≤ FRh (z∗)

(z∗(1− z∗))−
1
3 θ3(q∗)−2q

h− 1
6∗
, (9.14)

for |q(z)| ≤ q(z∗) ≡ q∗, 0 < z∗ < 1 and 0 < q∗ < 1.

In the large volume limit, A is dominated by the contribution from light non-BPS

operators in the OPE, integrated near z = 0, 1 or ∞. Let us assume that there is a gap

∆0 in the spectrum of non-BPS (scalar) primaries. We can write in this limit

A ≈ 3
∑

∆0≤∆≤Λ

C2
∆

∫
|z|<δ

d2z

|z(1−z)|
∣∣∣FR∆

2
(z)
∣∣∣2 ≤ 6π

∆0
2

4
3

∑
∆0≤∆≤Λ

C2
∆

[ FR∆
2

(z∗)

(z∗(1−z∗))− 1
3 θ3(q∗)−2q

Λ
2−

1
6

∗

]2

≤ 6π

∆0
2

4
3 (z∗(1− z∗))

2
3 θ3(q∗)

4q
−Λ+ 1

3
∗

[
f(z∗)− |FR0 (z∗)|2

]
. (9.15)

In the first approximation, we have dropped finite contributions that are unimportant in

the large volume limit, where A diverges like V
1
2 , while ∆0 goes to zero like V −

1
2 . Here Λ
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is a cutoff on the operator dimension that can be made small but finite, and δ(≤ z∗) is a

small positive number. Taking Λ to zero after taking the large volume limit, we derive the

bound (which holds only in the large volume limit)

∆0A ≤ 6π(z∗(1− z∗))
2
3 θ3(q∗)4(16q∗)

1
3
[
f(z∗)− |FR0 (z∗)|2

]
. (9.16)

One might be attempted to take z∗ to be small, but f(z∗) diverges in the small z∗ limit.

In practice, we can simply choose z∗ = 1
2 , and arrive at the large volume bound

∆0A ≤ 6πθ3(q 1
2
)4(q 1

2
)

1
3
[
f(1/2)− |FR0 (1/2)|2

]
, (9.17)

where q 1
2
≡ q(z = 1

2) = e−π. Note that for generic Einstein metric on the K3, the

four-point function f(1
2) remains finite in the infinite volume limit. In this limit, we can

identify ∆0 = λ1/2, where λ1 is the first nonzero eigenvalue of the scalar Laplacian on the

K3 surface, in units of α′.33

Let ω = ωij̄dz
idzj̄ be a harmonic (1, 1)-form that is orthogonal to the Kähler form, nor-

malized such that V −1
∫
K3

√
gωij̄ω

ij̄ = 1. Let O±±ω be the BPS primary associated with the

corresponding moduli deformation. We have for instance O++
ω ≈ ωij̄ψiψ̃j̄ , O−−ω ≈ ωij̄ψj̄ψ̃i

in the large volume limit. The 4-point function of the corresponding φRRω evaluated at

z = 1
2 is

fω(1/2) ≈ 1

V

∫
K3

√
g
[
5(ω2)2 − 4ω4

]
, (9.19)

where ω2 ≡ ωij̄ωij̄ , ω4 = ωij̄ω
kj̄ωk ¯̀ωi¯̀. Thus, we derive the following upper bound on λ1,

λ1 ≤
192π3θ3(q 1

2
)4(q 1

2
)

1
3

[
fω(1

2)− |FR0 (1
2)|2

]
√
V
∫
F d

2τ τ
− 1

2
2 η(τ)−24Θω

19,3(τ, τ̄)
, (9.20)

with

Θω
19,3(τ, τ̄) ≡ ∂4

∂y4
ω

∣∣∣∣
yω=0

Θ19,3(τ, τ̄ |yωeω), (9.21)

where eω is the unit vector in R20 associated with the deformation Oω.

The upper bound (9.17) was derived by consideration of the 4-point function of a single
1
2 -BPS primary Oω, and applies to the gap in the OPE of Oω with itself. We see that in the

large volume limit, a light scalar non-BPS operator must appear in such an OPE, provided

that ω is not proportional to the Kähler form, so that A scales like
√
V . As noted earlier, if

we take ω to be the Kähler form J itself, the corresponding BPS operator OJ would have

an integrated 4-point function A that vanishes in the large volume limit instead, and we

cannot deduce the existence of a light operator in the OPE of OJ with itself.

33It is known [87, 88] that

π2

4d2
≤ λ1 ≤

4π2

d2
, (9.18)

where d is the diameter of the K3. The compatibility with our large volume bound then demands an

inequality relating the diameter of the K3 to f(1/2) and A.
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10 Summary and discussion

Let us summarize the main results of this paper.

1. By analyzing the N = 4 A1 cigar CFT, we found an exact relation between the BPS

four-point c = 6 N = 4 superconformal block and the bosonic Virasoro conformal

block of central charge c = 28. Further, a class of BPS N = 2 superconformal blocks

with central charge c = 3(k+2)
k are identified, up to a simple known factor, with

Virasoro blocks of central charge c = 13 + 6k + 6
k and shifted weights.

2. We derived a lower bound on the four-point function of a 1
2 -BPS primary by the

integrated four-point function A1111, assuming the existence of a gap in the spectrum.

We also determined Aijkl as an exact function of the K3 CFT moduli (parameterized

by the embedding of the lattice Γ20,4).

3. We found an upper bound on the lowest dimension non-BPS primary appearing

in the OPE of two identical 1
2 -BPS primaries, as a function of the BPS four-point

function evaluated at the cross ratio z = 1
2 , and as a function of A1111 (thus a known

function on the moduli space of the K3 CFT). Both vary monotonously from 2 to
1
4 , and interpolate between the untwisted sector of the free orbifold CFT and the A1

cigar CFT. It is also observed that A1111 must be non-negative from the bootstrap

constraints (see figure 6), which is consistent with the superluminal bound on the H4

coefficient in the 6d (2,0) supergravity coming from IIB string theory compactified

on K3.

4. Bounding the contribution to the BPS four-point function by contributions from

non-BPS primaries of scaling dimension below ∆̂crt, and assuming the boundedness

of the OPE coefficients, we deduce that a continuum in the spectrum develops near

the ADE singular points on the K3 CFT moduli space, and find numerically that

∆̂crt agrees with the gap below the continuum in the A1 cigar CFT, namely 1
4 .

5. We explored the possibility of the appearance of either a continuum or divergent

contribution from discrete non-BPS operators in the OPE of two distinct 1
2 -BPS

operators, near a singular point of the moduli space where the BPS four-point func-

tion diverges (beyond the A1 case). The bootstrap bounds we found are consistent

with the spectrum and OPE of the N = 4 Ak−1 cigar theory, and know about the

appearance of discrete non-BPS primaries in the OPE below the continuum gap.

6. For general CFTs in 2,3,4 spacetime dimensions, we derived a crude analytic bound

∆̂crt ≤
√

2∆φ, where ∆φ is the scaling dimension of the external scalar operator. It

was observed (see figure 8) from the stronger numerical bounds on ∆̂crt that they

meet at the unitarity bounds for ∆φ . 1 in 3 spacetime dimensions and ∆φ . 2

in 4 spacetime dimensions, thus providing universal upper bounds on the four-point

functions for this range of external operator dimension.
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7. Independently of the crossing equation, but using nonetheless unitarity and exact

results of the integrated BPS four-point function, we derived in the large volume

regime a bound that is meaningful in classical geometry, namely an upper bound on

the first nonzero eigenvalue of the scalar Laplacian on K3 surface, that depends on

the moduli of Einstein metrics on K3 (parameterized by the embedding of the lattice

Γ19,3) and an integral constructed out of a harmonic 2-form on the K3.

While we have exhibited some of the powers of the crossing equation based on the

full N = 4 superconformal algebra, clearly much more can be said regarding the non-

BPS spectrum and OPEs in the K3 CFT over the entire moduli space. We would like to

understand to what extent our bootstrap bounds can be saturated, away from free orbifold

and cigar points in the moduli space. In particular, it would be interesting to compare

with results from conformal perturbation theory.

Apart from a few basic vanishing results, the OPEs of the 1
4 -BPS primaries remain

largely unexplored. Neither have we investigated the torus correlation functions, which

should provide further constraints on the non-BPS spectrum. Note that there are certain

integrated torus four-point functions, analogous to Aijkl and Bij,kl, that can be determined

as exact functions of the moduli, by expanding the result of [49] perturbatively in the type

IIB string coupling.

There are a number of important generalizations of our bootstrap analysis that will be

left to future work. One of them is to derive bootstrap bounds on the non-BPS spectrum

of (2, 2) superconformal theories, with input from the known chiral ring relations. To do

so, we will need to extend the results of section 4 to ones that express a more general set

of BPS N = 2 superconformal blocks in terms of Virasoro conformal blocks (of a different

central charge and shifted weights). These relations can be extracted from BPS correlators

of the N = 2 SL(2)k/U(1) cigar CFT (or the T-dual N = 2 Liouville theory [89]), and will

be presented in detail elsewhere.

Another generalization would be to extend our analysis to (4, 4) superconformal the-

ories of higher central charge, namely c = 6k′ for k′ ≥ 2, and use it to understand the

appearance of a continuous spectrum in the D1-D5 CFT at various singular points on its

moduli space. There is conceivably a generalization of our relation between the c = 6N = 4

block and bosonic Virasoro blocks, to the k′ ≥ 2 case. This is currently under investigation.

Finally, our numerical bounds on ∆̂crt seem to allow for the possibility of having an

arbitrarily large four-point function when ∆φ & 1 in 3 spacetime dimensions and ∆φ & 2 in

4 spacetime dimensions. We are not aware of an example of such a CFT. It is conceivable

that such a CFT will be ruled out by unitarity constraints from other correlation functions,

but this remains to be seen.
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A The integrated four-point function Aijkl at the T 4/Z2 CFT orbifold

point

In this appendix we compare the proposed exact formula for the integrated four-point

function Aijkl to explicit computation of the four-point function of twist fields in the T 4/Z2

free orbifold CFT. The twist fields of the latter are associated with the 16 Z2 fixed points

on the T 4. We will focus on the case where i, j, k, l label the same Z2 fixed point (denote

by i = j = k = l = 1). The result as given in [72] is

A1111 = 6π2

∫
F
d2τ

∑
`∈Γ̃4,4

exp
(
iπτ`2L − iπτ̄`2R

)
. (A.1)

Here τ is related to the cross ratio z by the mapping τ = iF (1−z)/F (z), F = 2F1(1
2 ,

1
2 ; 1; z).

Γ̃4,4 is the Narain lattice associated with the T 4 with all radii rescaled by
√

2. The factor 6

comes from the integration over the fundamental domain of Γ(2), which consists of 6 copies

of the PSL(2,Z) fundamental domain F . Note that the ` = 0 term in the lattice sum leads

to a divergent integral, which is regularized by analytic continuation in the Mandelstam

variables s, t, u and then dropping the polar terms in the s, t, u→ 0 limit as before.

We will take the original T 4 (before orbifolding) to be a rectangular torus with radii

Ri, i = 1, · · · , 4. To compare (A.1) with our exact formula for Aijkl as a function of the

K3 moduli, we need to construct the lattice embedding Γ20,4 ⊂ R20,4 that corresponds to

the T 4/Z2 CFT orbifold, as follows. We will write R20,4 = (R1,1)⊕4 ⊕ R16. Let (ui, vi)

be pairs of null vectors in the four R1,1 factors, such that ui · vi = 1. Denote by wL and

wR the projection of a vector w ∈ R20,4 in the positive and negative subspaces, R20 and

R4 respectively. We can write |uLi | = |uRi | =

√
α′h
2

1
Rhi

, |vLi | = |vRi | =
√

1
2α′h

Rhi . Note that,

importantly, Rhi are not to be identified with Ri. Rather, they are related by (see (2.5),

(2.6) and footnote 2 of [90])

Ri√
α′

=

√
2Rh1R

h
2R

h
3R

h
4√

α′hR
h
i

. (A.2)

Let Ai be the following vectors in the R16,

A1 =
1

2
(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

A2 =
1

2
(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),

A3 =
1

2
(1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0),

A4 =
1

2
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).

(A.3)
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Note that Ai · Aj = 1 + δij . Let Γ16 be the root plus chiral spinor weight lattice of

SO(32) embedded in the R16, generated by the root vectors (0, · · · , 0, 1,−1, 0, · · · , 0), and

(±1
2 , · · · ,±1

2) with even number of minuses. Now Γ20,4 can be constructed as the span of

the following generators

ui, Ai + vi −
4∑
j=1

Ai ·Aj
2

uj , ~̀−
4∑
j=1

(` ·Aj)uj , ` ∈ Γ16. (A.4)

One can verify that this lattice is indeed even and unimodular.34

In the large Ri limit, we can approximate the theta function of Γ20,4 as

θΛ(y|τ, τ̄) ≈
∏4
i=1R

h
i

α′h
2τ2

2

θΓ16(y|τ, τ̄) =
R1R2R3R4

4α′2τ2
2

θΓ16(y|τ, τ̄). (A.5)

Note that the τ̄ -dependence of θΓ16 is entirely through the factor e
π

2τ2
y2

. We can then

evaluate the integral∫
F

d2τ

τ2
2

θΓ16(y|τ, τ̄)

η(τ)24

∣∣∣∣
y4

=

∫
F
d2τ

4i

πy2

∂

∂τ

θΓ16(y|τ, τ̄)

η(τ)24

∣∣∣∣
y4

=

∮
∂F
dτ

4

πy2

θΓ16(y|τ, τ̄)

η(τ)24

∣∣∣∣
y4

= − 4

πy2

θ̃Γ16(y|τ)

η(τ)24

∣∣∣∣∣
y4q0

.

(A.6)

Here d2τ ≡ 2dτ1dτ2. In the last line, the holomorphic function θ̃Γ16(y|τ) is θΓ16 with the

e
π

2τ2
y2

factor dropped, due to the τ2 → ∞ limit taken in going to the boundary of F .

Furthermore, only the y4 term is kept in the Laurent expansion in y, and in particular

the constant term 1 in the lattice sum in θ̃Γ16 does not contribute. The only contribution

comes from the terms of order q in θ̃Γ16(y|τ), giving∫
F

d2τ

τ2
2

θΓ16(y|τ, τ̄)

η(τ)24

∣∣∣∣
y4

= − 4

πy2
θ̃Γ16(y|τ)

∣∣∣
q1y4

. (A.7)

In particular,
∂4

∂y4
1

∣∣∣∣
y=0

∫
F

d2τ

τ2
2

θΓ16(y|τ, τ̄)

η(τ)24
=

4

π
(2π)6 4!

6!
· 60 = 210π5. (A.8)

The factor 60 comes from the sum of (Ea · ê1)6 for all root vectors Ea of so(32), with

ê1 = (1, 0, · · · , 0).

34This lattice can also be used to describe the compactification of SO(32) heterotic string on a rectangular

T 4 with radii Rhi and Wilson line turned on. This can be seen from the large Rhi limit, where ui and vi are

approximations to primitive lattice vectors. Note that in the opposite limit, say small Rh1 , u1
2

and 2v1 are

approximations to primitive lattice vectors. This means that the T-dual E8×E8 heterotic string lives on a

circle of radius R̃h1 =
α′
h

2Rh1
. Note that the T-duality on all four circles of the heterotic T 4, taking Rhi →

α′
h

2Rhi
,

is equivalent to sending Ri → α′

Ri
, namely T-dualizing all four directions of the T 4/Z2 orbifold, in the type

IIA dual.
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Note that in the large radii limit, the four-point function of twist fields at a given cross

ratio in the free orbifold CFT diverges like the volume, as is Aijkl.
35 Comparison with (A.1)

then fixes the overall normalization of Aijk` as a function of moduli to be that of (5.2).

B Conformal blocks under the q-map

The four-punctured sphere can be uniformized by a map T 2/Z2 → S2 [8, 50, 53]. The

complex moduli τ of the T 2 is related to the cross ratio z of the four punctures by a map

z → τ(z) ≡ iF (1− z)

F (z)
, F (z) = 2F1(1/2, 1/2, 1|z). (B.1)

Because τ lies in the upper half plane, the “nome” defined as

q(z) ≡ exp(iπτ(z)) (B.2)

has the property that its value lies inside the unit disk. We shall simply refer to this map

z → q(z) as the q-map. The q-map has a branch cut at (1,∞); the value of q(z) covered

by one branch is shown in figure B.2, and crossing to other branches brings us outside this

eye-shaped region. Also shown are the regions D1, D2, D3 defined by

D1 : |z| < 1, Re z <
1

2
,

D2 : |z − 1| < 1, Re z >
1

2
,

D3 : |z| > 1, |1− z| > 1,

(B.3)

each of which contains two fundamental domains of the S3 crossing symmetry group.

The holomorphic Virasoro block for a four-point function 〈O1(z)O2(0)O3(1)O4(∞)〉
with central charge c, external weights hi, and intermediate weight h has the following

representation

FVir
c (hi, h|z) = (16q)h−

c−1
24 x

c−1
24
−h1−h2(1−x)

c−1
24
−h1−h3 [θ3(q)]

c−1
8
−4(h1+h2+h3+h4)H(λ2

i , h|q).
(B.4)

If we define

c = 1 + 6Q2, Q = b+
1

b
, hm,n =

Q2

4
− λ2

m,n, λm,n =
1

2

(m
b

+ nb
)
, (B.5)

then H(λ2
i , h|q) satisfies Zamolodchikov’s recurrence relation [8, 50]

H(λ2
i , h|q) = 1 +

∑
m,n≥1

qmnRm,n({λi})
h− hm,n

H(λ2
i , hm,n +mn|q), (B.6)

where hm,n are the conformal weights of degenerate representations of the Virasoro algebra,

and Rm,n({λi}) are given by

Rm,n({λi}) = 2

∏
r,s(λ1+λ2−λr,s)(λ1−λ2−λr,s)(λ3+λ4−λr,s)(λ3−λ4−λr,s)∏′

k,` λk,`
. (B.7)

35This is to be contrasted with the large volume limit of a smooth K3, where the four-point function of

BPS operators remain finite at generic cross ratio, while Aijkl diverges like the square root of volume.
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The product of (r, s) is taken over

r = −m+ 1,−m+ 3, · · · ,m− 1,

s = −n+ 1,−n+ 3, · · · , n− 1,
(B.8)

and the product of (k, `) is taken over

k = −m+ 1,−m+ 2, · · · ,m,
` = −n+ 1,−n+ 2, · · · , n,

(B.9)

excluding (k, `) = (0, 0) and (k, `) = (m,n). Since H(λ2
i , h|q) → 1 as the intermediate

weight h → ∞, the prefactor multiplying H(λ2
i , h|q) gives the large h asymptotics of

the conformal block. The superconformal block FRh (z) which is related to the Virasoro

conformal block via (3.2) also has the same large h asymptotics.

C More on the integrated four-point function Aijk`

The purpose of this appendix is the explain how knowing the value of the integrated four-

point function Aijk` can improve the bootstrap bounds on the spectrum. We first explain

the problem with naively incorporating Aijk` into semidefinite programming, and then

discuss two solutions. The first way is to cleverly use crossing symmetry to choose an

appropriate region over which to integrate the conformal blocks. The second way is to use

A1111 indirectly by bounding it above by the four-point function evaluated at the crossing

symmetric point, f(1/2), and incorporate f(1/2) into semidefinite programming instead.

C.1 Conformal block expansion

We can write the integrated four-point function Aijk` as

Aijk` = lim
ε→0

∫
|z|,|1−z|,|z|−1>ε

d2z

|z(1− z)|
〈
φRRi (z, z̄)φRRj (0)φRRk (1)φRR` (∞)

〉
+ 2π ln ε (δijδk` + δikδj` + δi`δjk) .

(C.1)

In expressing the four-point function of the 1
2 -BPS operators in terms of conformal blocks,

we would like the divergence in the z-integral to appear in the identity conformal block

alone, so that the regularization can be performed on the identity block contribution alone.

This can be achieved by dividing the integral over the z-plane into the contributions from

three regions D1, D2 and D3 defined in (B.3). Note that regions D2 and D3 can be mapped

from D1 by z 7→ 1/z and z 7→ 1/(1− z), respectively. We have

Aijk` =

∫
D1

d2z

|z(1−z)|

{
δijδk`

[
|FR0 (z)|2− 1

|z|

]
+

∑
non-BPS O

CijOCk`OFRhL(z)FRhR(z)

}
−δijδk`C0

+ (j ↔ k) + (j ↔ `) , (C.2)

where the constant C0 is given by

C0 = lim
ε→0

∫
ε<|z|<1, Rez< 1

2

d2z

|z|2|1− z| + 2π ln ε ≈ −1.43907. (C.3)
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Now the integral in the domain D1 can be performed term by term in the summation over

superconformal blocks. Define the constant A0 and the function A(hL, hR) by

A0 =

∫
D1

d2z

|z(1− z)|

[
|FR0 (z)|2 − 1

|z|

]
− C0,

A(∆, s) =

∫
D1

d2z

|z(1− z)|F
R
∆+s

2

(z)FR∆−s
2

(z).

(C.4)

A0 can also be obtained as a limit of A(∆, 0) by

A0 = lim
∆→0

[
A(∆, 0)− 2π

∆

]
. (C.5)

We can now write

Aijk` =

[
δijδk`A0 +

∑
non−BPS O

CijOCk`OA(∆, s)

]
+ (j ↔ k) + (j ↔ `). (C.6)

Let us examine this equation for identical external operators

0 = (3A0 −A1111) + 3
∑

non−BPS O
C2

11OA(∆, s). (C.7)

It takes the same form as the equations corresponding to acting linear functionals

αm,n = ∂m∂̄n|z=1/2 on the crossing equation (see section 7)

0 = αm,n(H0(z, z̄)) +
∑

non−BPS O
C2

11Oαm,n[H∆,s(z, z̄)]. (C.8)

Clearly, if we can find a set of coefficients a and am,n such that

a(3A0 −A1111) +
∑
m,n

am,nαm,n[H0(z, z̄)] > 0,

3aA(∆, s) +
∑
m,n

am,nαm,n[H∆,s(z, z̄)] > 0 for ∆ > ∆̂gap, s ∈ 2Z
(C.9)

are satisfied, then the gap in the non-BPS spectrum ∆gap must be bounded above by ∆̂gap,

in order to be consistent with the positivity of C2
11O.

Despite the additional freedom of a, this naive incorporation of A1111 does not improve

the bound, for the following reasons. As explained at the end of appendix B, the holomor-

phic superconformal block FRh (z) asymptotes to (16q(z))h at large h. This means that for

any spin s, the integrated block A(∆, s) at large ∆ is dominated by the integration near

the maximal value of |q(z)| in the domain D1, which is at (see figure 3),

z±∗ =
1

2
±
√

3

2
i, or q(z±∗ ) = ±ie−

√
3

2
π (C.10)

and therefore has the asymptotic behavior

A(∆, s) ∼ (−1)s/2(16e−
√

3
2
π)∆, ∆� |s|. (C.11)
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In comparison, αm,n(H∆,s(z, z̄))∼(16e−π)∆ is dominated by A(∆, s)∼(−1)s/2(16e−
√

3
2
π)∆

at large ∆, whose sign oscillates with s. Thus positivity at large ∆ forces a = 0, and ∆̂gap

cannot be improved despite specifying A1111.

One may wonder if we can choose a different region (that also consists of two fun-

damental domains of the S3 crossing group) to integrate in, so that the leading large ∆

behavior of the integrated block is (16e−π)∆, same as αm,n(H∆,s(z, z̄)). This is not possi-

ble, because z±∗ = 1
2 ±

√
3

2 i at most exchange with each other under crossing. However, we

can integrate over a larger region D′ whose maximum |q| value is on the real axis (to avoid

the sign oscillation), and map the extra region D′ \D1 that needs to be subtracted off via

crossing to a region E inside D1. We thus have an equation for A1111 related to the naive

conformal block expansion by the replacement of D1 → D′ \ E as the integration region.

We are free to choose D′, but in the end the bootstrap bound should not be sensitive

to the choice. Let D′ be symmetric under q → −q and q → q̄, so that it suffices to specify

D′ in the first quadrant in the q-plane, or equivalently within the strip 0 ≤ Re τ ≤ 1
2 in the

τ -plane (recall q(z) = eiπτ(z)). In this strip, the region D1 is bounded below by |τ | = 1. A

choice of D′ is the region bounded below by the lower arc of |τ− 1
2 | =

√
3

2 , with qmax = e
− π√

2 .

The corresponding region E is then the part of D1 that satisfies |τ + 1| ≤
√

3. See figure 5.

To perform semidefinite programming efficiently, it is desirable to factor out certain

positive factors, including the exponential dependence on ∆, and just work with poly-

nomials. Our strategy is to factor out (16e−π)∆, and approximate (16eπ)∆A(∆, s) by a

rational function in ∆, that works well up to a value beyond which A(∆, s) is completely

dominated by the asymptotic (16qmax)∆ factor. We further demand a > 0, and that the

rational approximation be strictly bounded above by the actual value, so that the bound

can only be stronger as we improve the rational approximation to work well in a larger

range of ∆.

C.2 An inequality relating A1111 to the four-point function at z = 1
2

An alternative is to use A1111 indirectly by bounding A1111 above by the four-point function

evaluated at the crossing symmetric point f(1/2). The conformal block evaluated at z = 1
2

has the same large ∆ asymptotics (16e−π)∆ as αm,n(H0(z, z̄)), and the sign does not

oscillate with s. The incorporation of f(1/2) into bootstrap and the results are discussed

in detail in section 7.2. This section is devoted to proving the inequality between A1111

and f(1/2).

We can write the N = 4 superconformal block decomposition of the BPS four-point

function f(z, z̄) in the form (see (7.8) of [53])

f(z, z̄) = |Λ(z)|2
∑
hL,hR

ghL(q)ghR(q), (C.12)

with Λ(z) ≡ (z(1− z))−
1
3 θ3(q)−2. The functions gh(q) take the form

gh(q) = qh−
1
6

∑
n≥0

anq
n, (C.13)

where, importantly, the coefficients an are non-negative.
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For a general complex cross ratio z, let x be the real value between 0 and 1 such that

q(x) = |q(z)|. Define r = min{x, 1 − x}, and qr = q(r). Note that by crossing relation,

f(x) = f(x0). We can then bound the four-point function at a generic cross ratio by

f(z, z̄) ≤
∣∣∣∣Λ(z)

Λ(x)

∣∣∣∣2 f(x) =

∣∣∣∣Λ(z)

Λ(x)

∣∣∣∣2 f(x0) ≤
∣∣∣∣∣Λ(z)Λ(r)

Λ(x)Λ(1
2)

∣∣∣∣∣
2 ∣∣∣∣∣ qrq 1

2

∣∣∣∣∣
− 1

3

f

(
1

2

)
. (C.14)

We now make the assumption that the non-BPS operators have scaling dimensions above

a nonzero gap ∆. As before, we can write the integrated four-point function A1111 as 3

times the contribution from an integral over the domain D1 =
{
z ∈ C : |z| < 1,Re z < 1

2

}
,

while regularizing the integral of the identity block contribution, in the form

A1111 = 3A0 + 3

∫
D1

d2z

|z(1− z)| |Λ(z)|2
∑

(hL,hR) 6=(0,0)

ghL(q)ghR(q)

≤ 3A0 + 3

∫
D1

d2z

|z(1− z)| 53
|θ3(q)|−4

∣∣∣∣∣ qq 1
2

∣∣∣∣∣
∆− 1

3 ∑
(hL,hR) 6=(0,0)

ghL(q 1
2
)ghR(q 1

2
)

= 3A0 + 3

∫
D1

d2z

|z(1− z)| 53
|θ3(q)|−4

∣∣∣∣∣ qq 1
2

∣∣∣∣∣
∆− 1

3
f(z∗, z̄∗)− |FR0 (z∗)|2

|Λ(z∗)|2

≤ 3A0 + 3

∫
D1

d2z

|z(1− z)| 53
|θ3(q)|−4

∣∣∣∣∣ qq 1
2

∣∣∣∣∣
∆− 1

3

∣∣∣∣ Λ(r∗)

Λ(x∗)Λ( 1
2 )

∣∣∣∣2
∣∣∣∣∣ qrq 1

2

∣∣∣∣∣
− 1

3

f

(
1

2

)
− |F

R
0 (z∗)|2
|Λ(z∗)|2


= 3A0 +M(∆)

[
f

(
1

2

)
− f0

]
. (C.15)

Here z∗ = 1+
√

3i
2 is the value of the cross ratio z over the domain D that achieves the

maximal value of |q(z)|, x∗ ≈ 0.653326 is such that q(x∗) = |q(z∗)|, r∗ = 1 − x∗, and

qr ≈ 0.0265799. On the r.h.s. of the inequality, f0 is a constant defined by

f0 =

∣∣∣∣∣Λ(x∗)Λ(1
2)

Λ(r∗)

∣∣∣∣∣
2 ∣∣∣∣q 1

2

qr

∣∣∣∣− 1
3 |FR0 (z∗)|2
|Λ(z∗)|2

, (C.16)

and the function M(∆) is given by

M(∆) = 3

∣∣∣∣∣ Λ(r∗)

Λ(x∗)Λ(1
2)

∣∣∣∣∣
2 ∣∣∣∣∣ qrq 1

2

∣∣∣∣∣
− 1

3 ∫
D

d2z

|z(1− z)| 53
|θ3(q)|−4

∣∣∣∣∣ qq 1
2

∣∣∣∣∣
∆− 1

3

. (C.17)

Note that M(∆) goes like ∆−1 in the ∆→ 0 limit, with lim∆→0 ∆M(∆) ≈ 2.27548.

D ∆crt and the divergence of the integrated four-point function A1111

Recall that ∆crt defined in section 8 is the lowest scaling dimension at which either a

continuous spectrum develops or the structure constant diverges, as the CFT is deformed

to a singular point in its moduli space. In this appendix we will describe how to use crossing

symmetry to bootstrap an upper bound on ∆crt that is universal across the moduli space. In
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particular we will show that if the integrated four-point function A1111 diverges somewhere

on the moduli space, then ∆̂crt ≥ ∆crt with ∆̂crt defined in section 8.

Consider the four-point function of the RR sector 1
2 -BPS primaries φRRi of weight (1

4 ,
1
4)

that are R-symmetry singlets (i = 1, · · · , 20). Let us consider in particular the four-point

function of the same operator, say, φRR1 ,

f(z, z̄) ≡ 〈φRR1 (z, z̄)φRR1 (0)φRR1 (1)φRR1 (∞)〉 =
∑
∆

C2
∆F∆(z, z̄) , (D.1)

where we did not write out the sum over the spin explicitly but it will not affect the

argument significantly. The conformal block has the following asymptotic growth

|F∆(z, z̄)| ∼ |16q(z)|∆ , (D.2)

for large ∆.

The crossing equation takes the following expression,∑
∆

C2
∆G∆(z, z̄) ≡

∑
∆

C2
∆ [F∆(z, z̄)− F∆(1− z, 1− z̄)] = 0. (D.3)

We will consider functionals L acting G∆(z, z̄) with the following properties,

L(∆) ≡ L(G∆(z, z̄)) > 0, if ∆ > ∆̂crt, (D.4)

for some ∆̂crt. Note that ∆̂crt depends on the choice of the functional L. The significance

of ∆̂crt is that it implies the structure constants above ∆̂crt are bounded by those below,∑
∆>∆̂crt

C2
∆L(∆) = −

∑
∆<∆̂crt

C2
∆L(∆).

(D.5)

Assuming that the integrated four-point function A1111 diverges at some points on the

moduli space, we will show that for any choice of the functional L, we always have

∆̂crt ≥ ∆crt. (D.6)

In this way we can bootstrap an upper bound on ∆crt by scanning through a large class of

functionals L.

To prove our goal (D.6), we assume that there exists a functional L such that the

associated ∆̂crt < ∆crt, and show that it leads to contradiction. By assumption the density

of the spectrum is bounded and the structure constants are finite for ∆ < ∆̂crt(< ∆crt),

hence the r.h.s. of (D.5) is finite,∑
∆>∆̂crt

C2
∆L(∆) = −

∑
∆<∆̂crt

C2
∆L(∆) <∞.

(D.7)

In the following we will try to bound the integrated four-point function

A1111 = lim
ε→0

∫
|z|,|1−z|,|z|−1>ε

d2z

|z(1− z)|f(z, z̄) + 6π ln ε, (D.8)
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roughly by
∑

∆>∆̂crt
C2

∆L(∆), which is finite by assumption, plus some other finite contri-

butions. On the other hand, we know A1111 diverges, for example, at the cigar CFT points,

and hence the contradiction.

Let us now fill in the details of the proof. As discussed in appendix C, in the expression

for A1111, we break the integral on the z-plane into three different regions D1, D2, D3 (B.3)

that are mapped to each other under z → 1−z and z → 1/z. Since the four-point function

is crossing symmetric, we can focus on region D1 alone. This has the advantage that the

divergence in the z-integral only shows up in the identity block. We will cut a small disk

around z = 0 with radius ε0 and regularize the contribution from the identity block.

We start by noting a bound on the conformal blocks. The functionals L we consider

are linear combination of powers of ∂z, ∂z̄ evaluated at z = 1/2. Therefore the asymptotic

behavior of L(∆) is the same as that of the conformal block F∆(z, z̄) evaluated at z = 1/2,

L(∆) ∼ |16q 1
2
|∆, (D.9)

where q 1
2
≡ q(z = 1/2). This implies that there exists a moduli-independent constant c0

and δ0 such that

|F∆(z, z̄)| ≤ c0L(∆), for ∆ ≥ ∆̂crt + δ0, (D.10)

if |q(z)| < |q 1
2
|. We can always tune δ0 to be arbitrarily small by taking c0 to be large.

Note however that strictly at ∆ = ∆̂crt, we have L(∆̂crt) = 0.

For z in region I and |q(z)| < |q 1
2
|, from (D.10) we have

|f(z, z̄)| ≤ c0

∑
∆≥∆̂crt+δ0

C2
∆L(∆) +

∑
∆<∆̂crt+δ0

C2
∆max

{
F∆

(
1

2

)
, F∆(ε0)

}
. (D.11)

In particular it is true for ε0 < z < 1/2.

Next we want to argue that (D.11) is true for z in the whole region I. First we note

that we can write the four-point function as an expansion in z, z̄ with non-negative coeffi-

cients [52, 53]. By the Cauchy-Schwarz inequality, we have

|f(z, z̄)| ≤ f(|z|, |z̄|). (D.12)

Note that |z| ∈ [1
2 , 1] for z in region I but |q(z)| > |q 1

2
|. Next, by crossing symmetry, we

have f(|z|, |z̄|) = f(1− |z|, 1− |z̄|). We therefore arrive at the following bound

|f(z, z̄)| ≤ f(1− |z|, 1− |z̄|) ≤ c0

∑
∆≥∆̂crt+δ0

C2
∆L(∆)+

∑
∆<∆̂crt+δ0

C2
∆max

{
F∆

(
1

2

)
, F∆(ε0)

}
(D.13)

where we have used the fact that 1 − |z| ∈ [ε0,
1
2 ] if z is in region I with |q(z)| > |q 1

2
|.

Hence the bound (D.11) is true for all z in region I. We can therefore bound the integrated

four-point function as∣∣∣ ∫
region I−{|z|=ε0}

d2z|z|−s−1|1− z|−t−1f(z, z̄)
∣∣∣ ≤ c1c0 ∑

∆>∆̂crt+δ0

C2
∆L(∆) +

∑
∆<∆̂crt+δ0

C2
∆C̃(∆, ε0)

(D.14)
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For integration inside the disk, we have to regularize the contribution from the identity

block,∣∣∣ ∫
{|z|=ε0}

d2z|z|−s−1|1− z|−t−1f(z, z̄)− reg.
∣∣∣ = c2 + c3

∑
∆≥∆gap>0

C2
∆F∆(ε0)

≤ c2 + c3

∑
∆gap<∆<∆̂crt+δ0

C2
∆F∆(ε0) + c̃3

∑
∆>∆̂crt+δ0

C2
∆L(∆),

(D.15)

where we have assumed there is a gap in the spectrum. c2 is a moduli-independent constant

coming from the regularized identity block contribution.

Let us inspect every term in (D.14) and (D.15). First we tune δ0 such that ∆̂crt + δ0 is

below ∆crt, possibly at the price of having larger c0. After doing so, terms involving sums

over ∆ below ∆̂crt + δ0 are finite by our assumption that the density of the spectrum is

bounded and the structure constants are finite for this range of ∆. On the other hand, for

terms involving sum of ∆ above ∆̂crt + δ0, they are both of the form∑
∆>∆̂crt+δ0

C2
∆L(∆),

(D.16)

which is bounded from above by the l.h.s. of (D.7). Hence the l.h.s. of (D.14) and (D.15)

are both bounded. It follows that A1111 < ∞ under the assumption that ∆̂crt < ∆crt,

which is a contradiction, say, at the cigar point. Thus we have proved our goal (D.6).
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