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1 Introduction

The origin of the flavour structure is one of the major puzzles of the standard model (SM).

While many solutions have been proposed, the cosmological aspects of the corresponding

models have hardly been studied. On the other hand, in many cases Yukawa couplings are

dynamical and it is natural to investigate the possibility of their cosmological evolution,

and whether this could help addressing open problems, like baryogenesis. Such questions

were started to be addressed recently [1–3]. In particular, the CKM matrix can be the

unique source of CP -violation for electroweak baryogenesis if Yukawa couplings vary at

the same time as the Higgs is acquiring its vacuum expectation value (VEV) [4]. With

these motivations in mind, we are interested in studying natural realisations of Yukawa

variation at the electroweak (EW) scale.
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In this paper, our aim is to investigate the possibility of varying Yukawas in Randall-

Sundrum (RS) models [5]. One of the very attractive features of the RS model is that in

addition to bringing a new solution to the Planck scale/weak scale hierarchy problem, it

offers a new tool to understand flavour and explain the hierarchy of fermion masses [6–8].

The setup is a slice of 5D Anti-de Sitter space (AdS5) which is bounded by two branes,

the UV (Planck) brane where the graviton is peaked, and the IR (TeV) brane hosting the

Higgs (which therefore does not feel the UV cutoff). Fermions and gauge bosons are free

to propagate in the bulk. In this framework, the effective 4D Yukawas of SM fermions are

given by the overlap of their 5D wavefunctions with the Higgs. Since the Higgs is localised

towards the IR brane to address the Planck scale/weak scale hierarchy, small Yukawas

are achieved if the fermions live towards the UV brane so that the overlap between the

fermions and the Higgs is suppressed. On the other hand, heavy fermions such as the top

quark are localised near the IR brane. This setup leads to a protection from large flavour

and CP -violation via the so-called RS-GIM mechanism.

The key feature for flavour physics is therefore the localisation of the fermions in

the AdS5 slice, which determines the effective scale of higher-dimensional flavour-violating

operators. The profile of a fermion is determined by its 5D bulk mass. Because of the

AdS5 geometry, modifications of order one in the 5D bulk mass have a substantial impact

on the fermionic profile and therefore on the effective 4D Yukawa coupling. In fact, the 4D

Yukawa couplings depend exponentially on the bulk mass parameter. Randall-Sundrum

models are holographic duals of 4D strongly coupled theories. In this picture, the Higgs

is part of the composite sector. The size of the Yukawa couplings is then determined by

the degree of compositeness of the states that are identified with the SM fermions. Indeed

fermions localised near the UV brane are dual to mainly elementary states leading to small

Yukawas while fermions localised near the IR brane map to mainly composite states with

correspondingly large Yukawas.

In the usual picture, the bulk mass parameter is assumed to be constant. On the

other hand, it is quite well motivated to consider that this bulk mass is dynamical and

generated by coupling the fermions to a bulk scalar field which in turn obtains a VEV. We

can then expect a position-dependent bulk mass as this VEV is generically not constant

along the extra dimension. In fact, the simplest mechanism for radion stabilisation, due to

Goldberger and Wise [9], consists in introducing a bulk scalar field which obtains a VEV

from potentials on the two branes. The most minimal scenario to dynamically generate

the bulk mass is then to use this bulk scalar. Interestingly, during the process of radion

stabilisation, the profile of the Goldberger-Wise scalar VEV changes. When the latter is

coupled to the fermions, this induces a change in the bulk masses of the fermions which

in turn affects their wavefunction overlap with the Higgs on the IR brane and thus the

Yukawa couplings. The RS model with bulk fermions therefore naturally allows for a

scenario of varying Yukawa couplings during the EW phase transition. Our goal is to

study the cosmological dynamics of Yukawa couplings in this context.

The emergence of the EW scale in RS models comes during the stabilisation of the size

of the AdS5 slice. At high temperatures, the thermal plasma deforms the geometry and the

IR brane is replaced by a black hole horizon. Going to lower temperatures, eventually a
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phase transition takes place and the IR brane re-emerges. This phase transition is typically

strongly first-order and proceeds via bubble nucleation. The walls of these bubbles then

interpolate between AdS5 with an IR brane at infinity and at a finite distance. In the

dual 4D theory, this transition is described by the dilaton — which maps to the radion

— acquiring a VEV. To realise a model where the Yukawas are larger during the phase

transition (as needed if we want to use the SM Yukawas as the unique CP -violating source

during EW baryogenesis [1, 4]), we ask for the Yukawas to become larger when the IR

brane is pushed to infinity.

We will discuss two realisations of this. One way to induce varying Yukawas is to add

an operator on the IR brane that effectively changes the value of the Yukawa coupling as

the position of the IR brane changes. This mechanism enables variations of order one for

the Yukawas and can be relevant for CP -violation if applied to the top quark. We discuss

this option in section 6. The other possibility to implement large Yukawas during the

phase transition is to have a bulk mass for the fermions which decreases towards the IR.

Since smaller bulk masses make the wavefunctions grow faster towards the IR, this leads to

fermions which become increasingly IR-localized when the IR brane is pushed to infinity.

The wavefunction overlap with the Higgs near the IR brane and thus the Yukawas then

grow too. This mechanism can be relevant for CP -violation for all quarks and enables a

large variation of the Yukawa couplings, from values of order one to today’s small values

of the light quarks. This realisation will be described in section 7.

The plan of the paper is the following. The motivations for this study are reported

in section 2, where we summarise the key features of electroweak baryogenesis. The

Goldberger-Wise mechanism and the description of the EW phase transition in RS models

are reviewed in sections 3 and 4 respectively. The derivation of 4D Yukawa couplings in

RS models is reviewed in section 5. In section 6, we present a first possible mechanism for

Yukawa coupling variation, which relies on a new contribution to the Yukawa coupling on

the IR brane. Section 7 discusses a generic mechanism for modifying fermionic profiles.

The main idea is presented through a simple model in 7.1. Its realistic implementation

is given in section 7.2. In section 8, we discuss the implications of our constructions for

flavour and CP -violating processes. Section 9 provides the interpretation of the models in

the dual CFT. We conclude in section 10.

2 Electroweak baryogenesis with varying Yukawa couplings

Electroweak baryogenesis is an appealing mechanism for explaining the baryon asymmetry

of the universe, which relies on electroweak scale physics only (see e.g. [10]). It occurs in

the framework of a first-order electroweak phase transition, in the vicinity of Higgs bubble

walls, separating the broken phase where baryon number is conserved from the symmetric

phase where sphaleron transitions are unsuppressed. Because of CP -violating interactions

in the bubble walls between particles in the plasma and the Higgs, a chiral asymmetry

may be generated and converted into a baryon asymmetry by sphalerons in front of the

bubble walls. Due to the wall motion, the baryon asymmetry diffuses into the broken

phase, where sphalerons are frozen, and the asymmetry is not washed out. All models of
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EW baryogenesis postulate the existence of a new CP -violating source beyond the CKM

phase, as needed to explain the baryon asymmetry. This is typically strongly constrained

by measurements of electric dipole moments (EDMs), see e.g. [11]. However, as studied in

depth in [4], if Yukawa couplings vary across the bubble walls, this provides a source of

CP -violation which is active at early times only, and therefore not in tension with EDM

experimental bounds. This source scales like

S /CP ∝ Im
[
V †M †

′′
M V

]
ii
, (2.1)

where M is the fermion mass matrix, V is the matrix that diagonalizes M †M , the derivative

is with respect to the coordinate perpendicular to the bubble wall and only the diagonal

elements of the matrix in brackets are relevant. Such a term vanishes for the Yukawas in

the SM as they are constant across the bubble wall. On the other hand, it is conceivable

to use the CKM matrix as the CP -violating source for EW baryogenesis if the Yukawa

couplings vary at the same time as the Higgs is acquiring its VEV 〈H〉. In fact, the correct

amount of baryon asymmetry is naturally obtained if the Yukawa couplings varied from

values of order 1 in the symmetric phase (〈H〉 → 0) to their present value in the broken

phase (〈H〉 → vEW) [4]. This observation is the driving motivation for this study and we

are interested in providing a natural realisation of such Yukawa coupling variation during

the EW phase transition.

There are two ways to get enough CP -violation from the source term (2.1). It is

possible to rely on the top Yukawa coupling only, provided that its phase changes during

the EW phase transition. Indeed, writing mt = |mt(z)| e−iθ(z), we have

Im
[
m∗t
′′mt

]
→
[
|mt|2θ′

]′
. (2.2)

This can happen naturally in models where the top Yukawa coupling receives two contri-

butions of order one,

Y (z) = yc + yv(z) eiθi , (2.3)

with yc being constant, while yv is varying across the bubble wall and θi is some arbi-

trary initial complex phase. This setup generates an effectively varying phase θeff(z) =

arg
(
Y (z)

)
. Using the profile of the Higgs VEV across the bubble wall, we can trade the

coordinate z for 〈H〉. This thus leads to a phase which effectively varies as the Higgs field

is rolling towards the minimum of its potential:

θeff(〈H〉) = arg
(
Y (〈H〉)

)
. (2.4)

As shown in [4, 12, 13], if the top Yukawa coupling had such a varying phase during the

electroweak phase transition, this can explain the baryon asymmetry of the universe.

The other possibility is to have Yukawa couplings whose phases do not vary but whose

absolute values change. As follows from eq. (2.2) with θ = const., in this case the source

for one flavour vanishes and we thus need at least two flavours. These two situations are

studied in depth in [4]. Although the full calculation is presented in [4], it was shown that

the top-charm system gives the dominant contribution. Our two models I and II discussed

in sections 6 and 7 of this paper illustrate these two cases. To introduce these new findings,

we need first to review several basic features of the physics of Randall-Sundrum models.

– 4 –



J
H
E
P
0
5
(
2
0
1
7
)
0
7
7

3 Review of the Goldberger-Wise mechanism

We now review a key aspect of RS models known as the Goldberger-Wise mechanism [9].

The general construction we consider is based on a slice of AdS5 with metric

ds2 = e−2kyηµνdx
µdxν − dy2 (3.1)

and branes at y = 0 (UV/Planck brane) and y = yIR (IR/TeV brane). The theory could

be defined on an orbifold or an interval. In either case, we restrict the coordinate y to the

interval [0, yIR] here and below.1 We assume that the Higgs is localized on the IR brane,

whereas the fermions and gauge bosons live in the bulk. We also introduce a real scalar

field φ in the bulk with potentials on the branes. Its action reads

S ⊃
∫
d5x
√
g

(
1

2
∂Aφ∂

Aφ−
m2
φ

2
φ2 − δ(y)VUV − δ(y − yIR)VIR

)
, (3.2)

VUV = λUV(φ2 − v2
UV)2, VIR = λIR(φ2 − v2

IR)2. (3.3)

All dimensionful parameters (in particular the AdS curvature scale k) are expected to be

of order one in Planck units. The potentials cause the scalar to develop a VEV with a

profile along the extra dimension given by (see e.g. [9])

〈φ〉 = Ae(4+ε)ky +B e−εky, (3.4)

where

ε ≡
√

4 +m2
φ/k

2 − 2 . (3.5)

The constants A and B are determined by the boundary conditions which read

k
(
(4 + ε)A− εB

)
− 1

2

dVUV

dφ

∣∣∣∣
0

= 0 , (3.6)

k
(
(4 + ε)σ

−(4+ε)
IR A− ε σεIRB

)
+

1

2

dVIR

dφ

∣∣∣∣
yIR

= 0 , (3.7)

where the warp factor at the IR brane,

σIR ≡ e−kyIR , (3.8)

defines the radion field. The aim is to stabilize the radion such that σIR × k ∼ TeV,

which represents the effective cutoff scale on the IR brane (and therefore for the Higgs

mass parameter). In the limit of large couplings λIR and λUV, the last term in eqs. (3.6)

and (3.7) dominates and we get 〈φ〉(0) = vUV and 〈φ〉(yIR) = vIR. This in turn gives

A =
vIR − vUVσ

ε
IR

σ
−(4+ε)
IR − σεIR

' vIR σ
4+ε
IR − vUV σ

4+2ε
IR , (3.9)

B = vUV −A ' vUV , (3.10)

1To calculate integrals over δ-functions on the boundaries, we first move the δ-functions ε away from the

brane into the interval, perform the integral and then send ε to 0 (e.g. lim
ε→0

∫ yIR
0

f(y)δ(y − ε) dy).
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where we have assumed that vIR and vUV are of comparable size. The leading corrections

to this in λUV, λIR and to zeroth order in ε are given by [9]

δA ' − k

λIRv2
IR

A , (3.11)

δB '
(

k

λUVv2
UV

+
k

λIRv2
IR

)
A . (3.12)

We see that δB is suppressed relative to B by powers of the warp factor σIR and is thus

always negligible. Furthermore, δA can be neglected relative to A for λIRv
2
IR � k which

we will assume in the following.

The contribution of the scalar VEV to the potential energy depends on the size of

the extra dimension. Integrating over the extra dimension, the resulting potential for the

radion σIR is given by [9]

V (σIR) = (4 + ε) kA2
(
σ
−(4+2ε)
IR − 1

)
+ ε kB2(1−σ4+2ε

IR ) +VUV

(
φ(0)

)
+σ4

IRVIR

(
φ(yIR)

)
.

(3.13)

In the limit of large λUV, λIR, the boundary conditions give 〈φ〉(0) = vUV and 〈φ〉(yIR) = vIR

and the boundary potentials thus vanish. The corrections to this coming from eqs. (3.11)

and (3.12) for finite λUV, λIR are negligible for λIRv
2
IR � k. Similarly, the corrections to

the A2- and B2-dependent terms in eq. (3.13) are then negligible too. The potential has a

minimum for ε > 0. Expanding in ε, we find

σmin
IR =

(
vIR

vUV

)1/ε(
1 +

√
ε

4
+O(ε)

)1/ε

. (3.14)

A large hierarchy can thus be generated from an O(1)-ratio vIR/vUV if ε � 1. Note that

an additional term δTIRσ
4
IR in the potential can allow for a minimum also for negative

ε [14, 15]. Such a term can arise from a detuned brane tension on the IR brane. However,

we find that in the two models that we consider negative ε causes the Yukawa couplings

to become nonperturbative when the IR brane is sent to infinity.2 We therefore focus on

positive ε in this paper. The radion mass is suppressed by powers of ε and k/M5, where

M5 is the 5D Planck scale, compared to the IR scale σIRk and can thus be naturally

light [16–18].

Note that the bulk potential in eq. (3.2) only contains a mass term for φ. In principle

also higher-order terms in φ can appear. The leading such term, φ3, was included in the

analysis of refs. [19, 20]. The resulting profile for the Goldberger-Wise scalar was found to

have O(1)-corrections compared to the profile for a bulk potential with only a mass term.

Note that such a φ3-term is in principle expected in model II discussed later because of the

Yukawa coupling in the bulk, though it may be small. Nevertheless even if it is sizeable

2For model I, this can be anticipated from eq. (6.3). The new contribution to the Yukawa coupling

remains proportional to σεIR for negative ε which causes it to diverge in the limit σIR → 0. Model II with

negative ε can give growing wavefunctions for decreasing σIR if c̃ < 0 < c for the modified profile discussed

in section 7.2. For sufficiently small σIR, this results in the fermions being IR-localized. Using eq. (7.9), we

see from eq. (7.22) that the Yukawa coupling then is proportional to factors of
√

1− 2c− 2c̃σεIR for each of

the two fermions. Again this diverges in the limit σIR → 0.

– 6 –



J
H
E
P
0
5
(
2
0
1
7
)
0
7
7

the profile for positive ε will still decay by an O(1)-factor when going from the UV to the

IR. This is the crucial feature that we need for model II and we therefore expect this

mechanism to work also if the bulk potential contains higher-order terms in φ. It is less

clear, on the other hand, if the derivative of the Goldberger-Wise scalar at the IR brane is

then still suppressed when the radion is at the minimum of its potential. This is the crucial

feature which is needed for model I discussed later. However, as it has no bulk Yukawa

coupling, the φ3-term in model I can be forbidden by imposing a Z2-symmetry. We leave

a detailed study of our mechanism for this more general case to future work.

The non-constant piece of the potential (3.13) is of the dilaton type,

V (σIR) ∼ σ4
IR × f(σεIR) , (3.15)

where f is a very slowly-varying function since it depends on σεIR only. The cosmological

dynamics of this very shallow potential was summarized in ref. [21]. We discuss it next.

4 The electroweak phase transition in Randall-Sundrum models

While there has been an extensive literature on the phenomenology of Randall-Sundrum

models, little has been established on its early cosmology. On the other hand, the attrac-

tivity of this solution to the hierarchy problem also relies on whether it is cosmologically

realistic. One of the very first aspects to be checked was that the Friedmann equation

could in fact be recovered, as expected, since gravity is effectively 4-dimensional in this

model, at energies below the EW scale when the radion is stabilized [22, 23].

On the other hand, the knowledge of what happened before radion stabilisation is

less under control. Nevertheless the phase transition leading to the stabilisation of the

radion can be understood as follows [14]: at high temperatures, the system is in an AdS-

Schwarzschild phase with a UV brane and a black hole horizon in the IR (whose Hawking

temperature matches the temperature of the system). In the dual picture, this corresponds

to the strongly-coupled theory being in the deconfined phase and the free energy scales like

FAdS-S ∝ −T 4 as expected. Going to lower temperatures, eventually a phase transition

happens and the black hole horizon is replaced by the IR brane. This phase transition

is typically strongly first-order and proceeds via bubble nucleation. Both geometries —

AdS-Schwarzschild and the Randall-Sundrum geometry with two branes — have different

topologies. They can be smoothly connected, however, by sending respectively the horizon

and the IR brane to infinity which gives pure AdS5 (cutoff by the UV brane). It is therefore

expected that the bubble walls interpolate between the two phases as follows [14]: going

perpendicular to the bubble wall from the AdS-Schwarzschild phase outside towards the

Randall-Sundrum phase inside, we first see the horizon receding until we arrive at pure

AdS5. Further towards the inside, the IR brane comes in from infinity until it arrives at its

stabilized position as determined by the Goldberger-Wise mechanism. This is depicted in

figure 1. The radion σIR thus varies from 0 on the outside of the bubble wall to σmin
IR inside

the bubble. This behaviour will be crucial for us as our models have Yukawa couplings

which grow with decreasing σIR and thus grow across the bubble walls.

– 7 –
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Figure 1. Schematic depiction of the phase transition: a bubble of the Randall-Sundrum phase

emerges from the surrounding AdS-Schwarzschild phase. In the transition region between the two

phases, one sees the black hole horizon receding to infinity and subsequently the IR brane coming

in from infinity.

This phase transition to the Randall-Sundrum phase is special due to the nearly con-

formal nature of the radion potential (3.13) whose cosmology is different from the one

of usual polynomial scalar potentials. The tunneling action can be calculated by deter-

mining the bounce solution for the radion potential which was given in the previous sec-

tion [14, 15, 21, 24, 25]. One finds that in the calculable region of parameter space, the

phase transition may complete but is typically very strong and happens after significant

amount of supercooling, see [21] and [26] for a recent updated status summary.3 Indeed

the nucleation temperature can be parametrically much smaller than the scale associated

with the minimum of the potential. An interesting signature of this scenario is the typical

large signal amplitude of the stochastic gravity wave background peaked in the millihertz

range inherited from the time of the phase transition, and observable at LISA [15, 26].

During the phase transition, also the electroweak symmetry gets broken. We assume

that the Higgs is localized on the IR brane. The action for the Higgs then reads

S ⊃
∫
d5x
√
g δ(y − yIR)

(
e2ky ηµνDµH̃

†DνH̃ − λ
(
|H̃|2 − v2

P

)2)
, (4.1)

where vP ∼MPl. In terms of the canonically normalised Higgs field H = σIRH̃, the Higgs

potential reads

V (H) = λ
(
|H|2 − v2

P σ
2
IR

)2
. (4.2)

The Higgs VEV then scales like

〈H〉 = vEW ×
σIR

σmin
IR

, (4.3)

where vEW = vPσ
min
IR = 174 GeV is the electroweak scale. In deriving eq. (4.3), we have

assumed that the Higgs is always at the minimum of its potential during the phase transition

to the Randall-Sundrum phase. This is an idealised situation, however, we can expect this

3See however ref. [27] for an alternative solution changing this conclusion.
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z
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Figure 2. Left: sketch of possible paths in the dilaton-Higgs field space. The red solid line reflects

the linear relationship (4.3) between the two VEVs. Right: the corresponding profiles of the fields

along the bubble walls. The red solid line corresponds to the dilaton and Higgs bubble walls

precisely overlapping and thus the linear relationship (4.3). For the dotted and dashed lines, the

dilaton reaches its minimum before the Higgs does, which tends to attenuate the variation of the

Yukawa couplings during the EW phase transition.

description to be physically sensible. To derive the exact relation between the Higgs VEV

and the radion VEV, one has to compute the bounce, something which we postpone to

future work. The special features in the RS case are i) a nearly conformal potential along

the radion direction, ii) no quadratic term for the Higgs if the radion vanishes. Therefore,

electroweak symmetry cannot be broken unless the radion has a VEV. If electroweak

symmetry breaking takes place only after the radion settled in its minimum, then there is

no variation of the Yukawa couplings during the electroweak phase transition. It is therefore

crucial that they both change at the same time, which is what we expect. Indeed, if the

Higgs and the radion were on equal footing, i.e. both having similar potentials, then the

path in the two-dimensional field space would be along the diagonal as both fields would

follow the same tendency if they have similar masses. On the other hand, if the radion

is much heavier than the Higgs, we expect the tunneling to proceed first along the radion

direction and only then along the Higgs direction. We illustrate this schematically in

figure 2. Therefore, the optimal case will be for a relatively light radion. Determining the

precise relation between the Higgs and radion VEVs as a function of the radion mass will

be an interesting task in itself.

The breaking of electroweak symmetry is thus tied to the radion cosmology.4 Since

the phase transition to the Randall-Sundrum phase is typically strongly first-order, the

electroweak phase transition is then first-order too. This motivates the possibility of elec-

troweak baryogenesis, provided that the bubble wall velocity is smaller than the sound

speed (for larger velocities the baryon asymmetry vanishes as there is no time for CP -

violating diffusion processes in front of the bubble walls where sphalerons are active).

In fact, the danger for electroweak baryogenesis in strong first-order phase transitions is

that the friction exerted by the plasma on the wall might not be sufficient to prevent the

bubble wall from a runaway behavior in which case the wall keeps accelerating, towards

4Implications for cold baryogenesis were studied in refs. [28, 29].
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ultra-relativistic velocities. The determination of the bubble wall velocity is a non-trivial

calculation. It depends on the strength of the phase transition, i.e. the amount of latent

heat released, as well as the amount of friction between the particles in the plasma and the

bubble wall [30]. Friction is due to particles changing mass across the wall. In contrast

with the SM or the MSSM, we expect that a large number of degrees of freedom become

very massive during the RS phase transition. Since the precise theory in the CFT phase is

unknown (in particular the number of CFT degrees of freedom), the friction is left as a free

parameter. But we can expect that for a large number of CFT degrees of freedom, friction

will be relevant. It is clear however that it will be effective only for not too low nucleation

temperatures. As the nucleation temperature is typically smaller than the scale set by the

radion VEV at the minimum of its potential [21], conditions for EW baryogenesis may

not be satisfied for a generic choice of parameters. We leave the model-dependent detailed

analysis of the EW phase transition for future work. Therefore it should be clear that

the possibility of EW baryogenesis is based on the assumption that there exists a region

in parameter space where the phase transition is moderately strong and the bubble wall

velocity can be subsonic. We then show that the RS setup generically incorporates the

variation of Yukawas during the EW phase transition and therefore enables to realise EW

baryogenesis with the CKM matrix as the only CP -violating source.5

Note that even if the bubble wall velocity is supersonic, our discussion is relevant since

baryogenesis at the electroweak scale is still possible through a different mechanism, so-

called “cold baryogenesis”, which does not rely on a transport mechanism, and is especially

motivated in the context of the supercooled RS phase transition [28, 29]. The source of

CP -violation that we find from Yukawa variation could be used also in this context.

We thus want to generate Yukawa couplings between the Higgs and the fermions that

change in size when the IR brane is moved away from the minimum of the Goldberger-Wise

potential. To this end, we consider in sections 6 and 7 two realisations, first through a

new IR contribution from the Goldberger-Wise field to the Yukawa couplings and second

through the bulk coupling of the Goldberger-Wise field to the fermions. Before doing that,

we review how Yukawa couplings arise in RS models.

5 Review of fermions in Randall-Sundrum models

We now review fermions in RS models and how the fermion mass hierarchy arises. In

this paper, we are mainly interested in the Yukawa couplings of the up-type quarks. We

denote by Q and U the bulk fields that give rise to the left-handed quark doublet and the

right-handed up-type quarks, respectively. Including the kinetic term for completeness, the

bulk action for the left-handed quark doublets Q reads (see e.g. [32])

S ⊃
∫
d5x
√
g

(
EAa

[
i

2
Q γa

(
∂A −

←−
∂A
)
Q+

ωbcA
8
Q{γa, σbc}Q

]
+ cQ kQQ

)
(5.1)

5Note that another paper, ref. [31], entertained the idea of varying Yukawas during the dynamics that

stabilize fermion profiles in (unwarped) extra-dimensional models, however, at a scale much above the

electroweak scale, and therefore for a baryogenesis mechanism requiring higher-dimensional B−L- violating

operators.
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and similarly for the right-handed up-type quarks U .6 EAa is the inverse vielbein, ωbcA is the

spin connection and cQk with cQ ∼ O(1) is the bulk mass of the 5D fermion. For simplicity,

we have suppressed the flavour indices. Note that we can perform unitary transformations

such that the kinetic terms and the mass terms are diagonal in flavour space. We will use

this basis throughout this paper. The Yukawa coupling reads

S ⊃
∫
d5x
√
g δ(y − yIR)λu H̃Q̄ U + h.c. , (5.2)

where λu has dimension −1 and H̃ is the brane-localized Higgs (whose kinetic term and

potential are given in eq. (4.1)).

We decompose the bulk fermions Q and U into left- and right-handed spinors and

Kaluza-Klein (KK) modes. This gives QL,R ≡ 1
2(1∓ γ5)Q and

QL,R(x, y) =
√
k
∑
n

e2kyf
(n)
L,R(y)Q(n)

L,R(x) (5.3)

and similarly for U . The equations of motion for Q then read(
± ∂y + cQ(y) k

)
f

(n)
L,R +m

(n)
Q ekyf

(n)
R,L = 0 , (5.4)

where m
(n)
Q are the KK masses. Notice that we have allowed for the possibility that

cQ is a function of y which will become important later. The wavefunctions fulfill the

orthonormality conditions7 ∫ yIR

0
dy ekyk f

(m)
L,R f

(n)
L,R = δmn . (5.5)

In order to ensure that the boundary terms vanish after the variation of the action, we

can impose that either the left- or right-handed fermion is zero at the two branes (see

e.g. [33]). This leaves one chiral massless mode, m
(0)
Q = 0, which we identify with the SM

fermion. We then choose the boundary conditions such that Q has a left-handed massless

mode, whereas the massless mode from U is right-handed. If the bulk masses cQk and cUk

6On an orbifold cQ needs to be odd, cQ ∝ sgn(y), since Q̄Q is odd. Alternatively we can define the

theory on an interval and then impose the same boundary conditions as on the orbifold.
7For the general case of a position-dependent bulk-mass parameter c(y), the equations of motion for the

two chiralities can be combined and rewritten as

−∂y pL,R ∂y f̃ (n)
L,R =

(
m(n))2 e2ky pL,R f̃

(n)
L,R ,

where

f̃
(n)
L,R ≡ e

±k
∫ y
0 dỹ c(ỹ)f

(n)
L,R and pL,R ≡ e−kye∓2k

∫ y
0 dỹ c(ỹ).

This has the form of a Sturm-Liouville equation (see e.g. eq. (13) in ref. [8]). The problem therefore has

a discrete set of real eigenvalues
(
m(n)

)2
. The eigenfunctions f̃

(n)
L,R form a complete set and satisfy the

orthonormality relation ∫ yIR

0

dy k e2ky pL,R f̃
(n)
L,R f̃

(m)
L,R = δnm

which gives eq. (5.5). This guarantees that the Lagrangian in terms of the KK modes is diagonal.
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are constant, as usually assumed in the literature, the wavefunctions for the left-handed

massless modes from Q then read

f
(0)
L (y) = N (0)

cQ e−cQky, (5.6)

where

N (0)
cQ =

√
1− 2cQ

σ
2cQ−1
IR − 1

(5.7)

is a normalization constant. For later convenience, we redefine c → −c for the bulk

fermions U with right-handed massless modes. Their wavefunctions f
(0)
R (y) are then again

given by eqs. (5.6) and (5.7) with cQ replaced by cU . With this convention, both left- and

right-handed massless modes are UV (IR) localized for c > 1/2 (c < 1/2).

The effective 4D Yukawa coupling between the SM fermions and the Higgs is given by

S ⊃
∫
d4x yu(σIR)H Q̄(0)

L U
(0)
R + h.c. , (5.8)

where H ≡ σIRH̃ to obtain a canonically normalized kinetic term and

yu(σIR) ≡ λu k
√

1− 2cQ

1− σ1−2cQ
IR

√
1− 2cU

1− σ1−2cU
IR

. (5.9)

For cQ, cU > 1/2, this becomes exponentially suppressed. This shows how large hierar-

chies between the 4D Yukawa couplings can be obtained in RS starting from bulk mass

parameters and 5D Yukawa couplings of order one in units of the AdS scale k. Notice that

already in this setup the Yukawa couplings depend on the position σIR of the IR brane.

Since the light quarks are all localized towards the UV brane, however, their Yukawa cou-

plings decrease when the IR brane is sent to infinity, σIR → 0. Correspondingly, they are

small in a large portion of the bubble wall during the phase transition and CP -violation is

suppressed. We will later see how modified fermion profiles can lead to increased Yukawa

couplings during the phase transition.

The parameters that determine yu need to be chosen such that the measured masses

and mixing parameters are reproduced. This still leaves a considerable freedom. For

definiteness, we will use a benchmark point for these parameters from ref. [34]. We need to

adjust the parameters, however, since for the benchmark point a hierarchy σmin
IR = 10−16

was assumed, whereas we choose σmin
IR = 2.5 · 10−15 in this paper.8 In addition, we reduce

the 5D Yukawa couplings involving the left-handed top-bottom doublet by a factor 3/8

compared to those of the benchmark point. This will ensure that the couplings do not

become nonperturbative in the limit σIR → 0 in the models that we consider later. After

making these two modifications, we adjust the bulk-mass parameters such that the 4D

Yukawa couplings are again reproduced. We will only list the parameters for the top-

charm sector since it gives the dominant effect for the models that we consider later. In a

8For example for k ∼ M5 ∼ MPl, this would give an IR scale kσmin
IR ∼ 5 TeV. This would be consistent

with electroweak precision tests even without a custodial symmetry (though it requires a cancellation of

order 25% in the contributions to εK to be viable) [35, 36].
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basis such that the couplings in the Lagrangian are proportional to (Q̄2, Q̄3)λu(U2,U3)T ,

the 5D Yukawa couplings read

λu =
1

k

(
0.76 · e−1.46i 0.74 · e−2.13i

0.28 · e0.39i 0.93 · e−1.26i

)
(5.10)

and the bulk-mass parameters are

cQ2 = 0.521 cU2 = 0.565 cQ3 = 0.278 cU3 = −0.339 . (5.11)

Here and below indices on the fields Q and U denote the generation. The value for cQ3

can be consistent with constraints from the Zbb-coupling [34]. Together with the other

parameters for the benchmark point, these parameter values reproduce the measured quark

masses and mixings when the running from an IR scale of 1.5 TeV to the electroweak scale

is taken into account. Note that we assume a slightly larger IR scale. However, we expect

the required adjustments in the parameters that we are interested in to be small and will

neglect them in the following. Note also that the Yukawa couplings in the plots are thus

given at 1.5 TeV and will change slightly when run down to the electroweak scale.

In the next sections, we will make some rather small but influential modifications to

this commonly used picture.

6 Model I: a new IR contribution to the Yukawa couplings

The first model that we present involves a higher-dimensional coupling of the Goldberger-

Wise scalar to the Yukawa operator H̃Q̄ U on the IR brane. This gives an additional

contribution to the Yukawa coupling. We then use the fact that the VEV of the Goldberger-

Wise scalar changes when the IR brane is moved, leading to a change in the Yukawa

coupling. The boundary potential keeps the VEV at the IR brane relatively constant,

〈φ〉(yIR) ' vIR. A coupling φH̃Q̄ U therefore does not result in a sufficient change for our

purposes. We instead consider a derivative coupling which can for example arise due to a

finite thickness of the brane. For the up-type quarks, eq. (5.2) now becomes

S ⊃
∫
d5x
√
g δ(y − yIR)(λu H̃Q̄ U + κu ∂yφ H̃Q̄ U) + h.c. . (6.1)

We have again suppressed the flavour indices for the fields and the coupling constants λu
and κu (which have dimensions −1 and −7/2, respectively). Similar couplings can exist for

the down-type quarks but it is enough to focus on the up-type couplings for our purposes.

The nonvanishing derivative of the VEV (3.4) of the Goldberger-Wise scalar at the IR

brane gives an additional contribution to the 5D Yukawa coupling which depends on the

position of the IR brane:

S ⊃
∫
d5x
√
g δ(y − yIR) λ̃u(σIR) H̃Q̄ U + h.c. , (6.2)

where

λ̃u(σIR) '
[
λu + 4κuk vIR

[
1−

(
1 +

√
ε

4

)(
σIR

σmin
IR

)ε]]
. (6.3)
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Figure 3. (a) VEV of the Goldberger-Wise scalar in eq. (3.4) along the extra dimension if the

radion is at the minimum of its potential, chosen as σmin
IR = e−ky

min
IR = 2.5 · 10−15. (b) VEV for the

same parameters as in (a) but for the radion at σIR = 10−30.

Note that the contribution from the derivative coupling is suppressed by a factor
√
ε if the

radion is at the minimum of its potential, σIR = σmin
IR . This can be understood as follows:

both the bulk potential m2
φφ

2 and the kinetic term (∂yφ)2 of the Goldberger-Wise scalar

in eq. (3.2) contribute to the radion potential. Since m2
φ ' 4k2ε, the former is suppressed

by ε. The minimum of the potential then occurs at a radion VEV for which the latter is

suppressed by ε too. This leads to

∂y〈φ〉 ∝
√
ε (6.4)

near the stable position of the IR brane. This suppression can be seen in figure 3(a), where

we plot the VEV of the Goldberger-Wise scalar along the extra dimension if the radion

is at the minimum of its potential (we choose σmin
IR = 2.5 · 10−15 and ε = 1/20). The

suppression is lifted when the IR brane is moved to infinity, σIR → 0, and the Yukawa

coupling correspondingly grows. This is visible in figure 3(b) which shows the VEV for the

same parameters as in figure 3(a) but with the radion at σIR = 10−30.

The resulting 4D Yukawa coupling is obtained from eq. (5.9) with the replacement

λu → λ̃u. The new contribution to the effective 5D Yukawa coupling λ̃u grows by a factor√
4/ε when σIR is changed from σmin

IR to 0. Accordingly, this model enables variations in

the Yukawa couplings of order one only. The Yukawa coupling receives two contributions

like in eq. (2.3), on the other hand, and we can therefore still use it for the top quark as

discussed in section 2. Note that since the top is localized in the IR, the prefactor from

the wavefunction overlaps in eq. (5.9) depends only very weakly on σIR (for the bulk mass

parameters in eq. (5.11), it changes by about 6% when σIR is varied from 10−16 to 10−32).

The dominant variation in the Yukawa coupling then arises from λ̃u.

In order to reproduce the observed quark masses and mixings, we need to match the

effective 5D Yukawa coupling λ̃(σIR) evaluated at the minimum of the Goldberger-Wise

potential σmin
IR with the values in eq. (5.10). This fixes the combination λuk−2

√
ε κuk

2 vIR.

In order to estimate the size of the remaining, free combination of λu and κu, we use naive

dimensional analysis (NDA) [37, 38]. Assuming that all loop processes become strong at a
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cutoff scale Λ, we write

L =
√
g

{
Λ5

`5
Lbulk + δ(y − yIR)

Λ4

`4
Lbrane

}
, (6.5)

where `D = 2DπD/2Γ(D/2) is the D-dimensional loop factor and Lbulk and Lbrane are

functions of the dimensionless ratios ∂A/Λ, Q/Λ2, U/Λ2, φ/Λ3/2 and H̃/Λ. After canonical

normalisation of the fields, this gives

λuk = dλ
`
2/3
5

`
1/2
4

k

M5
, κuk

2vIR = dκ
`
1/3
5

`
1/2
4

k2vIR

M
7/2
5

, (6.6)

where we have used that Λ ∼ M5`
1/3
5 from NDA and the coefficients dλ and dκ are of

order one. We next need to estimate the allowed sizes of k/M5 and vIR/M
3/2
5 . The AdS

curvature scale k is limited by the requirement that higher-curvature terms in the action

can be neglected so that the solution to the Einstein equation can be trusted. Using NDA,

this gives k/M5 . (3π3)1/3/51/2 [39]. Similarly, the VEV vIR at the IR brane is limited by

demanding that the backreaction of the Goldberger-Wise scalar on the geometry can be

neglected. Since we want to ensure this also away from the minimum of the Goldberger-

Wise potential, the resulting condition is somewhat more stringent than usual. Indeed,

for σIR � σmin
IR the VEV is well approximated by 〈φ〉 ≈ vIRσ

4+ε
IR e(4+ε)ky in the IR. The

contribution to the energy-momentum tensor from the kinetic term is then not suppressed

by ε (contrary to the case σIR = σmin
IR ). In particular, near the IR brane we have

TMN
φ,IR ≈ 8 k2v2

IRg
MN . (6.7)

Demanding that this is negligible compared to the contribution from the bulk cosmological

constant, TMN
c.c. = −24M3

5k
2gMN , gives vIR/M

3/2
5 .

√
3.

For definiteness, we set k/M5 = 1/2 and vIR/M
3/2
5 = 1. We then fix dλ for given dκ and

ε by the requirement that the 5D Yukawa coupling for the top in eq. (5.10) is reproduced.

We also trade the radion VEV for the Higgs VEV via the relation in eq. (4.3). In figure 4,

we plot the top Yukawa coupling as a function of the Higgs VEV for ε = 1/20 and different

values of dκ (for all these values |dλ| ∼ 0.3). As one can see, the coupling varies with

decreasing Higgs VEV. This corresponds to the fact that the derivative of the Goldberger-

Wise scalar at the IR brane and its contribution to the Yukawa coupling changes when the

IR brane is sent to infinity. In the limit {σIR, 〈H〉} → 0, the top Yukawa coupling becomes

|yu|33 ' 0.5, 1.1, 0.3, 1.5, 0.7, 2.2 for dκ = 1
2e
iπ/2, 1

2e
3iπ/2, eiπ/2, e3iπ/2, 2eiπ/2, 2e3iπ/2 which is

still in the perturbative regime.

In summary, this simple construction allows for Yukawa coupling variation of order one

during the EW phase transition. When applied to the top quark, it can therefore provide

sufficient CP -violation for EW baryogenesis. As discussed in section 8, implications of this

model for flavour and CP -violating observables are rather minor. We next move to what

we consider to be the most interesting aspects of our study.
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Figure 4. The top Yukawa coupling eq. (5.9) with λu → λ̃u given by eq. (6.3), as a function of the

Higgs VEV for ε = 1/20 and different values of dκ.

7 Model II: large Yukawa couplings from modified fermion profiles

As reviewed in section 5, the massless modes of bulk fermions with constant mass terms

have profiles along the extra dimension which are localized towards either the UV or IR

brane. For our second model, we consider a Yukawa coupling of the Goldberger-Wise scalar

to the bulk fermions, giving rise to position-dependent mass terms for the fermions. These

modify the profiles of the massless modes and allow for profiles which are localized in the

UV and thus decay towards the IR but then ‘turn around’ at some point along the extra

dimension and start growing again towards the IR. Fermions which are UV-localized if the

IR brane is at the minimum of the Goldberger-Wise potential can then become IR-localized

when the IR brane is moved to infinity. This increases the Yukawa couplings to the Higgs

on the IR brane.

The fermionic action in the bulk is the same as eq. (5.1) except for the last term which

we replace by

cQ kQQ → ρQ φQQ , (7.1)

where ρQ has dimension −1/2. We consider a similar coupling for the right-handed up-type

quarks U . Note that we can again perform unitary transformations such that the kinetic

terms and the new Yukawa couplings are diagonal in flavour space. The calculations will

be performed in this basis here and below. Furthermore, note that we have assumed that

any constant contributions ck to the bulk masses are negligible. We expect that, even

if they are sizeable, our picture does not change qualitatively. Indeed below we study a

Goldberger-Wise scalar with a constant contribution to the VEV. The more general case

with separate constant and y-dependent contributions to the bulk mass would require a

y-dependent diagonalization of the action. But we expect that the resulting diagonal bulk

masses would then give similar wavefunctions as for the Goldberger-Wise scalar with the

constant and y-dependent contributions to the VEV. Nevertheless we leave a detailed study

of the more general case to future work. In section 7.1, we work out the consequences of

the above coupling for a Goldberger-Wise scalar with a profile as discussed in section 3.
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In section 7.2, we then consider a modified profile for the Goldberger-Wise scalar with the

aforementioned constant contribution which leads to faster growing Yukawa couplings to

the Higgs.

7.1 Using the Goldberger-Wise scalar

The profile of the Goldberger-Wise scalar in eq. (3.4) has two pieces, Ae(4+ε)ky and B e−εky.

As can be seen in figure 3, the first piece becomes important only close to the IR brane.

In order to simplify the calculation, we therefore approximate the profile by the second

piece:9

〈φ〉 ' vUV e
−εky. (7.2)

Later we will check explicitly that this gives an excellent approximation to using the exact

profile in eq. (3.4). The bulk equation of motion for Q is given by eq. (5.4) with

cQ(y) = cloc
Q (y) ≡ ρQ〈φ〉/k = c̃Q e

−εky, (7.3)

where the constants

c̃Q ≡ ρQvUV/k (7.4)

are dimensionless. The wavefunctions of the left-handed massless modes of Q then are

f
(0)
L (y) = N (0)

c̃Q
e
c̃Q
ε
e−εky , (7.5)

with the modified normalisation constant

N (0)
c̃Q

=
√
ε

[
σ−1

IR E1+ 1
ε

(−2 c̃Q σ
ε
IR

ε

)
− E1+ 1

ε

(−2 c̃Q
ε

)]−1/2

(7.6)

and En(x) is the exponential integral function. For the bulk fermions U with right-handed

massless modes, we redefine c̃ → −c̃. Their wavefunctions are then given by eqs. (7.5)

and (7.6) with c̃Q replaced by c̃U ≡ ρUvUV/k.

In order to fix the parameters c̃, we again use the benchmark point from ref. [34]. By

demanding that the wavefunction overlap with the IR brane of our fermion profiles agree

with that for the fermion profiles with constant bulk mass terms, we can translate their

values for c to values for our c̃. Choosing ε = 1/20 and the hierarchy in the minimum of

the radion potential as σmin
IR = 2.5× 10−15, we find for the top-charm sector:

c̃Q2 = 1.17 c̃U2 = 1.24 c̃Q3 = 1.01 c̃U3 = −1.77 . (7.7)

In the upper panel of figure 5, we show the resulting wavefunction of the right-handed

charm along the extra dimension (mulitplied by eky/2 as this gives the function whose

square is normalized to one, cf. eq. (5.5)). The three figures correspond to the hierarchies

9This profile also arises for a vanishing potential on the IR brane, λIR = 0 (though such a scalar no

longer stabilizes the extra dimension). Indeed the boundary conditions eqs. (3.6) and (3.7) in this case

give A ' ε
4
vUVσ

4+2ε
IR and B ' vUV in the limit of large λUV. Comparing the resulting sizes of the two

contributions to the profile, Ae(4+ε)ky and B e−εky, we find that it is everywhere well approximated by

eq. (7.2).
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Figure 5. From left to right, the IR brane is being pushed away from the UV brane with the

hierarchies σIR = 2.5 × 10−15, 10−25 and 10−50 respectively. Upper panel: the normalized wave-

function of the right-handed charm along the extra dimension. The solid curve is the wavefunction

for the position-dependent bulk mass in eq. (7.3), whereas the dashed curve is for the usual case

with constant bulk mass. Lower panel: the bulk-mass parameter cloc of the right-handed charm

along the extra dimension. The solid curve is again for the position-dependent case in eq. (7.3) and

the dashed curve for the usual constant case. The red curve marks the value cloc = 1/2 for which

the wavefunction changes from decaying to growing towards the IR.

σIR = 2.5 × 10−15, 10−25 and 10−50 so the sequence from left to right can be understood

as going along the bubble wall profile where the IR brane is moved to infinity. As one can

see, the wavefunction initially decays when going from the UV to the IR but then starts

to grow again. This can be understood as follows: as reviewed in section 5, for a fermion

with constant bulk mass ck, the massless mode is UV (IR) localized for c > 1/2 (c < 1/2).

In our setup, the bulk mass is ρ〈φ〉 = clock and depends on the position along the extra

dimension. In the lower panel of figure 5, we plot the bulk-mass parameter cloc for the

right-handed charm along the extra dimension. The three figures again correspond to the

hierarchies σIR = 2.5× 10−15, 10−25 and 10−50. Notice that cloc > 1/2 near the UV brane

and the wavefunction thus decays towards the IR in that region. This changes to cloc < 1/2

near the IR brane, on the other hand, leading to a growing wavefunction towards the IR.

Since cloc is always smaller than 1/2 sufficiently deep in the IR, we see that in our model

all fermions eventually become IR-localized if the IR brane is moved to infinity. This is

visible in the upper right plot in figure 5. In figure 6(a), we show all the wavefunctions

from the charm-top sector for the case that the radion is at the minimum of its potential,

σIR = σmin
IR = 2.5× 10−15. Note that for the right-handed top, cloc < 1/2 everywhere and

the wavefunction is thus completely localized towards the IR.

As before, we assume that the Higgs is localized on the IR brane. In order to simplify

the discussion, we do not couple the Goldberger-Wise scalar to the Yukawa operator on

the IR brane as in section 6. Both effects — from the coupling in the bulk and on the

IR brane — could of course be present simultaneously and would then give even stronger
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CP -violation during the phase transition. The 5D Yukawa coupling of the bulk fermions

Q and U to the Higgs H̃ on the IR brane is then given by eq. (5.2), leading to the 4D

Yukawa coupling in eq. (5.8) with

yu(σIR) = λukN (0)
c̃Q
N (0)
c̃U

σ−1
IR e

(c̃Q+c̃U )σεIR
ε . (7.8)

Let us study the above expression in some limits. Since ε� 1, the exponential integral

functions in the normalization constants are well approximated by the leading term in the

expansion

En(x) =
e−x

x+ n

(
1 +

n

(n+ x)2
+ . . .

)
(7.9)

for large argument n.10 The expression for the 4D Yukawa coupling then simplifies to

yu(σIR) ≈ λuk
√

1− 2c̃QσεIR√
1− 1−2c̃Qσ

ε
IR

1−2c̃Q
σIRe

2c̃Q(1−σεIR)/ε

√
1− 2c̃UσεIR√

1− 1−2c̃Uσ
ε
IR

1−2c̃U
σIRe

2c̃U (1−σεIR)/ε
. (7.10)

From this we see immediately that in the limit σIR → 0 we have

yu(σIR) ≈
σIR→0

λuk . (7.11)

This just reflects the fact that all fermions become IR-localized for σIR → 0 as noted above

so that there is no wavefunction suppression of the Yukawa coupling any more. In the limit

ε→ 0 we find

yu(σIR) =
ε→0

λuk

√
1− 2c̃Q

1− σ1−2c̃Q
IR

√
1− 2c̃U

1− σ1−2c̃U
IR

. (7.12)

This agrees with the expression in eq. (5.9) for the 4D Yukawa coupling for fermions with

constant bulk masses, as is expected since cloc becomes constant for ε→ 0. Similarly, the

profile of the massless mode (7.5) agrees with the profile (5.6) for the case of constant bulk

masses in that limit.

For a fermion that is localized towards the UV brane, the normalization constant (7.6)

depends only weakly on the position σIR of the IR brane. We can then neglect the corre-

sponding part in the expression. If both Q and U are UV-localized, this gives

yu(σIR) ≈
UV loc.

λuk
√

2c̃Q − 1
√

2c̃U − 1σ−1
IR e−

(c̃Q+c̃U )(1−σεIR)

ε . (7.13)

We see that for c̃Q+ c̃U > 0, the exponential decreases if σIR becomes smaller. For a certain

range of σIR, this can offset the increase due to the factor of σ−1
IR . However, eventually the

latter effect starts to dominate and the Yukawa coupling keeps growing with decreasing

σIR. This change happens near a position of the IR brane σIR where the wavefunctions

turn from decaying to growing towards the IR. For very small σIR, the approximation

leading to eq. (7.13) then eventually breaks down because the fields become localized in

the IR and the Yukawa coupling is better approximated by eq. (7.11).

10Eq. (5.1.52) in [40].
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Figure 6. (a) Profile along the extra dimension of the left- and right-handed charm (blue and

yellow), and the left- and right-handed top (green and red) for the approximation (7.2) to the

Goldberger-Wise profile. (b) Yukawa couplings |yu|22 of the charm (blue), |yu|33 of the top (yellow)

and the off-diagonal Yukawa couplings |yu|23 (green) and |yu|32 (red). The solid curves were gener-

ated using the approximation (7.2) to the Goldberger-Wise profile, whereas for the dashed curves

the exact expression (3.4) was used.

In figure 6(b), we plot the Yukawa couplings for the top-charm sector using the param-

eters for the benchmark point in eqs. (5.10) and (7.7). We again trade the radion VEV for

the Higgs VEV via the relation in eq. (4.3). We see that the Yukawa couplings grow with

decreasing Higgs VEV (or radion VEV). In particular, the charm coupling |yu|22 and the

charm-top coupling |yu|23 become of order 1 for Higgs VEVs less than about 10−2 GeV.

On the other hand, the top coupling |yu|33 remains almost constant. This is due to the

fact that the right-handed top is highly localized in the IR for any position of the IR brane

(cf. figure 6(a)).

So far we have approximated the Goldberger-Wise scalar by the simplified profile in

eq. (7.2). Let us now consider the exact profile in eq. (3.4). For the left-handed massless

modes of Q, the equation of motion (5.4) is then solved by

f
(0)
L (y) = N (0)

c̃Q
e
c̃Q
ε
e−εky− c̃Q σ̃

4+ε
e(4+ε)ky

, (7.14)

where again c̃Q ≡ ρQ vUV/k and σ̃ ≡ σ4+2ε
IR

(
(σmin

IR /σIR)ε − 1
)
. The normalization constant

N (0)
c̃Q

does not allow for an analytic expression and needs to be evaluated numerically from

the orthonormality condition (5.5). As before, we redefine c̃→ −c̃ for the bulk fermions U
with right-handed massless modes so that their wavefunctions are given by eq. (7.14) with

c̃Q → c̃U .

In figure 6(b), we plot the resulting Yukawa couplings for the benchmark point in

eqs. (5.10) and (7.7) as dashed lines using the same colour code as for the approximate

profile (7.2). As one can see, the difference between using the exact and approximate

profiles is marginal (the charm coupling |yu|22 and the top-charm coupling |yu|32 differ

by about 5% at 10−5 GeV and it is even less for the other couplings). This can be un-

derstood as follows: at the minimum of the Goldberger-Wise potential, for σIR = σmin
IR ,

we have A ' −
√
ε/4 vUV(σmin

IR )4+2ε as follows from eqs. (3.9) and (3.14). The profile of

the Goldberger-Wise scalar is then everywhere well approximated by the simple profile in
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eq. (7.2). For σIR � σmin
IR , on the other hand, we have A ' vUVσ

4+ε
IR (σmin

IR )ε and the contri-

bution Ae(4+ε)ky to the profile becomes potentially important. Comparing with B e−εky,

we see that the former dominates over the latter in the region

σIR ≤ e−ky . σIR

(
σmin

IR

σIR

) ε
4+2ε

. (7.15)

Even for σIR ∼ 10−100, this is a relatively small region σIR ≤ e−ky . 10σIR near the IR

brane and the difference between using the exact and the approximate profiles is corre-

spondingly small.

7.2 Using the Goldberger-Wise scalar with a modified profile

In the last section, we have seen that position-dependent bulk masses for the fermions from

the Goldberger-Wise scalar naturally allow for Yukawa couplings which grow when the IR

brane is moved to infinity. However, the Yukawa couplings involving the charm become

of order 1 only for relatively small radion or Higgs VEVs as can be seen in figure 6(b).

This means that the coupling and the resulting CP -violation is large only in a small

fraction of the bubble wall during the phase transition which suppresses the produced

baryon asymmetry. In order to improve on this, notice that the local bulk-mass parameter

cloc in eq. (7.3) cannot become negative if it is positive near the UV brane (as is necessary

for UV-localized fermions). Since the fermion wavefunctions are more IR-localized the

smaller c is, having cloc become negative leads to faster growing wavefunctions and thus

Yukawa couplings. On the other hand, in order to allow for UV-localized fermions when

the radion is at the minimum of the Goldberger-Wise potential, we need positive cloc near

the UV brane. Both requirements can be satisfied if the scalar VEV that gives rise to the

bulk masses changes sign between the UV and IR brane. We will now discuss how the

Goldberger-Wise scalar can obtain such a VEV using a small modification to the original

proposal. To this end, we consider the action

S ⊃
∫
d5x
√
g

(
1

2
∂Aφ∂

Aφ−
m2
φ

2
(φ+ β)2 − δ(y)λUVṼUV(φ)− δ(y − yIR)λIRṼIR(φ)

)
,

(7.16)

where β is a constant. We choose the boundary potentials ṼUV(φ) and ṼIR(φ) to have

minima at respectively 〈φ〉 = vUV and 〈φ〉 = −vIR (with definitive signs, as opposed to

the boundary potentials in eq. (3.3) which are degenerate for field values with positive and

negative signs). Note also that, up to a constant, a bulk potential with a mass term and

a tadpole can always be written in the above form. The tadpole just shifts the VEV by

a constant. Indeed defining the shifted field φ̃ ≡ φ + β, the tadpole disappears from the

action for φ̃ and the bulk potential only contains a mass term. The VEV 〈φ̃〉 therefore

again has the form in eq. (3.4). Going back to the original field, we see that

〈φ〉 = −β +Ae(4+ε)ky +B e−εky, (7.17)

where as before ε =
√

4 +m2
φ/k

2 − 2. Notice that for the bulk potential in eq. (7.16), the

constant shift β gives no contribution to the bulk cosmological constant. Furthermore, in
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the more general case where the bulk potential only contains terms linear and quadratic

in φ, it can always be written in the above form by shifting the bulk cosmological constant

of the RS solution. This shift is of order m2
φ β

2. For β = O(k3/2) as considered below

and since m2
φ ' 4εk2 � k2 and k . M5, this is small compared to the bulk cosmological

constant Λ5 = −24M3
5k

2.

The integration constants A and B are determined by the boundary potentials. In

terms of the shifted field φ̃, the minima of the latter are at ṽUV ≡ β+vUV and ṽIR ≡ β−vIR.

In the limit of large couplings λUV, λIR, the integration constants are therefore given by

eqs. (3.9) and (3.10) with vUV, vIR replaced by ṽUV, ṽIR. Similarly, the radion potential is

again given by eq. (3.13). Choosing ṽUV, ṽIR > 0, to leading order in ε the radion is then

stabilized at

σmin
IR ≡

(
ṽIR

ṽUV

)1/ε

. (7.18)

As before, we drop the contribution Ae(4+ε)ky to the scalar profile since it gives only

a negligible correction to the wavefunctions and couplings. The bulk equations of motion

for Q are then given by eq. (5.4) with

cloc
Q (y) ≡ ρQ〈φ〉/k ' cQ + c̃Q e

−εky, (7.19)

where cQ ≡ −βρQ/k and c̃Q ≡ ṽUVρQ/k and similarly for U . For the left-handed massless

modes of Q, this yields

f
(0)
L (y) = N (0)

c̃Q,cQ
e−cQ ky+

c̃Q
ε
e−εky (7.20)

with

N (0)
c̃Q,cQ

=
√
ε

[
σ

2cQ−1
IR E

1+
1−2cQ

ε

(−2 c̃Q σ
ε
IR

ε

)
− E

1+
1−2cQ

ε

(−2 c̃Q
ε

)]−1/2

. (7.21)

We redefine c, c̃ → −c,−c̃ for the bulk fermions U with right-handed massless modes so

that their wavefunctions are given by the above expression with cQ, c̃Q → cU , c̃U . The 4D

Yukawa couplings for the up-type quarks are then given by eq. (5.8) with

yu(σIR) = λukN (0)
c̃Q,cQ

N (0)
c̃U ,cU

σ
cQ+cU−1
IR e

(c̃Q+c̃U )σεIR
ε . (7.22)

Choosing c < 0 < c̃ and c + c̃ > 0, the bulk-mass parameter cloc is positive near the

UV brane but can become negative in the IR. For definiteness, we set the parameters that

determine the Goldberger-Wise potential as11 β = 1.5 k3/2, ṽUV = 4 k3/2 and as before ε =

1/20 and σmin
IR = 2.5·10−15. We can then choose the couplings ρQ and ρU to achieve different

localizations for the zero-mode wavefunctions. Let us again consider the benchmark point

from ref. [34] for which the relevant parameters are given in eqs. (5.10) and (5.11). We

then demand that the overlaps with the IR brane of our zero-mode wavefunctions at the

minimum of the radion potential, σIR = σmin
IR , reproduce those for the benchmark point.

For the top and charm this gives

ρQ2 = 1.35 k−1/2 ρU2 = 1.43 k−1/2 ρQ3 = 1.22 k−1/2 ρU3 = 1.15 k−1/2. (7.23)

11Together this fixes ṽIR ' (σmin
IR )εṽUV ' 0.74 k3/2 which in turn requires vIR = β− ṽIR ' 0.76 k3/2, while

vUV = ṽUV − β = 2.5k3/2.
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Figure 7. (a) Profile along the extra dimension of the left- and right-handed charm (blue and

yellow), and the left- and right-handed top (green and red). (b) Yukawa couplings |yu|22 of the

charm (blue), |yu|33 of the top (yellow) and the off-diagonal Yukawa couplings |yu|23 (green) and

|yu|32 (red).

In figure 7(a), we plot the resulting profiles along the extra dimension. Notice that, com-

pared with the case shown in figure 6(a), the wavefunctions initially decay much faster

towards the IR and then similarly grow much faster beyond the turning point. Corre-

spondingly, we expect that the Yukawa couplings increase more quickly if we move the IR

brane to infinity. Trading the radion VEV for the Higgs VEV via the relation in eq. (4.3),

we plot the Yukawa couplings as a function of the latter in figure 7(b). Comparing with

figure 6(b), we see that indeed the Yukawa couplings grow much faster. In particular, the

charm coupling |yu|22 and the charm-top coupling |yu|23 become of order one already for

Higgs VEVs around 20 GeV (compared to 10−2 GeV in the other case).

Such a variation of the Yukawa couplings during the EW phase transition is shown

to provide a sufficient source of CP -violation to obtain the correct amount of baryon

asymmetry during EW baryogenesis, see ref. [4].

8 Constraints from flavour- and CP -violation

We will now discuss how flavour- and CP -violating processes are modified in our two models

compared to the usual scenario in which couplings of the Goldberger-Wise scalar to the bulk

fermions are neglected. We remind that in order to obtain sufficient CP -violation during

the electroweak phase transition it is sufficient to couple the Goldberger-Wise scalar to the

top quark in model I or to the top-charm sector in model II. However, to be conservative,

we will here assume that such couplings exist for all flavours.

We focus on the dominant constraints on the KK scale which arise from CP -violation

in K-K-mixing [41] and from the neutron EDM [42]. In sections 8.1 and 8.2, we first

review the usual contributions to these quantities from SM particles and their higher KK

modes. We then discuss modifications that arise in model II due to the position-dependent

bulk masses for the fermions. In particular, these lead to decreased overlap integrals of

the SM particles with KK gluons and thereby alleviate the contraint from CP -violation

in K-K-mixing. Since the fermions have the usual constant bulk masses in model I, on
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Figure 8. The most important, new contribution to (a) CP -violation in K-K-mixing and (b) the

neutron EDM. Double lines denote KK modes.

the other hand, no such modifications arise in this case. In sections 8.3, we then consider

processes mediated by the Goldberger-Wise scalar which are relevant for both models.

8.1 Constraints from the tree-level contribution of KK gluons to εK

An important constraint arises from εK which measures CP -violation in K-K-mixing. The

most important, new contribution to this quantity is mediated by the first KK mode of the

gluon, K → G(1)
µ → K [41]. The corresponding Feynman diagram is shown in figure 8(a).

The relevant coupling of the bulk gluon GA to the left-handed quark doublets Q reads

S ⊃
∫
d5x
√
g i gs5 GAEAa Q γaQ , (8.1)

where gs5 is the 5D gauge coupling of QCD. The couplings to the right-handed up-type

quarks U and down-type quarks D are similar. Expanding the gluon as

Gµ(x, y) =
√
k
∑
n

G(n)
µ (x)f

(n)
G (y) (8.2)

and integrating over the extra dimension, the coupling of the first KK mode of GA to the

zero-modes of Q reads

S ⊃
∫
d4x iG(1)

µ Q
(0)
L g̃QLσ

µQ(0)
L , (8.3)

where g̃QL involves an overlap integral over the fermion and gluon wavefunctions. Similar

couplings exist for the right-handed quarks. After electroweak symmetry breaking, we

rotate the fields U (0)
R → URuuR etc. in order to obtain diagonal mass matrices. The unitary

rotation matrices are hierarchical, with elements

|ULu|ij ∼ |ULd|ij ∼
fQi
fQj

, |URu|ij ∼
fUi
fUj

, |URd|ij ∼
fDi
fDj

(8.4)

for i ≤ j, where fQi ≡ ekyIR/2f
(0)
QiL(yIR) are the wavefunction overlaps of the zero-modes

with the IR brane with fQ3 > fQ2 > fQ1 and similarly for U and D. In terms of the fields

with diagonal mass matrices, we then have

S ⊃
∫
d4x iG(1)

µ uLĝQLσ
µ uL , (8.5)
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where

ĝQL ∼ gs5k1/2

α+ f2
Q1

(γQ1 + γQ2 + γQ3) fQ1fQ2 (γQ2 + γQ3) fQ1fQ3 γQ3

. α+ f2
Q2

(γQ2 + γQ3) fQ2fQ3 γQ3

. . α+ f2
Q3
γQ3

 (8.6)

is a symmetric matrix and uL a vector in flavour space. Furthermore, α ' 1/ log
(
m

(1)
G /k

)
with m

(1)
G being the mass of the first gluon KK mode and

γQi ≡
√

2 k

∫ yIR

0
dy e2k(y−yIR)

J1

(
m

(1)
G
k eky

)
J1

(
m

(1)
G /mIR

)( f
(0)
QiL(y)

f
(0)
QiL(yIR)

)2

, (8.7)

where mIR ≡ σIRk is the warped-down AdS scale. The couplings to the other quarks dL,

uR and dR are given by analogous expressions.

The most important constraint on CP -violation in K-K-mixing arises from the effec-

tive operator

L ⊃ −C4
K dRsLdLsR , (8.8)

where the first and the second pair form color singlets (and dL,R is now the down quark,

not a vector in flavour space). This leads to (see e.g. table 2 in ref. [41]) ImC4
K <

(1.6 · 105 TeV)−2. Integrating out the first gluon KK mode, we can estimate the Wilson

coefficient as

C4
K ∼

mdms

v2
EW λ2

∗

[gs5]2k[
m

(1)
G
]2 (γQ2 + γQ3)(γD2 + γD3) , (8.9)

where md ∼ λ∗fQ1fD1vEW and ms ∼ λ∗fQ2fD2vEW are the masses of the up and strange

quark, respectively, and the dimensionless λ∗ measures the typical size of the 5D Yukawa

couplings in units of k−1. For the case of constant fermion mass terms, the resulting limit

on the mass of the first gluon KK mode is m
(1)
G & (3/λ∗)(22± 6) TeV [41] (the error arises

from the uncertainty in the down and strange quark masses). Using that the masses of

the gluon KK modes are determined by J0

(
m

(n)
G /mIR

)
' 0, this translates to the limit

mIR & (3/λ∗)(9± 3) TeV on the IR scale.

Such a bound on mIR introduces a little hierarchy problem. Numerous solutions have

been proposed to solve it. Most of them introduce a new (partially gauged) flavour sym-

metry in the bulk, e.g. [43–45] (see [46, 47] for reviews of the current status). In all these

works, the bulk mass of the fermions is assumed to be dominated by a constant.12 In

contrast, the bulk mass in model II is given by the VEV of the Goldberger-Wise field, and

this affects the fermionic profiles. Since the fermion wavefunctions are then suppressed in

a large part of the bulk compared to the case of constant bulk masses (cf. figure 5), the

overlap integral with the gluon wavefunction is decreased. Accordingly, we expect C4
K to

be smaller and the constraint on the KK gluon mass to be weakened. Indeed, matching the

12The potential flavon-radion interplay and the possibility to use the Goldberger-Wise field as a flavon

were discussed in ref. [48], however in a context where extra flavour symmetries in the bulk remain the key

features and the effect on fermionic profiles was not alluded to.
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parameters ρ for the relevant flavours to the benchmark point from ref. [34] (cf. section 6),

we find
[C4
K ]cloc

[C4
K ]c=const.

∼ [(γQ2 + γQ3)(γD2 + γD3)]cloc

[(γQ2 + γQ3)(γD2 + γD3)]c=const.
∼ 1

10
. (8.10)

The limit then becomes m
(1)
G & (3/λ∗) (7± 2) TeV or mIR & (3/λ∗)(3± 1) TeV in model II.

For λ∗ ∼ 3, this is in the same ballpark as the constraint mIR & 1.9 TeV that arises

from electroweak precision tests if a custodial symmetry is assumed [35, 36]. The modified

fermion wavefunctions thus mitigate the RS-CP -problem that stems from CP -violation in

K-K-mixing in a very minimal way. This clearly deserves further investigation given the

potentially important implications for the little hierarchy problem in RS. Let us emphasize

that this effect of coupling suppression between SM fermions and KK gluons works as long

as the Higgs lives very near the IR brane. If the Higgs is delocalized into the bulk and

as delocalised as the KK gluon, on the other hand, there will be no effect. The effect

of weakening the bound on the KK scale from εK is thus maximal when the Higgs lives

exactly on the IR brane.

8.2 Constraints from one-loop contributions to the neutron EDM

Another important constraint arises from the neutron EDM. The most important, new

contribution to this quantity arises at one-loop and is mediated by fermionic KK modes

and the Higgs or the longitudinal components of the Z [42]. The corresponding Feynman

diagram is shown in figure 8(b). This gives rise to the effective operator

L ⊃ −Cdn dLσµνdR Fµν , (8.11)

where again dL,R is the down quark. We can estimate the Wilson coefficient as

Cdn ∼
λ2
∗ e

16π2

md[
m

(1)
ψ

]2 , (8.12)

where md ∼ λ∗fQ1fD1vEW is the mass of the down quark and m
(1)
ψ denotes the mass scale

of the (lowest lying) fermionic KK modes in the loop. The EDM is proportional to the

imaginary part of this Wilson coefficient. It can be shown that this imaginary part is

unsuppressed and cannot be removed by field redefinitions, so that ImCdn ∼ |Cdn | [42].

The bound dn ≤ 3 · 10−26 e cm [49] on the neutron EDM then translates to m
(1)
ψ & (λ∗/3) ·

26 TeV. For a fermion with constant bulk mass ck, the KK spectrum is determined by

J|c−1/2|
(
m

(n)
ψ /mIR

)
' 0 [6]. For c ∼ 1/2, this gives the limit mIR & (λ∗/3) 11 TeV on the

IR scale.

The above estimates are modified in model II since the masses of the fermionic KK

modes in the loop and their wavefunction overlaps with the IR brane (which are relevant

for the vertices involving the Higgs) differ from the case of constant bulk masses. We

have numerically determined these quantities for the first fermionic KK modes using the

ρ-values that correspond to the benchmark point from ref. [41]. In table 1, we list the

masses for the case of y-dependent and constant bulk masses. As one can see, the former
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m
(1)
Qi
/mIR m

(1)
Ui /mIR m

(1)
Di
/mIR

i = 1 4.56 (2.54) 4.91 (2.81) 4.84 (2.76)

i = 2 4.44 (2.46) 4.52 (2.51) 4.74 (2.68)

i = 3 4.34 (2.74) 4.28 (3.61) 4.51 (2.50)

Table 1. Masses of the first fermionic KK modes in model II using the ρ-values that correspond

to the benchmark point from ref. [41] and, in brackets, for the case of constant bulk masses.

are (75–80)% heavier than the latter (except for the left-handed top-bottom doublet and

the right-handed top for which the mass increase is smaller). This can be understood

as follows: the local bulk-mass parameter in eq. (7.19) is approximately constant near

the IR brane, cloc ≈ −βρ/k. Since the light KK modes are localized in that region, we

expect that their masses depend similarly on cloc as for the case of constant bulk masses.

The mass quantization condition for the latter case given above leads to masses which

grow with |c − 1/2|. For β = 1.5k3/2 and the ρ-values that correspond to the benchmark

point from ref. [41], cloc near the IR brane is in the range −1.7 . . . −2.8. This is thus

much larger than the corresponding c-values for the case of constant bulk masses for the

fermions (cf. eq. (5.11)) and leads to larger masses for the KK modes. We find that the

wavefunction overlaps with the IR brane, on the other hand, change only by (1–2)%. Since

the contribution to the neutron EDM scales like
[
m

(1)
ψ

]−2
, we expect that the limit on the

IR scale mIR is reduced in model II. However, to quantify this requires a more detailed

study of the relative importance of the different fermionic KK modes in the loop. We leave

this for future work. Nevertheless, it is clear that the modified fermion wavefunctions in

model II also ease the RS-CP -problem that stems from the neutron EDM.

8.3 Constraints from processes mediated by the Goldberger-Wise scalar

Next we consider processes mediated by the Goldberger-Wise scalar. We focus on the case

that the radion is parametrically lighter than the KK modes of the Goldberger-Wise scalar.

Then the mixing between the former and the latter can be neglected [20].

Let us first consider model II. We expand the Goldberger-Wise scalar around its VEV,

φ = 〈φ〉 + δφ, and decompose it as δφ =
√
k
∑

n φ
(n)f

(n)
φ (see the appendix A for more

details). We again work in the basis in which the Yukawa coupling in eq. (7.1) for the bulk

fermions is diagonal in flavour space. The coupling among the lightest KK modes of the

Goldberger-Wise scalar and the fermions is then given by

S ⊃ −
∫
d4xφ(1)

(
Q(1)
R ρ̃QQ(0)

L + h.c.
)
, (8.13)

where ρ̃Q is a diagonal matrix in flavour space with elements

[ρ̃Q]ij = δij ρQi k
3/2

∫ yIR

0
dy f

(1)
φ f

(1)
QiR f

(0)
QiL . (8.14)

Similar couplings exist for the right-handed quarks. After electroweak symmetry breaking,

we rotate the quarks U (0)
R → URuuR etc. in order to obtain diagonal mass matrices. The
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coupling in eq. (8.13) then induces flavour- and CP -violating processes. In particular, the

Goldberger-Wise scalar contributes to the neutron EDM via processes of the type shown

in figure 8(b), where it replaces the Higgs. Since the KK modes are localized in the IR

whereas the down quark lives towards the UV brane, the overlap integral in eq. (8.14) leads

to a suppression factor of order fQ1fD1 in the amplitude similar to the process mediated by

the Higgs. In addition we have some freedom in choosing the size of the couplings ρQi etc.

and the KK modes of the Goldberger-Wise scalar can be relatively heavy which can further

suppress the contribution of the Goldberger-Wise scalar to the neutron EDM. We therefore

expect that the latter can be subdominant compared to the contribution mediated by the

Higgs. However, we leave a more detailed study to future work.

Let us next consider model I. In this case the fermion wavefunctions are not modified

but the coupling of the Goldberger-Wise scalar to the Yukawa operator on the IR brane

results in new flavour- and CP -violating processes. Using the expression involving down-

type quarks which corresponds to eq. (6.1) for the up-type quarks, we find for the coupling

of the first Goldberger-Wise mode to the fermionic zero-modes and the Higgs

S ⊃
∫
d4x

φ(1)

mIR
H Q(0)

L κ̃dD(0)
R + h.c. , (8.15)

where κ̃d is a matrix in flavour space with elements

[κ̃d]ij = fQi fDj (κd)ijk
7/2B . (8.16)

As before, fQi ≡ ekyIR/2f
(0)
QiL(yIR) etc. are the wavefunction overlaps of the zero-modes

with the IR brane and

B ≡
∂yf

(1)
φ

∣∣
yIR

kek yIR
=

−2 bIRN (1)
φ ek yIR

πm
(1)
φ Y1+ε

(
m

(1)
φ /mIR

)
/mIR + π (bIR − ε)Y2+ε

(
m

(1)
φ /mIR

) . (8.17)

The normalization constant N (1)
φ is given in eq. (A.7) and bIR is defined in eq. (A.3). For

example for ε = 1/20 and bIR = 10, we find B = −5.32. Rotating the quarks D(0)
R → URddR

etc. after electroweak symmetry breaking in order to obtain diagonal mass matrices, this

gives

S ⊃
∫
d4xφ(1) dL κ̂d dR + h.c. , (8.18)

where the elements of the matrix κ̂d are

[κ̂d]ij ∼ fQi fDj
vEW

mIR
(κd)ijk

7/2B ∼ fQi fDj B
vEW

mIR

`
1/3
5

`
1/2
4

(
k

M5

)7/2

. (8.19)

In the last step, we have used the estimate (6.6) from naive dimensional analysis. Notice

that the unitary rotation matrices URd etc. do not change the dependence on fQifDj in κ̂d
versus κ̃d. Due to this coupling, the Goldberger-Wise scalar can in particular contribute to

εK via tree-level exchange similar to the gluon in figure 8(a). Integrating out the first KK
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mode of the Goldberger-Wise scalar, we can estimate the Wilson coefficient of the operator

in eq. (8.8) as

C4
K ∼

mdms

m2
IR λ

2
∗

B2[
m

(1)
φ

]2 `2/35

`4

(
k

M5

)7

. (8.20)

We see that this is suppressed compared to the Wilson coefficient in eq. (8.9) that arises

from gluon exchange by factors (vEW/mIR)2 and (k/M5)7. We therefore again expect that

constraints on flavour- and CP -violation due to the Goldberger-Wise scalar can be readily

fulfilled but leave a more detailed study to future work.

Finally let us comment on processes mediated by the radion. If the radion is para-

metrically lighter than the KK modes of the Goldberger-Wise scalar, modifications of the

radion couplings to SM fermions that arise via mixing from the new couplings of the

Goldberger-Wise scalar to the bulk fermions are suppressed [20]. On the other hand, the

radion couplings to SM fermions are modified since the dependence of the Yukawa cou-

plings on the radion changes in our two models compared to the usual scenario (compare

eq. (5.9) for λu = const. with eqs. (6.3) and (7.8)). Indeed these couplings can be obtained

by replacing

σIR → σIR

(
1 +

r

Λr

)
(8.21)

in eq. (5.8), where r is the radion and Λr is a suppression scale, and expanding in the radion

(taking into account that the Higgs vev also depends on the radion, cf. eq. (4.3)) [50]. We

then find that the couplings change by at most a few percent in model I, whereas they

are increased by up to a factor of 2 in model II. Since the constraints from flavour-

and CP -violating processes mediated by the radion are relatively mild, even with this

increase they can be readily fulfilled. For example for mIR = 5 TeV and k = M5, we have

Λr ' 12 TeV and the constraints from εK taking into account the increased couplings are

typically fulfilled for a radion heavier than about 50 GeV (see [50] for more details; see

also [51]).

9 Interpretation of the models in the dual CFT

The Randall-Sundrum model has a dual description in terms of a strongly-coupled CFT

via the AdS/CFT correspondence [52]. The presence of the UV brane corresponds to the

CFT being coupled to gravity [53] while the IR brane is dual to the spontaneous breaking

of conformal invariance in the IR [54, 55].

Stabilizing the extra dimension by the Goldberger-Wise mechanism is dual to deform-

ing the CFT at the cutoff scale ΛUV ∼ k by an almost marginal operator Oφ of dimension

4 + ε,

L = LCFT +
B

Λ
3/2+ε
UV

Oφ , (9.1)

where ε and B are the parameters that determine the VEV of the Goldberger-Wise scalar

in eq. (3.4). This operator runs slowly when going towards lower energies until it eventually
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triggers the breaking of conformal invariance at a scale

Λmin
IR ∼ k σmin

IR . (9.2)

Moving the radion VEV away from its value σmin
IR at the minimum of the Goldberger-Wise

potential to some value σIR then corresponds to changing the confinement scale of the

theory13 from Λmin
IR to ΛIR ∼ k σIR. Furthermore, the parameter A in eq. (3.4) is dual to

the VEV of the operator,

〈Oφ〉 = Λ
5/2+ε
UV A . (9.3)

A fermion with a constant mass term ck > −k/2 in the bulk of a Randall-Sundrum

model is dual to the system [56]

L ⊃ LCFT + iZ ψ̄Lγµ∂µψL +
ω

Λ
∆−5/2
UV

(ψ̄LOR + h.c.) , (9.4)

where ψL is a left-handed, massless fermion, OR is a fermionic CFT operator with dimen-

sion

∆ = 3/2 + |c+ 1/2| (9.5)

and Z and ω are dimensionless constants.14 Let us focus on a bulk fermion with boundary

conditions leading to a left-handed massless zero-mode. According to the dictionary from

ref. [56], the dual theory in this case has no massless composite states once conformal

invariance is broken. The spectrum therefore contains exactly one massless fermion which

generically is an admixture of ψL with the composite states generated by the operator

OR. This state is dual to the zero-mode of the bulk fermion. If ∆ > 5/2, the operator

in eq. (9.4) which mixes ψL and the composite states is irrelevant and the massless state

therefore consists dominantly of ψL. In the opposite case ∆ < 5/2, the mixing operator is

relevant and the massless state has a significant composite contribution. On the Randall-

Sundrum side, this corresponds to c > 1/2 and a UV-localized zero-mode and c < 1/2 and

an IR-localized zero-mode, respectively.

In model II, the bulk fermions instead have position-dependent masses kcloc(y). Since

the position along the extra dimension corresponds to the RG scale of the dual theory,

e−ky ⇔ µ/ΛUV, we expect that the dual description is again given by eq. (9.4) but with a

large anomalous dimension

∆(µ) =
3

2
+

∣∣∣∣cloc

(
1

k
log

ΛUV

µ

)
+

1

2

∣∣∣∣ . (9.6)

We will now show that this reproduces the Yukawa couplings that we have found in the

5D description. To this end, we will focus on the simple profile for the Goldberger-Wise

13The groundstate of this theory differs from that for a confinement scale Λmin
IR and is obtained by

minimizing the energy 〈ρ|HCFT|ρ〉 over all states |ρ〉 that keep 〈Oφ〉 = 〈ρ|Oφ|ρ〉 fixed at the value given in

eq. (9.16) below [54].
14An alternative description involves a right-handed instead of the left-handed fermion [56].
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scalar in eq. (7.2) but the derivation can be extended to the other profiles considered in

this paper too. Using eq. (7.3), the anomalous dimension then reads

∆(µ) = 2 + c̃

(
µ

ΛUV

)ε
(9.7)

for c̃ > −1/2. We define the dimensionless parameter

ξ(µ) ≡ ω(µ)√
Z(µ)

(
µ

ΛUV

)∆(µ)−5/2

(9.8)

which measures the mixing between ψL and the CFT (or the composite states once con-

formal invariance is broken). It satisfies the RG equation [56]

µ
dξ

dµ
=

(
∆− 5

2

)
ξ +

η N

16π2
ξ3, (9.9)

where N is the number of colors of the CFT, η = O(1) and the second term arises from

the CFT contribution to the wavefunction renormalization Z of ψL.

First we consider the case that ∆ > 5/2 at the cutoff scale ΛUV (corresponding to

c̃ > 1/2). The first term in the RG equation then reduces the coupling when going to lower

energies and both terms become comparable at some scale µ̃. The mixing parameter at

that scale is

ξ(µ̃) ≈ 4π
√(

∆(µ̃)− 5/2
)
/(ηN) (9.10)

and we expect that µ̃ ≈ ΛUV. Assuming that ∆ > 5/2 over a sufficiently large range of

energies, we can neglect the second term over the remaining RG evolution and integrate

the RG equation in closed form. At the scale ΛIR this gives:

ξ(ΛIR) ≈ 4π

√
c̃− 1

2

ηN

√
ΛUV

ΛIR
e−

c̃
ε e

c̃
ε

(
ΛIR
ΛUV

)ε
. (9.11)

The above approximations are in particular valid for the case of small mixing, ξ(ΛIR)� 1.

Next we consider the opposite case of strong mixing ξ(ΛIR) & 1. This can occur if

∆ < 5/2 over a sufficiently large range of energies during the RG evolution. Then the second

term in the RG equation can no longer be neglected. Assuming that |c̃(µ/ΛUV)ε| � 1/2 at

energies somewhat above ΛIR so that ∆(µ)− 5/2 ≈ −1/2, we can again integrate the RG

equation in closed form. We then find that the mixing parameter runs to the fixed point

ξ =

√
8π2

Nη
. (9.12)

From eq. (9.7), we can also understand the dual interpretation of the wavefunctions

in figure 5. In the UV, the dimension of the operator that mixes with the fundamental

fermion is larger than 2.5 (dual to cloc > 1/2). This leads to an irrelevant mixing term in

eq. (9.4) and causes a fast drop in the coupling of the fundamental fermion to the CFT,

corresponding to a decaying wavefunction towards the IR. The dimension of the operator
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ψcomp.
R

ψcomp.
L

ψL

ψR

H

ξL

ξR

Figure 9. Origin of the Yukawa couplings to SM fermions in the dual CFT.

decreases at lower energies and at some RG scale, it becomes smaller than 2.5 (dual to

cloc < 1/2). The mixing term then becomes relevant and the coupling of the fundamental

fermion to the CFT grows (but starting from a small value due to the earlier drop) as is

reflected by a growing wavefunction towards the IR.

So far we have only discussed the dual description of bulk fermions with left-handed

zero-modes. Similarly, bulk fermions with right-handed zero-modes are described by

eq. (9.4) with a right-handed, massless fermion ψR which mixes with an operator OL.

We identify the massless states which arise from the combined Lagrangian with the left-

and right-handed fields of the SM. Each has its own mixing parameter ξL or ξR. The Higgs

on the IR brane is dual to a composite state and will generically have large couplings to

other composite states. The size of the Yukawa couplings to SM fermions is then controlled

by the degree of compositeness of the massless states in the dual theory and thus by the

mixing parameters ξL and ξR. In particular for ξL, ξR � 1, the massless states consist

dominantly of ψL and ψR and the Yukawa couplings are suppressed by the small mixing

parameters:

y(ΛIR) ∝ ξL(ΛIR)× ξR(ΛIR) . (9.13)

The corresponding Feynman diagram is shown in figure 9. Assuming that the dual theory is

a gauge theory with large number of colors N (as is implied by full string-theory examples

of the AdS/CFT correspondence), we can determine the prefactor in the above relation.

In this case, the overlap between an operator O and composite fermions ψcomp. is given

by 〈0|Oψcomp.|0〉 ∼
√
N/4π [57]. Furthermore, the vertex between three composite states

is Γ3 ∼ 4π/
√
N [57]. Using eq. (9.11) for the left- and right-handed state, the resulting

Yukawa couplings are

y(ΛIR) ≈
√
c̃L −

1

2

√
c̃R −

1

2

4π√
Nη

ΛUV

ΛIR
e
− c̃L+c̃R

ε

(
1−
(

ΛIR
ΛUV

)ε)
. (9.14)

The limit of small mixing, ξL, ξR � 1, corresponds to fermions which are localized towards

the UV brane. The Yukawa coupling from the 5D description is then well approximated

by eq. (7.13). Identifying η = 1/2 and λk = 4π/
√
N , where λ is the 5D Yukawa coupling,

we see that eq. (9.14) reproduces the Yukawa coupling from the 5D description.

Similarly in the case of strong mixing, using eq. (9.12) for the left- and right-handed

state gives

y(ΛIR) ≈ 1

2η

4π√
N
. (9.15)
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The case of strong mixing corresponds to fermions which are localized towards the IR brane.

The Yukawa coupling from the 5D description is then well approximated by eq. (7.11).

Again identifying η = 1/2 and λk = 4π/
√
N , we see that eq. (9.15) reproduces the Yukawa

coupling from the 5D description.

We found that the coupling of KK gluons to SM fermions can be reduced when taking

the fermionic bulk masses to be y-dependent (while keeping the 4D Yukawa couplings of the

SM fermions fixed). In the CFT language, this means that the coupling of SM fermions

to composite gluons is reduced when changing the scaling dimensions of the fermionic

operators while keeping the amount of compositeness of the SM fermions fixed.

We can also apply the AdS/CFT dictionary to model I. Using eqs. (3.9), (3.14)

and (9.3), we see that moving the radion VEV away from the minimum of the Goldberger-

Wise potential changes the VEV of the operator,

〈Oφ〉 ∼ Λ4+2ε
IR

B

Λ
3/2+ε
UV

((
Λmin

IR

ΛIR

)ε(
1−

√
ε

4

)
− 1

)
. (9.16)

When ΛIR = Λmin
IR , this VEV is suppressed as 〈Oφ〉 ∝

√
ε. It increases when moving away

from the minimum. The new contribution from the derivative coupling in eq. (6.1) to the

Yukawa coupling for the top quark can be written as

[δyu]33 ∼
∂y〈φ〉
k5/2

∣∣∣∣
y=yIR

∼ 4 〈Oφ〉
Λ4+ε

IR

− εB ΛεIR

Λ
3/2+ε
UV

, (9.17)

where we have used eqs. (3.4) and (9.3) and set κu ∼ k−7/2. Note that for the UV-localized

flavours, the Yukawa couplings are suppressed compared to eq. (9.17) due to the small

overlap of their wavefunctions with the IR brane (cf. eq. (5.9)). This is dual to small

mixing ξL, ξR � 1 between the fundamental fermions and the composite states of the

broken CFT as discussed above. We thus see that in the dual description, the top Yukawa

coupling gets a contribution proportional to 〈Oφ〉 via the first term in eq. (9.17). Notice

also that at the scale Λmin
IR the second term is suppressed by

√
ε/4 relative to the first term

and becomes even less important as ΛIR decreases. The change in the Yukawa coupling

when the IR brane is moved then dominantly arises from the change in 〈Oφ〉 when the

dual broken CFT is in states with different confinement scales ΛIR. In this description, it

is also clear that in model I (in contrast with model II) we cannot get contributions δy of

order one for species other than the top quark since at initial times, 〈Oφ〉 is small and then

evolves to values of order Λ4+ε
IR .

10 Conclusions

We have shown how the Randall-Sundrum model with Goldberger-Wise stabilisation offers

a natural display of the cosmological emergence of the flavour structure in the standard

model. Our main new results are contained in sections 6, 7 and 8. In particular, we have

shown how coupling the Goldberger-Wise scalar to the standard model fermions on the IR

brane or in the bulk can lead to an effective 4D Yukawa coupling which increases across
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the bubble walls during the electroweak phase transition. This then provides a new source

of CP -violation which allows for electroweak baryogenesis from the CKM matrix, and may

also be relevant for cold baryogenesis. It will be interesting to study this mechanism further

and to understand whether certain 4D flavour models could fall into this category. In

particular, because Randall-Sundrum models are holographic duals of 4D strongly coupled

theories, our findings may be useful for the investigation of flavour cosmology in composite

Higgs models.

We now compare our findings with the results of another analysis of Yukawa variation

during the electroweak phase transition, in Froggatt-Nielsen models [3]. In this context,

it was found that a very light flavon (i.e. below the electroweak scale) is necessary in

order to affect the values of the Yukawa couplings during the eletroweak phase transition.

The main reason for this is the assumed structure of the polynomial two-field (Higgs and

flavon) scalar potential. Such a light flavon, however, is in tension with experimental

constraints. In Randall-Sundrum models, both the dependence of the Yukawa couplings

on the radion and the interplay between Higgs and radion are of a very different nature. It

is possible to have a large variation of the Yukawa couplings during the electroweak phase

transition for radion masses around or above the electroweak scale. The key point is that

the Higgs mass parameter is controlled by the radion VEV while in the Froggatt-Nielsen

implementation of ref. [3], it is a constant like in the standard model. We can therefore

expect to build successful models of Yukawa coupling variation during the electroweak phase

transition in models where the Higgs mass parameter is dynamical as well and controlled

by parametrically slightly heavier, O(TeV) scale new physics, similar to what happens in

the Randall-Sundrum construction.

Finally and interestingly, in our construction in which the 5D fermionic mass terms

are not constant but result from the coupling to the Goldberger-Wise scalar, the fermionic

profiles are suppressed in much of the bulk compared to the case of constant mass terms.

This suppresses their overlap with KK modes, and thereby weakens the constraints from

CP -violating processes in Randall-Sundrum constructions.
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A KK expansion of the Goldberger-Wise scalar

Our discussion applies to the Goldberger-Wise scalar with both the potentials considered

in the original paper and discussed in section 3 and the modified potentials considered

in section 7.2. We assume that the radion is parametrically lighter than the IR scale.

Then the mixing between the radion and the KK modes of the Goldberger-Wise scalar is

suppressed by the ratio of their masses and can be neglected to a good approximation (see

appendix A in [20]). We expand the Goldberger-Wise scalar around its VEV, φ = 〈φ〉+δφ,

and decompose it as δφ =
√
k
∑

n φ
(n)f

(n)
φ . The bulk equation of motion and the boundary
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conditions read (
∂2
y − 4k ∂y −m2

φ + e2ky
(
m

(n)
φ

)2)
f

(n)
φ = 0 (A.1)

(∂y − k bUV)f
(n)
φ

∣∣
y=0

= 0 (∂y + k bIR)f
(n)
φ

∣∣
y=πR

= 0 , (A.2)

where

bUV,IR ≡
1

2k

∂2VUV,IR

∂φ2

∣∣∣∣
φ=〈φ〉

. (A.3)

This is solved by

f
(n)
φ (y) = N (n)

φ e2ky
(
J2+ε

(
m

(n)
φ eky/k

)
+ bn

(
m

(n)
φ /k, bUV

)
Y2+ε

(
m

(n)
φ eky/k

))
(A.4)

with

bn(r, b) ≡ − r J1+ε(r)− (b+ ε)J2+ε(r)

r Y1+ε(r)− (b+ ε)Y2+ε(r)
. (A.5)

Away from the UV brane this is well approximated by

f
(n)
φ (y) ' N (n)

φ e2kyJ2+ε

(
m

(n)
φ eky/k

)
. (A.6)

The normalization constant of the wavefunction is given by(
N (n)
φ

)−2
=

∫ yIR

0
dy k e2ky

(
J2+ε

(
m

(n)
φ eky/k

)
+ bn

(
m

(n)
φ /k, bUV

)
Y2+ε

(
m

(n)
φ eky/k

))2

' 1

2
e2kyIR

(
J2+ε

(
m

(n)
φ /mIR

))2
[

1 +
m2

IR(
m

(n)
φ

)2 ((4 + 2 ε) bIR+ b2IR
)]
.

(A.7)

The mass quantization condition is given by bn
(
m

(n)
φ /k, bUV

)
= bn

(
m

(n)
φ /mIR,−bIR

)
. Ex-

panding this for m
(n)
φ � k, the condition simplifies to

m
(n)
φ

mIR
J1+ε

(
m

(n)
φ /mIR

)
+ bIR J2+ε

(
m

(n)
φ /mIR

)
' 0 . (A.8)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Berkooz, Y. Nir and T. Volansky, Baryogenesis from the Kobayashi-Maskawa phase,

Phys. Rev. Lett. 93 (2004) 051301 [hep-ph/0401012] [INSPIRE].

[2] I. Baldes, T. Konstandin and G. Servant, A first-order electroweak phase transition in the

standard model from varying Yukawas, arXiv:1604.04526 [INSPIRE].

[3] I. Baldes, T. Konstandin and G. Servant, Flavor cosmology: dynamical Yukawas in the

Froggatt-Nielsen mechanism, JHEP 12 (2016) 073 [arXiv:1608.03254] [INSPIRE].

[4] S. Bruggisser, T. Konstandin and G. Servant, Electroweak baryogenesis from a dynamical

CKM matrix, to appear.

– 35 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.93.051301
https://arxiv.org/abs/hep-ph/0401012
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0401012
https://arxiv.org/abs/1604.04526
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.04526
http://dx.doi.org/10.1007/JHEP12(2016)073
https://arxiv.org/abs/1608.03254
http://inspirehep.net/search?p=find+EPRINT+arXiv:1608.03254


J
H
E
P
0
5
(
2
0
1
7
)
0
7
7

[5] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension,

Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[6] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS,

Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

[7] S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum

model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

[8] T. Gherghetta, A holographic view of beyond the standard model physics, arXiv:1008.2570

[INSPIRE].

[9] W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields,

Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

[10] T. Konstandin, Quantum transport and electroweak baryogenesis, Phys. Usp. 56 (2013) 747

[Usp. Fiz. Nauk 183 (2013) 785] [arXiv:1302.6713] [INSPIRE].

[11] S.J. Huber, M. Pospelov and A. Ritz, Electric dipole moment constraints on minimal

electroweak baryogenesis, Phys. Rev. D 75 (2007) 036006 [hep-ph/0610003] [INSPIRE].

[12] L. Fromme and S.J. Huber, Top transport in electroweak baryogenesis, JHEP 03 (2007) 049

[hep-ph/0604159] [INSPIRE].

[13] J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak baryogenesis in

non-minimal composite Higgs models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].

[14] P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition,

JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].

[15] L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054

[hep-ph/0607158] [INSPIRE].

[16] W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus,

Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [INSPIRE].
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