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“if it was so, it might be;

and if it were so, it would be;

but as it isn’t, it ain’t.

That’s logic.”

Lewis Carroll, “Through the Looking-Glass”.

1 Framework

There are two successful approaches for explaining small numbers: dynamics and anthropic

selection. For the hierarchy problem, the smallness of the weak scale can be explained by

either dynamics, such as supersymmetry or compositeness, or by anthropics — the “atomic

principle” that postulates the necessity of the existence of atoms [1]. For the cosmological

constant problem, there is only one known approach, using anthropics — the “galactic

principle” that postulates the necessity of the existence of galaxies [2, 3]. The absence

of dynamical solutions to the cosmological constant problem casts doubt on dynamical

approaches to the lesser gauge hierarchy problem. In this paper, we propose a framework

in which the galactic principle can simultaneously solve both the cosmological constant and

hierarchy problems. Our strategy involves chiral dynamics that selects the weak scale v∗
by enhancing the number of discrete vacua available to scan the cosmological constant

finely enough, down to its observed value. This is shown schematically in figure 1. In

our toy-landscape, the only parameters that scan are those that are not protected by

symmetries, i.e. the Higgs mass and the cosmological constant. This assumption is key for

our mechanism.

In order for v to be able to influence the vacuum structure of the theory we introduce

a pair of SU(2) doublets L and Lc as well as a pair of neutral Majorana fermions N1 and

N c
1 . Those fermions couple to the Higgs via Yukawa couplings and have vector masses M0

and M1 respectively:

M0LL
c +M1N1N

c
1 + Y HLN c

1 + Y cH†LcN1, (1.1)

and have charges listed as in table 1. The determinant of the fermion mass matrix goes

to zero when Y Y cv2 ∼ M0M1, where one of the fermions becomes massless. This is what

singles out a critical electroweak-breaking scale in our model, namely

v2
∗ ∼

M0M1

Y Y c
, (1.2)

and relates the Higgs vev — and thus also its mass — to a combination of technically

natural quantities. We do not endow the Higgs itself with a new symmetry; indeed, its

mass can take on many possible values, most of them near the cutoff M2
UV. However,

in a small, special subset of these Higgs vacua, a chiral symmetry of a new fermion is

approximately restored. We know of several ways to turn chiral symmetry restoration into
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Figure 1. Schematic representation of the number N of vacua (depicted by dots) that can tune

the cosmological constant down to a small value as a function of the Higgs mass.

vacuum number enhancement. In this paper, we focus on a model with an extra dimension,

although we have also constructed purely four-dimensional versions.

Consider a 5D model with the fifth dimension ending on two branes. The Standard

Model fields are localized on one brane, while the second brane has many vacua with

different values of its brane tension. The rich vacuum structure of the second brane can

help tune the CC to an anthropically allowed value, but only if the extra dimension is

dynamically stabilized.

In our model, the only dynamical field in the bulk is a fermion Ψ, which can stabilize

the 5D radius at zero effective CC through its Casimir energy if and only if this energy is

positive (section 3). For generic values of the Higgs vev, the boundary conditions for Ψ are

of the type corresponding to negative Casimir energy, so the fifth dimension is not stabilized

and the rich vacuum structure is lost. However, if Ψ and N c
1 (one of the brane fermions)

have a mass mixing on the SM brane, the boundary conditions for Ψ change their type

once chiral symmetry in the fermion sector on the brane gets restored, producing positive

Casimir energy. This part of our mechanism is discussed in section 2 and appendix A.

From the four-dimensional, low-energy point of view the mechanism can be summarized

as follows. For Higgs vevs v ∼ v∗, a restored chiral symmetry changes dramatically the

potential for the radion field, which is gravitationally coupled both to these fermions and

to a hidden sector with many vacua (the second brane). This modified potential has a huge

number of minima so that at least one of them leads to a CC that is anthropically allowed.

Section 4 is dedicated to counting the number of minima with correct (v ∼ v∗) and

wrong (mostly MUV) values of the Higgs mass. The cutoff of our theory MUV can be as

high as 1012 GeV, and the cosmological constant in the vacua with a Higgs vev different

than v∗ is 1024 times larger than the measured value. Only when v ∼ v∗ can there be vacua

with a small enough cosmological constant for galaxies to form.

Finally, section 5 discusses the phenomenology of the new states near the weak scale

and of an ultralight radion. The new electroweak doublets should be below ∼ 4πv∗ which

implies that the fermion sector is accessible at the LHC and future colliders, through

– 2 –



J
H
E
P
0
5
(
2
0
1
7
)
0
7
1

L = (N0, E
′) Lc = (E′c, N c

0) N1 N c
1

SU(3)C 1 1 1 1

SU(2)L 2 2 1 1

U(1)Y −1/2 1/2 0 0

Table 1. The charges of the new states L (Lc) and N1(N c
1 ) under the Standard Model SU(3)C ×

SU(2)L ×U(1)Y gauge groups.

searches for direct production of electroweak-charge fermions and measurements of the

Higgs invisible width. The radion, which is automatically tuned to be light, is within the

reach of equivalence principle tests and fifth-force searches as well as proposed scalar dark

matter searches.

2 Model

In this section, we present a five-dimensional theory where the Casimir energy density in

the bulk depends on the vev of the Higgs field. We introduce couplings of the Higgs field to

a fermionic sector with mass parameters that are much below the ultraviolet cutoff of the

theory in a technically natural way. In a subset of Higgs-mass vacua, the Higgs vev causes

one of the new brane fermions to become much lighter, in turn changing the boundary

condition — and thus the sign of the Casimir stress-energy — of a bulk fermion that mixes

with this state on the SM brane.

2.1 Bulk and brane fields

We consider a 5D theory with the bulk- and brane-localized states as shown in figure 2.

We assume that the position of the second brane at y = R is an orbifold fixed point and

in particular σ2 is allowed to be negative. The 5D action of the theory is

S=

∫ R

−R
dy

∫
d4x

{√
−g(5)

[
M3

5

2
R(5)−Λ5+

i

2
Ψ̄ΓM

↔
∂MΨ−MΨΨ̄Ψ

]
(2.1)

+

√
−g(4)δ(y−0)

[
−σ1+LSM+L1

]
+

√
−g(4)δ(y−R)

[
−σ2

]}
(2.2)

where
↔
∂ =

→
∂ −

←
∂ , and the signature of the metric g

(5)
MN is (−,+,+,+,+). The two branes

are located at y = 0 and y = R; the induced metric on them is g
(4)
µν .

The fermion Ψ is a neutral 5D Dirac spinor, composed out of two Weyl fermions χ and

ψ as:

Ψ =

(
χ

ψ†

)
(2.3)

We will set the bulk mass MΨ = 0, which can be achieved in a technically natural way

with a parity symmetry in the fifth dimension around y = 0:

χ→ iχ; ψ† → −iψ†; ∂5 → −∂5. (2.4)

– 3 –
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Figure 2. Geography of the model. The horizontal axis represents the coordinate distance y in

the extra dimension, while the vertical scale is representative for one of the usual four spacetime

dimensions. Standard Model (SM) fields, including the Higgs field H, are confined to a 3-brane

(depicted as a thick vertical line) at y = 0 with tension σ1. The 3-brane is also populated by

electroweak-charge fermions L and Lc, which couple to H and a pair of neutral fermions N1 and

N c
1 through a Yukawa coupling. A bulk fermion Ψ couples to this new fermion sector via a brane-

localized mixing term with N c
1 , indirectly communicating the vacuum expectation value of H to the

bulk via the Casimir stress of Ψ. This Casimir stress, along with σ1, the tension σ2 of the y = R

brane, and the bulk cosmological constant Λ5, determine the geometry of the space through their

effect on the metric gMN . We assume the 5D space to be orbifolded around y = R, so that there is

a second copy of the interval attached to the branes on opposite sides.

This forbids the bulk mass term in eq. (2.1), which in Weyl components takes the form

MΨ(χψ + c.c.). The kinetic terms of eq. (2.1) can be seen to respect the symmetry (see

eq. (A.1) for the expansion into Weyl components). This 5D parity is exactly preserved

both in the bulk and on the branes, as long as any brane fermions to which Ψ couples also

transform appropriately under the parity.

We impose the hard boundary conditions for ψ and χ at y = 0 and y = R:

ψ†|0 = 0; ∂5χ|0 = 0; ∂5ψ
†|R = 0; χ|R = 0. (2.5)

These boundary conditions are dynamically modified by brane-localized interactions L1 at

y = 0+, an infinitesimal distance away from y = 0, so as to avoid treating the values and

variations of the fields on the boundary as independent from the bulk values [4]:

L1 =− iL†σ̄µDµL− iLc†σ̄µDµL
c − iN †1 σ̄µDµN1 − iN c†

1 σ̄
µDµN

c
1 (2.6)

+M0LL
c +M1N1N

c
1 + Y HLN c

1 + Y cH†LcN1 + c.c. (2.7)

+ µ1/2N c
1χ+ c.c.. (2.8)

The brane-localized states have SM charges shown in table 1. The interactions in L1

ultimately communicate the Higgs vev to the bulk fermion, whose Casimir stress will affect

the stabilization of the extra-dimensional radius.

The brane interactions L1 of the fermions in eqs. (2.6), (2.7), and (2.8) are engineered

such that the brane fermions only mix significantly with the bulk fermion for a select range

– 4 –
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of Higgs mass vacua. In figure 3, we show the mass eigenvalues m0(v) and m1(v) of the mass

terms in eq. (2.7) as a function of the Higgs vev 〈|H|〉 ≡ v. For Class II vacua, i.e. all those

with positive Higgs mass-squared values (where v = 0) and most negative Higgs masses

(those with Y Y cv2 �M0|M1|), both eigenvalues m0(v) and m1(v) are indeed larger than

the mixing scale µ, as long as M0, |M1| & µ. However, for Higgs vevs v near

v∗ ≡
√
M0|M1|
Y Y c

, (2.9)

mixing can become important and substantially modify the boundary conditions of the

bulk fermion in eq. (2.5). These vacua belong to Class I. The range in v near v∗ for which

m1(v) . µ and large mixing between brane and bulk fermions occurs, is ∆v2

v2
∗

= 2µ/M1 for

µ < M1. If we take M0 � |M1| and work in the interesting regime of Y Y cv2 � M2
0 , we

can integrate out the heaviest mass eigenstate with mass m0(v), and arrive at the following

effective Lagrangian for χ and the light states Ñ1 and Ñ c
1 — mostly N1 and N c

1 , with small

admixtures of N0 and N c
0 :

L1 ⊃ m1(v)Ñ1Ñ
c
1 + µ1/2Ñ c

1χ+ c.c. (2.10)

where

m1(v) =
M0 +M1 −

√
(M0 −M1)2 + 4Y Y cv2

2
'M1 −

Y Y cv2

M0
, (2.11)

with the latter approximation holding for v ∼ v∗ as long as M1 �M0.

In appendix A, we show that this effective brane interaction replaces the first boundary

condition at y = 0 in eq. (2.5) with the mixed boundary condition at y = 0+:[
−∂2 + |m1(v)|2

]
ψ†|0+ + iµσ̄µ∂µχ|0+ = 0. (2.12)

This new “soft” boundary condition contains the essential physics. The second boundary

condition in eq. (2.5) will similarly be changed but contains no new information since it

follows from eq. (2.12) and the equations of motion in the bulk.1 Inspecting the limiting

behavior of the boundary condition in eq. (2.12) at different energy scales ∂ ∼ 1/R, we

find for the two Classes of vacua:

Class I: |m1(v)| . µ ⇒


ψ†|0+ ' 0, for R� 1/µ

χ|0+ ' 0, for 1/µ� R� µ/|m1(v)|2
ψ†|0+ ' 0. for µ/|m1(v)|2 � R.

(2.13)

Class II: |m1(v)| & µ ⇒ ψ†|0+ ' 0. (2.14)

In the deep ultraviolet 1/R� µ, the brane interactions are never strong enough to change

significantly the “hard” Dirichlet boundary condition for ψ† at y = 0. For Class II vacua, at

all scales below |m1(v)| the brane fermion Ñ c
1 effectively decouples, so the bulk-brane mixing

disappears from the effective theory. Hence the “soft” boundary condition in eq. (2.12) at

1For example, a Dirichlet boundary condition for ψ† automatically implies that its partner χ has a

Neumann boundary condition at the same location, and vice versa.

– 5 –



J
H
E
P
0
5
(
2
0
1
7
)
0
7
1

-1.0 -0.5 0.0 0.5 1.0 1.5

-3

-2

-1

0

1

log10@v�M0D

lo
g
1
0
m

i�M
0

M1�M0=10
-2 , Y=Yc=0.2, arg@M1D=0.1

m0 > M0 +
Y2 v2

M0

m1 > M1 -
Y2 v2

M0

m0,1 >
M0

2
± Y v

Μ

Class IClass II Class II

v >
M0  M1¤
Y

Figure 3. Mass eigenvalues mi = {m0,m1} (gray, green) of neutral brane fermions N0, N c
0 , N1,

and N c
1 , as a function of Higgs vev 〈|H|〉 ≡ v, with quantities on both axes normalized to the

bare vector mass M0 on a logarithmic scale. For simplicity, we pick Y = Y c such that each mass

eigenvalue is two-fold degenerate, assume M0 > |M1| > µ > 0. For m2
H > 0 and v = 0, there is no

mixing and the mass eigenvalues are just the bare masses M0 and |M1|, both larger than the scale

of brane-bulk mixing µ. For Y Y cv2 & M2
0 , both mass eigenstates are again much heavier than

µ. For Y Y cv2 . M2
0 , however, the lighter mass eigenvalue |m1| can drop below µ for sufficiently

small arg[M1] near v ∼ v∗ ≡
√
M0|M1|/Y Y c, at which point mixing of the light state with the bulk

fermion becomes important. Vacua with v sufficiently near v∗ such that |m1(v)| . µ are categorized

in Class I, all others in Class II.

y = 0+ matches the one at y = 0 in eq. (2.5) at all energy scales in Class II vacua. For Class I

vacua, however, there exists a window of extra-dimensional sizes µ−1 . R . µ/|m1(v)|2 for

which the BC flips from Dirichlet for ψ†|0 to Dirichlet for χ|0+ and consequently Neumann

for ψ†|0+ . Finally, in the far infrared 1/R� |m1(v)|2/µ, the effective frictional term for the

χ field on the brane becomes too diluted relative to the effective brane mass for ψ†, again

leaving the hard boundary condition unaffected.2 In the window with flipped boundary

conditions for the bulk fermion, we expect the Casimir stress to flip in sign, which we will

compute explicitly in section 2.3.

2.2 Technical naturalness

Before delving into those machinations, we digress about the naturalness of the fermion

sector in our model, since it is a crucial part of the mechanism. Unlike masses for scalar

fields, fermion masses can be far below the UV cutoff of the theory, because symmetries

can shield them from additive quantum corrections. In our model, the fermionic kinetic

2One can consider a similar model with a single Majorana fermion N1 instead of the Dirac pair N1 and

Nc
1 . In this case, the modification of boundary conditions (Class I) persists for arbitrary R� 1/µ.

– 6 –
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Figure 4. Feynman diagram depicting one-loop radiative corrections to M1 given in eq. (2.17).

terms in eqs. (2.1) and (2.6) exhibit the symmetries

U(1)L ×U(1)Lc ×U(1)N1 ×U(1)Nc
1
×U(1)Ψ, (2.15)

which follow from invariance of the action under phase rotations of each of the five fermion

fields. The Yukawa couplings explicitly break this symmetry down to three factors and

associated symmetry rotations:

U(1)′L ×U(1)′Lc ×U(1)Ψ : {L,N c
1} → {eiαL, e−iαN c

1} (2.16)

{Lc, N1} → {eiβLc, e−iβN1}
Ψ→ eiγΨ.

The linear combination with α = −β = γ is exactly invariant, and corresponds to fermion

number conservation in this sector.3 Another independent linear combination of transfor-

mations with α = β = γ is broken only by (the larger of) |M0| and |M1|, but not by µ.

Finally, a last independent set of rotations, with α = −β = −γ, is only broken by µ, the

mass mixing between brane and bulk fermions, and not by the vector masses. Hence the

scale of the vector masses max{|M0|, |M1|} and the scale of brane-bulk fermion mixing |µ|
are both spurions of two separate symmetries, and will thus not receive additive radiative

corrections, provided the theory respects these symmetries in the ultraviolet. A combina-

tion of these two scales turns out to determine the scale of electroweak symmetry breaking

in our vacuum, with v ∼ |M0| & |M1| & |µ|. In this way, we relate the electroweak scale in

our vacuum to a symmetry-enhanced point of a fermion sector, one much below the cutoff.

While on the topic of naturalness, we point out that the masses M0 and M1 are

connected in our model, which will lead to important phenomenological consequences.

We will often take |M0| � |M1|, but this hierarchy cannot be arbitrarily large; radiative

corrections will destabilize this hierarchy. At one-loop level, the diagram of figure 4 leads

to the mass correction:

δM1 '
2Y Y c

(4π)2
M∗0 log

(
M2

UV

max{|M0|2,m2
H}

)
. (2.17)

Not all phases can be removed from the Lagrangian L1 in eqs. (2.7) and (2.8). There are

five complex parameters, namely M0, M1, µ, Y , and Y c, and five possible phase rotations in

eq. (2.15). However, the phase rotation corresponding to lepton number conservation leaves

3Requiring invariance under this symmetry is not necessary, but it does simplify the analysis by forbid-

ding Majorana masses and other Yukawa couplings in the fermion sector.

– 7 –
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the full Lagrangian invariant, so one physical phase remains. Without loss of generality,

we will henceforth take {M0, µ, Y, Y
c} all to be real and positive, and rotate the physical

phase into M1 = |M1|ei arg[M1]. Later, we will require this phase to be somewhat small,

specifically arg[M1] � π at energies of order M0, such that |m1(v) < µ| can be satisfied

for some Higgs vev. Such a small phase is automatically realized when |M1| � M0 in the

ultraviolet, and the dominant contributions to M1 at low energies are mediated via the

renormalization-group effects in figure 4 and eq. (2.17).

2.3 Casimir stress-energy

Casimir stress-energy arises due to the radius dependence of vacuum fluctuations. It can be

computed by extracting the finite parts of 〈0|TMN (x, y)|0〉 at any point in the bulk and on

the branes; divergent terms are absorbed by the local counterterms σ1, σ2, and Λ5. To keep

the calculation tractable, we will first restrict ourselves to a flat bulk before generalizing to

warped geometries. Because conformal symmetry is approximately preserved in the bulk

given that the only dynamical field is the massless spinor Ψ,4 the Casimir stress must be

proportional to TMN ∝ diag(1, 1, 1, 1,−4). Poincaré symmetry in directions parallel to

the branes implies Tµν ∝ δµν , Weyl invariance requires tracelessness, which together with

stress-energy conservation implies that TMN is independent of y. The Casimir stress in

the bulk is thus fixed by symmetries up to an overall coefficient:

TMN =
β

R5
diag(1, 1, 1, 1,−4). (2.18)

We parametrized the stress in terms of a dimensionless coefficient β, which depends on

|m1(v)|, µ, and R. To determine β, we first consider the 4D vacuum energy ρC , the y-

integral over T 0
0 above, that is given by the sum over all vacuum bubble diagrams, one

for each Kaluza-Klein (KK) state of χ and ψ†, and equates to:

ρC = −2
∞∑
n=1

∫
d4k

(2π)4
log(k2 +m2

n). (2.19)

For a real 4D scalar, the prefactor of the sum is +1/2 in the effective potential, while for

a 5D fermion one gets −2. The minus sign comes from the fermion loop, one extra factor

of two from the degeneracy of the KK towers for χ and ψ†, and another factor of two

for the number of helicity states per Weyl spinor. In appendix A, we compute the KK

spectrum {mn} given the boundary conditions in eqs. (2.5) and (2.12), and use ζ-function

regularization to extract from eq. (2.19) the finite, R-dependent piece, which is:

ρC = − 1

16π2

1

R4

{
−3

2
ζ(5) + I

[
µ

|m1(v)|2R,
1

|m1(v)|2R2

]}
, (2.20)

where I(a, b) ≡ 4
∫∞

0 dxx3 log{[ax+ (1 + bx2) coth(x)]/[ax+ (1 + bx2)]}.
4The graviton is not conformal, but its Casimir stress can be subdominant to that of Ψ. We return to

this point at the end of the section.
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Figure 5. Plots of the Casimir energy coefficient 16π2ρCR
4 as a function of the extra-dimensional

radius R, in units of (the inverse of) the bulk-brane mixing scale µ. The five curves are for fixed µ but

variable |m1(v)|, increasing from top (blue) to bottom (red). The Casimir energy can be repulsive

(ρC , β > 0) if and only if |m1(v)|/µ . 0.442 in the parametric window 1/µ . R . µ/|m1(v)|2;

otherwise, it is attractive (ρC , β < 0).

Inspection of eq. (2.20) confirms the limiting behavior of ρC anticipated in eqs. (2.13)

and (2.14). In the deep UV, far IR, and in the window 1/µ� R� µ/|m1(v)|2 (if it exists),

we get the standard results for “pure” boundary conditions, up to small corrections:

ρC '
1

16π2R4


−45ζ(5)

32

[
1− 16ζ(3)

15ζ(5)µR+ . . .
]
, for R < 1/µ;

+3ζ(5)
2

[
1− 4

µR + . . .
]
, for 1/µ < R < µ/|m1(v)|2;

−45ζ(5)
32

[
1− 4 µ

|m1(v)|2R + . . .
]
, for µ/|m1(v)|2 < R.

(2.21)

In figure 5, we plot the dimensionless combination 16π2R4ρC as a function of µR, for

different ratios |m1(v)|/µ. We conclude that only Class I vacua, with v ∼ v∗ such that

|m1(v)| . µ, allow for repulsive Casimir energy density in the case of a flat extra dimension.

When R is far removed from any length thresholds in the functional form of ρC , T 0
0

is simply given by ρC/2R. On the other hand, for R close to 1/µ or µ/|m1(v)|2 in Class

I vacua, the boundary conditions are not purely Neumann or Dirichlet. Here, the Casimir

stress tensor receives contributions localized on the boundaries, similar to the case of mixed

boundary conditions for a scalar [5]. Correspondingly, the coefficient of the bulk TMN will

not be as simply related to ρC . It is possible to extend our calculation to this case as well,

but for simplicity we will assume that there is a mild hierarchy 1/µ � R � µ/|m1(v)|2
so that the boundary contributions can be safely ignored in the region of interest. This

subtlety is irrelevant in Class II vacua given the pure boundary conditions of eq. (2.14)

at all length scales. In the asymptotic regimes, the coefficient of the Casimir stress in

– 9 –
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eq. (2.18) is R-independent and given by

β ' 1

32π2


−45ζ(5)

32 , for R� 1/µ;

+3ζ(5)
2 , for 1/µ� R� µ/|m1(v)|2;

−45ζ(5)
32 , for µ/|m1(v)|2 � R.

(2.22)

The generalization of eqs. (2.18) and (2.22) to curved geometries is relatively straight-

forward. Since we are only interested in approximately static constructions — those with a

stable radion and very small Hubble constant H — we can restrict ourselves to spacetimes

which are conformally flat to a high degree, with metric

ds2 = a(z)2
(
dx2 + dz2

)
. (2.23)

We denote by L the conformal distance between the two brane locations z1 and z2:

L = z2 − z1 =

∫ R

0

dy

a(y)
. (2.24)

The scale L is the relevant one for the Casimir energy of the fermions in the curved

bulk, since the masses of their low-lying KK modes are of order 1/L. For conformally flat

spacetimes and conformally coupled fields, the Casimir stress takes on a particularly simple

form [6]. Since the conformal anomaly is absent in odd dimensions,5 it differs from the flat

space expression eq. (2.18) only by the square root of the metric determinant in eq. (2.23):

TMN =
β

a(z)5L5
diag(1, 1, 1, 1,−4), (2.25)

where β is given by the flat-space expressions of eq. (2.22) as long as L is far enough from

the thesholds where the sign of the Casimir energy flips.

Besides the fermions in our theory, the 5D gravitons will also contribute to the Casimir

stress. They generate attractive, nonconformal Casimir potential contributions, and will

therefore tend to destabilize the fifth dimension. If the extra dimension is moderately

warped, the gravitational Casimir energy contribution is suppressed to negligible levels by

the warping factor. For a flat extra dimension, additional light fermions with even boundary

conditions could be added to counter the negative Casimir energy of the gravitons, or Ψ

could take on a large multiplicity. As we will show in appendix B, warping and large

Ψ multiplicities both increase the radion mass, which is necessary anyway to obtain a

phenomenologically viable model.

3 Radius stabilization

In this section, we discuss the stabilization of the fifth dimension in the context of theory de-

picted in figure 2. Before presenting the details of our calculation in subsections 3.1 and 3.2,

5In odd dimensions, there are in principle boundary anomalies, but for our purposes their effect will be

equivalent to a change in brane tensions.
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we provide an outline of the main results. After reading this summary, the reader may

skip directly to section 4 and come back to the rest of this section at a later time.

In section 3.1, we consider a simplified model wherein the only stress-energy in the bulk

is that of a bulk cosmological constant Λ5, as a warm-up exercise to establish notation and

methodology. Physically, this also corresponds to the unstabilized scenario of Point 1 in

figure 6, when the distance between the two branes is so large that the Casimir stress, a

short-distance effect, is negligible. We will show that the observed cosmological constant

Λ4 on the SM brane is completely independent of the other brane’s tension σ2, bearing out

the intuition that in absence of a stabilization mechanism, the physics on the two branes is

independent by locality in the bulk. Specifically, when the metric in the bulk is pure AdS,

a change in σ2 can be compensated by a shift in the radius R without any influence on the

Hubble curvature. The radion is massless. In this effective single-brane setup, the lower

bound on the expected minimum |Λ4| is given by the precision to which the SM brane

tension σ1 can be tuned, quantified in eq. (3.8) and illustrated in the left panel of figure 7.

In section 3.2, we include Casimir stress, which breaks AdS symmetry in the bulk and

can extremize the radion potential [7–9] at finite distance (Points 0 and 2 in figure 6). In

this case, the effective Λ4 on the SM brane depends on both σ1 and σ2, as summarized

by the relations in eqs. (3.21) and (3.36) for a flat and warped bulk, respectively. We

stress that warping is unnecessary for the functionality of our mechanism; we include it

for generality and to obtain a model with a phenomenologically viable radion mass and

coupling. Our theory does not rely on warping to lower the Planck scale: the SM is localized

on the “ultraviolet” brane, i.e. the one with positive tension, in contrast to RSI [10]. The

dependence of Λ4 on σ1 and σ2 is depicted in the right panel of figure 7. In this two-

dimensional σ1⊗σ2 space, Λ4 can be tuned very precisely, contrary to the one-dimensional

σ1 space in the case without a stabilizing potential.

Next, we analyze the stability of the solutions with small Λ4, with the details of the

calculation postponed to appendix B. We prove that the radion mass-squared, explicitly

given in eqs. (3.27) and (3.43) for flat and warped fifth dimensions, is positive if and only if

the Casimir energy is positive (β > 0). Hence static radion extrema in Class II are always

unstable maximima (including e.g. Point 2 in figure 6), as they have β < 0 due to odd

fermionic boundary conditions. Only Class I vacua can attain even boundary conditions

for Ψ and β > 0, and thus stable, static radion minima like Point 0 in figure 6.

Finally, even though Class II vacua do not permit static, stable solutions, they still

allow for stable, finite-radius solutions that are not static, with nonzero Λ4 like at Point

3 in figure 6. We compute the smallest attainable |Λ4| in these possible radion minima in

eqs. (3.29) and (3.44), representing parametrically stronger (for a flat fifth dimension) or

similar lower bounds (for a warped fifth dimension) as in the case without a stabilizing

potential, which do not depend on σ2.

Before proceeding to the technicalities of the calculation, we point out three subtleties.

Firstly, the bulk fermion Ψ can only generate a finite amount of repulsive Casimir stress

TMN ∼ β/L5 . βµ5 in the window 1/µ . L . µ/|m1(v)|2. Only for a relatively small

range of tensions σ1, near a critical tension σ∗, can the positive Casimir energy density

counteract the contributions from the zero-point energies on the SM brane and in the bulk,
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Figure 6. Schematic of the classes of vacua. Class I vacua (top): for Higgs masses m2
H near a

technically natural scale −λv2
∗ (indicated in blue), the Casimir stress generated by a bulk fermion

is such that the effective radion potential V (R) can be stabilized with near-zero 4D effective cosmo-

logical constant Λ4, at a physical distance R near the inverse of the critical Higgs vev v∗. In such

a radion minimum (Point 0, green), both brane tensions σ1 and σ2 can assist in tuning the cosmo-

logical constant. Class II vacua (bottom): for all other Higgs masses (indicated in red), the radion

potential does not develop stable, static solutions; no configuration exists for which V (R) ' 0,

V ′(R) = 0, and V ′′(R) > 0 for R & M−1
UV. Radion extrema are either a runaway direction such

that the non-SM brane disappears from the effective theory (Point 1), static but unstable (Point 2),

or stable but nonstatic with large |Λ4| (Point 3). The radion could be stabilized in the ultraviolet

(Point 4), but with a much sparser distribution of vacua for the brane tensions. Different curves in

the radion potential correspond to different values of σ2. In this arrangement, the vast majority of

vacua with a small Λ4 are of Class I, with a Higgs vev near v∗ and extra-dimensional radius near

v−1
∗ (Point 0), realizing the vacuum structure of figure 1.
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which are of order |σ1 − σ∗|/L. In observance of decoupling, this requires a tuning of

σ1 to a precision of µ4 (near the electroweak scale in our vacuum) but, crucially, not to

a precision of the observed cosmological constant. Secondly, throughout we find radion

extrema by self-consistently solving Einstein’s equations. This procedure automatically

includes gravitational backreaction with Ricci tensor of order RMN ∼ TMN/M
3
5 , which

appears in the radion potential at the same order as the stress-energy that sources it, and

can thus never be ignored.6 Thirdly, in our stability analysis, we compute the mass-squared

of the lightest mass eigenstate of metric fluctuations δgMN on top of the background

solution gMN that solves Einstein’s equations. This mass eigenstate — the radion —

generally has a nontrivial wavefunction in the extra dimension.7

3.1 No stabilization mechanism

We consider a five-dimensional geometry with the only contribution to the stress tensor in

the bulk given by the cosmological constant Λ5 (see figure 2). We do not yet include Casimir

stress-energy; the analysis in this subsection is thus relevant only for unstabilized brane

configurations at very large radius. Solutions of Einstein’s equations in this setup have been

extensively studied in ref. [14] where we refer the reader for more details. Throughout this

and the next sections, we assume that the 5D cosmological constant is fixed and negative,

and that only the brane tensions are responsible for fine tuning the effective 4D cosmological

constant Λ4.

We look for solutions that are maximally symmetric along directions parallel to the

two branes, such that the metric can be put in the form:

ds2 = a(y)2ds2
dS + dy2, (3.1)

where ds2
dS = −dt2 +e2Htdx2 is the four-dimensional deSitter metric with Hubble constant

H related to Λ4 in the usual way: 3H2M2
Pl = Λ4, with the 4D effective (reduced) Planck

mass MPl related to the 5D gravity scale M5 as [10]

M2
Pl =

M3
5

k
(1− e−2kR) =

{
2M3

5L, kL ∼ kR� 1

M3
5 /k, kL� kR� 1

(3.2)

when the fifth dimension is flat or warped, respectively. (The curvature scale k is defined

in eq. (3.10).) Hereafter, we will be using both H and Λ4 interchangeably. Anti-deSitter

solutions with negative Λ4 amount to changing H → iH, with otherwise identical conclu-

sions. In addition to some gauge fixing already done in eq. (3.1), we choose the first brane

to be located at y = 0, as in section 2, and normalize the scale factor to a(0) = 1. The

location of the second brane is taken to be at y = R, where the extra-dimensional radius

R as well as a(y) and H will be dynamically determined from Λ5, σ1, and σ2.

6Some of the literature on extra dimensions does ignore backreaction, including early attempts at Casimir

stabilization in refs. [11–13].
7In many works, the radion profile is assumed to coincide with that of the background solution, and

simply amounts to a uniform fluctuation in radius R+ δR with a profile δg55(y) ∝ g55(y), often leading to

qualitatively different results [7, 8].
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The five-dimensional Einstein equations resulting from the action in eq. (2.2) take

on a form similar to the classic Friedmann equations, with time replaced by the extra-

dimensional, space-like coordinate y:

3
a′′

a
+ 3

(
a′

a

)2

− 3
H2

a2
+

Λ5

M3
5

= − σ1

M3
5

δ(y)− σ2

M3
5

δ(y −R) (3.3)

+ 6

(
a′

a

)2

− 6
H2

a2
+

Λ5

M3
5

= 0 (3.4)

In particular, integrating eq. (3.3) around infinitesimal regions around the branes yields

the jump conditions:

a′(0) = −a(0)
σ1

6M3
5

, (3.5)

a′(R) = +a(R)
σ2

6M3
5

. (3.6)

From eqs. (3.4) and (3.5) evaluated at y = 0, the Hubble constant is found to be completely

independent of σ2:

H2 =
1

6M3
5

(
Λ5 +

σ2
1

6M3
5

)
≡ λ1

6M3
5

, (3.7)

where we have defined λ1 for later convenience. A change in the tension σ2 of the second

brane would result in a change in radius R, not a different Hubble constant. In order to

obtain a tiny effective four-dimensional constant Λ4 close to the observed value, the quantity

λ1 would have to be tuned very close to zero. For small |λ1| . |Λ5|, the four-dimensional

cosmological constant is given by

Λ4 ' σ1 − σ∗, (|σ1 − σ∗| . σ∗) (3.8)

where we assumed L� 1/k, and defined the critical value for the tension which would give

rise to an exactly static solution (H = 0):

σ∗ =
√
−6M3

5 Λ5. (3.9)

For large λ1 & Λ5, we find that H2 & |σ1/6M
3
5 |2 & k2, where we employed the usual

definition for the curvature scale:

k ≡
√
−Λ5

6M3
5

. (3.10)

A Hubble horizon H−1 smaller than the extra-dimensional curvature scale k−1 would cor-

respond to an intrinsically five-dimensional world, and would be strongly disfavored an-

thropically by itself. In the remainder of this work, however, we will take k to be quite

large so that the small detuning constraint is the relevant one.

Eq. (3.8) quantifies the 4D cosmological constant in a situation when the stabilization

mechanism is absent or not effective, such as at very large distances in (our) case of Casimir

stress — Point 1 in figure 6. The tuning characteristics of Λ4 in terms of the brane tension

σ1 are illustrated on the left panel of figure 7.
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Figure 7. Illustration of the scanning of the cosmological constant in the absence (Class II, left)

and presence (Class I, right) of a radius stabilization mechanism. Dots correspond to vacua of

the brane tensions σ1 and σ2 on the horizontal and vertical axes, with large dots indicating vacua

with a near-critical Higgs mass. The shaded bands represent regions where the four-dimensional

cosmological constant is smaller than some value Λ4. The shape of the red region is independent of

σ2 in the unstabilized case, with a width in the σ1 direction given by eq. (3.8). The overall shape

of the blue region for a stabilized, warped bulk is given by eq. (3.44) (the analogous shape for a flat

bulk is described by eq. (3.29)). The fattening in the σ2 direction as σ1 approaches σ∗ is due to the

warping effect of eq. (3.42), while the finite range in σ1 arises because of the need for a large extra

dimension to get repulsive Casimir stress (eqs. (3.16) and (2.22).

3.2 Casimir energy stabilization

We extend the analysis of the previous section by adding Casimir stress-energy in the bulk.

For our purposes, it will be sufficient to study the conformal limits with Casimir stress as in

eq. (2.25), and purely odd BC for Ψ with negative β = −[45ζ(5)/32]/32π2, or purely even

BC with positive β = +[3ζ(5)/2]/32π2, calculated in eq. (2.22). Deviations from conformal

symmetry give subleading corrections. Including the Casimir stress from eq. (2.25), which

transforms as a tensor under diffeomorphisms and is thus the same in the gauge of eq. (3.1)

with a(z)↔ a(y), the Einstein equations become

3
a′′

a
+ 3

(
a′

a

)2

− 3
H2

a2
+

Λ5

M3
5

+
β

M3
5L

5a5
= − σ1

M3
5

δ(y)− σ2

M3
5

δ(y −R) (3.11)

+ 6

(
a′

a

)2

− 6
H2

a2
+

Λ5

M3
5

− 4β

M3
5L

5a5
= 0 (3.12)

leaving the jump conditions of eqs. (3.5) and (3.6) unchanged.

Since the desired H is much smaller than all other scales in the problem, we first

look for solutions with H = 0. Later we study perturbations with small nonzero H, or

equivalently Λ4. A differential equation independent of β can be formed from adding four
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times eq. (3.11) to eq. (3.12), which admits the solution [7]:

a(y) =

{
sinh

[
5k
2 (y0 − y)

]
sinh

[
5k
2 y0

] }2/5

, (3.13)

where k is the AdS curvature in absence of Casimir stress as in eq. (3.10), and y0 is an

integration constant.8 The second Einstein equation, eq. (3.12), imposes the constraint

Λ5L
5 = −4β sinh2

(
5k

2
y0

)
(3.14)

while the jump condition on the first brane in eq. (3.5) implies

k coth

(
5k

2
y0

)
=

σ1

6M3
5

. (3.15)

After combining eqs. (3.14) and (3.15), we arrive at the important result

L5 =
4β

λ1
, (3.16)

relating the interbrane distance L in conformal coordinates to λ1. Eqs. (3.16) and (2.22)

together entail that a radion extremum with β > 0 can only exist for small λ1 . βµ5,

or equivalently for SM brane tensions σ1 tuned to a precision of βµ5/k close to σ∗. This

is in accordance with the effective field theory consideration that the Higgs vev v cannot

significantly affect physical effects at higher energy scales.

Having found the effective size of the extra dimension in terms of the SM brane tension

σ1 and the bulk CC Λ5, the second brane tension σ2 is fixed by the second jump condition,

which can be thought of as the constraint that H = 0. It will be instructive to investigate

the implications of this condition and deformations to nonzero H perturbatively, in the

following two regimes:

flat bulk:

{
|λ1| �

∣∣k5
∣∣

|H| � 1
L

; AdS bulk:

{
|λ1| � |Λ5|
|H| � 1

L

. (3.17)

We insist on perturbative gravity in the bulk with |k|5 � |Λ5|, so that the calculation is

under control and no solutions will fall through the cracks; we will show that our results

for both regimes agree in the overlapping region. Given eq. (3.16), |λ1| � |k|5 implies a

flat bulk with negligible curvature |kL| � 1, so we will expand around a 5D Minkowski

background. In the AdS regime, we will perform an expansion in λ1/Λ5 around the zeroth-

order AdS background. We note again that warping is not responsible for the workings of

our mechanism; to avoid any confusion, we take the SM brane to be the UV brane with

positive tension σ1 > 0, when increased warping in fact reduces the power of our solution

to the hierarchy problem.

8The other cosh-type solution [7] will be implicitly covered by a perturbative analysis later this section.
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Flat bulk. In the approximately flat regime, we can Taylor expand the scale factor

around a(0) = 1:

a(y) = 1 + a1y + a2
y2

2
+ . . . (3.18)

The first jump condition (eq. (3.5)) and the bulk Einstein eqs. (3.11) and (3.12) respectively

determine a1 and a2:

a1 = − σ1

6M3
5

, (3.19)

a2 = − 1

24

(
σ1

M3
5

)2

− 5

12

Λ5

M3
5

. (3.20)

The second jump condition of eq. (3.6) fixes the second tension σ2 in terms of σ1 to be, to

leading order in kL ' kR,

σH=0
2 (σ1) = −σ1 −

5

23/5
β1/5λ

4/5
1 , (3.21)

and is the explicit combination of brane tensions that delivers a static solution with van-

ishing four-dimensional cosmological constant (H = 0). This extremum exists for both

positive and negative β, though eq. (3.16) requires the positivity of the product βλ1.

A small Λ4 is obtained only when the brane tensions lie within a small neighborhood of

eq. (3.21). Keeping σ1, and therefore λ1, fixed and reintroducing a small Hubble constant

in the above steps, we find that for small Hubble constant, the solution in eqs. (3.19)

and (3.20) becomes

a1 = − σ1

6M3
5

, (3.22)

a2 = − 1

24

(
σ1

M3
5

)2

− 5

12

Λ5

M3
5

+
3

2
H2, (3.23)

and the relation of eq. (3.16) becomes

4β

L5
= λ1 − 6H2M3

5 , (3.24)

which changes the expression of eq. (3.21) to:

σ2 = σH=0
2 (σ1) + 6H2M3

5L = σH=0
2 (σ1) + Λ4. (3.25)

As expected, changing the brane tension by a small amount from the solution in the

exactly static case looks just like changing the cosmological constant in the effective four-

dimensional theory.

We now turn to the stability of the flat extremum specified by eqs. (3.19), (3.20), (3.25),

(3.16). The spectrum of gravitational KK modes is tower of massive spin-2 particles, each

with five degrees of freedom, except for the lowest level, which contains a massless graviton

and thus a separate scalar — the radion — with a mass-squared that can potentially be

negative. The spin-one component of the metric is projected away by parity.
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In general, a scalar perturbation of the metric can be parametrized as:

ds2 = a(y)2 [1 + εf(y, xµ)] dx2 + [1 + εg(y, xµ)] dy2. (3.26)

Diffeomorphism invariance in the fifth coordinate y → y′(y) implies a functional ambiguity

in the profiles f and g. However, there is not enough gauge freedom to set both f and g

to be constant. A nontrivial bulk profile of the radion is expected because all KK modes

have to satisfy boundary conditions resulting from a modification of eqs. (3.5) and (3.6). In

appendix B, we provide the details of the radion mass calculation. For an approximately

flat bulk, the result reads:

m2
r =

40β

3L5M3
5

− 4H2. (3.27)

Importantly, the sign of the radion mass coincides with that of the Casimir energy density

for H = 0: simultaneously stable and static solutions only exist for β > 0, a conclusion

which will hold true for a warped bulk as well.

Nonstatic, stable minima can exist for negative β only beyond the regime of validity of

our perturbative expansion in small H, which is transgressed when the Hubble curvature

exceeds the size of the Casimir-induced curvature in eqs. (3.11) and (3.12). Taking into

account relation (3.24), this yields a lower bound on the magnitude of Hubble scale (4D

AdS curvature) in this type of radion extremum (cfr. Point 3 in figure 6):∣∣H2
∣∣ & ∣∣∣∣ λ1

M3
5

∣∣∣∣ , (3.28)

which is parametrically similar to that of eq. (3.7). For negative Casimir energy, the

tunability of Λ4 is limited by the density of σ1 vacua, and does not depend on the vacuum

structure for σ2. Hence the left panel of figure 7 correctly represents this situation as

well. Using the definition for the Hubble constant in eq. (3.7) and the expression for

the 4D Planck mass M2
Pl = 2M3

5L, eq. (3.28) can be translated to a bound on the SM

brane tension

|Λ4| & |k(σ1 − σ∗)|4/5 , (3.29)

a restriction more severe than eq. (3.8) for small detuning |σ1 − σ∗| < |k|4.

The right panel of figure 7 illustrates the tuning condition for β > 0. The region in

the σ1–σ2 plane with a 4D cosmological constant less than Λ4 is defined by:∣∣σ2 − σH=0
2 (σ1)

∣∣ ≤ |Λ4|. (3.30)

To leading order, σ2 needs to match σH=0
2 (σ1), the value in eq. (3.21) that gives rise to a

static solution, to a precision of |Λ4|. However, there can be many values of σ1 such that

L & µ−1 via eq. (3.16), so to leading order in kL, it is the sum |σ1 + σ2| that needs to be

tuned to |Λ4| precision.

The calculation above was independent of the sign of the bulk cosmological constant

Λ5. In what follows, however, we will restrict uniquely to Λ5 < 0. It is easy to see from

eq. (3.12) that no solutions exist for Λ5 > 0, H = 0 and β < 0. Bounds on the minimal

|Λ4| for which nonstatic solutions with β < 0 may exist will be analogous to the AdS
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case discussed below. If, on the other hand, corresponding static solutions with β > 0 do

exist, they can only increase the number of Class I vacua, leaving all of our subsequent

arguments unchanged.

AdS bulk. The regime of parameters where the small-λ1/Λ5 expansion is valid includes

highly warped geometries, and in the range |Λ5| � |λ1| � k5 it also overlaps with the

flat-space expansion discussed above. To keep this manifest, we will keep the warping

factor γ

γ ≡ ekR ' a(0)

a(R)
(3.31)

arbitrary whenever necessary, and explicitly mention where we utilize large-γ simplifica-

tions. First of all, we demonstrate that the regime of small λ1/Λ5 indeed corresponds to

small corrections to AdS space in the bulk. As long as γ − 1 & 1, the conformal distance

between the two branes is dominated by the infrared, large-y region of the extra dimension:

L =
γ − 1

k
∼ γ

k
. (3.32)

Together with eqs. (3.16) and (2.25), this means that even near the infrared brane, the size

of the 5D Casimir stress-energy is only of order k5, less than Λ5 as long as gravity itself is

perturbative in the bulk. Instead of using the exact but complicated form of eq. (3.13), we

will expand the scale factor into exponential terms:

a(y) =
1

1 +A4

(
e−ky +A4e

4ky
)

+ . . . (3.33)

which to zeroth order in λ1/Λ5 reduces to the AdS solution a(y) = e−ky.

We proceed in a way very similar to the approximately flat bulk case discussed above

and first restrict ourselves to the H = 0 case. Substituting the ansatz of eq. (3.33) in the

first jump condition of eq. (3.5) requires

A4 =
2β

5L5Λ5
=

λ1

10Λ5
, (3.34)

whereafter the other jump condition of eq. (3.6) implies

λH=0
2 (λ1) = 10γ5Λ5A4 = γ5λ1, (3.35)

where we defined λ2 ≡ Λ5+σ2
2/6M

3
5 analogously to λ1 in eq. (3.7), with λH=0

2 (λ1) signifying

the value corresponding to a static solution. One can check that the above solution indeed

satisfies the Einstein eqs. (3.11) and (3.12) in the bulk to leading order. At high warping,

eq. (3.35) can be massaged to derive the relation between the tensions

λH=0
2 (λ1) = 4βk5 + k4λ

1/5
1 (4β)4/5, (γ � 1) (3.36)

that ensures a vanishing Λ4. Eq. (3.36) is the analog of eq. (3.21) for a flat bulk, and

quantifies how the second brane tension is involved in obtaining a static configuration

with H = 0.
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As for the flat case, we deform the solution by reintroducing a small Hubble constant

H. Einstein’s equations are now solved by a functionally modified warp factor

a(y) =
e−ky +A1e

ky +A4e
4ky

1 +A1 +A4
+ . . . , (3.37)

a fact that can be checked upon substitution in eqs. (3.11) and (3.12), which also fixes

A1 = −H
2

4k2
, (3.38)

with A4 modified from eq. (3.34) to

A4 =
2β

5L5Λ5
=

λ1

10Λ5
+
H2

10k2
, (3.39)

The jump condition of eq. (3.5) results in the same relation between λ1 and L as in

the flat case (eq. (3.24)):
4β

L5
= λ1 − 6H2M3

5 . (3.40)

For a fixed λ1 (σ1), we can compute how much λ2 (σ2) deviates from the value in eq. (3.36)

as a function of H:

λ2 = γ5
(
λ1 − 6H2M3

5

)
+ 6γ2H2M3

5 = γ5

(
4β

L5

)
+ 6γ2H2M3

5

= λH=0
2 (λ1)− 6γ4H2M3

5 , (γ � 1), (3.41)

where in the second line we used a large-warping approximation (γ � 1). Note that in

the large-γ limit, the leading term in γ5/L5 does not depend on H. The leading Hubble

dependence is thus only enhanced by γ4 for large γ. This result can be translated in terms

of brane tensions:

σ2 = σH=0
2 (σ1) + γ4Λ4. (γ � 1) (3.42)

The factor of γ4 can be understood as the usual change of IR brane energy scales in the

effective theory due to warping.

We present a stability analysis of the warped solutions with a small Λ4 parallel to those

in a flat extra dimension in appendix B. The radion mass for arbitrary warping factor turns

out to be

m2
r =

20

3

β

L5M3
5

(
γ2 + γ

)
− 4H2 (3.43)

up to corrections suppressed by λ1/Λ5. The radion mass-squared is again of the same

sign as β for H = 0, so this concludes our proof that positive Casimir energy density is

necessary and sufficient for radius stabilization with zero or small Λ4. In the limit γ → 1,

we indeed reproduce the expression in eq. (3.27) for m2
r in a flat geometry. We observe

that in the highly warped regime (γ � 1), the radion mass-squared is enhanced by the

warping factor γ for a fixed Planck mass M2
Pl ' M3

5L/γ. Moreover, in this regime, the

radion has an extra-dimensional profile peaked near the IR brane, reducing its couplings
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to SM states relative to those of the graviton. These two observations are important for

radion phenomenology, discussed in section 5.2.

One may worry that we ignored possible higher-derivative corrections to the Einstein-

Hilbert action both in the bulk and on the branes in the preceding calculations. Indeed,

even if these corrections are suppressed by powers of M5, naive estimates for the corre-

sponding terms in the action can be parametrically larger than the Casimir stress-energy.

However, as we prove in appendix C, none of those terms can qualitatively affect our solu-

tion. Their only effect amounts to redefinition of the relation in eq. (3.9). In particular, the

radion mass and couplings are quantitatively insensitive to the addition of these operators.

As before, we address the issue of nonstatic vacua like Point 3 in figure 6 that are

not small deformations of eq. (3.33), where corrections due to Hubble curvature become

at least comparable to those from Casimir stress in the Einstein equations. Because

eqs. (3.24) and (3.40) are the same in flat and warped space, eq. (3.28) persists in the

warped case as well. However, since the Planck mass is now M2
Pl = M3

5 /k, in warped

radion vacua the minimum cosmological constant is

|Λ4| ≥ |σ1 − σ∗|, (3.44)

parametrically similar to the case without radius stabilization, eq. (3.8), and thus again

captured by the schematic in the left panel of figure 7.

Besides some quantitative differences, particularly in the size of the radion mass, our

conclusions for a warped bulk are qualitatively similar to those for the flat case: only for

repulse Casimir stress can both brane tensions contribute to a scanning of the cosmological

constant in near-static radion minima. Brane tension deviations by at most ∆σ1 = Λ4 or

∆σ2 = γ4Λ4 (in the large warping limit) in the neighborhood of eq. (3.36) give rise to a

cosmological constant smaller than or equal to Λ4, as illustrated in figure 7.

4 Vacuum structure

To solve the naturalness problems of the cosmological constant and the Higgs mass, our

model requires a large number of vacua; in this section, we explore their statistics.

In Class I vacua, with v ∼ v∗ ≡
√
M0M1/Y Y c, the radion potential develops minima

like Point 0 in figure 6, where the effective 4D cosmological constant depends on both brane

tensions, σ1 and σ2, and has scanning density proportional to the product of the number

of possible tensions on each brane as shown in figure 7. In Class II vacua, where the

Higgs vev is not near the critical value (v 6= v∗), the fifth dimension cannot be stabilized

in a radion minimum without significant Hubble expansion. The unstable Point 2 can be

discounted as a habitable vacuum if any configuration near the maximum of the radion

potential is always short lived compared to the Hubble time at which structures would have

formed. In Points 1 and 3, the minimum 4D cosmological constant is set by the scanning

density of vacua on the SM brane; non-SM brane physics cannot help tune the effective

4D cosmological constant. This can be seen from eq. (3.8) for Λ4 in Point 1 vacua, and the

lower bounds on |Λ4| in eqs. (3.29) and (3.44) for Point 3 vacua. These expressions can be
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combined for a lower bound on the cosmological constant in either situation:

|Λ4| & min
{σ1}
|σ1 − σ∗|, (4.1)

as long as the fifth dimension has a moderately high curvature scale k. The smallest

expected value for the quantity on the r.h.s. is determined solely by the number of vacua

on the SM brane. The main goal of this section is to show that there exist landscapes in

which galaxies can form in Class I vacua but not in Class II vacua. For a number of σ1

vacua not too large, eq. (4.1) is simply too stringent to form galactic structures, even after

taking into account changes to the micro-physics in different Higgs vacua in our density

perturbation analysis.

Point 4 appertains to the possibility that stable 5D vacua may exist near the cutoff.

After all, new UV physics may stabilize the radius at distances 1/MUV, beyond the realm

of our effective field theory. Supposing that the statistics of vacua on both branes were

unchanged in the UV, there would always be enough Point 4 vacua if there are a sufficient

number in Class I, spoiling our correlation of the resolution of the CC problem to the

Higgs hierarchy problem. However, we will show that the statistics of vacua can change

dramatically (i.e. reduce in number) much above v∗ but well before scales of order the

cutoff MUV. In appendix D, we present a proof-of-principle module in which the number

of possible brane tensions strongly diminishes as the branes approach each other.

4.1 Vacua with near-critical Higgs masses

To guarantee the existence of a vacuum with a cosmological constant Λ4 near the ob-

served value Λ0 ≈ (2 meV)4, our theory needs to exhibit large numbers of vacua for the

unprotected parameters — m2
H , σ1, and σ2. Our mechanism requires that each of them

individually take on a large number of possible values, denoted by Nm2
H

, Nσ1 , and Nσ2 ,

respectively. We will assume these vacua are randomly but uniformly distributed as in fig-

ure 7, a natural choice given the additive renormalization of the corresponding quantities.

Since different values for the Higgs mass will give rise to different contributions to the SM

brane tension σ1 at the quantum level (and also the classical level for m2
H < 0), by con-

struction Nσ1 ≥ Nm2
H

. We allow for the possibility of Nσ1 > Nm2
H

; a dark sector with N1′

vacua decoupled from the SM would generically give rise to a total number of tension vacua

Nσ1 = Nm2
H
× N1′ . For simplicity, we will assume there is no orthogonal sector scanning

the bulk cosmological constant Λ5 (i.e. NΛ5 = 1), and thus that k is fixed throughout the

landscape. This assumption can be relaxed to NΛ5 > 1, in which case the maximum UV

cutoff for our mechanism would be lower. The bulk curvature can be naturally small if our

model is UV completed into a supersymmetric theory with supersymmetry badly broken

on the branes but communicated into the bulk only gravitationally [15].

Statistically, there will be at least one vacuum with a Higgs vev in a O(1) range around

v∗ for a sufficient number of different Higgs mass-squared vacua:

Nm2
H
&
M2

UV

v2
∗
. (4.2)
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For a large hierarchy M1 � µ, the fractional range of Class I vacua would shrink further,

since v has to match v∗ even more closely. This would increase the lower bound on Nm2
H

by another factor of M1/µ, but not affect the rest of our discussion.

The majority of vacua with different and potentially small Λ4 are generated when the

extra dimension is stabilized. This is possible only when β > 0, which occurs only for a

large extra dimension L > 1/µ (see e.g. eq. (2.22) and figure 5). At the location of the

Point 0 minimum, the Casimir pressure counteracts a combination of zero-point energies,

captured by the relation 4β/L5 = λ1 (eq. (3.16)). Stabilization is thus attainable only

when |σ1 − σ∗| . µ5/k ∼ µ4/γ, demanding a minimal total number of tension vacua:

Nσ1 &
M2

UV

v2
∗︸ ︷︷ ︸

v∼v∗

× M4
UV

µ4/γ︸ ︷︷ ︸
L>1/µ

. (4.3)

Note that Nσ1 need not exceed M4
UV/Λ0, in which case there would be enough vacua on

the SM brane alone to tune the CC to the observed value.

The existence of a vacuum with a four-dimensional cosmological constant Λ4 as large

or smaller than the observed one Λ0 is assured when the number of possible σ2 values is

sufficiently large. Following our results for a flat bulk (γ ' 1) in eq. (3.25) and a warped

bulk (γ & 1) in eq. (3.42), we observe that the warping down of the IR brane tension

reduces the number of required σ2 vacua:

Nσ2 &
M4

UV

γ4Λ0︸ ︷︷ ︸
∆σ2/γ4<Λ0

. (4.4)

The inequality of eq. (4.4) is sufficient but not necessary: the lower bound on Nσ2 is reduced

if Nσ1 comfortably satisfies inequality (4.3), although a larger Nσ1 would make a solution

to the cosmological constant problem in Class II vacua more likely.

The total number of vacua in our toy landscape is the product of Nσ1 and Nσ2 , and

needs to be at least as large as (from eqs. (4.3) and (4.4):

Nσ1 × Nσ2 &
M2

UV

v2
∗︸ ︷︷ ︸

v∼v∗

× M4
UV

µ4/γ︸ ︷︷ ︸
L>1/µ

× M4
UV

γ4Λ0︸ ︷︷ ︸
∆σ2
γ4 <Λ0

=
M2

UV

v2
∗︸ ︷︷ ︸

m2
H∼−v2

∗

× M4
UV

Λ0︸ ︷︷ ︸
Λ4<Λ0

× M4
UV

γ3µ4︸ ︷︷ ︸
m2
r≈0

. (4.5)

For the equality, we just rearranged the fractions to isolate the naive minimal number of

vacua needed to explain the hierarchy problem (m2
H ∼ −v2

∗) and the cosmological constant

problem (Λ4 < Λ0). Our mechanism requires more. The minimal excess number of vacua

can (partly) be traced back to the requirement of a large extra dimension L > 1/µ, which

at low energies manifests itself as a tuned radion mass m2
r . For a radion coupled to the

SM with couplings suppressed by 1/γMPl (see appendix B), radiative corrections would

normally imply a mass-squared of at least M4
UV/γ

2M2
Pl. In our model, the radion mass in

Point 0 of a Class II vacuum is parametrically m2
r ∼ γµ4/M2

Pl (eq. (3.43)), much smaller

than the naive estimate by a factor equal to the excess number of vacua M4
UV/γ

3µ4 in

eq. (4.5). We discuss the interesting radion phenomenology in detail in section 5.2.
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4.2 Vacua with generic Higgs masses

For Higgs vevs not near the critical scale v∗ (Class II), the five-dimensional radius cannot

be stabilized to a static minimum in which the rich vacuum structure of σ2 can aid in tuning

the cosmological constant. We confine most of our analysis to runaway radion vacua like

Point 1 and the inherently nonstatic radion extrema like Point 3 in figure 6, for which

exactly analagous conclusions can be drawn. We return to the unstable Point 2 vacua,

which turn out to set only subleading constraints on our theory, at the end of our discussion.

In all radius configurations like Points 1 and 3, we derived in eqs. (3.8), (3.29), (3.44) that

the size of the 4D cosmological constant cannot be smaller than the detuning |σ1 − σ∗| of

the SM brane tension. Parametrically, the smallest possible cosmological constant ΛII,min
4

we can expect to find in stable Class II vacua is thus

ΛII,min
4 ≡ min

Class II
{|Λ4|} ∼

M4
UV

Nσ1

.
µ4

γ

v2
∗

M2
UV

∼ keV4
( µ

GeV

)4
(

104

γ

)(
1012 GeV

MUV

)2

, (4.6)

where the inequality follows from the lower bound on Nσ1 in eq. (4.3) needed to ensure

the existence of suitable Class I vacua. The parameters are chosen to satisfy current

experimental constraints (see section 5). The lowest expected cosmological constant in

Class II minima in eq. (4.6) is easily in gross violation of the anthropic lower bound to

form structure in our Universe [2], even for MUV ∼ 1012 GeV close to the five-dimensional

Planck scale M5 = (k/8πGN )1/3 ≈ 4×1013 GeV for k = 104 GeV. A cosmological constant

as high as Λ4 ∼ keV4 would correspond to a Hubble horizon size not much larger than the

solar system.

The process of structure formation is sensitive to micro-physics — including the Higgs

mass — so to complete our proof that no galaxies can form in Class II vacua, we need to

show that vacua with large positive or negative Higgs mass-squared still violate a modified

version of Weinberg’s lower bound on |Λ4|. In other words, there should be choices of Nσ1

such that inequality (4.3) can be satisfied but the resulting ΛII,min
4 of eq. (4.6) is too large to

form galaxies. As outlined in the introduction, we will assume an inflationary sector with

fixed reheating temperature Treh to the SM and an unspecified dark matter (DM) sector,

and density contrast seeded by inflation δρ/ρ
∣∣
I
∼ 10−5 throughout the landscape, as well

as a constant baryon asymmetry nB/nγ ∼ 10−10 parametrized by the number density of

baryonic matter nB over that of photons nγ .

In vacua with a very large positive Higgs mass m2
H ∼ +M2

UV, all SM particles would be

much lighter, and receive masses only from QCD confinement, which moreover would take

place at an even lower scale than in our Universe. We show a spectrum for m2
H ∼ +M2

UV

on the left part of figure 8 contrasted to the spectrum of our vacuum in the middle part;

QCD would confine at ΛQCD ∼ MeV, and the electron would be as light as me ∼ 10 eV.

The linear growth of density perturbations requires that matter dominates the cosmological

energy density, and that the photon is decoupled from the matter sector. In a universe

with m2
H > 0, baryons aid even less with structure formation than in our Universe, because

the temperature at matter-radiation equality (Teq) would be slightly lower, and at photon

decoupling (Tdec ∼ α2me) would be much lower. In this case, the dark matter overdensities
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Figure 8. Schematic mass spectrum of our theory in three different Higgs mass vacua: m2
H ∼

+M2
UV, m2

H ∼ −v2
∗, and m2

H ∼ −M2
UV. On the right of each axis, we indicate the masses of the

new neutral fermions m0(v) and m1(v), the new charged fermion ME′ , the proton mproton, the up

quark mu, and the glueballs mG. On the left of each axis, we indicate relevant mass scales of the

Lagrangian for reference. The lightest, stable baryonic state is indicated in purple. We highlighted

in green m1(v), the mass eigenvalue of the lightest brane fermion before mixing with the bulk

fermion; if m1(v) < µ, the lightest mass eigenvalue is of order µ.

would be solely responsible for forming galaxies. The upper bound on |Λ4| is parametrically

the same as in our Universe for structures to form in such a vacuum.

A large and negative Higgs mass m2
H ∼ −M2

UV would lift the lightest fermionic particles

in the SM, the up quark and the electron, up to scales of mu ∼ YuMUV and me ∼ YeMUV.

The bottom of the spectrum would comprise of (potentially long-lived) glueballs near ΛQCD,

which itself would be lifted above its value in our Universe, although not as dramatically

as the fermion masses. For sufficiently low reheating temperatures, the fermionic matter

density would equal the photon energy density at a temperature of roughly

Teq ∼
nB
nγ
YuMUV ∼ 10−15MUV ∼ 106 eV

(
MUV

1012 GeV

)
, (4.7)

about a million times hotter than the matter-radiation equality temperature Teq ≈ 2 eV

in our Universe, for the highest cutoffs MUV.9 In figure 9, we outline the cosmological

evolution of energy densities in such a vacuum juxtaposed to the evolution in our Universe.

Baryonic density perturbations would start linear growth with the 4D scale factor a much

earlier, facilitating the formation of structures. However, these perturbations will not have

9Due to the shallowness of the radion potential, the radion can never dominate the energy density

of the universe in Points 1 and 3 vacua. Besides, the radion mass-squared is smaller than 4|H2| in a

nonstatic vacuum for β < 0. A scalar with sub-Hubble mass does not behave as dark matter and cannot

form structure.
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time to grow to galaxies with δρ/ρ ∼ O(1) before a cosmological constant domination

phase — when they would be smoothed out again or the universe would crunch — as long

as the cosmological constant is sufficiently large:

ΛII,min
4 & ρB

∣∣
δ∼1
≡
(
δρ

ρ

∣∣∣∣
eq

)3

T 4
eq, (4.8)

where δρ/ρ|eq is the density contrast at matter radiation equality. (Density per-

turbations grow logarithmically during radiation domination due to the Meszaros ef-

fect [16, 17], so δρ/ρ is typically slightly larger at matter-radiation equality than the

corresponding primordial density fluctuations at the end of inflation.) The inequalities

of eqs. (4.6), (4.7) and (4.8) become mutually exclusive at a UV cutoff of

Mmax
UV ∼ µ2/3v

1/3
∗ γ−1/6Y −2/3

u (nB/nγ)−2/3
(
δρ/ρ

∣∣
eq

)−1/2
(4.9)

∼ 1012 GeV

(
104

γ

)1/6 ( µ

1 GeV

)2/3
(

10−10

nB/nγ

)2/3
(

10−4

δρ/ρ
∣∣
eq

)1/2

, (4.10)

which can be comparable to the five-dimensional fundamental scale M5. As long as MUV .
Mmax

UV , there is always a choice of Nσ1 high enough such that a stabilized Class I vacuum

can exist, but low enough such that no galaxies can form in stable Class II vacua.

A radion expectation value near Point 2 is unstable. The inverse lifetime Γ of such

a configuration is of order the size of the radion mass, which is at least Γ ∼ |mr| &
γ
(

ΛII,min
4 /M2

Pl

)1/2
via eqs. (3.43), (3.40), and (4.6). To preclude formation of structures

in Point 2 extrema, we require that the lifetime of this type of radion configuration is

shorter than the smallest Hubble time at which structures can form. This constraint

can be seen to put a lower bound on ΛII,min
4 which is weaker by a factor of γ2 � 1 but

otherwise parametrically similar compared to the bound in eq. (4.8). We thus conclude

that the leading theoretical constraints on the maximum cutoff in our model arise from

considerations of the stable vacua (Points 1 and 3), not the unstable vacua of the type

in Point 2.

A large reheating temperature would slightly complicate (but not spoil) the story for

negative Higgs mass squared above, as some of the new exotic states could be produced in

the thermal bath. Firstly, the new brane fermions L,Lc, N1, N
c
1 would eventually populate

the lightest states in this sector, the charged fermions E′ and E′c, which would annihilate

rapidly to photons. Secondly, heavy QCD glueballs with mass mG ∼ 7ΛQCD [18, 19] could

potentially kick-start a matter-domination phase much before the temperature of eq. (4.7)

is reached, at Teq ∼ mG, if they were long lived. However, their decay rate Γ ∼ m9
G/m

8
u

is always faster than the Hubble expansion rate for MUV . 1012 GeV, in which case they

could only impede structure formation. Finally, a relic abundance of long-lived KK states

of the bulk fermion Ψ would be problematic, but for the UV cutoffs under consideration

they are never in thermal contact for Treh < MUV, so they would not populate the universe

if the reheating sector only heated up the Standard Model directly.
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Figure 9. The cosmological evolution of energy densities ρ as a function of temperature T with

MUV = 1012 GeV. The green line shows the radiation energy density decreasing as T 4. The

blue and red solid lines show the energy densities of the lightest baryonic state ρI,II
B in a typical

Class I (v = v∗) and Class II (v = MUV) vacuum, respectively. The baryonic energy density

drops by a factor of nB/nγ when the temperature falls below the mass of the lightest baryon. At

this point, the anti-baryons annihilate away with most of the baryons until only the asymmetric

component remains, which is nonrelativistic and redshifts as T 3. The blue and red dots indicate

matter-radiation equality and their corresponding temperatures T I,II
eq in both scenarios. The blue

and red dotted lines show the critical cosmological constant Λ4 for which galaxies can just form,

and is different in Class I and II. For our mechanism to work, the smallest CC in Class I vacua ΛI
4

should be smaller than the critical value of meV4, while ΛII
4 should be larger than the critical value

of keV4 in Class II.

5 Phenomenology

5.1 Electroweak-scale states

Our model predicts the existence of two Dirac fermions, a doublet L = (E′−, N0) and a

singlet N1. We assume for brevity that the brane fermions are approximately vectorlike

with Y = Y c, such that the Weyl spinors can be collected in gauge-eigenstate Dirac spinors

N0 ≡ (N0, N
c†
0 ), N0 ≡ (N †0 , N

c
0), and similarly for E′−, E′+, N1, and N1. We reserve tildes

for the neutral mass eigenstates Ñ0 and Ñ1, the latter of which significantly mixes with

the bulk fermion and has a mass of order µ (see eq. (A.11)).

The doublet has a mass of approximately M0 which must be near the electroweak

scale because of naturalness: the radiative mass correction in eq. (2.17) together with the

expression for v∗ (normalized to v∗ ≈ 174 GeV) in eq. (2.9) means that M0 cannot be

higher than about 4πv∗/
√

2 log[M2
UV/v

2
∗] in the absence of a tuning for M1. An ultraviolet

cutoff scale of MUV = 1012 GeV requires the electroweak-charge fermions to be lighter
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than about 250 GeV if the lighter fermion mass scale M1 is to be technically natural. The

dashed purple lines in the top panel of figure 10 show tuning contours of ∆ = 1 (not tuned)

and ∆ = 5 (tuned to 20%) as a function of M0 for a high (low) cutoff of MUV = 1012 GeV

(106 GeV). Tuning contours of ∆ = 1, 2, 4 for MUV = 1012 GeV are also shown in the

bottom panel of figure 10. Contours of the minimal Yukawa coupling and thus M1 and µ

are depicted by the dashed red lines for different UV cutoffs, according to the relation of

eq. (4.10).

Direct searches. The electroweak doublet L can be produced via electroweak interac-

tions in the processes delineated by the Feynman diagrams in figure 11. The production

cross-section of L pairs is similar to that of higgsino pairs; also here, the production channel

via a W boson is much larger than Drell-Yan production via Z/γ [20, 21]. The components

E′− and N0 in the L doublet promptly decay to N1 by emitting a longitudinal component

of a gauge boson or a Higgs boson, as drawn in the diagrams of figure 12. A guaranteed

signature in this type of model is thus events at the LHC and future colliders with final

states containing the decay products of weak gauge or Higgs bosons, and missing energy.

Several searches at LHC8 cover these signatures already [22–27]. The most sensitive

searches look for final states from the decay of WZ gauge bosons [22, 23, 27] in channels

with three leptons, with two leptons on the Z peak, and missing energy, as well as channels

with two leptons on the Z peak, two jets with invariant mass near that of the W , and

missing energy. The combined 95%-CL limit on the mass of these states from searches in

the LHC 8 TeV run is 180 GeV. Recently, CMS updated their analysis [28] with 12.9 fb−1

of 13 TeV data, improving this limit to 210 GeV. This bound is indicated by the vertical

gray region on the left of figure 10. (We conservatively extended this bound to the region

of large Yukawa couplings and thus large M1 and µ, a squeezed-spectrum limit in which

the searches of refs. [22, 23, 27] lose much of their power. See ref. [28] for more detail.)

While the aforementioned bound on M0 already excludes part of the parameter space of

our model, it does not yet limit how high the UV cutoff MUV can be taken in our framework,

with eq. (4.10) being the leading constraint. With 300 fb−1 of LHC collisions at 14 TeV,

the projected discovery reach is 450 GeV, while 3000 fb−1 at a future 100-TeV collider

may unveil these states even if they are as heavy as 3 TeV [29–33]. Under the assumption

of naturalness in the new fermion sector, this proves that our model is as falsifiable as

any other dynamics that can stabilize the electroweak scale, such as supersymmetry or

compositeness. Over the lifetime of LHC14, the parameters of our model will be strained

at ∆ > 1 for all but the lowest cutoffs, while a 100 TeV collider could convincingly rule out

— or discover one element of — the construction presented in this work.

If an electroweak doublet is discovered at a collider, the first step towards identifying

it with our brane fermion sector and mechanism would be to measure the splitting of the

mass eigenstates E′− and Ñ0. The charged lepton E′− gets extra radiative mass corrections

from gauge loops relative to the neutral fermion Ñ0, just like in the higgsino sector of split

supersymmetry models [34]. The E′− mass is approximately M0 + 355 MeV. The mass of

Ñ0 is m0(v) ' M0 + Y Y cv2/M0, receiving positive corrections from the Higgs vev. This

latter classical correction is one aspect that sets our model apart from others: it would
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Figure 10. Top panel: experimental and theoretical constraints on our model as a function of

M0, assuming a critical Higgs vev v = v∗, µ = M1, and a warping factor γ = 106 throughout.

Vertical contours (purple, dashed) show the fine tuning of M1 as a function of M0. Theoretical

lower limits on the Yukawa coupling (Y Y c)1/2 are indicated by the red, dashed contours for MUV =

{1012, 1010, 106} GeV. The dark gray shaded region on the left is excluded by LHC8 searches for

the doublet leptons. The gray shaded band represents the limit on Higgs invisible decays, while

the brown region near the top is excluded by precision electroweak constraints (PEWC); between

them, there is an experimentally allowed yellow region where the functionality of our mechanism is

unclear. Bottom panel: zoom on a region with larger Yukawa couplings and smaller M0, and for a

smaller warping factor of γ = 104 instead. Vertical tuning contours (purple, dashed) of ∆ = 1, 2, 4

are for MUV = 1012 GeV, while the theoretical lower limits (red, dashed) on the Yukawa coupling

in our model are now shown for MUV = 1012 GeV and 1011 GeV.
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u(d) u(d)

Figure 11. Main production channel of the electroweak doublets L = (E′−, N0) at a proton

collider. Arrows indicate the flow of the new conserved U(1) fermion number.

E ′−
N1

W−

N0

N1

Z

N0

N1

H

Figure 12. Dominant interactions contributing to the decay of the electroweak doublets L. Anal-

ogous interactions exist for E′+ and N0. The cross is a Higgs vev insertion.

H

N1

Figure 13. Higgs boson decay into a pair of light, invisible fermions. The cross is a Higgs

vev insertion.

pinpoint the product of Yukawa couplings — and for v ' v∗, also the Lagranian parameter

M1 — that can be independently measured via other methods, our next topics of discussion.

For sufficiently large Yukawa couplings and thus M1, lepton colliders such as CEPC [35]

and the ILC [36] may be able to measure the lightest mass eigenvalue(s) in the fermion

sector, which will be of order µ, via precision studies of the kinematics in the decays of

figure 12. A crucial part of our mechanism is that there is an accidental cancellation in the

fermion masses in our vacuum, so a measurement of at least one mass eigenvalue signifi-

cantly smaller than the bare mass M1 would be a tantalizing hint of the chiral symmetry

restoration needed in our model. We leave a careful study on the prospects for measuring

these decay kinematics at planned lepton colliders to future work.

Higgs invisible width. The Higgs boson will decay to Ñ1Ñ1 if they are lighter than

half the Higgs mass, via the interaction depicted in figure 13. The LHC 8 TeV run has

constrained the Higgs invisible branching ratio to be less than BR(H → inv) < 0.23 [37, 38],

with improvements to come after more integrated luminosity in the 13 TeV run [39–42].
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The limit on the Higgs invisible decay width can be translated into a bound on the effective

Yukawa coupling (Y Y c)1/2:

(Y Y c)1/2 . 0.24

(
M0

300 GeV

)1/2

. (95% CL) (5.1)

Assuming the Higgs vev is near the critical one given by Y Y cv2
∗/M0 = M1, we can interpret

this upper bound on the Yukawa coupling as an M0-independent upper bound on the

Lagrangian parameter M1 of about 5 GeV, via the relation:

M1 . 5 GeV

(
BR(H → inv)

0.23

)1/2

. (for v ' v∗ and M1 . mH/2) (5.2)

Conversely, a positive signal in the invisible decay channel of the Higgs boson can be

interpreted as a measurement of the parameter M1 in the context of our model, which

should be consistent with the mass splitting of E′− and N0.

After 3000 fb−1 of LHC14 data, invisible branching ratios of the Higgs may be probed

down to the 10% level [32, 43], which corresponds to M1 ≈ 3 GeV. Future lepton colliders

are projected to have a precision on the Higgs invisible branching ratio at the level of

0.14% [35], corresponding to M1 ≈ 0.4 GeV, and putting pressure on our highest-cutoff

models in case of a null result. If our mechanism is realized in Nature with a UV cutoff of

1012 GeV, prospects to measure the invisible width of the Higgs boson at a future e+e−

machine are hopeful.

Precision electroweak observables. Virtual effects from the new fermion sector may

also be visible, depending on the mass and Yukawa coupling of the doublet fermions [44].

The fermionic vector pairs radiatively generate the following corrections to the S and T

parameters [45]:

∆T = 0.06

(
Y Y c

1

)2(300 GeV

M0

)2

, (5.3)

∆S = 0.014

(
Y Y c

1

)(
300 GeV

M0

)2

. (5.4)

These observables have been constrained experimentally to ∆T . 0.20 and ∆S . 0.14,

both at 95% CL [46]. The resulting constraint on the Yukawa coupling is the relatively

mild (Y Y c)1/2 . 1.1 for M0 = 200 GeV and worse at higher doublet masses. The most

relevant constraint comes from the bound on the T parameter, and is interpreted in the

context of our model as the brown exclusion regions in figure 10.

There is a small region of parameter space depicted by the yellow region in figure 10 be-

tween the precision electroweak constraints (PEWC) and H → inv bounds that is currently

still experimentally allowed for not too large a hierarchy between M1 and µ, each around

100 GeV. This sliver of parameter space may lead to interesting LHC signatures [47], but

the absence of mass hierarchies puts our Casimir energy calculation at the edge of its region

of validity, so we postpone a detailed analysis of this region to future work. Nevertheless,

future lepton colliders will likely have the capability to determine the T parameter to a
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precision of 0.02 for S = 0 [35], sufficient to close up this gap. In addition, a pair of

light charged fermions with considerable Yukawa couplings to the Higgs will also change

the Higgs decay rate into two photons [48–50]. Though current measurements [51] do

not place additional constraints on our parameter place, a combined effort of the high-

luminosity LHC and future lepton colliders will measure the diphoton rate to percent level

precision [52], probing some of the yellow band at low M0.

5.2 Radion signatures

The radion in our model is extremely light, and may produce exciting signatures in fifth-

force experiments, equivalence-principle tests, black-hole superradiance and, if abundant

in the Universe, scalar dark matter searches. We will first summarize the radion’s main

properties derived in detail in appendix B, and then discuss the signatures.

For a flat fifth dimension, the radion couples with roughly the same strength as the

graviton. The radion mass is determined by the equilibrium size L of the extra-dimension,

which is expected to be of order 1/µ:

mr =
1

λr
'
√

40β

3

1

L2MPl
≈ 1

300 m

(
β

1
32π2

3ζ(5)
2

)1/2 ( µ

5 GeV

)2
(

2

µL

)2

. (5.5)

A gravitationally coupled scalar this light is already excluded, as we show in figure 14. For

a warped extra dimension, the radion mass-squared is enhanced by the warping factor γ

for a fixed 4D Planck mass MPl, as we calculated in eq. (3.43):

mr =
1

λr
'
√

(γ + 1)
20β

3

1

L2MPl
≈ 1

4.2 m

( γ

104

)1/2
(

β
1

32π2
3ζ(5)

2

)1/2 ( µ

5 GeV

)2
(

2

µL

)2

.

(5.6)

Moreover, for a warped bulk, the radion has a profile that peaks near the IR brane, and

therefore has suppressed couplings of Br√
6γMPl

Tµµ to the Standard Model states on the UV

brane, where Tµµ is the trace of the energy momentum tensor of the brane-localized SM

states [53, 54].

The radion has a mass that appears “unnatural” to a 4D low-energy observer. This is

a feature that stems from the tuning of the brane tensions against the bulk cosmological

constant, which guarantees a large but finite fifth dimension, and a correspondingly small

radion mass due to nonlocal effects, including Casimir energy (see appendix C for further

details). This tuning is necessary for getting a fifth dimension whose stabilization can

be controlled by the Higgs vev, and is therefore a prerequisite for getting a small four-

dimensional cosmological constant. The excess number of vacua
M4

UV
γ3µ4 found in eq. (4.5) is

parametrically the amount one needs to tune the radion mass-squared from the “natural”

value
M4

UV

γ2M2
Pl

to the “tuned” value γµ4

M2
Pl

. The lightness of the radion brings into play a variety

of precision instruments that can look for this new degree of freedom.

The radion generates a Yukawa force between massive objects on the UV brane to

which the SM is localized, and modifies the gravitational potential between objects with
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mass m1 and m2 spaced a distance d12 apart:

Vr(d12) =
Gm1m2

d12

(
1 + αe−mrd12

)
(5.7)

where mr is the radion mass, and α ' 1/12γ2 parametrizes the strength of the new Yukawa

interaction compared with gravity. The force mediated by the radion is only relevant at

distances d12 shorter than its Compton wavelength λr ≡ 1/mr. In figure 14, we show

that the radion is sufficiently weakly coupled to evade all current fifth-force constraints for

γ > 105 [55–58]. The exact value of the coefficient α might depend on the chemistry of the

objects involved — violating the equivalence principle — if the SM brane has a finite thick-

ness, with different SM fields localized at different places along the extra dimension [59].

In this case, there are additional model-dependent constraints from searches for new forces

that violate the weak equivalence principle [60, 61]. Future equivalence principle tests could

shed more light on the mass and coupling of the radion [62]. The radion interactions also

violate the strong equivalence principle; these effects are the dominant model-independent

constraints on the radion in the mass regime below 10−20 eV [63, 64]. The KK modes of

the graviton are at most gravitationally coupled to the Standard Model, and their masses

are typically too large for detection in short-distance gravity experiments.

There is a corner in our parameter space with small µ and large γ where the radion

Compton wavelength λr matches the Schwarzschild radius of astrophysical black holes.

Through the superradiance effect [65], angular momentum and energy can be extracted

via the production of radion particles. This process constrains models with small warping

factor γ since the radion cloud can only build up to an appreciable size if the effective radion

quartic coupling of γ2m2
r/M

2
Pl is sufficiently small [66]. Note that the radion self-coupling

grows with the warping factor γ, while its coupling with matter decreases as α1/2 ∼ 1/γ.

Black-hole superradiance thus constrains a radion with large couplings to matter. The

horizontal edge of the superradiance constraints in figures 14 and 15 is uncertain due to

nonlinear effects discussed in ref. [67].

The radion in our model can also be a dark matter candidate through the misalignment

mechanism (see section 5.3 for more details). If abundant in the Universe today, searches

for dilaton-like light scalar dark matter [64, 68–71] have a promising discovery reach in

the radion mass-coupling parameter space as shown in figure 15. For masses lighter than

10−14 eV, broadband searches for oscillatory signals in atomic clocks can already probe a

large part of the parameter space [68] if the radion couplings to the SM violate the weak

equivalence principle. Two data analyses on isotopes of Dy [72] and on hyperfine Rb and Cs

clocks [73] have already set the best limits in this part of the dark matter parameter space.

In the future, comparisons between different optical clocks [74–78], and especially be-

tween a nuclear thorium clock [79–82] and an optical clock will greatly extend the discovery

potential of atomic clock pair comparisons. In figure 15, we estimate the SNR = 1 reach

after 107 s integration for an optical clock pair with a fractional frequency instability and

thus sensitivity to variations in the fine structure constant αEM of δf/f ∼ δαEM/αEM ∼
10−16 Hz−1/2. We show a similar estimate for a comparison between an optical clock and

a future 229mTh clock with δf/f ∼ 10−15 Hz−1/2 stability, boosted by an enhancement
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factor in the coupling to nucleons of about 106 [83]. Terrestrial and space-based atom-

interferometric gravitational wave sensors will complement and expand even further the

reach at the higher end of this frequency band [71]. These gravitational wave detectors

rely on the time-domain response of the setup to the DM wave, and have sensitivity even

if the radion couplings do respect the weak equivalence principle.

For radion masses above 10−12 eV, current resonant-mass detectors are already probing

new parameter space [70], as evidenced by a limit from the AURIGA experiment in a narrow

band around 3 × 10−12 eV [84]. Smaller and more sensitive devices offer the possibility

to expand the reach of this acoustic signature to higher frequencies in the near future [70,

85, 86]. The SiDUAL curve in figure 15 shows the ultimate reach after 107 s integration

as limited by thermal noise on the lowest breathing-mode resonance of a silicon sphere

with a quality factor Q ∼ 106 cooled to 20 mK, for variable sphere radii smaller than

20 cm. Like the interferometric gravitational wave sensors, the resonant-mass detectors

retain their sensitivity even if the radion couplings obey the weak equivalence principle.

Finally, both at very low masses and at large self-interactions (i.e. high warping), the

radion ceases to be a good DM candidate. For too light or too strongly self-coupled scalar

DM, the associated Jeans length can become larger than the size of observed structures in

our Universe [68]. Structure formation will essentially be unaffected to the right and above

the black dotted line in figure 15; to the left and below the dotted line, the radion can

likely only constitute a fraction of the dark matter. We note that all the sensitivity curves

and exclusion bounds depicted in blue in figure 15 only weaken by a factor (ρr/ρ0)1/2 for

radion matter densities ρr below the total DM density ρ0.

5.3 Cosmology

Light fermions. The lightest of the new fermion states Ñ1 and Ñ1 will be stable due to

the unbroken new fermion number discussed in section 2.2, and are therefore a potential

dark matter candidates. If once abundant in the Universe, they can only annihilate into

pairs of Standard Model particles through the Higgs portal with a small annhilation cross

section. If ever in thermal equilibrium, the freeze-out abundance of these fermions would

overclose our Universe. Thermal equilibrium with the SM can be avoided if the reheating

temperature Treh is below the mass of the lightest mass eigenstate: Treh . µ. Requiring

that a “freeze-in” abundance from the tail of the Maxwell distribution of the Standard

Model particles [87] does not produce too much matter content, yields a slightly stronger

bound of Treh . µ/15. It is also possible that Y Y c, M1, and µ are all small enough —

that is, M1 ∼ µ . 10−4 GeV — such that Ñ1 and Ñ1 are never in thermal contact with

the Standard Model for reheating temperatures compatible with Big-Bang nucleosynthesis

(Treh & 1 MeV). Higher reheating temperatures together with larger couplings could be

accommodated if the unbroken fermion number is weakly gauged, in which case the lightest

states can annihilate into two dark photons of the gauged U(1) symmetry.

Radion. The radion is an extremely light scalar and as such it will be displaced from its

minimum during inflation. A large misalignment of the radion remains fixed after the end

of inflation, until the Hubble rate becomes comparable to the radion mass. At this point,
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Figure 14. Plot of the fractional change α in Newton’s potential due to the radion Yukawa force

as a function of its range set by its Compton wavelength λr = 1/mr. The green (red) solid line

shows the radion mass-coupling relation for fixed µ = 2/L = 5 GeV (1 GeV) and variable γ, with

dots indicating γ = 1, 10, 102, . . . from top to bottom. The darker gray region above the solid gray

line is excluded by searches for a fifth force (5F) [55–58]. The lighter gray region above the dashed

gray line is excluded if the radion couplings violate the weak equivalence principle (WEP) by an

O(1) amount [60, 61], which can occur if SM states have different profiles in the extra dimension.

The brown region is excluded by precision electroweak constraints (PEWC), while the lighter gray

region is excluded by null observations of the Higgs invisible width. The yellow band is theoretically

uncertain. The purple shaded region is excluded by null observations of the black hole superradiance

effect (BHSR) [66]. The dashed red contours indicate maximum UV cutoffs.

the misaligned radion field starts oscillating and redshifting like matter. The radion can

thus be the dark matter of our Universe, or a small component thereof, with an abundance:

ρ0
r,mis '

1

γ2

(
mr

Heq

)1/2( Bmis
r

MPl/γ

)2

ρ0. (5.8)

Here, ρ0 is the DM abundance in today’s Universe, Bmis
r is the primordial radion field

misalignment amplitude that has natural size ∼ MPl/γ (see appendix B), and Heq is

Hubble at matter-radiation equality. The mass for which the radion makes up all the dark

matter of the Universe (ρ0
r,mis = ρ0) is

mr ≈ 10−8 eV
( γ

105

)4
(
MPl/γ

Bmis
r

)4

. (5.9)

The primordial misalignment amplitude is a priori unknown: we expect inflation to scan

all possible values. This uncertainty implies that the radion is an excellent dark matter

candidate in a wide range of the mass vs. coupling plane as shown in figure 15.
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Figure 15. Parameter space of the radion coupling α1/2 relative to gravity as a function of mass

mr and frequency fr = mr/2π. Under the assumption that the radion constitutes all of the dark

matter, the discovery reach of scalar dark matter searches is shown by the blue curves. At sub-Hz

frequencies, current optical clocks (O/O clocks) and a future nuclear-optical clock pair comparison

(N/O clocks) have prime sensitivity [68]. Atom-interferometric gravitational wave detectors on earth

(AI-TB) and in space (AI-SB) can cover frequencies between 10−4 Hz and 10 Hz in broadband mode,

while a space-based resonant-mode detector (AI-SR) could perform a deep scan above 10−2 Hz [71].

Experimental proposals (DUAL [85], SiDUAL) based on resonant-mass gravitational wave detector

technology can probe the radion above kHz frequencies [70]. 95%-CL limits from existing scalar

dark matter searches by atomic clocks (Dy [72], Rb/Cs [73]) and the AURIGA resonant-mass

detector [84] are indicated by blue regions. The radion can only be a subcomponent of DM left

and below of the black dotted line due to disruption of structure formation (SF) [68]. Virtual

radion exchange also leads to violations of the strong equivalence principle (SEP), which have been

most strongly constrained by Doppler tracking of the Cassini spacecraft [63]. Curves and regions

labeled “WEP”, “Rb/Cs”, “Dy”, “O/O clocks”, and “N/O clocks” assume that the relative radion

couplings to different SM fields violate the weak equivalence principle by an O(1) amount. Other

abundance-independent exclusion regions and MUV bounds are similar to those in figure 14.

In principle, the radion field can take any value, but for displacements larger than

MPl/γ, perturbative control of the radion potential is lost. This means that the extra

dimension can possibly (but not necessarily) be destabilized. For high reheating tempera-

tures, one might worry that the radion is driven into this regime in the early Universe by

its coupling to the large matter energy density. In particular, eq. (3.24) suggests that the

approximately static solution is not valid when the brane-localized energy density exceeds

µ4/γ. To see how the radion evolves after reheating, it is necessary that we restore the

time dependence of the radion equation of motion. If the 4D Hubble scale is much smaller

than the inverse size of the fifth dimension H2/µ2 � 1, the evolution of the radion can
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be calculated with the radion potential and couplings found in appendix B. The radion

equation of motion has the following form:

B̈r + 3HḂr +
dV (Br)

dBr
+

Tµµ√
6γMPl

= 0 (5.10)

For a radion without any primordial misalignment, the field Br will first increase as
√
t

during radiation domination until H ' mr, at which point it reaches

Br '
MPl

γ

(Heq

mr

)1/2

. (5.11)

When the Hubble rate falls below the mass of the radion, the field starts oscillating, with

its energy density redshifting like matter. The radion energy density sourced from this

effect is thus at least

ρ0
r '

1

γ2

(Heq

mr

)1/2

ρ0. (5.12)

One can see from eq. (5.11) that for radion masses smaller than the Heq, the radion can

develop an amplitude comparable to MPl/γ, where significant change of the geometry may

occur. We restrict to cases in which mr > Heq only, where on top it is heavy enough to be a

good DM candidate. Even without any primordial misalignment from inflation, eq. (5.12)

shows that the radion is generically expected to make up some fraction of the dark matter.

6 Implications of Weinberg’s no-go theorem

We wish to take a step back, and contextualize our framework against other ways to address

the naturalness problems of the Higgs mass and the cosmological constant. Approaches

toward solving either of them fall in three broad categories: symmetry, adjustment, and

landscape (in order of decreasing elegance). Our mechanism to explain both the small

Higgs mass and cosmological constant is squarely categorized in the last. We now clarify

why we did not pursue more aesthetic approaches.

Symmetry. The Higgs mass and the cosmological constant are positive-mass-dimension

quantities that can be protected with conformal symmetry, supersymmetry, or compos-

iteness, as long as the dynamics associated with breaking the symmetry occurs near the

respective observed energy scales. However, there is strong experimental evidence signaling

that Nature does not work in this way, overwhelmingly so for the cosmological constant,

and increasingly so for the Higgs mass.

Adjustment. Weinberg’s “no-go theorem” [3] laid bare the main challenge for adjust-

ment mechanisms of the cosmological constant. If fields — here parametrized by the

placeholder φ — are to adjust the cosmological constant down to its observed value, both

the value and the derivative of the potential must vanish:

∂φV (φ) = 0, (6.1)

V (φ) ≈ 0. (6.2)

– 37 –



J
H
E
P
0
5
(
2
0
1
7
)
0
7
1

This system of equations is overdetermined. It allows no solutions in absence of a sym-

metry enforcing the second equation at the scale of the observed cosmological constant,

Λ
1/4
0 ∼ meV, because zero of the overall potential is not special. The only other way

eqs. (6.1) and (6.2) can be reconciled is to have an enormous number — a discretuum — of

vacua; this defines a “landscape”. If these minima exhibit different values of the cosmolog-

ical constant Λ4, and their number exceeds NΛ4 ∼M4
UV/Λ0 ∼ 10120

(
MUV
MPl

)4
, there can be

a minimum with an accidentally small value Λ4 ∼ Λ0 ≈ 0 — the vacuum of our Universe.

The same logic can be applied to the hierarchy problem, with the conditions:

∂φV (φ,H) = 0, (6.3)

∂HV (φ,H) = 0, (6.4)

∂2
HV (φ,H) ≈ 0. (6.5)

In the absence of new dynamics or symmetries such as supersymmetry at the weak scale,

this system of equations does not admit a solution either, unless there is a discretuum of

at least Nm2
H
∼ M2

UV/m
2
0 ∼ 1032

(
MUV
MPl

)2
vacua with m0 ∼ 100 GeV. This also defines

a landscape.

There is an innate coupling of the cosmological constant problem to adjustment sce-

narios for the Higgs mass like those of ref. [88]. Suppose classical evolution leads to a

preferred final vacuum with m2
H ≈ 0. This vacuum, in addition to eqs. (6.3), (6.4), (6.5),

must also satisfy:

V (φ,H) ≈ 0. (6.6)

With this addition, the system of equations becomes doubly overdetermined. The zero of

energy has to be tuned to coincide with the preferred final state for which eq. (6.5) holds.

This vacuum is just one out of ∼ 1032
(
MUV
MPl

)2
possible vacua, so requiring eqs. (6.5)

and (6.6) are simultaneously satisfied reintroduces the hierarchy problem. To avoid this,

one needs a sector that relaxes both m2
H and Λ4 concurrently. Unfortunately, there is no

known adjustment mechanism for the cosmological constant [89], although there has been

some recent progress in this direction [90, 91].

Furthermore, a discretuum inherently defines a landscape. In a landscape of vacua, an

approach to the hierarchy or the cosmological constant problem using classical evolution

is misleading. Relying on classical equations involves starting with some specific initial

conditions and time evolving them until a preferred local minimum is reached. In the

presence of such a vast number of vacua, any specific initial conditions have measure zero

and constitute a fine tuning. Arguing that some initial conditions are preferred or generic

is tantamount to solving the measure problem in this landscape (see for example [92, 93]

and references therein).

In addition, reaching a minimum as the endpoint of classical evolution is misleading.

There is a huge number of possible quantum tunnelings from this minimum to other vacua

that will eventually populate the landscape. Arguing that tunneling takes a long time is no

consolation, since there is no preferred unit of time in this eternally-inflating multiverse of
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vacua. Postulating that we can ignore tunneling because the multiverse is young is another

extreme fine tuning [92, 93].

Landscape. In view of the above difficulties, we adopt a pragmatic approach. We postu-

late the only known solution to the cosmological constant problem — the galactic principle

in tandem with a landscape of vacua [2, 3, 94, 95] — and investigate theories for which do-

ing so also solves the hierarchy problem.10 Specifically, we construct an extra-dimensional

model with a discretuum of vacua, where eq. (6.6) automatically implies eq. (6.5):11

V (φ,H) ≈ 0 ⇒ ∂2
HV (φ,H) ≈ 0. (6.7)

From a low-energy perspective, φ can be loosely viewed as the radion in our model. In fact,

the implication is even stronger than in eq. (6.7): in our five-dimensional construction, a

vanishing cosmological constant not only implies a light Higgs, but also an ultralight radion:

∂2
φV (φ,H) ≈ 0.12 In this sense, the galactic principle dictates we live in a triply special

place in the landscape: a vacuum with a small cosmological constant, a light Higgs, and

an ultralight radion, all of which appear tuned and unnatural to a low-energy observer.

To realize our framework, we have carefully engineered a landscape in which only un-

protected quantities, i.e. additively renormalized Lagrangian parameters, are assumed to

vary wildly over scales of order the cutoff. The emergent electroweak scale v2
∗ ∼ M2

0 is

determined by a fermion mass scale M0 that is protected by symmetry. We have tacitly

assumed this scale to be fixed and much below the cutoff; if this assumption were relaxed,

the resulting electroweak scale would likely be at the largest possible value of M0 in the

landscape.13 Because M0 (and also M1 and µ) are technically natural parameters, ultravi-

olet completions exist in which these fermion masses remain parametrically below MUV.

Anthropic arguments are often abhorred, as they usually make no experimental pre-

dictions. This is not necessarily so. Our model is both falsifiable and verifiable, and has

phenomenological implications for a wide range of experiments, including particle colliders,

fifth force experiments, and light scalar dark matter searches.
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A Casimir energy calculation

We specialize to the case of an approximately flat fifth dimension for the purpose of the

explicit calculation of the Casimir energy; the generalization to a warped bulk follows

straightforwardly from eq. (2.25). We use methods similar to those of ref. [4] to determine

the boundary conditions and fermionic spectrum, and evaluate the Casimir energy with

techniques of ref. [12].

Boundary conditions. Expanding eqs. (2.1) and (2.2) around five static, flat dimensions

(g
(5)
MN = ηMN ), with a fifth dimension compactified on an interval of length R,14 we get

S =

∫
d4x

∫ R

0
dy

{
− iχ†σ̄µ∂µχ− iψσµ∂µψ† +

1

2

(
ψ
↔
∂ 5χ− χ†

↔
∂ 5ψ

†
)

+ δ(y − 0+)
[
− iÑ †1 σ̄µDµÑ1 − iÑ c

1σ
µDµÑ

c†
1

+m1(v)Ñ1Ñ
c
1 + µ1/2Ñ c

1χ+ c.c.
]}
. (A.1)

after integrating out the heavy fermions with mass m0 'M0. The equations of motion for

the light fermions are:

− iσ̄µ∂µχ − ∂5ψ
† + µ1/2Ñ c†

1 δ(y − 0+) = 0 (A.2)

− iσµ∂µψ† + ∂5χ = 0 (A.3)

− iσµ∂µÑ c†
1 + µ1/2χ|0+ +m1(v)Ñ1 = 0 (A.4)

− iσ̄µ∂µÑ1 +m1(v)∗Ñ c†
1 = 0. (A.5)

eq. (A.2) can be integrated around y = 0+ to yield a jump condition for ψ†, which together

with the hard BC for ψ† in eq. (2.5), gives the following constraint on the SM brane:

ψ†|0+ = µ1/2Ñ c†
1 . (A.6)

14To compute mass eigenvalues, it is enough to consider one interval since the fermions’ wave functions

are (anti-)symmetric around y = R.
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Similarly, eqs. (A.4) and (A.5) can be combined for a Klein-Gordon-type equation for Ñ c†
1

which, after combining with eq. (A.6), turns into the boundary condition of eq. (2.12):[
−∂2 + |m1(v)|2

]
ψ†|0+ + iµσ̄µ∂µχ|0+ = 0. (A.7)

Kaluza-Klein spectrum. The 5D fields χ and ψ† are quantized into massive 4D Kaluza-

Klein mode pairs with Dirac masses mn, which solve the Dirac equations

−iσ̄µ∂µχn(x)−mnψ
†
n(x) = 0; −iσµ∂µψ†n(x)−mnχn(x) = 0. (A.8)

The decomposition that solves the above Dirac equations as well as the bulk equations of

motion, eqs. (A.2) and (A.3), is

χ(x, y) =

∞∑
n=1

χn(x) [An cos(mny) +Bn sin(mny)] (A.9)

ψ†(x, y) =
∞∑
n=1

ψ†n(x) [−Bn cos(mny) +An sin(mny)] . (A.10)

The quantities An, Bn, mn are now uniquely determined by the BC at y = 0+, R and a

canonical normalization condition. The latter is not needed to derive the spectrum mn,

given implicitly as

cot(xn) = +
axn

1− bx2
n

, (A.11)

where we have defined xn ≡ mnR, a ≡ µ/|m1(v)|2R, and b ≡ 1/|m1(v)|2R2. The l.h.s. and

r.h.s. each come from solving for the ratio −Bn/An from the BC at y = R (see eq. (2.5))

and y = 0+ (see eq. (A.7)), respectively.

Evaluation of Casimir sums. To set up the regularization procedure, we rewrite

eq. (2.19)

ρC = −2

∞∑
n=1

∫
d4k

(2π)4
log(k2 +m2

n) ≡ − d

ds
ζf (s)

∣∣∣∣
s→0

(A.12)

in terms of the special ζ-function:

ζf (s) = − 1

8π2

1

(2− s)(1− s)
1

R4−2s
F (2s− 4); F (s) ≡

∞∑
n=1

x−sn , (A.13)

where xn are the positive roots of eq. (A.11). The sum F (s) can be computed via the

contour integral:

I(s) =
1

2πi

∮
C

dz
1

zs
f ′(z)

f(z)
; f(z) ≡ az − (1− bz2) cot z. (A.14)

When evaluated over a counterclockwise, infinite, semicircle contour in the Re(z) > 0

half-plane (infinitesimally avoiding the origin, by a semicircle of radius ε), the contour
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integration picks up all positive roots of eq. (A.11). It also picks up the poles at z = nπ

with residue −(nπ)−s, but those can be easily subtracted:

F (s) = I(s) +
1

πs

∞∑
n=1

1

ns
= I(s) +

ζ(s)

πs
, (A.15)

with ζ(s) the standard Riemann ζ-function. Evaluating I(s) explicitly for sufficiently large

Re(s) > 0 gives:

I(s) =
s

π
sin
(πs

2

)∫ ∞
ε

dy y−s−1 log

[
ay + (1 + by2) coth(y)

ay + (1 + by2)

]
+
s

π
sin
(πs

2

)∫ ∞
ε

dy y−s−1 log[ay + (1 + by2)]

+
sε−s

2π

∫ π/2

−π/2
dθ e−isθ log f(εeiθ)− ε−s

2
cos
(πs

2

)
. (A.16)

The terms in the second and third lines give vanishing contributions (for a > 0) when

analytically continued to s < 0 in the limit ε→ 0. Hence only the first line remains in this

regime, where it is finite and ε-independent. Ultimately, we are interested in the behavior

near s = −4; one can easily check that F (−4) = 0, so the Casimir energy is proportional to:

− d

ds
[F (2s− 4)]s→0 = −2π4ζ ′(−4) + I(a, b), (A.17)

I(a, b) ≡ 4

∫ ∞
0

dy y3 log

{
ay + (1 + by2) coth(y)

ay + (1 + by2)

}
. (A.18)

Finally, we get to a manageable expression for the Casimir energy, quoted in eq. (2.20):

ρC = − 1

16π2

1

R4

{
−3

2
ζ(5) + I(a, b)

}
. (A.19)

As a cross-check, one can see that for µ = 0, we have I(0, b) = 93ζ(5)/32 independent of

b as it should for zero brane-bulk mixing, so that the terms within curly brackets evaluate

to 45ζ(5)/32 ≈ 1.46.

B Radion mass and coupling

In this appendix, we calculate the radion mass and coupling for the background solu-

tions given in section 3.2. As discussed around eq. (3.26), there is a gauge ambiguity in

parametrization of the scalar modes of the metric. To isolate the radion from the unphysical

components of the graviton, it is convenient to pick the gauge [12, 101–103]:

f(y, xµ) = −1

2
g(y, xµ) = b(y)B0(xµ), (B.1)

where B0(xµ) is the radion field in the 4D effective theory (not yet canonically normalized).

To find the radion mass, we assume a 4D plane wave ansatz, B0(xµ) ∝ eipx with momentum

p parallel to the branes and p2 = −m2
r , factorized from an extra-dimensional profile b(y).
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Plugging in the metric from eq. (3.26) in the gauge of eq. (B.1) into the bulk Einstein

equations gives a deviation from eqs. (3.11) and (3.12) to leading order in ε:

+
3

2
b′′+6

a′′

a
b+6

(
a′

a

)2

b +9
a′

a
b′+3

H2

a2
b− 5

2

β

M3
5L

5a5
b +

15

2

β

M3
5L

6a5

∫ R

0

b

a
dy= 0, (B.2)

+
3

2

1

a2
m2
rb+12

(
a′

a

)2

b+6
a′

a
b′+6

H2

a2
b+10

β

M3
5L

5a5
b−30

β

M3
5L

6a5

∫ R

0

b

a
dy = 0. (B.3)

These are the leading corrections to the Einstein equations away from the branes (0 < y <

R), with one upper and one lower index. In eq. (B.3), we extracted the radion mass via

the equation of motion B̈0 + 3HḂ0 = −m2
rB0 for e.g. a purely time-like momentum p. The

integrals in the Casimir terms arise due to the radion dependence of the conformal distance

L[εbB0] '
∫ R

0 dy(1 − 3
2εbB0)/a. The jump conditions of eqs. (3.5) and (3.6) impose the

boundary conditions for the radion profile b′/b = −2a′/a at both brane locations:

b′(0) = +
σ1

3M3
5

b(0); b′(R) = − σ2

3M3
5

b(R). (B.4)

Eqs. (B.2), (B.3), and (B.4) fully determine the radion profile as well as its mass. For

brevity, we will proceed with the rest of the calculation in the flat-bulk and Ads-bulk

regimes as in section 3.2.

Flat bulk. Inserting the expansion of eq. (3.18) and a similar one for b(y) = 1 + b1y +

b2
y2

2 + . . . into eqs. (B.2), (B.3), and (B.4), and substituting the background solution

coefficients of eqs. (3.19) and (3.20), we can constrain the radion profile to be

b1 =
σ1

3M3
5

, b2 =
σ2

1

4M6
5

+
5Λ5

6M3
5

− 3H2. (B.5)

while the mass of the radion is

m2
r =

10

3

λ1

M3
5

− 24H2 =
40β

3L5M3
5

− 4H2. (B.6)

Note that there are more algebraic equations than unknown coefficients (three, namely b1,

b2, and m2
r) at this order. For example, one could solve for the profile {b1, b2} via the two

jump conditions of eq. (B.4), and subsequently for m2
r via eq. (B.3) evaluated at y = 0. As

a consistency check, one can then see that the same profile then also solves eq. (B.2) to

leading order at any location in the bulk 0 < y < R.

When the fifth dimension is almost flat, the radion has an approximately uniform

profile in the bulk, and is therefore near-gravitationally coupled to matter on the SM

brane up to O(1) factors (namely 1/
√

6 in the coupling, α ' 1/12 in the force).

AdS bulk. We parametrize the scalar background as in eq. (3.33) and the scalar pertur-

bation as in eq. (3.26). We expand the radion profile in three different exponents:

b(y) = e2ky +B4e
4ky +B5e

5ky +B7e
7ky + . . . (B.7)
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Substitution into eq. (B.2) and also into the two jump conditions of eq. (B.4) determines

the Bi coefficients:

B4 = − 5β

L5Λ5

(
γ2 + γ

)
− H

2

2k2
, (B.8)

B5 =
10β

3L5Λ5

(
γ2 + γ + 1

)
, (B.9)

B7 = −7A4 = − 14β

5L5Λ5
. (B.10)

With this profile, the radion mass can then be computed via eq. (B.3):

m2
r = −4

3

B4Λ5

M3
5

=
20

3

β

L5M3
5

(
γ2 + γ

)
− 4H2, (B.11)

in agreement with eq. (B.6) in the limit γ → 1. As a consistency check, one can see that

these values also solve the Einstein equations at any location in the bulk, to leading order

in λ1/Λ5 and H2/k2.

To determine the couplings of the radion with matter on the SM brane, or self-couplings

of the radion, we need to go beyond the 4D plane-wave approximation. Plugging in the

metric from eq. (3.26) in the gauge of eq. (B.1) into the Einstein-Hilbert action, we find

the radion kinetic term

Lr ⊃ −
∫ R

−R
dy

3M3
5

4
e2k|y| (∂µB0) (∂µB0) . (B.12)

Integrating over the fifth dimension and canonically normalizing, we find the radion couples

to the trace of energy momentum tensor as [103]:

Lr ⊃
Br√

6γMPl

Tµµ , (B.13)

where Br(x
µ) ≡

√
6γMPl

2 B0(xµ) is the canonically-normalized radion field. The suppression

of the radion coupling compared to that of the graviton by the warping factor γ arises

because of the small overlap of the radion wave function with the SM brane. In a similar

way, we find the form of the cubic and quartic coupling of the radion to be m2
r

MPl/γ
B3
r and

m2
r

(MPl/γ)2B
4
r , respectively. At the scale of MPl/γ, our linear expansion of the radion in the

Friedmann equation (B.2) and (B.3) starts to fail.

C The unbearable lightness of the radion

In this appendix, we will show that the mass of the radion is always protected, even

in the presence of (local) higher-dimensional operators. Under certain assumptions, the

radion mass can be arbitrarily small when the brane tensions are tuned to achieve a static

geometry as well as a large inter-brane separation. The main take-away is that these higher-

dimensional operators modify the necessary k and σ∗ to achieve the desired geometry from
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the values found in section 3 by small fractional amounts, but do not change the conclusion

that the radion mass is light when the extra dimension is large.

The sufficient conditions are (1) 5D Poincaré invariance of vacuum stress-energy

sources and currents in the bulk, (2) 4D Poincaré invariance of vacuum stress-energy

sources and currents on the brane(s), and (3) diffeomorphism invariance. We will prove

that with these assumptions the radion is massless provided that (4) we restrict to metric

solutions that are constant (static, isotropic, homogeneous) along the brane directions, and

(5) we “turn off” nonlocal sources such as Casimir energy.

Provision (5) is not possible — indeed we found in section 3 that Casimir stress is

responsible for giving a mass to the radion — but we imagine there is a brane tension

tuning to achieve a large brane separation such that nonlocal effects are small, as in the

main text. If we succeed in our proof of m2
r = 0 with assumptions (1)–(5), then it follows

that the radion mass must be proportional only to the Casimir stress-energy, the leading

nonlocal contribution to TMN . Higher-dimensional operators only give small fractional

corrections to the mass. Consequently, the radion mass will be automatically tuned to be

light if and only if the extra dimension is tuned to be large.

Local bulk operators. Away from the branes, the gravitational equations of motion are

(5)RMN = − Λ5

M3
5

δMN , (C.1)

where on the r.h.s. we have allowed only Poincaré-invariant stress-energy in the vacuum

〈TMN 〉 = Λ5δ
M
N . The l.h.s. can be any diffeomorphism-covariant operator involving 5D

gravity; in pure Einstein-Hilbert gravity, it would just be the Einstein tensor: (5)RMN =

GMN = RMN − 1
2R δMN . The l.h.s. can be an arbitrary function of the 5D Riemann

tensor (5)RMN
OP and other currents JMN . We ignore additional geometric invariants

with extra covariant derivatives since they do not change the argument. Under assumption

(1), JMN (x, y) = constant× δMN , while the Riemann tensor will be maximally symmetric:

(5)RMN
OP =

1

20
(5)R

(
δOMδ

P
N − δPMδON

)
. (C.2)

Hence the l.h.s. of eq. (C.1) must be some function f(5) of (5)R times δMN , so the equation

of motion reduces to

f(5)

(
(5)R

)
= − Λ5

M3
5

. (C.3)

We take the form of the metric to be:

gMN (x, y) = diag
{

−a(y)2

1−εb(y)B0(x) ,
+a(y)2

1−εb(y)B0(x) ,
+a(y)2

1−εb(y)B0(x)
+a(y)2

1−εb(y)B0(x) , [1− εb(y)B0(x)]2
}
,

(C.4)

and make the Ansatzes:

a(y) = e−ky, (C.5)

b(y) = e+2ky. (C.6)
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The metric with ε = 0 is the maximally-symmetric background solution which solves

eq. (C.3) for some k. This curvature scale will be different from the relation in eq. (3.10),

but only by small fractional corrections of order k2/M2
5 if we assume that higher-order terms

beyond the Einstein-Hilbert action are suppressed by powers of M5, not a lower scale. We

are only interested in background solutions that are constant along brane directions (4),

so we identify the first four coordinates xµ with the brane coordinates.

On top of the background solution of eq. (C.5), we perturb by the radion fluctuation

εb(y)B0(x). The amplitude ε is taken to be infinitesimal, while its appearance in the

metric of eq. (C.4) is such that B0(x) does not mix with the graviton at leading order in

derivatives (like in eq. (B.1)), and the profile b(y) of eq. (C.6) is such that B0(x) is the

lowest 4D mass eigenstate.

If B0(x) were constant, ε would parametrize a diffeomorphism of the maximally sym-

metric solution, leaving curvature invariants unchanged. Hence we must have that to

leading order in ε, they can only depend on derivatives of B0(x) in the brane directions.

The l.h.s. of eq. (C.1) must thus take the form:

(5)RMN = f(5)(k
2)δMN +O [ε∂µ∂

µB0(x)] . (C.7)

The expansion of the equation of motion in eq. (C.1) to leading order in ε around the

background solution for a(y) contains only derivatives of B0(x) — the radion is massless.

In the presence of two branes, two brane-tension tunings would need to occur to set

up a geometry in this regime: one to get a static geometry, the other to get a very large

extra dimension to suppress nonlocal effects like Casimir energy. Equivalently, these two

tunings can be viewed as tuning both Λ4 and m2
r . In our model, a stable extra dimension

requires a second tension tuning for the extra dimension to be large enough so that the

“soft” boundary condition of eq. (2.12) becomes relevant. This automatically also tunes

the radion to be correspondingly light.

This concludes the bulk of our proof. For completeness, we will show that, with the

inclusion of assumption (2), higher-dimensional curvature operators localized on the brane

also do not lift the radion mass. In what follows, we set B0(x) = 1 for demonstrative

purposes; the proof holds if no terms linear in ε can appear in the equations of motion.

Intrinsic brane curvature operators. Either brane is identically located at one value

of the y-coordinate. Here we will discuss only the SM brane, taken to be at y = 0 without

loss of generality, but similar conclusions would follow for the other brane. The induced

metric on the brane is just

gµν(x) = gMN (x, 0) δMµ δ
N
ν , (C.8)

where the Greek alphabet is used for 4D space and time components.

In the presence of branes, the gravitational equations of motion take on the form

(5)RMN + (4)Rµνδ(y)δMµ δ
ν
N = − Λ5

M3
5

δMN −
σ1

M3
5

δ(y)δµν δ
M
µ δ

ν
N . (C.9)
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We assume that 4D Poincaré symmetry is preserved by the vacuum on the brane (2), so

that the vacuum stress-energy is 〈Tµν〉0 ≡ σ1 δ
µ
ν with σ1 the renormalized tension, and any

currents directly coupled to gravitational operators take the form 〈Jµν(x)〉0 = constant×δµν .

The induced metric will again be maximally symmetric (from the 4D point of view), with

Riemann tensor

(4)Rµνρσ =
1

12
(4)R

(
δρµδ

σ
ν − δσµδρν

)
. (C.10)

Diffeomorphism invariance of the underlying theory implies that the operator (4)Rµν must

be built out of the maximally-symmetric induced 4D Riemann tensors in eq. (C.10) and

Kronecker deltas for ε = 0, leading to:

f(5)

(
(5)R

)
δMN + f(4)

(
(4)R

)
δµν δ

M
µ δ

ν
N = − Λ5

M3
5

δMN −
σ1

M3
5

δ(y)δµν δ
M
µ δ

ν
N (C.11)

for some functions f(5) and f(4). For constant B0(x), ε still parametrizes a diffeomorphism as

before and will thus leave the l.h.s. invariant, while the r.h.s. does not depend on the metric.

Again, no nonderivative terms in B0(x) appear, so intrinsic brane curvature operators

cannot generate an additive radion mass. At most, they can modify by a small amount

the kinetic term of B0(x).

Extrinsic brane curvature operators. Operators involving factors of extrinsic brane

curvature

KMN ≡ ∇MnN , (C.12)

where nN =
{

0, 0, 0, 0, g
1/2
55

}
is the unit normal vector to the brane, will also not contribute

to the radion mass, as we will now show.

The components K5µ and Kµ5 are zero identically, while the others can be computed

from the metric as:

Kµ
ν = ∇µnν = gµαΓ5

ανn5 = gµα
(
g55∂5gαν

)
n5 = (gµα∂5gαν) g

−1/2
55 . (C.13)

Setting B0(x) = 1, we find that

g
−1/2
55 = 1 + εb(y), gµα = a(y)−2[1− εb(y)]δµα, ∂5gαν = −2ka(y)2δαν , (C.14)

all up to O(ε2). Putting this together, we thus conclude that the extrinsic curvature

Kµ
ν = −2kδµν +O [ε∂µ∂

µB0(x)] +O
(
ε2
)

(C.15)

also does not contain nonderivative factors of B0(x) to leading order in ε.

Any operator (4)Rµν built out of intrinsic brane curvature factors (4)Rµνρσ and extrinsic

brane curvature factors Kµ
ν will thus not induce mass terms for B0(x) in its equation of

motion — the expansion of eq. (C.9) to first order in ε. This completes the proof.
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D Vacua in the ultraviolet

As an example of a mechanism that provides multiple values of brane tensions only when

the size of the fifth dimension is parametrically larger than the cutoff scale, we consider

the following action of a 5D scalar Φ with bulk mass MΦ:

SΦ =−
∫

d4x

∫ +R

−R
dy

√
−g(5)

[
(∂MΦ)2

2
+
M2

ΦΦ2

2

]
+

√
−g(4)δ(y−R)

[
MbF

3
a cos

(
Φ

F
3/2
a

)]
.

(D.1)

For demonstrative purposes, we endow Φ with an axion-like periodic brane potential at

y = R with period 2πF
3/2
a and barrier height MbF

3
a , and with Dirichlet boundary conditions

Φ(0) = Φ0 from e.g. a large boundary mass on the SM brane. The exact form of the

boundary potentials is not important: any other boundary potential with multiple minima

of sufficient depth and finite barrier height between them would suffice, and the minima

of the potentials in the bulk and on the boundaries need not coincide. Analogously, we

could have fields with fixed boundary condition on the non-SM brane and a multi-valued

potential on the SM brane. We assume the following hierarchy between the parameters in

eq. (D.1), the bulk curvature k and the brane-bulk mixing term µ (which sets the scale of

the stable extra dimension in Class I vacua):

MUV �Mb &MΦ � k > µ, (D.2)

such that the physics of Φ is well above the scales µ and k, but still within the regime of

validity of our effective theory.

For inter-brane separations R much larger than 1/MΦ, the classical profile of Φ is

exponentially close to Φ = 0 in the bulk but can reside in one of the many minima on the

boundary, as illustrated in figure 16. The scalar field Φ will acquire a nontrivial profile —

and thus contribute stress-energy — only in a small region of order 1/Mφ near the non-SM

brane. From a low-energy perspective, the many possible metastable Φ profiles simply

amount to different values of the non-SM brane tension σ2.

The number Nm of brane tension vacua generated in this setup can be estimated by

Nm ∼ max{Φ(R)}/F 3/2
a , where max{Φ(R)} is the maximum field displacement on the

brane that will still lead to a metastable solution. The maximum Φ(R) occurs at the point

where the field derivative of the bulk potential and gradient energy density integrated over

the Compton wavelength 1/MΦ equals the maximum field derivative on the brane potential:

MΦ max{Φ(R)} ∼MbF
3/2
a , (D.3)

giving a parametric estimate on the number of minima:

Nm ∼
Mb

MΦ
. (D.4)

When the fifth dimension shrinks to a size smaller than Φ’s Compton wavelength

(R < 1/MΦ), the five-dimensional gradient energy density grows, reducing the number of
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Figure 16. Diagram of possible metastable field profiles Φ(y) outlined in red, and associated

boundary values Φ(R) indicated by red dots. Due to the finite maximum derivative of the brane

potential V [Φ(R)], the potentials can only accommodate Nm = 7 metastable vacuum configurations.

The stress-energy of the field profile is localized in a small range of width O(1/MΦ) near one of the

branes, and at low energies manifests itself as a brane tension.

minima until only a single stable profile remains once

R .
1

Mb
. (D.5)

This implies that in the region

M−1
b . R .M−1

Φ , (D.6)

all but one of the Nm effective tension vacua are lost. With multiple scalar fields, the num-

ber of tension vacua at low energies can easily become exponentially large. For example,

NΦ copies of scalar fields with the same action as in eq. (D.1) would give rise to a number

of possible field profiles as large as NNΦ
m , which could give rise to a significant part of the

Nσ1 and Nσ2 tension vacua.

The above construction comes with one potential downside: in the range of radii given

by eq. (D.6), the Φ fields could act like Goldberger-Wise fields [104] that can possibly

stabilize the fifth dimension. This situation can be prevented by adding Nf extra fermions

in the bulk with masses anywhere in the wide range between µ and MΦ, and whose Casimir

force contribution is always attractive. (These fermions do not need to couple to SM

fields.) The quantum Casimir stress scales linearly in the fermion multiplicity Nf , while

the classical Goldberger-Wise stress scales linearly in NΦ and polynomially in Nm. Hence,

for polynomially large fermion multiplicities (Nf ), there can be exponentially many (NNΦ
m )

low-energy tension vacua that evaporate before cutoff energy scales but without risking

stabilization at any intermediate scale.
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